Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /*
  2.  *  Elliptic curve DSA
  3.  *
  4.  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5.  *  SPDX-License-Identifier: GPL-2.0
  6.  *
  7.  *  This program is free software; you can redistribute it and/or modify
  8.  *  it under the terms of the GNU General Public License as published by
  9.  *  the Free Software Foundation; either version 2 of the License, or
  10.  *  (at your option) any later version.
  11.  *
  12.  *  This program is distributed in the hope that it will be useful,
  13.  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.  *  GNU General Public License for more details.
  16.  *
  17.  *  You should have received a copy of the GNU General Public License along
  18.  *  with this program; if not, write to the Free Software Foundation, Inc.,
  19.  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20.  *
  21.  *  This file is part of mbed TLS (https://tls.mbed.org)
  22.  */
  23.  
  24. /*
  25.  * References:
  26.  *
  27.  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
  28.  */
  29.  
  30. #if !defined(MBEDTLS_CONFIG_FILE)
  31. #include "mbedtls/config.h"
  32. #else
  33. #include MBEDTLS_CONFIG_FILE
  34. #endif
  35.  
  36. #if defined(MBEDTLS_ECDSA_C)
  37.  
  38. #include "mbedtls/ecdsa.h"
  39. #include "mbedtls/asn1write.h"
  40.  
  41. #include <string.h>
  42.  
  43. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  44. #include "mbedtls/hmac_drbg.h"
  45. #endif
  46.  
  47. #if defined(MBEDTLS_PLATFORM_C)
  48. #include "mbedtls/platform.h"
  49. #else
  50. #include <stdlib.h>
  51. #define mbedtls_calloc    calloc
  52. #define mbedtls_free       free
  53. #endif
  54.  
  55. #include "mbedtls/platform_util.h"
  56.  
  57. /* Parameter validation macros based on platform_util.h */
  58. #define ECDSA_VALIDATE_RET( cond )    \
  59.     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
  60. #define ECDSA_VALIDATE( cond )        \
  61.     MBEDTLS_INTERNAL_VALIDATE( cond )
  62.  
  63. #if defined(MBEDTLS_ECP_RESTARTABLE)
  64.  
  65. /*
  66.  * Sub-context for ecdsa_verify()
  67.  */
  68. struct mbedtls_ecdsa_restart_ver
  69. {
  70.     mbedtls_mpi u1, u2;     /* intermediate values  */
  71.     enum {                  /* what to do next?     */
  72.         ecdsa_ver_init = 0, /* getting started      */
  73.         ecdsa_ver_muladd,   /* muladd step          */
  74.     } state;
  75. };
  76.  
  77. /*
  78.  * Init verify restart sub-context
  79.  */
  80. static void ecdsa_restart_ver_init( mbedtls_ecdsa_restart_ver_ctx *ctx )
  81. {
  82.     mbedtls_mpi_init( &ctx->u1 );
  83.     mbedtls_mpi_init( &ctx->u2 );
  84.     ctx->state = ecdsa_ver_init;
  85. }
  86.  
  87. /*
  88.  * Free the components of a verify restart sub-context
  89.  */
  90. static void ecdsa_restart_ver_free( mbedtls_ecdsa_restart_ver_ctx *ctx )
  91. {
  92.     if( ctx == NULL )
  93.         return;
  94.  
  95.     mbedtls_mpi_free( &ctx->u1 );
  96.     mbedtls_mpi_free( &ctx->u2 );
  97.  
  98.     ecdsa_restart_ver_init( ctx );
  99. }
  100.  
  101. /*
  102.  * Sub-context for ecdsa_sign()
  103.  */
  104. struct mbedtls_ecdsa_restart_sig
  105. {
  106.     int sign_tries;
  107.     int key_tries;
  108.     mbedtls_mpi k;          /* per-signature random */
  109.     mbedtls_mpi r;          /* r value              */
  110.     enum {                  /* what to do next?     */
  111.         ecdsa_sig_init = 0, /* getting started      */
  112.         ecdsa_sig_mul,      /* doing ecp_mul()      */
  113.         ecdsa_sig_modn,     /* mod N computations   */
  114.     } state;
  115. };
  116.  
  117. /*
  118.  * Init verify sign sub-context
  119.  */
  120. static void ecdsa_restart_sig_init( mbedtls_ecdsa_restart_sig_ctx *ctx )
  121. {
  122.     ctx->sign_tries = 0;
  123.     ctx->key_tries = 0;
  124.     mbedtls_mpi_init( &ctx->k );
  125.     mbedtls_mpi_init( &ctx->r );
  126.     ctx->state = ecdsa_sig_init;
  127. }
  128.  
  129. /*
  130.  * Free the components of a sign restart sub-context
  131.  */
  132. static void ecdsa_restart_sig_free( mbedtls_ecdsa_restart_sig_ctx *ctx )
  133. {
  134.     if( ctx == NULL )
  135.         return;
  136.  
  137.     mbedtls_mpi_free( &ctx->k );
  138.     mbedtls_mpi_free( &ctx->r );
  139. }
  140.  
  141. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  142. /*
  143.  * Sub-context for ecdsa_sign_det()
  144.  */
  145. struct mbedtls_ecdsa_restart_det
  146. {
  147.     mbedtls_hmac_drbg_context rng_ctx;  /* DRBG state   */
  148.     enum {                      /* what to do next?     */
  149.         ecdsa_det_init = 0,     /* getting started      */
  150.         ecdsa_det_sign,         /* make signature       */
  151.     } state;
  152. };
  153.  
  154. /*
  155.  * Init verify sign_det sub-context
  156.  */
  157. static void ecdsa_restart_det_init( mbedtls_ecdsa_restart_det_ctx *ctx )
  158. {
  159.     mbedtls_hmac_drbg_init( &ctx->rng_ctx );
  160.     ctx->state = ecdsa_det_init;
  161. }
  162.  
  163. /*
  164.  * Free the components of a sign_det restart sub-context
  165.  */
  166. static void ecdsa_restart_det_free( mbedtls_ecdsa_restart_det_ctx *ctx )
  167. {
  168.     if( ctx == NULL )
  169.         return;
  170.  
  171.     mbedtls_hmac_drbg_free( &ctx->rng_ctx );
  172.  
  173.     ecdsa_restart_det_init( ctx );
  174. }
  175. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  176.  
  177. #define ECDSA_RS_ECP    ( rs_ctx == NULL ? NULL : &rs_ctx->ecp )
  178.  
  179. /* Utility macro for checking and updating ops budget */
  180. #define ECDSA_BUDGET( ops )   \
  181.     MBEDTLS_MPI_CHK( mbedtls_ecp_check_budget( grp, ECDSA_RS_ECP, ops ) );
  182.  
  183. /* Call this when entering a function that needs its own sub-context */
  184. #define ECDSA_RS_ENTER( SUB )   do {                                 \
  185.     /* reset ops count for this call if top-level */                 \
  186.     if( rs_ctx != NULL && rs_ctx->ecp.depth++ == 0 )                 \
  187.         rs_ctx->ecp.ops_done = 0;                                    \
  188.                                                                      \
  189.     /* set up our own sub-context if needed */                       \
  190.     if( mbedtls_ecp_restart_is_enabled() &&                          \
  191.         rs_ctx != NULL && rs_ctx->SUB == NULL )                      \
  192.     {                                                                \
  193.         rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );   \
  194.         if( rs_ctx->SUB == NULL )                                    \
  195.             return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                  \
  196.                                                                      \
  197.         ecdsa_restart_## SUB ##_init( rs_ctx->SUB );                 \
  198.     }                                                                \
  199. } while( 0 )
  200.  
  201. /* Call this when leaving a function that needs its own sub-context */
  202. #define ECDSA_RS_LEAVE( SUB )   do {                                 \
  203.     /* clear our sub-context when not in progress (done or error) */ \
  204.     if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                     \
  205.         ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                         \
  206.     {                                                                \
  207.         ecdsa_restart_## SUB ##_free( rs_ctx->SUB );                 \
  208.         mbedtls_free( rs_ctx->SUB );                                 \
  209.         rs_ctx->SUB = NULL;                                          \
  210.     }                                                                \
  211.                                                                      \
  212.     if( rs_ctx != NULL )                                             \
  213.         rs_ctx->ecp.depth--;                                         \
  214. } while( 0 )
  215.  
  216. #else /* MBEDTLS_ECP_RESTARTABLE */
  217.  
  218. #define ECDSA_RS_ECP    NULL
  219.  
  220. #define ECDSA_BUDGET( ops )   /* no-op; for compatibility */
  221.  
  222. #define ECDSA_RS_ENTER( SUB )   (void) rs_ctx
  223. #define ECDSA_RS_LEAVE( SUB )   (void) rs_ctx
  224.  
  225. #endif /* MBEDTLS_ECP_RESTARTABLE */
  226.  
  227. /*
  228.  * Derive a suitable integer for group grp from a buffer of length len
  229.  * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
  230.  */
  231. static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x,
  232.                        const unsigned char *buf, size_t blen )
  233. {
  234.     int ret;
  235.     size_t n_size = ( grp->nbits + 7 ) / 8;
  236.     size_t use_size = blen > n_size ? n_size : blen;
  237.  
  238.     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) );
  239.     if( use_size * 8 > grp->nbits )
  240.         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) );
  241.  
  242.     /* While at it, reduce modulo N */
  243.     if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 )
  244.         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) );
  245.  
  246. cleanup:
  247.     return( ret );
  248. }
  249.  
  250. #if !defined(MBEDTLS_ECDSA_SIGN_ALT)
  251. /*
  252.  * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
  253.  * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
  254.  */
  255. static int ecdsa_sign_restartable( mbedtls_ecp_group *grp,
  256.                 mbedtls_mpi *r, mbedtls_mpi *s,
  257.                 const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  258.                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
  259.                 int (*f_rng_blind)(void *, unsigned char *, size_t),
  260.                 void *p_rng_blind,
  261.                 mbedtls_ecdsa_restart_ctx *rs_ctx )
  262. {
  263.     int ret, key_tries, sign_tries;
  264.     int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
  265.     mbedtls_ecp_point R;
  266.     mbedtls_mpi k, e, t;
  267.     mbedtls_mpi *pk = &k, *pr = r;
  268.  
  269.     /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  270.     if( grp->N.p == NULL )
  271.         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  272.  
  273.     /* Make sure d is in range 1..n-1 */
  274.     if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
  275.         return( MBEDTLS_ERR_ECP_INVALID_KEY );
  276.  
  277.     mbedtls_ecp_point_init( &R );
  278.     mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t );
  279.  
  280.     ECDSA_RS_ENTER( sig );
  281.  
  282. #if defined(MBEDTLS_ECP_RESTARTABLE)
  283.     if( rs_ctx != NULL && rs_ctx->sig != NULL )
  284.     {
  285.         /* redirect to our context */
  286.         p_sign_tries = &rs_ctx->sig->sign_tries;
  287.         p_key_tries = &rs_ctx->sig->key_tries;
  288.         pk = &rs_ctx->sig->k;
  289.         pr = &rs_ctx->sig->r;
  290.  
  291.         /* jump to current step */
  292.         if( rs_ctx->sig->state == ecdsa_sig_mul )
  293.             goto mul;
  294.         if( rs_ctx->sig->state == ecdsa_sig_modn )
  295.             goto modn;
  296.     }
  297. #endif /* MBEDTLS_ECP_RESTARTABLE */
  298.  
  299.     *p_sign_tries = 0;
  300.     do
  301.     {
  302.         if( (*p_sign_tries)++ > 10 )
  303.         {
  304.             ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  305.             goto cleanup;
  306.         }
  307.  
  308.         /*
  309.          * Steps 1-3: generate a suitable ephemeral keypair
  310.          * and set r = xR mod n
  311.          */
  312.         *p_key_tries = 0;
  313.         do
  314.         {
  315.             if( (*p_key_tries)++ > 10 )
  316.             {
  317.                 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  318.                 goto cleanup;
  319.             }
  320.  
  321.             MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, pk, f_rng, p_rng ) );
  322.  
  323. #if defined(MBEDTLS_ECP_RESTARTABLE)
  324.             if( rs_ctx != NULL && rs_ctx->sig != NULL )
  325.                 rs_ctx->sig->state = ecdsa_sig_mul;
  326.  
  327. mul:
  328. #endif
  329.             MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, &R, pk, &grp->G,
  330.                                                           f_rng_blind,
  331.                                                           p_rng_blind,
  332.                                                           ECDSA_RS_ECP ) );
  333.             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pr, &R.X, &grp->N ) );
  334.         }
  335.         while( mbedtls_mpi_cmp_int( pr, 0 ) == 0 );
  336.  
  337. #if defined(MBEDTLS_ECP_RESTARTABLE)
  338.         if( rs_ctx != NULL && rs_ctx->sig != NULL )
  339.             rs_ctx->sig->state = ecdsa_sig_modn;
  340.  
  341. modn:
  342. #endif
  343.         /*
  344.          * Accounting for everything up to the end of the loop
  345.          * (step 6, but checking now avoids saving e and t)
  346.          */
  347.         ECDSA_BUDGET( MBEDTLS_ECP_OPS_INV + 4 );
  348.  
  349.         /*
  350.          * Step 5: derive MPI from hashed message
  351.          */
  352.         MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  353.  
  354.         /*
  355.          * Generate a random value to blind inv_mod in next step,
  356.          * avoiding a potential timing leak.
  357.          */
  358.         MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &t, f_rng_blind,
  359.                                                   p_rng_blind ) );
  360.  
  361.         /*
  362.          * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
  363.          */
  364.         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, pr, d ) );
  365.         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) );
  366.         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) );
  367.         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pk, pk, &t ) );
  368.         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pk, pk, &grp->N ) );
  369.         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, pk, &grp->N ) );
  370.         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) );
  371.         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) );
  372.     }
  373.     while( mbedtls_mpi_cmp_int( s, 0 ) == 0 );
  374.  
  375. #if defined(MBEDTLS_ECP_RESTARTABLE)
  376.     if( rs_ctx != NULL && rs_ctx->sig != NULL )
  377.         mbedtls_mpi_copy( r, pr );
  378. #endif
  379.  
  380. cleanup:
  381.     mbedtls_ecp_point_free( &R );
  382.     mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t );
  383.  
  384.     ECDSA_RS_LEAVE( sig );
  385.  
  386.     return( ret );
  387. }
  388.  
  389. /*
  390.  * Compute ECDSA signature of a hashed message
  391.  */
  392. int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
  393.                 const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  394.                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  395. {
  396.     ECDSA_VALIDATE_RET( grp   != NULL );
  397.     ECDSA_VALIDATE_RET( r     != NULL );
  398.     ECDSA_VALIDATE_RET( s     != NULL );
  399.     ECDSA_VALIDATE_RET( d     != NULL );
  400.     ECDSA_VALIDATE_RET( f_rng != NULL );
  401.     ECDSA_VALIDATE_RET( buf   != NULL || blen == 0 );
  402.  
  403.     /* Use the same RNG for both blinding and ephemeral key generation */
  404.     return( ecdsa_sign_restartable( grp, r, s, d, buf, blen,
  405.                                     f_rng, p_rng, f_rng, p_rng, NULL ) );
  406. }
  407. #endif /* !MBEDTLS_ECDSA_SIGN_ALT */
  408.  
  409. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  410. /*
  411.  * Deterministic signature wrapper
  412.  */
  413. static int ecdsa_sign_det_restartable( mbedtls_ecp_group *grp,
  414.                     mbedtls_mpi *r, mbedtls_mpi *s,
  415.                     const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  416.                     mbedtls_md_type_t md_alg,
  417.                     int (*f_rng_blind)(void *, unsigned char *, size_t),
  418.                     void *p_rng_blind,
  419.                     mbedtls_ecdsa_restart_ctx *rs_ctx )
  420. {
  421.     int ret;
  422.     mbedtls_hmac_drbg_context rng_ctx;
  423.     mbedtls_hmac_drbg_context *p_rng = &rng_ctx;
  424.     unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
  425.     size_t grp_len = ( grp->nbits + 7 ) / 8;
  426.     const mbedtls_md_info_t *md_info;
  427.     mbedtls_mpi h;
  428.  
  429.     if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL )
  430.         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  431.  
  432.     mbedtls_mpi_init( &h );
  433.     mbedtls_hmac_drbg_init( &rng_ctx );
  434.  
  435.     ECDSA_RS_ENTER( det );
  436.  
  437. #if defined(MBEDTLS_ECP_RESTARTABLE)
  438.     if( rs_ctx != NULL && rs_ctx->det != NULL )
  439.     {
  440.         /* redirect to our context */
  441.         p_rng = &rs_ctx->det->rng_ctx;
  442.  
  443.         /* jump to current step */
  444.         if( rs_ctx->det->state == ecdsa_det_sign )
  445.             goto sign;
  446.     }
  447. #endif /* MBEDTLS_ECP_RESTARTABLE */
  448.  
  449.     /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
  450.     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) );
  451.     MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
  452.     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) );
  453.     mbedtls_hmac_drbg_seed_buf( p_rng, md_info, data, 2 * grp_len );
  454.  
  455. #if defined(MBEDTLS_ECP_RESTARTABLE)
  456.     if( rs_ctx != NULL && rs_ctx->det != NULL )
  457.         rs_ctx->det->state = ecdsa_det_sign;
  458.  
  459. sign:
  460. #endif
  461. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  462.     ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen,
  463.                               mbedtls_hmac_drbg_random, p_rng );
  464. #else
  465.     if( f_rng_blind != NULL )
  466.         ret = ecdsa_sign_restartable( grp, r, s, d, buf, blen,
  467.                                       mbedtls_hmac_drbg_random, p_rng,
  468.                                       f_rng_blind, p_rng_blind, rs_ctx );
  469.     else
  470.     {
  471.         mbedtls_hmac_drbg_context *p_rng_blind_det;
  472.  
  473. #if !defined(MBEDTLS_ECP_RESTARTABLE)
  474.         /*
  475.          * To avoid reusing rng_ctx and risking incorrect behavior we seed a
  476.          * second HMAC-DRBG with the same seed. We also apply a label to avoid
  477.          * reusing the bits of the ephemeral key for blinding and eliminate the
  478.          * risk that they leak this way.
  479.          */
  480.         const char* blind_label = "BLINDING CONTEXT";
  481.         mbedtls_hmac_drbg_context rng_ctx_blind;
  482.  
  483.         mbedtls_hmac_drbg_init( &rng_ctx_blind );
  484.         p_rng_blind_det = &rng_ctx_blind;
  485.  
  486.         mbedtls_hmac_drbg_seed_buf( p_rng_blind_det, md_info,
  487.                                     data, 2 * grp_len );
  488.         ret = mbedtls_hmac_drbg_update_ret( p_rng_blind_det,
  489.                                             (const unsigned char*) blind_label,
  490.                                             strlen( blind_label ) );
  491.         if( ret != 0 )
  492.         {
  493.             mbedtls_hmac_drbg_free( &rng_ctx_blind );
  494.             goto cleanup;
  495.         }
  496. #else
  497.         /*
  498.          * In the case of restartable computations we would either need to store
  499.          * the second RNG in the restart context too or set it up at every
  500.          * restart. The first option would penalize the correct application of
  501.          * the function and the second would defeat the purpose of the
  502.          * restartable feature.
  503.          *
  504.          * Therefore in this case we reuse the original RNG. This comes with the
  505.          * price that the resulting signature might not be a valid deterministic
  506.          * ECDSA signature with a very low probability (same magnitude as
  507.          * successfully guessing the private key). However even then it is still
  508.          * a valid ECDSA signature.
  509.          */
  510.         p_rng_blind_det = p_rng;
  511. #endif /* MBEDTLS_ECP_RESTARTABLE */
  512.  
  513.         /*
  514.          * Since the output of the RNGs is always the same for the same key and
  515.          * message, this limits the efficiency of blinding and leaks information
  516.          * through side channels. After mbedtls_ecdsa_sign_det() is removed NULL
  517.          * won't be a valid value for f_rng_blind anymore. Therefore it should
  518.          * be checked by the caller and this branch and check can be removed.
  519.          */
  520.         ret = ecdsa_sign_restartable( grp, r, s, d, buf, blen,
  521.                                       mbedtls_hmac_drbg_random, p_rng,
  522.                                       mbedtls_hmac_drbg_random, p_rng_blind_det,
  523.                                       rs_ctx );
  524.  
  525. #if !defined(MBEDTLS_ECP_RESTARTABLE)
  526.         mbedtls_hmac_drbg_free( &rng_ctx_blind );
  527. #endif
  528.     }
  529. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  530.  
  531. cleanup:
  532.     mbedtls_hmac_drbg_free( &rng_ctx );
  533.     mbedtls_mpi_free( &h );
  534.  
  535.     ECDSA_RS_LEAVE( det );
  536.  
  537.     return( ret );
  538. }
  539.  
  540. /*
  541.  * Deterministic signature wrappers
  542.  */
  543. int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r,
  544.                             mbedtls_mpi *s, const mbedtls_mpi *d,
  545.                             const unsigned char *buf, size_t blen,
  546.                             mbedtls_md_type_t md_alg )
  547. {
  548.     ECDSA_VALIDATE_RET( grp   != NULL );
  549.     ECDSA_VALIDATE_RET( r     != NULL );
  550.     ECDSA_VALIDATE_RET( s     != NULL );
  551.     ECDSA_VALIDATE_RET( d     != NULL );
  552.     ECDSA_VALIDATE_RET( buf   != NULL || blen == 0 );
  553.  
  554.     return( ecdsa_sign_det_restartable( grp, r, s, d, buf, blen, md_alg,
  555.                                         NULL, NULL, NULL ) );
  556. }
  557.  
  558. int mbedtls_ecdsa_sign_det_ext( mbedtls_ecp_group *grp, mbedtls_mpi *r,
  559.                                 mbedtls_mpi *s, const mbedtls_mpi *d,
  560.                                 const unsigned char *buf, size_t blen,
  561.                                 mbedtls_md_type_t md_alg,
  562.                                 int (*f_rng_blind)(void *, unsigned char *,
  563.                                                    size_t),
  564.                                 void *p_rng_blind )
  565. {
  566.     ECDSA_VALIDATE_RET( grp   != NULL );
  567.     ECDSA_VALIDATE_RET( r     != NULL );
  568.     ECDSA_VALIDATE_RET( s     != NULL );
  569.     ECDSA_VALIDATE_RET( d     != NULL );
  570.     ECDSA_VALIDATE_RET( buf   != NULL || blen == 0 );
  571.     ECDSA_VALIDATE_RET( f_rng_blind != NULL );
  572.  
  573.     return( ecdsa_sign_det_restartable( grp, r, s, d, buf, blen, md_alg,
  574.                                         f_rng_blind, p_rng_blind, NULL ) );
  575. }
  576. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  577.  
  578. #if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  579. /*
  580.  * Verify ECDSA signature of hashed message (SEC1 4.1.4)
  581.  * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
  582.  */
  583. static int ecdsa_verify_restartable( mbedtls_ecp_group *grp,
  584.                                      const unsigned char *buf, size_t blen,
  585.                                      const mbedtls_ecp_point *Q,
  586.                                      const mbedtls_mpi *r, const mbedtls_mpi *s,
  587.                                      mbedtls_ecdsa_restart_ctx *rs_ctx )
  588. {
  589.     int ret;
  590.     mbedtls_mpi e, s_inv, u1, u2;
  591.     mbedtls_ecp_point R;
  592.     mbedtls_mpi *pu1 = &u1, *pu2 = &u2;
  593.  
  594.     mbedtls_ecp_point_init( &R );
  595.     mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv );
  596.     mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 );
  597.  
  598.     /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  599.     if( grp->N.p == NULL )
  600.         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  601.  
  602.     ECDSA_RS_ENTER( ver );
  603.  
  604. #if defined(MBEDTLS_ECP_RESTARTABLE)
  605.     if( rs_ctx != NULL && rs_ctx->ver != NULL )
  606.     {
  607.         /* redirect to our context */
  608.         pu1 = &rs_ctx->ver->u1;
  609.         pu2 = &rs_ctx->ver->u2;
  610.  
  611.         /* jump to current step */
  612.         if( rs_ctx->ver->state == ecdsa_ver_muladd )
  613.             goto muladd;
  614.     }
  615. #endif /* MBEDTLS_ECP_RESTARTABLE */
  616.  
  617.     /*
  618.      * Step 1: make sure r and s are in range 1..n-1
  619.      */
  620.     if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 ||
  621.         mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 )
  622.     {
  623.         ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  624.         goto cleanup;
  625.     }
  626.  
  627.     /*
  628.      * Step 3: derive MPI from hashed message
  629.      */
  630.     MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
  631.  
  632.     /*
  633.      * Step 4: u1 = e / s mod n, u2 = r / s mod n
  634.      */
  635.     ECDSA_BUDGET( MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2 );
  636.  
  637.     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) );
  638.  
  639.     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu1, &e, &s_inv ) );
  640.     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu1, pu1, &grp->N ) );
  641.  
  642.     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu2, r, &s_inv ) );
  643.     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu2, pu2, &grp->N ) );
  644.  
  645. #if defined(MBEDTLS_ECP_RESTARTABLE)
  646.     if( rs_ctx != NULL && rs_ctx->ver != NULL )
  647.         rs_ctx->ver->state = ecdsa_ver_muladd;
  648.  
  649. muladd:
  650. #endif
  651.     /*
  652.      * Step 5: R = u1 G + u2 Q
  653.      */
  654.     MBEDTLS_MPI_CHK( mbedtls_ecp_muladd_restartable( grp,
  655.                      &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP ) );
  656.  
  657.     if( mbedtls_ecp_is_zero( &R ) )
  658.     {
  659.         ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  660.         goto cleanup;
  661.     }
  662.  
  663.     /*
  664.      * Step 6: convert xR to an integer (no-op)
  665.      * Step 7: reduce xR mod n (gives v)
  666.      */
  667.     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
  668.  
  669.     /*
  670.      * Step 8: check if v (that is, R.X) is equal to r
  671.      */
  672.     if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 )
  673.     {
  674.         ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  675.         goto cleanup;
  676.     }
  677.  
  678. cleanup:
  679.     mbedtls_ecp_point_free( &R );
  680.     mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv );
  681.     mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 );
  682.  
  683.     ECDSA_RS_LEAVE( ver );
  684.  
  685.     return( ret );
  686. }
  687.  
  688. /*
  689.  * Verify ECDSA signature of hashed message
  690.  */
  691. int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
  692.                           const unsigned char *buf, size_t blen,
  693.                           const mbedtls_ecp_point *Q,
  694.                           const mbedtls_mpi *r,
  695.                           const mbedtls_mpi *s)
  696. {
  697.     ECDSA_VALIDATE_RET( grp != NULL );
  698.     ECDSA_VALIDATE_RET( Q   != NULL );
  699.     ECDSA_VALIDATE_RET( r   != NULL );
  700.     ECDSA_VALIDATE_RET( s   != NULL );
  701.     ECDSA_VALIDATE_RET( buf != NULL || blen == 0 );
  702.  
  703.     return( ecdsa_verify_restartable( grp, buf, blen, Q, r, s, NULL ) );
  704. }
  705. #endif /* !MBEDTLS_ECDSA_VERIFY_ALT */
  706.  
  707. /*
  708.  * Convert a signature (given by context) to ASN.1
  709.  */
  710. static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
  711.                                     unsigned char *sig, size_t *slen )
  712. {
  713.     int ret;
  714.     unsigned char buf[MBEDTLS_ECDSA_MAX_LEN];
  715.     unsigned char *p = buf + sizeof( buf );
  716.     size_t len = 0;
  717.  
  718.     MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
  719.     MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
  720.  
  721.     MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
  722.     MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
  723.                                        MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
  724.  
  725.     memcpy( sig, p, len );
  726.     *slen = len;
  727.  
  728.     return( 0 );
  729. }
  730.  
  731. /*
  732.  * Compute and write signature
  733.  */
  734. int mbedtls_ecdsa_write_signature_restartable( mbedtls_ecdsa_context *ctx,
  735.                            mbedtls_md_type_t md_alg,
  736.                            const unsigned char *hash, size_t hlen,
  737.                            unsigned char *sig, size_t *slen,
  738.                            int (*f_rng)(void *, unsigned char *, size_t),
  739.                            void *p_rng,
  740.                            mbedtls_ecdsa_restart_ctx *rs_ctx )
  741. {
  742.     int ret;
  743.     mbedtls_mpi r, s;
  744.     ECDSA_VALIDATE_RET( ctx  != NULL );
  745.     ECDSA_VALIDATE_RET( hash != NULL );
  746.     ECDSA_VALIDATE_RET( sig  != NULL );
  747.     ECDSA_VALIDATE_RET( slen != NULL );
  748.  
  749.     mbedtls_mpi_init( &r );
  750.     mbedtls_mpi_init( &s );
  751.  
  752. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  753.     MBEDTLS_MPI_CHK( ecdsa_sign_det_restartable( &ctx->grp, &r, &s, &ctx->d,
  754.                                                  hash, hlen, md_alg, f_rng,
  755.                                                  p_rng, rs_ctx ) );
  756. #else
  757.     (void) md_alg;
  758.  
  759. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  760.     MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d,
  761.                          hash, hlen, f_rng, p_rng ) );
  762. #else
  763.     /* Use the same RNG for both blinding and ephemeral key generation */
  764.     MBEDTLS_MPI_CHK( ecdsa_sign_restartable( &ctx->grp, &r, &s, &ctx->d,
  765.                                              hash, hlen, f_rng, p_rng, f_rng,
  766.                                              p_rng, rs_ctx ) );
  767. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  768. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  769.  
  770.     MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) );
  771.  
  772. cleanup:
  773.     mbedtls_mpi_free( &r );
  774.     mbedtls_mpi_free( &s );
  775.  
  776.     return( ret );
  777. }
  778.  
  779. /*
  780.  * Compute and write signature
  781.  */
  782. int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx,
  783.                                  mbedtls_md_type_t md_alg,
  784.                                  const unsigned char *hash, size_t hlen,
  785.                                  unsigned char *sig, size_t *slen,
  786.                                  int (*f_rng)(void *, unsigned char *, size_t),
  787.                                  void *p_rng )
  788. {
  789.     ECDSA_VALIDATE_RET( ctx  != NULL );
  790.     ECDSA_VALIDATE_RET( hash != NULL );
  791.     ECDSA_VALIDATE_RET( sig  != NULL );
  792.     ECDSA_VALIDATE_RET( slen != NULL );
  793.     return( mbedtls_ecdsa_write_signature_restartable(
  794.                 ctx, md_alg, hash, hlen, sig, slen, f_rng, p_rng, NULL ) );
  795. }
  796.  
  797. #if !defined(MBEDTLS_DEPRECATED_REMOVED) && \
  798.     defined(MBEDTLS_ECDSA_DETERMINISTIC)
  799. int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
  800.                                const unsigned char *hash, size_t hlen,
  801.                                unsigned char *sig, size_t *slen,
  802.                                mbedtls_md_type_t md_alg )
  803. {
  804.     ECDSA_VALIDATE_RET( ctx  != NULL );
  805.     ECDSA_VALIDATE_RET( hash != NULL );
  806.     ECDSA_VALIDATE_RET( sig  != NULL );
  807.     ECDSA_VALIDATE_RET( slen != NULL );
  808.     return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen,
  809.                                    NULL, NULL ) );
  810. }
  811. #endif
  812.  
  813. /*
  814.  * Read and check signature
  815.  */
  816. int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
  817.                           const unsigned char *hash, size_t hlen,
  818.                           const unsigned char *sig, size_t slen )
  819. {
  820.     ECDSA_VALIDATE_RET( ctx  != NULL );
  821.     ECDSA_VALIDATE_RET( hash != NULL );
  822.     ECDSA_VALIDATE_RET( sig  != NULL );
  823.     return( mbedtls_ecdsa_read_signature_restartable(
  824.                 ctx, hash, hlen, sig, slen, NULL ) );
  825. }
  826.  
  827. /*
  828.  * Restartable read and check signature
  829.  */
  830. int mbedtls_ecdsa_read_signature_restartable( mbedtls_ecdsa_context *ctx,
  831.                           const unsigned char *hash, size_t hlen,
  832.                           const unsigned char *sig, size_t slen,
  833.                           mbedtls_ecdsa_restart_ctx *rs_ctx )
  834. {
  835.     int ret;
  836.     unsigned char *p = (unsigned char *) sig;
  837.     const unsigned char *end = sig + slen;
  838.     size_t len;
  839.     mbedtls_mpi r, s;
  840.     ECDSA_VALIDATE_RET( ctx  != NULL );
  841.     ECDSA_VALIDATE_RET( hash != NULL );
  842.     ECDSA_VALIDATE_RET( sig  != NULL );
  843.  
  844.     mbedtls_mpi_init( &r );
  845.     mbedtls_mpi_init( &s );
  846.  
  847.     if( ( ret = mbedtls_asn1_get_tag( &p, end, &len,
  848.                     MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
  849.     {
  850.         ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  851.         goto cleanup;
  852.     }
  853.  
  854.     if( p + len != end )
  855.     {
  856.         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA +
  857.               MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
  858.         goto cleanup;
  859.     }
  860.  
  861.     if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 ||
  862.         ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 )
  863.     {
  864.         ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  865.         goto cleanup;
  866.     }
  867. #if defined(MBEDTLS_ECDSA_VERIFY_ALT)
  868.     if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen,
  869.                                       &ctx->Q, &r, &s ) ) != 0 )
  870.         goto cleanup;
  871. #else
  872.     if( ( ret = ecdsa_verify_restartable( &ctx->grp, hash, hlen,
  873.                               &ctx->Q, &r, &s, rs_ctx ) ) != 0 )
  874.         goto cleanup;
  875. #endif /* MBEDTLS_ECDSA_VERIFY_ALT */
  876.  
  877.     /* At this point we know that the buffer starts with a valid signature.
  878.      * Return 0 if the buffer just contains the signature, and a specific
  879.      * error code if the valid signature is followed by more data. */
  880.     if( p != end )
  881.         ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
  882.  
  883. cleanup:
  884.     mbedtls_mpi_free( &r );
  885.     mbedtls_mpi_free( &s );
  886.  
  887.     return( ret );
  888. }
  889.  
  890. #if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
  891. /*
  892.  * Generate key pair
  893.  */
  894. int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
  895.                   int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
  896. {
  897.     int ret = 0;
  898.     ECDSA_VALIDATE_RET( ctx   != NULL );
  899.     ECDSA_VALIDATE_RET( f_rng != NULL );
  900.  
  901.     ret = mbedtls_ecp_group_load( &ctx->grp, gid );
  902.     if( ret != 0 )
  903.         return( ret );
  904.  
  905.    return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d,
  906.                                     &ctx->Q, f_rng, p_rng ) );
  907. }
  908. #endif /* !MBEDTLS_ECDSA_GENKEY_ALT */
  909.  
  910. /*
  911.  * Set context from an mbedtls_ecp_keypair
  912.  */
  913. int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key )
  914. {
  915.     int ret;
  916.     ECDSA_VALIDATE_RET( ctx != NULL );
  917.     ECDSA_VALIDATE_RET( key != NULL );
  918.  
  919.     if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
  920.         ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 ||
  921.         ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
  922.     {
  923.         mbedtls_ecdsa_free( ctx );
  924.     }
  925.  
  926.     return( ret );
  927. }
  928.  
  929. /*
  930.  * Initialize context
  931.  */
  932. void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx )
  933. {
  934.     ECDSA_VALIDATE( ctx != NULL );
  935.  
  936.     mbedtls_ecp_keypair_init( ctx );
  937. }
  938.  
  939. /*
  940.  * Free context
  941.  */
  942. void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx )
  943. {
  944.     if( ctx == NULL )
  945.         return;
  946.  
  947.     mbedtls_ecp_keypair_free( ctx );
  948. }
  949.  
  950. #if defined(MBEDTLS_ECP_RESTARTABLE)
  951. /*
  952.  * Initialize a restart context
  953.  */
  954. void mbedtls_ecdsa_restart_init( mbedtls_ecdsa_restart_ctx *ctx )
  955. {
  956.     ECDSA_VALIDATE( ctx != NULL );
  957.  
  958.     mbedtls_ecp_restart_init( &ctx->ecp );
  959.  
  960.     ctx->ver = NULL;
  961.     ctx->sig = NULL;
  962. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  963.     ctx->det = NULL;
  964. #endif
  965. }
  966.  
  967. /*
  968.  * Free the components of a restart context
  969.  */
  970. void mbedtls_ecdsa_restart_free( mbedtls_ecdsa_restart_ctx *ctx )
  971. {
  972.     if( ctx == NULL )
  973.         return;
  974.  
  975.     mbedtls_ecp_restart_free( &ctx->ecp );
  976.  
  977.     ecdsa_restart_ver_free( ctx->ver );
  978.     mbedtls_free( ctx->ver );
  979.     ctx->ver = NULL;
  980.  
  981.     ecdsa_restart_sig_free( ctx->sig );
  982.     mbedtls_free( ctx->sig );
  983.     ctx->sig = NULL;
  984.  
  985. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  986.     ecdsa_restart_det_free( ctx->det );
  987.     mbedtls_free( ctx->det );
  988.     ctx->det = NULL;
  989. #endif
  990. }
  991. #endif /* MBEDTLS_ECP_RESTARTABLE */
  992.  
  993. #endif /* MBEDTLS_ECDSA_C */
  994.