Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | Download | RSS feed

  1. /**************************************************************************
  2.  *
  3.  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
  4.  * All Rights Reserved.
  5.  *
  6.  **************************************************************************/
  7.  
  8.  
  9. /**
  10.  * Code to implement GL_OES_query_matrix.  See the spec at:
  11.  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
  12.  */
  13.  
  14.  
  15. #include <stdlib.h>
  16. #include <math.h>
  17. #include "GLES/gl.h"
  18. #include "GLES/glext.h"
  19.  
  20.  
  21. /**
  22.  * This is from the GL_OES_query_matrix extension specification:
  23.  *
  24.  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
  25.  *                                GLint   exponent[16] )
  26.  *  mantissa[16] contains the contents of the current matrix in GLfixed
  27.  *  format.  exponent[16] contains the unbiased exponents applied to the
  28.  *  matrix components, so that the internal representation of component i
  29.  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
  30.  *  word which is zero if all the components are valid. If
  31.  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
  32.  *  The implementations are not required to keep track of overflows.  In
  33.  *  that case, the invalid bits are never set.
  34.  */
  35.  
  36. #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
  37. #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
  38.  
  39. #if defined(_MSC_VER)
  40. /* Oddly, the fpclassify() function doesn't exist in such a form
  41.  * on MSVC.  This is an implementation using slightly different
  42.  * lower-level Windows functions.
  43.  */
  44. #include <float.h>
  45.  
  46. enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
  47. fpclassify(double x)
  48. {
  49.     switch(_fpclass(x)) {
  50.         case _FPCLASS_SNAN: /* signaling NaN */
  51.         case _FPCLASS_QNAN: /* quiet NaN */
  52.             return FP_NAN;
  53.         case _FPCLASS_NINF: /* negative infinity */
  54.         case _FPCLASS_PINF: /* positive infinity */
  55.             return FP_INFINITE;
  56.         case _FPCLASS_NN:   /* negative normal */
  57.         case _FPCLASS_PN:   /* positive normal */
  58.             return FP_NORMAL;
  59.         case _FPCLASS_ND:   /* negative denormalized */
  60.         case _FPCLASS_PD:   /* positive denormalized */
  61.             return FP_SUBNORMAL;
  62.         case _FPCLASS_NZ:   /* negative zero */
  63.         case _FPCLASS_PZ:   /* positive zero */
  64.             return FP_ZERO;
  65.         default:
  66.             /* Should never get here; but if we do, this will guarantee
  67.              * that the pattern is not treated like a number.
  68.              */
  69.             return FP_NAN;
  70.     }
  71. }
  72.  
  73. #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
  74.      defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
  75.      (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \
  76.      (defined(__sun) && defined(__GNUC__))
  77.  
  78. /* fpclassify is available. */
  79.  
  80. #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
  81.  
  82. enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
  83. fpclassify(double x)
  84. {
  85.    /* XXX do something better someday */
  86.    return FP_NORMAL;
  87. }
  88.  
  89. #endif
  90.  
  91. extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
  92.  
  93. /* The Mesa functions we'll need */
  94. extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
  95. extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
  96.  
  97. GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
  98. {
  99.     GLfloat matrix[16];
  100.     GLint tmp;
  101.     GLenum currentMode = GL_FALSE;
  102.     GLenum desiredMatrix = GL_FALSE;
  103.     /* The bitfield returns 1 for each component that is invalid (i.e.
  104.      * NaN or Inf).  In case of error, everything is invalid.
  105.      */
  106.     GLbitfield rv;
  107.     register unsigned int i;
  108.     unsigned int bit;
  109.  
  110.     /* This data structure defines the mapping between the current matrix
  111.      * mode and the desired matrix identifier.
  112.      */
  113.     static struct {
  114.         GLenum currentMode;
  115.         GLenum desiredMatrix;
  116.     } modes[] = {
  117.         {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
  118.         {GL_PROJECTION, GL_PROJECTION_MATRIX},
  119.         {GL_TEXTURE, GL_TEXTURE_MATRIX},
  120.     };
  121.  
  122.     /* Call Mesa to get the current matrix in floating-point form.  First,
  123.      * we have to figure out what the current matrix mode is.
  124.      */
  125.     _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
  126.     currentMode = (GLenum) tmp;
  127.  
  128.     /* The mode is either GL_FALSE, if for some reason we failed to query
  129.      * the mode, or a given mode from the above table.  Search for the
  130.      * returned mode to get the desired matrix; if we don't find it,
  131.      * we can return immediately, as _mesa_GetInteger() will have
  132.      * logged the necessary error already.
  133.      */
  134.     for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
  135.         if (modes[i].currentMode == currentMode) {
  136.             desiredMatrix = modes[i].desiredMatrix;
  137.             break;
  138.         }
  139.     }
  140.     if (desiredMatrix == GL_FALSE) {
  141.         /* Early error means all values are invalid. */
  142.         return 0xffff;
  143.     }
  144.  
  145.     /* Now pull the matrix itself. */
  146.     _mesa_GetFloatv(desiredMatrix, matrix);
  147.  
  148.     rv = 0;
  149.     for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
  150.         float normalizedFraction;
  151.         int exp;
  152.  
  153.         switch (fpclassify(matrix[i])) {
  154.             /* A "subnormal" or denormalized number is too small to be
  155.              * represented in normal format; but despite that it's a
  156.              * valid floating point number.  FP_ZERO and FP_NORMAL
  157.              * are both valid as well.  We should be fine treating
  158.              * these three cases as legitimate floating-point numbers.
  159.              */
  160.             case FP_SUBNORMAL:
  161.             case FP_NORMAL:
  162.             case FP_ZERO:
  163.                 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
  164.                 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
  165.                 exponent[i] = (GLint) exp;
  166.                 break;
  167.  
  168.             /* If the entry is not-a-number or an infinity, then the
  169.              * matrix component is invalid.  The invalid flag for
  170.              * the component is already set; might as well set the
  171.              * other return values to known values.  We'll set
  172.              * distinct values so that a savvy end user could determine
  173.              * whether the matrix component was a NaN or an infinity,
  174.              * but this is more useful for debugging than anything else
  175.              * since the standard doesn't specify any such magic
  176.              * values to return.
  177.              */
  178.             case FP_NAN:
  179.                 mantissa[i] = INT_TO_FIXED(0);
  180.                 exponent[i] = (GLint) 0;
  181.                 rv |= bit;
  182.                 break;
  183.  
  184.             case FP_INFINITE:
  185.                 /* Return +/- 1 based on whether it's a positive or
  186.                  * negative infinity.
  187.                  */
  188.                 if (matrix[i] > 0) {
  189.                     mantissa[i] = INT_TO_FIXED(1);
  190.                 }
  191.                 else {
  192.                     mantissa[i] = -INT_TO_FIXED(1);
  193.                 }
  194.                 exponent[i] = (GLint) 0;
  195.                 rv |= bit;
  196.                 break;
  197.  
  198.             /* We should never get here; but here's a catching case
  199.              * in case fpclassify() is returnings something unexpected.
  200.              */
  201.             default:
  202.                 mantissa[i] = INT_TO_FIXED(2);
  203.                 exponent[i] = (GLint) 0;
  204.                 rv |= bit;
  205.                 break;
  206.         }
  207.  
  208.     } /* for each component */
  209.  
  210.     /* All done */
  211.     return rv;
  212. }
  213.