Subversion Repositories Kolibri OS

Rev

Rev 6937 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *      Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. #include <linux/dmi.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_atomic.h>
  41. #include <drm/drm_atomic_helper.h>
  42. #include <drm/drm_dp_helper.h>
  43. #include <drm/drm_crtc_helper.h>
  44. #include <drm/drm_plane_helper.h>
  45. #include <drm/drm_rect.h>
  46. #include <linux/dma_remapping.h>
  47. #include <linux/reservation.h>
  48. #include <linux/dma-buf.h>
  49.  
  50. /* Primary plane formats for gen <= 3 */
  51. static const uint32_t i8xx_primary_formats[] = {
  52.         DRM_FORMAT_C8,
  53.         DRM_FORMAT_RGB565,
  54.         DRM_FORMAT_XRGB1555,
  55.         DRM_FORMAT_XRGB8888,
  56. };
  57.  
  58. /* Primary plane formats for gen >= 4 */
  59. static const uint32_t i965_primary_formats[] = {
  60.         DRM_FORMAT_C8,
  61.         DRM_FORMAT_RGB565,
  62.         DRM_FORMAT_XRGB8888,
  63.         DRM_FORMAT_XBGR8888,
  64.         DRM_FORMAT_XRGB2101010,
  65.         DRM_FORMAT_XBGR2101010,
  66. };
  67.  
  68. static const uint32_t skl_primary_formats[] = {
  69.         DRM_FORMAT_C8,
  70.         DRM_FORMAT_RGB565,
  71.         DRM_FORMAT_XRGB8888,
  72.         DRM_FORMAT_XBGR8888,
  73.         DRM_FORMAT_ARGB8888,
  74.         DRM_FORMAT_ABGR8888,
  75.         DRM_FORMAT_XRGB2101010,
  76.         DRM_FORMAT_XBGR2101010,
  77.         DRM_FORMAT_YUYV,
  78.         DRM_FORMAT_YVYU,
  79.         DRM_FORMAT_UYVY,
  80.         DRM_FORMAT_VYUY,
  81. };
  82.  
  83. /* Cursor formats */
  84. static const uint32_t intel_cursor_formats[] = {
  85.         DRM_FORMAT_ARGB8888,
  86. };
  87.  
  88. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  89.                                 struct intel_crtc_state *pipe_config);
  90. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  91.                                    struct intel_crtc_state *pipe_config);
  92.  
  93. static int intel_framebuffer_init(struct drm_device *dev,
  94.                                   struct intel_framebuffer *ifb,
  95.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  96.                                   struct drm_i915_gem_object *obj);
  97. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  98. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  99. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  100.                                          struct intel_link_m_n *m_n,
  101.                                          struct intel_link_m_n *m2_n2);
  102. static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  103. static void haswell_set_pipeconf(struct drm_crtc *crtc);
  104. static void intel_set_pipe_csc(struct drm_crtc *crtc);
  105. static void vlv_prepare_pll(struct intel_crtc *crtc,
  106.                             const struct intel_crtc_state *pipe_config);
  107. static void chv_prepare_pll(struct intel_crtc *crtc,
  108.                             const struct intel_crtc_state *pipe_config);
  109. static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  110. static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  111. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  112.         struct intel_crtc_state *crtc_state);
  113. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  114.                            int num_connectors);
  115. static void skylake_pfit_enable(struct intel_crtc *crtc);
  116. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
  117. static void ironlake_pfit_enable(struct intel_crtc *crtc);
  118. static void intel_modeset_setup_hw_state(struct drm_device *dev);
  119. static void intel_pre_disable_primary(struct drm_crtc *crtc);
  120.  
  121. typedef struct {
  122.         int     min, max;
  123. } intel_range_t;
  124.  
  125. typedef struct {
  126.         int     dot_limit;
  127.         int     p2_slow, p2_fast;
  128. } intel_p2_t;
  129.  
  130. typedef struct intel_limit intel_limit_t;
  131. struct intel_limit {
  132.         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  133.         intel_p2_t          p2;
  134. };
  135.  
  136. /* returns HPLL frequency in kHz */
  137. static int valleyview_get_vco(struct drm_i915_private *dev_priv)
  138. {
  139.         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
  140.  
  141.         /* Obtain SKU information */
  142.         mutex_lock(&dev_priv->sb_lock);
  143.         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
  144.                 CCK_FUSE_HPLL_FREQ_MASK;
  145.         mutex_unlock(&dev_priv->sb_lock);
  146.  
  147.         return vco_freq[hpll_freq] * 1000;
  148. }
  149.  
  150. static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
  151.                                   const char *name, u32 reg)
  152. {
  153.         u32 val;
  154.         int divider;
  155.  
  156.         if (dev_priv->hpll_freq == 0)
  157.                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
  158.  
  159.         mutex_lock(&dev_priv->sb_lock);
  160.         val = vlv_cck_read(dev_priv, reg);
  161.         mutex_unlock(&dev_priv->sb_lock);
  162.  
  163.         divider = val & CCK_FREQUENCY_VALUES;
  164.  
  165.         WARN((val & CCK_FREQUENCY_STATUS) !=
  166.              (divider << CCK_FREQUENCY_STATUS_SHIFT),
  167.              "%s change in progress\n", name);
  168.  
  169.         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
  170. }
  171.  
  172. int
  173. intel_pch_rawclk(struct drm_device *dev)
  174. {
  175.         struct drm_i915_private *dev_priv = dev->dev_private;
  176.  
  177.         WARN_ON(!HAS_PCH_SPLIT(dev));
  178.  
  179.         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  180. }
  181.  
  182. /* hrawclock is 1/4 the FSB frequency */
  183. int intel_hrawclk(struct drm_device *dev)
  184. {
  185.         struct drm_i915_private *dev_priv = dev->dev_private;
  186.         uint32_t clkcfg;
  187.  
  188.         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  189.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  190.                 return 200;
  191.  
  192.         clkcfg = I915_READ(CLKCFG);
  193.         switch (clkcfg & CLKCFG_FSB_MASK) {
  194.         case CLKCFG_FSB_400:
  195.                 return 100;
  196.         case CLKCFG_FSB_533:
  197.                 return 133;
  198.         case CLKCFG_FSB_667:
  199.                 return 166;
  200.         case CLKCFG_FSB_800:
  201.                 return 200;
  202.         case CLKCFG_FSB_1067:
  203.                 return 266;
  204.         case CLKCFG_FSB_1333:
  205.                 return 333;
  206.         /* these two are just a guess; one of them might be right */
  207.         case CLKCFG_FSB_1600:
  208.         case CLKCFG_FSB_1600_ALT:
  209.                 return 400;
  210.         default:
  211.                 return 133;
  212.         }
  213. }
  214.  
  215. static void intel_update_czclk(struct drm_i915_private *dev_priv)
  216. {
  217.         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
  218.                 return;
  219.  
  220.         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
  221.                                                       CCK_CZ_CLOCK_CONTROL);
  222.  
  223.         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
  224. }
  225.  
  226. static inline u32 /* units of 100MHz */
  227. intel_fdi_link_freq(struct drm_device *dev)
  228. {
  229.         if (IS_GEN5(dev)) {
  230.                 struct drm_i915_private *dev_priv = dev->dev_private;
  231.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  232.         } else
  233.                 return 27;
  234. }
  235.  
  236. static const intel_limit_t intel_limits_i8xx_dac = {
  237.         .dot = { .min = 25000, .max = 350000 },
  238.         .vco = { .min = 908000, .max = 1512000 },
  239.         .n = { .min = 2, .max = 16 },
  240.         .m = { .min = 96, .max = 140 },
  241.         .m1 = { .min = 18, .max = 26 },
  242.         .m2 = { .min = 6, .max = 16 },
  243.         .p = { .min = 4, .max = 128 },
  244.         .p1 = { .min = 2, .max = 33 },
  245.         .p2 = { .dot_limit = 165000,
  246.                 .p2_slow = 4, .p2_fast = 2 },
  247. };
  248.  
  249. static const intel_limit_t intel_limits_i8xx_dvo = {
  250.         .dot = { .min = 25000, .max = 350000 },
  251.         .vco = { .min = 908000, .max = 1512000 },
  252.         .n = { .min = 2, .max = 16 },
  253.         .m = { .min = 96, .max = 140 },
  254.         .m1 = { .min = 18, .max = 26 },
  255.         .m2 = { .min = 6, .max = 16 },
  256.         .p = { .min = 4, .max = 128 },
  257.         .p1 = { .min = 2, .max = 33 },
  258.         .p2 = { .dot_limit = 165000,
  259.                 .p2_slow = 4, .p2_fast = 4 },
  260. };
  261.  
  262. static const intel_limit_t intel_limits_i8xx_lvds = {
  263.         .dot = { .min = 25000, .max = 350000 },
  264.         .vco = { .min = 908000, .max = 1512000 },
  265.         .n = { .min = 2, .max = 16 },
  266.         .m = { .min = 96, .max = 140 },
  267.         .m1 = { .min = 18, .max = 26 },
  268.         .m2 = { .min = 6, .max = 16 },
  269.         .p = { .min = 4, .max = 128 },
  270.         .p1 = { .min = 1, .max = 6 },
  271.         .p2 = { .dot_limit = 165000,
  272.                 .p2_slow = 14, .p2_fast = 7 },
  273. };
  274.  
  275. static const intel_limit_t intel_limits_i9xx_sdvo = {
  276.         .dot = { .min = 20000, .max = 400000 },
  277.         .vco = { .min = 1400000, .max = 2800000 },
  278.         .n = { .min = 1, .max = 6 },
  279.         .m = { .min = 70, .max = 120 },
  280.         .m1 = { .min = 8, .max = 18 },
  281.         .m2 = { .min = 3, .max = 7 },
  282.         .p = { .min = 5, .max = 80 },
  283.         .p1 = { .min = 1, .max = 8 },
  284.         .p2 = { .dot_limit = 200000,
  285.                 .p2_slow = 10, .p2_fast = 5 },
  286. };
  287.  
  288. static const intel_limit_t intel_limits_i9xx_lvds = {
  289.         .dot = { .min = 20000, .max = 400000 },
  290.         .vco = { .min = 1400000, .max = 2800000 },
  291.         .n = { .min = 1, .max = 6 },
  292.         .m = { .min = 70, .max = 120 },
  293.         .m1 = { .min = 8, .max = 18 },
  294.         .m2 = { .min = 3, .max = 7 },
  295.         .p = { .min = 7, .max = 98 },
  296.         .p1 = { .min = 1, .max = 8 },
  297.         .p2 = { .dot_limit = 112000,
  298.                 .p2_slow = 14, .p2_fast = 7 },
  299. };
  300.  
  301.  
  302. static const intel_limit_t intel_limits_g4x_sdvo = {
  303.         .dot = { .min = 25000, .max = 270000 },
  304.         .vco = { .min = 1750000, .max = 3500000},
  305.         .n = { .min = 1, .max = 4 },
  306.         .m = { .min = 104, .max = 138 },
  307.         .m1 = { .min = 17, .max = 23 },
  308.         .m2 = { .min = 5, .max = 11 },
  309.         .p = { .min = 10, .max = 30 },
  310.         .p1 = { .min = 1, .max = 3},
  311.         .p2 = { .dot_limit = 270000,
  312.                 .p2_slow = 10,
  313.                 .p2_fast = 10
  314.         },
  315. };
  316.  
  317. static const intel_limit_t intel_limits_g4x_hdmi = {
  318.         .dot = { .min = 22000, .max = 400000 },
  319.         .vco = { .min = 1750000, .max = 3500000},
  320.         .n = { .min = 1, .max = 4 },
  321.         .m = { .min = 104, .max = 138 },
  322.         .m1 = { .min = 16, .max = 23 },
  323.         .m2 = { .min = 5, .max = 11 },
  324.         .p = { .min = 5, .max = 80 },
  325.         .p1 = { .min = 1, .max = 8},
  326.         .p2 = { .dot_limit = 165000,
  327.                 .p2_slow = 10, .p2_fast = 5 },
  328. };
  329.  
  330. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  331.         .dot = { .min = 20000, .max = 115000 },
  332.         .vco = { .min = 1750000, .max = 3500000 },
  333.         .n = { .min = 1, .max = 3 },
  334.         .m = { .min = 104, .max = 138 },
  335.         .m1 = { .min = 17, .max = 23 },
  336.         .m2 = { .min = 5, .max = 11 },
  337.         .p = { .min = 28, .max = 112 },
  338.         .p1 = { .min = 2, .max = 8 },
  339.         .p2 = { .dot_limit = 0,
  340.                 .p2_slow = 14, .p2_fast = 14
  341.         },
  342. };
  343.  
  344. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  345.         .dot = { .min = 80000, .max = 224000 },
  346.         .vco = { .min = 1750000, .max = 3500000 },
  347.         .n = { .min = 1, .max = 3 },
  348.         .m = { .min = 104, .max = 138 },
  349.         .m1 = { .min = 17, .max = 23 },
  350.         .m2 = { .min = 5, .max = 11 },
  351.         .p = { .min = 14, .max = 42 },
  352.         .p1 = { .min = 2, .max = 6 },
  353.         .p2 = { .dot_limit = 0,
  354.                 .p2_slow = 7, .p2_fast = 7
  355.         },
  356. };
  357.  
  358. static const intel_limit_t intel_limits_pineview_sdvo = {
  359.         .dot = { .min = 20000, .max = 400000},
  360.         .vco = { .min = 1700000, .max = 3500000 },
  361.         /* Pineview's Ncounter is a ring counter */
  362.         .n = { .min = 3, .max = 6 },
  363.         .m = { .min = 2, .max = 256 },
  364.         /* Pineview only has one combined m divider, which we treat as m2. */
  365.         .m1 = { .min = 0, .max = 0 },
  366.         .m2 = { .min = 0, .max = 254 },
  367.         .p = { .min = 5, .max = 80 },
  368.         .p1 = { .min = 1, .max = 8 },
  369.         .p2 = { .dot_limit = 200000,
  370.                 .p2_slow = 10, .p2_fast = 5 },
  371. };
  372.  
  373. static const intel_limit_t intel_limits_pineview_lvds = {
  374.         .dot = { .min = 20000, .max = 400000 },
  375.         .vco = { .min = 1700000, .max = 3500000 },
  376.         .n = { .min = 3, .max = 6 },
  377.         .m = { .min = 2, .max = 256 },
  378.         .m1 = { .min = 0, .max = 0 },
  379.         .m2 = { .min = 0, .max = 254 },
  380.         .p = { .min = 7, .max = 112 },
  381.         .p1 = { .min = 1, .max = 8 },
  382.         .p2 = { .dot_limit = 112000,
  383.                 .p2_slow = 14, .p2_fast = 14 },
  384. };
  385.  
  386. /* Ironlake / Sandybridge
  387.  *
  388.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  389.  * the range value for them is (actual_value - 2).
  390.  */
  391. static const intel_limit_t intel_limits_ironlake_dac = {
  392.         .dot = { .min = 25000, .max = 350000 },
  393.         .vco = { .min = 1760000, .max = 3510000 },
  394.         .n = { .min = 1, .max = 5 },
  395.         .m = { .min = 79, .max = 127 },
  396.         .m1 = { .min = 12, .max = 22 },
  397.         .m2 = { .min = 5, .max = 9 },
  398.         .p = { .min = 5, .max = 80 },
  399.         .p1 = { .min = 1, .max = 8 },
  400.         .p2 = { .dot_limit = 225000,
  401.                 .p2_slow = 10, .p2_fast = 5 },
  402. };
  403.  
  404. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  405.         .dot = { .min = 25000, .max = 350000 },
  406.         .vco = { .min = 1760000, .max = 3510000 },
  407.         .n = { .min = 1, .max = 3 },
  408.         .m = { .min = 79, .max = 118 },
  409.         .m1 = { .min = 12, .max = 22 },
  410.         .m2 = { .min = 5, .max = 9 },
  411.         .p = { .min = 28, .max = 112 },
  412.         .p1 = { .min = 2, .max = 8 },
  413.         .p2 = { .dot_limit = 225000,
  414.                 .p2_slow = 14, .p2_fast = 14 },
  415. };
  416.  
  417. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  418.         .dot = { .min = 25000, .max = 350000 },
  419.         .vco = { .min = 1760000, .max = 3510000 },
  420.         .n = { .min = 1, .max = 3 },
  421.         .m = { .min = 79, .max = 127 },
  422.         .m1 = { .min = 12, .max = 22 },
  423.         .m2 = { .min = 5, .max = 9 },
  424.         .p = { .min = 14, .max = 56 },
  425.         .p1 = { .min = 2, .max = 8 },
  426.         .p2 = { .dot_limit = 225000,
  427.                 .p2_slow = 7, .p2_fast = 7 },
  428. };
  429.  
  430. /* LVDS 100mhz refclk limits. */
  431. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  432.         .dot = { .min = 25000, .max = 350000 },
  433.         .vco = { .min = 1760000, .max = 3510000 },
  434.         .n = { .min = 1, .max = 2 },
  435.         .m = { .min = 79, .max = 126 },
  436.         .m1 = { .min = 12, .max = 22 },
  437.         .m2 = { .min = 5, .max = 9 },
  438.         .p = { .min = 28, .max = 112 },
  439.         .p1 = { .min = 2, .max = 8 },
  440.         .p2 = { .dot_limit = 225000,
  441.                 .p2_slow = 14, .p2_fast = 14 },
  442. };
  443.  
  444. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  445.         .dot = { .min = 25000, .max = 350000 },
  446.         .vco = { .min = 1760000, .max = 3510000 },
  447.         .n = { .min = 1, .max = 3 },
  448.         .m = { .min = 79, .max = 126 },
  449.         .m1 = { .min = 12, .max = 22 },
  450.         .m2 = { .min = 5, .max = 9 },
  451.         .p = { .min = 14, .max = 42 },
  452.         .p1 = { .min = 2, .max = 6 },
  453.         .p2 = { .dot_limit = 225000,
  454.                 .p2_slow = 7, .p2_fast = 7 },
  455. };
  456.  
  457. static const intel_limit_t intel_limits_vlv = {
  458.          /*
  459.           * These are the data rate limits (measured in fast clocks)
  460.           * since those are the strictest limits we have. The fast
  461.           * clock and actual rate limits are more relaxed, so checking
  462.           * them would make no difference.
  463.           */
  464.         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  465.         .vco = { .min = 4000000, .max = 6000000 },
  466.         .n = { .min = 1, .max = 7 },
  467.         .m1 = { .min = 2, .max = 3 },
  468.         .m2 = { .min = 11, .max = 156 },
  469.         .p1 = { .min = 2, .max = 3 },
  470.         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  471. };
  472.  
  473. static const intel_limit_t intel_limits_chv = {
  474.         /*
  475.          * These are the data rate limits (measured in fast clocks)
  476.          * since those are the strictest limits we have.  The fast
  477.          * clock and actual rate limits are more relaxed, so checking
  478.          * them would make no difference.
  479.          */
  480.         .dot = { .min = 25000 * 5, .max = 540000 * 5},
  481.         .vco = { .min = 4800000, .max = 6480000 },
  482.         .n = { .min = 1, .max = 1 },
  483.         .m1 = { .min = 2, .max = 2 },
  484.         .m2 = { .min = 24 << 22, .max = 175 << 22 },
  485.         .p1 = { .min = 2, .max = 4 },
  486.         .p2 = { .p2_slow = 1, .p2_fast = 14 },
  487. };
  488.  
  489. static const intel_limit_t intel_limits_bxt = {
  490.         /* FIXME: find real dot limits */
  491.         .dot = { .min = 0, .max = INT_MAX },
  492.         .vco = { .min = 4800000, .max = 6700000 },
  493.         .n = { .min = 1, .max = 1 },
  494.         .m1 = { .min = 2, .max = 2 },
  495.         /* FIXME: find real m2 limits */
  496.         .m2 = { .min = 2 << 22, .max = 255 << 22 },
  497.         .p1 = { .min = 2, .max = 4 },
  498.         .p2 = { .p2_slow = 1, .p2_fast = 20 },
  499. };
  500.  
  501. static bool
  502. needs_modeset(struct drm_crtc_state *state)
  503. {
  504.         return drm_atomic_crtc_needs_modeset(state);
  505. }
  506.  
  507. /**
  508.  * Returns whether any output on the specified pipe is of the specified type
  509.  */
  510. bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
  511. {
  512.         struct drm_device *dev = crtc->base.dev;
  513.         struct intel_encoder *encoder;
  514.  
  515.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  516.                 if (encoder->type == type)
  517.                         return true;
  518.  
  519.         return false;
  520. }
  521.  
  522. /**
  523.  * Returns whether any output on the specified pipe will have the specified
  524.  * type after a staged modeset is complete, i.e., the same as
  525.  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
  526.  * encoder->crtc.
  527.  */
  528. static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
  529.                                       int type)
  530. {
  531.         struct drm_atomic_state *state = crtc_state->base.state;
  532.         struct drm_connector *connector;
  533.         struct drm_connector_state *connector_state;
  534.         struct intel_encoder *encoder;
  535.         int i, num_connectors = 0;
  536.  
  537.         for_each_connector_in_state(state, connector, connector_state, i) {
  538.                 if (connector_state->crtc != crtc_state->base.crtc)
  539.                         continue;
  540.  
  541.                 num_connectors++;
  542.  
  543.                 encoder = to_intel_encoder(connector_state->best_encoder);
  544.                 if (encoder->type == type)
  545.                         return true;
  546.         }
  547.  
  548.         WARN_ON(num_connectors == 0);
  549.  
  550.         return false;
  551. }
  552.  
  553. static const intel_limit_t *
  554. intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
  555. {
  556.         struct drm_device *dev = crtc_state->base.crtc->dev;
  557.         const intel_limit_t *limit;
  558.  
  559.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  560.                 if (intel_is_dual_link_lvds(dev)) {
  561.                         if (refclk == 100000)
  562.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  563.                         else
  564.                                 limit = &intel_limits_ironlake_dual_lvds;
  565.                 } else {
  566.                         if (refclk == 100000)
  567.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  568.                         else
  569.                                 limit = &intel_limits_ironlake_single_lvds;
  570.                 }
  571.         } else
  572.                 limit = &intel_limits_ironlake_dac;
  573.  
  574.         return limit;
  575. }
  576.  
  577. static const intel_limit_t *
  578. intel_g4x_limit(struct intel_crtc_state *crtc_state)
  579. {
  580.         struct drm_device *dev = crtc_state->base.crtc->dev;
  581.         const intel_limit_t *limit;
  582.  
  583.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  584.                 if (intel_is_dual_link_lvds(dev))
  585.                         limit = &intel_limits_g4x_dual_channel_lvds;
  586.                 else
  587.                         limit = &intel_limits_g4x_single_channel_lvds;
  588.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
  589.                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  590.                 limit = &intel_limits_g4x_hdmi;
  591.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
  592.                 limit = &intel_limits_g4x_sdvo;
  593.         } else /* The option is for other outputs */
  594.                 limit = &intel_limits_i9xx_sdvo;
  595.  
  596.         return limit;
  597. }
  598.  
  599. static const intel_limit_t *
  600. intel_limit(struct intel_crtc_state *crtc_state, int refclk)
  601. {
  602.         struct drm_device *dev = crtc_state->base.crtc->dev;
  603.         const intel_limit_t *limit;
  604.  
  605.         if (IS_BROXTON(dev))
  606.                 limit = &intel_limits_bxt;
  607.         else if (HAS_PCH_SPLIT(dev))
  608.                 limit = intel_ironlake_limit(crtc_state, refclk);
  609.         else if (IS_G4X(dev)) {
  610.                 limit = intel_g4x_limit(crtc_state);
  611.         } else if (IS_PINEVIEW(dev)) {
  612.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  613.                         limit = &intel_limits_pineview_lvds;
  614.                 else
  615.                         limit = &intel_limits_pineview_sdvo;
  616.         } else if (IS_CHERRYVIEW(dev)) {
  617.                 limit = &intel_limits_chv;
  618.         } else if (IS_VALLEYVIEW(dev)) {
  619.                 limit = &intel_limits_vlv;
  620.         } else if (!IS_GEN2(dev)) {
  621.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  622.                         limit = &intel_limits_i9xx_lvds;
  623.                 else
  624.                         limit = &intel_limits_i9xx_sdvo;
  625.         } else {
  626.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  627.                         limit = &intel_limits_i8xx_lvds;
  628.                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  629.                         limit = &intel_limits_i8xx_dvo;
  630.                 else
  631.                         limit = &intel_limits_i8xx_dac;
  632.         }
  633.         return limit;
  634. }
  635.  
  636. /*
  637.  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
  638.  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
  639.  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
  640.  * The helpers' return value is the rate of the clock that is fed to the
  641.  * display engine's pipe which can be the above fast dot clock rate or a
  642.  * divided-down version of it.
  643.  */
  644. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  645. static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
  646. {
  647.         clock->m = clock->m2 + 2;
  648.         clock->p = clock->p1 * clock->p2;
  649.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  650.                 return 0;
  651.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  652.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  653.  
  654.         return clock->dot;
  655. }
  656.  
  657. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  658. {
  659.         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  660. }
  661.  
  662. static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
  663. {
  664.         clock->m = i9xx_dpll_compute_m(clock);
  665.         clock->p = clock->p1 * clock->p2;
  666.         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
  667.                 return 0;
  668.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  669.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  670.  
  671.         return clock->dot;
  672. }
  673.  
  674. static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
  675. {
  676.         clock->m = clock->m1 * clock->m2;
  677.         clock->p = clock->p1 * clock->p2;
  678.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  679.                 return 0;
  680.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  681.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  682.  
  683.         return clock->dot / 5;
  684. }
  685.  
  686. int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
  687. {
  688.         clock->m = clock->m1 * clock->m2;
  689.         clock->p = clock->p1 * clock->p2;
  690.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  691.                 return 0;
  692.         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
  693.                         clock->n << 22);
  694.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  695.  
  696.         return clock->dot / 5;
  697. }
  698.  
  699. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  700. /**
  701.  * Returns whether the given set of divisors are valid for a given refclk with
  702.  * the given connectors.
  703.  */
  704.  
  705. static bool intel_PLL_is_valid(struct drm_device *dev,
  706.                                const intel_limit_t *limit,
  707.                                const intel_clock_t *clock)
  708. {
  709.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  710.                 INTELPllInvalid("n out of range\n");
  711.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  712.                 INTELPllInvalid("p1 out of range\n");
  713.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  714.                 INTELPllInvalid("m2 out of range\n");
  715.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  716.                 INTELPllInvalid("m1 out of range\n");
  717.  
  718.         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
  719.             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
  720.                 if (clock->m1 <= clock->m2)
  721.                         INTELPllInvalid("m1 <= m2\n");
  722.  
  723.         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
  724.                 if (clock->p < limit->p.min || limit->p.max < clock->p)
  725.                         INTELPllInvalid("p out of range\n");
  726.                 if (clock->m < limit->m.min || limit->m.max < clock->m)
  727.                         INTELPllInvalid("m out of range\n");
  728.         }
  729.  
  730.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  731.                 INTELPllInvalid("vco out of range\n");
  732.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  733.          * connector, etc., rather than just a single range.
  734.          */
  735.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  736.                 INTELPllInvalid("dot out of range\n");
  737.  
  738.         return true;
  739. }
  740.  
  741. static int
  742. i9xx_select_p2_div(const intel_limit_t *limit,
  743.                    const struct intel_crtc_state *crtc_state,
  744.                    int target)
  745. {
  746.         struct drm_device *dev = crtc_state->base.crtc->dev;
  747.  
  748.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  749.                 /*
  750.                  * For LVDS just rely on its current settings for dual-channel.
  751.                  * We haven't figured out how to reliably set up different
  752.                  * single/dual channel state, if we even can.
  753.                  */
  754.                 if (intel_is_dual_link_lvds(dev))
  755.                         return limit->p2.p2_fast;
  756.                 else
  757.                         return limit->p2.p2_slow;
  758.         } else {
  759.                 if (target < limit->p2.dot_limit)
  760.                         return limit->p2.p2_slow;
  761.                 else
  762.                         return limit->p2.p2_fast;
  763.         }
  764. }
  765.  
  766. static bool
  767. i9xx_find_best_dpll(const intel_limit_t *limit,
  768.                     struct intel_crtc_state *crtc_state,
  769.                     int target, int refclk, intel_clock_t *match_clock,
  770.                     intel_clock_t *best_clock)
  771. {
  772.         struct drm_device *dev = crtc_state->base.crtc->dev;
  773.         intel_clock_t clock;
  774.         int err = target;
  775.  
  776.         memset(best_clock, 0, sizeof(*best_clock));
  777.  
  778.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  779.  
  780.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  781.              clock.m1++) {
  782.                 for (clock.m2 = limit->m2.min;
  783.                      clock.m2 <= limit->m2.max; clock.m2++) {
  784.                         if (clock.m2 >= clock.m1)
  785.                                 break;
  786.                         for (clock.n = limit->n.min;
  787.                              clock.n <= limit->n.max; clock.n++) {
  788.                                 for (clock.p1 = limit->p1.min;
  789.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  790.                                         int this_err;
  791.  
  792.                                         i9xx_calc_dpll_params(refclk, &clock);
  793.                                         if (!intel_PLL_is_valid(dev, limit,
  794.                                                                 &clock))
  795.                                                 continue;
  796.                                         if (match_clock &&
  797.                                             clock.p != match_clock->p)
  798.                                                 continue;
  799.  
  800.                                         this_err = abs(clock.dot - target);
  801.                                         if (this_err < err) {
  802.                                                 *best_clock = clock;
  803.                                                 err = this_err;
  804.                                         }
  805.                                 }
  806.                         }
  807.                 }
  808.         }
  809.  
  810.         return (err != target);
  811. }
  812.  
  813. static bool
  814. pnv_find_best_dpll(const intel_limit_t *limit,
  815.                    struct intel_crtc_state *crtc_state,
  816.                    int target, int refclk, intel_clock_t *match_clock,
  817.                    intel_clock_t *best_clock)
  818. {
  819.         struct drm_device *dev = crtc_state->base.crtc->dev;
  820.         intel_clock_t clock;
  821.         int err = target;
  822.  
  823.         memset(best_clock, 0, sizeof(*best_clock));
  824.  
  825.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  826.  
  827.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  828.              clock.m1++) {
  829.                 for (clock.m2 = limit->m2.min;
  830.                      clock.m2 <= limit->m2.max; clock.m2++) {
  831.                         for (clock.n = limit->n.min;
  832.                              clock.n <= limit->n.max; clock.n++) {
  833.                                 for (clock.p1 = limit->p1.min;
  834.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  835.                                         int this_err;
  836.  
  837.                                         pnv_calc_dpll_params(refclk, &clock);
  838.                                         if (!intel_PLL_is_valid(dev, limit,
  839.                                                                 &clock))
  840.                                                 continue;
  841.                                         if (match_clock &&
  842.                                             clock.p != match_clock->p)
  843.                                                 continue;
  844.  
  845.                                         this_err = abs(clock.dot - target);
  846.                                         if (this_err < err) {
  847.                                                 *best_clock = clock;
  848.                                                 err = this_err;
  849.                                         }
  850.                                 }
  851.                         }
  852.                 }
  853.         }
  854.  
  855.         return (err != target);
  856. }
  857.  
  858. static bool
  859. g4x_find_best_dpll(const intel_limit_t *limit,
  860.                    struct intel_crtc_state *crtc_state,
  861.                    int target, int refclk, intel_clock_t *match_clock,
  862.                    intel_clock_t *best_clock)
  863. {
  864.         struct drm_device *dev = crtc_state->base.crtc->dev;
  865.         intel_clock_t clock;
  866.         int max_n;
  867.         bool found = false;
  868.         /* approximately equals target * 0.00585 */
  869.         int err_most = (target >> 8) + (target >> 9);
  870.  
  871.         memset(best_clock, 0, sizeof(*best_clock));
  872.  
  873.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  874.  
  875.         max_n = limit->n.max;
  876.         /* based on hardware requirement, prefer smaller n to precision */
  877.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  878.                 /* based on hardware requirement, prefere larger m1,m2 */
  879.                 for (clock.m1 = limit->m1.max;
  880.                      clock.m1 >= limit->m1.min; clock.m1--) {
  881.                         for (clock.m2 = limit->m2.max;
  882.                              clock.m2 >= limit->m2.min; clock.m2--) {
  883.                                 for (clock.p1 = limit->p1.max;
  884.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  885.                                         int this_err;
  886.  
  887.                                         i9xx_calc_dpll_params(refclk, &clock);
  888.                                         if (!intel_PLL_is_valid(dev, limit,
  889.                                                                 &clock))
  890.                                                 continue;
  891.  
  892.                                         this_err = abs(clock.dot - target);
  893.                                         if (this_err < err_most) {
  894.                                                 *best_clock = clock;
  895.                                                 err_most = this_err;
  896.                                                 max_n = clock.n;
  897.                                                 found = true;
  898.                                         }
  899.                                 }
  900.                         }
  901.                 }
  902.         }
  903.         return found;
  904. }
  905.  
  906. /*
  907.  * Check if the calculated PLL configuration is more optimal compared to the
  908.  * best configuration and error found so far. Return the calculated error.
  909.  */
  910. static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
  911.                                const intel_clock_t *calculated_clock,
  912.                                const intel_clock_t *best_clock,
  913.                                unsigned int best_error_ppm,
  914.                                unsigned int *error_ppm)
  915. {
  916.         /*
  917.          * For CHV ignore the error and consider only the P value.
  918.          * Prefer a bigger P value based on HW requirements.
  919.          */
  920.         if (IS_CHERRYVIEW(dev)) {
  921.                 *error_ppm = 0;
  922.  
  923.                 return calculated_clock->p > best_clock->p;
  924.         }
  925.  
  926.         if (WARN_ON_ONCE(!target_freq))
  927.                 return false;
  928.  
  929.         *error_ppm = div_u64(1000000ULL *
  930.                                 abs(target_freq - calculated_clock->dot),
  931.                              target_freq);
  932.         /*
  933.          * Prefer a better P value over a better (smaller) error if the error
  934.          * is small. Ensure this preference for future configurations too by
  935.          * setting the error to 0.
  936.          */
  937.         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
  938.                 *error_ppm = 0;
  939.  
  940.                 return true;
  941.         }
  942.  
  943.         return *error_ppm + 10 < best_error_ppm;
  944. }
  945.  
  946. static bool
  947. vlv_find_best_dpll(const intel_limit_t *limit,
  948.                    struct intel_crtc_state *crtc_state,
  949.                    int target, int refclk, intel_clock_t *match_clock,
  950.                    intel_clock_t *best_clock)
  951. {
  952.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  953.         struct drm_device *dev = crtc->base.dev;
  954.         intel_clock_t clock;
  955.         unsigned int bestppm = 1000000;
  956.         /* min update 19.2 MHz */
  957.         int max_n = min(limit->n.max, refclk / 19200);
  958.         bool found = false;
  959.  
  960.         target *= 5; /* fast clock */
  961.  
  962.         memset(best_clock, 0, sizeof(*best_clock));
  963.  
  964.         /* based on hardware requirement, prefer smaller n to precision */
  965.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  966.                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  967.                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  968.                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  969.                                 clock.p = clock.p1 * clock.p2;
  970.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  971.                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  972.                                         unsigned int ppm;
  973.  
  974.                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  975.                                                                      refclk * clock.m1);
  976.  
  977.                                         vlv_calc_dpll_params(refclk, &clock);
  978.  
  979.                                         if (!intel_PLL_is_valid(dev, limit,
  980.                                                                 &clock))
  981.                                                 continue;
  982.  
  983.                                         if (!vlv_PLL_is_optimal(dev, target,
  984.                                                                 &clock,
  985.                                                                 best_clock,
  986.                                                                 bestppm, &ppm))
  987.                                                 continue;
  988.  
  989.                                         *best_clock = clock;
  990.                                         bestppm = ppm;
  991.                                         found = true;
  992.                                 }
  993.                         }
  994.                 }
  995.         }
  996.  
  997.         return found;
  998. }
  999.  
  1000. static bool
  1001. chv_find_best_dpll(const intel_limit_t *limit,
  1002.                    struct intel_crtc_state *crtc_state,
  1003.                    int target, int refclk, intel_clock_t *match_clock,
  1004.                    intel_clock_t *best_clock)
  1005. {
  1006.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1007.         struct drm_device *dev = crtc->base.dev;
  1008.         unsigned int best_error_ppm;
  1009.         intel_clock_t clock;
  1010.         uint64_t m2;
  1011.         int found = false;
  1012.  
  1013.         memset(best_clock, 0, sizeof(*best_clock));
  1014.         best_error_ppm = 1000000;
  1015.  
  1016.         /*
  1017.          * Based on hardware doc, the n always set to 1, and m1 always
  1018.          * set to 2.  If requires to support 200Mhz refclk, we need to
  1019.          * revisit this because n may not 1 anymore.
  1020.          */
  1021.         clock.n = 1, clock.m1 = 2;
  1022.         target *= 5;    /* fast clock */
  1023.  
  1024.         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  1025.                 for (clock.p2 = limit->p2.p2_fast;
  1026.                                 clock.p2 >= limit->p2.p2_slow;
  1027.                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  1028.                         unsigned int error_ppm;
  1029.  
  1030.                         clock.p = clock.p1 * clock.p2;
  1031.  
  1032.                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
  1033.                                         clock.n) << 22, refclk * clock.m1);
  1034.  
  1035.                         if (m2 > INT_MAX/clock.m1)
  1036.                                 continue;
  1037.  
  1038.                         clock.m2 = m2;
  1039.  
  1040.                         chv_calc_dpll_params(refclk, &clock);
  1041.  
  1042.                         if (!intel_PLL_is_valid(dev, limit, &clock))
  1043.                                 continue;
  1044.  
  1045.                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
  1046.                                                 best_error_ppm, &error_ppm))
  1047.                                 continue;
  1048.  
  1049.                         *best_clock = clock;
  1050.                         best_error_ppm = error_ppm;
  1051.                         found = true;
  1052.                 }
  1053.         }
  1054.  
  1055.         return found;
  1056. }
  1057.  
  1058. bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
  1059.                         intel_clock_t *best_clock)
  1060. {
  1061.         int refclk = i9xx_get_refclk(crtc_state, 0);
  1062.  
  1063.         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
  1064.                                   target_clock, refclk, NULL, best_clock);
  1065. }
  1066.  
  1067. bool intel_crtc_active(struct drm_crtc *crtc)
  1068. {
  1069.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1070.  
  1071.         /* Be paranoid as we can arrive here with only partial
  1072.          * state retrieved from the hardware during setup.
  1073.          *
  1074.          * We can ditch the adjusted_mode.crtc_clock check as soon
  1075.          * as Haswell has gained clock readout/fastboot support.
  1076.          *
  1077.          * We can ditch the crtc->primary->fb check as soon as we can
  1078.          * properly reconstruct framebuffers.
  1079.          *
  1080.          * FIXME: The intel_crtc->active here should be switched to
  1081.          * crtc->state->active once we have proper CRTC states wired up
  1082.          * for atomic.
  1083.          */
  1084.         return intel_crtc->active && crtc->primary->state->fb &&
  1085.                 intel_crtc->config->base.adjusted_mode.crtc_clock;
  1086. }
  1087.  
  1088. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  1089.                                              enum pipe pipe)
  1090. {
  1091.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1092.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1093.  
  1094.         return intel_crtc->config->cpu_transcoder;
  1095. }
  1096.  
  1097. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  1098. {
  1099.         struct drm_i915_private *dev_priv = dev->dev_private;
  1100.         i915_reg_t reg = PIPEDSL(pipe);
  1101.         u32 line1, line2;
  1102.         u32 line_mask;
  1103.  
  1104.         if (IS_GEN2(dev))
  1105.                 line_mask = DSL_LINEMASK_GEN2;
  1106.         else
  1107.                 line_mask = DSL_LINEMASK_GEN3;
  1108.  
  1109.         line1 = I915_READ(reg) & line_mask;
  1110.         msleep(5);
  1111.         line2 = I915_READ(reg) & line_mask;
  1112.  
  1113.         return line1 == line2;
  1114. }
  1115.  
  1116. /*
  1117.  * intel_wait_for_pipe_off - wait for pipe to turn off
  1118.  * @crtc: crtc whose pipe to wait for
  1119.  *
  1120.  * After disabling a pipe, we can't wait for vblank in the usual way,
  1121.  * spinning on the vblank interrupt status bit, since we won't actually
  1122.  * see an interrupt when the pipe is disabled.
  1123.  *
  1124.  * On Gen4 and above:
  1125.  *   wait for the pipe register state bit to turn off
  1126.  *
  1127.  * Otherwise:
  1128.  *   wait for the display line value to settle (it usually
  1129.  *   ends up stopping at the start of the next frame).
  1130.  *
  1131.  */
  1132. static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
  1133. {
  1134.         struct drm_device *dev = crtc->base.dev;
  1135.         struct drm_i915_private *dev_priv = dev->dev_private;
  1136.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  1137.         enum pipe pipe = crtc->pipe;
  1138.  
  1139.         if (INTEL_INFO(dev)->gen >= 4) {
  1140.                 i915_reg_t reg = PIPECONF(cpu_transcoder);
  1141.  
  1142.                 /* Wait for the Pipe State to go off */
  1143.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  1144.                              100))
  1145.                         WARN(1, "pipe_off wait timed out\n");
  1146.         } else {
  1147.                 /* Wait for the display line to settle */
  1148.                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  1149.                         WARN(1, "pipe_off wait timed out\n");
  1150.         }
  1151. }
  1152.  
  1153. /* Only for pre-ILK configs */
  1154. void assert_pll(struct drm_i915_private *dev_priv,
  1155.                 enum pipe pipe, bool state)
  1156. {
  1157.         u32 val;
  1158.         bool cur_state;
  1159.  
  1160.         val = I915_READ(DPLL(pipe));
  1161.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1162.         I915_STATE_WARN(cur_state != state,
  1163.              "PLL state assertion failure (expected %s, current %s)\n",
  1164.                         onoff(state), onoff(cur_state));
  1165. }
  1166.  
  1167. /* XXX: the dsi pll is shared between MIPI DSI ports */
  1168. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  1169. {
  1170.         u32 val;
  1171.         bool cur_state;
  1172.  
  1173.         mutex_lock(&dev_priv->sb_lock);
  1174.         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  1175.         mutex_unlock(&dev_priv->sb_lock);
  1176.  
  1177.         cur_state = val & DSI_PLL_VCO_EN;
  1178.         I915_STATE_WARN(cur_state != state,
  1179.              "DSI PLL state assertion failure (expected %s, current %s)\n",
  1180.                         onoff(state), onoff(cur_state));
  1181. }
  1182. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  1183. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  1184.  
  1185. struct intel_shared_dpll *
  1186. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  1187. {
  1188.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1189.  
  1190.         if (crtc->config->shared_dpll < 0)
  1191.                 return NULL;
  1192.  
  1193.         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
  1194. }
  1195.  
  1196. /* For ILK+ */
  1197. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  1198.                         struct intel_shared_dpll *pll,
  1199.                         bool state)
  1200. {
  1201.         bool cur_state;
  1202.         struct intel_dpll_hw_state hw_state;
  1203.  
  1204.         if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  1205.                 return;
  1206.  
  1207.         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  1208.         I915_STATE_WARN(cur_state != state,
  1209.              "%s assertion failure (expected %s, current %s)\n",
  1210.                         pll->name, onoff(state), onoff(cur_state));
  1211. }
  1212.  
  1213. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1214.                           enum pipe pipe, bool state)
  1215. {
  1216.         bool cur_state;
  1217.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1218.                                                                       pipe);
  1219.  
  1220.         if (HAS_DDI(dev_priv->dev)) {
  1221.                 /* DDI does not have a specific FDI_TX register */
  1222.                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1223.                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1224.         } else {
  1225.                 u32 val = I915_READ(FDI_TX_CTL(pipe));
  1226.                 cur_state = !!(val & FDI_TX_ENABLE);
  1227.         }
  1228.         I915_STATE_WARN(cur_state != state,
  1229.              "FDI TX state assertion failure (expected %s, current %s)\n",
  1230.                         onoff(state), onoff(cur_state));
  1231. }
  1232. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1233. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1234.  
  1235. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1236.                           enum pipe pipe, bool state)
  1237. {
  1238.         u32 val;
  1239.         bool cur_state;
  1240.  
  1241.         val = I915_READ(FDI_RX_CTL(pipe));
  1242.         cur_state = !!(val & FDI_RX_ENABLE);
  1243.         I915_STATE_WARN(cur_state != state,
  1244.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1245.                         onoff(state), onoff(cur_state));
  1246. }
  1247. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1248. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1249.  
  1250. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1251.                                       enum pipe pipe)
  1252. {
  1253.         u32 val;
  1254.  
  1255.         /* ILK FDI PLL is always enabled */
  1256.         if (INTEL_INFO(dev_priv->dev)->gen == 5)
  1257.                 return;
  1258.  
  1259.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1260.         if (HAS_DDI(dev_priv->dev))
  1261.                 return;
  1262.  
  1263.         val = I915_READ(FDI_TX_CTL(pipe));
  1264.         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1265. }
  1266.  
  1267. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  1268.                        enum pipe pipe, bool state)
  1269. {
  1270.         u32 val;
  1271.         bool cur_state;
  1272.  
  1273.         val = I915_READ(FDI_RX_CTL(pipe));
  1274.         cur_state = !!(val & FDI_RX_PLL_ENABLE);
  1275.         I915_STATE_WARN(cur_state != state,
  1276.              "FDI RX PLL assertion failure (expected %s, current %s)\n",
  1277.                         onoff(state), onoff(cur_state));
  1278. }
  1279.  
  1280. void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1281.                            enum pipe pipe)
  1282. {
  1283.         struct drm_device *dev = dev_priv->dev;
  1284.         i915_reg_t pp_reg;
  1285.         u32 val;
  1286.         enum pipe panel_pipe = PIPE_A;
  1287.         bool locked = true;
  1288.  
  1289.         if (WARN_ON(HAS_DDI(dev)))
  1290.                 return;
  1291.  
  1292.         if (HAS_PCH_SPLIT(dev)) {
  1293.                 u32 port_sel;
  1294.  
  1295.                 pp_reg = PCH_PP_CONTROL;
  1296.                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
  1297.  
  1298.                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
  1299.                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
  1300.                         panel_pipe = PIPE_B;
  1301.                 /* XXX: else fix for eDP */
  1302.         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1303.                 /* presumably write lock depends on pipe, not port select */
  1304.                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
  1305.                 panel_pipe = pipe;
  1306.         } else {
  1307.                 pp_reg = PP_CONTROL;
  1308.                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
  1309.                         panel_pipe = PIPE_B;
  1310.         }
  1311.  
  1312.         val = I915_READ(pp_reg);
  1313.         if (!(val & PANEL_POWER_ON) ||
  1314.             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
  1315.                 locked = false;
  1316.  
  1317.         I915_STATE_WARN(panel_pipe == pipe && locked,
  1318.              "panel assertion failure, pipe %c regs locked\n",
  1319.              pipe_name(pipe));
  1320. }
  1321.  
  1322. static void assert_cursor(struct drm_i915_private *dev_priv,
  1323.                           enum pipe pipe, bool state)
  1324. {
  1325.         struct drm_device *dev = dev_priv->dev;
  1326.         bool cur_state;
  1327.  
  1328.         if (IS_845G(dev) || IS_I865G(dev))
  1329.                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  1330.         else
  1331.                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1332.  
  1333.         I915_STATE_WARN(cur_state != state,
  1334.              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  1335.                         pipe_name(pipe), onoff(state), onoff(cur_state));
  1336. }
  1337. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  1338. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  1339.  
  1340. void assert_pipe(struct drm_i915_private *dev_priv,
  1341.                  enum pipe pipe, bool state)
  1342. {
  1343.         bool cur_state;
  1344.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1345.                                                                       pipe);
  1346.         enum intel_display_power_domain power_domain;
  1347.  
  1348.         /* if we need the pipe quirk it must be always on */
  1349.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1350.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1351.                 state = true;
  1352.  
  1353.         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  1354.         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  1355.                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
  1356.                 cur_state = !!(val & PIPECONF_ENABLE);
  1357.  
  1358.                 intel_display_power_put(dev_priv, power_domain);
  1359.         } else {
  1360.                 cur_state = false;
  1361.         }
  1362.  
  1363.         I915_STATE_WARN(cur_state != state,
  1364.              "pipe %c assertion failure (expected %s, current %s)\n",
  1365.                         pipe_name(pipe), onoff(state), onoff(cur_state));
  1366. }
  1367.  
  1368. static void assert_plane(struct drm_i915_private *dev_priv,
  1369.                          enum plane plane, bool state)
  1370. {
  1371.         u32 val;
  1372.         bool cur_state;
  1373.  
  1374.         val = I915_READ(DSPCNTR(plane));
  1375.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1376.         I915_STATE_WARN(cur_state != state,
  1377.              "plane %c assertion failure (expected %s, current %s)\n",
  1378.                         plane_name(plane), onoff(state), onoff(cur_state));
  1379. }
  1380.  
  1381. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1382. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1383.  
  1384. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1385.                                    enum pipe pipe)
  1386. {
  1387.         struct drm_device *dev = dev_priv->dev;
  1388.         int i;
  1389.  
  1390.         /* Primary planes are fixed to pipes on gen4+ */
  1391.         if (INTEL_INFO(dev)->gen >= 4) {
  1392.                 u32 val = I915_READ(DSPCNTR(pipe));
  1393.                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
  1394.                      "plane %c assertion failure, should be disabled but not\n",
  1395.                      plane_name(pipe));
  1396.                 return;
  1397.         }
  1398.  
  1399.         /* Need to check both planes against the pipe */
  1400.         for_each_pipe(dev_priv, i) {
  1401.                 u32 val = I915_READ(DSPCNTR(i));
  1402.                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1403.                         DISPPLANE_SEL_PIPE_SHIFT;
  1404.                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1405.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1406.                      plane_name(i), pipe_name(pipe));
  1407.         }
  1408. }
  1409.  
  1410. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1411.                                     enum pipe pipe)
  1412. {
  1413.         struct drm_device *dev = dev_priv->dev;
  1414.         int sprite;
  1415.  
  1416.         if (INTEL_INFO(dev)->gen >= 9) {
  1417.                 for_each_sprite(dev_priv, pipe, sprite) {
  1418.                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
  1419.                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
  1420.                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
  1421.                              sprite, pipe_name(pipe));
  1422.                 }
  1423.         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1424.                 for_each_sprite(dev_priv, pipe, sprite) {
  1425.                         u32 val = I915_READ(SPCNTR(pipe, sprite));
  1426.                         I915_STATE_WARN(val & SP_ENABLE,
  1427.                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1428.                              sprite_name(pipe, sprite), pipe_name(pipe));
  1429.                 }
  1430.         } else if (INTEL_INFO(dev)->gen >= 7) {
  1431.                 u32 val = I915_READ(SPRCTL(pipe));
  1432.                 I915_STATE_WARN(val & SPRITE_ENABLE,
  1433.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1434.                      plane_name(pipe), pipe_name(pipe));
  1435.         } else if (INTEL_INFO(dev)->gen >= 5) {
  1436.                 u32 val = I915_READ(DVSCNTR(pipe));
  1437.                 I915_STATE_WARN(val & DVS_ENABLE,
  1438.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1439.                      plane_name(pipe), pipe_name(pipe));
  1440.         }
  1441. }
  1442.  
  1443. static void assert_vblank_disabled(struct drm_crtc *crtc)
  1444. {
  1445.         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
  1446.                 drm_crtc_vblank_put(crtc);
  1447. }
  1448.  
  1449. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1450. {
  1451.         u32 val;
  1452.         bool enabled;
  1453.  
  1454.         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
  1455.  
  1456.         val = I915_READ(PCH_DREF_CONTROL);
  1457.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1458.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1459.         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1460. }
  1461.  
  1462. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1463.                                            enum pipe pipe)
  1464. {
  1465.         u32 val;
  1466.         bool enabled;
  1467.  
  1468.         val = I915_READ(PCH_TRANSCONF(pipe));
  1469.         enabled = !!(val & TRANS_ENABLE);
  1470.         I915_STATE_WARN(enabled,
  1471.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1472.              pipe_name(pipe));
  1473. }
  1474.  
  1475. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1476.                             enum pipe pipe, u32 port_sel, u32 val)
  1477. {
  1478.         if ((val & DP_PORT_EN) == 0)
  1479.                 return false;
  1480.  
  1481.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1482.                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
  1483.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1484.                         return false;
  1485.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1486.                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
  1487.                         return false;
  1488.         } else {
  1489.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1490.                         return false;
  1491.         }
  1492.         return true;
  1493. }
  1494.  
  1495. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1496.                               enum pipe pipe, u32 val)
  1497. {
  1498.         if ((val & SDVO_ENABLE) == 0)
  1499.                 return false;
  1500.  
  1501.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1502.                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1503.                         return false;
  1504.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1505.                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
  1506.                         return false;
  1507.         } else {
  1508.                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1509.                         return false;
  1510.         }
  1511.         return true;
  1512. }
  1513.  
  1514. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1515.                               enum pipe pipe, u32 val)
  1516. {
  1517.         if ((val & LVDS_PORT_EN) == 0)
  1518.                 return false;
  1519.  
  1520.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1521.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1522.                         return false;
  1523.         } else {
  1524.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1525.                         return false;
  1526.         }
  1527.         return true;
  1528. }
  1529.  
  1530. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1531.                               enum pipe pipe, u32 val)
  1532. {
  1533.         if ((val & ADPA_DAC_ENABLE) == 0)
  1534.                 return false;
  1535.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1536.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1537.                         return false;
  1538.         } else {
  1539.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1540.                         return false;
  1541.         }
  1542.         return true;
  1543. }
  1544.  
  1545. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1546.                                    enum pipe pipe, i915_reg_t reg,
  1547.                                    u32 port_sel)
  1548. {
  1549.         u32 val = I915_READ(reg);
  1550.         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1551.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1552.              i915_mmio_reg_offset(reg), pipe_name(pipe));
  1553.  
  1554.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1555.              && (val & DP_PIPEB_SELECT),
  1556.              "IBX PCH dp port still using transcoder B\n");
  1557. }
  1558.  
  1559. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1560.                                      enum pipe pipe, i915_reg_t reg)
  1561. {
  1562.         u32 val = I915_READ(reg);
  1563.         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1564.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1565.              i915_mmio_reg_offset(reg), pipe_name(pipe));
  1566.  
  1567.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1568.              && (val & SDVO_PIPE_B_SELECT),
  1569.              "IBX PCH hdmi port still using transcoder B\n");
  1570. }
  1571.  
  1572. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1573.                                       enum pipe pipe)
  1574. {
  1575.         u32 val;
  1576.  
  1577.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1578.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1579.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1580.  
  1581.         val = I915_READ(PCH_ADPA);
  1582.         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1583.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1584.              pipe_name(pipe));
  1585.  
  1586.         val = I915_READ(PCH_LVDS);
  1587.         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1588.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1589.              pipe_name(pipe));
  1590.  
  1591.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1592.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1593.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1594. }
  1595.  
  1596. static void vlv_enable_pll(struct intel_crtc *crtc,
  1597.                            const struct intel_crtc_state *pipe_config)
  1598. {
  1599.         struct drm_device *dev = crtc->base.dev;
  1600.         struct drm_i915_private *dev_priv = dev->dev_private;
  1601.         i915_reg_t reg = DPLL(crtc->pipe);
  1602.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  1603.  
  1604.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1605.  
  1606.         /* PLL is protected by panel, make sure we can write it */
  1607.         if (IS_MOBILE(dev_priv->dev))
  1608.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1609.  
  1610.         I915_WRITE(reg, dpll);
  1611.         POSTING_READ(reg);
  1612.         udelay(150);
  1613.  
  1614.         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1615.                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1616.  
  1617.         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
  1618.         POSTING_READ(DPLL_MD(crtc->pipe));
  1619.  
  1620.         /* We do this three times for luck */
  1621.         I915_WRITE(reg, dpll);
  1622.         POSTING_READ(reg);
  1623.         udelay(150); /* wait for warmup */
  1624.         I915_WRITE(reg, dpll);
  1625.         POSTING_READ(reg);
  1626.         udelay(150); /* wait for warmup */
  1627.         I915_WRITE(reg, dpll);
  1628.         POSTING_READ(reg);
  1629.         udelay(150); /* wait for warmup */
  1630. }
  1631.  
  1632. static void chv_enable_pll(struct intel_crtc *crtc,
  1633.                            const struct intel_crtc_state *pipe_config)
  1634. {
  1635.         struct drm_device *dev = crtc->base.dev;
  1636.         struct drm_i915_private *dev_priv = dev->dev_private;
  1637.         int pipe = crtc->pipe;
  1638.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1639.         u32 tmp;
  1640.  
  1641.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1642.  
  1643.         mutex_lock(&dev_priv->sb_lock);
  1644.  
  1645.         /* Enable back the 10bit clock to display controller */
  1646.         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1647.         tmp |= DPIO_DCLKP_EN;
  1648.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
  1649.  
  1650.         mutex_unlock(&dev_priv->sb_lock);
  1651.  
  1652.         /*
  1653.          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
  1654.          */
  1655.         udelay(1);
  1656.  
  1657.         /* Enable PLL */
  1658.         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
  1659.  
  1660.         /* Check PLL is locked */
  1661.         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1662.                 DRM_ERROR("PLL %d failed to lock\n", pipe);
  1663.  
  1664.         /* not sure when this should be written */
  1665.         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
  1666.         POSTING_READ(DPLL_MD(pipe));
  1667. }
  1668.  
  1669. static int intel_num_dvo_pipes(struct drm_device *dev)
  1670. {
  1671.         struct intel_crtc *crtc;
  1672.         int count = 0;
  1673.  
  1674.         for_each_intel_crtc(dev, crtc)
  1675.                 count += crtc->base.state->active &&
  1676.                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
  1677.  
  1678.         return count;
  1679. }
  1680.  
  1681. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1682. {
  1683.         struct drm_device *dev = crtc->base.dev;
  1684.         struct drm_i915_private *dev_priv = dev->dev_private;
  1685.         i915_reg_t reg = DPLL(crtc->pipe);
  1686.         u32 dpll = crtc->config->dpll_hw_state.dpll;
  1687.  
  1688.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1689.  
  1690.         /* No really, not for ILK+ */
  1691.         BUG_ON(INTEL_INFO(dev)->gen >= 5);
  1692.  
  1693.         /* PLL is protected by panel, make sure we can write it */
  1694.         if (IS_MOBILE(dev) && !IS_I830(dev))
  1695.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1696.  
  1697.         /* Enable DVO 2x clock on both PLLs if necessary */
  1698.         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
  1699.                 /*
  1700.                  * It appears to be important that we don't enable this
  1701.                  * for the current pipe before otherwise configuring the
  1702.                  * PLL. No idea how this should be handled if multiple
  1703.                  * DVO outputs are enabled simultaneosly.
  1704.                  */
  1705.                 dpll |= DPLL_DVO_2X_MODE;
  1706.                 I915_WRITE(DPLL(!crtc->pipe),
  1707.                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
  1708.         }
  1709.  
  1710.         /*
  1711.          * Apparently we need to have VGA mode enabled prior to changing
  1712.          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
  1713.          * dividers, even though the register value does change.
  1714.          */
  1715.         I915_WRITE(reg, 0);
  1716.  
  1717.         I915_WRITE(reg, dpll);
  1718.  
  1719.         /* Wait for the clocks to stabilize. */
  1720.         POSTING_READ(reg);
  1721.         udelay(150);
  1722.  
  1723.         if (INTEL_INFO(dev)->gen >= 4) {
  1724.                 I915_WRITE(DPLL_MD(crtc->pipe),
  1725.                            crtc->config->dpll_hw_state.dpll_md);
  1726.         } else {
  1727.                 /* The pixel multiplier can only be updated once the
  1728.                  * DPLL is enabled and the clocks are stable.
  1729.                  *
  1730.                  * So write it again.
  1731.                  */
  1732.                 I915_WRITE(reg, dpll);
  1733.         }
  1734.  
  1735.         /* We do this three times for luck */
  1736.         I915_WRITE(reg, dpll);
  1737.         POSTING_READ(reg);
  1738.         udelay(150); /* wait for warmup */
  1739.         I915_WRITE(reg, dpll);
  1740.         POSTING_READ(reg);
  1741.         udelay(150); /* wait for warmup */
  1742.         I915_WRITE(reg, dpll);
  1743.         POSTING_READ(reg);
  1744.         udelay(150); /* wait for warmup */
  1745. }
  1746.  
  1747. /**
  1748.  * i9xx_disable_pll - disable a PLL
  1749.  * @dev_priv: i915 private structure
  1750.  * @pipe: pipe PLL to disable
  1751.  *
  1752.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1753.  *
  1754.  * Note!  This is for pre-ILK only.
  1755.  */
  1756. static void i9xx_disable_pll(struct intel_crtc *crtc)
  1757. {
  1758.         struct drm_device *dev = crtc->base.dev;
  1759.         struct drm_i915_private *dev_priv = dev->dev_private;
  1760.         enum pipe pipe = crtc->pipe;
  1761.  
  1762.         /* Disable DVO 2x clock on both PLLs if necessary */
  1763.         if (IS_I830(dev) &&
  1764.             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
  1765.             !intel_num_dvo_pipes(dev)) {
  1766.                 I915_WRITE(DPLL(PIPE_B),
  1767.                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
  1768.                 I915_WRITE(DPLL(PIPE_A),
  1769.                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
  1770.         }
  1771.  
  1772.         /* Don't disable pipe or pipe PLLs if needed */
  1773.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1774.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1775.                 return;
  1776.  
  1777.         /* Make sure the pipe isn't still relying on us */
  1778.         assert_pipe_disabled(dev_priv, pipe);
  1779.  
  1780.         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
  1781.         POSTING_READ(DPLL(pipe));
  1782. }
  1783.  
  1784. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1785. {
  1786.         u32 val;
  1787.  
  1788.         /* Make sure the pipe isn't still relying on us */
  1789.         assert_pipe_disabled(dev_priv, pipe);
  1790.  
  1791.         /*
  1792.          * Leave integrated clock source and reference clock enabled for pipe B.
  1793.          * The latter is needed for VGA hotplug / manual detection.
  1794.          */
  1795.         val = DPLL_VGA_MODE_DIS;
  1796.         if (pipe == PIPE_B)
  1797.                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
  1798.         I915_WRITE(DPLL(pipe), val);
  1799.         POSTING_READ(DPLL(pipe));
  1800.  
  1801. }
  1802.  
  1803. static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1804. {
  1805.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1806.         u32 val;
  1807.  
  1808.         /* Make sure the pipe isn't still relying on us */
  1809.         assert_pipe_disabled(dev_priv, pipe);
  1810.  
  1811.         /* Set PLL en = 0 */
  1812.         val = DPLL_SSC_REF_CLK_CHV |
  1813.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
  1814.         if (pipe != PIPE_A)
  1815.                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
  1816.         I915_WRITE(DPLL(pipe), val);
  1817.         POSTING_READ(DPLL(pipe));
  1818.  
  1819.         mutex_lock(&dev_priv->sb_lock);
  1820.  
  1821.         /* Disable 10bit clock to display controller */
  1822.         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1823.         val &= ~DPIO_DCLKP_EN;
  1824.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
  1825.  
  1826.         mutex_unlock(&dev_priv->sb_lock);
  1827. }
  1828.  
  1829. void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
  1830.                          struct intel_digital_port *dport,
  1831.                          unsigned int expected_mask)
  1832. {
  1833.         u32 port_mask;
  1834.         i915_reg_t dpll_reg;
  1835.  
  1836.         switch (dport->port) {
  1837.         case PORT_B:
  1838.                 port_mask = DPLL_PORTB_READY_MASK;
  1839.                 dpll_reg = DPLL(0);
  1840.                 break;
  1841.         case PORT_C:
  1842.                 port_mask = DPLL_PORTC_READY_MASK;
  1843.                 dpll_reg = DPLL(0);
  1844.                 expected_mask <<= 4;
  1845.                 break;
  1846.         case PORT_D:
  1847.                 port_mask = DPLL_PORTD_READY_MASK;
  1848.                 dpll_reg = DPIO_PHY_STATUS;
  1849.                 break;
  1850.         default:
  1851.                 BUG();
  1852.         }
  1853.  
  1854.         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
  1855.                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
  1856.                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
  1857. }
  1858.  
  1859. static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  1860. {
  1861.         struct drm_device *dev = crtc->base.dev;
  1862.         struct drm_i915_private *dev_priv = dev->dev_private;
  1863.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1864.  
  1865.         if (WARN_ON(pll == NULL))
  1866.                 return;
  1867.  
  1868.         WARN_ON(!pll->config.crtc_mask);
  1869.         if (pll->active == 0) {
  1870.                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  1871.                 WARN_ON(pll->on);
  1872.                 assert_shared_dpll_disabled(dev_priv, pll);
  1873.  
  1874.                 pll->mode_set(dev_priv, pll);
  1875.         }
  1876. }
  1877.  
  1878. /**
  1879.  * intel_enable_shared_dpll - enable PCH PLL
  1880.  * @dev_priv: i915 private structure
  1881.  * @pipe: pipe PLL to enable
  1882.  *
  1883.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1884.  * drives the transcoder clock.
  1885.  */
  1886. static void intel_enable_shared_dpll(struct intel_crtc *crtc)
  1887. {
  1888.         struct drm_device *dev = crtc->base.dev;
  1889.         struct drm_i915_private *dev_priv = dev->dev_private;
  1890.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1891.  
  1892.         if (WARN_ON(pll == NULL))
  1893.                 return;
  1894.  
  1895.         if (WARN_ON(pll->config.crtc_mask == 0))
  1896.                 return;
  1897.  
  1898.         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
  1899.                       pll->name, pll->active, pll->on,
  1900.                       crtc->base.base.id);
  1901.  
  1902.         if (pll->active++) {
  1903.                 WARN_ON(!pll->on);
  1904.                 assert_shared_dpll_enabled(dev_priv, pll);
  1905.                 return;
  1906.         }
  1907.         WARN_ON(pll->on);
  1908.  
  1909.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  1910.  
  1911.         DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1912.         pll->enable(dev_priv, pll);
  1913.         pll->on = true;
  1914. }
  1915.  
  1916. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1917. {
  1918.         struct drm_device *dev = crtc->base.dev;
  1919.         struct drm_i915_private *dev_priv = dev->dev_private;
  1920.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1921.  
  1922.         /* PCH only available on ILK+ */
  1923.         if (INTEL_INFO(dev)->gen < 5)
  1924.                 return;
  1925.  
  1926.         if (pll == NULL)
  1927.                 return;
  1928.  
  1929.         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
  1930.                 return;
  1931.  
  1932.         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1933.                       pll->name, pll->active, pll->on,
  1934.                       crtc->base.base.id);
  1935.  
  1936.         if (WARN_ON(pll->active == 0)) {
  1937.                 assert_shared_dpll_disabled(dev_priv, pll);
  1938.                 return;
  1939.         }
  1940.  
  1941.         assert_shared_dpll_enabled(dev_priv, pll);
  1942.         WARN_ON(!pll->on);
  1943.         if (--pll->active)
  1944.                 return;
  1945.  
  1946.         DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1947.         pll->disable(dev_priv, pll);
  1948.         pll->on = false;
  1949.  
  1950.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1951. }
  1952.  
  1953. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1954.                                            enum pipe pipe)
  1955. {
  1956.         struct drm_device *dev = dev_priv->dev;
  1957.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1958.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1959.         i915_reg_t reg;
  1960.         uint32_t val, pipeconf_val;
  1961.  
  1962.         /* PCH only available on ILK+ */
  1963.         BUG_ON(!HAS_PCH_SPLIT(dev));
  1964.  
  1965.         /* Make sure PCH DPLL is enabled */
  1966.         assert_shared_dpll_enabled(dev_priv,
  1967.                                    intel_crtc_to_shared_dpll(intel_crtc));
  1968.  
  1969.         /* FDI must be feeding us bits for PCH ports */
  1970.         assert_fdi_tx_enabled(dev_priv, pipe);
  1971.         assert_fdi_rx_enabled(dev_priv, pipe);
  1972.  
  1973.         if (HAS_PCH_CPT(dev)) {
  1974.                 /* Workaround: Set the timing override bit before enabling the
  1975.                  * pch transcoder. */
  1976.                 reg = TRANS_CHICKEN2(pipe);
  1977.                 val = I915_READ(reg);
  1978.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1979.                 I915_WRITE(reg, val);
  1980.         }
  1981.  
  1982.         reg = PCH_TRANSCONF(pipe);
  1983.         val = I915_READ(reg);
  1984.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1985.  
  1986.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1987.                 /*
  1988.                  * Make the BPC in transcoder be consistent with
  1989.                  * that in pipeconf reg. For HDMI we must use 8bpc
  1990.                  * here for both 8bpc and 12bpc.
  1991.                  */
  1992.                 val &= ~PIPECONF_BPC_MASK;
  1993.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
  1994.                         val |= PIPECONF_8BPC;
  1995.                 else
  1996.                         val |= pipeconf_val & PIPECONF_BPC_MASK;
  1997.         }
  1998.  
  1999.         val &= ~TRANS_INTERLACE_MASK;
  2000.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  2001.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  2002.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  2003.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  2004.                 else
  2005.                         val |= TRANS_INTERLACED;
  2006.         else
  2007.                 val |= TRANS_PROGRESSIVE;
  2008.  
  2009.         I915_WRITE(reg, val | TRANS_ENABLE);
  2010.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  2011.                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  2012. }
  2013.  
  2014. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  2015.                                       enum transcoder cpu_transcoder)
  2016. {
  2017.         u32 val, pipeconf_val;
  2018.  
  2019.         /* PCH only available on ILK+ */
  2020.         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
  2021.  
  2022.         /* FDI must be feeding us bits for PCH ports */
  2023.         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  2024.         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  2025.  
  2026.         /* Workaround: set timing override bit. */
  2027.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2028.         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  2029.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2030.  
  2031.         val = TRANS_ENABLE;
  2032.         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  2033.  
  2034.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  2035.             PIPECONF_INTERLACED_ILK)
  2036.                 val |= TRANS_INTERLACED;
  2037.         else
  2038.                 val |= TRANS_PROGRESSIVE;
  2039.  
  2040.         I915_WRITE(LPT_TRANSCONF, val);
  2041.         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  2042.                 DRM_ERROR("Failed to enable PCH transcoder\n");
  2043. }
  2044.  
  2045. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  2046.                                             enum pipe pipe)
  2047. {
  2048.         struct drm_device *dev = dev_priv->dev;
  2049.         i915_reg_t reg;
  2050.         uint32_t val;
  2051.  
  2052.         /* FDI relies on the transcoder */
  2053.         assert_fdi_tx_disabled(dev_priv, pipe);
  2054.         assert_fdi_rx_disabled(dev_priv, pipe);
  2055.  
  2056.         /* Ports must be off as well */
  2057.         assert_pch_ports_disabled(dev_priv, pipe);
  2058.  
  2059.         reg = PCH_TRANSCONF(pipe);
  2060.         val = I915_READ(reg);
  2061.         val &= ~TRANS_ENABLE;
  2062.         I915_WRITE(reg, val);
  2063.         /* wait for PCH transcoder off, transcoder state */
  2064.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  2065.                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  2066.  
  2067.         if (HAS_PCH_CPT(dev)) {
  2068.                 /* Workaround: Clear the timing override chicken bit again. */
  2069.                 reg = TRANS_CHICKEN2(pipe);
  2070.                 val = I915_READ(reg);
  2071.                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2072.                 I915_WRITE(reg, val);
  2073.         }
  2074. }
  2075.  
  2076. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  2077. {
  2078.         u32 val;
  2079.  
  2080.         val = I915_READ(LPT_TRANSCONF);
  2081.         val &= ~TRANS_ENABLE;
  2082.         I915_WRITE(LPT_TRANSCONF, val);
  2083.         /* wait for PCH transcoder off, transcoder state */
  2084.         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  2085.                 DRM_ERROR("Failed to disable PCH transcoder\n");
  2086.  
  2087.         /* Workaround: clear timing override bit. */
  2088.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2089.         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2090.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2091. }
  2092.  
  2093. /**
  2094.  * intel_enable_pipe - enable a pipe, asserting requirements
  2095.  * @crtc: crtc responsible for the pipe
  2096.  *
  2097.  * Enable @crtc's pipe, making sure that various hardware specific requirements
  2098.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  2099.  */
  2100. static void intel_enable_pipe(struct intel_crtc *crtc)
  2101. {
  2102.         struct drm_device *dev = crtc->base.dev;
  2103.         struct drm_i915_private *dev_priv = dev->dev_private;
  2104.         enum pipe pipe = crtc->pipe;
  2105.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  2106.         enum pipe pch_transcoder;
  2107.         i915_reg_t reg;
  2108.         u32 val;
  2109.  
  2110.         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
  2111.  
  2112.         assert_planes_disabled(dev_priv, pipe);
  2113.         assert_cursor_disabled(dev_priv, pipe);
  2114.         assert_sprites_disabled(dev_priv, pipe);
  2115.  
  2116.         if (HAS_PCH_LPT(dev_priv->dev))
  2117.                 pch_transcoder = TRANSCODER_A;
  2118.         else
  2119.                 pch_transcoder = pipe;
  2120.  
  2121.         /*
  2122.          * A pipe without a PLL won't actually be able to drive bits from
  2123.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  2124.          * need the check.
  2125.          */
  2126.         if (HAS_GMCH_DISPLAY(dev_priv->dev))
  2127.                 if (crtc->config->has_dsi_encoder)
  2128.                         assert_dsi_pll_enabled(dev_priv);
  2129.                 else
  2130.                         assert_pll_enabled(dev_priv, pipe);
  2131.         else {
  2132.                 if (crtc->config->has_pch_encoder) {
  2133.                         /* if driving the PCH, we need FDI enabled */
  2134.                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  2135.                         assert_fdi_tx_pll_enabled(dev_priv,
  2136.                                                   (enum pipe) cpu_transcoder);
  2137.                 }
  2138.                 /* FIXME: assert CPU port conditions for SNB+ */
  2139.         }
  2140.  
  2141.         reg = PIPECONF(cpu_transcoder);
  2142.         val = I915_READ(reg);
  2143.         if (val & PIPECONF_ENABLE) {
  2144.                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  2145.                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
  2146.                 return;
  2147.         }
  2148.  
  2149.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  2150.         POSTING_READ(reg);
  2151.  
  2152.         /*
  2153.          * Until the pipe starts DSL will read as 0, which would cause
  2154.          * an apparent vblank timestamp jump, which messes up also the
  2155.          * frame count when it's derived from the timestamps. So let's
  2156.          * wait for the pipe to start properly before we call
  2157.          * drm_crtc_vblank_on()
  2158.          */
  2159.         if (dev->max_vblank_count == 0 &&
  2160.             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
  2161.                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
  2162. }
  2163.  
  2164. /**
  2165.  * intel_disable_pipe - disable a pipe, asserting requirements
  2166.  * @crtc: crtc whose pipes is to be disabled
  2167.  *
  2168.  * Disable the pipe of @crtc, making sure that various hardware
  2169.  * specific requirements are met, if applicable, e.g. plane
  2170.  * disabled, panel fitter off, etc.
  2171.  *
  2172.  * Will wait until the pipe has shut down before returning.
  2173.  */
  2174. static void intel_disable_pipe(struct intel_crtc *crtc)
  2175. {
  2176.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2177.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  2178.         enum pipe pipe = crtc->pipe;
  2179.         i915_reg_t reg;
  2180.         u32 val;
  2181.  
  2182.         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
  2183.  
  2184.         /*
  2185.          * Make sure planes won't keep trying to pump pixels to us,
  2186.          * or we might hang the display.
  2187.          */
  2188.         assert_planes_disabled(dev_priv, pipe);
  2189.         assert_cursor_disabled(dev_priv, pipe);
  2190.         assert_sprites_disabled(dev_priv, pipe);
  2191.  
  2192.         reg = PIPECONF(cpu_transcoder);
  2193.         val = I915_READ(reg);
  2194.         if ((val & PIPECONF_ENABLE) == 0)
  2195.                 return;
  2196.  
  2197.         /*
  2198.          * Double wide has implications for planes
  2199.          * so best keep it disabled when not needed.
  2200.          */
  2201.         if (crtc->config->double_wide)
  2202.                 val &= ~PIPECONF_DOUBLE_WIDE;
  2203.  
  2204.         /* Don't disable pipe or pipe PLLs if needed */
  2205.         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
  2206.             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  2207.                 val &= ~PIPECONF_ENABLE;
  2208.  
  2209.         I915_WRITE(reg, val);
  2210.         if ((val & PIPECONF_ENABLE) == 0)
  2211.                 intel_wait_for_pipe_off(crtc);
  2212. }
  2213.  
  2214. static bool need_vtd_wa(struct drm_device *dev)
  2215. {
  2216. #ifdef CONFIG_INTEL_IOMMU
  2217.         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  2218.                 return true;
  2219. #endif
  2220.         return false;
  2221. }
  2222.  
  2223. static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
  2224. {
  2225.         return IS_GEN2(dev_priv) ? 2048 : 4096;
  2226. }
  2227.  
  2228. static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
  2229.                                      uint64_t fb_modifier, unsigned int cpp)
  2230. {
  2231.         switch (fb_modifier) {
  2232.         case DRM_FORMAT_MOD_NONE:
  2233.                 return cpp;
  2234.         case I915_FORMAT_MOD_X_TILED:
  2235.                 if (IS_GEN2(dev_priv))
  2236.                         return 128;
  2237.                 else
  2238.                         return 512;
  2239.         case I915_FORMAT_MOD_Y_TILED:
  2240.                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
  2241.                         return 128;
  2242.                 else
  2243.                         return 512;
  2244.         case I915_FORMAT_MOD_Yf_TILED:
  2245.                 switch (cpp) {
  2246.                 case 1:
  2247.                         return 64;
  2248.                 case 2:
  2249.                 case 4:
  2250.                         return 128;
  2251.                 case 8:
  2252.                 case 16:
  2253.                         return 256;
  2254.                 default:
  2255.                         MISSING_CASE(cpp);
  2256.                         return cpp;
  2257.                 }
  2258.                 break;
  2259.         default:
  2260.                 MISSING_CASE(fb_modifier);
  2261.                 return cpp;
  2262.         }
  2263. }
  2264.  
  2265. unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
  2266.                                uint64_t fb_modifier, unsigned int cpp)
  2267. {
  2268.         if (fb_modifier == DRM_FORMAT_MOD_NONE)
  2269.                 return 1;
  2270.         else
  2271.                 return intel_tile_size(dev_priv) /
  2272.                         intel_tile_width(dev_priv, fb_modifier, cpp);
  2273. }
  2274.  
  2275. unsigned int
  2276. intel_fb_align_height(struct drm_device *dev, unsigned int height,
  2277.                       uint32_t pixel_format, uint64_t fb_modifier)
  2278. {
  2279.         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
  2280.         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
  2281.  
  2282.         return ALIGN(height, tile_height);
  2283. }
  2284.  
  2285. static void
  2286. intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
  2287.                         const struct drm_plane_state *plane_state)
  2288. {
  2289.         struct drm_i915_private *dev_priv = to_i915(fb->dev);
  2290.         struct intel_rotation_info *info = &view->params.rotated;
  2291.         unsigned int tile_size, tile_width, tile_height, cpp;
  2292.  
  2293.         *view = i915_ggtt_view_normal;
  2294.  
  2295.         if (!plane_state)
  2296.                 return;
  2297.  
  2298.         if (!intel_rotation_90_or_270(plane_state->rotation))
  2299.                 return;
  2300.  
  2301.         *view = i915_ggtt_view_rotated;
  2302.  
  2303.         info->height = fb->height;
  2304.         info->pixel_format = fb->pixel_format;
  2305.         info->pitch = fb->pitches[0];
  2306.         info->uv_offset = fb->offsets[1];
  2307.         info->fb_modifier = fb->modifier[0];
  2308.  
  2309.         tile_size = intel_tile_size(dev_priv);
  2310.  
  2311.         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  2312.         tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
  2313.         tile_height = tile_size / tile_width;
  2314.  
  2315.         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
  2316.         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
  2317.         info->size = info->width_pages * info->height_pages * tile_size;
  2318.  
  2319.         if (info->pixel_format == DRM_FORMAT_NV12) {
  2320.                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
  2321.                 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
  2322.                 tile_height = tile_size / tile_width;
  2323.  
  2324.                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
  2325.                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
  2326.                 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
  2327.         }
  2328. }
  2329.  
  2330. static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
  2331. {
  2332.         if (INTEL_INFO(dev_priv)->gen >= 9)
  2333.                 return 256 * 1024;
  2334.         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
  2335.                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  2336.                 return 128 * 1024;
  2337.         else if (INTEL_INFO(dev_priv)->gen >= 4)
  2338.                 return 4 * 1024;
  2339.         else
  2340.                 return 0;
  2341. }
  2342.  
  2343. static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
  2344.                                          uint64_t fb_modifier)
  2345. {
  2346.         switch (fb_modifier) {
  2347.         case DRM_FORMAT_MOD_NONE:
  2348.                 return intel_linear_alignment(dev_priv);
  2349.         case I915_FORMAT_MOD_X_TILED:
  2350.                 if (INTEL_INFO(dev_priv)->gen >= 9)
  2351.                         return 256 * 1024;
  2352.                 return 0;
  2353.         case I915_FORMAT_MOD_Y_TILED:
  2354.         case I915_FORMAT_MOD_Yf_TILED:
  2355.                 return 1 * 1024 * 1024;
  2356.         default:
  2357.                 MISSING_CASE(fb_modifier);
  2358.                 return 0;
  2359.         }
  2360. }
  2361.  
  2362. int
  2363. intel_pin_and_fence_fb_obj(struct drm_plane *plane,
  2364.                            struct drm_framebuffer *fb,
  2365.                            const struct drm_plane_state *plane_state)
  2366. {
  2367.         struct drm_device *dev = fb->dev;
  2368.         struct drm_i915_private *dev_priv = dev->dev_private;
  2369.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2370.         struct i915_ggtt_view view;
  2371.         u32 alignment;
  2372.         int ret;
  2373.  
  2374.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2375.  
  2376.         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
  2377.  
  2378.         intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2379.  
  2380.         /* Note that the w/a also requires 64 PTE of padding following the
  2381.          * bo. We currently fill all unused PTE with the shadow page and so
  2382.          * we should always have valid PTE following the scanout preventing
  2383.          * the VT-d warning.
  2384.          */
  2385.         if (need_vtd_wa(dev) && alignment < 256 * 1024)
  2386.                 alignment = 256 * 1024;
  2387.  
  2388.         /*
  2389.          * Global gtt pte registers are special registers which actually forward
  2390.          * writes to a chunk of system memory. Which means that there is no risk
  2391.          * that the register values disappear as soon as we call
  2392.          * intel_runtime_pm_put(), so it is correct to wrap only the
  2393.          * pin/unpin/fence and not more.
  2394.          */
  2395.         intel_runtime_pm_get(dev_priv);
  2396.  
  2397.         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
  2398.                                                    &view);
  2399.         if (ret)
  2400.                 goto err_pm;
  2401.  
  2402.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  2403.          * fence, whereas 965+ only requires a fence if using
  2404.          * framebuffer compression.  For simplicity, we always install
  2405.          * a fence as the cost is not that onerous.
  2406.          */
  2407.         if (view.type == I915_GGTT_VIEW_NORMAL) {
  2408.                 ret = i915_gem_object_get_fence(obj);
  2409.                 if (ret == -EDEADLK) {
  2410.                         /*
  2411.                          * -EDEADLK means there are no free fences
  2412.                          * no pending flips.
  2413.                          *
  2414.                          * This is propagated to atomic, but it uses
  2415.                          * -EDEADLK to force a locking recovery, so
  2416.                          * change the returned error to -EBUSY.
  2417.                          */
  2418.                         ret = -EBUSY;
  2419.                         goto err_unpin;
  2420.                 } else if (ret)
  2421.                         goto err_unpin;
  2422.  
  2423.                 i915_gem_object_pin_fence(obj);
  2424.         }
  2425.  
  2426.         intel_runtime_pm_put(dev_priv);
  2427.         return 0;
  2428.  
  2429. err_unpin:
  2430.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2431. err_pm:
  2432.         intel_runtime_pm_put(dev_priv);
  2433.         return ret;
  2434. }
  2435.  
  2436. static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
  2437.                                const struct drm_plane_state *plane_state)
  2438. {
  2439.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2440.         struct i915_ggtt_view view;
  2441.  
  2442.         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
  2443.  
  2444.         intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2445.  
  2446.         if (view.type == I915_GGTT_VIEW_NORMAL)
  2447.                 i915_gem_object_unpin_fence(obj);
  2448.  
  2449.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2450. }
  2451.  
  2452. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  2453.  * is assumed to be a power-of-two. */
  2454. u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
  2455.                               int *x, int *y,
  2456.                               uint64_t fb_modifier,
  2457.                               unsigned int cpp,
  2458.                               unsigned int pitch)
  2459. {
  2460.         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
  2461.                 unsigned int tile_size, tile_width, tile_height;
  2462.                 unsigned int tile_rows, tiles;
  2463.  
  2464.                 tile_size = intel_tile_size(dev_priv);
  2465.                 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
  2466.                 tile_height = tile_size / tile_width;
  2467.  
  2468.                 tile_rows = *y / tile_height;
  2469.                 *y %= tile_height;
  2470.  
  2471.                 tiles = *x / (tile_width/cpp);
  2472.                 *x %= tile_width/cpp;
  2473.  
  2474.                 return tile_rows * pitch * tile_height + tiles * tile_size;
  2475.         } else {
  2476.                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
  2477.                 unsigned int offset;
  2478.  
  2479.                 offset = *y * pitch + *x * cpp;
  2480.                 *y = (offset & alignment) / pitch;
  2481.                 *x = ((offset & alignment) - *y * pitch) / cpp;
  2482.                 return offset & ~alignment;
  2483.         }
  2484. }
  2485.  
  2486. static int i9xx_format_to_fourcc(int format)
  2487. {
  2488.         switch (format) {
  2489.         case DISPPLANE_8BPP:
  2490.                 return DRM_FORMAT_C8;
  2491.         case DISPPLANE_BGRX555:
  2492.                 return DRM_FORMAT_XRGB1555;
  2493.         case DISPPLANE_BGRX565:
  2494.                 return DRM_FORMAT_RGB565;
  2495.         default:
  2496.         case DISPPLANE_BGRX888:
  2497.                 return DRM_FORMAT_XRGB8888;
  2498.         case DISPPLANE_RGBX888:
  2499.                 return DRM_FORMAT_XBGR8888;
  2500.         case DISPPLANE_BGRX101010:
  2501.                 return DRM_FORMAT_XRGB2101010;
  2502.         case DISPPLANE_RGBX101010:
  2503.                 return DRM_FORMAT_XBGR2101010;
  2504.         }
  2505. }
  2506.  
  2507. static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
  2508. {
  2509.         switch (format) {
  2510.         case PLANE_CTL_FORMAT_RGB_565:
  2511.                 return DRM_FORMAT_RGB565;
  2512.         default:
  2513.         case PLANE_CTL_FORMAT_XRGB_8888:
  2514.                 if (rgb_order) {
  2515.                         if (alpha)
  2516.                                 return DRM_FORMAT_ABGR8888;
  2517.                         else
  2518.                                 return DRM_FORMAT_XBGR8888;
  2519.                 } else {
  2520.                         if (alpha)
  2521.                                 return DRM_FORMAT_ARGB8888;
  2522.                         else
  2523.                                 return DRM_FORMAT_XRGB8888;
  2524.                 }
  2525.         case PLANE_CTL_FORMAT_XRGB_2101010:
  2526.                 if (rgb_order)
  2527.                         return DRM_FORMAT_XBGR2101010;
  2528.                 else
  2529.                         return DRM_FORMAT_XRGB2101010;
  2530.         }
  2531. }
  2532.  
  2533. static bool
  2534. intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
  2535.                               struct intel_initial_plane_config *plane_config)
  2536. {
  2537.         struct drm_device *dev = crtc->base.dev;
  2538.         struct drm_i915_private *dev_priv = to_i915(dev);
  2539.         struct drm_i915_gem_object *obj = NULL;
  2540.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  2541.         struct drm_framebuffer *fb = &plane_config->fb->base;
  2542.         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
  2543.         u32 size_aligned = round_up(plane_config->base + plane_config->size,
  2544.                                     PAGE_SIZE);
  2545.  
  2546.         size_aligned -= base_aligned;
  2547.  
  2548.         if (plane_config->size == 0)
  2549.                 return false;
  2550.  
  2551.         /* If the FB is too big, just don't use it since fbdev is not very
  2552.          * important and we should probably use that space with FBC or other
  2553.          * features. */
  2554.         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
  2555.                 return false;
  2556.  
  2557.         mutex_lock(&dev->struct_mutex);
  2558.  
  2559.         obj = i915_gem_object_create_stolen_for_preallocated(dev,
  2560.                                                              base_aligned,
  2561.                                                              base_aligned,
  2562.                                                              size_aligned);
  2563.         if (!obj) {
  2564.                 mutex_unlock(&dev->struct_mutex);
  2565.                 return false;
  2566.         }
  2567.  
  2568.         obj->tiling_mode = plane_config->tiling;
  2569.         if (obj->tiling_mode == I915_TILING_X)
  2570.                 obj->stride = fb->pitches[0];
  2571.  
  2572.         mode_cmd.pixel_format = fb->pixel_format;
  2573.         mode_cmd.width = fb->width;
  2574.         mode_cmd.height = fb->height;
  2575.         mode_cmd.pitches[0] = fb->pitches[0];
  2576.         mode_cmd.modifier[0] = fb->modifier[0];
  2577.         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
  2578.  
  2579.         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
  2580.                                    &mode_cmd, obj)) {
  2581.                 DRM_DEBUG_KMS("intel fb init failed\n");
  2582.                 goto out_unref_obj;
  2583.         }
  2584.  
  2585.         mutex_unlock(&dev->struct_mutex);
  2586.  
  2587.         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
  2588.         return true;
  2589.  
  2590. out_unref_obj:
  2591.         drm_gem_object_unreference(&obj->base);
  2592.         mutex_unlock(&dev->struct_mutex);
  2593.         return false;
  2594. }
  2595.  
  2596. /* Update plane->state->fb to match plane->fb after driver-internal updates */
  2597. static void
  2598. update_state_fb(struct drm_plane *plane)
  2599. {
  2600.         if (plane->fb == plane->state->fb)
  2601.                 return;
  2602.  
  2603.         if (plane->state->fb)
  2604.                 drm_framebuffer_unreference(plane->state->fb);
  2605.         plane->state->fb = plane->fb;
  2606.         if (plane->state->fb)
  2607.                 drm_framebuffer_reference(plane->state->fb);
  2608. }
  2609.  
  2610. static void
  2611. intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
  2612.                              struct intel_initial_plane_config *plane_config)
  2613. {
  2614.         struct drm_device *dev = intel_crtc->base.dev;
  2615.         struct drm_i915_private *dev_priv = dev->dev_private;
  2616.         struct drm_crtc *c;
  2617.         struct intel_crtc *i;
  2618.         struct drm_i915_gem_object *obj;
  2619.         struct drm_plane *primary = intel_crtc->base.primary;
  2620.         struct drm_plane_state *plane_state = primary->state;
  2621.         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
  2622.         struct intel_plane *intel_plane = to_intel_plane(primary);
  2623.         struct intel_plane_state *intel_state =
  2624.                 to_intel_plane_state(plane_state);
  2625.         struct drm_framebuffer *fb;
  2626.  
  2627.         if (!plane_config->fb)
  2628.                 return;
  2629.  
  2630.         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
  2631.                 fb = &plane_config->fb->base;
  2632.                 goto valid_fb;
  2633.         }
  2634.  
  2635.         kfree(plane_config->fb);
  2636.  
  2637.         /*
  2638.          * Failed to alloc the obj, check to see if we should share
  2639.          * an fb with another CRTC instead
  2640.          */
  2641.         for_each_crtc(dev, c) {
  2642.                 i = to_intel_crtc(c);
  2643.  
  2644.                 if (c == &intel_crtc->base)
  2645.                         continue;
  2646.  
  2647.                 if (!i->active)
  2648.                         continue;
  2649.  
  2650.                 fb = c->primary->fb;
  2651.                 if (!fb)
  2652.                         continue;
  2653.  
  2654.                 obj = intel_fb_obj(fb);
  2655.                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
  2656.                         drm_framebuffer_reference(fb);
  2657.                         goto valid_fb;
  2658.                 }
  2659.         }
  2660.  
  2661.         /*
  2662.          * We've failed to reconstruct the BIOS FB.  Current display state
  2663.          * indicates that the primary plane is visible, but has a NULL FB,
  2664.          * which will lead to problems later if we don't fix it up.  The
  2665.          * simplest solution is to just disable the primary plane now and
  2666.          * pretend the BIOS never had it enabled.
  2667.          */
  2668.         to_intel_plane_state(plane_state)->visible = false;
  2669.         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
  2670.         intel_pre_disable_primary(&intel_crtc->base);
  2671.         intel_plane->disable_plane(primary, &intel_crtc->base);
  2672.  
  2673.         return;
  2674.  
  2675. valid_fb:
  2676.         plane_state->src_x = 0;
  2677.         plane_state->src_y = 0;
  2678.         plane_state->src_w = fb->width << 16;
  2679.         plane_state->src_h = fb->height << 16;
  2680.  
  2681.         plane_state->crtc_x = 0;
  2682.         plane_state->crtc_y = 0;
  2683.         plane_state->crtc_w = fb->width;
  2684.         plane_state->crtc_h = fb->height;
  2685.  
  2686.         intel_state->src.x1 = plane_state->src_x;
  2687.         intel_state->src.y1 = plane_state->src_y;
  2688.         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
  2689.         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
  2690.         intel_state->dst.x1 = plane_state->crtc_x;
  2691.         intel_state->dst.y1 = plane_state->crtc_y;
  2692.         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
  2693.         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
  2694.  
  2695.         obj = intel_fb_obj(fb);
  2696.         if (obj->tiling_mode != I915_TILING_NONE)
  2697.                 dev_priv->preserve_bios_swizzle = true;
  2698.  
  2699.         drm_framebuffer_reference(fb);
  2700.         primary->fb = primary->state->fb = fb;
  2701.         primary->crtc = primary->state->crtc = &intel_crtc->base;
  2702.         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
  2703.         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
  2704. }
  2705.  
  2706. static void i9xx_update_primary_plane(struct drm_plane *primary,
  2707.                                       const struct intel_crtc_state *crtc_state,
  2708.                                       const struct intel_plane_state *plane_state)
  2709. {
  2710.         struct drm_device *dev = primary->dev;
  2711.         struct drm_i915_private *dev_priv = dev->dev_private;
  2712.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  2713.         struct drm_framebuffer *fb = plane_state->base.fb;
  2714.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2715.         int plane = intel_crtc->plane;
  2716.         u32 linear_offset;
  2717.         u32 dspcntr;
  2718.         i915_reg_t reg = DSPCNTR(plane);
  2719.         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  2720.         int x = plane_state->src.x1 >> 16;
  2721.         int y = plane_state->src.y1 >> 16;
  2722.  
  2723.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2724.  
  2725.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2726.  
  2727.         if (INTEL_INFO(dev)->gen < 4) {
  2728.                 if (intel_crtc->pipe == PIPE_B)
  2729.                         dspcntr |= DISPPLANE_SEL_PIPE_B;
  2730.  
  2731.                 /* pipesrc and dspsize control the size that is scaled from,
  2732.                  * which should always be the user's requested size.
  2733.                  */
  2734.                 I915_WRITE(DSPSIZE(plane),
  2735.                            ((crtc_state->pipe_src_h - 1) << 16) |
  2736.                            (crtc_state->pipe_src_w - 1));
  2737.                 I915_WRITE(DSPPOS(plane), 0);
  2738.         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
  2739.                 I915_WRITE(PRIMSIZE(plane),
  2740.                            ((crtc_state->pipe_src_h - 1) << 16) |
  2741.                            (crtc_state->pipe_src_w - 1));
  2742.                 I915_WRITE(PRIMPOS(plane), 0);
  2743.                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
  2744.         }
  2745.  
  2746.         switch (fb->pixel_format) {
  2747.         case DRM_FORMAT_C8:
  2748.                 dspcntr |= DISPPLANE_8BPP;
  2749.                 break;
  2750.         case DRM_FORMAT_XRGB1555:
  2751.                 dspcntr |= DISPPLANE_BGRX555;
  2752.                 break;
  2753.         case DRM_FORMAT_RGB565:
  2754.                 dspcntr |= DISPPLANE_BGRX565;
  2755.                 break;
  2756.         case DRM_FORMAT_XRGB8888:
  2757.                 dspcntr |= DISPPLANE_BGRX888;
  2758.                 break;
  2759.         case DRM_FORMAT_XBGR8888:
  2760.                 dspcntr |= DISPPLANE_RGBX888;
  2761.                 break;
  2762.         case DRM_FORMAT_XRGB2101010:
  2763.                 dspcntr |= DISPPLANE_BGRX101010;
  2764.                 break;
  2765.         case DRM_FORMAT_XBGR2101010:
  2766.                 dspcntr |= DISPPLANE_RGBX101010;
  2767.                 break;
  2768.         default:
  2769.                 BUG();
  2770.         }
  2771.  
  2772.         if (INTEL_INFO(dev)->gen >= 4 &&
  2773.             obj->tiling_mode != I915_TILING_NONE)
  2774.                 dspcntr |= DISPPLANE_TILED;
  2775.  
  2776.         if (IS_G4X(dev))
  2777.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2778.  
  2779.         linear_offset = y * fb->pitches[0] + x * cpp;
  2780.  
  2781.         if (INTEL_INFO(dev)->gen >= 4) {
  2782.                 intel_crtc->dspaddr_offset =
  2783.                         intel_compute_tile_offset(dev_priv, &x, &y,
  2784.                                                   fb->modifier[0], cpp,
  2785.                                                   fb->pitches[0]);
  2786.                 linear_offset -= intel_crtc->dspaddr_offset;
  2787.         } else {
  2788.                 intel_crtc->dspaddr_offset = linear_offset;
  2789.         }
  2790.  
  2791.         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
  2792.                 dspcntr |= DISPPLANE_ROTATE_180;
  2793.  
  2794.                 x += (crtc_state->pipe_src_w - 1);
  2795.                 y += (crtc_state->pipe_src_h - 1);
  2796.  
  2797.                 /* Finding the last pixel of the last line of the display
  2798.                 data and adding to linear_offset*/
  2799.                 linear_offset +=
  2800.                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
  2801.                         (crtc_state->pipe_src_w - 1) * cpp;
  2802.         }
  2803.  
  2804.         intel_crtc->adjusted_x = x;
  2805.         intel_crtc->adjusted_y = y;
  2806.  
  2807.         I915_WRITE(reg, dspcntr);
  2808.  
  2809.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2810.         if (INTEL_INFO(dev)->gen >= 4) {
  2811.                 I915_WRITE(DSPSURF(plane),
  2812.                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2813.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2814.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2815.         } else
  2816.                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  2817.         POSTING_READ(reg);
  2818. }
  2819.  
  2820. static void i9xx_disable_primary_plane(struct drm_plane *primary,
  2821.                                        struct drm_crtc *crtc)
  2822. {
  2823.         struct drm_device *dev = crtc->dev;
  2824.         struct drm_i915_private *dev_priv = dev->dev_private;
  2825.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2826.         int plane = intel_crtc->plane;
  2827.  
  2828.         I915_WRITE(DSPCNTR(plane), 0);
  2829.         if (INTEL_INFO(dev_priv)->gen >= 4)
  2830.                 I915_WRITE(DSPSURF(plane), 0);
  2831.         else
  2832.                 I915_WRITE(DSPADDR(plane), 0);
  2833.         POSTING_READ(DSPCNTR(plane));
  2834. }
  2835.  
  2836. static void ironlake_update_primary_plane(struct drm_plane *primary,
  2837.                                           const struct intel_crtc_state *crtc_state,
  2838.                                           const struct intel_plane_state *plane_state)
  2839. {
  2840.         struct drm_device *dev = primary->dev;
  2841.         struct drm_i915_private *dev_priv = dev->dev_private;
  2842.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  2843.         struct drm_framebuffer *fb = plane_state->base.fb;
  2844.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2845.         int plane = intel_crtc->plane;
  2846.         u32 linear_offset;
  2847.         u32 dspcntr;
  2848.         i915_reg_t reg = DSPCNTR(plane);
  2849.         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  2850.         int x = plane_state->src.x1 >> 16;
  2851.         int y = plane_state->src.y1 >> 16;
  2852.  
  2853.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2854.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2855.  
  2856.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2857.                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
  2858.  
  2859.         switch (fb->pixel_format) {
  2860.         case DRM_FORMAT_C8:
  2861.                 dspcntr |= DISPPLANE_8BPP;
  2862.                 break;
  2863.         case DRM_FORMAT_RGB565:
  2864.                 dspcntr |= DISPPLANE_BGRX565;
  2865.                 break;
  2866.         case DRM_FORMAT_XRGB8888:
  2867.                 dspcntr |= DISPPLANE_BGRX888;
  2868.                 break;
  2869.         case DRM_FORMAT_XBGR8888:
  2870.                 dspcntr |= DISPPLANE_RGBX888;
  2871.                 break;
  2872.         case DRM_FORMAT_XRGB2101010:
  2873.                 dspcntr |= DISPPLANE_BGRX101010;
  2874.                 break;
  2875.         case DRM_FORMAT_XBGR2101010:
  2876.                 dspcntr |= DISPPLANE_RGBX101010;
  2877.                 break;
  2878.         default:
  2879.                 BUG();
  2880.         }
  2881.  
  2882.         if (obj->tiling_mode != I915_TILING_NONE)
  2883.                 dspcntr |= DISPPLANE_TILED;
  2884.  
  2885.         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
  2886.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2887.  
  2888.         linear_offset = y * fb->pitches[0] + x * cpp;
  2889.         intel_crtc->dspaddr_offset =
  2890.                 intel_compute_tile_offset(dev_priv, &x, &y,
  2891.                                           fb->modifier[0], cpp,
  2892.                                           fb->pitches[0]);
  2893.         linear_offset -= intel_crtc->dspaddr_offset;
  2894.         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
  2895.                 dspcntr |= DISPPLANE_ROTATE_180;
  2896.  
  2897.                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  2898.                         x += (crtc_state->pipe_src_w - 1);
  2899.                         y += (crtc_state->pipe_src_h - 1);
  2900.  
  2901.                         /* Finding the last pixel of the last line of the display
  2902.                         data and adding to linear_offset*/
  2903.                         linear_offset +=
  2904.                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
  2905.                                 (crtc_state->pipe_src_w - 1) * cpp;
  2906.                 }
  2907.         }
  2908.  
  2909.         intel_crtc->adjusted_x = x;
  2910.         intel_crtc->adjusted_y = y;
  2911.  
  2912.         I915_WRITE(reg, dspcntr);
  2913.  
  2914.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2915.         I915_WRITE(DSPSURF(plane),
  2916.                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2917.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2918.                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  2919.         } else {
  2920.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2921.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2922.         }
  2923.         POSTING_READ(reg);
  2924. }
  2925.  
  2926. u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
  2927.                               uint64_t fb_modifier, uint32_t pixel_format)
  2928. {
  2929.         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
  2930.                 return 64;
  2931.         } else {
  2932.                 int cpp = drm_format_plane_cpp(pixel_format, 0);
  2933.  
  2934.                 return intel_tile_width(dev_priv, fb_modifier, cpp);
  2935.         }
  2936. }
  2937.  
  2938. u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
  2939.                            struct drm_i915_gem_object *obj,
  2940.                            unsigned int plane)
  2941. {
  2942.         struct i915_ggtt_view view;
  2943.         struct i915_vma *vma;
  2944.         u64 offset;
  2945.  
  2946.         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
  2947.                                 intel_plane->base.state);
  2948.  
  2949.         vma = i915_gem_obj_to_ggtt_view(obj, &view);
  2950.         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
  2951.                 view.type))
  2952.                 return -1;
  2953.  
  2954.         offset = vma->node.start;
  2955.  
  2956.         if (plane == 1) {
  2957.                 offset += vma->ggtt_view.params.rotated.uv_start_page *
  2958.                           PAGE_SIZE;
  2959.         }
  2960.  
  2961.         WARN_ON(upper_32_bits(offset));
  2962.  
  2963.         return lower_32_bits(offset);
  2964. }
  2965.  
  2966. static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
  2967. {
  2968.         struct drm_device *dev = intel_crtc->base.dev;
  2969.         struct drm_i915_private *dev_priv = dev->dev_private;
  2970.  
  2971.         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
  2972.         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
  2973.         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
  2974. }
  2975.  
  2976. /*
  2977.  * This function detaches (aka. unbinds) unused scalers in hardware
  2978.  */
  2979. static void skl_detach_scalers(struct intel_crtc *intel_crtc)
  2980. {
  2981.         struct intel_crtc_scaler_state *scaler_state;
  2982.         int i;
  2983.  
  2984.         scaler_state = &intel_crtc->config->scaler_state;
  2985.  
  2986.         /* loop through and disable scalers that aren't in use */
  2987.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  2988.                 if (!scaler_state->scalers[i].in_use)
  2989.                         skl_detach_scaler(intel_crtc, i);
  2990.         }
  2991. }
  2992.  
  2993. u32 skl_plane_ctl_format(uint32_t pixel_format)
  2994. {
  2995.         switch (pixel_format) {
  2996.         case DRM_FORMAT_C8:
  2997.                 return PLANE_CTL_FORMAT_INDEXED;
  2998.         case DRM_FORMAT_RGB565:
  2999.                 return PLANE_CTL_FORMAT_RGB_565;
  3000.         case DRM_FORMAT_XBGR8888:
  3001.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
  3002.         case DRM_FORMAT_XRGB8888:
  3003.                 return PLANE_CTL_FORMAT_XRGB_8888;
  3004.         /*
  3005.          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
  3006.          * to be already pre-multiplied. We need to add a knob (or a different
  3007.          * DRM_FORMAT) for user-space to configure that.
  3008.          */
  3009.         case DRM_FORMAT_ABGR8888:
  3010.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
  3011.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3012.         case DRM_FORMAT_ARGB8888:
  3013.                 return PLANE_CTL_FORMAT_XRGB_8888 |
  3014.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3015.         case DRM_FORMAT_XRGB2101010:
  3016.                 return PLANE_CTL_FORMAT_XRGB_2101010;
  3017.         case DRM_FORMAT_XBGR2101010:
  3018.                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
  3019.         case DRM_FORMAT_YUYV:
  3020.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
  3021.         case DRM_FORMAT_YVYU:
  3022.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
  3023.         case DRM_FORMAT_UYVY:
  3024.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
  3025.         case DRM_FORMAT_VYUY:
  3026.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
  3027.         default:
  3028.                 MISSING_CASE(pixel_format);
  3029.         }
  3030.  
  3031.         return 0;
  3032. }
  3033.  
  3034. u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
  3035. {
  3036.         switch (fb_modifier) {
  3037.         case DRM_FORMAT_MOD_NONE:
  3038.                 break;
  3039.         case I915_FORMAT_MOD_X_TILED:
  3040.                 return PLANE_CTL_TILED_X;
  3041.         case I915_FORMAT_MOD_Y_TILED:
  3042.                 return PLANE_CTL_TILED_Y;
  3043.         case I915_FORMAT_MOD_Yf_TILED:
  3044.                 return PLANE_CTL_TILED_YF;
  3045.         default:
  3046.                 MISSING_CASE(fb_modifier);
  3047.         }
  3048.  
  3049.         return 0;
  3050. }
  3051.  
  3052. u32 skl_plane_ctl_rotation(unsigned int rotation)
  3053. {
  3054.         switch (rotation) {
  3055.         case BIT(DRM_ROTATE_0):
  3056.                 break;
  3057.         /*
  3058.          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
  3059.          * while i915 HW rotation is clockwise, thats why this swapping.
  3060.          */
  3061.         case BIT(DRM_ROTATE_90):
  3062.                 return PLANE_CTL_ROTATE_270;
  3063.         case BIT(DRM_ROTATE_180):
  3064.                 return PLANE_CTL_ROTATE_180;
  3065.         case BIT(DRM_ROTATE_270):
  3066.                 return PLANE_CTL_ROTATE_90;
  3067.         default:
  3068.                 MISSING_CASE(rotation);
  3069.         }
  3070.  
  3071.         return 0;
  3072. }
  3073.  
  3074. static void skylake_update_primary_plane(struct drm_plane *plane,
  3075.                                          const struct intel_crtc_state *crtc_state,
  3076.                                          const struct intel_plane_state *plane_state)
  3077. {
  3078.         struct drm_device *dev = plane->dev;
  3079.         struct drm_i915_private *dev_priv = dev->dev_private;
  3080.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  3081.         struct drm_framebuffer *fb = plane_state->base.fb;
  3082.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  3083.         int pipe = intel_crtc->pipe;
  3084.         u32 plane_ctl, stride_div, stride;
  3085.         u32 tile_height, plane_offset, plane_size;
  3086.         unsigned int rotation = plane_state->base.rotation;
  3087.         int x_offset, y_offset;
  3088.         u32 surf_addr;
  3089.         int scaler_id = plane_state->scaler_id;
  3090.         int src_x = plane_state->src.x1 >> 16;
  3091.         int src_y = plane_state->src.y1 >> 16;
  3092.         int src_w = drm_rect_width(&plane_state->src) >> 16;
  3093.         int src_h = drm_rect_height(&plane_state->src) >> 16;
  3094.         int dst_x = plane_state->dst.x1;
  3095.         int dst_y = plane_state->dst.y1;
  3096.         int dst_w = drm_rect_width(&plane_state->dst);
  3097.         int dst_h = drm_rect_height(&plane_state->dst);
  3098.  
  3099.         plane_ctl = PLANE_CTL_ENABLE |
  3100.                     PLANE_CTL_PIPE_GAMMA_ENABLE |
  3101.                     PLANE_CTL_PIPE_CSC_ENABLE;
  3102.  
  3103.         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
  3104.         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
  3105.         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
  3106.         plane_ctl |= skl_plane_ctl_rotation(rotation);
  3107.  
  3108.         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
  3109.                                                fb->pixel_format);
  3110.         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
  3111.  
  3112.         WARN_ON(drm_rect_width(&plane_state->src) == 0);
  3113.  
  3114.         if (intel_rotation_90_or_270(rotation)) {
  3115.                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  3116.  
  3117.                 /* stride = Surface height in tiles */
  3118.                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
  3119.                 stride = DIV_ROUND_UP(fb->height, tile_height);
  3120.                 x_offset = stride * tile_height - src_y - src_h;
  3121.                 y_offset = src_x;
  3122.                 plane_size = (src_w - 1) << 16 | (src_h - 1);
  3123.         } else {
  3124.                 stride = fb->pitches[0] / stride_div;
  3125.                 x_offset = src_x;
  3126.                 y_offset = src_y;
  3127.                 plane_size = (src_h - 1) << 16 | (src_w - 1);
  3128.         }
  3129.         plane_offset = y_offset << 16 | x_offset;
  3130.  
  3131.         intel_crtc->adjusted_x = x_offset;
  3132.         intel_crtc->adjusted_y = y_offset;
  3133.  
  3134.         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
  3135.         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
  3136.         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
  3137.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  3138.  
  3139.         if (scaler_id >= 0) {
  3140.                 uint32_t ps_ctrl = 0;
  3141.  
  3142.                 WARN_ON(!dst_w || !dst_h);
  3143.                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
  3144.                         crtc_state->scaler_state.scalers[scaler_id].mode;
  3145.                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
  3146.                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
  3147.                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
  3148.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
  3149.                 I915_WRITE(PLANE_POS(pipe, 0), 0);
  3150.         } else {
  3151.                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
  3152.         }
  3153.  
  3154.         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
  3155.  
  3156.         POSTING_READ(PLANE_SURF(pipe, 0));
  3157. }
  3158.  
  3159. static void skylake_disable_primary_plane(struct drm_plane *primary,
  3160.                                           struct drm_crtc *crtc)
  3161. {
  3162.         struct drm_device *dev = crtc->dev;
  3163.         struct drm_i915_private *dev_priv = dev->dev_private;
  3164.         int pipe = to_intel_crtc(crtc)->pipe;
  3165.  
  3166.         I915_WRITE(PLANE_CTL(pipe, 0), 0);
  3167.         I915_WRITE(PLANE_SURF(pipe, 0), 0);
  3168.         POSTING_READ(PLANE_SURF(pipe, 0));
  3169. }
  3170.  
  3171. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  3172. static int
  3173. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  3174.                            int x, int y, enum mode_set_atomic state)
  3175. {
  3176.         /* Support for kgdboc is disabled, this needs a major rework. */
  3177.         DRM_ERROR("legacy panic handler not supported any more.\n");
  3178.  
  3179.         return -ENODEV;
  3180. }
  3181.  
  3182. static void intel_complete_page_flips(struct drm_device *dev)
  3183. {
  3184.         struct drm_crtc *crtc;
  3185.  
  3186.         for_each_crtc(dev, crtc) {
  3187.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3188.                 enum plane plane = intel_crtc->plane;
  3189.  
  3190.                 intel_prepare_page_flip(dev, plane);
  3191.                 intel_finish_page_flip_plane(dev, plane);
  3192.         }
  3193. }
  3194.  
  3195. static void intel_update_primary_planes(struct drm_device *dev)
  3196. {
  3197.         struct drm_crtc *crtc;
  3198.  
  3199.         for_each_crtc(dev, crtc) {
  3200.                 struct intel_plane *plane = to_intel_plane(crtc->primary);
  3201.                 struct intel_plane_state *plane_state;
  3202.  
  3203.                 drm_modeset_lock_crtc(crtc, &plane->base);
  3204.                 plane_state = to_intel_plane_state(plane->base.state);
  3205.  
  3206.                 if (plane_state->visible)
  3207.                         plane->update_plane(&plane->base,
  3208.                                             to_intel_crtc_state(crtc->state),
  3209.                                             plane_state);
  3210.  
  3211.                 drm_modeset_unlock_crtc(crtc);
  3212.         }
  3213. }
  3214.  
  3215. void intel_prepare_reset(struct drm_device *dev)
  3216. {
  3217.         /* no reset support for gen2 */
  3218.         if (IS_GEN2(dev))
  3219.                 return;
  3220.  
  3221.         /* reset doesn't touch the display */
  3222.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  3223.                 return;
  3224.  
  3225.         drm_modeset_lock_all(dev);
  3226.         /*
  3227.          * Disabling the crtcs gracefully seems nicer. Also the
  3228.          * g33 docs say we should at least disable all the planes.
  3229.          */
  3230.         intel_display_suspend(dev);
  3231. }
  3232.  
  3233. void intel_finish_reset(struct drm_device *dev)
  3234. {
  3235.         struct drm_i915_private *dev_priv = to_i915(dev);
  3236.  
  3237.         /*
  3238.          * Flips in the rings will be nuked by the reset,
  3239.          * so complete all pending flips so that user space
  3240.          * will get its events and not get stuck.
  3241.          */
  3242.         intel_complete_page_flips(dev);
  3243.  
  3244.         /* no reset support for gen2 */
  3245.         if (IS_GEN2(dev))
  3246.                 return;
  3247.  
  3248.         /* reset doesn't touch the display */
  3249.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
  3250.                 /*
  3251.                  * Flips in the rings have been nuked by the reset,
  3252.                  * so update the base address of all primary
  3253.                  * planes to the the last fb to make sure we're
  3254.                  * showing the correct fb after a reset.
  3255.                  *
  3256.                  * FIXME: Atomic will make this obsolete since we won't schedule
  3257.                  * CS-based flips (which might get lost in gpu resets) any more.
  3258.                  */
  3259.                 intel_update_primary_planes(dev);
  3260.                 return;
  3261.         }
  3262.  
  3263.         /*
  3264.          * The display has been reset as well,
  3265.          * so need a full re-initialization.
  3266.          */
  3267.         intel_runtime_pm_disable_interrupts(dev_priv);
  3268.         intel_runtime_pm_enable_interrupts(dev_priv);
  3269.  
  3270.         intel_modeset_init_hw(dev);
  3271.  
  3272.         spin_lock_irq(&dev_priv->irq_lock);
  3273.         if (dev_priv->display.hpd_irq_setup)
  3274.                 dev_priv->display.hpd_irq_setup(dev);
  3275.         spin_unlock_irq(&dev_priv->irq_lock);
  3276.  
  3277.         intel_display_resume(dev);
  3278.  
  3279.         intel_hpd_init(dev_priv);
  3280.  
  3281.         drm_modeset_unlock_all(dev);
  3282. }
  3283.  
  3284. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  3285. {
  3286.         struct drm_device *dev = crtc->dev;
  3287.         struct drm_i915_private *dev_priv = dev->dev_private;
  3288.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3289.         bool pending;
  3290.  
  3291.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  3292.             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  3293.                 return false;
  3294.  
  3295.         spin_lock_irq(&dev->event_lock);
  3296.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  3297.         spin_unlock_irq(&dev->event_lock);
  3298.  
  3299.         return pending;
  3300. }
  3301.  
  3302. static void intel_update_pipe_config(struct intel_crtc *crtc,
  3303.                                      struct intel_crtc_state *old_crtc_state)
  3304. {
  3305.         struct drm_device *dev = crtc->base.dev;
  3306.         struct drm_i915_private *dev_priv = dev->dev_private;
  3307.         struct intel_crtc_state *pipe_config =
  3308.                 to_intel_crtc_state(crtc->base.state);
  3309.  
  3310.         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
  3311.         crtc->base.mode = crtc->base.state->mode;
  3312.  
  3313.         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
  3314.                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
  3315.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  3316.  
  3317.         if (HAS_DDI(dev))
  3318.                 intel_set_pipe_csc(&crtc->base);
  3319.  
  3320.         /*
  3321.          * Update pipe size and adjust fitter if needed: the reason for this is
  3322.          * that in compute_mode_changes we check the native mode (not the pfit
  3323.          * mode) to see if we can flip rather than do a full mode set. In the
  3324.          * fastboot case, we'll flip, but if we don't update the pipesrc and
  3325.          * pfit state, we'll end up with a big fb scanned out into the wrong
  3326.          * sized surface.
  3327.          */
  3328.  
  3329.         I915_WRITE(PIPESRC(crtc->pipe),
  3330.                    ((pipe_config->pipe_src_w - 1) << 16) |
  3331.                    (pipe_config->pipe_src_h - 1));
  3332.  
  3333.         /* on skylake this is done by detaching scalers */
  3334.         if (INTEL_INFO(dev)->gen >= 9) {
  3335.                 skl_detach_scalers(crtc);
  3336.  
  3337.                 if (pipe_config->pch_pfit.enabled)
  3338.                         skylake_pfit_enable(crtc);
  3339.         } else if (HAS_PCH_SPLIT(dev)) {
  3340.                 if (pipe_config->pch_pfit.enabled)
  3341.                         ironlake_pfit_enable(crtc);
  3342.                 else if (old_crtc_state->pch_pfit.enabled)
  3343.                         ironlake_pfit_disable(crtc, true);
  3344.         }
  3345. }
  3346.  
  3347. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  3348. {
  3349.         struct drm_device *dev = crtc->dev;
  3350.         struct drm_i915_private *dev_priv = dev->dev_private;
  3351.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3352.         int pipe = intel_crtc->pipe;
  3353.         i915_reg_t reg;
  3354.         u32 temp;
  3355.  
  3356.         /* enable normal train */
  3357.         reg = FDI_TX_CTL(pipe);
  3358.         temp = I915_READ(reg);
  3359.         if (IS_IVYBRIDGE(dev)) {
  3360.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3361.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  3362.         } else {
  3363.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3364.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  3365.         }
  3366.         I915_WRITE(reg, temp);
  3367.  
  3368.         reg = FDI_RX_CTL(pipe);
  3369.         temp = I915_READ(reg);
  3370.         if (HAS_PCH_CPT(dev)) {
  3371.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3372.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  3373.         } else {
  3374.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3375.                 temp |= FDI_LINK_TRAIN_NONE;
  3376.         }
  3377.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  3378.  
  3379.         /* wait one idle pattern time */
  3380.         POSTING_READ(reg);
  3381.         udelay(1000);
  3382.  
  3383.         /* IVB wants error correction enabled */
  3384.         if (IS_IVYBRIDGE(dev))
  3385.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  3386.                            FDI_FE_ERRC_ENABLE);
  3387. }
  3388.  
  3389. /* The FDI link training functions for ILK/Ibexpeak. */
  3390. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  3391. {
  3392.         struct drm_device *dev = crtc->dev;
  3393.         struct drm_i915_private *dev_priv = dev->dev_private;
  3394.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3395.         int pipe = intel_crtc->pipe;
  3396.         i915_reg_t reg;
  3397.         u32 temp, tries;
  3398.  
  3399.         /* FDI needs bits from pipe first */
  3400.         assert_pipe_enabled(dev_priv, pipe);
  3401.  
  3402.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3403.            for train result */
  3404.         reg = FDI_RX_IMR(pipe);
  3405.         temp = I915_READ(reg);
  3406.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3407.         temp &= ~FDI_RX_BIT_LOCK;
  3408.         I915_WRITE(reg, temp);
  3409.         I915_READ(reg);
  3410.         udelay(150);
  3411.  
  3412.         /* enable CPU FDI TX and PCH FDI RX */
  3413.         reg = FDI_TX_CTL(pipe);
  3414.         temp = I915_READ(reg);
  3415.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3416.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3417.         temp &= ~FDI_LINK_TRAIN_NONE;
  3418.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3419.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3420.  
  3421.         reg = FDI_RX_CTL(pipe);
  3422.         temp = I915_READ(reg);
  3423.         temp &= ~FDI_LINK_TRAIN_NONE;
  3424.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3425.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3426.  
  3427.         POSTING_READ(reg);
  3428.         udelay(150);
  3429.  
  3430.         /* Ironlake workaround, enable clock pointer after FDI enable*/
  3431.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3432.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  3433.                    FDI_RX_PHASE_SYNC_POINTER_EN);
  3434.  
  3435.         reg = FDI_RX_IIR(pipe);
  3436.         for (tries = 0; tries < 5; tries++) {
  3437.                 temp = I915_READ(reg);
  3438.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3439.  
  3440.                 if ((temp & FDI_RX_BIT_LOCK)) {
  3441.                         DRM_DEBUG_KMS("FDI train 1 done.\n");
  3442.                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3443.                         break;
  3444.                 }
  3445.         }
  3446.         if (tries == 5)
  3447.                 DRM_ERROR("FDI train 1 fail!\n");
  3448.  
  3449.         /* Train 2 */
  3450.         reg = FDI_TX_CTL(pipe);
  3451.         temp = I915_READ(reg);
  3452.         temp &= ~FDI_LINK_TRAIN_NONE;
  3453.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3454.         I915_WRITE(reg, temp);
  3455.  
  3456.         reg = FDI_RX_CTL(pipe);
  3457.         temp = I915_READ(reg);
  3458.         temp &= ~FDI_LINK_TRAIN_NONE;
  3459.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3460.         I915_WRITE(reg, temp);
  3461.  
  3462.         POSTING_READ(reg);
  3463.         udelay(150);
  3464.  
  3465.         reg = FDI_RX_IIR(pipe);
  3466.         for (tries = 0; tries < 5; tries++) {
  3467.                 temp = I915_READ(reg);
  3468.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3469.  
  3470.                 if (temp & FDI_RX_SYMBOL_LOCK) {
  3471.                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3472.                         DRM_DEBUG_KMS("FDI train 2 done.\n");
  3473.                         break;
  3474.                 }
  3475.         }
  3476.         if (tries == 5)
  3477.                 DRM_ERROR("FDI train 2 fail!\n");
  3478.  
  3479.         DRM_DEBUG_KMS("FDI train done\n");
  3480.  
  3481. }
  3482.  
  3483. static const int snb_b_fdi_train_param[] = {
  3484.         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  3485.         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  3486.         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  3487.         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  3488. };
  3489.  
  3490. /* The FDI link training functions for SNB/Cougarpoint. */
  3491. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  3492. {
  3493.         struct drm_device *dev = crtc->dev;
  3494.         struct drm_i915_private *dev_priv = dev->dev_private;
  3495.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3496.         int pipe = intel_crtc->pipe;
  3497.         i915_reg_t reg;
  3498.         u32 temp, i, retry;
  3499.  
  3500.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3501.            for train result */
  3502.         reg = FDI_RX_IMR(pipe);
  3503.         temp = I915_READ(reg);
  3504.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3505.         temp &= ~FDI_RX_BIT_LOCK;
  3506.         I915_WRITE(reg, temp);
  3507.  
  3508.         POSTING_READ(reg);
  3509.         udelay(150);
  3510.  
  3511.         /* enable CPU FDI TX and PCH FDI RX */
  3512.         reg = FDI_TX_CTL(pipe);
  3513.         temp = I915_READ(reg);
  3514.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3515.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3516.         temp &= ~FDI_LINK_TRAIN_NONE;
  3517.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3518.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3519.         /* SNB-B */
  3520.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3521.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3522.  
  3523.         I915_WRITE(FDI_RX_MISC(pipe),
  3524.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3525.  
  3526.         reg = FDI_RX_CTL(pipe);
  3527.         temp = I915_READ(reg);
  3528.         if (HAS_PCH_CPT(dev)) {
  3529.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3530.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3531.         } else {
  3532.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3533.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3534.         }
  3535.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3536.  
  3537.         POSTING_READ(reg);
  3538.         udelay(150);
  3539.  
  3540.         for (i = 0; i < 4; i++) {
  3541.                 reg = FDI_TX_CTL(pipe);
  3542.                 temp = I915_READ(reg);
  3543.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3544.                 temp |= snb_b_fdi_train_param[i];
  3545.                 I915_WRITE(reg, temp);
  3546.  
  3547.                 POSTING_READ(reg);
  3548.                 udelay(500);
  3549.  
  3550.                 for (retry = 0; retry < 5; retry++) {
  3551.                         reg = FDI_RX_IIR(pipe);
  3552.                         temp = I915_READ(reg);
  3553.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3554.                         if (temp & FDI_RX_BIT_LOCK) {
  3555.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3556.                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
  3557.                                 break;
  3558.                         }
  3559.                         udelay(50);
  3560.                 }
  3561.                 if (retry < 5)
  3562.                         break;
  3563.         }
  3564.         if (i == 4)
  3565.                 DRM_ERROR("FDI train 1 fail!\n");
  3566.  
  3567.         /* Train 2 */
  3568.         reg = FDI_TX_CTL(pipe);
  3569.         temp = I915_READ(reg);
  3570.         temp &= ~FDI_LINK_TRAIN_NONE;
  3571.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3572.         if (IS_GEN6(dev)) {
  3573.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3574.                 /* SNB-B */
  3575.                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3576.         }
  3577.         I915_WRITE(reg, temp);
  3578.  
  3579.         reg = FDI_RX_CTL(pipe);
  3580.         temp = I915_READ(reg);
  3581.         if (HAS_PCH_CPT(dev)) {
  3582.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3583.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3584.         } else {
  3585.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3586.                 temp |= FDI_LINK_TRAIN_PATTERN_2;
  3587.         }
  3588.         I915_WRITE(reg, temp);
  3589.  
  3590.         POSTING_READ(reg);
  3591.         udelay(150);
  3592.  
  3593.         for (i = 0; i < 4; i++) {
  3594.                 reg = FDI_TX_CTL(pipe);
  3595.                 temp = I915_READ(reg);
  3596.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3597.                 temp |= snb_b_fdi_train_param[i];
  3598.                 I915_WRITE(reg, temp);
  3599.  
  3600.                 POSTING_READ(reg);
  3601.                 udelay(500);
  3602.  
  3603.                 for (retry = 0; retry < 5; retry++) {
  3604.                         reg = FDI_RX_IIR(pipe);
  3605.                         temp = I915_READ(reg);
  3606.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3607.                         if (temp & FDI_RX_SYMBOL_LOCK) {
  3608.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3609.                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
  3610.                                 break;
  3611.                         }
  3612.                         udelay(50);
  3613.                 }
  3614.                 if (retry < 5)
  3615.                         break;
  3616.         }
  3617.         if (i == 4)
  3618.                 DRM_ERROR("FDI train 2 fail!\n");
  3619.  
  3620.         DRM_DEBUG_KMS("FDI train done.\n");
  3621. }
  3622.  
  3623. /* Manual link training for Ivy Bridge A0 parts */
  3624. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  3625. {
  3626.         struct drm_device *dev = crtc->dev;
  3627.         struct drm_i915_private *dev_priv = dev->dev_private;
  3628.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3629.         int pipe = intel_crtc->pipe;
  3630.         i915_reg_t reg;
  3631.         u32 temp, i, j;
  3632.  
  3633.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3634.            for train result */
  3635.         reg = FDI_RX_IMR(pipe);
  3636.         temp = I915_READ(reg);
  3637.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3638.         temp &= ~FDI_RX_BIT_LOCK;
  3639.         I915_WRITE(reg, temp);
  3640.  
  3641.         POSTING_READ(reg);
  3642.         udelay(150);
  3643.  
  3644.         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  3645.                       I915_READ(FDI_RX_IIR(pipe)));
  3646.  
  3647.         /* Try each vswing and preemphasis setting twice before moving on */
  3648.         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  3649.                 /* disable first in case we need to retry */
  3650.                 reg = FDI_TX_CTL(pipe);
  3651.                 temp = I915_READ(reg);
  3652.                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  3653.                 temp &= ~FDI_TX_ENABLE;
  3654.                 I915_WRITE(reg, temp);
  3655.  
  3656.                 reg = FDI_RX_CTL(pipe);
  3657.                 temp = I915_READ(reg);
  3658.                 temp &= ~FDI_LINK_TRAIN_AUTO;
  3659.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3660.                 temp &= ~FDI_RX_ENABLE;
  3661.                 I915_WRITE(reg, temp);
  3662.  
  3663.                 /* enable CPU FDI TX and PCH FDI RX */
  3664.                 reg = FDI_TX_CTL(pipe);
  3665.                 temp = I915_READ(reg);
  3666.                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3667.                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3668.                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  3669.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3670.                 temp |= snb_b_fdi_train_param[j/2];
  3671.                 temp |= FDI_COMPOSITE_SYNC;
  3672.                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3673.  
  3674.                 I915_WRITE(FDI_RX_MISC(pipe),
  3675.                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3676.  
  3677.                 reg = FDI_RX_CTL(pipe);
  3678.                 temp = I915_READ(reg);
  3679.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3680.                 temp |= FDI_COMPOSITE_SYNC;
  3681.                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3682.  
  3683.                 POSTING_READ(reg);
  3684.                 udelay(1); /* should be 0.5us */
  3685.  
  3686.                 for (i = 0; i < 4; i++) {
  3687.                         reg = FDI_RX_IIR(pipe);
  3688.                         temp = I915_READ(reg);
  3689.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3690.  
  3691.                         if (temp & FDI_RX_BIT_LOCK ||
  3692.                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  3693.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3694.                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  3695.                                               i);
  3696.                                 break;
  3697.                         }
  3698.                         udelay(1); /* should be 0.5us */
  3699.                 }
  3700.                 if (i == 4) {
  3701.                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  3702.                         continue;
  3703.                 }
  3704.  
  3705.                 /* Train 2 */
  3706.                 reg = FDI_TX_CTL(pipe);
  3707.                 temp = I915_READ(reg);
  3708.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3709.                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  3710.                 I915_WRITE(reg, temp);
  3711.  
  3712.                 reg = FDI_RX_CTL(pipe);
  3713.                 temp = I915_READ(reg);
  3714.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3715.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3716.                 I915_WRITE(reg, temp);
  3717.  
  3718.                 POSTING_READ(reg);
  3719.                 udelay(2); /* should be 1.5us */
  3720.  
  3721.                 for (i = 0; i < 4; i++) {
  3722.                         reg = FDI_RX_IIR(pipe);
  3723.                         temp = I915_READ(reg);
  3724.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3725.  
  3726.                         if (temp & FDI_RX_SYMBOL_LOCK ||
  3727.                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  3728.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3729.                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  3730.                                               i);
  3731.                                 goto train_done;
  3732.                         }
  3733.                         udelay(2); /* should be 1.5us */
  3734.                 }
  3735.                 if (i == 4)
  3736.                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  3737.         }
  3738.  
  3739. train_done:
  3740.         DRM_DEBUG_KMS("FDI train done.\n");
  3741. }
  3742.  
  3743. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  3744. {
  3745.         struct drm_device *dev = intel_crtc->base.dev;
  3746.         struct drm_i915_private *dev_priv = dev->dev_private;
  3747.         int pipe = intel_crtc->pipe;
  3748.         i915_reg_t reg;
  3749.         u32 temp;
  3750.  
  3751.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  3752.         reg = FDI_RX_CTL(pipe);
  3753.         temp = I915_READ(reg);
  3754.         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  3755.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3756.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3757.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  3758.  
  3759.         POSTING_READ(reg);
  3760.         udelay(200);
  3761.  
  3762.         /* Switch from Rawclk to PCDclk */
  3763.         temp = I915_READ(reg);
  3764.         I915_WRITE(reg, temp | FDI_PCDCLK);
  3765.  
  3766.         POSTING_READ(reg);
  3767.         udelay(200);
  3768.  
  3769.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  3770.         reg = FDI_TX_CTL(pipe);
  3771.         temp = I915_READ(reg);
  3772.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  3773.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  3774.  
  3775.                 POSTING_READ(reg);
  3776.                 udelay(100);
  3777.         }
  3778. }
  3779.  
  3780. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  3781. {
  3782.         struct drm_device *dev = intel_crtc->base.dev;
  3783.         struct drm_i915_private *dev_priv = dev->dev_private;
  3784.         int pipe = intel_crtc->pipe;
  3785.         i915_reg_t reg;
  3786.         u32 temp;
  3787.  
  3788.         /* Switch from PCDclk to Rawclk */
  3789.         reg = FDI_RX_CTL(pipe);
  3790.         temp = I915_READ(reg);
  3791.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  3792.  
  3793.         /* Disable CPU FDI TX PLL */
  3794.         reg = FDI_TX_CTL(pipe);
  3795.         temp = I915_READ(reg);
  3796.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  3797.  
  3798.         POSTING_READ(reg);
  3799.         udelay(100);
  3800.  
  3801.         reg = FDI_RX_CTL(pipe);
  3802.         temp = I915_READ(reg);
  3803.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  3804.  
  3805.         /* Wait for the clocks to turn off. */
  3806.         POSTING_READ(reg);
  3807.         udelay(100);
  3808. }
  3809.  
  3810. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  3811. {
  3812.         struct drm_device *dev = crtc->dev;
  3813.         struct drm_i915_private *dev_priv = dev->dev_private;
  3814.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3815.         int pipe = intel_crtc->pipe;
  3816.         i915_reg_t reg;
  3817.         u32 temp;
  3818.  
  3819.         /* disable CPU FDI tx and PCH FDI rx */
  3820.         reg = FDI_TX_CTL(pipe);
  3821.         temp = I915_READ(reg);
  3822.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  3823.         POSTING_READ(reg);
  3824.  
  3825.         reg = FDI_RX_CTL(pipe);
  3826.         temp = I915_READ(reg);
  3827.         temp &= ~(0x7 << 16);
  3828.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3829.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  3830.  
  3831.         POSTING_READ(reg);
  3832.         udelay(100);
  3833.  
  3834.         /* Ironlake workaround, disable clock pointer after downing FDI */
  3835.         if (HAS_PCH_IBX(dev))
  3836.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3837.  
  3838.         /* still set train pattern 1 */
  3839.         reg = FDI_TX_CTL(pipe);
  3840.         temp = I915_READ(reg);
  3841.         temp &= ~FDI_LINK_TRAIN_NONE;
  3842.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3843.         I915_WRITE(reg, temp);
  3844.  
  3845.         reg = FDI_RX_CTL(pipe);
  3846.         temp = I915_READ(reg);
  3847.         if (HAS_PCH_CPT(dev)) {
  3848.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3849.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3850.         } else {
  3851.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3852.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3853.         }
  3854.         /* BPC in FDI rx is consistent with that in PIPECONF */
  3855.         temp &= ~(0x07 << 16);
  3856.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3857.         I915_WRITE(reg, temp);
  3858.  
  3859.         POSTING_READ(reg);
  3860.         udelay(100);
  3861. }
  3862.  
  3863. bool intel_has_pending_fb_unpin(struct drm_device *dev)
  3864. {
  3865.         struct intel_crtc *crtc;
  3866.  
  3867.         /* Note that we don't need to be called with mode_config.lock here
  3868.          * as our list of CRTC objects is static for the lifetime of the
  3869.          * device and so cannot disappear as we iterate. Similarly, we can
  3870.          * happily treat the predicates as racy, atomic checks as userspace
  3871.          * cannot claim and pin a new fb without at least acquring the
  3872.          * struct_mutex and so serialising with us.
  3873.          */
  3874.         for_each_intel_crtc(dev, crtc) {
  3875.                 if (atomic_read(&crtc->unpin_work_count) == 0)
  3876.                         continue;
  3877.  
  3878.                 if (crtc->unpin_work)
  3879.                         intel_wait_for_vblank(dev, crtc->pipe);
  3880.  
  3881.                 return true;
  3882.         }
  3883.  
  3884.         return false;
  3885. }
  3886.  
  3887. static void page_flip_completed(struct intel_crtc *intel_crtc)
  3888. {
  3889.         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
  3890.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  3891.  
  3892.         /* ensure that the unpin work is consistent wrt ->pending. */
  3893.         smp_rmb();
  3894.         intel_crtc->unpin_work = NULL;
  3895.  
  3896.         if (work->event)
  3897.                 drm_send_vblank_event(intel_crtc->base.dev,
  3898.                                       intel_crtc->pipe,
  3899.                                       work->event);
  3900.  
  3901.         drm_crtc_vblank_put(&intel_crtc->base);
  3902.  
  3903.         wake_up_all(&dev_priv->pending_flip_queue);
  3904.         queue_work(dev_priv->wq, &work->work);
  3905.  
  3906.         trace_i915_flip_complete(intel_crtc->plane,
  3907.                                  work->pending_flip_obj);
  3908. }
  3909.  
  3910. static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  3911. {
  3912.         struct drm_device *dev = crtc->dev;
  3913.         struct drm_i915_private *dev_priv = dev->dev_private;
  3914.         long ret;
  3915.  
  3916.         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  3917.  
  3918.         ret = wait_event_interruptible_timeout(
  3919.                                         dev_priv->pending_flip_queue,
  3920.                                         !intel_crtc_has_pending_flip(crtc),
  3921.                                         60*HZ);
  3922.  
  3923.         if (ret < 0)
  3924.                 return ret;
  3925.  
  3926.         if (ret == 0) {
  3927.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3928.  
  3929.                 spin_lock_irq(&dev->event_lock);
  3930.                 if (intel_crtc->unpin_work) {
  3931.                         WARN_ONCE(1, "Removing stuck page flip\n");
  3932.                         page_flip_completed(intel_crtc);
  3933.                 }
  3934.                 spin_unlock_irq(&dev->event_lock);
  3935.         }
  3936.  
  3937.         return 0;
  3938. }
  3939.  
  3940. static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
  3941. {
  3942.         u32 temp;
  3943.  
  3944.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  3945.  
  3946.         mutex_lock(&dev_priv->sb_lock);
  3947.  
  3948.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  3949.         temp |= SBI_SSCCTL_DISABLE;
  3950.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  3951.  
  3952.         mutex_unlock(&dev_priv->sb_lock);
  3953. }
  3954.  
  3955. /* Program iCLKIP clock to the desired frequency */
  3956. static void lpt_program_iclkip(struct drm_crtc *crtc)
  3957. {
  3958.         struct drm_device *dev = crtc->dev;
  3959.         struct drm_i915_private *dev_priv = dev->dev_private;
  3960.         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
  3961.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  3962.         u32 temp;
  3963.  
  3964.         lpt_disable_iclkip(dev_priv);
  3965.  
  3966.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  3967.         if (clock == 20000) {
  3968.                 auxdiv = 1;
  3969.                 divsel = 0x41;
  3970.                 phaseinc = 0x20;
  3971.         } else {
  3972.                 /* The iCLK virtual clock root frequency is in MHz,
  3973.                  * but the adjusted_mode->crtc_clock in in KHz. To get the
  3974.                  * divisors, it is necessary to divide one by another, so we
  3975.                  * convert the virtual clock precision to KHz here for higher
  3976.                  * precision.
  3977.                  */
  3978.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  3979.                 u32 iclk_pi_range = 64;
  3980.                 u32 desired_divisor, msb_divisor_value, pi_value;
  3981.  
  3982.                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
  3983.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  3984.                 pi_value = desired_divisor % iclk_pi_range;
  3985.  
  3986.                 auxdiv = 0;
  3987.                 divsel = msb_divisor_value - 2;
  3988.                 phaseinc = pi_value;
  3989.         }
  3990.  
  3991.         /* This should not happen with any sane values */
  3992.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  3993.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  3994.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  3995.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  3996.  
  3997.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  3998.                         clock,
  3999.                         auxdiv,
  4000.                         divsel,
  4001.                         phasedir,
  4002.                         phaseinc);
  4003.  
  4004.         mutex_lock(&dev_priv->sb_lock);
  4005.  
  4006.         /* Program SSCDIVINTPHASE6 */
  4007.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  4008.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  4009.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  4010.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  4011.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  4012.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  4013.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  4014.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  4015.  
  4016.         /* Program SSCAUXDIV */
  4017.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  4018.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  4019.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  4020.         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  4021.  
  4022.         /* Enable modulator and associated divider */
  4023.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  4024.         temp &= ~SBI_SSCCTL_DISABLE;
  4025.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  4026.  
  4027.         mutex_unlock(&dev_priv->sb_lock);
  4028.  
  4029.         /* Wait for initialization time */
  4030.         udelay(24);
  4031.  
  4032.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  4033. }
  4034.  
  4035. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  4036.                                                 enum pipe pch_transcoder)
  4037. {
  4038.         struct drm_device *dev = crtc->base.dev;
  4039.         struct drm_i915_private *dev_priv = dev->dev_private;
  4040.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  4041.  
  4042.         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  4043.                    I915_READ(HTOTAL(cpu_transcoder)));
  4044.         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  4045.                    I915_READ(HBLANK(cpu_transcoder)));
  4046.         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  4047.                    I915_READ(HSYNC(cpu_transcoder)));
  4048.  
  4049.         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  4050.                    I915_READ(VTOTAL(cpu_transcoder)));
  4051.         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  4052.                    I915_READ(VBLANK(cpu_transcoder)));
  4053.         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  4054.                    I915_READ(VSYNC(cpu_transcoder)));
  4055.         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  4056.                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
  4057. }
  4058.  
  4059. static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
  4060. {
  4061.         struct drm_i915_private *dev_priv = dev->dev_private;
  4062.         uint32_t temp;
  4063.  
  4064.         temp = I915_READ(SOUTH_CHICKEN1);
  4065.         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
  4066.                 return;
  4067.  
  4068.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4069.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4070.  
  4071.         temp &= ~FDI_BC_BIFURCATION_SELECT;
  4072.         if (enable)
  4073.                 temp |= FDI_BC_BIFURCATION_SELECT;
  4074.  
  4075.         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
  4076.         I915_WRITE(SOUTH_CHICKEN1, temp);
  4077.         POSTING_READ(SOUTH_CHICKEN1);
  4078. }
  4079.  
  4080. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4081. {
  4082.         struct drm_device *dev = intel_crtc->base.dev;
  4083.  
  4084.         switch (intel_crtc->pipe) {
  4085.         case PIPE_A:
  4086.                 break;
  4087.         case PIPE_B:
  4088.                 if (intel_crtc->config->fdi_lanes > 2)
  4089.                         cpt_set_fdi_bc_bifurcation(dev, false);
  4090.                 else
  4091.                         cpt_set_fdi_bc_bifurcation(dev, true);
  4092.  
  4093.                 break;
  4094.         case PIPE_C:
  4095.                 cpt_set_fdi_bc_bifurcation(dev, true);
  4096.  
  4097.                 break;
  4098.         default:
  4099.                 BUG();
  4100.         }
  4101. }
  4102.  
  4103. /* Return which DP Port should be selected for Transcoder DP control */
  4104. static enum port
  4105. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  4106. {
  4107.         struct drm_device *dev = crtc->dev;
  4108.         struct intel_encoder *encoder;
  4109.  
  4110.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4111.                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  4112.                     encoder->type == INTEL_OUTPUT_EDP)
  4113.                         return enc_to_dig_port(&encoder->base)->port;
  4114.         }
  4115.  
  4116.         return -1;
  4117. }
  4118.  
  4119. /*
  4120.  * Enable PCH resources required for PCH ports:
  4121.  *   - PCH PLLs
  4122.  *   - FDI training & RX/TX
  4123.  *   - update transcoder timings
  4124.  *   - DP transcoding bits
  4125.  *   - transcoder
  4126.  */
  4127. static void ironlake_pch_enable(struct drm_crtc *crtc)
  4128. {
  4129.         struct drm_device *dev = crtc->dev;
  4130.         struct drm_i915_private *dev_priv = dev->dev_private;
  4131.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4132.         int pipe = intel_crtc->pipe;
  4133.         u32 temp;
  4134.  
  4135.         assert_pch_transcoder_disabled(dev_priv, pipe);
  4136.  
  4137.         if (IS_IVYBRIDGE(dev))
  4138.                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4139.  
  4140.         /* Write the TU size bits before fdi link training, so that error
  4141.          * detection works. */
  4142.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  4143.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  4144.  
  4145.         /*
  4146.          * Sometimes spurious CPU pipe underruns happen during FDI
  4147.          * training, at least with VGA+HDMI cloning. Suppress them.
  4148.          */
  4149.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4150.  
  4151.         /* For PCH output, training FDI link */
  4152.         dev_priv->display.fdi_link_train(crtc);
  4153.  
  4154.         /* We need to program the right clock selection before writing the pixel
  4155.          * mutliplier into the DPLL. */
  4156.         if (HAS_PCH_CPT(dev)) {
  4157.                 u32 sel;
  4158.  
  4159.                 temp = I915_READ(PCH_DPLL_SEL);
  4160.                 temp |= TRANS_DPLL_ENABLE(pipe);
  4161.                 sel = TRANS_DPLLB_SEL(pipe);
  4162.                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
  4163.                         temp |= sel;
  4164.                 else
  4165.                         temp &= ~sel;
  4166.                 I915_WRITE(PCH_DPLL_SEL, temp);
  4167.         }
  4168.  
  4169.         /* XXX: pch pll's can be enabled any time before we enable the PCH
  4170.          * transcoder, and we actually should do this to not upset any PCH
  4171.          * transcoder that already use the clock when we share it.
  4172.          *
  4173.          * Note that enable_shared_dpll tries to do the right thing, but
  4174.          * get_shared_dpll unconditionally resets the pll - we need that to have
  4175.          * the right LVDS enable sequence. */
  4176.         intel_enable_shared_dpll(intel_crtc);
  4177.  
  4178.         /* set transcoder timing, panel must allow it */
  4179.         assert_panel_unlocked(dev_priv, pipe);
  4180.         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  4181.  
  4182.         intel_fdi_normal_train(crtc);
  4183.  
  4184.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4185.  
  4186.         /* For PCH DP, enable TRANS_DP_CTL */
  4187.         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
  4188.                 const struct drm_display_mode *adjusted_mode =
  4189.                         &intel_crtc->config->base.adjusted_mode;
  4190.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  4191.                 i915_reg_t reg = TRANS_DP_CTL(pipe);
  4192.                 temp = I915_READ(reg);
  4193.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  4194.                           TRANS_DP_SYNC_MASK |
  4195.                           TRANS_DP_BPC_MASK);
  4196.                 temp |= TRANS_DP_OUTPUT_ENABLE;
  4197.                 temp |= bpc << 9; /* same format but at 11:9 */
  4198.  
  4199.                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  4200.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  4201.                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  4202.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  4203.  
  4204.                 switch (intel_trans_dp_port_sel(crtc)) {
  4205.                 case PORT_B:
  4206.                         temp |= TRANS_DP_PORT_SEL_B;
  4207.                         break;
  4208.                 case PORT_C:
  4209.                         temp |= TRANS_DP_PORT_SEL_C;
  4210.                         break;
  4211.                 case PORT_D:
  4212.                         temp |= TRANS_DP_PORT_SEL_D;
  4213.                         break;
  4214.                 default:
  4215.                         BUG();
  4216.                 }
  4217.  
  4218.                 I915_WRITE(reg, temp);
  4219.         }
  4220.  
  4221.         ironlake_enable_pch_transcoder(dev_priv, pipe);
  4222. }
  4223.  
  4224. static void lpt_pch_enable(struct drm_crtc *crtc)
  4225. {
  4226.         struct drm_device *dev = crtc->dev;
  4227.         struct drm_i915_private *dev_priv = dev->dev_private;
  4228.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4229.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  4230.  
  4231.         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  4232.  
  4233.         lpt_program_iclkip(crtc);
  4234.  
  4235.         /* Set transcoder timing. */
  4236.         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  4237.  
  4238.         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  4239. }
  4240.  
  4241. struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
  4242.                                                 struct intel_crtc_state *crtc_state)
  4243. {
  4244.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  4245.         struct intel_shared_dpll *pll;
  4246.         struct intel_shared_dpll_config *shared_dpll;
  4247.         enum intel_dpll_id i;
  4248.         int max = dev_priv->num_shared_dpll;
  4249.  
  4250.         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  4251.  
  4252.         if (HAS_PCH_IBX(dev_priv->dev)) {
  4253.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  4254.                 i = (enum intel_dpll_id) crtc->pipe;
  4255.                 pll = &dev_priv->shared_dplls[i];
  4256.  
  4257.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4258.                               crtc->base.base.id, pll->name);
  4259.  
  4260.                 WARN_ON(shared_dpll[i].crtc_mask);
  4261.  
  4262.                 goto found;
  4263.         }
  4264.  
  4265.         if (IS_BROXTON(dev_priv->dev)) {
  4266.                 /* PLL is attached to port in bxt */
  4267.                 struct intel_encoder *encoder;
  4268.                 struct intel_digital_port *intel_dig_port;
  4269.  
  4270.                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
  4271.                 if (WARN_ON(!encoder))
  4272.                         return NULL;
  4273.  
  4274.                 intel_dig_port = enc_to_dig_port(&encoder->base);
  4275.                 /* 1:1 mapping between ports and PLLs */
  4276.                 i = (enum intel_dpll_id)intel_dig_port->port;
  4277.                 pll = &dev_priv->shared_dplls[i];
  4278.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4279.                         crtc->base.base.id, pll->name);
  4280.                 WARN_ON(shared_dpll[i].crtc_mask);
  4281.  
  4282.                 goto found;
  4283.         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
  4284.                 /* Do not consider SPLL */
  4285.                 max = 2;
  4286.  
  4287.         for (i = 0; i < max; i++) {
  4288.                 pll = &dev_priv->shared_dplls[i];
  4289.  
  4290.                 /* Only want to check enabled timings first */
  4291.                 if (shared_dpll[i].crtc_mask == 0)
  4292.                         continue;
  4293.  
  4294.                 if (memcmp(&crtc_state->dpll_hw_state,
  4295.                            &shared_dpll[i].hw_state,
  4296.                            sizeof(crtc_state->dpll_hw_state)) == 0) {
  4297.                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
  4298.                                       crtc->base.base.id, pll->name,
  4299.                                       shared_dpll[i].crtc_mask,
  4300.                                       pll->active);
  4301.                         goto found;
  4302.                 }
  4303.         }
  4304.  
  4305.         /* Ok no matching timings, maybe there's a free one? */
  4306.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4307.                 pll = &dev_priv->shared_dplls[i];
  4308.                 if (shared_dpll[i].crtc_mask == 0) {
  4309.                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  4310.                                       crtc->base.base.id, pll->name);
  4311.                         goto found;
  4312.                 }
  4313.         }
  4314.  
  4315.         return NULL;
  4316.  
  4317. found:
  4318.         if (shared_dpll[i].crtc_mask == 0)
  4319.                 shared_dpll[i].hw_state =
  4320.                         crtc_state->dpll_hw_state;
  4321.  
  4322.         crtc_state->shared_dpll = i;
  4323.         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  4324.                          pipe_name(crtc->pipe));
  4325.  
  4326.         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
  4327.  
  4328.         return pll;
  4329. }
  4330.  
  4331. static void intel_shared_dpll_commit(struct drm_atomic_state *state)
  4332. {
  4333.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  4334.         struct intel_shared_dpll_config *shared_dpll;
  4335.         struct intel_shared_dpll *pll;
  4336.         enum intel_dpll_id i;
  4337.  
  4338.         if (!to_intel_atomic_state(state)->dpll_set)
  4339.                 return;
  4340.  
  4341.         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  4342.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4343.                 pll = &dev_priv->shared_dplls[i];
  4344.                 pll->config = shared_dpll[i];
  4345.         }
  4346. }
  4347.  
  4348. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  4349. {
  4350.         struct drm_i915_private *dev_priv = dev->dev_private;
  4351.         i915_reg_t dslreg = PIPEDSL(pipe);
  4352.         u32 temp;
  4353.  
  4354.         temp = I915_READ(dslreg);
  4355.         udelay(500);
  4356.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  4357.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  4358.                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  4359.         }
  4360. }
  4361.  
  4362. static int
  4363. skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
  4364.                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
  4365.                   int src_w, int src_h, int dst_w, int dst_h)
  4366. {
  4367.         struct intel_crtc_scaler_state *scaler_state =
  4368.                 &crtc_state->scaler_state;
  4369.         struct intel_crtc *intel_crtc =
  4370.                 to_intel_crtc(crtc_state->base.crtc);
  4371.         int need_scaling;
  4372.  
  4373.         need_scaling = intel_rotation_90_or_270(rotation) ?
  4374.                 (src_h != dst_w || src_w != dst_h):
  4375.                 (src_w != dst_w || src_h != dst_h);
  4376.  
  4377.         /*
  4378.          * if plane is being disabled or scaler is no more required or force detach
  4379.          *  - free scaler binded to this plane/crtc
  4380.          *  - in order to do this, update crtc->scaler_usage
  4381.          *
  4382.          * Here scaler state in crtc_state is set free so that
  4383.          * scaler can be assigned to other user. Actual register
  4384.          * update to free the scaler is done in plane/panel-fit programming.
  4385.          * For this purpose crtc/plane_state->scaler_id isn't reset here.
  4386.          */
  4387.         if (force_detach || !need_scaling) {
  4388.                 if (*scaler_id >= 0) {
  4389.                         scaler_state->scaler_users &= ~(1 << scaler_user);
  4390.                         scaler_state->scalers[*scaler_id].in_use = 0;
  4391.  
  4392.                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4393.                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
  4394.                                 intel_crtc->pipe, scaler_user, *scaler_id,
  4395.                                 scaler_state->scaler_users);
  4396.                         *scaler_id = -1;
  4397.                 }
  4398.                 return 0;
  4399.         }
  4400.  
  4401.         /* range checks */
  4402.         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
  4403.                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
  4404.  
  4405.                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
  4406.                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
  4407.                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
  4408.                         "size is out of scaler range\n",
  4409.                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
  4410.                 return -EINVAL;
  4411.         }
  4412.  
  4413.         /* mark this plane as a scaler user in crtc_state */
  4414.         scaler_state->scaler_users |= (1 << scaler_user);
  4415.         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4416.                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
  4417.                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
  4418.                 scaler_state->scaler_users);
  4419.  
  4420.         return 0;
  4421. }
  4422.  
  4423. /**
  4424.  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
  4425.  *
  4426.  * @state: crtc's scaler state
  4427.  *
  4428.  * Return
  4429.  *     0 - scaler_usage updated successfully
  4430.  *    error - requested scaling cannot be supported or other error condition
  4431.  */
  4432. int skl_update_scaler_crtc(struct intel_crtc_state *state)
  4433. {
  4434.         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
  4435.         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
  4436.  
  4437.         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
  4438.                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
  4439.  
  4440.         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
  4441.                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
  4442.                 state->pipe_src_w, state->pipe_src_h,
  4443.                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
  4444. }
  4445.  
  4446. /**
  4447.  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
  4448.  *
  4449.  * @state: crtc's scaler state
  4450.  * @plane_state: atomic plane state to update
  4451.  *
  4452.  * Return
  4453.  *     0 - scaler_usage updated successfully
  4454.  *    error - requested scaling cannot be supported or other error condition
  4455.  */
  4456. static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
  4457.                                    struct intel_plane_state *plane_state)
  4458. {
  4459.  
  4460.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  4461.         struct intel_plane *intel_plane =
  4462.                 to_intel_plane(plane_state->base.plane);
  4463.         struct drm_framebuffer *fb = plane_state->base.fb;
  4464.         int ret;
  4465.  
  4466.         bool force_detach = !fb || !plane_state->visible;
  4467.  
  4468.         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
  4469.                       intel_plane->base.base.id, intel_crtc->pipe,
  4470.                       drm_plane_index(&intel_plane->base));
  4471.  
  4472.         ret = skl_update_scaler(crtc_state, force_detach,
  4473.                                 drm_plane_index(&intel_plane->base),
  4474.                                 &plane_state->scaler_id,
  4475.                                 plane_state->base.rotation,
  4476.                                 drm_rect_width(&plane_state->src) >> 16,
  4477.                                 drm_rect_height(&plane_state->src) >> 16,
  4478.                                 drm_rect_width(&plane_state->dst),
  4479.                                 drm_rect_height(&plane_state->dst));
  4480.  
  4481.         if (ret || plane_state->scaler_id < 0)
  4482.                 return ret;
  4483.  
  4484.         /* check colorkey */
  4485.         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
  4486.                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
  4487.                               intel_plane->base.base.id);
  4488.                 return -EINVAL;
  4489.         }
  4490.  
  4491.         /* Check src format */
  4492.         switch (fb->pixel_format) {
  4493.         case DRM_FORMAT_RGB565:
  4494.         case DRM_FORMAT_XBGR8888:
  4495.         case DRM_FORMAT_XRGB8888:
  4496.         case DRM_FORMAT_ABGR8888:
  4497.         case DRM_FORMAT_ARGB8888:
  4498.         case DRM_FORMAT_XRGB2101010:
  4499.         case DRM_FORMAT_XBGR2101010:
  4500.         case DRM_FORMAT_YUYV:
  4501.         case DRM_FORMAT_YVYU:
  4502.         case DRM_FORMAT_UYVY:
  4503.         case DRM_FORMAT_VYUY:
  4504.                 break;
  4505.         default:
  4506.                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
  4507.                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
  4508.                 return -EINVAL;
  4509.         }
  4510.  
  4511.         return 0;
  4512. }
  4513.  
  4514. static void skylake_scaler_disable(struct intel_crtc *crtc)
  4515. {
  4516.         int i;
  4517.  
  4518.         for (i = 0; i < crtc->num_scalers; i++)
  4519.                 skl_detach_scaler(crtc, i);
  4520. }
  4521.  
  4522. static void skylake_pfit_enable(struct intel_crtc *crtc)
  4523. {
  4524.         struct drm_device *dev = crtc->base.dev;
  4525.         struct drm_i915_private *dev_priv = dev->dev_private;
  4526.         int pipe = crtc->pipe;
  4527.         struct intel_crtc_scaler_state *scaler_state =
  4528.                 &crtc->config->scaler_state;
  4529.  
  4530.         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
  4531.  
  4532.         if (crtc->config->pch_pfit.enabled) {
  4533.                 int id;
  4534.  
  4535.                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
  4536.                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
  4537.                         return;
  4538.                 }
  4539.  
  4540.                 id = scaler_state->scaler_id;
  4541.                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
  4542.                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
  4543.                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
  4544.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
  4545.  
  4546.                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
  4547.         }
  4548. }
  4549.  
  4550. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  4551. {
  4552.         struct drm_device *dev = crtc->base.dev;
  4553.         struct drm_i915_private *dev_priv = dev->dev_private;
  4554.         int pipe = crtc->pipe;
  4555.  
  4556.         if (crtc->config->pch_pfit.enabled) {
  4557.                 /* Force use of hard-coded filter coefficients
  4558.                  * as some pre-programmed values are broken,
  4559.                  * e.g. x201.
  4560.                  */
  4561.                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4562.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  4563.                                                  PF_PIPE_SEL_IVB(pipe));
  4564.                 else
  4565.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  4566.                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
  4567.                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
  4568.         }
  4569. }
  4570.  
  4571. void hsw_enable_ips(struct intel_crtc *crtc)
  4572. {
  4573.         struct drm_device *dev = crtc->base.dev;
  4574.         struct drm_i915_private *dev_priv = dev->dev_private;
  4575.  
  4576.         if (!crtc->config->ips_enabled)
  4577.                 return;
  4578.  
  4579.         /* We can only enable IPS after we enable a plane and wait for a vblank */
  4580.         intel_wait_for_vblank(dev, crtc->pipe);
  4581.  
  4582.         assert_plane_enabled(dev_priv, crtc->plane);
  4583.         if (IS_BROADWELL(dev)) {
  4584.                 mutex_lock(&dev_priv->rps.hw_lock);
  4585.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
  4586.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4587.                 /* Quoting Art Runyan: "its not safe to expect any particular
  4588.                  * value in IPS_CTL bit 31 after enabling IPS through the
  4589.                  * mailbox." Moreover, the mailbox may return a bogus state,
  4590.                  * so we need to just enable it and continue on.
  4591.                  */
  4592.         } else {
  4593.                 I915_WRITE(IPS_CTL, IPS_ENABLE);
  4594.                 /* The bit only becomes 1 in the next vblank, so this wait here
  4595.                  * is essentially intel_wait_for_vblank. If we don't have this
  4596.                  * and don't wait for vblanks until the end of crtc_enable, then
  4597.                  * the HW state readout code will complain that the expected
  4598.                  * IPS_CTL value is not the one we read. */
  4599.                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  4600.                         DRM_ERROR("Timed out waiting for IPS enable\n");
  4601.         }
  4602. }
  4603.  
  4604. void hsw_disable_ips(struct intel_crtc *crtc)
  4605. {
  4606.         struct drm_device *dev = crtc->base.dev;
  4607.         struct drm_i915_private *dev_priv = dev->dev_private;
  4608.  
  4609.         if (!crtc->config->ips_enabled)
  4610.                 return;
  4611.  
  4612.         assert_plane_enabled(dev_priv, crtc->plane);
  4613.         if (IS_BROADWELL(dev)) {
  4614.                 mutex_lock(&dev_priv->rps.hw_lock);
  4615.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
  4616.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4617.                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
  4618.                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
  4619.                         DRM_ERROR("Timed out waiting for IPS disable\n");
  4620.         } else {
  4621.                 I915_WRITE(IPS_CTL, 0);
  4622.                 POSTING_READ(IPS_CTL);
  4623.         }
  4624.  
  4625.         /* We need to wait for a vblank before we can disable the plane. */
  4626.         intel_wait_for_vblank(dev, crtc->pipe);
  4627. }
  4628.  
  4629. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4630. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  4631. {
  4632.         struct drm_device *dev = crtc->dev;
  4633.         struct drm_i915_private *dev_priv = dev->dev_private;
  4634.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4635.         enum pipe pipe = intel_crtc->pipe;
  4636.         int i;
  4637.         bool reenable_ips = false;
  4638.  
  4639.         /* The clocks have to be on to load the palette. */
  4640.         if (!crtc->state->active)
  4641.                 return;
  4642.  
  4643.         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
  4644.                 if (intel_crtc->config->has_dsi_encoder)
  4645.                         assert_dsi_pll_enabled(dev_priv);
  4646.                 else
  4647.                         assert_pll_enabled(dev_priv, pipe);
  4648.         }
  4649.  
  4650.         /* Workaround : Do not read or write the pipe palette/gamma data while
  4651.          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  4652.          */
  4653.         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
  4654.             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  4655.              GAMMA_MODE_MODE_SPLIT)) {
  4656.                 hsw_disable_ips(intel_crtc);
  4657.                 reenable_ips = true;
  4658.         }
  4659.  
  4660.         for (i = 0; i < 256; i++) {
  4661.                 i915_reg_t palreg;
  4662.  
  4663.                 if (HAS_GMCH_DISPLAY(dev))
  4664.                         palreg = PALETTE(pipe, i);
  4665.                 else
  4666.                         palreg = LGC_PALETTE(pipe, i);
  4667.  
  4668.                 I915_WRITE(palreg,
  4669.                            (intel_crtc->lut_r[i] << 16) |
  4670.                            (intel_crtc->lut_g[i] << 8) |
  4671.                            intel_crtc->lut_b[i]);
  4672.         }
  4673.  
  4674.         if (reenable_ips)
  4675.                 hsw_enable_ips(intel_crtc);
  4676. }
  4677.  
  4678. static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
  4679. {
  4680.         if (intel_crtc->overlay) {
  4681.                 struct drm_device *dev = intel_crtc->base.dev;
  4682.                 struct drm_i915_private *dev_priv = dev->dev_private;
  4683.  
  4684.                 mutex_lock(&dev->struct_mutex);
  4685.                 dev_priv->mm.interruptible = false;
  4686. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  4687.                 dev_priv->mm.interruptible = true;
  4688.                 mutex_unlock(&dev->struct_mutex);
  4689.         }
  4690.  
  4691.         /* Let userspace switch the overlay on again. In most cases userspace
  4692.          * has to recompute where to put it anyway.
  4693.          */
  4694. }
  4695.  
  4696. /**
  4697.  * intel_post_enable_primary - Perform operations after enabling primary plane
  4698.  * @crtc: the CRTC whose primary plane was just enabled
  4699.  *
  4700.  * Performs potentially sleeping operations that must be done after the primary
  4701.  * plane is enabled, such as updating FBC and IPS.  Note that this may be
  4702.  * called due to an explicit primary plane update, or due to an implicit
  4703.  * re-enable that is caused when a sprite plane is updated to no longer
  4704.  * completely hide the primary plane.
  4705.  */
  4706. static void
  4707. intel_post_enable_primary(struct drm_crtc *crtc)
  4708. {
  4709.         struct drm_device *dev = crtc->dev;
  4710.         struct drm_i915_private *dev_priv = dev->dev_private;
  4711.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4712.         int pipe = intel_crtc->pipe;
  4713.  
  4714.         /*
  4715.          * FIXME IPS should be fine as long as one plane is
  4716.          * enabled, but in practice it seems to have problems
  4717.          * when going from primary only to sprite only and vice
  4718.          * versa.
  4719.          */
  4720.         hsw_enable_ips(intel_crtc);
  4721.  
  4722.         /*
  4723.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4724.          * So don't enable underrun reporting before at least some planes
  4725.          * are enabled.
  4726.          * FIXME: Need to fix the logic to work when we turn off all planes
  4727.          * but leave the pipe running.
  4728.          */
  4729.         if (IS_GEN2(dev))
  4730.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4731.  
  4732.         /* Underruns don't always raise interrupts, so check manually. */
  4733.         intel_check_cpu_fifo_underruns(dev_priv);
  4734.         intel_check_pch_fifo_underruns(dev_priv);
  4735. }
  4736.  
  4737. /**
  4738.  * intel_pre_disable_primary - Perform operations before disabling primary plane
  4739.  * @crtc: the CRTC whose primary plane is to be disabled
  4740.  *
  4741.  * Performs potentially sleeping operations that must be done before the
  4742.  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
  4743.  * be called due to an explicit primary plane update, or due to an implicit
  4744.  * disable that is caused when a sprite plane completely hides the primary
  4745.  * plane.
  4746.  */
  4747. static void
  4748. intel_pre_disable_primary(struct drm_crtc *crtc)
  4749. {
  4750.         struct drm_device *dev = crtc->dev;
  4751.         struct drm_i915_private *dev_priv = dev->dev_private;
  4752.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4753.         int pipe = intel_crtc->pipe;
  4754.  
  4755.         /*
  4756.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4757.          * So diasble underrun reporting before all the planes get disabled.
  4758.          * FIXME: Need to fix the logic to work when we turn off all planes
  4759.          * but leave the pipe running.
  4760.          */
  4761.         if (IS_GEN2(dev))
  4762.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4763.  
  4764.         /*
  4765.          * Vblank time updates from the shadow to live plane control register
  4766.          * are blocked if the memory self-refresh mode is active at that
  4767.          * moment. So to make sure the plane gets truly disabled, disable
  4768.          * first the self-refresh mode. The self-refresh enable bit in turn
  4769.          * will be checked/applied by the HW only at the next frame start
  4770.          * event which is after the vblank start event, so we need to have a
  4771.          * wait-for-vblank between disabling the plane and the pipe.
  4772.          */
  4773.         if (HAS_GMCH_DISPLAY(dev)) {
  4774.                 intel_set_memory_cxsr(dev_priv, false);
  4775.                 dev_priv->wm.vlv.cxsr = false;
  4776.                 intel_wait_for_vblank(dev, pipe);
  4777.         }
  4778.  
  4779.         /*
  4780.          * FIXME IPS should be fine as long as one plane is
  4781.          * enabled, but in practice it seems to have problems
  4782.          * when going from primary only to sprite only and vice
  4783.          * versa.
  4784.          */
  4785.         hsw_disable_ips(intel_crtc);
  4786. }
  4787.  
  4788. static void intel_post_plane_update(struct intel_crtc *crtc)
  4789. {
  4790.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4791.         struct intel_crtc_state *pipe_config =
  4792.                 to_intel_crtc_state(crtc->base.state);
  4793.         struct drm_device *dev = crtc->base.dev;
  4794.  
  4795.         intel_frontbuffer_flip(dev, atomic->fb_bits);
  4796.  
  4797.         crtc->wm.cxsr_allowed = true;
  4798.  
  4799.         if (pipe_config->update_wm_post && pipe_config->base.active)
  4800.                 intel_update_watermarks(&crtc->base);
  4801.  
  4802.         if (atomic->update_fbc)
  4803.                 intel_fbc_post_update(crtc);
  4804.  
  4805.         if (atomic->post_enable_primary)
  4806.                 intel_post_enable_primary(&crtc->base);
  4807.  
  4808.         memset(atomic, 0, sizeof(*atomic));
  4809. }
  4810.  
  4811. static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
  4812. {
  4813.         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
  4814.         struct drm_device *dev = crtc->base.dev;
  4815.         struct drm_i915_private *dev_priv = dev->dev_private;
  4816.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4817.         struct intel_crtc_state *pipe_config =
  4818.                 to_intel_crtc_state(crtc->base.state);
  4819.         struct drm_atomic_state *old_state = old_crtc_state->base.state;
  4820.         struct drm_plane *primary = crtc->base.primary;
  4821.         struct drm_plane_state *old_pri_state =
  4822.                 drm_atomic_get_existing_plane_state(old_state, primary);
  4823.         bool modeset = needs_modeset(&pipe_config->base);
  4824.  
  4825.         if (atomic->update_fbc)
  4826.                 intel_fbc_pre_update(crtc);
  4827.  
  4828.         if (old_pri_state) {
  4829.                 struct intel_plane_state *primary_state =
  4830.                         to_intel_plane_state(primary->state);
  4831.                 struct intel_plane_state *old_primary_state =
  4832.                         to_intel_plane_state(old_pri_state);
  4833.  
  4834.                 if (old_primary_state->visible &&
  4835.                     (modeset || !primary_state->visible))
  4836.                         intel_pre_disable_primary(&crtc->base);
  4837.         }
  4838.  
  4839.         if (pipe_config->disable_cxsr) {
  4840.                 crtc->wm.cxsr_allowed = false;
  4841.  
  4842.                 if (old_crtc_state->base.active)
  4843.                         intel_set_memory_cxsr(dev_priv, false);
  4844.         }
  4845.  
  4846.         if (!needs_modeset(&pipe_config->base) && pipe_config->update_wm_pre)
  4847.                 intel_update_watermarks(&crtc->base);
  4848. }
  4849.  
  4850. static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
  4851. {
  4852.         struct drm_device *dev = crtc->dev;
  4853.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4854.         struct drm_plane *p;
  4855.         int pipe = intel_crtc->pipe;
  4856.  
  4857.         intel_crtc_dpms_overlay_disable(intel_crtc);
  4858.  
  4859.         drm_for_each_plane_mask(p, dev, plane_mask)
  4860.                 to_intel_plane(p)->disable_plane(p, crtc);
  4861.  
  4862.         /*
  4863.          * FIXME: Once we grow proper nuclear flip support out of this we need
  4864.          * to compute the mask of flip planes precisely. For the time being
  4865.          * consider this a flip to a NULL plane.
  4866.          */
  4867.         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
  4868. }
  4869.  
  4870. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  4871. {
  4872.         struct drm_device *dev = crtc->dev;
  4873.         struct drm_i915_private *dev_priv = dev->dev_private;
  4874.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4875.         struct intel_encoder *encoder;
  4876.         int pipe = intel_crtc->pipe;
  4877.  
  4878.         if (WARN_ON(intel_crtc->active))
  4879.                 return;
  4880.  
  4881.         if (intel_crtc->config->has_pch_encoder)
  4882.                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
  4883.  
  4884.         if (intel_crtc->config->has_pch_encoder)
  4885.                 intel_prepare_shared_dpll(intel_crtc);
  4886.  
  4887.         if (intel_crtc->config->has_dp_encoder)
  4888.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4889.  
  4890.         intel_set_pipe_timings(intel_crtc);
  4891.  
  4892.         if (intel_crtc->config->has_pch_encoder) {
  4893.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4894.                                      &intel_crtc->config->fdi_m_n, NULL);
  4895.         }
  4896.  
  4897.         ironlake_set_pipeconf(crtc);
  4898.  
  4899.         intel_crtc->active = true;
  4900.  
  4901.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4902.  
  4903.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4904.                 if (encoder->pre_enable)
  4905.                         encoder->pre_enable(encoder);
  4906.  
  4907.         if (intel_crtc->config->has_pch_encoder) {
  4908.                 /* Note: FDI PLL enabling _must_ be done before we enable the
  4909.                  * cpu pipes, hence this is separate from all the other fdi/pch
  4910.                  * enabling. */
  4911.                 ironlake_fdi_pll_enable(intel_crtc);
  4912.         } else {
  4913.                 assert_fdi_tx_disabled(dev_priv, pipe);
  4914.                 assert_fdi_rx_disabled(dev_priv, pipe);
  4915.         }
  4916.  
  4917.         ironlake_pfit_enable(intel_crtc);
  4918.  
  4919.         /*
  4920.          * On ILK+ LUT must be loaded before the pipe is running but with
  4921.          * clocks enabled
  4922.          */
  4923.         intel_crtc_load_lut(crtc);
  4924.  
  4925.         intel_update_watermarks(crtc);
  4926.         intel_enable_pipe(intel_crtc);
  4927.  
  4928.         if (intel_crtc->config->has_pch_encoder)
  4929.                 ironlake_pch_enable(crtc);
  4930.  
  4931.         assert_vblank_disabled(crtc);
  4932.         drm_crtc_vblank_on(crtc);
  4933.  
  4934.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4935.                 encoder->enable(encoder);
  4936.  
  4937.         if (HAS_PCH_CPT(dev))
  4938.                 cpt_verify_modeset(dev, intel_crtc->pipe);
  4939.  
  4940.         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
  4941.         if (intel_crtc->config->has_pch_encoder)
  4942.                 intel_wait_for_vblank(dev, pipe);
  4943.         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
  4944. }
  4945.  
  4946. /* IPS only exists on ULT machines and is tied to pipe A. */
  4947. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  4948. {
  4949.         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  4950. }
  4951.  
  4952. static void haswell_crtc_enable(struct drm_crtc *crtc)
  4953. {
  4954.         struct drm_device *dev = crtc->dev;
  4955.         struct drm_i915_private *dev_priv = dev->dev_private;
  4956.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4957.         struct intel_encoder *encoder;
  4958.         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
  4959.         struct intel_crtc_state *pipe_config =
  4960.                 to_intel_crtc_state(crtc->state);
  4961.  
  4962.         if (WARN_ON(intel_crtc->active))
  4963.                 return;
  4964.  
  4965.         if (intel_crtc->config->has_pch_encoder)
  4966.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  4967.                                                       false);
  4968.  
  4969.         if (intel_crtc_to_shared_dpll(intel_crtc))
  4970.                 intel_enable_shared_dpll(intel_crtc);
  4971.  
  4972.         if (intel_crtc->config->has_dp_encoder)
  4973.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4974.  
  4975.         intel_set_pipe_timings(intel_crtc);
  4976.  
  4977.         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
  4978.                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
  4979.                            intel_crtc->config->pixel_multiplier - 1);
  4980.         }
  4981.  
  4982.         if (intel_crtc->config->has_pch_encoder) {
  4983.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4984.                                      &intel_crtc->config->fdi_m_n, NULL);
  4985.         }
  4986.  
  4987.         haswell_set_pipeconf(crtc);
  4988.  
  4989.         intel_set_pipe_csc(crtc);
  4990.  
  4991.         intel_crtc->active = true;
  4992.  
  4993.         if (intel_crtc->config->has_pch_encoder)
  4994.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4995.         else
  4996.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4997.  
  4998.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4999.                 if (encoder->pre_enable)
  5000.                         encoder->pre_enable(encoder);
  5001.         }
  5002.  
  5003.         if (intel_crtc->config->has_pch_encoder)
  5004.                 dev_priv->display.fdi_link_train(crtc);
  5005.  
  5006.         if (!intel_crtc->config->has_dsi_encoder)
  5007.                 intel_ddi_enable_pipe_clock(intel_crtc);
  5008.  
  5009.         if (INTEL_INFO(dev)->gen >= 9)
  5010.                 skylake_pfit_enable(intel_crtc);
  5011.         else
  5012.                 ironlake_pfit_enable(intel_crtc);
  5013.  
  5014.         /*
  5015.          * On ILK+ LUT must be loaded before the pipe is running but with
  5016.          * clocks enabled
  5017.          */
  5018.         intel_crtc_load_lut(crtc);
  5019.  
  5020.         intel_ddi_set_pipe_settings(crtc);
  5021.         if (!intel_crtc->config->has_dsi_encoder)
  5022.                 intel_ddi_enable_transcoder_func(crtc);
  5023.  
  5024.         intel_update_watermarks(crtc);
  5025.         intel_enable_pipe(intel_crtc);
  5026.  
  5027.         if (intel_crtc->config->has_pch_encoder)
  5028.                 lpt_pch_enable(crtc);
  5029.  
  5030.         if (intel_crtc->config->dp_encoder_is_mst)
  5031.                 intel_ddi_set_vc_payload_alloc(crtc, true);
  5032.  
  5033.         assert_vblank_disabled(crtc);
  5034.         drm_crtc_vblank_on(crtc);
  5035.  
  5036.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5037.                 encoder->enable(encoder);
  5038.                 intel_opregion_notify_encoder(encoder, true);
  5039.         }
  5040.  
  5041.         if (intel_crtc->config->has_pch_encoder) {
  5042.                 intel_wait_for_vblank(dev, pipe);
  5043.                 intel_wait_for_vblank(dev, pipe);
  5044.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  5045.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5046.                                                       true);
  5047.         }
  5048.  
  5049.         /* If we change the relative order between pipe/planes enabling, we need
  5050.          * to change the workaround. */
  5051.         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
  5052.         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
  5053.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5054.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5055.         }
  5056. }
  5057.  
  5058. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
  5059. {
  5060.         struct drm_device *dev = crtc->base.dev;
  5061.         struct drm_i915_private *dev_priv = dev->dev_private;
  5062.         int pipe = crtc->pipe;
  5063.  
  5064.         /* To avoid upsetting the power well on haswell only disable the pfit if
  5065.          * it's in use. The hw state code will make sure we get this right. */
  5066.         if (force || crtc->config->pch_pfit.enabled) {
  5067.                 I915_WRITE(PF_CTL(pipe), 0);
  5068.                 I915_WRITE(PF_WIN_POS(pipe), 0);
  5069.                 I915_WRITE(PF_WIN_SZ(pipe), 0);
  5070.         }
  5071. }
  5072.  
  5073. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  5074. {
  5075.         struct drm_device *dev = crtc->dev;
  5076.         struct drm_i915_private *dev_priv = dev->dev_private;
  5077.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5078.         struct intel_encoder *encoder;
  5079.         int pipe = intel_crtc->pipe;
  5080.  
  5081.         if (intel_crtc->config->has_pch_encoder)
  5082.                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
  5083.  
  5084.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5085.                 encoder->disable(encoder);
  5086.  
  5087.         drm_crtc_vblank_off(crtc);
  5088.         assert_vblank_disabled(crtc);
  5089.  
  5090.         /*
  5091.          * Sometimes spurious CPU pipe underruns happen when the
  5092.          * pipe is already disabled, but FDI RX/TX is still enabled.
  5093.          * Happens at least with VGA+HDMI cloning. Suppress them.
  5094.          */
  5095.         if (intel_crtc->config->has_pch_encoder)
  5096.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  5097.  
  5098.         intel_disable_pipe(intel_crtc);
  5099.  
  5100.         ironlake_pfit_disable(intel_crtc, false);
  5101.  
  5102.         if (intel_crtc->config->has_pch_encoder) {
  5103.                 ironlake_fdi_disable(crtc);
  5104.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  5105.         }
  5106.  
  5107.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5108.                 if (encoder->post_disable)
  5109.                         encoder->post_disable(encoder);
  5110.  
  5111.         if (intel_crtc->config->has_pch_encoder) {
  5112.                 ironlake_disable_pch_transcoder(dev_priv, pipe);
  5113.  
  5114.                 if (HAS_PCH_CPT(dev)) {
  5115.                         i915_reg_t reg;
  5116.                         u32 temp;
  5117.  
  5118.                         /* disable TRANS_DP_CTL */
  5119.                         reg = TRANS_DP_CTL(pipe);
  5120.                         temp = I915_READ(reg);
  5121.                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  5122.                                   TRANS_DP_PORT_SEL_MASK);
  5123.                         temp |= TRANS_DP_PORT_SEL_NONE;
  5124.                         I915_WRITE(reg, temp);
  5125.  
  5126.                         /* disable DPLL_SEL */
  5127.                         temp = I915_READ(PCH_DPLL_SEL);
  5128.                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  5129.                         I915_WRITE(PCH_DPLL_SEL, temp);
  5130.                 }
  5131.  
  5132.                 ironlake_fdi_pll_disable(intel_crtc);
  5133.         }
  5134.  
  5135.         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
  5136. }
  5137.  
  5138. static void haswell_crtc_disable(struct drm_crtc *crtc)
  5139. {
  5140.         struct drm_device *dev = crtc->dev;
  5141.         struct drm_i915_private *dev_priv = dev->dev_private;
  5142.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5143.         struct intel_encoder *encoder;
  5144.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  5145.  
  5146.         if (intel_crtc->config->has_pch_encoder)
  5147.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5148.                                                       false);
  5149.  
  5150.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5151.                 intel_opregion_notify_encoder(encoder, false);
  5152.                 encoder->disable(encoder);
  5153.         }
  5154.  
  5155.         drm_crtc_vblank_off(crtc);
  5156.         assert_vblank_disabled(crtc);
  5157.  
  5158.         intel_disable_pipe(intel_crtc);
  5159.  
  5160.         if (intel_crtc->config->dp_encoder_is_mst)
  5161.                 intel_ddi_set_vc_payload_alloc(crtc, false);
  5162.  
  5163.         if (!intel_crtc->config->has_dsi_encoder)
  5164.                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  5165.  
  5166.         if (INTEL_INFO(dev)->gen >= 9)
  5167.                 skylake_scaler_disable(intel_crtc);
  5168.         else
  5169.                 ironlake_pfit_disable(intel_crtc, false);
  5170.  
  5171.         if (!intel_crtc->config->has_dsi_encoder)
  5172.                 intel_ddi_disable_pipe_clock(intel_crtc);
  5173.  
  5174.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5175.                 if (encoder->post_disable)
  5176.                         encoder->post_disable(encoder);
  5177.  
  5178.         if (intel_crtc->config->has_pch_encoder) {
  5179.                 lpt_disable_pch_transcoder(dev_priv);
  5180.                 lpt_disable_iclkip(dev_priv);
  5181.                 intel_ddi_fdi_disable(crtc);
  5182.  
  5183.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5184.                                                       true);
  5185.         }
  5186. }
  5187.  
  5188. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  5189. {
  5190.         struct drm_device *dev = crtc->base.dev;
  5191.         struct drm_i915_private *dev_priv = dev->dev_private;
  5192.         struct intel_crtc_state *pipe_config = crtc->config;
  5193.  
  5194.         if (!pipe_config->gmch_pfit.control)
  5195.                 return;
  5196.  
  5197.         /*
  5198.          * The panel fitter should only be adjusted whilst the pipe is disabled,
  5199.          * according to register description and PRM.
  5200.          */
  5201.         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  5202.         assert_pipe_disabled(dev_priv, crtc->pipe);
  5203.  
  5204.         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  5205.         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  5206.  
  5207.         /* Border color in case we don't scale up to the full screen. Black by
  5208.          * default, change to something else for debugging. */
  5209.         I915_WRITE(BCLRPAT(crtc->pipe), 0);
  5210. }
  5211.  
  5212. static enum intel_display_power_domain port_to_power_domain(enum port port)
  5213. {
  5214.         switch (port) {
  5215.         case PORT_A:
  5216.                 return POWER_DOMAIN_PORT_DDI_A_LANES;
  5217.         case PORT_B:
  5218.                 return POWER_DOMAIN_PORT_DDI_B_LANES;
  5219.         case PORT_C:
  5220.                 return POWER_DOMAIN_PORT_DDI_C_LANES;
  5221.         case PORT_D:
  5222.                 return POWER_DOMAIN_PORT_DDI_D_LANES;
  5223.         case PORT_E:
  5224.                 return POWER_DOMAIN_PORT_DDI_E_LANES;
  5225.         default:
  5226.                 MISSING_CASE(port);
  5227.                 return POWER_DOMAIN_PORT_OTHER;
  5228.         }
  5229. }
  5230.  
  5231. static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
  5232. {
  5233.         switch (port) {
  5234.         case PORT_A:
  5235.                 return POWER_DOMAIN_AUX_A;
  5236.         case PORT_B:
  5237.                 return POWER_DOMAIN_AUX_B;
  5238.         case PORT_C:
  5239.                 return POWER_DOMAIN_AUX_C;
  5240.         case PORT_D:
  5241.                 return POWER_DOMAIN_AUX_D;
  5242.         case PORT_E:
  5243.                 /* FIXME: Check VBT for actual wiring of PORT E */
  5244.                 return POWER_DOMAIN_AUX_D;
  5245.         default:
  5246.                 MISSING_CASE(port);
  5247.                 return POWER_DOMAIN_AUX_A;
  5248.         }
  5249. }
  5250.  
  5251. enum intel_display_power_domain
  5252. intel_display_port_power_domain(struct intel_encoder *intel_encoder)
  5253. {
  5254.         struct drm_device *dev = intel_encoder->base.dev;
  5255.         struct intel_digital_port *intel_dig_port;
  5256.  
  5257.         switch (intel_encoder->type) {
  5258.         case INTEL_OUTPUT_UNKNOWN:
  5259.                 /* Only DDI platforms should ever use this output type */
  5260.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5261.         case INTEL_OUTPUT_DISPLAYPORT:
  5262.         case INTEL_OUTPUT_HDMI:
  5263.         case INTEL_OUTPUT_EDP:
  5264.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5265.                 return port_to_power_domain(intel_dig_port->port);
  5266.         case INTEL_OUTPUT_DP_MST:
  5267.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5268.                 return port_to_power_domain(intel_dig_port->port);
  5269.         case INTEL_OUTPUT_ANALOG:
  5270.                 return POWER_DOMAIN_PORT_CRT;
  5271.         case INTEL_OUTPUT_DSI:
  5272.                 return POWER_DOMAIN_PORT_DSI;
  5273.         default:
  5274.                 return POWER_DOMAIN_PORT_OTHER;
  5275.         }
  5276. }
  5277.  
  5278. enum intel_display_power_domain
  5279. intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
  5280. {
  5281.         struct drm_device *dev = intel_encoder->base.dev;
  5282.         struct intel_digital_port *intel_dig_port;
  5283.  
  5284.         switch (intel_encoder->type) {
  5285.         case INTEL_OUTPUT_UNKNOWN:
  5286.         case INTEL_OUTPUT_HDMI:
  5287.                 /*
  5288.                  * Only DDI platforms should ever use these output types.
  5289.                  * We can get here after the HDMI detect code has already set
  5290.                  * the type of the shared encoder. Since we can't be sure
  5291.                  * what's the status of the given connectors, play safe and
  5292.                  * run the DP detection too.
  5293.                  */
  5294.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5295.         case INTEL_OUTPUT_DISPLAYPORT:
  5296.         case INTEL_OUTPUT_EDP:
  5297.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5298.                 return port_to_aux_power_domain(intel_dig_port->port);
  5299.         case INTEL_OUTPUT_DP_MST:
  5300.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5301.                 return port_to_aux_power_domain(intel_dig_port->port);
  5302.         default:
  5303.                 MISSING_CASE(intel_encoder->type);
  5304.                 return POWER_DOMAIN_AUX_A;
  5305.         }
  5306. }
  5307.  
  5308. static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
  5309.                                             struct intel_crtc_state *crtc_state)
  5310. {
  5311.         struct drm_device *dev = crtc->dev;
  5312.         struct drm_encoder *encoder;
  5313.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5314.         enum pipe pipe = intel_crtc->pipe;
  5315.         unsigned long mask;
  5316.         enum transcoder transcoder = crtc_state->cpu_transcoder;
  5317.  
  5318.         if (!crtc_state->base.active)
  5319.                 return 0;
  5320.  
  5321.         mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5322.         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5323.         if (crtc_state->pch_pfit.enabled ||
  5324.             crtc_state->pch_pfit.force_thru)
  5325.                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5326.  
  5327.         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
  5328.                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  5329.  
  5330.                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
  5331.         }
  5332.  
  5333.         return mask;
  5334. }
  5335.  
  5336. static unsigned long
  5337. modeset_get_crtc_power_domains(struct drm_crtc *crtc,
  5338.                                struct intel_crtc_state *crtc_state)
  5339. {
  5340.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5341.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5342.         enum intel_display_power_domain domain;
  5343.         unsigned long domains, new_domains, old_domains;
  5344.  
  5345.         old_domains = intel_crtc->enabled_power_domains;
  5346.         intel_crtc->enabled_power_domains = new_domains =
  5347.                 get_crtc_power_domains(crtc, crtc_state);
  5348.  
  5349.         domains = new_domains & ~old_domains;
  5350.  
  5351.         for_each_power_domain(domain, domains)
  5352.                 intel_display_power_get(dev_priv, domain);
  5353.  
  5354.         return old_domains & ~new_domains;
  5355. }
  5356.  
  5357. static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
  5358.                                       unsigned long domains)
  5359. {
  5360.         enum intel_display_power_domain domain;
  5361.  
  5362.         for_each_power_domain(domain, domains)
  5363.                 intel_display_power_put(dev_priv, domain);
  5364. }
  5365.  
  5366. static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
  5367. {
  5368.         int max_cdclk_freq = dev_priv->max_cdclk_freq;
  5369.  
  5370.         if (INTEL_INFO(dev_priv)->gen >= 9 ||
  5371.             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5372.                 return max_cdclk_freq;
  5373.         else if (IS_CHERRYVIEW(dev_priv))
  5374.                 return max_cdclk_freq*95/100;
  5375.         else if (INTEL_INFO(dev_priv)->gen < 4)
  5376.                 return 2*max_cdclk_freq*90/100;
  5377.         else
  5378.                 return max_cdclk_freq*90/100;
  5379. }
  5380.  
  5381. static void intel_update_max_cdclk(struct drm_device *dev)
  5382. {
  5383.         struct drm_i915_private *dev_priv = dev->dev_private;
  5384.  
  5385.         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  5386.                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
  5387.  
  5388.                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
  5389.                         dev_priv->max_cdclk_freq = 675000;
  5390.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
  5391.                         dev_priv->max_cdclk_freq = 540000;
  5392.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
  5393.                         dev_priv->max_cdclk_freq = 450000;
  5394.                 else
  5395.                         dev_priv->max_cdclk_freq = 337500;
  5396.         } else if (IS_BROADWELL(dev))  {
  5397.                 /*
  5398.                  * FIXME with extra cooling we can allow
  5399.                  * 540 MHz for ULX and 675 Mhz for ULT.
  5400.                  * How can we know if extra cooling is
  5401.                  * available? PCI ID, VTB, something else?
  5402.                  */
  5403.                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  5404.                         dev_priv->max_cdclk_freq = 450000;
  5405.                 else if (IS_BDW_ULX(dev))
  5406.                         dev_priv->max_cdclk_freq = 450000;
  5407.                 else if (IS_BDW_ULT(dev))
  5408.                         dev_priv->max_cdclk_freq = 540000;
  5409.                 else
  5410.                         dev_priv->max_cdclk_freq = 675000;
  5411.         } else if (IS_CHERRYVIEW(dev)) {
  5412.                 dev_priv->max_cdclk_freq = 320000;
  5413.         } else if (IS_VALLEYVIEW(dev)) {
  5414.                 dev_priv->max_cdclk_freq = 400000;
  5415.         } else {
  5416.                 /* otherwise assume cdclk is fixed */
  5417.                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
  5418.         }
  5419.  
  5420.         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
  5421.  
  5422.         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
  5423.                          dev_priv->max_cdclk_freq);
  5424.  
  5425.         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
  5426.                          dev_priv->max_dotclk_freq);
  5427. }
  5428.  
  5429. static void intel_update_cdclk(struct drm_device *dev)
  5430. {
  5431.         struct drm_i915_private *dev_priv = dev->dev_private;
  5432.  
  5433.         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  5434.         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
  5435.                          dev_priv->cdclk_freq);
  5436.  
  5437.         /*
  5438.          * Program the gmbus_freq based on the cdclk frequency.
  5439.          * BSpec erroneously claims we should aim for 4MHz, but
  5440.          * in fact 1MHz is the correct frequency.
  5441.          */
  5442.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  5443.                 /*
  5444.                  * Program the gmbus_freq based on the cdclk frequency.
  5445.                  * BSpec erroneously claims we should aim for 4MHz, but
  5446.                  * in fact 1MHz is the correct frequency.
  5447.                  */
  5448.                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
  5449.         }
  5450.  
  5451.         if (dev_priv->max_cdclk_freq == 0)
  5452.                 intel_update_max_cdclk(dev);
  5453. }
  5454.  
  5455. static void broxton_set_cdclk(struct drm_device *dev, int frequency)
  5456. {
  5457.         struct drm_i915_private *dev_priv = dev->dev_private;
  5458.         uint32_t divider;
  5459.         uint32_t ratio;
  5460.         uint32_t current_freq;
  5461.         int ret;
  5462.  
  5463.         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
  5464.         switch (frequency) {
  5465.         case 144000:
  5466.                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
  5467.                 ratio = BXT_DE_PLL_RATIO(60);
  5468.                 break;
  5469.         case 288000:
  5470.                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
  5471.                 ratio = BXT_DE_PLL_RATIO(60);
  5472.                 break;
  5473.         case 384000:
  5474.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
  5475.                 ratio = BXT_DE_PLL_RATIO(60);
  5476.                 break;
  5477.         case 576000:
  5478.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5479.                 ratio = BXT_DE_PLL_RATIO(60);
  5480.                 break;
  5481.         case 624000:
  5482.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5483.                 ratio = BXT_DE_PLL_RATIO(65);
  5484.                 break;
  5485.         case 19200:
  5486.                 /*
  5487.                  * Bypass frequency with DE PLL disabled. Init ratio, divider
  5488.                  * to suppress GCC warning.
  5489.                  */
  5490.                 ratio = 0;
  5491.                 divider = 0;
  5492.                 break;
  5493.         default:
  5494.                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
  5495.  
  5496.                 return;
  5497.         }
  5498.  
  5499.         mutex_lock(&dev_priv->rps.hw_lock);
  5500.         /* Inform power controller of upcoming frequency change */
  5501.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5502.                                       0x80000000);
  5503.         mutex_unlock(&dev_priv->rps.hw_lock);
  5504.  
  5505.         if (ret) {
  5506.                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
  5507.                           ret, frequency);
  5508.                 return;
  5509.         }
  5510.  
  5511.         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
  5512.         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
  5513.         current_freq = current_freq * 500 + 1000;
  5514.  
  5515.         /*
  5516.          * DE PLL has to be disabled when
  5517.          * - setting to 19.2MHz (bypass, PLL isn't used)
  5518.          * - before setting to 624MHz (PLL needs toggling)
  5519.          * - before setting to any frequency from 624MHz (PLL needs toggling)
  5520.          */
  5521.         if (frequency == 19200 || frequency == 624000 ||
  5522.             current_freq == 624000) {
  5523.                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
  5524.                 /* Timeout 200us */
  5525.                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
  5526.                              1))
  5527.                         DRM_ERROR("timout waiting for DE PLL unlock\n");
  5528.         }
  5529.  
  5530.         if (frequency != 19200) {
  5531.                 uint32_t val;
  5532.  
  5533.                 val = I915_READ(BXT_DE_PLL_CTL);
  5534.                 val &= ~BXT_DE_PLL_RATIO_MASK;
  5535.                 val |= ratio;
  5536.                 I915_WRITE(BXT_DE_PLL_CTL, val);
  5537.  
  5538.                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
  5539.                 /* Timeout 200us */
  5540.                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
  5541.                         DRM_ERROR("timeout waiting for DE PLL lock\n");
  5542.  
  5543.                 val = I915_READ(CDCLK_CTL);
  5544.                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
  5545.                 val |= divider;
  5546.                 /*
  5547.                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
  5548.                  * enable otherwise.
  5549.                  */
  5550.                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5551.                 if (frequency >= 500000)
  5552.                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5553.  
  5554.                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
  5555.                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
  5556.                 val |= (frequency - 1000) / 500;
  5557.                 I915_WRITE(CDCLK_CTL, val);
  5558.         }
  5559.  
  5560.         mutex_lock(&dev_priv->rps.hw_lock);
  5561.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5562.                                       DIV_ROUND_UP(frequency, 25000));
  5563.         mutex_unlock(&dev_priv->rps.hw_lock);
  5564.  
  5565.         if (ret) {
  5566.                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
  5567.                           ret, frequency);
  5568.                 return;
  5569.         }
  5570.  
  5571.         intel_update_cdclk(dev);
  5572. }
  5573.  
  5574. void broxton_init_cdclk(struct drm_device *dev)
  5575. {
  5576.         struct drm_i915_private *dev_priv = dev->dev_private;
  5577.         uint32_t val;
  5578.  
  5579.         /*
  5580.          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
  5581.          * or else the reset will hang because there is no PCH to respond.
  5582.          * Move the handshake programming to initialization sequence.
  5583.          * Previously was left up to BIOS.
  5584.          */
  5585.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5586.         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
  5587.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
  5588.  
  5589.         /* Enable PG1 for cdclk */
  5590.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5591.  
  5592.         /* check if cd clock is enabled */
  5593.         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
  5594.                 DRM_DEBUG_KMS("Display already initialized\n");
  5595.                 return;
  5596.         }
  5597.  
  5598.         /*
  5599.          * FIXME:
  5600.          * - The initial CDCLK needs to be read from VBT.
  5601.          *   Need to make this change after VBT has changes for BXT.
  5602.          * - check if setting the max (or any) cdclk freq is really necessary
  5603.          *   here, it belongs to modeset time
  5604.          */
  5605.         broxton_set_cdclk(dev, 624000);
  5606.  
  5607.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5608.         POSTING_READ(DBUF_CTL);
  5609.  
  5610.         udelay(10);
  5611.  
  5612.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5613.                 DRM_ERROR("DBuf power enable timeout!\n");
  5614. }
  5615.  
  5616. void broxton_uninit_cdclk(struct drm_device *dev)
  5617. {
  5618.         struct drm_i915_private *dev_priv = dev->dev_private;
  5619.  
  5620.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5621.         POSTING_READ(DBUF_CTL);
  5622.  
  5623.         udelay(10);
  5624.  
  5625.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5626.                 DRM_ERROR("DBuf power disable timeout!\n");
  5627.  
  5628.         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
  5629.         broxton_set_cdclk(dev, 19200);
  5630.  
  5631.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5632. }
  5633.  
  5634. static const struct skl_cdclk_entry {
  5635.         unsigned int freq;
  5636.         unsigned int vco;
  5637. } skl_cdclk_frequencies[] = {
  5638.         { .freq = 308570, .vco = 8640 },
  5639.         { .freq = 337500, .vco = 8100 },
  5640.         { .freq = 432000, .vco = 8640 },
  5641.         { .freq = 450000, .vco = 8100 },
  5642.         { .freq = 540000, .vco = 8100 },
  5643.         { .freq = 617140, .vco = 8640 },
  5644.         { .freq = 675000, .vco = 8100 },
  5645. };
  5646.  
  5647. static unsigned int skl_cdclk_decimal(unsigned int freq)
  5648. {
  5649.         return (freq - 1000) / 500;
  5650. }
  5651.  
  5652. static unsigned int skl_cdclk_get_vco(unsigned int freq)
  5653. {
  5654.         unsigned int i;
  5655.  
  5656.         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
  5657.                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
  5658.  
  5659.                 if (e->freq == freq)
  5660.                         return e->vco;
  5661.         }
  5662.  
  5663.         return 8100;
  5664. }
  5665.  
  5666. static void
  5667. skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
  5668. {
  5669.         unsigned int min_freq;
  5670.         u32 val;
  5671.  
  5672.         /* select the minimum CDCLK before enabling DPLL 0 */
  5673.         val = I915_READ(CDCLK_CTL);
  5674.         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
  5675.         val |= CDCLK_FREQ_337_308;
  5676.  
  5677.         if (required_vco == 8640)
  5678.                 min_freq = 308570;
  5679.         else
  5680.                 min_freq = 337500;
  5681.  
  5682.         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
  5683.  
  5684.         I915_WRITE(CDCLK_CTL, val);
  5685.         POSTING_READ(CDCLK_CTL);
  5686.  
  5687.         /*
  5688.          * We always enable DPLL0 with the lowest link rate possible, but still
  5689.          * taking into account the VCO required to operate the eDP panel at the
  5690.          * desired frequency. The usual DP link rates operate with a VCO of
  5691.          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
  5692.          * The modeset code is responsible for the selection of the exact link
  5693.          * rate later on, with the constraint of choosing a frequency that
  5694.          * works with required_vco.
  5695.          */
  5696.         val = I915_READ(DPLL_CTRL1);
  5697.  
  5698.         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
  5699.                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
  5700.         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
  5701.         if (required_vco == 8640)
  5702.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
  5703.                                             SKL_DPLL0);
  5704.         else
  5705.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
  5706.                                             SKL_DPLL0);
  5707.  
  5708.         I915_WRITE(DPLL_CTRL1, val);
  5709.         POSTING_READ(DPLL_CTRL1);
  5710.  
  5711.         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
  5712.  
  5713.         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
  5714.                 DRM_ERROR("DPLL0 not locked\n");
  5715. }
  5716.  
  5717. static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
  5718. {
  5719.         int ret;
  5720.         u32 val;
  5721.  
  5722.         /* inform PCU we want to change CDCLK */
  5723.         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
  5724.         mutex_lock(&dev_priv->rps.hw_lock);
  5725.         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
  5726.         mutex_unlock(&dev_priv->rps.hw_lock);
  5727.  
  5728.         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
  5729. }
  5730.  
  5731. static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
  5732. {
  5733.         unsigned int i;
  5734.  
  5735.         for (i = 0; i < 15; i++) {
  5736.                 if (skl_cdclk_pcu_ready(dev_priv))
  5737.                         return true;
  5738.                 udelay(10);
  5739.         }
  5740.  
  5741.         return false;
  5742. }
  5743.  
  5744. static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
  5745. {
  5746.         struct drm_device *dev = dev_priv->dev;
  5747.         u32 freq_select, pcu_ack;
  5748.  
  5749.         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
  5750.  
  5751.         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
  5752.                 DRM_ERROR("failed to inform PCU about cdclk change\n");
  5753.                 return;
  5754.         }
  5755.  
  5756.         /* set CDCLK_CTL */
  5757.         switch(freq) {
  5758.         case 450000:
  5759.         case 432000:
  5760.                 freq_select = CDCLK_FREQ_450_432;
  5761.                 pcu_ack = 1;
  5762.                 break;
  5763.         case 540000:
  5764.                 freq_select = CDCLK_FREQ_540;
  5765.                 pcu_ack = 2;
  5766.                 break;
  5767.         case 308570:
  5768.         case 337500:
  5769.         default:
  5770.                 freq_select = CDCLK_FREQ_337_308;
  5771.                 pcu_ack = 0;
  5772.                 break;
  5773.         case 617140:
  5774.         case 675000:
  5775.                 freq_select = CDCLK_FREQ_675_617;
  5776.                 pcu_ack = 3;
  5777.                 break;
  5778.         }
  5779.  
  5780.         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
  5781.         POSTING_READ(CDCLK_CTL);
  5782.  
  5783.         /* inform PCU of the change */
  5784.         mutex_lock(&dev_priv->rps.hw_lock);
  5785.         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
  5786.         mutex_unlock(&dev_priv->rps.hw_lock);
  5787.  
  5788.         intel_update_cdclk(dev);
  5789. }
  5790.  
  5791. void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
  5792. {
  5793.         /* disable DBUF power */
  5794.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5795.         POSTING_READ(DBUF_CTL);
  5796.  
  5797.         udelay(10);
  5798.  
  5799.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5800.                 DRM_ERROR("DBuf power disable timeout\n");
  5801.  
  5802.         /* disable DPLL0 */
  5803.         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
  5804.         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
  5805.                 DRM_ERROR("Couldn't disable DPLL0\n");
  5806. }
  5807.  
  5808. void skl_init_cdclk(struct drm_i915_private *dev_priv)
  5809. {
  5810.         unsigned int required_vco;
  5811.  
  5812.         /* DPLL0 not enabled (happens on early BIOS versions) */
  5813.         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
  5814.                 /* enable DPLL0 */
  5815.                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
  5816.                 skl_dpll0_enable(dev_priv, required_vco);
  5817.         }
  5818.  
  5819.         /* set CDCLK to the frequency the BIOS chose */
  5820.         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
  5821.  
  5822.         /* enable DBUF power */
  5823.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5824.         POSTING_READ(DBUF_CTL);
  5825.  
  5826.         udelay(10);
  5827.  
  5828.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5829.                 DRM_ERROR("DBuf power enable timeout\n");
  5830. }
  5831.  
  5832. int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
  5833. {
  5834.         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  5835.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  5836.         int freq = dev_priv->skl_boot_cdclk;
  5837.  
  5838.         /*
  5839.          * check if the pre-os intialized the display
  5840.          * There is SWF18 scratchpad register defined which is set by the
  5841.          * pre-os which can be used by the OS drivers to check the status
  5842.          */
  5843.         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
  5844.                 goto sanitize;
  5845.  
  5846.         /* Is PLL enabled and locked ? */
  5847.         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
  5848.                 goto sanitize;
  5849.  
  5850.         /* DPLL okay; verify the cdclock
  5851.          *
  5852.          * Noticed in some instances that the freq selection is correct but
  5853.          * decimal part is programmed wrong from BIOS where pre-os does not
  5854.          * enable display. Verify the same as well.
  5855.          */
  5856.         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
  5857.                 /* All well; nothing to sanitize */
  5858.                 return false;
  5859. sanitize:
  5860.         /*
  5861.          * As of now initialize with max cdclk till
  5862.          * we get dynamic cdclk support
  5863.          * */
  5864.         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
  5865.         skl_init_cdclk(dev_priv);
  5866.  
  5867.         /* we did have to sanitize */
  5868.         return true;
  5869. }
  5870.  
  5871. /* Adjust CDclk dividers to allow high res or save power if possible */
  5872. static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
  5873. {
  5874.         struct drm_i915_private *dev_priv = dev->dev_private;
  5875.         u32 val, cmd;
  5876.  
  5877.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5878.                                         != dev_priv->cdclk_freq);
  5879.  
  5880.         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
  5881.                 cmd = 2;
  5882.         else if (cdclk == 266667)
  5883.                 cmd = 1;
  5884.         else
  5885.                 cmd = 0;
  5886.  
  5887.         mutex_lock(&dev_priv->rps.hw_lock);
  5888.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5889.         val &= ~DSPFREQGUAR_MASK;
  5890.         val |= (cmd << DSPFREQGUAR_SHIFT);
  5891.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5892.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5893.                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
  5894.                      50)) {
  5895.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5896.         }
  5897.         mutex_unlock(&dev_priv->rps.hw_lock);
  5898.  
  5899.         mutex_lock(&dev_priv->sb_lock);
  5900.  
  5901.         if (cdclk == 400000) {
  5902.                 u32 divider;
  5903.  
  5904.                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5905.  
  5906.                 /* adjust cdclk divider */
  5907.                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
  5908.                 val &= ~CCK_FREQUENCY_VALUES;
  5909.                 val |= divider;
  5910.                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
  5911.  
  5912.                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
  5913.                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
  5914.                              50))
  5915.                         DRM_ERROR("timed out waiting for CDclk change\n");
  5916.         }
  5917.  
  5918.         /* adjust self-refresh exit latency value */
  5919.         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
  5920.         val &= ~0x7f;
  5921.  
  5922.         /*
  5923.          * For high bandwidth configs, we set a higher latency in the bunit
  5924.          * so that the core display fetch happens in time to avoid underruns.
  5925.          */
  5926.         if (cdclk == 400000)
  5927.                 val |= 4500 / 250; /* 4.5 usec */
  5928.         else
  5929.                 val |= 3000 / 250; /* 3.0 usec */
  5930.         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
  5931.  
  5932.         mutex_unlock(&dev_priv->sb_lock);
  5933.  
  5934.         intel_update_cdclk(dev);
  5935. }
  5936.  
  5937. static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
  5938. {
  5939.         struct drm_i915_private *dev_priv = dev->dev_private;
  5940.         u32 val, cmd;
  5941.  
  5942.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5943.                                                 != dev_priv->cdclk_freq);
  5944.  
  5945.         switch (cdclk) {
  5946.         case 333333:
  5947.         case 320000:
  5948.         case 266667:
  5949.         case 200000:
  5950.                 break;
  5951.         default:
  5952.                 MISSING_CASE(cdclk);
  5953.                 return;
  5954.         }
  5955.  
  5956.         /*
  5957.          * Specs are full of misinformation, but testing on actual
  5958.          * hardware has shown that we just need to write the desired
  5959.          * CCK divider into the Punit register.
  5960.          */
  5961.         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5962.  
  5963.         mutex_lock(&dev_priv->rps.hw_lock);
  5964.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5965.         val &= ~DSPFREQGUAR_MASK_CHV;
  5966.         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
  5967.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5968.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5969.                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
  5970.                      50)) {
  5971.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5972.         }
  5973.         mutex_unlock(&dev_priv->rps.hw_lock);
  5974.  
  5975.         intel_update_cdclk(dev);
  5976. }
  5977.  
  5978. static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
  5979.                                  int max_pixclk)
  5980. {
  5981.         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
  5982.         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
  5983.  
  5984.         /*
  5985.          * Really only a few cases to deal with, as only 4 CDclks are supported:
  5986.          *   200MHz
  5987.          *   267MHz
  5988.          *   320/333MHz (depends on HPLL freq)
  5989.          *   400MHz (VLV only)
  5990.          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
  5991.          * of the lower bin and adjust if needed.
  5992.          *
  5993.          * We seem to get an unstable or solid color picture at 200MHz.
  5994.          * Not sure what's wrong. For now use 200MHz only when all pipes
  5995.          * are off.
  5996.          */
  5997.         if (!IS_CHERRYVIEW(dev_priv) &&
  5998.             max_pixclk > freq_320*limit/100)
  5999.                 return 400000;
  6000.         else if (max_pixclk > 266667*limit/100)
  6001.                 return freq_320;
  6002.         else if (max_pixclk > 0)
  6003.                 return 266667;
  6004.         else
  6005.                 return 200000;
  6006. }
  6007.  
  6008. static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
  6009.                               int max_pixclk)
  6010. {
  6011.         /*
  6012.          * FIXME:
  6013.          * - remove the guardband, it's not needed on BXT
  6014.          * - set 19.2MHz bypass frequency if there are no active pipes
  6015.          */
  6016.         if (max_pixclk > 576000*9/10)
  6017.                 return 624000;
  6018.         else if (max_pixclk > 384000*9/10)
  6019.                 return 576000;
  6020.         else if (max_pixclk > 288000*9/10)
  6021.                 return 384000;
  6022.         else if (max_pixclk > 144000*9/10)
  6023.                 return 288000;
  6024.         else
  6025.                 return 144000;
  6026. }
  6027.  
  6028. /* Compute the max pixel clock for new configuration. */
  6029. static int intel_mode_max_pixclk(struct drm_device *dev,
  6030.                                  struct drm_atomic_state *state)
  6031. {
  6032.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  6033.         struct drm_i915_private *dev_priv = dev->dev_private;
  6034.         struct drm_crtc *crtc;
  6035.         struct drm_crtc_state *crtc_state;
  6036.         unsigned max_pixclk = 0, i;
  6037.         enum pipe pipe;
  6038.  
  6039.         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
  6040.                sizeof(intel_state->min_pixclk));
  6041.  
  6042.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  6043.                 int pixclk = 0;
  6044.  
  6045.                 if (crtc_state->enable)
  6046.                         pixclk = crtc_state->adjusted_mode.crtc_clock;
  6047.  
  6048.                 intel_state->min_pixclk[i] = pixclk;
  6049.         }
  6050.  
  6051.         for_each_pipe(dev_priv, pipe)
  6052.                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
  6053.  
  6054.         return max_pixclk;
  6055. }
  6056.  
  6057. static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
  6058. {
  6059.         struct drm_device *dev = state->dev;
  6060.         struct drm_i915_private *dev_priv = dev->dev_private;
  6061.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6062.         struct intel_atomic_state *intel_state =
  6063.                 to_intel_atomic_state(state);
  6064.  
  6065.         if (max_pixclk < 0)
  6066.                 return max_pixclk;
  6067.  
  6068.         intel_state->cdclk = intel_state->dev_cdclk =
  6069.                 valleyview_calc_cdclk(dev_priv, max_pixclk);
  6070.  
  6071.         if (!intel_state->active_crtcs)
  6072.                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
  6073.  
  6074.         return 0;
  6075. }
  6076.  
  6077. static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
  6078. {
  6079.         struct drm_device *dev = state->dev;
  6080.         struct drm_i915_private *dev_priv = dev->dev_private;
  6081.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6082.         struct intel_atomic_state *intel_state =
  6083.                 to_intel_atomic_state(state);
  6084.  
  6085.         if (max_pixclk < 0)
  6086.                 return max_pixclk;
  6087.  
  6088.         intel_state->cdclk = intel_state->dev_cdclk =
  6089.                 broxton_calc_cdclk(dev_priv, max_pixclk);
  6090.  
  6091.         if (!intel_state->active_crtcs)
  6092.                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
  6093.  
  6094.         return 0;
  6095. }
  6096.  
  6097. static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
  6098. {
  6099.         unsigned int credits, default_credits;
  6100.  
  6101.         if (IS_CHERRYVIEW(dev_priv))
  6102.                 default_credits = PFI_CREDIT(12);
  6103.         else
  6104.                 default_credits = PFI_CREDIT(8);
  6105.  
  6106.         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
  6107.                 /* CHV suggested value is 31 or 63 */
  6108.                 if (IS_CHERRYVIEW(dev_priv))
  6109.                         credits = PFI_CREDIT_63;
  6110.                 else
  6111.                         credits = PFI_CREDIT(15);
  6112.         } else {
  6113.                 credits = default_credits;
  6114.         }
  6115.  
  6116.         /*
  6117.          * WA - write default credits before re-programming
  6118.          * FIXME: should we also set the resend bit here?
  6119.          */
  6120.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6121.                    default_credits);
  6122.  
  6123.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6124.                    credits | PFI_CREDIT_RESEND);
  6125.  
  6126.         /*
  6127.          * FIXME is this guaranteed to clear
  6128.          * immediately or should we poll for it?
  6129.          */
  6130.         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
  6131. }
  6132.  
  6133. static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  6134. {
  6135.         struct drm_device *dev = old_state->dev;
  6136.         struct drm_i915_private *dev_priv = dev->dev_private;
  6137.         struct intel_atomic_state *old_intel_state =
  6138.                 to_intel_atomic_state(old_state);
  6139.         unsigned req_cdclk = old_intel_state->dev_cdclk;
  6140.  
  6141.         /*
  6142.          * FIXME: We can end up here with all power domains off, yet
  6143.          * with a CDCLK frequency other than the minimum. To account
  6144.          * for this take the PIPE-A power domain, which covers the HW
  6145.          * blocks needed for the following programming. This can be
  6146.          * removed once it's guaranteed that we get here either with
  6147.          * the minimum CDCLK set, or the required power domains
  6148.          * enabled.
  6149.          */
  6150.         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
  6151.  
  6152.         if (IS_CHERRYVIEW(dev))
  6153.                 cherryview_set_cdclk(dev, req_cdclk);
  6154.         else
  6155.                 valleyview_set_cdclk(dev, req_cdclk);
  6156.  
  6157.         vlv_program_pfi_credits(dev_priv);
  6158.  
  6159.         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
  6160. }
  6161.  
  6162. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  6163. {
  6164.         struct drm_device *dev = crtc->dev;
  6165.         struct drm_i915_private *dev_priv = to_i915(dev);
  6166.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6167.         struct intel_encoder *encoder;
  6168.         int pipe = intel_crtc->pipe;
  6169.  
  6170.         if (WARN_ON(intel_crtc->active))
  6171.                 return;
  6172.  
  6173.         if (intel_crtc->config->has_dp_encoder)
  6174.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6175.  
  6176.         intel_set_pipe_timings(intel_crtc);
  6177.  
  6178.         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
  6179.                 struct drm_i915_private *dev_priv = dev->dev_private;
  6180.  
  6181.                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
  6182.                 I915_WRITE(CHV_CANVAS(pipe), 0);
  6183.         }
  6184.  
  6185.         i9xx_set_pipeconf(intel_crtc);
  6186.  
  6187.         intel_crtc->active = true;
  6188.  
  6189.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6190.  
  6191.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6192.                 if (encoder->pre_pll_enable)
  6193.                         encoder->pre_pll_enable(encoder);
  6194.  
  6195.         if (!intel_crtc->config->has_dsi_encoder) {
  6196.                 if (IS_CHERRYVIEW(dev)) {
  6197.                         chv_prepare_pll(intel_crtc, intel_crtc->config);
  6198.                         chv_enable_pll(intel_crtc, intel_crtc->config);
  6199.                 } else {
  6200.                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
  6201.                         vlv_enable_pll(intel_crtc, intel_crtc->config);
  6202.                 }
  6203.         }
  6204.  
  6205.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6206.                 if (encoder->pre_enable)
  6207.                         encoder->pre_enable(encoder);
  6208.  
  6209.         i9xx_pfit_enable(intel_crtc);
  6210.  
  6211.         intel_crtc_load_lut(crtc);
  6212.  
  6213.         intel_update_watermarks(crtc);
  6214.         intel_enable_pipe(intel_crtc);
  6215.  
  6216.         assert_vblank_disabled(crtc);
  6217.         drm_crtc_vblank_on(crtc);
  6218.  
  6219.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6220.                 encoder->enable(encoder);
  6221. }
  6222.  
  6223. static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
  6224. {
  6225.         struct drm_device *dev = crtc->base.dev;
  6226.         struct drm_i915_private *dev_priv = dev->dev_private;
  6227.  
  6228.         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
  6229.         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
  6230. }
  6231.  
  6232. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  6233. {
  6234.         struct drm_device *dev = crtc->dev;
  6235.         struct drm_i915_private *dev_priv = to_i915(dev);
  6236.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6237.         struct intel_encoder *encoder;
  6238.         int pipe = intel_crtc->pipe;
  6239.  
  6240.         if (WARN_ON(intel_crtc->active))
  6241.                 return;
  6242.  
  6243.         i9xx_set_pll_dividers(intel_crtc);
  6244.  
  6245.         if (intel_crtc->config->has_dp_encoder)
  6246.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6247.  
  6248.         intel_set_pipe_timings(intel_crtc);
  6249.  
  6250.         i9xx_set_pipeconf(intel_crtc);
  6251.  
  6252.         intel_crtc->active = true;
  6253.  
  6254.         if (!IS_GEN2(dev))
  6255.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6256.  
  6257.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6258.                 if (encoder->pre_enable)
  6259.                         encoder->pre_enable(encoder);
  6260.  
  6261.         i9xx_enable_pll(intel_crtc);
  6262.  
  6263.         i9xx_pfit_enable(intel_crtc);
  6264.  
  6265.         intel_crtc_load_lut(crtc);
  6266.  
  6267.         intel_update_watermarks(crtc);
  6268.         intel_enable_pipe(intel_crtc);
  6269.  
  6270.         assert_vblank_disabled(crtc);
  6271.         drm_crtc_vblank_on(crtc);
  6272.  
  6273.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6274.                 encoder->enable(encoder);
  6275. }
  6276.  
  6277. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  6278. {
  6279.         struct drm_device *dev = crtc->base.dev;
  6280.         struct drm_i915_private *dev_priv = dev->dev_private;
  6281.  
  6282.         if (!crtc->config->gmch_pfit.control)
  6283.                 return;
  6284.  
  6285.         assert_pipe_disabled(dev_priv, crtc->pipe);
  6286.  
  6287.         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  6288.                          I915_READ(PFIT_CONTROL));
  6289.         I915_WRITE(PFIT_CONTROL, 0);
  6290. }
  6291.  
  6292. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  6293. {
  6294.         struct drm_device *dev = crtc->dev;
  6295.         struct drm_i915_private *dev_priv = dev->dev_private;
  6296.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6297.         struct intel_encoder *encoder;
  6298.         int pipe = intel_crtc->pipe;
  6299.  
  6300.         /*
  6301.          * On gen2 planes are double buffered but the pipe isn't, so we must
  6302.          * wait for planes to fully turn off before disabling the pipe.
  6303.          * We also need to wait on all gmch platforms because of the
  6304.          * self-refresh mode constraint explained above.
  6305.          */
  6306.         intel_wait_for_vblank(dev, pipe);
  6307.  
  6308.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6309.                 encoder->disable(encoder);
  6310.  
  6311.         drm_crtc_vblank_off(crtc);
  6312.         assert_vblank_disabled(crtc);
  6313.  
  6314.         intel_disable_pipe(intel_crtc);
  6315.  
  6316.         i9xx_pfit_disable(intel_crtc);
  6317.  
  6318.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6319.                 if (encoder->post_disable)
  6320.                         encoder->post_disable(encoder);
  6321.  
  6322.         if (!intel_crtc->config->has_dsi_encoder) {
  6323.                 if (IS_CHERRYVIEW(dev))
  6324.                         chv_disable_pll(dev_priv, pipe);
  6325.                 else if (IS_VALLEYVIEW(dev))
  6326.                         vlv_disable_pll(dev_priv, pipe);
  6327.                 else
  6328.                         i9xx_disable_pll(intel_crtc);
  6329.         }
  6330.  
  6331.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6332.                 if (encoder->post_pll_disable)
  6333.                         encoder->post_pll_disable(encoder);
  6334.  
  6335.         if (!IS_GEN2(dev))
  6336.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  6337. }
  6338.  
  6339. static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
  6340. {
  6341.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6342.         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  6343.         enum intel_display_power_domain domain;
  6344.         unsigned long domains;
  6345.  
  6346.         if (!intel_crtc->active)
  6347.                 return;
  6348.  
  6349.         if (to_intel_plane_state(crtc->primary->state)->visible) {
  6350.                 WARN_ON(intel_crtc->unpin_work);
  6351.  
  6352.                 intel_pre_disable_primary(crtc);
  6353.  
  6354.                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
  6355.                 to_intel_plane_state(crtc->primary->state)->visible = false;
  6356.         }
  6357.  
  6358.         dev_priv->display.crtc_disable(crtc);
  6359.         intel_crtc->active = false;
  6360.         intel_fbc_disable(intel_crtc);
  6361.         intel_update_watermarks(crtc);
  6362.         intel_disable_shared_dpll(intel_crtc);
  6363.  
  6364.         domains = intel_crtc->enabled_power_domains;
  6365.         for_each_power_domain(domain, domains)
  6366.                 intel_display_power_put(dev_priv, domain);
  6367.         intel_crtc->enabled_power_domains = 0;
  6368.  
  6369.         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
  6370.         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
  6371. }
  6372.  
  6373. /*
  6374.  * turn all crtc's off, but do not adjust state
  6375.  * This has to be paired with a call to intel_modeset_setup_hw_state.
  6376.  */
  6377. int intel_display_suspend(struct drm_device *dev)
  6378. {
  6379.         struct drm_i915_private *dev_priv = to_i915(dev);
  6380.         struct drm_atomic_state *state;
  6381.         int ret;
  6382.  
  6383.         state = drm_atomic_helper_suspend(dev);
  6384.         ret = PTR_ERR_OR_ZERO(state);
  6385.         if (ret)
  6386.                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
  6387.         else
  6388.                 dev_priv->modeset_restore_state = state;
  6389.         return ret;
  6390. }
  6391.  
  6392. void intel_encoder_destroy(struct drm_encoder *encoder)
  6393. {
  6394.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  6395.  
  6396.         drm_encoder_cleanup(encoder);
  6397.         kfree(intel_encoder);
  6398. }
  6399.  
  6400. /* Cross check the actual hw state with our own modeset state tracking (and it's
  6401.  * internal consistency). */
  6402. static void intel_connector_check_state(struct intel_connector *connector)
  6403. {
  6404.         struct drm_crtc *crtc = connector->base.state->crtc;
  6405.  
  6406.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  6407.                       connector->base.base.id,
  6408.                       connector->base.name);
  6409.  
  6410.         if (connector->get_hw_state(connector)) {
  6411.                 struct intel_encoder *encoder = connector->encoder;
  6412.                 struct drm_connector_state *conn_state = connector->base.state;
  6413.  
  6414.                 I915_STATE_WARN(!crtc,
  6415.                          "connector enabled without attached crtc\n");
  6416.  
  6417.                 if (!crtc)
  6418.                         return;
  6419.  
  6420.                 I915_STATE_WARN(!crtc->state->active,
  6421.                       "connector is active, but attached crtc isn't\n");
  6422.  
  6423.                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
  6424.                         return;
  6425.  
  6426.                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
  6427.                         "atomic encoder doesn't match attached encoder\n");
  6428.  
  6429.                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
  6430.                         "attached encoder crtc differs from connector crtc\n");
  6431.         } else {
  6432.                 I915_STATE_WARN(crtc && crtc->state->active,
  6433.                         "attached crtc is active, but connector isn't\n");
  6434.                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
  6435.                         "best encoder set without crtc!\n");
  6436.         }
  6437. }
  6438.  
  6439. int intel_connector_init(struct intel_connector *connector)
  6440. {
  6441.         drm_atomic_helper_connector_reset(&connector->base);
  6442.  
  6443.         if (!connector->base.state)
  6444.                 return -ENOMEM;
  6445.  
  6446.         return 0;
  6447. }
  6448.  
  6449. struct intel_connector *intel_connector_alloc(void)
  6450. {
  6451.         struct intel_connector *connector;
  6452.  
  6453.         connector = kzalloc(sizeof *connector, GFP_KERNEL);
  6454.         if (!connector)
  6455.                 return NULL;
  6456.  
  6457.         if (intel_connector_init(connector) < 0) {
  6458.                 kfree(connector);
  6459.                 return NULL;
  6460.         }
  6461.  
  6462.         return connector;
  6463. }
  6464.  
  6465. /* Simple connector->get_hw_state implementation for encoders that support only
  6466.  * one connector and no cloning and hence the encoder state determines the state
  6467.  * of the connector. */
  6468. bool intel_connector_get_hw_state(struct intel_connector *connector)
  6469. {
  6470.         enum pipe pipe = 0;
  6471.         struct intel_encoder *encoder = connector->encoder;
  6472.  
  6473.         return encoder->get_hw_state(encoder, &pipe);
  6474. }
  6475.  
  6476. static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
  6477. {
  6478.         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
  6479.                 return crtc_state->fdi_lanes;
  6480.  
  6481.         return 0;
  6482. }
  6483.  
  6484. static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  6485.                                      struct intel_crtc_state *pipe_config)
  6486. {
  6487.         struct drm_atomic_state *state = pipe_config->base.state;
  6488.         struct intel_crtc *other_crtc;
  6489.         struct intel_crtc_state *other_crtc_state;
  6490.  
  6491.         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  6492.                       pipe_name(pipe), pipe_config->fdi_lanes);
  6493.         if (pipe_config->fdi_lanes > 4) {
  6494.                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  6495.                               pipe_name(pipe), pipe_config->fdi_lanes);
  6496.                 return -EINVAL;
  6497.         }
  6498.  
  6499.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6500.                 if (pipe_config->fdi_lanes > 2) {
  6501.                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  6502.                                       pipe_config->fdi_lanes);
  6503.                         return -EINVAL;
  6504.                 } else {
  6505.                         return 0;
  6506.                 }
  6507.         }
  6508.  
  6509.         if (INTEL_INFO(dev)->num_pipes == 2)
  6510.                 return 0;
  6511.  
  6512.         /* Ivybridge 3 pipe is really complicated */
  6513.         switch (pipe) {
  6514.         case PIPE_A:
  6515.                 return 0;
  6516.         case PIPE_B:
  6517.                 if (pipe_config->fdi_lanes <= 2)
  6518.                         return 0;
  6519.  
  6520.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
  6521.                 other_crtc_state =
  6522.                         intel_atomic_get_crtc_state(state, other_crtc);
  6523.                 if (IS_ERR(other_crtc_state))
  6524.                         return PTR_ERR(other_crtc_state);
  6525.  
  6526.                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
  6527.                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  6528.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6529.                         return -EINVAL;
  6530.                 }
  6531.                 return 0;
  6532.         case PIPE_C:
  6533.                 if (pipe_config->fdi_lanes > 2) {
  6534.                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
  6535.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6536.                         return -EINVAL;
  6537.                 }
  6538.  
  6539.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
  6540.                 other_crtc_state =
  6541.                         intel_atomic_get_crtc_state(state, other_crtc);
  6542.                 if (IS_ERR(other_crtc_state))
  6543.                         return PTR_ERR(other_crtc_state);
  6544.  
  6545.                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
  6546.                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  6547.                         return -EINVAL;
  6548.                 }
  6549.                 return 0;
  6550.         default:
  6551.                 BUG();
  6552.         }
  6553. }
  6554.  
  6555. #define RETRY 1
  6556. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  6557.                                        struct intel_crtc_state *pipe_config)
  6558. {
  6559.         struct drm_device *dev = intel_crtc->base.dev;
  6560.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6561.         int lane, link_bw, fdi_dotclock, ret;
  6562.         bool needs_recompute = false;
  6563.  
  6564. retry:
  6565.         /* FDI is a binary signal running at ~2.7GHz, encoding
  6566.          * each output octet as 10 bits. The actual frequency
  6567.          * is stored as a divider into a 100MHz clock, and the
  6568.          * mode pixel clock is stored in units of 1KHz.
  6569.          * Hence the bw of each lane in terms of the mode signal
  6570.          * is:
  6571.          */
  6572.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  6573.  
  6574.         fdi_dotclock = adjusted_mode->crtc_clock;
  6575.  
  6576.         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  6577.                                            pipe_config->pipe_bpp);
  6578.  
  6579.         pipe_config->fdi_lanes = lane;
  6580.  
  6581.         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  6582.                                link_bw, &pipe_config->fdi_m_n);
  6583.  
  6584.         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  6585.                                        intel_crtc->pipe, pipe_config);
  6586.         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
  6587.                 pipe_config->pipe_bpp -= 2*3;
  6588.                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  6589.                               pipe_config->pipe_bpp);
  6590.                 needs_recompute = true;
  6591.                 pipe_config->bw_constrained = true;
  6592.  
  6593.                 goto retry;
  6594.         }
  6595.  
  6596.         if (needs_recompute)
  6597.                 return RETRY;
  6598.  
  6599.         return ret;
  6600. }
  6601.  
  6602. static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
  6603.                                      struct intel_crtc_state *pipe_config)
  6604. {
  6605.         if (pipe_config->pipe_bpp > 24)
  6606.                 return false;
  6607.  
  6608.         /* HSW can handle pixel rate up to cdclk? */
  6609.         if (IS_HASWELL(dev_priv->dev))
  6610.                 return true;
  6611.  
  6612.         /*
  6613.          * We compare against max which means we must take
  6614.          * the increased cdclk requirement into account when
  6615.          * calculating the new cdclk.
  6616.          *
  6617.          * Should measure whether using a lower cdclk w/o IPS
  6618.          */
  6619.         return ilk_pipe_pixel_rate(pipe_config) <=
  6620.                 dev_priv->max_cdclk_freq * 95 / 100;
  6621. }
  6622.  
  6623. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  6624.                                    struct intel_crtc_state *pipe_config)
  6625. {
  6626.         struct drm_device *dev = crtc->base.dev;
  6627.         struct drm_i915_private *dev_priv = dev->dev_private;
  6628.  
  6629.         pipe_config->ips_enabled = i915.enable_ips &&
  6630.                 hsw_crtc_supports_ips(crtc) &&
  6631.                 pipe_config_supports_ips(dev_priv, pipe_config);
  6632. }
  6633.  
  6634. static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
  6635. {
  6636.         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  6637.  
  6638.         /* GDG double wide on either pipe, otherwise pipe A only */
  6639.         return INTEL_INFO(dev_priv)->gen < 4 &&
  6640.                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
  6641. }
  6642.  
  6643. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  6644.                                      struct intel_crtc_state *pipe_config)
  6645. {
  6646.         struct drm_device *dev = crtc->base.dev;
  6647.         struct drm_i915_private *dev_priv = dev->dev_private;
  6648.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6649.  
  6650.         /* FIXME should check pixel clock limits on all platforms */
  6651.         if (INTEL_INFO(dev)->gen < 4) {
  6652.                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
  6653.  
  6654.                 /*
  6655.                  * Enable double wide mode when the dot clock
  6656.                  * is > 90% of the (display) core speed.
  6657.                  */
  6658.                 if (intel_crtc_supports_double_wide(crtc) &&
  6659.                     adjusted_mode->crtc_clock > clock_limit) {
  6660.                         clock_limit *= 2;
  6661.                         pipe_config->double_wide = true;
  6662.                 }
  6663.  
  6664.                 if (adjusted_mode->crtc_clock > clock_limit) {
  6665.                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
  6666.                                       adjusted_mode->crtc_clock, clock_limit,
  6667.                                       yesno(pipe_config->double_wide));
  6668.                         return -EINVAL;
  6669.                 }
  6670.         }
  6671.  
  6672.         /*
  6673.          * Pipe horizontal size must be even in:
  6674.          * - DVO ganged mode
  6675.          * - LVDS dual channel mode
  6676.          * - Double wide pipe
  6677.          */
  6678.         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
  6679.              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  6680.                 pipe_config->pipe_src_w &= ~1;
  6681.  
  6682.         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  6683.          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  6684.          */
  6685.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  6686.                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
  6687.                 return -EINVAL;
  6688.  
  6689.         if (HAS_IPS(dev))
  6690.                 hsw_compute_ips_config(crtc, pipe_config);
  6691.  
  6692.         if (pipe_config->has_pch_encoder)
  6693.                 return ironlake_fdi_compute_config(crtc, pipe_config);
  6694.  
  6695.         return 0;
  6696. }
  6697.  
  6698. static int skylake_get_display_clock_speed(struct drm_device *dev)
  6699. {
  6700.         struct drm_i915_private *dev_priv = to_i915(dev);
  6701.         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  6702.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6703.         uint32_t linkrate;
  6704.  
  6705.         if (!(lcpll1 & LCPLL_PLL_ENABLE))
  6706.                 return 24000; /* 24MHz is the cd freq with NSSC ref */
  6707.  
  6708.         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  6709.                 return 540000;
  6710.  
  6711.         linkrate = (I915_READ(DPLL_CTRL1) &
  6712.                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  6713.  
  6714.         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
  6715.             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
  6716.                 /* vco 8640 */
  6717.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6718.                 case CDCLK_FREQ_450_432:
  6719.                         return 432000;
  6720.                 case CDCLK_FREQ_337_308:
  6721.                         return 308570;
  6722.                 case CDCLK_FREQ_675_617:
  6723.                         return 617140;
  6724.                 default:
  6725.                         WARN(1, "Unknown cd freq selection\n");
  6726.                 }
  6727.         } else {
  6728.                 /* vco 8100 */
  6729.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6730.                 case CDCLK_FREQ_450_432:
  6731.                         return 450000;
  6732.                 case CDCLK_FREQ_337_308:
  6733.                         return 337500;
  6734.                 case CDCLK_FREQ_675_617:
  6735.                         return 675000;
  6736.                 default:
  6737.                         WARN(1, "Unknown cd freq selection\n");
  6738.                 }
  6739.         }
  6740.  
  6741.         /* error case, do as if DPLL0 isn't enabled */
  6742.         return 24000;
  6743. }
  6744.  
  6745. static int broxton_get_display_clock_speed(struct drm_device *dev)
  6746. {
  6747.         struct drm_i915_private *dev_priv = to_i915(dev);
  6748.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6749.         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
  6750.         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
  6751.         int cdclk;
  6752.  
  6753.         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
  6754.                 return 19200;
  6755.  
  6756.         cdclk = 19200 * pll_ratio / 2;
  6757.  
  6758.         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
  6759.         case BXT_CDCLK_CD2X_DIV_SEL_1:
  6760.                 return cdclk;  /* 576MHz or 624MHz */
  6761.         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
  6762.                 return cdclk * 2 / 3; /* 384MHz */
  6763.         case BXT_CDCLK_CD2X_DIV_SEL_2:
  6764.                 return cdclk / 2; /* 288MHz */
  6765.         case BXT_CDCLK_CD2X_DIV_SEL_4:
  6766.                 return cdclk / 4; /* 144MHz */
  6767.         }
  6768.  
  6769.         /* error case, do as if DE PLL isn't enabled */
  6770.         return 19200;
  6771. }
  6772.  
  6773. static int broadwell_get_display_clock_speed(struct drm_device *dev)
  6774. {
  6775.         struct drm_i915_private *dev_priv = dev->dev_private;
  6776.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6777.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6778.  
  6779.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6780.                 return 800000;
  6781.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6782.                 return 450000;
  6783.         else if (freq == LCPLL_CLK_FREQ_450)
  6784.                 return 450000;
  6785.         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  6786.                 return 540000;
  6787.         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  6788.                 return 337500;
  6789.         else
  6790.                 return 675000;
  6791. }
  6792.  
  6793. static int haswell_get_display_clock_speed(struct drm_device *dev)
  6794. {
  6795.         struct drm_i915_private *dev_priv = dev->dev_private;
  6796.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6797.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6798.  
  6799.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6800.                 return 800000;
  6801.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6802.                 return 450000;
  6803.         else if (freq == LCPLL_CLK_FREQ_450)
  6804.                 return 450000;
  6805.         else if (IS_HSW_ULT(dev))
  6806.                 return 337500;
  6807.         else
  6808.                 return 540000;
  6809. }
  6810.  
  6811. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  6812. {
  6813.         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
  6814.                                       CCK_DISPLAY_CLOCK_CONTROL);
  6815. }
  6816.  
  6817. static int ilk_get_display_clock_speed(struct drm_device *dev)
  6818. {
  6819.         return 450000;
  6820. }
  6821.  
  6822. static int i945_get_display_clock_speed(struct drm_device *dev)
  6823. {
  6824.         return 400000;
  6825. }
  6826.  
  6827. static int i915_get_display_clock_speed(struct drm_device *dev)
  6828. {
  6829.         return 333333;
  6830. }
  6831.  
  6832. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  6833. {
  6834.         return 200000;
  6835. }
  6836.  
  6837. static int pnv_get_display_clock_speed(struct drm_device *dev)
  6838. {
  6839.         u16 gcfgc = 0;
  6840.  
  6841.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6842.  
  6843.         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6844.         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  6845.                 return 266667;
  6846.         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  6847.                 return 333333;
  6848.         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  6849.                 return 444444;
  6850.         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  6851.                 return 200000;
  6852.         default:
  6853.                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  6854.         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  6855.                 return 133333;
  6856.         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  6857.                 return 166667;
  6858.         }
  6859. }
  6860.  
  6861. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  6862. {
  6863.         u16 gcfgc = 0;
  6864.  
  6865.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6866.  
  6867.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  6868.                 return 133333;
  6869.         else {
  6870.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6871.                 case GC_DISPLAY_CLOCK_333_MHZ:
  6872.                         return 333333;
  6873.                 default:
  6874.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  6875.                         return 190000;
  6876.                 }
  6877.         }
  6878. }
  6879.  
  6880. static int i865_get_display_clock_speed(struct drm_device *dev)
  6881. {
  6882.         return 266667;
  6883. }
  6884.  
  6885. static int i85x_get_display_clock_speed(struct drm_device *dev)
  6886. {
  6887.         u16 hpllcc = 0;
  6888.  
  6889.         /*
  6890.          * 852GM/852GMV only supports 133 MHz and the HPLLCC
  6891.          * encoding is different :(
  6892.          * FIXME is this the right way to detect 852GM/852GMV?
  6893.          */
  6894.         if (dev->pdev->revision == 0x1)
  6895.                 return 133333;
  6896.  
  6897. //   pci_bus_read_config_word(dev->pdev->bus,
  6898. //                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
  6899.  
  6900.         /* Assume that the hardware is in the high speed state.  This
  6901.          * should be the default.
  6902.          */
  6903.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  6904.         case GC_CLOCK_133_200:
  6905.         case GC_CLOCK_133_200_2:
  6906.         case GC_CLOCK_100_200:
  6907.                 return 200000;
  6908.         case GC_CLOCK_166_250:
  6909.                 return 250000;
  6910.         case GC_CLOCK_100_133:
  6911.                 return 133333;
  6912.         case GC_CLOCK_133_266:
  6913.         case GC_CLOCK_133_266_2:
  6914.         case GC_CLOCK_166_266:
  6915.                 return 266667;
  6916.         }
  6917.  
  6918.         /* Shouldn't happen */
  6919.         return 0;
  6920. }
  6921.  
  6922. static int i830_get_display_clock_speed(struct drm_device *dev)
  6923. {
  6924.         return 133333;
  6925. }
  6926.  
  6927. static unsigned int intel_hpll_vco(struct drm_device *dev)
  6928. {
  6929.         struct drm_i915_private *dev_priv = dev->dev_private;
  6930.         static const unsigned int blb_vco[8] = {
  6931.                 [0] = 3200000,
  6932.                 [1] = 4000000,
  6933.                 [2] = 5333333,
  6934.                 [3] = 4800000,
  6935.                 [4] = 6400000,
  6936.         };
  6937.         static const unsigned int pnv_vco[8] = {
  6938.                 [0] = 3200000,
  6939.                 [1] = 4000000,
  6940.                 [2] = 5333333,
  6941.                 [3] = 4800000,
  6942.                 [4] = 2666667,
  6943.         };
  6944.         static const unsigned int cl_vco[8] = {
  6945.                 [0] = 3200000,
  6946.                 [1] = 4000000,
  6947.                 [2] = 5333333,
  6948.                 [3] = 6400000,
  6949.                 [4] = 3333333,
  6950.                 [5] = 3566667,
  6951.                 [6] = 4266667,
  6952.         };
  6953.         static const unsigned int elk_vco[8] = {
  6954.                 [0] = 3200000,
  6955.                 [1] = 4000000,
  6956.                 [2] = 5333333,
  6957.                 [3] = 4800000,
  6958.         };
  6959.         static const unsigned int ctg_vco[8] = {
  6960.                 [0] = 3200000,
  6961.                 [1] = 4000000,
  6962.                 [2] = 5333333,
  6963.                 [3] = 6400000,
  6964.                 [4] = 2666667,
  6965.                 [5] = 4266667,
  6966.         };
  6967.         const unsigned int *vco_table;
  6968.         unsigned int vco;
  6969.         uint8_t tmp = 0;
  6970.  
  6971.         /* FIXME other chipsets? */
  6972.         if (IS_GM45(dev))
  6973.                 vco_table = ctg_vco;
  6974.         else if (IS_G4X(dev))
  6975.                 vco_table = elk_vco;
  6976.         else if (IS_CRESTLINE(dev))
  6977.                 vco_table = cl_vco;
  6978.         else if (IS_PINEVIEW(dev))
  6979.                 vco_table = pnv_vco;
  6980.         else if (IS_G33(dev))
  6981.                 vco_table = blb_vco;
  6982.         else
  6983.                 return 0;
  6984.  
  6985.         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
  6986.  
  6987.         vco = vco_table[tmp & 0x7];
  6988.         if (vco == 0)
  6989.                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
  6990.         else
  6991.                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
  6992.  
  6993.         return vco;
  6994. }
  6995.  
  6996. static int gm45_get_display_clock_speed(struct drm_device *dev)
  6997. {
  6998.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  6999.         uint16_t tmp = 0;
  7000.  
  7001.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7002.  
  7003.         cdclk_sel = (tmp >> 12) & 0x1;
  7004.  
  7005.         switch (vco) {
  7006.         case 2666667:
  7007.         case 4000000:
  7008.         case 5333333:
  7009.                 return cdclk_sel ? 333333 : 222222;
  7010.         case 3200000:
  7011.                 return cdclk_sel ? 320000 : 228571;
  7012.         default:
  7013.                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
  7014.                 return 222222;
  7015.         }
  7016. }
  7017.  
  7018. static int i965gm_get_display_clock_speed(struct drm_device *dev)
  7019. {
  7020.         static const uint8_t div_3200[] = { 16, 10,  8 };
  7021.         static const uint8_t div_4000[] = { 20, 12, 10 };
  7022.         static const uint8_t div_5333[] = { 24, 16, 14 };
  7023.         const uint8_t *div_table;
  7024.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7025.         uint16_t tmp = 0;
  7026.  
  7027.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7028.  
  7029.         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
  7030.  
  7031.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7032.                 goto fail;
  7033.  
  7034.         switch (vco) {
  7035.         case 3200000:
  7036.                 div_table = div_3200;
  7037.                 break;
  7038.         case 4000000:
  7039.                 div_table = div_4000;
  7040.                 break;
  7041.         case 5333333:
  7042.                 div_table = div_5333;
  7043.                 break;
  7044.         default:
  7045.                 goto fail;
  7046.         }
  7047.  
  7048.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7049.  
  7050. fail:
  7051.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
  7052.         return 200000;
  7053. }
  7054.  
  7055. static int g33_get_display_clock_speed(struct drm_device *dev)
  7056. {
  7057.         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
  7058.         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
  7059.         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
  7060.         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
  7061.         const uint8_t *div_table;
  7062.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7063.         uint16_t tmp = 0;
  7064.  
  7065.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7066.  
  7067.         cdclk_sel = (tmp >> 4) & 0x7;
  7068.  
  7069.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7070.                 goto fail;
  7071.  
  7072.         switch (vco) {
  7073.         case 3200000:
  7074.                 div_table = div_3200;
  7075.                 break;
  7076.         case 4000000:
  7077.                 div_table = div_4000;
  7078.                 break;
  7079.         case 4800000:
  7080.                 div_table = div_4800;
  7081.                 break;
  7082.         case 5333333:
  7083.                 div_table = div_5333;
  7084.                 break;
  7085.         default:
  7086.                 goto fail;
  7087.         }
  7088.  
  7089.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7090.  
  7091. fail:
  7092.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
  7093.         return 190476;
  7094. }
  7095.  
  7096. static void
  7097. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  7098. {
  7099.         while (*num > DATA_LINK_M_N_MASK ||
  7100.                *den > DATA_LINK_M_N_MASK) {
  7101.                 *num >>= 1;
  7102.                 *den >>= 1;
  7103.         }
  7104. }
  7105.  
  7106. static void compute_m_n(unsigned int m, unsigned int n,
  7107.                         uint32_t *ret_m, uint32_t *ret_n)
  7108. {
  7109.         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  7110.         *ret_m = div_u64((uint64_t) m * *ret_n, n);
  7111.         intel_reduce_m_n_ratio(ret_m, ret_n);
  7112. }
  7113.  
  7114. void
  7115. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  7116.                        int pixel_clock, int link_clock,
  7117.                        struct intel_link_m_n *m_n)
  7118. {
  7119.         m_n->tu = 64;
  7120.  
  7121.         compute_m_n(bits_per_pixel * pixel_clock,
  7122.                     link_clock * nlanes * 8,
  7123.                     &m_n->gmch_m, &m_n->gmch_n);
  7124.  
  7125.         compute_m_n(pixel_clock, link_clock,
  7126.                     &m_n->link_m, &m_n->link_n);
  7127. }
  7128.  
  7129. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  7130. {
  7131.         if (i915.panel_use_ssc >= 0)
  7132.                 return i915.panel_use_ssc != 0;
  7133.         return dev_priv->vbt.lvds_use_ssc
  7134.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  7135. }
  7136.  
  7137. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  7138.                            int num_connectors)
  7139. {
  7140.         struct drm_device *dev = crtc_state->base.crtc->dev;
  7141.         struct drm_i915_private *dev_priv = dev->dev_private;
  7142.         int refclk;
  7143.  
  7144.         WARN_ON(!crtc_state->base.state);
  7145.  
  7146.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
  7147.                 refclk = 100000;
  7148.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7149.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  7150.                 refclk = dev_priv->vbt.lvds_ssc_freq;
  7151.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
  7152.         } else if (!IS_GEN2(dev)) {
  7153.                 refclk = 96000;
  7154.         } else {
  7155.                 refclk = 48000;
  7156.         }
  7157.  
  7158.         return refclk;
  7159. }
  7160.  
  7161. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  7162. {
  7163.         return (1 << dpll->n) << 16 | dpll->m2;
  7164. }
  7165.  
  7166. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  7167. {
  7168.         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  7169. }
  7170.  
  7171. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  7172.                                      struct intel_crtc_state *crtc_state,
  7173.                                      intel_clock_t *reduced_clock)
  7174. {
  7175.         struct drm_device *dev = crtc->base.dev;
  7176.         u32 fp, fp2 = 0;
  7177.  
  7178.         if (IS_PINEVIEW(dev)) {
  7179.                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
  7180.                 if (reduced_clock)
  7181.                         fp2 = pnv_dpll_compute_fp(reduced_clock);
  7182.         } else {
  7183.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  7184.                 if (reduced_clock)
  7185.                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
  7186.         }
  7187.  
  7188.         crtc_state->dpll_hw_state.fp0 = fp;
  7189.  
  7190.         crtc->lowfreq_avail = false;
  7191.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7192.             reduced_clock) {
  7193.                 crtc_state->dpll_hw_state.fp1 = fp2;
  7194.                 crtc->lowfreq_avail = true;
  7195.         } else {
  7196.                 crtc_state->dpll_hw_state.fp1 = fp;
  7197.         }
  7198. }
  7199.  
  7200. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  7201.                 pipe)
  7202. {
  7203.         u32 reg_val;
  7204.  
  7205.         /*
  7206.          * PLLB opamp always calibrates to max value of 0x3f, force enable it
  7207.          * and set it to a reasonable value instead.
  7208.          */
  7209.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7210.         reg_val &= 0xffffff00;
  7211.         reg_val |= 0x00000030;
  7212.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7213.  
  7214.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7215.         reg_val &= 0x8cffffff;
  7216.         reg_val = 0x8c000000;
  7217.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7218.  
  7219.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7220.         reg_val &= 0xffffff00;
  7221.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7222.  
  7223.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7224.         reg_val &= 0x00ffffff;
  7225.         reg_val |= 0xb0000000;
  7226.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7227. }
  7228.  
  7229. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  7230.                                          struct intel_link_m_n *m_n)
  7231. {
  7232.         struct drm_device *dev = crtc->base.dev;
  7233.         struct drm_i915_private *dev_priv = dev->dev_private;
  7234.         int pipe = crtc->pipe;
  7235.  
  7236.         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7237.         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  7238.         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  7239.         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  7240. }
  7241.  
  7242. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  7243.                                          struct intel_link_m_n *m_n,
  7244.                                          struct intel_link_m_n *m2_n2)
  7245. {
  7246.         struct drm_device *dev = crtc->base.dev;
  7247.         struct drm_i915_private *dev_priv = dev->dev_private;
  7248.         int pipe = crtc->pipe;
  7249.         enum transcoder transcoder = crtc->config->cpu_transcoder;
  7250.  
  7251.         if (INTEL_INFO(dev)->gen >= 5) {
  7252.                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7253.                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  7254.                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  7255.                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  7256.                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
  7257.                  * for gen < 8) and if DRRS is supported (to make sure the
  7258.                  * registers are not unnecessarily accessed).
  7259.                  */
  7260.                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
  7261.                         crtc->config->has_drrs) {
  7262.                         I915_WRITE(PIPE_DATA_M2(transcoder),
  7263.                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
  7264.                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
  7265.                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
  7266.                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
  7267.                 }
  7268.         } else {
  7269.                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7270.                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  7271.                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  7272.                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  7273.         }
  7274. }
  7275.  
  7276. void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
  7277. {
  7278.         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
  7279.  
  7280.         if (m_n == M1_N1) {
  7281.                 dp_m_n = &crtc->config->dp_m_n;
  7282.                 dp_m2_n2 = &crtc->config->dp_m2_n2;
  7283.         } else if (m_n == M2_N2) {
  7284.  
  7285.                 /*
  7286.                  * M2_N2 registers are not supported. Hence m2_n2 divider value
  7287.                  * needs to be programmed into M1_N1.
  7288.                  */
  7289.                 dp_m_n = &crtc->config->dp_m2_n2;
  7290.         } else {
  7291.                 DRM_ERROR("Unsupported divider value\n");
  7292.                 return;
  7293.         }
  7294.  
  7295.         if (crtc->config->has_pch_encoder)
  7296.                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
  7297.         else
  7298.                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
  7299. }
  7300.  
  7301. static void vlv_compute_dpll(struct intel_crtc *crtc,
  7302.                              struct intel_crtc_state *pipe_config)
  7303. {
  7304.         u32 dpll, dpll_md;
  7305.  
  7306.         /*
  7307.          * Enable DPIO clock input. We should never disable the reference
  7308.          * clock for pipe B, since VGA hotplug / manual detection depends
  7309.          * on it.
  7310.          */
  7311.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
  7312.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
  7313.         /* We should never disable this, set it here for state tracking */
  7314.         if (crtc->pipe == PIPE_B)
  7315.                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7316.         dpll |= DPLL_VCO_ENABLE;
  7317.         pipe_config->dpll_hw_state.dpll = dpll;
  7318.  
  7319.         dpll_md = (pipe_config->pixel_multiplier - 1)
  7320.                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7321.         pipe_config->dpll_hw_state.dpll_md = dpll_md;
  7322. }
  7323.  
  7324. static void vlv_prepare_pll(struct intel_crtc *crtc,
  7325.                             const struct intel_crtc_state *pipe_config)
  7326. {
  7327.         struct drm_device *dev = crtc->base.dev;
  7328.         struct drm_i915_private *dev_priv = dev->dev_private;
  7329.         int pipe = crtc->pipe;
  7330.         u32 mdiv;
  7331.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  7332.         u32 coreclk, reg_val;
  7333.  
  7334.         mutex_lock(&dev_priv->sb_lock);
  7335.  
  7336.         bestn = pipe_config->dpll.n;
  7337.         bestm1 = pipe_config->dpll.m1;
  7338.         bestm2 = pipe_config->dpll.m2;
  7339.         bestp1 = pipe_config->dpll.p1;
  7340.         bestp2 = pipe_config->dpll.p2;
  7341.  
  7342.         /* See eDP HDMI DPIO driver vbios notes doc */
  7343.  
  7344.         /* PLL B needs special handling */
  7345.         if (pipe == PIPE_B)
  7346.                 vlv_pllb_recal_opamp(dev_priv, pipe);
  7347.  
  7348.         /* Set up Tx target for periodic Rcomp update */
  7349.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
  7350.  
  7351.         /* Disable target IRef on PLL */
  7352.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
  7353.         reg_val &= 0x00ffffff;
  7354.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
  7355.  
  7356.         /* Disable fast lock */
  7357.         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
  7358.  
  7359.         /* Set idtafcrecal before PLL is enabled */
  7360.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  7361.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  7362.         mdiv |= ((bestn << DPIO_N_SHIFT));
  7363.         mdiv |= (1 << DPIO_K_SHIFT);
  7364.  
  7365.         /*
  7366.          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  7367.          * but we don't support that).
  7368.          * Note: don't use the DAC post divider as it seems unstable.
  7369.          */
  7370.         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  7371.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7372.  
  7373.         mdiv |= DPIO_ENABLE_CALIBRATION;
  7374.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7375.  
  7376.         /* Set HBR and RBR LPF coefficients */
  7377.         if (pipe_config->port_clock == 162000 ||
  7378.             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
  7379.             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  7380.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7381.                                  0x009f0003);
  7382.         else
  7383.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7384.                                  0x00d0000f);
  7385.  
  7386.         if (pipe_config->has_dp_encoder) {
  7387.                 /* Use SSC source */
  7388.                 if (pipe == PIPE_A)
  7389.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7390.                                          0x0df40000);
  7391.                 else
  7392.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7393.                                          0x0df70000);
  7394.         } else { /* HDMI or VGA */
  7395.                 /* Use bend source */
  7396.                 if (pipe == PIPE_A)
  7397.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7398.                                          0x0df70000);
  7399.                 else
  7400.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7401.                                          0x0df40000);
  7402.         }
  7403.  
  7404.         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
  7405.         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  7406.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  7407.             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  7408.                 coreclk |= 0x01000000;
  7409.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
  7410.  
  7411.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
  7412.         mutex_unlock(&dev_priv->sb_lock);
  7413. }
  7414.  
  7415. static void chv_compute_dpll(struct intel_crtc *crtc,
  7416.                              struct intel_crtc_state *pipe_config)
  7417. {
  7418.         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
  7419.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
  7420.                 DPLL_VCO_ENABLE;
  7421.         if (crtc->pipe != PIPE_A)
  7422.                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7423.  
  7424.         pipe_config->dpll_hw_state.dpll_md =
  7425.                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7426. }
  7427.  
  7428. static void chv_prepare_pll(struct intel_crtc *crtc,
  7429.                             const struct intel_crtc_state *pipe_config)
  7430. {
  7431.         struct drm_device *dev = crtc->base.dev;
  7432.         struct drm_i915_private *dev_priv = dev->dev_private;
  7433.         int pipe = crtc->pipe;
  7434.         i915_reg_t dpll_reg = DPLL(crtc->pipe);
  7435.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  7436.         u32 loopfilter, tribuf_calcntr;
  7437.         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
  7438.         u32 dpio_val;
  7439.         int vco;
  7440.  
  7441.         bestn = pipe_config->dpll.n;
  7442.         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
  7443.         bestm1 = pipe_config->dpll.m1;
  7444.         bestm2 = pipe_config->dpll.m2 >> 22;
  7445.         bestp1 = pipe_config->dpll.p1;
  7446.         bestp2 = pipe_config->dpll.p2;
  7447.         vco = pipe_config->dpll.vco;
  7448.         dpio_val = 0;
  7449.         loopfilter = 0;
  7450.  
  7451.         /*
  7452.          * Enable Refclk and SSC
  7453.          */
  7454.         I915_WRITE(dpll_reg,
  7455.                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
  7456.  
  7457.         mutex_lock(&dev_priv->sb_lock);
  7458.  
  7459.         /* p1 and p2 divider */
  7460.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
  7461.                         5 << DPIO_CHV_S1_DIV_SHIFT |
  7462.                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
  7463.                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
  7464.                         1 << DPIO_CHV_K_DIV_SHIFT);
  7465.  
  7466.         /* Feedback post-divider - m2 */
  7467.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
  7468.  
  7469.         /* Feedback refclk divider - n and m1 */
  7470.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
  7471.                         DPIO_CHV_M1_DIV_BY_2 |
  7472.                         1 << DPIO_CHV_N_DIV_SHIFT);
  7473.  
  7474.         /* M2 fraction division */
  7475.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
  7476.  
  7477.         /* M2 fraction division enable */
  7478.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  7479.         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
  7480.         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
  7481.         if (bestm2_frac)
  7482.                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
  7483.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
  7484.  
  7485.         /* Program digital lock detect threshold */
  7486.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
  7487.         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
  7488.                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
  7489.         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
  7490.         if (!bestm2_frac)
  7491.                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
  7492.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
  7493.  
  7494.         /* Loop filter */
  7495.         if (vco == 5400000) {
  7496.                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
  7497.                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
  7498.                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7499.                 tribuf_calcntr = 0x9;
  7500.         } else if (vco <= 6200000) {
  7501.                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
  7502.                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
  7503.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7504.                 tribuf_calcntr = 0x9;
  7505.         } else if (vco <= 6480000) {
  7506.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7507.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7508.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7509.                 tribuf_calcntr = 0x8;
  7510.         } else {
  7511.                 /* Not supported. Apply the same limits as in the max case */
  7512.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7513.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7514.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7515.                 tribuf_calcntr = 0;
  7516.         }
  7517.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
  7518.  
  7519.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
  7520.         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
  7521.         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
  7522.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
  7523.  
  7524.         /* AFC Recal */
  7525.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
  7526.                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
  7527.                         DPIO_AFC_RECAL);
  7528.  
  7529.         mutex_unlock(&dev_priv->sb_lock);
  7530. }
  7531.  
  7532. /**
  7533.  * vlv_force_pll_on - forcibly enable just the PLL
  7534.  * @dev_priv: i915 private structure
  7535.  * @pipe: pipe PLL to enable
  7536.  * @dpll: PLL configuration
  7537.  *
  7538.  * Enable the PLL for @pipe using the supplied @dpll config. To be used
  7539.  * in cases where we need the PLL enabled even when @pipe is not going to
  7540.  * be enabled.
  7541.  */
  7542. int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
  7543.                      const struct dpll *dpll)
  7544. {
  7545.         struct intel_crtc *crtc =
  7546.                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  7547.         struct intel_crtc_state *pipe_config;
  7548.  
  7549.         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7550.         if (!pipe_config)
  7551.                 return -ENOMEM;
  7552.  
  7553.         pipe_config->base.crtc = &crtc->base;
  7554.         pipe_config->pixel_multiplier = 1;
  7555.         pipe_config->dpll = *dpll;
  7556.  
  7557.         if (IS_CHERRYVIEW(dev)) {
  7558.                 chv_compute_dpll(crtc, pipe_config);
  7559.                 chv_prepare_pll(crtc, pipe_config);
  7560.                 chv_enable_pll(crtc, pipe_config);
  7561.         } else {
  7562.                 vlv_compute_dpll(crtc, pipe_config);
  7563.                 vlv_prepare_pll(crtc, pipe_config);
  7564.                 vlv_enable_pll(crtc, pipe_config);
  7565.         }
  7566.  
  7567.         kfree(pipe_config);
  7568.  
  7569.         return 0;
  7570. }
  7571.  
  7572. /**
  7573.  * vlv_force_pll_off - forcibly disable just the PLL
  7574.  * @dev_priv: i915 private structure
  7575.  * @pipe: pipe PLL to disable
  7576.  *
  7577.  * Disable the PLL for @pipe. To be used in cases where we need
  7578.  * the PLL enabled even when @pipe is not going to be enabled.
  7579.  */
  7580. void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
  7581. {
  7582.         if (IS_CHERRYVIEW(dev))
  7583.                 chv_disable_pll(to_i915(dev), pipe);
  7584.         else
  7585.                 vlv_disable_pll(to_i915(dev), pipe);
  7586. }
  7587.  
  7588. static void i9xx_compute_dpll(struct intel_crtc *crtc,
  7589.                               struct intel_crtc_state *crtc_state,
  7590.                               intel_clock_t *reduced_clock,
  7591.                               int num_connectors)
  7592. {
  7593.         struct drm_device *dev = crtc->base.dev;
  7594.         struct drm_i915_private *dev_priv = dev->dev_private;
  7595.         u32 dpll;
  7596.         bool is_sdvo;
  7597.         struct dpll *clock = &crtc_state->dpll;
  7598.  
  7599.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7600.  
  7601.         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
  7602.                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
  7603.  
  7604.         dpll = DPLL_VGA_MODE_DIS;
  7605.  
  7606.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  7607.                 dpll |= DPLLB_MODE_LVDS;
  7608.         else
  7609.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  7610.  
  7611.         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  7612.                 dpll |= (crtc_state->pixel_multiplier - 1)
  7613.                         << SDVO_MULTIPLIER_SHIFT_HIRES;
  7614.         }
  7615.  
  7616.         if (is_sdvo)
  7617.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7618.  
  7619.         if (crtc_state->has_dp_encoder)
  7620.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7621.  
  7622.         /* compute bitmask from p1 value */
  7623.         if (IS_PINEVIEW(dev))
  7624.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  7625.         else {
  7626.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7627.                 if (IS_G4X(dev) && reduced_clock)
  7628.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  7629.         }
  7630.         switch (clock->p2) {
  7631.         case 5:
  7632.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  7633.                 break;
  7634.         case 7:
  7635.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  7636.                 break;
  7637.         case 10:
  7638.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  7639.                 break;
  7640.         case 14:
  7641.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  7642.                 break;
  7643.         }
  7644.         if (INTEL_INFO(dev)->gen >= 4)
  7645.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  7646.  
  7647.         if (crtc_state->sdvo_tv_clock)
  7648.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  7649.         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7650.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7651.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7652.         else
  7653.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7654.  
  7655.         dpll |= DPLL_VCO_ENABLE;
  7656.         crtc_state->dpll_hw_state.dpll = dpll;
  7657.  
  7658.         if (INTEL_INFO(dev)->gen >= 4) {
  7659.                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
  7660.                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7661.                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
  7662.         }
  7663. }
  7664.  
  7665. static void i8xx_compute_dpll(struct intel_crtc *crtc,
  7666.                               struct intel_crtc_state *crtc_state,
  7667.                               intel_clock_t *reduced_clock,
  7668.                               int num_connectors)
  7669. {
  7670.         struct drm_device *dev = crtc->base.dev;
  7671.         struct drm_i915_private *dev_priv = dev->dev_private;
  7672.         u32 dpll;
  7673.         struct dpll *clock = &crtc_state->dpll;
  7674.  
  7675.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7676.  
  7677.         dpll = DPLL_VGA_MODE_DIS;
  7678.  
  7679.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  7680.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7681.         } else {
  7682.                 if (clock->p1 == 2)
  7683.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  7684.                 else
  7685.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7686.                 if (clock->p2 == 4)
  7687.                         dpll |= PLL_P2_DIVIDE_BY_4;
  7688.         }
  7689.  
  7690.         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  7691.                 dpll |= DPLL_DVO_2X_MODE;
  7692.  
  7693.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7694.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7695.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7696.         else
  7697.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7698.  
  7699.         dpll |= DPLL_VCO_ENABLE;
  7700.         crtc_state->dpll_hw_state.dpll = dpll;
  7701. }
  7702.  
  7703. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  7704. {
  7705.         struct drm_device *dev = intel_crtc->base.dev;
  7706.         struct drm_i915_private *dev_priv = dev->dev_private;
  7707.         enum pipe pipe = intel_crtc->pipe;
  7708.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  7709.         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  7710.         uint32_t crtc_vtotal, crtc_vblank_end;
  7711.         int vsyncshift = 0;
  7712.  
  7713.         /* We need to be careful not to changed the adjusted mode, for otherwise
  7714.          * the hw state checker will get angry at the mismatch. */
  7715.         crtc_vtotal = adjusted_mode->crtc_vtotal;
  7716.         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  7717.  
  7718.         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  7719.                 /* the chip adds 2 halflines automatically */
  7720.                 crtc_vtotal -= 1;
  7721.                 crtc_vblank_end -= 1;
  7722.  
  7723.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7724.                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
  7725.                 else
  7726.                         vsyncshift = adjusted_mode->crtc_hsync_start -
  7727.                                 adjusted_mode->crtc_htotal / 2;
  7728.                 if (vsyncshift < 0)
  7729.                         vsyncshift += adjusted_mode->crtc_htotal;
  7730.         }
  7731.  
  7732.         if (INTEL_INFO(dev)->gen > 3)
  7733.                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  7734.  
  7735.         I915_WRITE(HTOTAL(cpu_transcoder),
  7736.                    (adjusted_mode->crtc_hdisplay - 1) |
  7737.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  7738.         I915_WRITE(HBLANK(cpu_transcoder),
  7739.                    (adjusted_mode->crtc_hblank_start - 1) |
  7740.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  7741.         I915_WRITE(HSYNC(cpu_transcoder),
  7742.                    (adjusted_mode->crtc_hsync_start - 1) |
  7743.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  7744.  
  7745.         I915_WRITE(VTOTAL(cpu_transcoder),
  7746.                    (adjusted_mode->crtc_vdisplay - 1) |
  7747.                    ((crtc_vtotal - 1) << 16));
  7748.         I915_WRITE(VBLANK(cpu_transcoder),
  7749.                    (adjusted_mode->crtc_vblank_start - 1) |
  7750.                    ((crtc_vblank_end - 1) << 16));
  7751.         I915_WRITE(VSYNC(cpu_transcoder),
  7752.                    (adjusted_mode->crtc_vsync_start - 1) |
  7753.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  7754.  
  7755.         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  7756.          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  7757.          * documented on the DDI_FUNC_CTL register description, EDP Input Select
  7758.          * bits. */
  7759.         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  7760.             (pipe == PIPE_B || pipe == PIPE_C))
  7761.                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  7762.  
  7763.         /* pipesrc controls the size that is scaled from, which should
  7764.          * always be the user's requested size.
  7765.          */
  7766.         I915_WRITE(PIPESRC(pipe),
  7767.                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
  7768.                    (intel_crtc->config->pipe_src_h - 1));
  7769. }
  7770.  
  7771. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  7772.                                    struct intel_crtc_state *pipe_config)
  7773. {
  7774.         struct drm_device *dev = crtc->base.dev;
  7775.         struct drm_i915_private *dev_priv = dev->dev_private;
  7776.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  7777.         uint32_t tmp;
  7778.  
  7779.         tmp = I915_READ(HTOTAL(cpu_transcoder));
  7780.         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  7781.         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  7782.         tmp = I915_READ(HBLANK(cpu_transcoder));
  7783.         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  7784.         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  7785.         tmp = I915_READ(HSYNC(cpu_transcoder));
  7786.         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  7787.         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  7788.  
  7789.         tmp = I915_READ(VTOTAL(cpu_transcoder));
  7790.         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  7791.         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  7792.         tmp = I915_READ(VBLANK(cpu_transcoder));
  7793.         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  7794.         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  7795.         tmp = I915_READ(VSYNC(cpu_transcoder));
  7796.         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  7797.         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  7798.  
  7799.         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  7800.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  7801.                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
  7802.                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
  7803.         }
  7804.  
  7805.         tmp = I915_READ(PIPESRC(crtc->pipe));
  7806.         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  7807.         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  7808.  
  7809.         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
  7810.         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
  7811. }
  7812.  
  7813. void intel_mode_from_pipe_config(struct drm_display_mode *mode,
  7814.                                  struct intel_crtc_state *pipe_config)
  7815. {
  7816.         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
  7817.         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
  7818.         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
  7819.         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
  7820.  
  7821.         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
  7822.         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
  7823.         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
  7824.         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
  7825.  
  7826.         mode->flags = pipe_config->base.adjusted_mode.flags;
  7827.         mode->type = DRM_MODE_TYPE_DRIVER;
  7828.  
  7829.         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
  7830.         mode->flags |= pipe_config->base.adjusted_mode.flags;
  7831.  
  7832.         mode->hsync = drm_mode_hsync(mode);
  7833.         mode->vrefresh = drm_mode_vrefresh(mode);
  7834.         drm_mode_set_name(mode);
  7835. }
  7836.  
  7837. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  7838. {
  7839.         struct drm_device *dev = intel_crtc->base.dev;
  7840.         struct drm_i915_private *dev_priv = dev->dev_private;
  7841.         uint32_t pipeconf;
  7842.  
  7843.         pipeconf = 0;
  7844.  
  7845.         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  7846.             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  7847.                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
  7848.  
  7849.         if (intel_crtc->config->double_wide)
  7850.                 pipeconf |= PIPECONF_DOUBLE_WIDE;
  7851.  
  7852.         /* only g4x and later have fancy bpc/dither controls */
  7853.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  7854.                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
  7855.                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
  7856.                         pipeconf |= PIPECONF_DITHER_EN |
  7857.                                     PIPECONF_DITHER_TYPE_SP;
  7858.  
  7859.                 switch (intel_crtc->config->pipe_bpp) {
  7860.                 case 18:
  7861.                         pipeconf |= PIPECONF_6BPC;
  7862.                         break;
  7863.                 case 24:
  7864.                         pipeconf |= PIPECONF_8BPC;
  7865.                         break;
  7866.                 case 30:
  7867.                         pipeconf |= PIPECONF_10BPC;
  7868.                         break;
  7869.                 default:
  7870.                         /* Case prevented by intel_choose_pipe_bpp_dither. */
  7871.                         BUG();
  7872.                 }
  7873.         }
  7874.  
  7875.         if (HAS_PIPE_CXSR(dev)) {
  7876.                 if (intel_crtc->lowfreq_avail) {
  7877.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  7878.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  7879.                 } else {
  7880.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  7881.                 }
  7882.         }
  7883.  
  7884.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  7885.                 if (INTEL_INFO(dev)->gen < 4 ||
  7886.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7887.                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  7888.                 else
  7889.                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
  7890.         } else
  7891.                 pipeconf |= PIPECONF_PROGRESSIVE;
  7892.  
  7893.         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
  7894.              intel_crtc->config->limited_color_range)
  7895.                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  7896.  
  7897.         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  7898.         POSTING_READ(PIPECONF(intel_crtc->pipe));
  7899. }
  7900.  
  7901. static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
  7902.                                    struct intel_crtc_state *crtc_state)
  7903. {
  7904.         struct drm_device *dev = crtc->base.dev;
  7905.         struct drm_i915_private *dev_priv = dev->dev_private;
  7906.         int refclk, num_connectors = 0;
  7907.         intel_clock_t clock;
  7908.         bool ok;
  7909.         const intel_limit_t *limit;
  7910.         struct drm_atomic_state *state = crtc_state->base.state;
  7911.         struct drm_connector *connector;
  7912.         struct drm_connector_state *connector_state;
  7913.         int i;
  7914.  
  7915.         memset(&crtc_state->dpll_hw_state, 0,
  7916.                sizeof(crtc_state->dpll_hw_state));
  7917.  
  7918.         if (crtc_state->has_dsi_encoder)
  7919.                 return 0;
  7920.  
  7921.         for_each_connector_in_state(state, connector, connector_state, i) {
  7922.                 if (connector_state->crtc == &crtc->base)
  7923.                         num_connectors++;
  7924.         }
  7925.  
  7926.         if (!crtc_state->clock_set) {
  7927.                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
  7928.  
  7929.                 /*
  7930.                  * Returns a set of divisors for the desired target clock with
  7931.                  * the given refclk, or FALSE.  The returned values represent
  7932.                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  7933.                  * 2) / p1 / p2.
  7934.                  */
  7935.                 limit = intel_limit(crtc_state, refclk);
  7936.                 ok = dev_priv->display.find_dpll(limit, crtc_state,
  7937.                                                  crtc_state->port_clock,
  7938.                                                  refclk, NULL, &clock);
  7939.                 if (!ok) {
  7940.                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
  7941.                         return -EINVAL;
  7942.                 }
  7943.  
  7944.                 /* Compat-code for transition, will disappear. */
  7945.                 crtc_state->dpll.n = clock.n;
  7946.                 crtc_state->dpll.m1 = clock.m1;
  7947.                 crtc_state->dpll.m2 = clock.m2;
  7948.                 crtc_state->dpll.p1 = clock.p1;
  7949.                 crtc_state->dpll.p2 = clock.p2;
  7950.         }
  7951.  
  7952.         if (IS_GEN2(dev)) {
  7953.                 i8xx_compute_dpll(crtc, crtc_state, NULL,
  7954.                                   num_connectors);
  7955.         } else if (IS_CHERRYVIEW(dev)) {
  7956.                 chv_compute_dpll(crtc, crtc_state);
  7957.         } else if (IS_VALLEYVIEW(dev)) {
  7958.                 vlv_compute_dpll(crtc, crtc_state);
  7959.         } else {
  7960.                 i9xx_compute_dpll(crtc, crtc_state, NULL,
  7961.                                   num_connectors);
  7962.         }
  7963.  
  7964.         return 0;
  7965. }
  7966.  
  7967. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  7968.                                  struct intel_crtc_state *pipe_config)
  7969. {
  7970.         struct drm_device *dev = crtc->base.dev;
  7971.         struct drm_i915_private *dev_priv = dev->dev_private;
  7972.         uint32_t tmp;
  7973.  
  7974.         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
  7975.                 return;
  7976.  
  7977.         tmp = I915_READ(PFIT_CONTROL);
  7978.         if (!(tmp & PFIT_ENABLE))
  7979.                 return;
  7980.  
  7981.         /* Check whether the pfit is attached to our pipe. */
  7982.         if (INTEL_INFO(dev)->gen < 4) {
  7983.                 if (crtc->pipe != PIPE_B)
  7984.                         return;
  7985.         } else {
  7986.                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  7987.                         return;
  7988.         }
  7989.  
  7990.         pipe_config->gmch_pfit.control = tmp;
  7991.         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  7992. }
  7993.  
  7994. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  7995.                                struct intel_crtc_state *pipe_config)
  7996. {
  7997.         struct drm_device *dev = crtc->base.dev;
  7998.         struct drm_i915_private *dev_priv = dev->dev_private;
  7999.         int pipe = pipe_config->cpu_transcoder;
  8000.         intel_clock_t clock;
  8001.         u32 mdiv;
  8002.         int refclk = 100000;
  8003.  
  8004.         /* In case of MIPI DPLL will not even be used */
  8005.         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
  8006.                 return;
  8007.  
  8008.         mutex_lock(&dev_priv->sb_lock);
  8009.         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
  8010.         mutex_unlock(&dev_priv->sb_lock);
  8011.  
  8012.         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  8013.         clock.m2 = mdiv & DPIO_M2DIV_MASK;
  8014.         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  8015.         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  8016.         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  8017.  
  8018.         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
  8019. }
  8020.  
  8021. static void
  8022. i9xx_get_initial_plane_config(struct intel_crtc *crtc,
  8023.                               struct intel_initial_plane_config *plane_config)
  8024. {
  8025.         struct drm_device *dev = crtc->base.dev;
  8026.         struct drm_i915_private *dev_priv = dev->dev_private;
  8027.         u32 val, base, offset;
  8028.         int pipe = crtc->pipe, plane = crtc->plane;
  8029.         int fourcc, pixel_format;
  8030.         unsigned int aligned_height;
  8031.         struct drm_framebuffer *fb;
  8032.         struct intel_framebuffer *intel_fb;
  8033.  
  8034.         val = I915_READ(DSPCNTR(plane));
  8035.         if (!(val & DISPLAY_PLANE_ENABLE))
  8036.                 return;
  8037.  
  8038.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  8039.         if (!intel_fb) {
  8040.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  8041.                 return;
  8042.         }
  8043.  
  8044.         fb = &intel_fb->base;
  8045.  
  8046.         if (INTEL_INFO(dev)->gen >= 4) {
  8047.                 if (val & DISPPLANE_TILED) {
  8048.                         plane_config->tiling = I915_TILING_X;
  8049.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  8050.                 }
  8051.         }
  8052.  
  8053.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  8054.         fourcc = i9xx_format_to_fourcc(pixel_format);
  8055.         fb->pixel_format = fourcc;
  8056.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  8057.  
  8058.         if (INTEL_INFO(dev)->gen >= 4) {
  8059.                 if (plane_config->tiling)
  8060.                         offset = I915_READ(DSPTILEOFF(plane));
  8061.                 else
  8062.                         offset = I915_READ(DSPLINOFF(plane));
  8063.                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
  8064.         } else {
  8065.                 base = I915_READ(DSPADDR(plane));
  8066.         }
  8067.         plane_config->base = base;
  8068.  
  8069.         val = I915_READ(PIPESRC(pipe));
  8070.         fb->width = ((val >> 16) & 0xfff) + 1;
  8071.         fb->height = ((val >> 0) & 0xfff) + 1;
  8072.  
  8073.         val = I915_READ(DSPSTRIDE(pipe));
  8074.         fb->pitches[0] = val & 0xffffffc0;
  8075.  
  8076.         aligned_height = intel_fb_align_height(dev, fb->height,
  8077.                                                fb->pixel_format,
  8078.                                                fb->modifier[0]);
  8079.  
  8080.         plane_config->size = fb->pitches[0] * aligned_height;
  8081.  
  8082.         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  8083.                       pipe_name(pipe), plane, fb->width, fb->height,
  8084.                       fb->bits_per_pixel, base, fb->pitches[0],
  8085.                       plane_config->size);
  8086.  
  8087.         plane_config->fb = intel_fb;
  8088. }
  8089.  
  8090. static void chv_crtc_clock_get(struct intel_crtc *crtc,
  8091.                                struct intel_crtc_state *pipe_config)
  8092. {
  8093.         struct drm_device *dev = crtc->base.dev;
  8094.         struct drm_i915_private *dev_priv = dev->dev_private;
  8095.         int pipe = pipe_config->cpu_transcoder;
  8096.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  8097.         intel_clock_t clock;
  8098.         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
  8099.         int refclk = 100000;
  8100.  
  8101.         mutex_lock(&dev_priv->sb_lock);
  8102.         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
  8103.         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
  8104.         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
  8105.         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
  8106.         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  8107.         mutex_unlock(&dev_priv->sb_lock);
  8108.  
  8109.         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
  8110.         clock.m2 = (pll_dw0 & 0xff) << 22;
  8111.         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
  8112.                 clock.m2 |= pll_dw2 & 0x3fffff;
  8113.         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
  8114.         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
  8115.         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
  8116.  
  8117.         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
  8118. }
  8119.  
  8120. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  8121.                                  struct intel_crtc_state *pipe_config)
  8122. {
  8123.         struct drm_device *dev = crtc->base.dev;
  8124.         struct drm_i915_private *dev_priv = dev->dev_private;
  8125.         enum intel_display_power_domain power_domain;
  8126.         uint32_t tmp;
  8127.         bool ret;
  8128.  
  8129.         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
  8130.         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  8131.                 return false;
  8132.  
  8133.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  8134.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  8135.  
  8136.         ret = false;
  8137.  
  8138.         tmp = I915_READ(PIPECONF(crtc->pipe));
  8139.         if (!(tmp & PIPECONF_ENABLE))
  8140.                 goto out;
  8141.  
  8142.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  8143.                 switch (tmp & PIPECONF_BPC_MASK) {
  8144.                 case PIPECONF_6BPC:
  8145.                         pipe_config->pipe_bpp = 18;
  8146.                         break;
  8147.                 case PIPECONF_8BPC:
  8148.                         pipe_config->pipe_bpp = 24;
  8149.                         break;
  8150.                 case PIPECONF_10BPC:
  8151.                         pipe_config->pipe_bpp = 30;
  8152.                         break;
  8153.                 default:
  8154.                         break;
  8155.                 }
  8156.         }
  8157.  
  8158.         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
  8159.             (tmp & PIPECONF_COLOR_RANGE_SELECT))
  8160.                 pipe_config->limited_color_range = true;
  8161.  
  8162.         if (INTEL_INFO(dev)->gen < 4)
  8163.                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  8164.  
  8165.         intel_get_pipe_timings(crtc, pipe_config);
  8166.  
  8167.         i9xx_get_pfit_config(crtc, pipe_config);
  8168.  
  8169.         if (INTEL_INFO(dev)->gen >= 4) {
  8170.                 tmp = I915_READ(DPLL_MD(crtc->pipe));
  8171.                 pipe_config->pixel_multiplier =
  8172.                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  8173.                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  8174.                 pipe_config->dpll_hw_state.dpll_md = tmp;
  8175.         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  8176.                 tmp = I915_READ(DPLL(crtc->pipe));
  8177.                 pipe_config->pixel_multiplier =
  8178.                         ((tmp & SDVO_MULTIPLIER_MASK)
  8179.                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  8180.         } else {
  8181.                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
  8182.                  * port and will be fixed up in the encoder->get_config
  8183.                  * function. */
  8184.                 pipe_config->pixel_multiplier = 1;
  8185.         }
  8186.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  8187.         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  8188.                 /*
  8189.                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
  8190.                  * on 830. Filter it out here so that we don't
  8191.                  * report errors due to that.
  8192.                  */
  8193.                 if (IS_I830(dev))
  8194.                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
  8195.  
  8196.                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  8197.                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  8198.         } else {
  8199.                 /* Mask out read-only status bits. */
  8200.                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  8201.                                                      DPLL_PORTC_READY_MASK |
  8202.                                                      DPLL_PORTB_READY_MASK);
  8203.         }
  8204.  
  8205.         if (IS_CHERRYVIEW(dev))
  8206.                 chv_crtc_clock_get(crtc, pipe_config);
  8207.         else if (IS_VALLEYVIEW(dev))
  8208.                 vlv_crtc_clock_get(crtc, pipe_config);
  8209.         else
  8210.                 i9xx_crtc_clock_get(crtc, pipe_config);
  8211.  
  8212.         /*
  8213.          * Normally the dotclock is filled in by the encoder .get_config()
  8214.          * but in case the pipe is enabled w/o any ports we need a sane
  8215.          * default.
  8216.          */
  8217.         pipe_config->base.adjusted_mode.crtc_clock =
  8218.                 pipe_config->port_clock / pipe_config->pixel_multiplier;
  8219.  
  8220.         ret = true;
  8221.  
  8222. out:
  8223.         intel_display_power_put(dev_priv, power_domain);
  8224.  
  8225.         return ret;
  8226. }
  8227.  
  8228. static void ironlake_init_pch_refclk(struct drm_device *dev)
  8229. {
  8230.         struct drm_i915_private *dev_priv = dev->dev_private;
  8231.         struct intel_encoder *encoder;
  8232.         int i;
  8233.         u32 val, final;
  8234.         bool has_lvds = false;
  8235.         bool has_cpu_edp = false;
  8236.         bool has_panel = false;
  8237.         bool has_ck505 = false;
  8238.         bool can_ssc = false;
  8239.         bool using_ssc_source = false;
  8240.  
  8241.         /* We need to take the global config into account */
  8242.         for_each_intel_encoder(dev, encoder) {
  8243.                 switch (encoder->type) {
  8244.                 case INTEL_OUTPUT_LVDS:
  8245.                         has_panel = true;
  8246.                         has_lvds = true;
  8247.                         break;
  8248.                 case INTEL_OUTPUT_EDP:
  8249.                         has_panel = true;
  8250.                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  8251.                                 has_cpu_edp = true;
  8252.                         break;
  8253.                 default:
  8254.                         break;
  8255.                 }
  8256.         }
  8257.  
  8258.         if (HAS_PCH_IBX(dev)) {
  8259.                 has_ck505 = dev_priv->vbt.display_clock_mode;
  8260.                 can_ssc = has_ck505;
  8261.         } else {
  8262.                 has_ck505 = false;
  8263.                 can_ssc = true;
  8264.         }
  8265.  
  8266.         /* Check if any DPLLs are using the SSC source */
  8267.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8268.                 u32 temp = I915_READ(PCH_DPLL(i));
  8269.  
  8270.                 if (!(temp & DPLL_VCO_ENABLE))
  8271.                         continue;
  8272.  
  8273.                 if ((temp & PLL_REF_INPUT_MASK) ==
  8274.                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  8275.                         using_ssc_source = true;
  8276.                         break;
  8277.                 }
  8278.         }
  8279.  
  8280.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
  8281.                       has_panel, has_lvds, has_ck505, using_ssc_source);
  8282.  
  8283.         /* Ironlake: try to setup display ref clock before DPLL
  8284.          * enabling. This is only under driver's control after
  8285.          * PCH B stepping, previous chipset stepping should be
  8286.          * ignoring this setting.
  8287.          */
  8288.         val = I915_READ(PCH_DREF_CONTROL);
  8289.  
  8290.         /* As we must carefully and slowly disable/enable each source in turn,
  8291.          * compute the final state we want first and check if we need to
  8292.          * make any changes at all.
  8293.          */
  8294.         final = val;
  8295.         final &= ~DREF_NONSPREAD_SOURCE_MASK;
  8296.         if (has_ck505)
  8297.                 final |= DREF_NONSPREAD_CK505_ENABLE;
  8298.         else
  8299.                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
  8300.  
  8301.         final &= ~DREF_SSC_SOURCE_MASK;
  8302.         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8303.         final &= ~DREF_SSC1_ENABLE;
  8304.  
  8305.         if (has_panel) {
  8306.                 final |= DREF_SSC_SOURCE_ENABLE;
  8307.  
  8308.                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8309.                         final |= DREF_SSC1_ENABLE;
  8310.  
  8311.                 if (has_cpu_edp) {
  8312.                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8313.                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8314.                         else
  8315.                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8316.                 } else
  8317.                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8318.         } else if (using_ssc_source) {
  8319.                 final |= DREF_SSC_SOURCE_ENABLE;
  8320.                 final |= DREF_SSC1_ENABLE;
  8321.         }
  8322.  
  8323.         if (final == val)
  8324.                 return;
  8325.  
  8326.         /* Always enable nonspread source */
  8327.         val &= ~DREF_NONSPREAD_SOURCE_MASK;
  8328.  
  8329.         if (has_ck505)
  8330.                 val |= DREF_NONSPREAD_CK505_ENABLE;
  8331.         else
  8332.                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
  8333.  
  8334.         if (has_panel) {
  8335.                 val &= ~DREF_SSC_SOURCE_MASK;
  8336.                 val |= DREF_SSC_SOURCE_ENABLE;
  8337.  
  8338.                 /* SSC must be turned on before enabling the CPU output  */
  8339.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8340.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  8341.                         val |= DREF_SSC1_ENABLE;
  8342.                 } else
  8343.                         val &= ~DREF_SSC1_ENABLE;
  8344.  
  8345.                 /* Get SSC going before enabling the outputs */
  8346.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8347.                 POSTING_READ(PCH_DREF_CONTROL);
  8348.                 udelay(200);
  8349.  
  8350.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8351.  
  8352.                 /* Enable CPU source on CPU attached eDP */
  8353.                 if (has_cpu_edp) {
  8354.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8355.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  8356.                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8357.                         } else
  8358.                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8359.                 } else
  8360.                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8361.  
  8362.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8363.                 POSTING_READ(PCH_DREF_CONTROL);
  8364.                 udelay(200);
  8365.         } else {
  8366.                 DRM_DEBUG_KMS("Disabling CPU source output\n");
  8367.  
  8368.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8369.  
  8370.                 /* Turn off CPU output */
  8371.                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8372.  
  8373.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8374.                 POSTING_READ(PCH_DREF_CONTROL);
  8375.                 udelay(200);
  8376.  
  8377.                 if (!using_ssc_source) {
  8378.                         DRM_DEBUG_KMS("Disabling SSC source\n");
  8379.  
  8380.                         /* Turn off the SSC source */
  8381.                         val &= ~DREF_SSC_SOURCE_MASK;
  8382.                         val |= DREF_SSC_SOURCE_DISABLE;
  8383.  
  8384.                         /* Turn off SSC1 */
  8385.                         val &= ~DREF_SSC1_ENABLE;
  8386.  
  8387.                         I915_WRITE(PCH_DREF_CONTROL, val);
  8388.                         POSTING_READ(PCH_DREF_CONTROL);
  8389.                         udelay(200);
  8390.                 }
  8391.         }
  8392.  
  8393.         BUG_ON(val != final);
  8394. }
  8395.  
  8396. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  8397. {
  8398.         uint32_t tmp;
  8399.  
  8400.         tmp = I915_READ(SOUTH_CHICKEN2);
  8401.         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  8402.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8403.  
  8404.         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  8405.                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  8406.                 DRM_ERROR("FDI mPHY reset assert timeout\n");
  8407.  
  8408.         tmp = I915_READ(SOUTH_CHICKEN2);
  8409.         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  8410.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8411.  
  8412.         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  8413.                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  8414.                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  8415. }
  8416.  
  8417. /* WaMPhyProgramming:hsw */
  8418. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  8419. {
  8420.         uint32_t tmp;
  8421.  
  8422.         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  8423.         tmp &= ~(0xFF << 24);
  8424.         tmp |= (0x12 << 24);
  8425.         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  8426.  
  8427.         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  8428.         tmp |= (1 << 11);
  8429.         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  8430.  
  8431.         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  8432.         tmp |= (1 << 11);
  8433.         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  8434.  
  8435.         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  8436.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8437.         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  8438.  
  8439.         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  8440.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8441.         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  8442.  
  8443.         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  8444.         tmp &= ~(7 << 13);
  8445.         tmp |= (5 << 13);
  8446.         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  8447.  
  8448.         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  8449.         tmp &= ~(7 << 13);
  8450.         tmp |= (5 << 13);
  8451.         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  8452.  
  8453.         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  8454.         tmp &= ~0xFF;
  8455.         tmp |= 0x1C;
  8456.         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  8457.  
  8458.         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  8459.         tmp &= ~0xFF;
  8460.         tmp |= 0x1C;
  8461.         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  8462.  
  8463.         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  8464.         tmp &= ~(0xFF << 16);
  8465.         tmp |= (0x1C << 16);
  8466.         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  8467.  
  8468.         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  8469.         tmp &= ~(0xFF << 16);
  8470.         tmp |= (0x1C << 16);
  8471.         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  8472.  
  8473.         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  8474.         tmp |= (1 << 27);
  8475.         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  8476.  
  8477.         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  8478.         tmp |= (1 << 27);
  8479.         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  8480.  
  8481.         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  8482.         tmp &= ~(0xF << 28);
  8483.         tmp |= (4 << 28);
  8484.         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  8485.  
  8486.         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  8487.         tmp &= ~(0xF << 28);
  8488.         tmp |= (4 << 28);
  8489.         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  8490. }
  8491.  
  8492. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  8493.  * Programming" based on the parameters passed:
  8494.  * - Sequence to enable CLKOUT_DP
  8495.  * - Sequence to enable CLKOUT_DP without spread
  8496.  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  8497.  */
  8498. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  8499.                                  bool with_fdi)
  8500. {
  8501.         struct drm_i915_private *dev_priv = dev->dev_private;
  8502.         uint32_t reg, tmp;
  8503.  
  8504.         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  8505.                 with_spread = true;
  8506.         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
  8507.                 with_fdi = false;
  8508.  
  8509.         mutex_lock(&dev_priv->sb_lock);
  8510.  
  8511.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8512.         tmp &= ~SBI_SSCCTL_DISABLE;
  8513.         tmp |= SBI_SSCCTL_PATHALT;
  8514.         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8515.  
  8516.         udelay(24);
  8517.  
  8518.         if (with_spread) {
  8519.                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8520.                 tmp &= ~SBI_SSCCTL_PATHALT;
  8521.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8522.  
  8523.                 if (with_fdi) {
  8524.                         lpt_reset_fdi_mphy(dev_priv);
  8525.                         lpt_program_fdi_mphy(dev_priv);
  8526.                 }
  8527.         }
  8528.  
  8529.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8530.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8531.         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8532.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8533.  
  8534.         mutex_unlock(&dev_priv->sb_lock);
  8535. }
  8536.  
  8537. /* Sequence to disable CLKOUT_DP */
  8538. static void lpt_disable_clkout_dp(struct drm_device *dev)
  8539. {
  8540.         struct drm_i915_private *dev_priv = dev->dev_private;
  8541.         uint32_t reg, tmp;
  8542.  
  8543.         mutex_lock(&dev_priv->sb_lock);
  8544.  
  8545.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8546.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8547.         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8548.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8549.  
  8550.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8551.         if (!(tmp & SBI_SSCCTL_DISABLE)) {
  8552.                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
  8553.                         tmp |= SBI_SSCCTL_PATHALT;
  8554.                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8555.                         udelay(32);
  8556.                 }
  8557.                 tmp |= SBI_SSCCTL_DISABLE;
  8558.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8559.         }
  8560.  
  8561.         mutex_unlock(&dev_priv->sb_lock);
  8562. }
  8563.  
  8564. #define BEND_IDX(steps) ((50 + (steps)) / 5)
  8565.  
  8566. static const uint16_t sscdivintphase[] = {
  8567.         [BEND_IDX( 50)] = 0x3B23,
  8568.         [BEND_IDX( 45)] = 0x3B23,
  8569.         [BEND_IDX( 40)] = 0x3C23,
  8570.         [BEND_IDX( 35)] = 0x3C23,
  8571.         [BEND_IDX( 30)] = 0x3D23,
  8572.         [BEND_IDX( 25)] = 0x3D23,
  8573.         [BEND_IDX( 20)] = 0x3E23,
  8574.         [BEND_IDX( 15)] = 0x3E23,
  8575.         [BEND_IDX( 10)] = 0x3F23,
  8576.         [BEND_IDX(  5)] = 0x3F23,
  8577.         [BEND_IDX(  0)] = 0x0025,
  8578.         [BEND_IDX( -5)] = 0x0025,
  8579.         [BEND_IDX(-10)] = 0x0125,
  8580.         [BEND_IDX(-15)] = 0x0125,
  8581.         [BEND_IDX(-20)] = 0x0225,
  8582.         [BEND_IDX(-25)] = 0x0225,
  8583.         [BEND_IDX(-30)] = 0x0325,
  8584.         [BEND_IDX(-35)] = 0x0325,
  8585.         [BEND_IDX(-40)] = 0x0425,
  8586.         [BEND_IDX(-45)] = 0x0425,
  8587.         [BEND_IDX(-50)] = 0x0525,
  8588. };
  8589.  
  8590. /*
  8591.  * Bend CLKOUT_DP
  8592.  * steps -50 to 50 inclusive, in steps of 5
  8593.  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
  8594.  * change in clock period = -(steps / 10) * 5.787 ps
  8595.  */
  8596. static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
  8597. {
  8598.         uint32_t tmp;
  8599.         int idx = BEND_IDX(steps);
  8600.  
  8601.         if (WARN_ON(steps % 5 != 0))
  8602.                 return;
  8603.  
  8604.         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
  8605.                 return;
  8606.  
  8607.         mutex_lock(&dev_priv->sb_lock);
  8608.  
  8609.         if (steps % 10 != 0)
  8610.                 tmp = 0xAAAAAAAB;
  8611.         else
  8612.                 tmp = 0x00000000;
  8613.         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
  8614.  
  8615.         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
  8616.         tmp &= 0xffff0000;
  8617.         tmp |= sscdivintphase[idx];
  8618.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
  8619.  
  8620.         mutex_unlock(&dev_priv->sb_lock);
  8621. }
  8622.  
  8623. #undef BEND_IDX
  8624.  
  8625. static void lpt_init_pch_refclk(struct drm_device *dev)
  8626. {
  8627.         struct intel_encoder *encoder;
  8628.         bool has_vga = false;
  8629.  
  8630.         for_each_intel_encoder(dev, encoder) {
  8631.                 switch (encoder->type) {
  8632.                 case INTEL_OUTPUT_ANALOG:
  8633.                         has_vga = true;
  8634.                         break;
  8635.                 default:
  8636.                         break;
  8637.                 }
  8638.         }
  8639.  
  8640.         if (has_vga) {
  8641.                 lpt_bend_clkout_dp(to_i915(dev), 0);
  8642.                 lpt_enable_clkout_dp(dev, true, true);
  8643.         } else {
  8644.                 lpt_disable_clkout_dp(dev);
  8645.         }
  8646. }
  8647.  
  8648. /*
  8649.  * Initialize reference clocks when the driver loads
  8650.  */
  8651. void intel_init_pch_refclk(struct drm_device *dev)
  8652. {
  8653.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8654.                 ironlake_init_pch_refclk(dev);
  8655.         else if (HAS_PCH_LPT(dev))
  8656.                 lpt_init_pch_refclk(dev);
  8657. }
  8658.  
  8659. static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
  8660. {
  8661.         struct drm_device *dev = crtc_state->base.crtc->dev;
  8662.         struct drm_i915_private *dev_priv = dev->dev_private;
  8663.         struct drm_atomic_state *state = crtc_state->base.state;
  8664.         struct drm_connector *connector;
  8665.         struct drm_connector_state *connector_state;
  8666.         struct intel_encoder *encoder;
  8667.         int num_connectors = 0, i;
  8668.         bool is_lvds = false;
  8669.  
  8670.         for_each_connector_in_state(state, connector, connector_state, i) {
  8671.                 if (connector_state->crtc != crtc_state->base.crtc)
  8672.                         continue;
  8673.  
  8674.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8675.  
  8676.                 switch (encoder->type) {
  8677.                 case INTEL_OUTPUT_LVDS:
  8678.                         is_lvds = true;
  8679.                         break;
  8680.                 default:
  8681.                         break;
  8682.                 }
  8683.                 num_connectors++;
  8684.         }
  8685.  
  8686.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  8687.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
  8688.                               dev_priv->vbt.lvds_ssc_freq);
  8689.                 return dev_priv->vbt.lvds_ssc_freq;
  8690.         }
  8691.  
  8692.         return 120000;
  8693. }
  8694.  
  8695. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  8696. {
  8697.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  8698.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8699.         int pipe = intel_crtc->pipe;
  8700.         uint32_t val;
  8701.  
  8702.         val = 0;
  8703.  
  8704.         switch (intel_crtc->config->pipe_bpp) {
  8705.         case 18:
  8706.                 val |= PIPECONF_6BPC;
  8707.                 break;
  8708.         case 24:
  8709.                 val |= PIPECONF_8BPC;
  8710.                 break;
  8711.         case 30:
  8712.                 val |= PIPECONF_10BPC;
  8713.                 break;
  8714.         case 36:
  8715.                 val |= PIPECONF_12BPC;
  8716.                 break;
  8717.         default:
  8718.                 /* Case prevented by intel_choose_pipe_bpp_dither. */
  8719.                 BUG();
  8720.         }
  8721.  
  8722.         if (intel_crtc->config->dither)
  8723.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8724.  
  8725.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8726.                 val |= PIPECONF_INTERLACED_ILK;
  8727.         else
  8728.                 val |= PIPECONF_PROGRESSIVE;
  8729.  
  8730.         if (intel_crtc->config->limited_color_range)
  8731.                 val |= PIPECONF_COLOR_RANGE_SELECT;
  8732.  
  8733.         I915_WRITE(PIPECONF(pipe), val);
  8734.         POSTING_READ(PIPECONF(pipe));
  8735. }
  8736.  
  8737. /*
  8738.  * Set up the pipe CSC unit.
  8739.  *
  8740.  * Currently only full range RGB to limited range RGB conversion
  8741.  * is supported, but eventually this should handle various
  8742.  * RGB<->YCbCr scenarios as well.
  8743.  */
  8744. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  8745. {
  8746.         struct drm_device *dev = crtc->dev;
  8747.         struct drm_i915_private *dev_priv = dev->dev_private;
  8748.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8749.         int pipe = intel_crtc->pipe;
  8750.         uint16_t coeff = 0x7800; /* 1.0 */
  8751.  
  8752.         /*
  8753.          * TODO: Check what kind of values actually come out of the pipe
  8754.          * with these coeff/postoff values and adjust to get the best
  8755.          * accuracy. Perhaps we even need to take the bpc value into
  8756.          * consideration.
  8757.          */
  8758.  
  8759.         if (intel_crtc->config->limited_color_range)
  8760.                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  8761.  
  8762.         /*
  8763.          * GY/GU and RY/RU should be the other way around according
  8764.          * to BSpec, but reality doesn't agree. Just set them up in
  8765.          * a way that results in the correct picture.
  8766.          */
  8767.         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  8768.         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  8769.  
  8770.         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  8771.         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  8772.  
  8773.         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  8774.         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  8775.  
  8776.         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  8777.         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  8778.         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  8779.  
  8780.         if (INTEL_INFO(dev)->gen > 6) {
  8781.                 uint16_t postoff = 0;
  8782.  
  8783.                 if (intel_crtc->config->limited_color_range)
  8784.                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
  8785.  
  8786.                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  8787.                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  8788.                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  8789.  
  8790.                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  8791.         } else {
  8792.                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
  8793.  
  8794.                 if (intel_crtc->config->limited_color_range)
  8795.                         mode |= CSC_BLACK_SCREEN_OFFSET;
  8796.  
  8797.                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  8798.         }
  8799. }
  8800.  
  8801. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  8802. {
  8803.         struct drm_device *dev = crtc->dev;
  8804.         struct drm_i915_private *dev_priv = dev->dev_private;
  8805.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8806.         enum pipe pipe = intel_crtc->pipe;
  8807.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  8808.         uint32_t val;
  8809.  
  8810.         val = 0;
  8811.  
  8812.         if (IS_HASWELL(dev) && intel_crtc->config->dither)
  8813.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8814.  
  8815.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8816.                 val |= PIPECONF_INTERLACED_ILK;
  8817.         else
  8818.                 val |= PIPECONF_PROGRESSIVE;
  8819.  
  8820.         I915_WRITE(PIPECONF(cpu_transcoder), val);
  8821.         POSTING_READ(PIPECONF(cpu_transcoder));
  8822.  
  8823.         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  8824.         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  8825.  
  8826.         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
  8827.                 val = 0;
  8828.  
  8829.                 switch (intel_crtc->config->pipe_bpp) {
  8830.                 case 18:
  8831.                         val |= PIPEMISC_DITHER_6_BPC;
  8832.                         break;
  8833.                 case 24:
  8834.                         val |= PIPEMISC_DITHER_8_BPC;
  8835.                         break;
  8836.                 case 30:
  8837.                         val |= PIPEMISC_DITHER_10_BPC;
  8838.                         break;
  8839.                 case 36:
  8840.                         val |= PIPEMISC_DITHER_12_BPC;
  8841.                         break;
  8842.                 default:
  8843.                         /* Case prevented by pipe_config_set_bpp. */
  8844.                         BUG();
  8845.                 }
  8846.  
  8847.                 if (intel_crtc->config->dither)
  8848.                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
  8849.  
  8850.                 I915_WRITE(PIPEMISC(pipe), val);
  8851.         }
  8852. }
  8853.  
  8854. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  8855.                                     struct intel_crtc_state *crtc_state,
  8856.                                     intel_clock_t *clock,
  8857.                                     bool *has_reduced_clock,
  8858.                                     intel_clock_t *reduced_clock)
  8859. {
  8860.         struct drm_device *dev = crtc->dev;
  8861.         struct drm_i915_private *dev_priv = dev->dev_private;
  8862.         int refclk;
  8863.         const intel_limit_t *limit;
  8864.         bool ret;
  8865.  
  8866.         refclk = ironlake_get_refclk(crtc_state);
  8867.  
  8868.         /*
  8869.          * Returns a set of divisors for the desired target clock with the given
  8870.          * refclk, or FALSE.  The returned values represent the clock equation:
  8871.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  8872.          */
  8873.         limit = intel_limit(crtc_state, refclk);
  8874.         ret = dev_priv->display.find_dpll(limit, crtc_state,
  8875.                                           crtc_state->port_clock,
  8876.                                           refclk, NULL, clock);
  8877.         if (!ret)
  8878.                 return false;
  8879.  
  8880.         return true;
  8881. }
  8882.  
  8883. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  8884. {
  8885.         /*
  8886.          * Account for spread spectrum to avoid
  8887.          * oversubscribing the link. Max center spread
  8888.          * is 2.5%; use 5% for safety's sake.
  8889.          */
  8890.         u32 bps = target_clock * bpp * 21 / 20;
  8891.         return DIV_ROUND_UP(bps, link_bw * 8);
  8892. }
  8893.  
  8894. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  8895. {
  8896.         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  8897. }
  8898.  
  8899. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  8900.                                       struct intel_crtc_state *crtc_state,
  8901.                                       u32 *fp,
  8902.                                       intel_clock_t *reduced_clock, u32 *fp2)
  8903. {
  8904.         struct drm_crtc *crtc = &intel_crtc->base;
  8905.         struct drm_device *dev = crtc->dev;
  8906.         struct drm_i915_private *dev_priv = dev->dev_private;
  8907.         struct drm_atomic_state *state = crtc_state->base.state;
  8908.         struct drm_connector *connector;
  8909.         struct drm_connector_state *connector_state;
  8910.         struct intel_encoder *encoder;
  8911.         uint32_t dpll;
  8912.         int factor, num_connectors = 0, i;
  8913.         bool is_lvds = false, is_sdvo = false;
  8914.  
  8915.         for_each_connector_in_state(state, connector, connector_state, i) {
  8916.                 if (connector_state->crtc != crtc_state->base.crtc)
  8917.                         continue;
  8918.  
  8919.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8920.  
  8921.                 switch (encoder->type) {
  8922.                 case INTEL_OUTPUT_LVDS:
  8923.                         is_lvds = true;
  8924.                         break;
  8925.                 case INTEL_OUTPUT_SDVO:
  8926.                 case INTEL_OUTPUT_HDMI:
  8927.                         is_sdvo = true;
  8928.                         break;
  8929.                 default:
  8930.                         break;
  8931.                 }
  8932.  
  8933.                 num_connectors++;
  8934.         }
  8935.  
  8936.         /* Enable autotuning of the PLL clock (if permissible) */
  8937.         factor = 21;
  8938.         if (is_lvds) {
  8939.                 if ((intel_panel_use_ssc(dev_priv) &&
  8940.                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
  8941.                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  8942.                         factor = 25;
  8943.         } else if (crtc_state->sdvo_tv_clock)
  8944.                 factor = 20;
  8945.  
  8946.         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
  8947.                 *fp |= FP_CB_TUNE;
  8948.  
  8949.         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  8950.                 *fp2 |= FP_CB_TUNE;
  8951.  
  8952.         dpll = 0;
  8953.  
  8954.         if (is_lvds)
  8955.                 dpll |= DPLLB_MODE_LVDS;
  8956.         else
  8957.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  8958.  
  8959.         dpll |= (crtc_state->pixel_multiplier - 1)
  8960.                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  8961.  
  8962.         if (is_sdvo)
  8963.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8964.         if (crtc_state->has_dp_encoder)
  8965.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8966.  
  8967.         /* compute bitmask from p1 value */
  8968.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  8969.         /* also FPA1 */
  8970.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  8971.  
  8972.         switch (crtc_state->dpll.p2) {
  8973.         case 5:
  8974.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  8975.                 break;
  8976.         case 7:
  8977.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  8978.                 break;
  8979.         case 10:
  8980.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  8981.                 break;
  8982.         case 14:
  8983.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  8984.                 break;
  8985.         }
  8986.  
  8987.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  8988.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  8989.         else
  8990.                 dpll |= PLL_REF_INPUT_DREFCLK;
  8991.  
  8992.         return dpll | DPLL_VCO_ENABLE;
  8993. }
  8994.  
  8995. static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
  8996.                                        struct intel_crtc_state *crtc_state)
  8997. {
  8998.         struct drm_device *dev = crtc->base.dev;
  8999.         intel_clock_t clock, reduced_clock;
  9000.         u32 dpll = 0, fp = 0, fp2 = 0;
  9001.         bool ok, has_reduced_clock = false;
  9002.         bool is_lvds = false;
  9003.         struct intel_shared_dpll *pll;
  9004.  
  9005.         memset(&crtc_state->dpll_hw_state, 0,
  9006.                sizeof(crtc_state->dpll_hw_state));
  9007.  
  9008.         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
  9009.  
  9010.         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  9011.              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  9012.  
  9013.         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
  9014.                                      &has_reduced_clock, &reduced_clock);
  9015.         if (!ok && !crtc_state->clock_set) {
  9016.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  9017.                 return -EINVAL;
  9018.         }
  9019.         /* Compat-code for transition, will disappear. */
  9020.         if (!crtc_state->clock_set) {
  9021.                 crtc_state->dpll.n = clock.n;
  9022.                 crtc_state->dpll.m1 = clock.m1;
  9023.                 crtc_state->dpll.m2 = clock.m2;
  9024.                 crtc_state->dpll.p1 = clock.p1;
  9025.                 crtc_state->dpll.p2 = clock.p2;
  9026.         }
  9027.  
  9028.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  9029.         if (crtc_state->has_pch_encoder) {
  9030.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  9031.                 if (has_reduced_clock)
  9032.                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  9033.  
  9034.                 dpll = ironlake_compute_dpll(crtc, crtc_state,
  9035.                                              &fp, &reduced_clock,
  9036.                                              has_reduced_clock ? &fp2 : NULL);
  9037.  
  9038.                 crtc_state->dpll_hw_state.dpll = dpll;
  9039.                 crtc_state->dpll_hw_state.fp0 = fp;
  9040.                 if (has_reduced_clock)
  9041.                         crtc_state->dpll_hw_state.fp1 = fp2;
  9042.                 else
  9043.                         crtc_state->dpll_hw_state.fp1 = fp;
  9044.  
  9045.                 pll = intel_get_shared_dpll(crtc, crtc_state);
  9046.                 if (pll == NULL) {
  9047.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  9048.                                          pipe_name(crtc->pipe));
  9049.                         return -EINVAL;
  9050.                 }
  9051.         }
  9052.  
  9053.         if (is_lvds && has_reduced_clock)
  9054.                 crtc->lowfreq_avail = true;
  9055.         else
  9056.                 crtc->lowfreq_avail = false;
  9057.  
  9058.         return 0;
  9059. }
  9060.  
  9061. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  9062.                                          struct intel_link_m_n *m_n)
  9063. {
  9064.         struct drm_device *dev = crtc->base.dev;
  9065.         struct drm_i915_private *dev_priv = dev->dev_private;
  9066.         enum pipe pipe = crtc->pipe;
  9067.  
  9068.         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  9069.         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  9070.         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  9071.                 & ~TU_SIZE_MASK;
  9072.         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  9073.         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  9074.                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9075. }
  9076.  
  9077. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  9078.                                          enum transcoder transcoder,
  9079.                                          struct intel_link_m_n *m_n,
  9080.                                          struct intel_link_m_n *m2_n2)
  9081. {
  9082.         struct drm_device *dev = crtc->base.dev;
  9083.         struct drm_i915_private *dev_priv = dev->dev_private;
  9084.         enum pipe pipe = crtc->pipe;
  9085.  
  9086.         if (INTEL_INFO(dev)->gen >= 5) {
  9087.                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  9088.                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  9089.                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  9090.                         & ~TU_SIZE_MASK;
  9091.                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  9092.                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  9093.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9094.                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
  9095.                  * gen < 8) and if DRRS is supported (to make sure the
  9096.                  * registers are not unnecessarily read).
  9097.                  */
  9098.                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
  9099.                         crtc->config->has_drrs) {
  9100.                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
  9101.                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
  9102.                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
  9103.                                         & ~TU_SIZE_MASK;
  9104.                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
  9105.                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
  9106.                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9107.                 }
  9108.         } else {
  9109.                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  9110.                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  9111.                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  9112.                         & ~TU_SIZE_MASK;
  9113.                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  9114.                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  9115.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9116.         }
  9117. }
  9118.  
  9119. void intel_dp_get_m_n(struct intel_crtc *crtc,
  9120.                       struct intel_crtc_state *pipe_config)
  9121. {
  9122.         if (pipe_config->has_pch_encoder)
  9123.                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  9124.         else
  9125.                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9126.                                              &pipe_config->dp_m_n,
  9127.                                              &pipe_config->dp_m2_n2);
  9128. }
  9129.  
  9130. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  9131.                                         struct intel_crtc_state *pipe_config)
  9132. {
  9133.         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9134.                                      &pipe_config->fdi_m_n, NULL);
  9135. }
  9136.  
  9137. static void skylake_get_pfit_config(struct intel_crtc *crtc,
  9138.                                     struct intel_crtc_state *pipe_config)
  9139. {
  9140.         struct drm_device *dev = crtc->base.dev;
  9141.         struct drm_i915_private *dev_priv = dev->dev_private;
  9142.         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
  9143.         uint32_t ps_ctrl = 0;
  9144.         int id = -1;
  9145.         int i;
  9146.  
  9147.         /* find scaler attached to this pipe */
  9148.         for (i = 0; i < crtc->num_scalers; i++) {
  9149.                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
  9150.                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
  9151.                         id = i;
  9152.                         pipe_config->pch_pfit.enabled = true;
  9153.                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
  9154.                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
  9155.                         break;
  9156.                 }
  9157.         }
  9158.  
  9159.         scaler_state->scaler_id = id;
  9160.         if (id >= 0) {
  9161.                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
  9162.         } else {
  9163.                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9164.         }
  9165. }
  9166.  
  9167. static void
  9168. skylake_get_initial_plane_config(struct intel_crtc *crtc,
  9169.                                  struct intel_initial_plane_config *plane_config)
  9170. {
  9171.         struct drm_device *dev = crtc->base.dev;
  9172.         struct drm_i915_private *dev_priv = dev->dev_private;
  9173.         u32 val, base, offset, stride_mult, tiling;
  9174.         int pipe = crtc->pipe;
  9175.         int fourcc, pixel_format;
  9176.         unsigned int aligned_height;
  9177.         struct drm_framebuffer *fb;
  9178.         struct intel_framebuffer *intel_fb;
  9179.  
  9180.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9181.         if (!intel_fb) {
  9182.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9183.                 return;
  9184.         }
  9185.  
  9186.         fb = &intel_fb->base;
  9187.  
  9188.         val = I915_READ(PLANE_CTL(pipe, 0));
  9189.         if (!(val & PLANE_CTL_ENABLE))
  9190.                 goto error;
  9191.  
  9192.         pixel_format = val & PLANE_CTL_FORMAT_MASK;
  9193.         fourcc = skl_format_to_fourcc(pixel_format,
  9194.                                       val & PLANE_CTL_ORDER_RGBX,
  9195.                                       val & PLANE_CTL_ALPHA_MASK);
  9196.         fb->pixel_format = fourcc;
  9197.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9198.  
  9199.         tiling = val & PLANE_CTL_TILED_MASK;
  9200.         switch (tiling) {
  9201.         case PLANE_CTL_TILED_LINEAR:
  9202.                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
  9203.                 break;
  9204.         case PLANE_CTL_TILED_X:
  9205.                 plane_config->tiling = I915_TILING_X;
  9206.                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9207.                 break;
  9208.         case PLANE_CTL_TILED_Y:
  9209.                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
  9210.                 break;
  9211.         case PLANE_CTL_TILED_YF:
  9212.                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
  9213.                 break;
  9214.         default:
  9215.                 MISSING_CASE(tiling);
  9216.                 goto error;
  9217.         }
  9218.  
  9219.         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
  9220.         plane_config->base = base;
  9221.  
  9222.         offset = I915_READ(PLANE_OFFSET(pipe, 0));
  9223.  
  9224.         val = I915_READ(PLANE_SIZE(pipe, 0));
  9225.         fb->height = ((val >> 16) & 0xfff) + 1;
  9226.         fb->width = ((val >> 0) & 0x1fff) + 1;
  9227.  
  9228.         val = I915_READ(PLANE_STRIDE(pipe, 0));
  9229.         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
  9230.                                                 fb->pixel_format);
  9231.         fb->pitches[0] = (val & 0x3ff) * stride_mult;
  9232.  
  9233.         aligned_height = intel_fb_align_height(dev, fb->height,
  9234.                                                fb->pixel_format,
  9235.                                                fb->modifier[0]);
  9236.  
  9237.         plane_config->size = fb->pitches[0] * aligned_height;
  9238.  
  9239.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9240.                       pipe_name(pipe), fb->width, fb->height,
  9241.                       fb->bits_per_pixel, base, fb->pitches[0],
  9242.                       plane_config->size);
  9243.  
  9244.         plane_config->fb = intel_fb;
  9245.         return;
  9246.  
  9247. error:
  9248.         kfree(fb);
  9249. }
  9250.  
  9251. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  9252.                                      struct intel_crtc_state *pipe_config)
  9253. {
  9254.         struct drm_device *dev = crtc->base.dev;
  9255.         struct drm_i915_private *dev_priv = dev->dev_private;
  9256.         uint32_t tmp;
  9257.  
  9258.         tmp = I915_READ(PF_CTL(crtc->pipe));
  9259.  
  9260.         if (tmp & PF_ENABLE) {
  9261.                 pipe_config->pch_pfit.enabled = true;
  9262.                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  9263.                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  9264.  
  9265.                 /* We currently do not free assignements of panel fitters on
  9266.                  * ivb/hsw (since we don't use the higher upscaling modes which
  9267.                  * differentiates them) so just WARN about this case for now. */
  9268.                 if (IS_GEN7(dev)) {
  9269.                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  9270.                                 PF_PIPE_SEL_IVB(crtc->pipe));
  9271.                 }
  9272.         }
  9273. }
  9274.  
  9275. static void
  9276. ironlake_get_initial_plane_config(struct intel_crtc *crtc,
  9277.                                   struct intel_initial_plane_config *plane_config)
  9278. {
  9279.         struct drm_device *dev = crtc->base.dev;
  9280.         struct drm_i915_private *dev_priv = dev->dev_private;
  9281.         u32 val, base, offset;
  9282.         int pipe = crtc->pipe;
  9283.         int fourcc, pixel_format;
  9284.         unsigned int aligned_height;
  9285.         struct drm_framebuffer *fb;
  9286.         struct intel_framebuffer *intel_fb;
  9287.  
  9288.         val = I915_READ(DSPCNTR(pipe));
  9289.         if (!(val & DISPLAY_PLANE_ENABLE))
  9290.                 return;
  9291.  
  9292.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9293.         if (!intel_fb) {
  9294.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9295.                 return;
  9296.         }
  9297.  
  9298.         fb = &intel_fb->base;
  9299.  
  9300.         if (INTEL_INFO(dev)->gen >= 4) {
  9301.                 if (val & DISPPLANE_TILED) {
  9302.                         plane_config->tiling = I915_TILING_X;
  9303.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9304.                 }
  9305.         }
  9306.  
  9307.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  9308.         fourcc = i9xx_format_to_fourcc(pixel_format);
  9309.         fb->pixel_format = fourcc;
  9310.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9311.  
  9312.         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
  9313.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  9314.                 offset = I915_READ(DSPOFFSET(pipe));
  9315.         } else {
  9316.                 if (plane_config->tiling)
  9317.                         offset = I915_READ(DSPTILEOFF(pipe));
  9318.                 else
  9319.                         offset = I915_READ(DSPLINOFF(pipe));
  9320.         }
  9321.         plane_config->base = base;
  9322.  
  9323.         val = I915_READ(PIPESRC(pipe));
  9324.         fb->width = ((val >> 16) & 0xfff) + 1;
  9325.         fb->height = ((val >> 0) & 0xfff) + 1;
  9326.  
  9327.         val = I915_READ(DSPSTRIDE(pipe));
  9328.         fb->pitches[0] = val & 0xffffffc0;
  9329.  
  9330.         aligned_height = intel_fb_align_height(dev, fb->height,
  9331.                                                fb->pixel_format,
  9332.                                                fb->modifier[0]);
  9333.  
  9334.         plane_config->size = fb->pitches[0] * aligned_height;
  9335.  
  9336.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9337.                       pipe_name(pipe), fb->width, fb->height,
  9338.                       fb->bits_per_pixel, base, fb->pitches[0],
  9339.                       plane_config->size);
  9340.  
  9341.         plane_config->fb = intel_fb;
  9342. }
  9343.  
  9344. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  9345.                                      struct intel_crtc_state *pipe_config)
  9346. {
  9347.         struct drm_device *dev = crtc->base.dev;
  9348.         struct drm_i915_private *dev_priv = dev->dev_private;
  9349.         enum intel_display_power_domain power_domain;
  9350.         uint32_t tmp;
  9351.         bool ret;
  9352.  
  9353.         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
  9354.         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  9355.                 return false;
  9356.  
  9357.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9358.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9359.  
  9360.         ret = false;
  9361.         tmp = I915_READ(PIPECONF(crtc->pipe));
  9362.         if (!(tmp & PIPECONF_ENABLE))
  9363.                 goto out;
  9364.  
  9365.         switch (tmp & PIPECONF_BPC_MASK) {
  9366.         case PIPECONF_6BPC:
  9367.                 pipe_config->pipe_bpp = 18;
  9368.                 break;
  9369.         case PIPECONF_8BPC:
  9370.                 pipe_config->pipe_bpp = 24;
  9371.                 break;
  9372.         case PIPECONF_10BPC:
  9373.                 pipe_config->pipe_bpp = 30;
  9374.                 break;
  9375.         case PIPECONF_12BPC:
  9376.                 pipe_config->pipe_bpp = 36;
  9377.                 break;
  9378.         default:
  9379.                 break;
  9380.         }
  9381.  
  9382.         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
  9383.                 pipe_config->limited_color_range = true;
  9384.  
  9385.         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  9386.                 struct intel_shared_dpll *pll;
  9387.  
  9388.                 pipe_config->has_pch_encoder = true;
  9389.  
  9390.                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  9391.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9392.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9393.  
  9394.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9395.  
  9396.                 if (HAS_PCH_IBX(dev_priv->dev)) {
  9397.                         pipe_config->shared_dpll =
  9398.                                 (enum intel_dpll_id) crtc->pipe;
  9399.                 } else {
  9400.                         tmp = I915_READ(PCH_DPLL_SEL);
  9401.                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  9402.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  9403.                         else
  9404.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  9405.                 }
  9406.  
  9407.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9408.  
  9409.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9410.                                            &pipe_config->dpll_hw_state));
  9411.  
  9412.                 tmp = pipe_config->dpll_hw_state.dpll;
  9413.                 pipe_config->pixel_multiplier =
  9414.                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  9415.                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  9416.  
  9417.                 ironlake_pch_clock_get(crtc, pipe_config);
  9418.         } else {
  9419.                 pipe_config->pixel_multiplier = 1;
  9420.         }
  9421.  
  9422.         intel_get_pipe_timings(crtc, pipe_config);
  9423.  
  9424.         ironlake_get_pfit_config(crtc, pipe_config);
  9425.  
  9426.         ret = true;
  9427.  
  9428. out:
  9429.         intel_display_power_put(dev_priv, power_domain);
  9430.  
  9431.         return ret;
  9432. }
  9433.  
  9434. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  9435. {
  9436.         struct drm_device *dev = dev_priv->dev;
  9437.         struct intel_crtc *crtc;
  9438.  
  9439.         for_each_intel_crtc(dev, crtc)
  9440.                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
  9441.                      pipe_name(crtc->pipe));
  9442.  
  9443.         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  9444.         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
  9445.         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
  9446.         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
  9447.         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  9448.         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  9449.              "CPU PWM1 enabled\n");
  9450.         if (IS_HASWELL(dev))
  9451.                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  9452.                      "CPU PWM2 enabled\n");
  9453.         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  9454.              "PCH PWM1 enabled\n");
  9455.         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  9456.              "Utility pin enabled\n");
  9457.         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  9458.  
  9459.         /*
  9460.          * In theory we can still leave IRQs enabled, as long as only the HPD
  9461.          * interrupts remain enabled. We used to check for that, but since it's
  9462.          * gen-specific and since we only disable LCPLL after we fully disable
  9463.          * the interrupts, the check below should be enough.
  9464.          */
  9465.         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
  9466. }
  9467.  
  9468. static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
  9469. {
  9470.         struct drm_device *dev = dev_priv->dev;
  9471.  
  9472.         if (IS_HASWELL(dev))
  9473.                 return I915_READ(D_COMP_HSW);
  9474.         else
  9475.                 return I915_READ(D_COMP_BDW);
  9476. }
  9477.  
  9478. static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
  9479. {
  9480.         struct drm_device *dev = dev_priv->dev;
  9481.  
  9482.         if (IS_HASWELL(dev)) {
  9483.                 mutex_lock(&dev_priv->rps.hw_lock);
  9484.                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
  9485.                                             val))
  9486.                         DRM_ERROR("Failed to write to D_COMP\n");
  9487.                 mutex_unlock(&dev_priv->rps.hw_lock);
  9488.         } else {
  9489.                 I915_WRITE(D_COMP_BDW, val);
  9490.                 POSTING_READ(D_COMP_BDW);
  9491.         }
  9492. }
  9493.  
  9494. /*
  9495.  * This function implements pieces of two sequences from BSpec:
  9496.  * - Sequence for display software to disable LCPLL
  9497.  * - Sequence for display software to allow package C8+
  9498.  * The steps implemented here are just the steps that actually touch the LCPLL
  9499.  * register. Callers should take care of disabling all the display engine
  9500.  * functions, doing the mode unset, fixing interrupts, etc.
  9501.  */
  9502. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  9503.                               bool switch_to_fclk, bool allow_power_down)
  9504. {
  9505.         uint32_t val;
  9506.  
  9507.         assert_can_disable_lcpll(dev_priv);
  9508.  
  9509.         val = I915_READ(LCPLL_CTL);
  9510.  
  9511.         if (switch_to_fclk) {
  9512.                 val |= LCPLL_CD_SOURCE_FCLK;
  9513.                 I915_WRITE(LCPLL_CTL, val);
  9514.  
  9515.                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9516.                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9517.                         DRM_ERROR("Switching to FCLK failed\n");
  9518.  
  9519.                 val = I915_READ(LCPLL_CTL);
  9520.         }
  9521.  
  9522.         val |= LCPLL_PLL_DISABLE;
  9523.         I915_WRITE(LCPLL_CTL, val);
  9524.         POSTING_READ(LCPLL_CTL);
  9525.  
  9526.         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  9527.                 DRM_ERROR("LCPLL still locked\n");
  9528.  
  9529.         val = hsw_read_dcomp(dev_priv);
  9530.         val |= D_COMP_COMP_DISABLE;
  9531.         hsw_write_dcomp(dev_priv, val);
  9532.         ndelay(100);
  9533.  
  9534.         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
  9535.                      1))
  9536.                 DRM_ERROR("D_COMP RCOMP still in progress\n");
  9537.  
  9538.         if (allow_power_down) {
  9539.                 val = I915_READ(LCPLL_CTL);
  9540.                 val |= LCPLL_POWER_DOWN_ALLOW;
  9541.                 I915_WRITE(LCPLL_CTL, val);
  9542.                 POSTING_READ(LCPLL_CTL);
  9543.         }
  9544. }
  9545.  
  9546. /*
  9547.  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  9548.  * source.
  9549.  */
  9550. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  9551. {
  9552.         uint32_t val;
  9553.  
  9554.         val = I915_READ(LCPLL_CTL);
  9555.  
  9556.         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  9557.                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  9558.                 return;
  9559.  
  9560.         /*
  9561.          * Make sure we're not on PC8 state before disabling PC8, otherwise
  9562.          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
  9563.          */
  9564.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  9565.  
  9566.         if (val & LCPLL_POWER_DOWN_ALLOW) {
  9567.                 val &= ~LCPLL_POWER_DOWN_ALLOW;
  9568.                 I915_WRITE(LCPLL_CTL, val);
  9569.                 POSTING_READ(LCPLL_CTL);
  9570.         }
  9571.  
  9572.         val = hsw_read_dcomp(dev_priv);
  9573.         val |= D_COMP_COMP_FORCE;
  9574.         val &= ~D_COMP_COMP_DISABLE;
  9575.         hsw_write_dcomp(dev_priv, val);
  9576.  
  9577.         val = I915_READ(LCPLL_CTL);
  9578.         val &= ~LCPLL_PLL_DISABLE;
  9579.         I915_WRITE(LCPLL_CTL, val);
  9580.  
  9581.         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  9582.                 DRM_ERROR("LCPLL not locked yet\n");
  9583.  
  9584.         if (val & LCPLL_CD_SOURCE_FCLK) {
  9585.                 val = I915_READ(LCPLL_CTL);
  9586.                 val &= ~LCPLL_CD_SOURCE_FCLK;
  9587.                 I915_WRITE(LCPLL_CTL, val);
  9588.  
  9589.                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9590.                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9591.                         DRM_ERROR("Switching back to LCPLL failed\n");
  9592.         }
  9593.  
  9594.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  9595.         intel_update_cdclk(dev_priv->dev);
  9596. }
  9597.  
  9598. /*
  9599.  * Package states C8 and deeper are really deep PC states that can only be
  9600.  * reached when all the devices on the system allow it, so even if the graphics
  9601.  * device allows PC8+, it doesn't mean the system will actually get to these
  9602.  * states. Our driver only allows PC8+ when going into runtime PM.
  9603.  *
  9604.  * The requirements for PC8+ are that all the outputs are disabled, the power
  9605.  * well is disabled and most interrupts are disabled, and these are also
  9606.  * requirements for runtime PM. When these conditions are met, we manually do
  9607.  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
  9608.  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
  9609.  * hang the machine.
  9610.  *
  9611.  * When we really reach PC8 or deeper states (not just when we allow it) we lose
  9612.  * the state of some registers, so when we come back from PC8+ we need to
  9613.  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
  9614.  * need to take care of the registers kept by RC6. Notice that this happens even
  9615.  * if we don't put the device in PCI D3 state (which is what currently happens
  9616.  * because of the runtime PM support).
  9617.  *
  9618.  * For more, read "Display Sequences for Package C8" on the hardware
  9619.  * documentation.
  9620.  */
  9621. void hsw_enable_pc8(struct drm_i915_private *dev_priv)
  9622. {
  9623.         struct drm_device *dev = dev_priv->dev;
  9624.         uint32_t val;
  9625.  
  9626.         DRM_DEBUG_KMS("Enabling package C8+\n");
  9627.  
  9628.         if (HAS_PCH_LPT_LP(dev)) {
  9629.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9630.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  9631.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9632.         }
  9633.  
  9634.         lpt_disable_clkout_dp(dev);
  9635.         hsw_disable_lcpll(dev_priv, true, true);
  9636. }
  9637.  
  9638. void hsw_disable_pc8(struct drm_i915_private *dev_priv)
  9639. {
  9640.         struct drm_device *dev = dev_priv->dev;
  9641.         uint32_t val;
  9642.  
  9643.         DRM_DEBUG_KMS("Disabling package C8+\n");
  9644.  
  9645.         hsw_restore_lcpll(dev_priv);
  9646.         lpt_init_pch_refclk(dev);
  9647.  
  9648.         if (HAS_PCH_LPT_LP(dev)) {
  9649.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9650.                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  9651.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9652.         }
  9653. }
  9654.  
  9655. static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9656. {
  9657.         struct drm_device *dev = old_state->dev;
  9658.         struct intel_atomic_state *old_intel_state =
  9659.                 to_intel_atomic_state(old_state);
  9660.         unsigned int req_cdclk = old_intel_state->dev_cdclk;
  9661.  
  9662.         broxton_set_cdclk(dev, req_cdclk);
  9663. }
  9664.  
  9665. /* compute the max rate for new configuration */
  9666. static int ilk_max_pixel_rate(struct drm_atomic_state *state)
  9667. {
  9668.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  9669.         struct drm_i915_private *dev_priv = state->dev->dev_private;
  9670.         struct drm_crtc *crtc;
  9671.         struct drm_crtc_state *cstate;
  9672.         struct intel_crtc_state *crtc_state;
  9673.         unsigned max_pixel_rate = 0, i;
  9674.         enum pipe pipe;
  9675.  
  9676.         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
  9677.                sizeof(intel_state->min_pixclk));
  9678.  
  9679.         for_each_crtc_in_state(state, crtc, cstate, i) {
  9680.                 int pixel_rate;
  9681.  
  9682.                 crtc_state = to_intel_crtc_state(cstate);
  9683.                 if (!crtc_state->base.enable) {
  9684.                         intel_state->min_pixclk[i] = 0;
  9685.                         continue;
  9686.                 }
  9687.  
  9688.                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
  9689.  
  9690.                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
  9691.                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
  9692.                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
  9693.  
  9694.                 intel_state->min_pixclk[i] = pixel_rate;
  9695.         }
  9696.  
  9697.         for_each_pipe(dev_priv, pipe)
  9698.                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
  9699.  
  9700.         return max_pixel_rate;
  9701. }
  9702.  
  9703. static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
  9704. {
  9705.         struct drm_i915_private *dev_priv = dev->dev_private;
  9706.         uint32_t val, data;
  9707.         int ret;
  9708.  
  9709.         if (WARN((I915_READ(LCPLL_CTL) &
  9710.                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
  9711.                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
  9712.                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
  9713.                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
  9714.                  "trying to change cdclk frequency with cdclk not enabled\n"))
  9715.                 return;
  9716.  
  9717.         mutex_lock(&dev_priv->rps.hw_lock);
  9718.         ret = sandybridge_pcode_write(dev_priv,
  9719.                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
  9720.         mutex_unlock(&dev_priv->rps.hw_lock);
  9721.         if (ret) {
  9722.                 DRM_ERROR("failed to inform pcode about cdclk change\n");
  9723.                 return;
  9724.         }
  9725.  
  9726.         val = I915_READ(LCPLL_CTL);
  9727.         val |= LCPLL_CD_SOURCE_FCLK;
  9728.         I915_WRITE(LCPLL_CTL, val);
  9729.  
  9730.         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9731.                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9732.                 DRM_ERROR("Switching to FCLK failed\n");
  9733.  
  9734.         val = I915_READ(LCPLL_CTL);
  9735.         val &= ~LCPLL_CLK_FREQ_MASK;
  9736.  
  9737.         switch (cdclk) {
  9738.         case 450000:
  9739.                 val |= LCPLL_CLK_FREQ_450;
  9740.                 data = 0;
  9741.                 break;
  9742.         case 540000:
  9743.                 val |= LCPLL_CLK_FREQ_54O_BDW;
  9744.                 data = 1;
  9745.                 break;
  9746.         case 337500:
  9747.                 val |= LCPLL_CLK_FREQ_337_5_BDW;
  9748.                 data = 2;
  9749.                 break;
  9750.         case 675000:
  9751.                 val |= LCPLL_CLK_FREQ_675_BDW;
  9752.                 data = 3;
  9753.                 break;
  9754.         default:
  9755.                 WARN(1, "invalid cdclk frequency\n");
  9756.                 return;
  9757.         }
  9758.  
  9759.         I915_WRITE(LCPLL_CTL, val);
  9760.  
  9761.         val = I915_READ(LCPLL_CTL);
  9762.         val &= ~LCPLL_CD_SOURCE_FCLK;
  9763.         I915_WRITE(LCPLL_CTL, val);
  9764.  
  9765.         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9766.                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9767.                 DRM_ERROR("Switching back to LCPLL failed\n");
  9768.  
  9769.         mutex_lock(&dev_priv->rps.hw_lock);
  9770.         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
  9771.         mutex_unlock(&dev_priv->rps.hw_lock);
  9772.  
  9773.         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
  9774.  
  9775.         intel_update_cdclk(dev);
  9776.  
  9777.         WARN(cdclk != dev_priv->cdclk_freq,
  9778.              "cdclk requested %d kHz but got %d kHz\n",
  9779.              cdclk, dev_priv->cdclk_freq);
  9780. }
  9781.  
  9782. static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
  9783. {
  9784.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  9785.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  9786.         int max_pixclk = ilk_max_pixel_rate(state);
  9787.         int cdclk;
  9788.  
  9789.         /*
  9790.          * FIXME should also account for plane ratio
  9791.          * once 64bpp pixel formats are supported.
  9792.          */
  9793.         if (max_pixclk > 540000)
  9794.                 cdclk = 675000;
  9795.         else if (max_pixclk > 450000)
  9796.                 cdclk = 540000;
  9797.         else if (max_pixclk > 337500)
  9798.                 cdclk = 450000;
  9799.         else
  9800.                 cdclk = 337500;
  9801.  
  9802.         if (cdclk > dev_priv->max_cdclk_freq) {
  9803.                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
  9804.                               cdclk, dev_priv->max_cdclk_freq);
  9805.                 return -EINVAL;
  9806.         }
  9807.  
  9808.         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
  9809.         if (!intel_state->active_crtcs)
  9810.                 intel_state->dev_cdclk = 337500;
  9811.  
  9812.         return 0;
  9813. }
  9814.  
  9815. static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9816. {
  9817.         struct drm_device *dev = old_state->dev;
  9818.         struct intel_atomic_state *old_intel_state =
  9819.                 to_intel_atomic_state(old_state);
  9820.         unsigned req_cdclk = old_intel_state->dev_cdclk;
  9821.  
  9822.         broadwell_set_cdclk(dev, req_cdclk);
  9823. }
  9824.  
  9825. static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
  9826.                                       struct intel_crtc_state *crtc_state)
  9827. {
  9828.         struct intel_encoder *intel_encoder =
  9829.                 intel_ddi_get_crtc_new_encoder(crtc_state);
  9830.  
  9831.         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
  9832.                 if (!intel_ddi_pll_select(crtc, crtc_state))
  9833.                         return -EINVAL;
  9834.         }
  9835.  
  9836.         crtc->lowfreq_avail = false;
  9837.  
  9838.         return 0;
  9839. }
  9840.  
  9841. static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
  9842.                                 enum port port,
  9843.                                 struct intel_crtc_state *pipe_config)
  9844. {
  9845.         switch (port) {
  9846.         case PORT_A:
  9847.                 pipe_config->ddi_pll_sel = SKL_DPLL0;
  9848.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9849.                 break;
  9850.         case PORT_B:
  9851.                 pipe_config->ddi_pll_sel = SKL_DPLL1;
  9852.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9853.                 break;
  9854.         case PORT_C:
  9855.                 pipe_config->ddi_pll_sel = SKL_DPLL2;
  9856.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9857.                 break;
  9858.         default:
  9859.                 DRM_ERROR("Incorrect port type\n");
  9860.         }
  9861. }
  9862.  
  9863. static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
  9864.                                 enum port port,
  9865.                                 struct intel_crtc_state *pipe_config)
  9866. {
  9867.         u32 temp, dpll_ctl1;
  9868.  
  9869.         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
  9870.         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
  9871.  
  9872.         switch (pipe_config->ddi_pll_sel) {
  9873.         case SKL_DPLL0:
  9874.                 /*
  9875.                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
  9876.                  * of the shared DPLL framework and thus needs to be read out
  9877.                  * separately
  9878.                  */
  9879.                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
  9880.                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
  9881.                 break;
  9882.         case SKL_DPLL1:
  9883.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9884.                 break;
  9885.         case SKL_DPLL2:
  9886.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9887.                 break;
  9888.         case SKL_DPLL3:
  9889.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9890.                 break;
  9891.         }
  9892. }
  9893.  
  9894. static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
  9895.                                 enum port port,
  9896.                                 struct intel_crtc_state *pipe_config)
  9897. {
  9898.         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
  9899.  
  9900.         switch (pipe_config->ddi_pll_sel) {
  9901.         case PORT_CLK_SEL_WRPLL1:
  9902.                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
  9903.                 break;
  9904.         case PORT_CLK_SEL_WRPLL2:
  9905.                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
  9906.                 break;
  9907.         case PORT_CLK_SEL_SPLL:
  9908.                 pipe_config->shared_dpll = DPLL_ID_SPLL;
  9909.                 break;
  9910.         }
  9911. }
  9912.  
  9913. static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
  9914.                                        struct intel_crtc_state *pipe_config)
  9915. {
  9916.         struct drm_device *dev = crtc->base.dev;
  9917.         struct drm_i915_private *dev_priv = dev->dev_private;
  9918.         struct intel_shared_dpll *pll;
  9919.         enum port port;
  9920.         uint32_t tmp;
  9921.  
  9922.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  9923.  
  9924.         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
  9925.  
  9926.         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  9927.                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
  9928.         else if (IS_BROXTON(dev))
  9929.                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
  9930.         else
  9931.                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
  9932.  
  9933.         if (pipe_config->shared_dpll >= 0) {
  9934.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9935.  
  9936.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9937.                                            &pipe_config->dpll_hw_state));
  9938.         }
  9939.  
  9940.         /*
  9941.          * Haswell has only FDI/PCH transcoder A. It is which is connected to
  9942.          * DDI E. So just check whether this pipe is wired to DDI E and whether
  9943.          * the PCH transcoder is on.
  9944.          */
  9945.         if (INTEL_INFO(dev)->gen < 9 &&
  9946.             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  9947.                 pipe_config->has_pch_encoder = true;
  9948.  
  9949.                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  9950.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9951.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9952.  
  9953.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9954.         }
  9955. }
  9956.  
  9957. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  9958.                                     struct intel_crtc_state *pipe_config)
  9959. {
  9960.         struct drm_device *dev = crtc->base.dev;
  9961.         struct drm_i915_private *dev_priv = dev->dev_private;
  9962.         enum intel_display_power_domain power_domain;
  9963.         unsigned long power_domain_mask;
  9964.         uint32_t tmp;
  9965.         bool ret;
  9966.  
  9967.         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
  9968.         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  9969.                 return false;
  9970.         power_domain_mask = BIT(power_domain);
  9971.  
  9972.         ret = false;
  9973.  
  9974.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9975.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9976.  
  9977.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  9978.         if (tmp & TRANS_DDI_FUNC_ENABLE) {
  9979.                 enum pipe trans_edp_pipe;
  9980.                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  9981.                 default:
  9982.                         WARN(1, "unknown pipe linked to edp transcoder\n");
  9983.                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
  9984.                 case TRANS_DDI_EDP_INPUT_A_ON:
  9985.                         trans_edp_pipe = PIPE_A;
  9986.                         break;
  9987.                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
  9988.                         trans_edp_pipe = PIPE_B;
  9989.                         break;
  9990.                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
  9991.                         trans_edp_pipe = PIPE_C;
  9992.                         break;
  9993.                 }
  9994.  
  9995.                 if (trans_edp_pipe == crtc->pipe)
  9996.                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
  9997.         }
  9998.  
  9999.         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
  10000.         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  10001.                 goto out;
  10002.         power_domain_mask |= BIT(power_domain);
  10003.  
  10004.         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  10005.         if (!(tmp & PIPECONF_ENABLE))
  10006.                 goto out;
  10007.  
  10008.         haswell_get_ddi_port_state(crtc, pipe_config);
  10009.  
  10010.         intel_get_pipe_timings(crtc, pipe_config);
  10011.  
  10012.         if (INTEL_INFO(dev)->gen >= 9) {
  10013.                 skl_init_scalers(dev, crtc, pipe_config);
  10014.         }
  10015.  
  10016.         if (INTEL_INFO(dev)->gen >= 9) {
  10017.                 pipe_config->scaler_state.scaler_id = -1;
  10018.                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
  10019.         }
  10020.  
  10021.         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  10022.         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  10023.                 power_domain_mask |= BIT(power_domain);
  10024.                 if (INTEL_INFO(dev)->gen >= 9)
  10025.                         skylake_get_pfit_config(crtc, pipe_config);
  10026.                 else
  10027.                         ironlake_get_pfit_config(crtc, pipe_config);
  10028.         }
  10029.  
  10030.         if (IS_HASWELL(dev))
  10031.                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  10032.                         (I915_READ(IPS_CTL) & IPS_ENABLE);
  10033.  
  10034.         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
  10035.                 pipe_config->pixel_multiplier =
  10036.                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
  10037.         } else {
  10038.                 pipe_config->pixel_multiplier = 1;
  10039.         }
  10040.  
  10041.         ret = true;
  10042.  
  10043. out:
  10044.         for_each_power_domain(power_domain, power_domain_mask)
  10045.                 intel_display_power_put(dev_priv, power_domain);
  10046.  
  10047.         return ret;
  10048. }
  10049.  
  10050. static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
  10051.                                const struct intel_plane_state *plane_state)
  10052. {
  10053.         struct drm_device *dev = crtc->dev;
  10054.         struct drm_i915_private *dev_priv = dev->dev_private;
  10055.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10056.         uint32_t cntl = 0, size = 0;
  10057.  
  10058.         if (plane_state && plane_state->visible) {
  10059.                 unsigned int width = plane_state->base.crtc_w;
  10060.                 unsigned int height = plane_state->base.crtc_h;
  10061.                 unsigned int stride = roundup_pow_of_two(width) * 4;
  10062.  
  10063.                 switch (stride) {
  10064.                 default:
  10065.                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
  10066.                                   width, stride);
  10067.                         stride = 256;
  10068.                         /* fallthrough */
  10069.                 case 256:
  10070.                 case 512:
  10071.                 case 1024:
  10072.                 case 2048:
  10073.                         break;
  10074.                 }
  10075.  
  10076.                 cntl |= CURSOR_ENABLE |
  10077.                         CURSOR_GAMMA_ENABLE |
  10078.                         CURSOR_FORMAT_ARGB |
  10079.                         CURSOR_STRIDE(stride);
  10080.  
  10081.                 size = (height << 12) | width;
  10082.         }
  10083.  
  10084.         if (intel_crtc->cursor_cntl != 0 &&
  10085.             (intel_crtc->cursor_base != base ||
  10086.              intel_crtc->cursor_size != size ||
  10087.              intel_crtc->cursor_cntl != cntl)) {
  10088.                 /* On these chipsets we can only modify the base/size/stride
  10089.                  * whilst the cursor is disabled.
  10090.                  */
  10091.                 I915_WRITE(CURCNTR(PIPE_A), 0);
  10092.                 POSTING_READ(CURCNTR(PIPE_A));
  10093.                 intel_crtc->cursor_cntl = 0;
  10094.         }
  10095.  
  10096.         if (intel_crtc->cursor_base != base) {
  10097.                 I915_WRITE(CURBASE(PIPE_A), base);
  10098.                 intel_crtc->cursor_base = base;
  10099.         }
  10100.  
  10101.         if (intel_crtc->cursor_size != size) {
  10102.                 I915_WRITE(CURSIZE, size);
  10103.                 intel_crtc->cursor_size = size;
  10104.         }
  10105.  
  10106.         if (intel_crtc->cursor_cntl != cntl) {
  10107.                 I915_WRITE(CURCNTR(PIPE_A), cntl);
  10108.                 POSTING_READ(CURCNTR(PIPE_A));
  10109.                 intel_crtc->cursor_cntl = cntl;
  10110.         }
  10111. }
  10112.  
  10113. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
  10114.                                const struct intel_plane_state *plane_state)
  10115. {
  10116.         struct drm_device *dev = crtc->dev;
  10117.         struct drm_i915_private *dev_priv = dev->dev_private;
  10118.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10119.         int pipe = intel_crtc->pipe;
  10120.         uint32_t cntl = 0;
  10121.  
  10122.         if (plane_state && plane_state->visible) {
  10123.                 cntl = MCURSOR_GAMMA_ENABLE;
  10124.                 switch (plane_state->base.crtc_w) {
  10125.                         case 64:
  10126.                                 cntl |= CURSOR_MODE_64_ARGB_AX;
  10127.                                 break;
  10128.                         case 128:
  10129.                                 cntl |= CURSOR_MODE_128_ARGB_AX;
  10130.                                 break;
  10131.                         case 256:
  10132.                                 cntl |= CURSOR_MODE_256_ARGB_AX;
  10133.                                 break;
  10134.                         default:
  10135.                                 MISSING_CASE(plane_state->base.crtc_w);
  10136.                                 return;
  10137.                 }
  10138.                 cntl |= pipe << 28; /* Connect to correct pipe */
  10139.  
  10140.                 if (HAS_DDI(dev))
  10141.                         cntl |= CURSOR_PIPE_CSC_ENABLE;
  10142.  
  10143.                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
  10144.                         cntl |= CURSOR_ROTATE_180;
  10145.         }
  10146.  
  10147.         if (intel_crtc->cursor_cntl != cntl) {
  10148.                 I915_WRITE(CURCNTR(pipe), cntl);
  10149.                 POSTING_READ(CURCNTR(pipe));
  10150.                 intel_crtc->cursor_cntl = cntl;
  10151.         }
  10152.  
  10153.         /* and commit changes on next vblank */
  10154.         I915_WRITE(CURBASE(pipe), base);
  10155.         POSTING_READ(CURBASE(pipe));
  10156.  
  10157.         intel_crtc->cursor_base = base;
  10158. }
  10159.  
  10160. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  10161. void intel_crtc_update_cursor(struct drm_crtc *crtc,
  10162.                                      const struct intel_plane_state *plane_state)
  10163. {
  10164.         struct drm_device *dev = crtc->dev;
  10165.         struct drm_i915_private *dev_priv = dev->dev_private;
  10166.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10167.         int pipe = intel_crtc->pipe;
  10168.         u32 base = intel_crtc->cursor_addr;
  10169.         u32 pos = 0;
  10170.  
  10171.         if (plane_state) {
  10172.                 int x = plane_state->base.crtc_x;
  10173.                 int y = plane_state->base.crtc_y;
  10174.  
  10175.                 if (x < 0) {
  10176.                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  10177.                         x = -x;
  10178.                 }
  10179.                 pos |= x << CURSOR_X_SHIFT;
  10180.  
  10181.                 if (y < 0) {
  10182.                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  10183.                         y = -y;
  10184.                 }
  10185.                 pos |= y << CURSOR_Y_SHIFT;
  10186.  
  10187.                 /* ILK+ do this automagically */
  10188.                 if (HAS_GMCH_DISPLAY(dev) &&
  10189.                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
  10190.                         base += (plane_state->base.crtc_h *
  10191.                                  plane_state->base.crtc_w - 1) * 4;
  10192.                 }
  10193.         }
  10194.  
  10195.         I915_WRITE(CURPOS(pipe), pos);
  10196.  
  10197.         if (IS_845G(dev) || IS_I865G(dev))
  10198.                 i845_update_cursor(crtc, base, plane_state);
  10199.         else
  10200.                 i9xx_update_cursor(crtc, base, plane_state);
  10201. }
  10202.  
  10203. static bool cursor_size_ok(struct drm_device *dev,
  10204.                            uint32_t width, uint32_t height)
  10205. {
  10206.         if (width == 0 || height == 0)
  10207.                 return false;
  10208.  
  10209.         /*
  10210.          * 845g/865g are special in that they are only limited by
  10211.          * the width of their cursors, the height is arbitrary up to
  10212.          * the precision of the register. Everything else requires
  10213.          * square cursors, limited to a few power-of-two sizes.
  10214.          */
  10215.         if (IS_845G(dev) || IS_I865G(dev)) {
  10216.                 if ((width & 63) != 0)
  10217.                         return false;
  10218.  
  10219.                 if (width > (IS_845G(dev) ? 64 : 512))
  10220.                         return false;
  10221.  
  10222.                 if (height > 1023)
  10223.                         return false;
  10224.         } else {
  10225.                 switch (width | height) {
  10226.                 case 256:
  10227.                 case 128:
  10228.                         if (IS_GEN2(dev))
  10229.                                 return false;
  10230.                 case 64:
  10231.                         break;
  10232.                 default:
  10233.                         return false;
  10234.                 }
  10235.         }
  10236.  
  10237.         return true;
  10238. }
  10239.  
  10240. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  10241.                                  u16 *blue, uint32_t start, uint32_t size)
  10242. {
  10243.         int end = (start + size > 256) ? 256 : start + size, i;
  10244.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10245.  
  10246.         for (i = start; i < end; i++) {
  10247.                 intel_crtc->lut_r[i] = red[i] >> 8;
  10248.                 intel_crtc->lut_g[i] = green[i] >> 8;
  10249.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  10250.         }
  10251.  
  10252.         intel_crtc_load_lut(crtc);
  10253. }
  10254.  
  10255. /* VESA 640x480x72Hz mode to set on the pipe */
  10256. static struct drm_display_mode load_detect_mode = {
  10257.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  10258.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  10259. };
  10260.  
  10261. struct drm_framebuffer *
  10262. __intel_framebuffer_create(struct drm_device *dev,
  10263.                            struct drm_mode_fb_cmd2 *mode_cmd,
  10264.                            struct drm_i915_gem_object *obj)
  10265. {
  10266.         struct intel_framebuffer *intel_fb;
  10267.         int ret;
  10268.  
  10269.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  10270.         if (!intel_fb)
  10271.                 return ERR_PTR(-ENOMEM);
  10272.  
  10273.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  10274.         if (ret)
  10275.                 goto err;
  10276.  
  10277.         return &intel_fb->base;
  10278.  
  10279. err:
  10280.         kfree(intel_fb);
  10281.         return ERR_PTR(ret);
  10282. }
  10283.  
  10284. static struct drm_framebuffer *
  10285. intel_framebuffer_create(struct drm_device *dev,
  10286.                          struct drm_mode_fb_cmd2 *mode_cmd,
  10287.                          struct drm_i915_gem_object *obj)
  10288. {
  10289.         struct drm_framebuffer *fb;
  10290.         int ret;
  10291.  
  10292.         ret = i915_mutex_lock_interruptible(dev);
  10293.         if (ret)
  10294.                 return ERR_PTR(ret);
  10295.         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
  10296.         mutex_unlock(&dev->struct_mutex);
  10297.  
  10298.         return fb;
  10299. }
  10300.  
  10301. static u32
  10302. intel_framebuffer_pitch_for_width(int width, int bpp)
  10303. {
  10304.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  10305.         return ALIGN(pitch, 64);
  10306. }
  10307.  
  10308. static u32
  10309. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  10310. {
  10311.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  10312.         return PAGE_ALIGN(pitch * mode->vdisplay);
  10313. }
  10314.  
  10315. static struct drm_framebuffer *
  10316. intel_framebuffer_create_for_mode(struct drm_device *dev,
  10317.                                   struct drm_display_mode *mode,
  10318.                                   int depth, int bpp)
  10319. {
  10320.         struct drm_framebuffer *fb;
  10321.         struct drm_i915_gem_object *obj;
  10322.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  10323.  
  10324.         obj = i915_gem_alloc_object(dev,
  10325.                                     intel_framebuffer_size_for_mode(mode, bpp));
  10326.         if (obj == NULL)
  10327.                 return ERR_PTR(-ENOMEM);
  10328.  
  10329.         mode_cmd.width = mode->hdisplay;
  10330.         mode_cmd.height = mode->vdisplay;
  10331.         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  10332.                                                                 bpp);
  10333.         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  10334.  
  10335.         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
  10336.         if (IS_ERR(fb))
  10337.                 drm_gem_object_unreference_unlocked(&obj->base);
  10338.  
  10339.         return fb;
  10340. }
  10341.  
  10342. static struct drm_framebuffer *
  10343. mode_fits_in_fbdev(struct drm_device *dev,
  10344.                    struct drm_display_mode *mode)
  10345. {
  10346. #ifdef CONFIG_DRM_FBDEV_EMULATION
  10347.         struct drm_i915_private *dev_priv = dev->dev_private;
  10348.         struct drm_i915_gem_object *obj;
  10349.         struct drm_framebuffer *fb;
  10350.  
  10351.         if (!dev_priv->fbdev)
  10352.                 return NULL;
  10353.  
  10354.         if (!dev_priv->fbdev->fb)
  10355.                 return NULL;
  10356.  
  10357.         obj = dev_priv->fbdev->fb->obj;
  10358.         BUG_ON(!obj);
  10359.  
  10360.         fb = &dev_priv->fbdev->fb->base;
  10361.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  10362.                                                                fb->bits_per_pixel))
  10363.                 return NULL;
  10364.  
  10365.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  10366.                 return NULL;
  10367.  
  10368.         drm_framebuffer_reference(fb);
  10369.         return fb;
  10370. #else
  10371.         return NULL;
  10372. #endif
  10373. }
  10374.  
  10375. static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
  10376.                                            struct drm_crtc *crtc,
  10377.                                            struct drm_display_mode *mode,
  10378.                                            struct drm_framebuffer *fb,
  10379.                                            int x, int y)
  10380. {
  10381.         struct drm_plane_state *plane_state;
  10382.         int hdisplay, vdisplay;
  10383.         int ret;
  10384.  
  10385.         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
  10386.         if (IS_ERR(plane_state))
  10387.                 return PTR_ERR(plane_state);
  10388.  
  10389.         if (mode)
  10390.                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
  10391.         else
  10392.                 hdisplay = vdisplay = 0;
  10393.  
  10394.         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
  10395.         if (ret)
  10396.                 return ret;
  10397.         drm_atomic_set_fb_for_plane(plane_state, fb);
  10398.         plane_state->crtc_x = 0;
  10399.         plane_state->crtc_y = 0;
  10400.         plane_state->crtc_w = hdisplay;
  10401.         plane_state->crtc_h = vdisplay;
  10402.         plane_state->src_x = x << 16;
  10403.         plane_state->src_y = y << 16;
  10404.         plane_state->src_w = hdisplay << 16;
  10405.         plane_state->src_h = vdisplay << 16;
  10406.  
  10407.         return 0;
  10408. }
  10409.  
  10410. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  10411.                                 struct drm_display_mode *mode,
  10412.                                 struct intel_load_detect_pipe *old,
  10413.                                 struct drm_modeset_acquire_ctx *ctx)
  10414. {
  10415.         struct intel_crtc *intel_crtc;
  10416.         struct intel_encoder *intel_encoder =
  10417.                 intel_attached_encoder(connector);
  10418.         struct drm_crtc *possible_crtc;
  10419.         struct drm_encoder *encoder = &intel_encoder->base;
  10420.         struct drm_crtc *crtc = NULL;
  10421.         struct drm_device *dev = encoder->dev;
  10422.         struct drm_framebuffer *fb;
  10423.         struct drm_mode_config *config = &dev->mode_config;
  10424.         struct drm_atomic_state *state = NULL, *restore_state = NULL;
  10425.         struct drm_connector_state *connector_state;
  10426.         struct intel_crtc_state *crtc_state;
  10427.         int ret, i = -1;
  10428.  
  10429.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10430.                       connector->base.id, connector->name,
  10431.                       encoder->base.id, encoder->name);
  10432.  
  10433.         old->restore_state = NULL;
  10434.  
  10435. retry:
  10436.         ret = drm_modeset_lock(&config->connection_mutex, ctx);
  10437.         if (ret)
  10438.                 goto fail;
  10439.  
  10440.         /*
  10441.          * Algorithm gets a little messy:
  10442.          *
  10443.          *   - if the connector already has an assigned crtc, use it (but make
  10444.          *     sure it's on first)
  10445.          *
  10446.          *   - try to find the first unused crtc that can drive this connector,
  10447.          *     and use that if we find one
  10448.          */
  10449.  
  10450.         /* See if we already have a CRTC for this connector */
  10451.         if (connector->state->crtc) {
  10452.                 crtc = connector->state->crtc;
  10453.  
  10454.                 ret = drm_modeset_lock(&crtc->mutex, ctx);
  10455.                 if (ret)
  10456.                         goto fail;
  10457.  
  10458.                 /* Make sure the crtc and connector are running */
  10459.                 goto found;
  10460.         }
  10461.  
  10462.         /* Find an unused one (if possible) */
  10463.         for_each_crtc(dev, possible_crtc) {
  10464.                 i++;
  10465.                 if (!(encoder->possible_crtcs & (1 << i)))
  10466.                         continue;
  10467.  
  10468.                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
  10469.                 if (ret)
  10470.                         goto fail;
  10471.  
  10472.                 if (possible_crtc->state->enable) {
  10473.                         drm_modeset_unlock(&possible_crtc->mutex);
  10474.                         continue;
  10475.                 }
  10476.  
  10477.                 crtc = possible_crtc;
  10478.                 break;
  10479.         }
  10480.  
  10481.         /*
  10482.          * If we didn't find an unused CRTC, don't use any.
  10483.          */
  10484.         if (!crtc) {
  10485.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  10486.                 goto fail;
  10487.         }
  10488.  
  10489. found:
  10490.         intel_crtc = to_intel_crtc(crtc);
  10491.  
  10492.         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10493.         if (ret)
  10494.                 goto fail;
  10495.  
  10496.         state = drm_atomic_state_alloc(dev);
  10497.         restore_state = drm_atomic_state_alloc(dev);
  10498.         if (!state || !restore_state) {
  10499.                 ret = -ENOMEM;
  10500.                 goto fail;
  10501.         }
  10502.  
  10503.         state->acquire_ctx = ctx;
  10504.         restore_state->acquire_ctx = ctx;
  10505.  
  10506.         connector_state = drm_atomic_get_connector_state(state, connector);
  10507.         if (IS_ERR(connector_state)) {
  10508.                 ret = PTR_ERR(connector_state);
  10509.                 goto fail;
  10510.         }
  10511.  
  10512.         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
  10513.         if (ret)
  10514.                 goto fail;
  10515.  
  10516.         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10517.         if (IS_ERR(crtc_state)) {
  10518.                 ret = PTR_ERR(crtc_state);
  10519.                 goto fail;
  10520.         }
  10521.  
  10522.         crtc_state->base.active = crtc_state->base.enable = true;
  10523.  
  10524.         if (!mode)
  10525.                 mode = &load_detect_mode;
  10526.  
  10527.         /* We need a framebuffer large enough to accommodate all accesses
  10528.          * that the plane may generate whilst we perform load detection.
  10529.          * We can not rely on the fbcon either being present (we get called
  10530.          * during its initialisation to detect all boot displays, or it may
  10531.          * not even exist) or that it is large enough to satisfy the
  10532.          * requested mode.
  10533.          */
  10534.         fb = mode_fits_in_fbdev(dev, mode);
  10535.         if (fb == NULL) {
  10536.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  10537.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  10538.         } else
  10539.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  10540.         if (IS_ERR(fb)) {
  10541.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  10542.                 goto fail;
  10543.         }
  10544.  
  10545.         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
  10546.         if (ret)
  10547.                 goto fail;
  10548.  
  10549.         drm_framebuffer_unreference(fb);
  10550.  
  10551.         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
  10552.         if (ret)
  10553.                 goto fail;
  10554.  
  10555.         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
  10556.         if (!ret)
  10557.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
  10558.         if (!ret)
  10559.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
  10560.         if (ret) {
  10561.                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
  10562.                 goto fail;
  10563.         }
  10564.  
  10565.         ret = drm_atomic_commit(state);
  10566.         if (ret) {
  10567.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  10568.                 goto fail;
  10569.         }
  10570.  
  10571.         old->restore_state = restore_state;
  10572.  
  10573.         /* let the connector get through one full cycle before testing */
  10574.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  10575.         return true;
  10576.  
  10577. fail:
  10578.         drm_atomic_state_free(state);
  10579.         drm_atomic_state_free(restore_state);
  10580.         restore_state = state = NULL;
  10581.  
  10582.         if (ret == -EDEADLK) {
  10583.                 drm_modeset_backoff(ctx);
  10584.                 goto retry;
  10585.         }
  10586.  
  10587.         return false;
  10588. }
  10589.  
  10590. void intel_release_load_detect_pipe(struct drm_connector *connector,
  10591.                                     struct intel_load_detect_pipe *old,
  10592.                                     struct drm_modeset_acquire_ctx *ctx)
  10593. {
  10594.         struct intel_encoder *intel_encoder =
  10595.                 intel_attached_encoder(connector);
  10596.         struct drm_encoder *encoder = &intel_encoder->base;
  10597.         struct drm_atomic_state *state = old->restore_state;
  10598.         int ret;
  10599.  
  10600.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10601.                       connector->base.id, connector->name,
  10602.                       encoder->base.id, encoder->name);
  10603.  
  10604.         if (!state)
  10605.                 return;
  10606.  
  10607.         ret = drm_atomic_commit(state);
  10608.         if (ret) {
  10609.                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
  10610.                 drm_atomic_state_free(state);
  10611.         }
  10612. }
  10613.  
  10614. static int i9xx_pll_refclk(struct drm_device *dev,
  10615.                            const struct intel_crtc_state *pipe_config)
  10616. {
  10617.         struct drm_i915_private *dev_priv = dev->dev_private;
  10618.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10619.  
  10620.         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  10621.                 return dev_priv->vbt.lvds_ssc_freq;
  10622.         else if (HAS_PCH_SPLIT(dev))
  10623.                 return 120000;
  10624.         else if (!IS_GEN2(dev))
  10625.                 return 96000;
  10626.         else
  10627.                 return 48000;
  10628. }
  10629.  
  10630. /* Returns the clock of the currently programmed mode of the given pipe. */
  10631. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  10632.                                 struct intel_crtc_state *pipe_config)
  10633. {
  10634.         struct drm_device *dev = crtc->base.dev;
  10635.         struct drm_i915_private *dev_priv = dev->dev_private;
  10636.         int pipe = pipe_config->cpu_transcoder;
  10637.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10638.         u32 fp;
  10639.         intel_clock_t clock;
  10640.         int port_clock;
  10641.         int refclk = i9xx_pll_refclk(dev, pipe_config);
  10642.  
  10643.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  10644.                 fp = pipe_config->dpll_hw_state.fp0;
  10645.         else
  10646.                 fp = pipe_config->dpll_hw_state.fp1;
  10647.  
  10648.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  10649.         if (IS_PINEVIEW(dev)) {
  10650.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  10651.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10652.         } else {
  10653.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  10654.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10655.         }
  10656.  
  10657.         if (!IS_GEN2(dev)) {
  10658.                 if (IS_PINEVIEW(dev))
  10659.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  10660.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  10661.                 else
  10662.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  10663.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  10664.  
  10665.                 switch (dpll & DPLL_MODE_MASK) {
  10666.                 case DPLLB_MODE_DAC_SERIAL:
  10667.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  10668.                                 5 : 10;
  10669.                         break;
  10670.                 case DPLLB_MODE_LVDS:
  10671.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  10672.                                 7 : 14;
  10673.                         break;
  10674.                 default:
  10675.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  10676.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  10677.                         return;
  10678.                 }
  10679.  
  10680.                 if (IS_PINEVIEW(dev))
  10681.                         port_clock = pnv_calc_dpll_params(refclk, &clock);
  10682.                 else
  10683.                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10684.         } else {
  10685.                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
  10686.                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
  10687.  
  10688.                 if (is_lvds) {
  10689.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  10690.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  10691.  
  10692.                         if (lvds & LVDS_CLKB_POWER_UP)
  10693.                                 clock.p2 = 7;
  10694.                         else
  10695.                                 clock.p2 = 14;
  10696.                 } else {
  10697.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  10698.                                 clock.p1 = 2;
  10699.                         else {
  10700.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  10701.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  10702.                         }
  10703.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  10704.                                 clock.p2 = 4;
  10705.                         else
  10706.                                 clock.p2 = 2;
  10707.                 }
  10708.  
  10709.                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10710.         }
  10711.  
  10712.         /*
  10713.          * This value includes pixel_multiplier. We will use
  10714.          * port_clock to compute adjusted_mode.crtc_clock in the
  10715.          * encoder's get_config() function.
  10716.          */
  10717.         pipe_config->port_clock = port_clock;
  10718. }
  10719.  
  10720. int intel_dotclock_calculate(int link_freq,
  10721.                              const struct intel_link_m_n *m_n)
  10722. {
  10723.         /*
  10724.          * The calculation for the data clock is:
  10725.          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  10726.          * But we want to avoid losing precison if possible, so:
  10727.          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  10728.          *
  10729.          * and the link clock is simpler:
  10730.          * link_clock = (m * link_clock) / n
  10731.          */
  10732.  
  10733.         if (!m_n->link_n)
  10734.                 return 0;
  10735.  
  10736.         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  10737. }
  10738.  
  10739. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  10740.                                    struct intel_crtc_state *pipe_config)
  10741. {
  10742.         struct drm_device *dev = crtc->base.dev;
  10743.  
  10744.         /* read out port_clock from the DPLL */
  10745.         i9xx_crtc_clock_get(crtc, pipe_config);
  10746.  
  10747.         /*
  10748.          * This value does not include pixel_multiplier.
  10749.          * We will check that port_clock and adjusted_mode.crtc_clock
  10750.          * agree once we know their relationship in the encoder's
  10751.          * get_config() function.
  10752.          */
  10753.         pipe_config->base.adjusted_mode.crtc_clock =
  10754.                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  10755.                                          &pipe_config->fdi_m_n);
  10756. }
  10757.  
  10758. /** Returns the currently programmed mode of the given pipe. */
  10759. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  10760.                                              struct drm_crtc *crtc)
  10761. {
  10762.         struct drm_i915_private *dev_priv = dev->dev_private;
  10763.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10764.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  10765.         struct drm_display_mode *mode;
  10766.         struct intel_crtc_state *pipe_config;
  10767.         int htot = I915_READ(HTOTAL(cpu_transcoder));
  10768.         int hsync = I915_READ(HSYNC(cpu_transcoder));
  10769.         int vtot = I915_READ(VTOTAL(cpu_transcoder));
  10770.         int vsync = I915_READ(VSYNC(cpu_transcoder));
  10771.         enum pipe pipe = intel_crtc->pipe;
  10772.  
  10773.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  10774.         if (!mode)
  10775.                 return NULL;
  10776.  
  10777.         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  10778.         if (!pipe_config) {
  10779.                 kfree(mode);
  10780.                 return NULL;
  10781.         }
  10782.  
  10783.         /*
  10784.          * Construct a pipe_config sufficient for getting the clock info
  10785.          * back out of crtc_clock_get.
  10786.          *
  10787.          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  10788.          * to use a real value here instead.
  10789.          */
  10790.         pipe_config->cpu_transcoder = (enum transcoder) pipe;
  10791.         pipe_config->pixel_multiplier = 1;
  10792.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  10793.         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  10794.         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  10795.         i9xx_crtc_clock_get(intel_crtc, pipe_config);
  10796.  
  10797.         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
  10798.         mode->hdisplay = (htot & 0xffff) + 1;
  10799.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  10800.         mode->hsync_start = (hsync & 0xffff) + 1;
  10801.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  10802.         mode->vdisplay = (vtot & 0xffff) + 1;
  10803.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  10804.         mode->vsync_start = (vsync & 0xffff) + 1;
  10805.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  10806.  
  10807.         drm_mode_set_name(mode);
  10808.  
  10809.         kfree(pipe_config);
  10810.  
  10811.         return mode;
  10812. }
  10813.  
  10814. void intel_mark_busy(struct drm_device *dev)
  10815. {
  10816.         struct drm_i915_private *dev_priv = dev->dev_private;
  10817.  
  10818.         if (dev_priv->mm.busy)
  10819.                 return;
  10820.  
  10821.         intel_runtime_pm_get(dev_priv);
  10822.         i915_update_gfx_val(dev_priv);
  10823.         if (INTEL_INFO(dev)->gen >= 6)
  10824.                 gen6_rps_busy(dev_priv);
  10825.         dev_priv->mm.busy = true;
  10826. }
  10827.  
  10828. void intel_mark_idle(struct drm_device *dev)
  10829. {
  10830.         struct drm_i915_private *dev_priv = dev->dev_private;
  10831.  
  10832.         if (!dev_priv->mm.busy)
  10833.                 return;
  10834.  
  10835.         dev_priv->mm.busy = false;
  10836.  
  10837.         if (INTEL_INFO(dev)->gen >= 6)
  10838.                 gen6_rps_idle(dev->dev_private);
  10839.  
  10840.         intel_runtime_pm_put(dev_priv);
  10841. }
  10842.  
  10843. static void intel_crtc_destroy(struct drm_crtc *crtc)
  10844. {
  10845.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10846.         struct drm_device *dev = crtc->dev;
  10847.         struct intel_unpin_work *work;
  10848.  
  10849.         spin_lock_irq(&dev->event_lock);
  10850.         work = intel_crtc->unpin_work;
  10851.         intel_crtc->unpin_work = NULL;
  10852.         spin_unlock_irq(&dev->event_lock);
  10853.  
  10854.         if (work) {
  10855.                 cancel_work_sync(&work->work);
  10856.                 kfree(work);
  10857.         }
  10858.  
  10859.         drm_crtc_cleanup(crtc);
  10860.  
  10861.         kfree(intel_crtc);
  10862. }
  10863.  
  10864. static void intel_unpin_work_fn(struct work_struct *__work)
  10865. {
  10866.         struct intel_unpin_work *work =
  10867.                 container_of(__work, struct intel_unpin_work, work);
  10868.         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
  10869.         struct drm_device *dev = crtc->base.dev;
  10870.         struct drm_plane *primary = crtc->base.primary;
  10871.  
  10872.         mutex_lock(&dev->struct_mutex);
  10873.         intel_unpin_fb_obj(work->old_fb, primary->state);
  10874.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  10875.  
  10876.         if (work->flip_queued_req)
  10877.                 i915_gem_request_assign(&work->flip_queued_req, NULL);
  10878.         mutex_unlock(&dev->struct_mutex);
  10879.  
  10880.         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
  10881.         intel_fbc_post_update(crtc);
  10882.         drm_framebuffer_unreference(work->old_fb);
  10883.  
  10884.         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
  10885.         atomic_dec(&crtc->unpin_work_count);
  10886.  
  10887.         kfree(work);
  10888. }
  10889.  
  10890. static void do_intel_finish_page_flip(struct drm_device *dev,
  10891.                                       struct drm_crtc *crtc)
  10892. {
  10893.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10894.         struct intel_unpin_work *work;
  10895.         unsigned long flags;
  10896.  
  10897.         /* Ignore early vblank irqs */
  10898.         if (intel_crtc == NULL)
  10899.                 return;
  10900.  
  10901.         /*
  10902.          * This is called both by irq handlers and the reset code (to complete
  10903.          * lost pageflips) so needs the full irqsave spinlocks.
  10904.          */
  10905.         spin_lock_irqsave(&dev->event_lock, flags);
  10906.         work = intel_crtc->unpin_work;
  10907.  
  10908.         /* Ensure we don't miss a work->pending update ... */
  10909.         smp_rmb();
  10910.  
  10911.         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  10912.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  10913.                 return;
  10914.         }
  10915.  
  10916.         page_flip_completed(intel_crtc);
  10917.  
  10918.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10919. }
  10920.  
  10921. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  10922. {
  10923.         struct drm_i915_private *dev_priv = dev->dev_private;
  10924.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  10925.  
  10926.         do_intel_finish_page_flip(dev, crtc);
  10927. }
  10928.  
  10929. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  10930. {
  10931.         struct drm_i915_private *dev_priv = dev->dev_private;
  10932.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  10933.  
  10934.         do_intel_finish_page_flip(dev, crtc);
  10935. }
  10936.  
  10937. /* Is 'a' after or equal to 'b'? */
  10938. static bool g4x_flip_count_after_eq(u32 a, u32 b)
  10939. {
  10940.         return !((a - b) & 0x80000000);
  10941. }
  10942.  
  10943. static bool page_flip_finished(struct intel_crtc *crtc)
  10944. {
  10945.         struct drm_device *dev = crtc->base.dev;
  10946.         struct drm_i915_private *dev_priv = dev->dev_private;
  10947.  
  10948.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  10949.             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  10950.                 return true;
  10951.  
  10952.         /*
  10953.          * The relevant registers doen't exist on pre-ctg.
  10954.          * As the flip done interrupt doesn't trigger for mmio
  10955.          * flips on gmch platforms, a flip count check isn't
  10956.          * really needed there. But since ctg has the registers,
  10957.          * include it in the check anyway.
  10958.          */
  10959.         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
  10960.                 return true;
  10961.  
  10962.         /*
  10963.          * BDW signals flip done immediately if the plane
  10964.          * is disabled, even if the plane enable is already
  10965.          * armed to occur at the next vblank :(
  10966.          */
  10967.  
  10968.         /*
  10969.          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
  10970.          * used the same base address. In that case the mmio flip might
  10971.          * have completed, but the CS hasn't even executed the flip yet.
  10972.          *
  10973.          * A flip count check isn't enough as the CS might have updated
  10974.          * the base address just after start of vblank, but before we
  10975.          * managed to process the interrupt. This means we'd complete the
  10976.          * CS flip too soon.
  10977.          *
  10978.          * Combining both checks should get us a good enough result. It may
  10979.          * still happen that the CS flip has been executed, but has not
  10980.          * yet actually completed. But in case the base address is the same
  10981.          * anyway, we don't really care.
  10982.          */
  10983.         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
  10984.                 crtc->unpin_work->gtt_offset &&
  10985.                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
  10986.                                     crtc->unpin_work->flip_count);
  10987. }
  10988.  
  10989. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  10990. {
  10991.         struct drm_i915_private *dev_priv = dev->dev_private;
  10992.         struct intel_crtc *intel_crtc =
  10993.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  10994.         unsigned long flags;
  10995.  
  10996.  
  10997.         /*
  10998.          * This is called both by irq handlers and the reset code (to complete
  10999.          * lost pageflips) so needs the full irqsave spinlocks.
  11000.          *
  11001.          * NB: An MMIO update of the plane base pointer will also
  11002.          * generate a page-flip completion irq, i.e. every modeset
  11003.          * is also accompanied by a spurious intel_prepare_page_flip().
  11004.          */
  11005.         spin_lock_irqsave(&dev->event_lock, flags);
  11006.         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
  11007.                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  11008.         spin_unlock_irqrestore(&dev->event_lock, flags);
  11009. }
  11010.  
  11011. static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
  11012. {
  11013.         /* Ensure that the work item is consistent when activating it ... */
  11014.         smp_wmb();
  11015.         atomic_set(&work->pending, INTEL_FLIP_PENDING);
  11016.         /* and that it is marked active as soon as the irq could fire. */
  11017.         smp_wmb();
  11018. }
  11019.  
  11020. static int intel_gen2_queue_flip(struct drm_device *dev,
  11021.                                  struct drm_crtc *crtc,
  11022.                                  struct drm_framebuffer *fb,
  11023.                                  struct drm_i915_gem_object *obj,
  11024.                                  struct drm_i915_gem_request *req,
  11025.                                  uint32_t flags)
  11026. {
  11027.         struct intel_engine_cs *ring = req->ring;
  11028.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11029.         u32 flip_mask;
  11030.         int ret;
  11031.  
  11032.         ret = intel_ring_begin(req, 6);
  11033.         if (ret)
  11034.                 return ret;
  11035.  
  11036.         /* Can't queue multiple flips, so wait for the previous
  11037.          * one to finish before executing the next.
  11038.          */
  11039.         if (intel_crtc->plane)
  11040.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  11041.         else
  11042.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  11043.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  11044.         intel_ring_emit(ring, MI_NOOP);
  11045.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11046.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11047.         intel_ring_emit(ring, fb->pitches[0]);
  11048.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11049.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  11050.  
  11051.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11052.         return 0;
  11053. }
  11054.  
  11055. static int intel_gen3_queue_flip(struct drm_device *dev,
  11056.                                  struct drm_crtc *crtc,
  11057.                                  struct drm_framebuffer *fb,
  11058.                                  struct drm_i915_gem_object *obj,
  11059.                                  struct drm_i915_gem_request *req,
  11060.                                  uint32_t flags)
  11061. {
  11062.         struct intel_engine_cs *ring = req->ring;
  11063.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11064.         u32 flip_mask;
  11065.         int ret;
  11066.  
  11067.         ret = intel_ring_begin(req, 6);
  11068.         if (ret)
  11069.                 return ret;
  11070.  
  11071.         if (intel_crtc->plane)
  11072.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  11073.         else
  11074.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  11075.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  11076.         intel_ring_emit(ring, MI_NOOP);
  11077.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  11078.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11079.         intel_ring_emit(ring, fb->pitches[0]);
  11080.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11081.         intel_ring_emit(ring, MI_NOOP);
  11082.  
  11083.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11084.         return 0;
  11085. }
  11086.  
  11087. static int intel_gen4_queue_flip(struct drm_device *dev,
  11088.                                  struct drm_crtc *crtc,
  11089.                                  struct drm_framebuffer *fb,
  11090.                                  struct drm_i915_gem_object *obj,
  11091.                                  struct drm_i915_gem_request *req,
  11092.                                  uint32_t flags)
  11093. {
  11094.         struct intel_engine_cs *ring = req->ring;
  11095.         struct drm_i915_private *dev_priv = dev->dev_private;
  11096.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11097.         uint32_t pf, pipesrc;
  11098.         int ret;
  11099.  
  11100.         ret = intel_ring_begin(req, 4);
  11101.         if (ret)
  11102.                 return ret;
  11103.  
  11104.         /* i965+ uses the linear or tiled offsets from the
  11105.          * Display Registers (which do not change across a page-flip)
  11106.          * so we need only reprogram the base address.
  11107.          */
  11108.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11109.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11110.         intel_ring_emit(ring, fb->pitches[0]);
  11111.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
  11112.                         obj->tiling_mode);
  11113.  
  11114.         /* XXX Enabling the panel-fitter across page-flip is so far
  11115.          * untested on non-native modes, so ignore it for now.
  11116.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  11117.          */
  11118.         pf = 0;
  11119.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11120.         intel_ring_emit(ring, pf | pipesrc);
  11121.  
  11122.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11123.         return 0;
  11124. }
  11125.  
  11126. static int intel_gen6_queue_flip(struct drm_device *dev,
  11127.                                  struct drm_crtc *crtc,
  11128.                                  struct drm_framebuffer *fb,
  11129.                                  struct drm_i915_gem_object *obj,
  11130.                                  struct drm_i915_gem_request *req,
  11131.                                  uint32_t flags)
  11132. {
  11133.         struct intel_engine_cs *ring = req->ring;
  11134.         struct drm_i915_private *dev_priv = dev->dev_private;
  11135.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11136.         uint32_t pf, pipesrc;
  11137.         int ret;
  11138.  
  11139.         ret = intel_ring_begin(req, 4);
  11140.         if (ret)
  11141.                 return ret;
  11142.  
  11143.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11144.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11145.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  11146.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11147.  
  11148.         /* Contrary to the suggestions in the documentation,
  11149.          * "Enable Panel Fitter" does not seem to be required when page
  11150.          * flipping with a non-native mode, and worse causes a normal
  11151.          * modeset to fail.
  11152.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  11153.          */
  11154.         pf = 0;
  11155.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11156.         intel_ring_emit(ring, pf | pipesrc);
  11157.  
  11158.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11159.         return 0;
  11160. }
  11161.  
  11162. static int intel_gen7_queue_flip(struct drm_device *dev,
  11163.                                  struct drm_crtc *crtc,
  11164.                                  struct drm_framebuffer *fb,
  11165.                                  struct drm_i915_gem_object *obj,
  11166.                                  struct drm_i915_gem_request *req,
  11167.                                  uint32_t flags)
  11168. {
  11169.         struct intel_engine_cs *ring = req->ring;
  11170.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11171.         uint32_t plane_bit = 0;
  11172.         int len, ret;
  11173.  
  11174.         switch (intel_crtc->plane) {
  11175.         case PLANE_A:
  11176.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  11177.                 break;
  11178.         case PLANE_B:
  11179.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  11180.                 break;
  11181.         case PLANE_C:
  11182.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  11183.                 break;
  11184.         default:
  11185.                 WARN_ONCE(1, "unknown plane in flip command\n");
  11186.                 return -ENODEV;
  11187.         }
  11188.  
  11189.         len = 4;
  11190.         if (ring->id == RCS) {
  11191.                 len += 6;
  11192.                 /*
  11193.                  * On Gen 8, SRM is now taking an extra dword to accommodate
  11194.                  * 48bits addresses, and we need a NOOP for the batch size to
  11195.                  * stay even.
  11196.                  */
  11197.                 if (IS_GEN8(dev))
  11198.                         len += 2;
  11199.         }
  11200.  
  11201.         /*
  11202.          * BSpec MI_DISPLAY_FLIP for IVB:
  11203.          * "The full packet must be contained within the same cache line."
  11204.          *
  11205.          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
  11206.          * cacheline, if we ever start emitting more commands before
  11207.          * the MI_DISPLAY_FLIP we may need to first emit everything else,
  11208.          * then do the cacheline alignment, and finally emit the
  11209.          * MI_DISPLAY_FLIP.
  11210.          */
  11211.         ret = intel_ring_cacheline_align(req);
  11212.         if (ret)
  11213.                 return ret;
  11214.  
  11215.         ret = intel_ring_begin(req, len);
  11216.         if (ret)
  11217.                 return ret;
  11218.  
  11219.         /* Unmask the flip-done completion message. Note that the bspec says that
  11220.          * we should do this for both the BCS and RCS, and that we must not unmask
  11221.          * more than one flip event at any time (or ensure that one flip message
  11222.          * can be sent by waiting for flip-done prior to queueing new flips).
  11223.          * Experimentation says that BCS works despite DERRMR masking all
  11224.          * flip-done completion events and that unmasking all planes at once
  11225.          * for the RCS also doesn't appear to drop events. Setting the DERRMR
  11226.          * to zero does lead to lockups within MI_DISPLAY_FLIP.
  11227.          */
  11228.         if (ring->id == RCS) {
  11229.                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  11230.                 intel_ring_emit_reg(ring, DERRMR);
  11231.                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  11232.                                         DERRMR_PIPEB_PRI_FLIP_DONE |
  11233.                                         DERRMR_PIPEC_PRI_FLIP_DONE));
  11234.                 if (IS_GEN8(dev))
  11235.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
  11236.                                               MI_SRM_LRM_GLOBAL_GTT);
  11237.                 else
  11238.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
  11239.                                               MI_SRM_LRM_GLOBAL_GTT);
  11240.                 intel_ring_emit_reg(ring, DERRMR);
  11241.                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  11242.                 if (IS_GEN8(dev)) {
  11243.                         intel_ring_emit(ring, 0);
  11244.                         intel_ring_emit(ring, MI_NOOP);
  11245.                 }
  11246.         }
  11247.  
  11248.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  11249.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  11250.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11251.         intel_ring_emit(ring, (MI_NOOP));
  11252.  
  11253.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11254.         return 0;
  11255. }
  11256.  
  11257. static bool use_mmio_flip(struct intel_engine_cs *ring,
  11258.                           struct drm_i915_gem_object *obj)
  11259. {
  11260.         /*
  11261.          * This is not being used for older platforms, because
  11262.          * non-availability of flip done interrupt forces us to use
  11263.          * CS flips. Older platforms derive flip done using some clever
  11264.          * tricks involving the flip_pending status bits and vblank irqs.
  11265.          * So using MMIO flips there would disrupt this mechanism.
  11266.          */
  11267.  
  11268.         if (ring == NULL)
  11269.                 return true;
  11270.  
  11271.         if (INTEL_INFO(ring->dev)->gen < 5)
  11272.                 return false;
  11273.  
  11274.         if (i915.use_mmio_flip < 0)
  11275.                 return false;
  11276.         else if (i915.use_mmio_flip > 0)
  11277.                 return true;
  11278.         else if (i915.enable_execlists)
  11279.                 return true;
  11280. //      else if (obj->base.dma_buf &&
  11281. //               !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
  11282. //                                                     false))
  11283. //              return true;
  11284.         else
  11285.                 return ring != i915_gem_request_get_ring(obj->last_write_req);
  11286. }
  11287.  
  11288. static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
  11289.                              unsigned int rotation,
  11290.                              struct intel_unpin_work *work)
  11291. {
  11292.         struct drm_device *dev = intel_crtc->base.dev;
  11293.         struct drm_i915_private *dev_priv = dev->dev_private;
  11294.         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
  11295.         const enum pipe pipe = intel_crtc->pipe;
  11296.         u32 ctl, stride, tile_height;
  11297.  
  11298.         ctl = I915_READ(PLANE_CTL(pipe, 0));
  11299.         ctl &= ~PLANE_CTL_TILED_MASK;
  11300.         switch (fb->modifier[0]) {
  11301.         case DRM_FORMAT_MOD_NONE:
  11302.                 break;
  11303.         case I915_FORMAT_MOD_X_TILED:
  11304.                 ctl |= PLANE_CTL_TILED_X;
  11305.                 break;
  11306.         case I915_FORMAT_MOD_Y_TILED:
  11307.                 ctl |= PLANE_CTL_TILED_Y;
  11308.                 break;
  11309.         case I915_FORMAT_MOD_Yf_TILED:
  11310.                 ctl |= PLANE_CTL_TILED_YF;
  11311.                 break;
  11312.         default:
  11313.                 MISSING_CASE(fb->modifier[0]);
  11314.         }
  11315.  
  11316.         /*
  11317.          * The stride is either expressed as a multiple of 64 bytes chunks for
  11318.          * linear buffers or in number of tiles for tiled buffers.
  11319.          */
  11320.         if (intel_rotation_90_or_270(rotation)) {
  11321.                 /* stride = Surface height in tiles */
  11322.                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
  11323.                 stride = DIV_ROUND_UP(fb->height, tile_height);
  11324.         } else {
  11325.                 stride = fb->pitches[0] /
  11326.                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
  11327.                                                   fb->pixel_format);
  11328.         }
  11329.  
  11330.         /*
  11331.          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
  11332.          * PLANE_SURF updates, the update is then guaranteed to be atomic.
  11333.          */
  11334.         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
  11335.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  11336.  
  11337.         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
  11338.         POSTING_READ(PLANE_SURF(pipe, 0));
  11339. }
  11340.  
  11341. static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
  11342.                              struct intel_unpin_work *work)
  11343. {
  11344.         struct drm_device *dev = intel_crtc->base.dev;
  11345.         struct drm_i915_private *dev_priv = dev->dev_private;
  11346.         struct intel_framebuffer *intel_fb =
  11347.                 to_intel_framebuffer(intel_crtc->base.primary->fb);
  11348.         struct drm_i915_gem_object *obj = intel_fb->obj;
  11349.         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
  11350.         u32 dspcntr;
  11351.  
  11352.         dspcntr = I915_READ(reg);
  11353.  
  11354.         if (obj->tiling_mode != I915_TILING_NONE)
  11355.                 dspcntr |= DISPPLANE_TILED;
  11356.         else
  11357.                 dspcntr &= ~DISPPLANE_TILED;
  11358.  
  11359.         I915_WRITE(reg, dspcntr);
  11360.  
  11361.         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
  11362.         POSTING_READ(DSPSURF(intel_crtc->plane));
  11363. }
  11364.  
  11365. /*
  11366.  * XXX: This is the temporary way to update the plane registers until we get
  11367.  * around to using the usual plane update functions for MMIO flips
  11368.  */
  11369. static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
  11370. {
  11371.         struct intel_crtc *crtc = mmio_flip->crtc;
  11372.         struct intel_unpin_work *work;
  11373.  
  11374.         spin_lock_irq(&crtc->base.dev->event_lock);
  11375.         work = crtc->unpin_work;
  11376.         spin_unlock_irq(&crtc->base.dev->event_lock);
  11377.         if (work == NULL)
  11378.                 return;
  11379.  
  11380.         intel_mark_page_flip_active(work);
  11381.  
  11382.         intel_pipe_update_start(crtc);
  11383.  
  11384.         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
  11385.                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
  11386.         else
  11387.                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
  11388.                 ilk_do_mmio_flip(crtc, work);
  11389.  
  11390.         intel_pipe_update_end(crtc);
  11391. }
  11392.  
  11393. static void intel_mmio_flip_work_func(struct work_struct *work)
  11394. {
  11395.         struct intel_mmio_flip *mmio_flip =
  11396.                 container_of(work, struct intel_mmio_flip, work);
  11397.         struct intel_framebuffer *intel_fb =
  11398.                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
  11399.         struct drm_i915_gem_object *obj = intel_fb->obj;
  11400.  
  11401.         if (mmio_flip->req) {
  11402.                 WARN_ON(__i915_wait_request(mmio_flip->req,
  11403.                                             mmio_flip->crtc->reset_counter,
  11404.                                             false, NULL,
  11405.                                             &mmio_flip->i915->rps.mmioflips));
  11406.                 i915_gem_request_unreference__unlocked(mmio_flip->req);
  11407.         }
  11408.  
  11409.         /* For framebuffer backed by dmabuf, wait for fence */
  11410. //      if (obj->base.dma_buf)
  11411. //              WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
  11412. //                                                          false, false,
  11413. //                                                          MAX_SCHEDULE_TIMEOUT) < 0);
  11414.  
  11415.         intel_do_mmio_flip(mmio_flip);
  11416.         kfree(mmio_flip);
  11417. }
  11418.  
  11419. static int intel_queue_mmio_flip(struct drm_device *dev,
  11420.                                  struct drm_crtc *crtc,
  11421.                                  struct drm_i915_gem_object *obj)
  11422. {
  11423.         struct intel_mmio_flip *mmio_flip;
  11424.  
  11425.         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
  11426.         if (mmio_flip == NULL)
  11427.                 return -ENOMEM;
  11428.  
  11429.         mmio_flip->i915 = to_i915(dev);
  11430.         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
  11431.         mmio_flip->crtc = to_intel_crtc(crtc);
  11432.         mmio_flip->rotation = crtc->primary->state->rotation;
  11433.  
  11434.         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
  11435.         schedule_work(&mmio_flip->work);
  11436.  
  11437.         return 0;
  11438. }
  11439.  
  11440. static int intel_default_queue_flip(struct drm_device *dev,
  11441.                                     struct drm_crtc *crtc,
  11442.                                     struct drm_framebuffer *fb,
  11443.                                     struct drm_i915_gem_object *obj,
  11444.                                     struct drm_i915_gem_request *req,
  11445.                                     uint32_t flags)
  11446. {
  11447.         return -ENODEV;
  11448. }
  11449.  
  11450. static bool __intel_pageflip_stall_check(struct drm_device *dev,
  11451.                                          struct drm_crtc *crtc)
  11452. {
  11453.         struct drm_i915_private *dev_priv = dev->dev_private;
  11454.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11455.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  11456.         u32 addr;
  11457.  
  11458.         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
  11459.                 return true;
  11460.  
  11461.         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
  11462.                 return false;
  11463.  
  11464.         if (!work->enable_stall_check)
  11465.                 return false;
  11466.  
  11467.         if (work->flip_ready_vblank == 0) {
  11468.                 if (work->flip_queued_req &&
  11469.                     !i915_gem_request_completed(work->flip_queued_req, true))
  11470.                         return false;
  11471.  
  11472.                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
  11473.         }
  11474.  
  11475.         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
  11476.                 return false;
  11477.  
  11478.         /* Potential stall - if we see that the flip has happened,
  11479.          * assume a missed interrupt. */
  11480.         if (INTEL_INFO(dev)->gen >= 4)
  11481.                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
  11482.         else
  11483.                 addr = I915_READ(DSPADDR(intel_crtc->plane));
  11484.  
  11485.         /* There is a potential issue here with a false positive after a flip
  11486.          * to the same address. We could address this by checking for a
  11487.          * non-incrementing frame counter.
  11488.          */
  11489.         return addr == work->gtt_offset;
  11490. }
  11491.  
  11492. void intel_check_page_flip(struct drm_device *dev, int pipe)
  11493. {
  11494.         struct drm_i915_private *dev_priv = dev->dev_private;
  11495.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  11496.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11497.         struct intel_unpin_work *work;
  11498.  
  11499.         WARN_ON(!in_interrupt());
  11500.  
  11501.         if (crtc == NULL)
  11502.                 return;
  11503.  
  11504.         spin_lock(&dev->event_lock);
  11505.         work = intel_crtc->unpin_work;
  11506.         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
  11507.                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
  11508.                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
  11509.                 page_flip_completed(intel_crtc);
  11510.                 work = NULL;
  11511.         }
  11512.         if (work != NULL &&
  11513.             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
  11514.                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
  11515.         spin_unlock(&dev->event_lock);
  11516. }
  11517.  
  11518. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  11519.                                 struct drm_framebuffer *fb,
  11520.                                 struct drm_pending_vblank_event *event,
  11521.                                 uint32_t page_flip_flags)
  11522. {
  11523.         struct drm_device *dev = crtc->dev;
  11524.         struct drm_i915_private *dev_priv = dev->dev_private;
  11525.         struct drm_framebuffer *old_fb = crtc->primary->fb;
  11526.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  11527.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11528.         struct drm_plane *primary = crtc->primary;
  11529.         enum pipe pipe = intel_crtc->pipe;
  11530.         struct intel_unpin_work *work;
  11531.         struct intel_engine_cs *ring;
  11532.         bool mmio_flip;
  11533.         struct drm_i915_gem_request *request = NULL;
  11534.         int ret;
  11535.  
  11536.         /*
  11537.          * drm_mode_page_flip_ioctl() should already catch this, but double
  11538.          * check to be safe.  In the future we may enable pageflipping from
  11539.          * a disabled primary plane.
  11540.          */
  11541.         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
  11542.                 return -EBUSY;
  11543.  
  11544.         /* Can't change pixel format via MI display flips. */
  11545.         if (fb->pixel_format != crtc->primary->fb->pixel_format)
  11546.                 return -EINVAL;
  11547.  
  11548.         /*
  11549.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  11550.          * Note that pitch changes could also affect these register.
  11551.          */
  11552.         if (INTEL_INFO(dev)->gen > 3 &&
  11553.             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
  11554.              fb->pitches[0] != crtc->primary->fb->pitches[0]))
  11555.                 return -EINVAL;
  11556.  
  11557.         if (i915_terminally_wedged(&dev_priv->gpu_error))
  11558.                 goto out_hang;
  11559.  
  11560.         work = kzalloc(sizeof(*work), GFP_KERNEL);
  11561.         if (work == NULL)
  11562.                 return -ENOMEM;
  11563.  
  11564.         work->event = event;
  11565.         work->crtc = crtc;
  11566.         work->old_fb = old_fb;
  11567.         INIT_WORK(&work->work, intel_unpin_work_fn);
  11568.  
  11569.         ret = drm_crtc_vblank_get(crtc);
  11570.         if (ret)
  11571.                 goto free_work;
  11572.  
  11573.         /* We borrow the event spin lock for protecting unpin_work */
  11574.         spin_lock_irq(&dev->event_lock);
  11575.         if (intel_crtc->unpin_work) {
  11576.                 /* Before declaring the flip queue wedged, check if
  11577.                  * the hardware completed the operation behind our backs.
  11578.                  */
  11579.                 if (__intel_pageflip_stall_check(dev, crtc)) {
  11580.                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
  11581.                         page_flip_completed(intel_crtc);
  11582.                 } else {
  11583.                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  11584.                         spin_unlock_irq(&dev->event_lock);
  11585.  
  11586.                         drm_crtc_vblank_put(crtc);
  11587.                         kfree(work);
  11588.                         return -EBUSY;
  11589.                 }
  11590.         }
  11591.         intel_crtc->unpin_work = work;
  11592.         spin_unlock_irq(&dev->event_lock);
  11593.  
  11594. //   if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  11595. //       flush_workqueue(dev_priv->wq);
  11596.  
  11597.         /* Reference the objects for the scheduled work. */
  11598.         drm_framebuffer_reference(work->old_fb);
  11599.         drm_gem_object_reference(&obj->base);
  11600.  
  11601.         crtc->primary->fb = fb;
  11602.         update_state_fb(crtc->primary);
  11603.         intel_fbc_pre_update(intel_crtc);
  11604.  
  11605.         work->pending_flip_obj = obj;
  11606.  
  11607.         ret = i915_mutex_lock_interruptible(dev);
  11608.         if (ret)
  11609.                 goto cleanup;
  11610.  
  11611.         atomic_inc(&intel_crtc->unpin_work_count);
  11612.         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  11613.  
  11614.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  11615.                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
  11616.  
  11617.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  11618.                 ring = &dev_priv->ring[BCS];
  11619.                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
  11620.                         /* vlv: DISPLAY_FLIP fails to change tiling */
  11621.                         ring = NULL;
  11622.         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  11623.                 ring = &dev_priv->ring[BCS];
  11624.         } else if (INTEL_INFO(dev)->gen >= 7) {
  11625.                 ring = i915_gem_request_get_ring(obj->last_write_req);
  11626.                 if (ring == NULL || ring->id != RCS)
  11627.                         ring = &dev_priv->ring[BCS];
  11628.         } else {
  11629.                 ring = &dev_priv->ring[RCS];
  11630.         }
  11631.  
  11632.         mmio_flip = use_mmio_flip(ring, obj);
  11633.  
  11634.         /* When using CS flips, we want to emit semaphores between rings.
  11635.          * However, when using mmio flips we will create a task to do the
  11636.          * synchronisation, so all we want here is to pin the framebuffer
  11637.          * into the display plane and skip any waits.
  11638.          */
  11639.         if (!mmio_flip) {
  11640.                 ret = i915_gem_object_sync(obj, ring, &request);
  11641.                 if (ret)
  11642.                         goto cleanup_pending;
  11643.         }
  11644.  
  11645.         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
  11646.                                          crtc->primary->state);
  11647.         if (ret)
  11648.                 goto cleanup_pending;
  11649.  
  11650.         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
  11651.                                                   obj, 0);
  11652.         work->gtt_offset += intel_crtc->dspaddr_offset;
  11653.  
  11654.         if (mmio_flip) {
  11655.                 ret = intel_queue_mmio_flip(dev, crtc, obj);
  11656.                 if (ret)
  11657.                         goto cleanup_unpin;
  11658.  
  11659.                 i915_gem_request_assign(&work->flip_queued_req,
  11660.                                         obj->last_write_req);
  11661.         } else {
  11662.                 if (!request) {
  11663.                         request = i915_gem_request_alloc(ring, NULL);
  11664.                         if (IS_ERR(request)) {
  11665.                                 ret = PTR_ERR(request);
  11666.                                 goto cleanup_unpin;
  11667.                         }
  11668.                 }
  11669.  
  11670.                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
  11671.                                                    page_flip_flags);
  11672.                 if (ret)
  11673.                         goto cleanup_unpin;
  11674.  
  11675.                 i915_gem_request_assign(&work->flip_queued_req, request);
  11676.         }
  11677.  
  11678.         if (request)
  11679.                 i915_add_request_no_flush(request);
  11680.  
  11681.         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
  11682.         work->enable_stall_check = true;
  11683.  
  11684.         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
  11685.                           to_intel_plane(primary)->frontbuffer_bit);
  11686.         mutex_unlock(&dev->struct_mutex);
  11687.  
  11688.         intel_frontbuffer_flip_prepare(dev,
  11689.                                        to_intel_plane(primary)->frontbuffer_bit);
  11690.  
  11691.         trace_i915_flip_request(intel_crtc->plane, obj);
  11692.  
  11693.         return 0;
  11694.  
  11695. cleanup_unpin:
  11696.         intel_unpin_fb_obj(fb, crtc->primary->state);
  11697. cleanup_pending:
  11698.         if (!IS_ERR_OR_NULL(request))
  11699.                 i915_gem_request_cancel(request);
  11700.         atomic_dec(&intel_crtc->unpin_work_count);
  11701.         mutex_unlock(&dev->struct_mutex);
  11702. cleanup:
  11703.         crtc->primary->fb = old_fb;
  11704.         update_state_fb(crtc->primary);
  11705.  
  11706.         drm_gem_object_unreference_unlocked(&obj->base);
  11707.         drm_framebuffer_unreference(work->old_fb);
  11708.  
  11709.         spin_lock_irq(&dev->event_lock);
  11710.         intel_crtc->unpin_work = NULL;
  11711.         spin_unlock_irq(&dev->event_lock);
  11712.  
  11713.         drm_crtc_vblank_put(crtc);
  11714. free_work:
  11715.         kfree(work);
  11716.  
  11717.         if (ret == -EIO) {
  11718.                 struct drm_atomic_state *state;
  11719.                 struct drm_plane_state *plane_state;
  11720.  
  11721. out_hang:
  11722.                 state = drm_atomic_state_alloc(dev);
  11723.                 if (!state)
  11724.                         return -ENOMEM;
  11725.                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  11726.  
  11727. retry:
  11728.                 plane_state = drm_atomic_get_plane_state(state, primary);
  11729.                 ret = PTR_ERR_OR_ZERO(plane_state);
  11730.                 if (!ret) {
  11731.                         drm_atomic_set_fb_for_plane(plane_state, fb);
  11732.  
  11733.                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
  11734.                         if (!ret)
  11735.                                 ret = drm_atomic_commit(state);
  11736.                 }
  11737.  
  11738.                 if (ret == -EDEADLK) {
  11739.                         drm_modeset_backoff(state->acquire_ctx);
  11740.                         drm_atomic_state_clear(state);
  11741.                         goto retry;
  11742.                 }
  11743.  
  11744.                 if (ret)
  11745.                         drm_atomic_state_free(state);
  11746.  
  11747.                 if (ret == 0 && event) {
  11748.                         spin_lock_irq(&dev->event_lock);
  11749.                         drm_send_vblank_event(dev, pipe, event);
  11750.                         spin_unlock_irq(&dev->event_lock);
  11751.                 }
  11752.         }
  11753.         return ret;
  11754. }
  11755.  
  11756.  
  11757. /**
  11758.  * intel_wm_need_update - Check whether watermarks need updating
  11759.  * @plane: drm plane
  11760.  * @state: new plane state
  11761.  *
  11762.  * Check current plane state versus the new one to determine whether
  11763.  * watermarks need to be recalculated.
  11764.  *
  11765.  * Returns true or false.
  11766.  */
  11767. static bool intel_wm_need_update(struct drm_plane *plane,
  11768.                                  struct drm_plane_state *state)
  11769. {
  11770.         struct intel_plane_state *new = to_intel_plane_state(state);
  11771.         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
  11772.  
  11773.         /* Update watermarks on tiling or size changes. */
  11774.         if (new->visible != cur->visible)
  11775.                 return true;
  11776.  
  11777.         if (!cur->base.fb || !new->base.fb)
  11778.                 return false;
  11779.  
  11780.         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
  11781.             cur->base.rotation != new->base.rotation ||
  11782.             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
  11783.             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
  11784.             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
  11785.             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
  11786.                 return true;
  11787.  
  11788.         return false;
  11789. }
  11790.  
  11791. static bool needs_scaling(struct intel_plane_state *state)
  11792. {
  11793.         int src_w = drm_rect_width(&state->src) >> 16;
  11794.         int src_h = drm_rect_height(&state->src) >> 16;
  11795.         int dst_w = drm_rect_width(&state->dst);
  11796.         int dst_h = drm_rect_height(&state->dst);
  11797.  
  11798.         return (src_w != dst_w || src_h != dst_h);
  11799. }
  11800.  
  11801. int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
  11802.                                     struct drm_plane_state *plane_state)
  11803. {
  11804.         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
  11805.         struct drm_crtc *crtc = crtc_state->crtc;
  11806.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11807.         struct drm_plane *plane = plane_state->plane;
  11808.         struct drm_device *dev = crtc->dev;
  11809.         struct intel_plane_state *old_plane_state =
  11810.                 to_intel_plane_state(plane->state);
  11811.         int idx = intel_crtc->base.base.id, ret;
  11812.         bool mode_changed = needs_modeset(crtc_state);
  11813.         bool was_crtc_enabled = crtc->state->active;
  11814.         bool is_crtc_enabled = crtc_state->active;
  11815.         bool turn_off, turn_on, visible, was_visible;
  11816.         struct drm_framebuffer *fb = plane_state->fb;
  11817.  
  11818.         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
  11819.             plane->type != DRM_PLANE_TYPE_CURSOR) {
  11820.                 ret = skl_update_scaler_plane(
  11821.                         to_intel_crtc_state(crtc_state),
  11822.                         to_intel_plane_state(plane_state));
  11823.                 if (ret)
  11824.                         return ret;
  11825.         }
  11826.  
  11827.         was_visible = old_plane_state->visible;
  11828.         visible = to_intel_plane_state(plane_state)->visible;
  11829.  
  11830.         if (!was_crtc_enabled && WARN_ON(was_visible))
  11831.                 was_visible = false;
  11832.  
  11833.         /*
  11834.          * Visibility is calculated as if the crtc was on, but
  11835.          * after scaler setup everything depends on it being off
  11836.          * when the crtc isn't active.
  11837.          */
  11838.         if (!is_crtc_enabled)
  11839.                 to_intel_plane_state(plane_state)->visible = visible = false;
  11840.  
  11841.         if (!was_visible && !visible)
  11842.                 return 0;
  11843.  
  11844.         if (fb != old_plane_state->base.fb)
  11845.                 pipe_config->fb_changed = true;
  11846.  
  11847.         turn_off = was_visible && (!visible || mode_changed);
  11848.         turn_on = visible && (!was_visible || mode_changed);
  11849.  
  11850.         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
  11851.                          plane->base.id, fb ? fb->base.id : -1);
  11852.  
  11853.         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
  11854.                          plane->base.id, was_visible, visible,
  11855.                          turn_off, turn_on, mode_changed);
  11856.  
  11857.         if (turn_on) {
  11858.                 pipe_config->update_wm_pre = true;
  11859.  
  11860.                 /* must disable cxsr around plane enable/disable */
  11861.                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
  11862.                         pipe_config->disable_cxsr = true;
  11863.         } else if (turn_off) {
  11864.                 pipe_config->update_wm_post = true;
  11865.  
  11866.                 /* must disable cxsr around plane enable/disable */
  11867.                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
  11868.                         pipe_config->disable_cxsr = true;
  11869.         } else if (intel_wm_need_update(plane, plane_state)) {
  11870.                 /* FIXME bollocks */
  11871.                 pipe_config->update_wm_pre = true;
  11872.                 pipe_config->update_wm_post = true;
  11873.         }
  11874.  
  11875.         if (visible || was_visible)
  11876.                 intel_crtc->atomic.fb_bits |=
  11877.                         to_intel_plane(plane)->frontbuffer_bit;
  11878.  
  11879.         switch (plane->type) {
  11880.         case DRM_PLANE_TYPE_PRIMARY:
  11881.                 intel_crtc->atomic.post_enable_primary = turn_on;
  11882.                 intel_crtc->atomic.update_fbc = true;
  11883.  
  11884.                 break;
  11885.         case DRM_PLANE_TYPE_CURSOR:
  11886.                 break;
  11887.         case DRM_PLANE_TYPE_OVERLAY:
  11888.                 /*
  11889.                  * WaCxSRDisabledForSpriteScaling:ivb
  11890.                  *
  11891.                  * cstate->update_wm was already set above, so this flag will
  11892.                  * take effect when we commit and program watermarks.
  11893.                  */
  11894.                 if (IS_IVYBRIDGE(dev) &&
  11895.                     needs_scaling(to_intel_plane_state(plane_state)) &&
  11896.                     !needs_scaling(old_plane_state))
  11897.                         pipe_config->disable_lp_wm = true;
  11898.  
  11899.                 break;
  11900.         }
  11901.         return 0;
  11902. }
  11903.  
  11904. static bool encoders_cloneable(const struct intel_encoder *a,
  11905.                                const struct intel_encoder *b)
  11906. {
  11907.         /* masks could be asymmetric, so check both ways */
  11908.         return a == b || (a->cloneable & (1 << b->type) &&
  11909.                           b->cloneable & (1 << a->type));
  11910. }
  11911.  
  11912. static bool check_single_encoder_cloning(struct drm_atomic_state *state,
  11913.                                          struct intel_crtc *crtc,
  11914.                                          struct intel_encoder *encoder)
  11915. {
  11916.         struct intel_encoder *source_encoder;
  11917.         struct drm_connector *connector;
  11918.         struct drm_connector_state *connector_state;
  11919.         int i;
  11920.  
  11921.         for_each_connector_in_state(state, connector, connector_state, i) {
  11922.                 if (connector_state->crtc != &crtc->base)
  11923.                         continue;
  11924.  
  11925.                 source_encoder =
  11926.                         to_intel_encoder(connector_state->best_encoder);
  11927.                 if (!encoders_cloneable(encoder, source_encoder))
  11928.                         return false;
  11929.         }
  11930.  
  11931.         return true;
  11932. }
  11933.  
  11934. static bool check_encoder_cloning(struct drm_atomic_state *state,
  11935.                                   struct intel_crtc *crtc)
  11936. {
  11937.         struct intel_encoder *encoder;
  11938.         struct drm_connector *connector;
  11939.         struct drm_connector_state *connector_state;
  11940.         int i;
  11941.  
  11942.         for_each_connector_in_state(state, connector, connector_state, i) {
  11943.                 if (connector_state->crtc != &crtc->base)
  11944.                         continue;
  11945.  
  11946.                 encoder = to_intel_encoder(connector_state->best_encoder);
  11947.                 if (!check_single_encoder_cloning(state, crtc, encoder))
  11948.                         return false;
  11949.         }
  11950.  
  11951.         return true;
  11952. }
  11953.  
  11954. static int intel_crtc_atomic_check(struct drm_crtc *crtc,
  11955.                                    struct drm_crtc_state *crtc_state)
  11956. {
  11957.         struct drm_device *dev = crtc->dev;
  11958.         struct drm_i915_private *dev_priv = dev->dev_private;
  11959.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11960.         struct intel_crtc_state *pipe_config =
  11961.                 to_intel_crtc_state(crtc_state);
  11962.         struct drm_atomic_state *state = crtc_state->state;
  11963.         int ret;
  11964.         bool mode_changed = needs_modeset(crtc_state);
  11965.  
  11966.         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
  11967.                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  11968.                 return -EINVAL;
  11969.         }
  11970.  
  11971.         if (mode_changed && !crtc_state->active)
  11972.                 pipe_config->update_wm_post = true;
  11973.  
  11974.         if (mode_changed && crtc_state->enable &&
  11975.             dev_priv->display.crtc_compute_clock &&
  11976.             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
  11977.                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
  11978.                                                            pipe_config);
  11979.                 if (ret)
  11980.                         return ret;
  11981.         }
  11982.  
  11983.         ret = 0;
  11984.         if (dev_priv->display.compute_pipe_wm) {
  11985.                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
  11986.                 if (ret)
  11987.                         return ret;
  11988.         }
  11989.  
  11990.         if (INTEL_INFO(dev)->gen >= 9) {
  11991.                 if (mode_changed)
  11992.                         ret = skl_update_scaler_crtc(pipe_config);
  11993.  
  11994.                 if (!ret)
  11995.                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
  11996.                                                          pipe_config);
  11997.         }
  11998.  
  11999.         return ret;
  12000. }
  12001.  
  12002. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  12003.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  12004.         .load_lut = intel_crtc_load_lut,
  12005.         .atomic_begin = intel_begin_crtc_commit,
  12006.         .atomic_flush = intel_finish_crtc_commit,
  12007.         .atomic_check = intel_crtc_atomic_check,
  12008. };
  12009.  
  12010. static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
  12011. {
  12012.         struct intel_connector *connector;
  12013.  
  12014.         for_each_intel_connector(dev, connector) {
  12015.                 if (connector->base.encoder) {
  12016.                         connector->base.state->best_encoder =
  12017.                                 connector->base.encoder;
  12018.                         connector->base.state->crtc =
  12019.                                 connector->base.encoder->crtc;
  12020.                 } else {
  12021.                         connector->base.state->best_encoder = NULL;
  12022.                         connector->base.state->crtc = NULL;
  12023.                 }
  12024.         }
  12025. }
  12026.  
  12027. static void
  12028. connected_sink_compute_bpp(struct intel_connector *connector,
  12029.                            struct intel_crtc_state *pipe_config)
  12030. {
  12031.         int bpp = pipe_config->pipe_bpp;
  12032.  
  12033.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  12034.                 connector->base.base.id,
  12035.                 connector->base.name);
  12036.  
  12037.         /* Don't use an invalid EDID bpc value */
  12038.         if (connector->base.display_info.bpc &&
  12039.             connector->base.display_info.bpc * 3 < bpp) {
  12040.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  12041.                               bpp, connector->base.display_info.bpc*3);
  12042.                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  12043.         }
  12044.  
  12045.         /* Clamp bpp to default limit on screens without EDID 1.4 */
  12046.         if (connector->base.display_info.bpc == 0) {
  12047.                 int type = connector->base.connector_type;
  12048.                 int clamp_bpp = 24;
  12049.  
  12050.                 /* Fall back to 18 bpp when DP sink capability is unknown. */
  12051.                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
  12052.                     type == DRM_MODE_CONNECTOR_eDP)
  12053.                         clamp_bpp = 18;
  12054.  
  12055.                 if (bpp > clamp_bpp) {
  12056.                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
  12057.                                       bpp, clamp_bpp);
  12058.                         pipe_config->pipe_bpp = clamp_bpp;
  12059.                 }
  12060.         }
  12061. }
  12062.  
  12063. static int
  12064. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  12065.                           struct intel_crtc_state *pipe_config)
  12066. {
  12067.         struct drm_device *dev = crtc->base.dev;
  12068.         struct drm_atomic_state *state;
  12069.         struct drm_connector *connector;
  12070.         struct drm_connector_state *connector_state;
  12071.         int bpp, i;
  12072.  
  12073.         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
  12074.                 bpp = 10*3;
  12075.         else if (INTEL_INFO(dev)->gen >= 5)
  12076.                 bpp = 12*3;
  12077.         else
  12078.                 bpp = 8*3;
  12079.  
  12080.  
  12081.         pipe_config->pipe_bpp = bpp;
  12082.  
  12083.         state = pipe_config->base.state;
  12084.  
  12085.         /* Clamp display bpp to EDID value */
  12086.         for_each_connector_in_state(state, connector, connector_state, i) {
  12087.                 if (connector_state->crtc != &crtc->base)
  12088.                         continue;
  12089.  
  12090.                 connected_sink_compute_bpp(to_intel_connector(connector),
  12091.                                            pipe_config);
  12092.         }
  12093.  
  12094.         return bpp;
  12095. }
  12096.  
  12097. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  12098. {
  12099.         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  12100.                         "type: 0x%x flags: 0x%x\n",
  12101.                 mode->crtc_clock,
  12102.                 mode->crtc_hdisplay, mode->crtc_hsync_start,
  12103.                 mode->crtc_hsync_end, mode->crtc_htotal,
  12104.                 mode->crtc_vdisplay, mode->crtc_vsync_start,
  12105.                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  12106. }
  12107.  
  12108. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  12109.                                    struct intel_crtc_state *pipe_config,
  12110.                                    const char *context)
  12111. {
  12112.         struct drm_device *dev = crtc->base.dev;
  12113.         struct drm_plane *plane;
  12114.         struct intel_plane *intel_plane;
  12115.         struct intel_plane_state *state;
  12116.         struct drm_framebuffer *fb;
  12117.  
  12118.         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
  12119.                       context, pipe_config, pipe_name(crtc->pipe));
  12120.  
  12121.         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  12122.         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  12123.                       pipe_config->pipe_bpp, pipe_config->dither);
  12124.         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12125.                       pipe_config->has_pch_encoder,
  12126.                       pipe_config->fdi_lanes,
  12127.                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  12128.                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  12129.                       pipe_config->fdi_m_n.tu);
  12130.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12131.                       pipe_config->has_dp_encoder,
  12132.                       pipe_config->lane_count,
  12133.                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  12134.                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  12135.                       pipe_config->dp_m_n.tu);
  12136.  
  12137.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
  12138.                       pipe_config->has_dp_encoder,
  12139.                       pipe_config->lane_count,
  12140.                       pipe_config->dp_m2_n2.gmch_m,
  12141.                       pipe_config->dp_m2_n2.gmch_n,
  12142.                       pipe_config->dp_m2_n2.link_m,
  12143.                       pipe_config->dp_m2_n2.link_n,
  12144.                       pipe_config->dp_m2_n2.tu);
  12145.  
  12146.         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
  12147.                       pipe_config->has_audio,
  12148.                       pipe_config->has_infoframe);
  12149.  
  12150.         DRM_DEBUG_KMS("requested mode:\n");
  12151.         drm_mode_debug_printmodeline(&pipe_config->base.mode);
  12152.         DRM_DEBUG_KMS("adjusted mode:\n");
  12153.         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
  12154.         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
  12155.         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  12156.         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  12157.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  12158.         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
  12159.                       crtc->num_scalers,
  12160.                       pipe_config->scaler_state.scaler_users,
  12161.                       pipe_config->scaler_state.scaler_id);
  12162.         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  12163.                       pipe_config->gmch_pfit.control,
  12164.                       pipe_config->gmch_pfit.pgm_ratios,
  12165.                       pipe_config->gmch_pfit.lvds_border_bits);
  12166.         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  12167.                       pipe_config->pch_pfit.pos,
  12168.                       pipe_config->pch_pfit.size,
  12169.                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  12170.         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  12171.         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  12172.  
  12173.         if (IS_BROXTON(dev)) {
  12174.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  12175.                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  12176.                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  12177.                               pipe_config->ddi_pll_sel,
  12178.                               pipe_config->dpll_hw_state.ebb0,
  12179.                               pipe_config->dpll_hw_state.ebb4,
  12180.                               pipe_config->dpll_hw_state.pll0,
  12181.                               pipe_config->dpll_hw_state.pll1,
  12182.                               pipe_config->dpll_hw_state.pll2,
  12183.                               pipe_config->dpll_hw_state.pll3,
  12184.                               pipe_config->dpll_hw_state.pll6,
  12185.                               pipe_config->dpll_hw_state.pll8,
  12186.                               pipe_config->dpll_hw_state.pll9,
  12187.                               pipe_config->dpll_hw_state.pll10,
  12188.                               pipe_config->dpll_hw_state.pcsdw12);
  12189.         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  12190.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
  12191.                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  12192.                               pipe_config->ddi_pll_sel,
  12193.                               pipe_config->dpll_hw_state.ctrl1,
  12194.                               pipe_config->dpll_hw_state.cfgcr1,
  12195.                               pipe_config->dpll_hw_state.cfgcr2);
  12196.         } else if (HAS_DDI(dev)) {
  12197.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  12198.                               pipe_config->ddi_pll_sel,
  12199.                               pipe_config->dpll_hw_state.wrpll,
  12200.                               pipe_config->dpll_hw_state.spll);
  12201.         } else {
  12202.                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  12203.                               "fp0: 0x%x, fp1: 0x%x\n",
  12204.                               pipe_config->dpll_hw_state.dpll,
  12205.                               pipe_config->dpll_hw_state.dpll_md,
  12206.                               pipe_config->dpll_hw_state.fp0,
  12207.                               pipe_config->dpll_hw_state.fp1);
  12208.         }
  12209.  
  12210.         DRM_DEBUG_KMS("planes on this crtc\n");
  12211.         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  12212.                 intel_plane = to_intel_plane(plane);
  12213.                 if (intel_plane->pipe != crtc->pipe)
  12214.                         continue;
  12215.  
  12216.                 state = to_intel_plane_state(plane->state);
  12217.                 fb = state->base.fb;
  12218.                 if (!fb) {
  12219.                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
  12220.                                 "disabled, scaler_id = %d\n",
  12221.                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12222.                                 plane->base.id, intel_plane->pipe,
  12223.                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
  12224.                                 drm_plane_index(plane), state->scaler_id);
  12225.                         continue;
  12226.                 }
  12227.  
  12228.                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
  12229.                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12230.                         plane->base.id, intel_plane->pipe,
  12231.                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
  12232.                         drm_plane_index(plane));
  12233.                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
  12234.                         fb->base.id, fb->width, fb->height, fb->pixel_format);
  12235.                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
  12236.                         state->scaler_id,
  12237.                         state->src.x1 >> 16, state->src.y1 >> 16,
  12238.                         drm_rect_width(&state->src) >> 16,
  12239.                         drm_rect_height(&state->src) >> 16,
  12240.                         state->dst.x1, state->dst.y1,
  12241.                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
  12242.         }
  12243. }
  12244.  
  12245. static bool check_digital_port_conflicts(struct drm_atomic_state *state)
  12246. {
  12247.         struct drm_device *dev = state->dev;
  12248.         struct drm_connector *connector;
  12249.         unsigned int used_ports = 0;
  12250.  
  12251.         /*
  12252.          * Walk the connector list instead of the encoder
  12253.          * list to detect the problem on ddi platforms
  12254.          * where there's just one encoder per digital port.
  12255.          */
  12256.         drm_for_each_connector(connector, dev) {
  12257.                 struct drm_connector_state *connector_state;
  12258.                 struct intel_encoder *encoder;
  12259.  
  12260.                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
  12261.                 if (!connector_state)
  12262.                         connector_state = connector->state;
  12263.  
  12264.                 if (!connector_state->best_encoder)
  12265.                         continue;
  12266.  
  12267.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12268.  
  12269.                 WARN_ON(!connector_state->crtc);
  12270.  
  12271.                 switch (encoder->type) {
  12272.                         unsigned int port_mask;
  12273.                 case INTEL_OUTPUT_UNKNOWN:
  12274.                         if (WARN_ON(!HAS_DDI(dev)))
  12275.                                 break;
  12276.                 case INTEL_OUTPUT_DISPLAYPORT:
  12277.                 case INTEL_OUTPUT_HDMI:
  12278.                 case INTEL_OUTPUT_EDP:
  12279.                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
  12280.  
  12281.                         /* the same port mustn't appear more than once */
  12282.                         if (used_ports & port_mask)
  12283.                                 return false;
  12284.  
  12285.                         used_ports |= port_mask;
  12286.                 default:
  12287.                         break;
  12288.                 }
  12289.         }
  12290.  
  12291.         return true;
  12292. }
  12293.  
  12294. static void
  12295. clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
  12296. {
  12297.         struct drm_crtc_state tmp_state;
  12298.         struct intel_crtc_scaler_state scaler_state;
  12299.         struct intel_dpll_hw_state dpll_hw_state;
  12300.         enum intel_dpll_id shared_dpll;
  12301.         uint32_t ddi_pll_sel;
  12302.         bool force_thru;
  12303.  
  12304.         /* FIXME: before the switch to atomic started, a new pipe_config was
  12305.          * kzalloc'd. Code that depends on any field being zero should be
  12306.          * fixed, so that the crtc_state can be safely duplicated. For now,
  12307.          * only fields that are know to not cause problems are preserved. */
  12308.  
  12309.         tmp_state = crtc_state->base;
  12310.         scaler_state = crtc_state->scaler_state;
  12311.         shared_dpll = crtc_state->shared_dpll;
  12312.         dpll_hw_state = crtc_state->dpll_hw_state;
  12313.         ddi_pll_sel = crtc_state->ddi_pll_sel;
  12314.         force_thru = crtc_state->pch_pfit.force_thru;
  12315.  
  12316.         memset(crtc_state, 0, sizeof *crtc_state);
  12317.  
  12318.         crtc_state->base = tmp_state;
  12319.         crtc_state->scaler_state = scaler_state;
  12320.         crtc_state->shared_dpll = shared_dpll;
  12321.         crtc_state->dpll_hw_state = dpll_hw_state;
  12322.         crtc_state->ddi_pll_sel = ddi_pll_sel;
  12323.         crtc_state->pch_pfit.force_thru = force_thru;
  12324. }
  12325.  
  12326. static int
  12327. intel_modeset_pipe_config(struct drm_crtc *crtc,
  12328.                           struct intel_crtc_state *pipe_config)
  12329. {
  12330.         struct drm_atomic_state *state = pipe_config->base.state;
  12331.         struct intel_encoder *encoder;
  12332.         struct drm_connector *connector;
  12333.         struct drm_connector_state *connector_state;
  12334.         int base_bpp, ret = -EINVAL;
  12335.         int i;
  12336.         bool retry = true;
  12337.  
  12338.         clear_intel_crtc_state(pipe_config);
  12339.  
  12340.         pipe_config->cpu_transcoder =
  12341.                 (enum transcoder) to_intel_crtc(crtc)->pipe;
  12342.  
  12343.         /*
  12344.          * Sanitize sync polarity flags based on requested ones. If neither
  12345.          * positive or negative polarity is requested, treat this as meaning
  12346.          * negative polarity.
  12347.          */
  12348.         if (!(pipe_config->base.adjusted_mode.flags &
  12349.               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  12350.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  12351.  
  12352.         if (!(pipe_config->base.adjusted_mode.flags &
  12353.               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  12354.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  12355.  
  12356.         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  12357.                                              pipe_config);
  12358.         if (base_bpp < 0)
  12359.                 goto fail;
  12360.  
  12361.         /*
  12362.          * Determine the real pipe dimensions. Note that stereo modes can
  12363.          * increase the actual pipe size due to the frame doubling and
  12364.          * insertion of additional space for blanks between the frame. This
  12365.          * is stored in the crtc timings. We use the requested mode to do this
  12366.          * computation to clearly distinguish it from the adjusted mode, which
  12367.          * can be changed by the connectors in the below retry loop.
  12368.          */
  12369.         drm_crtc_get_hv_timing(&pipe_config->base.mode,
  12370.                                &pipe_config->pipe_src_w,
  12371.                                &pipe_config->pipe_src_h);
  12372.  
  12373. encoder_retry:
  12374.         /* Ensure the port clock defaults are reset when retrying. */
  12375.         pipe_config->port_clock = 0;
  12376.         pipe_config->pixel_multiplier = 1;
  12377.  
  12378.         /* Fill in default crtc timings, allow encoders to overwrite them. */
  12379.         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
  12380.                               CRTC_STEREO_DOUBLE);
  12381.  
  12382.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  12383.          * adjust it according to limitations or connector properties, and also
  12384.          * a chance to reject the mode entirely.
  12385.          */
  12386.         for_each_connector_in_state(state, connector, connector_state, i) {
  12387.                 if (connector_state->crtc != crtc)
  12388.                         continue;
  12389.  
  12390.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12391.  
  12392.                 if (!(encoder->compute_config(encoder, pipe_config))) {
  12393.                         DRM_DEBUG_KMS("Encoder config failure\n");
  12394.                         goto fail;
  12395.                 }
  12396.         }
  12397.  
  12398.         /* Set default port clock if not overwritten by the encoder. Needs to be
  12399.          * done afterwards in case the encoder adjusts the mode. */
  12400.         if (!pipe_config->port_clock)
  12401.                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
  12402.                         * pipe_config->pixel_multiplier;
  12403.  
  12404.         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  12405.         if (ret < 0) {
  12406.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  12407.                 goto fail;
  12408.         }
  12409.  
  12410.         if (ret == RETRY) {
  12411.                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
  12412.                         ret = -EINVAL;
  12413.                         goto fail;
  12414.                 }
  12415.  
  12416.                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  12417.                 retry = false;
  12418.                 goto encoder_retry;
  12419.         }
  12420.  
  12421.         /* Dithering seems to not pass-through bits correctly when it should, so
  12422.          * only enable it on 6bpc panels. */
  12423.         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
  12424.         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
  12425.                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  12426.  
  12427. fail:
  12428.         return ret;
  12429. }
  12430.  
  12431. static void
  12432. intel_modeset_update_crtc_state(struct drm_atomic_state *state)
  12433. {
  12434.         struct drm_crtc *crtc;
  12435.         struct drm_crtc_state *crtc_state;
  12436.         int i;
  12437.  
  12438.         /* Double check state. */
  12439.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12440.                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
  12441.  
  12442.                 /* Update hwmode for vblank functions */
  12443.                 if (crtc->state->active)
  12444.                         crtc->hwmode = crtc->state->adjusted_mode;
  12445.                 else
  12446.                         crtc->hwmode.crtc_clock = 0;
  12447.  
  12448.                 /*
  12449.                  * Update legacy state to satisfy fbc code. This can
  12450.                  * be removed when fbc uses the atomic state.
  12451.                  */
  12452.                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
  12453.                         struct drm_plane_state *plane_state = crtc->primary->state;
  12454.  
  12455.                         crtc->primary->fb = plane_state->fb;
  12456.                         crtc->x = plane_state->src_x >> 16;
  12457.                         crtc->y = plane_state->src_y >> 16;
  12458.                 }
  12459.         }
  12460. }
  12461.  
  12462. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  12463. {
  12464.         int diff;
  12465.  
  12466.         if (clock1 == clock2)
  12467.                 return true;
  12468.  
  12469.         if (!clock1 || !clock2)
  12470.                 return false;
  12471.  
  12472.         diff = abs(clock1 - clock2);
  12473.  
  12474.         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  12475.                 return true;
  12476.  
  12477.         return false;
  12478. }
  12479.  
  12480. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  12481.         list_for_each_entry((intel_crtc), \
  12482.                             &(dev)->mode_config.crtc_list, \
  12483.                             base.head) \
  12484.                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
  12485.  
  12486. static bool
  12487. intel_compare_m_n(unsigned int m, unsigned int n,
  12488.                   unsigned int m2, unsigned int n2,
  12489.                   bool exact)
  12490. {
  12491.         if (m == m2 && n == n2)
  12492.                 return true;
  12493.  
  12494.         if (exact || !m || !n || !m2 || !n2)
  12495.                 return false;
  12496.  
  12497.         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
  12498.  
  12499.         if (n > n2) {
  12500.                 while (n > n2) {
  12501.                         m2 <<= 1;
  12502.                         n2 <<= 1;
  12503.                 }
  12504.         } else if (n < n2) {
  12505.                 while (n < n2) {
  12506.                         m <<= 1;
  12507.                         n <<= 1;
  12508.                 }
  12509.         }
  12510.  
  12511.         if (n != n2)
  12512.                 return false;
  12513.  
  12514.         return intel_fuzzy_clock_check(m, m2);
  12515. }
  12516.  
  12517. static bool
  12518. intel_compare_link_m_n(const struct intel_link_m_n *m_n,
  12519.                        struct intel_link_m_n *m2_n2,
  12520.                        bool adjust)
  12521. {
  12522.         if (m_n->tu == m2_n2->tu &&
  12523.             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
  12524.                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
  12525.             intel_compare_m_n(m_n->link_m, m_n->link_n,
  12526.                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
  12527.                 if (adjust)
  12528.                         *m2_n2 = *m_n;
  12529.  
  12530.                 return true;
  12531.         }
  12532.  
  12533.         return false;
  12534. }
  12535.  
  12536. static bool
  12537. intel_pipe_config_compare(struct drm_device *dev,
  12538.                           struct intel_crtc_state *current_config,
  12539.                           struct intel_crtc_state *pipe_config,
  12540.                           bool adjust)
  12541. {
  12542.         bool ret = true;
  12543.  
  12544. #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
  12545.         do { \
  12546.                 if (!adjust) \
  12547.                         DRM_ERROR(fmt, ##__VA_ARGS__); \
  12548.                 else \
  12549.                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
  12550.         } while (0)
  12551.  
  12552. #define PIPE_CONF_CHECK_X(name) \
  12553.         if (current_config->name != pipe_config->name) { \
  12554.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12555.                           "(expected 0x%08x, found 0x%08x)\n", \
  12556.                           current_config->name, \
  12557.                           pipe_config->name); \
  12558.                 ret = false; \
  12559.         }
  12560.  
  12561. #define PIPE_CONF_CHECK_I(name) \
  12562.         if (current_config->name != pipe_config->name) { \
  12563.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12564.                           "(expected %i, found %i)\n", \
  12565.                           current_config->name, \
  12566.                           pipe_config->name); \
  12567.                 ret = false; \
  12568.         }
  12569.  
  12570. #define PIPE_CONF_CHECK_M_N(name) \
  12571.         if (!intel_compare_link_m_n(&current_config->name, \
  12572.                                     &pipe_config->name,\
  12573.                                     adjust)) { \
  12574.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12575.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12576.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12577.                           current_config->name.tu, \
  12578.                           current_config->name.gmch_m, \
  12579.                           current_config->name.gmch_n, \
  12580.                           current_config->name.link_m, \
  12581.                           current_config->name.link_n, \
  12582.                           pipe_config->name.tu, \
  12583.                           pipe_config->name.gmch_m, \
  12584.                           pipe_config->name.gmch_n, \
  12585.                           pipe_config->name.link_m, \
  12586.                           pipe_config->name.link_n); \
  12587.                 ret = false; \
  12588.         }
  12589.  
  12590. #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
  12591.         if (!intel_compare_link_m_n(&current_config->name, \
  12592.                                     &pipe_config->name, adjust) && \
  12593.             !intel_compare_link_m_n(&current_config->alt_name, \
  12594.                                     &pipe_config->name, adjust)) { \
  12595.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12596.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12597.                           "or tu %i gmch %i/%i link %i/%i, " \
  12598.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12599.                           current_config->name.tu, \
  12600.                           current_config->name.gmch_m, \
  12601.                           current_config->name.gmch_n, \
  12602.                           current_config->name.link_m, \
  12603.                           current_config->name.link_n, \
  12604.                           current_config->alt_name.tu, \
  12605.                           current_config->alt_name.gmch_m, \
  12606.                           current_config->alt_name.gmch_n, \
  12607.                           current_config->alt_name.link_m, \
  12608.                           current_config->alt_name.link_n, \
  12609.                           pipe_config->name.tu, \
  12610.                           pipe_config->name.gmch_m, \
  12611.                           pipe_config->name.gmch_n, \
  12612.                           pipe_config->name.link_m, \
  12613.                           pipe_config->name.link_n); \
  12614.                 ret = false; \
  12615.         }
  12616.  
  12617. /* This is required for BDW+ where there is only one set of registers for
  12618.  * switching between high and low RR.
  12619.  * This macro can be used whenever a comparison has to be made between one
  12620.  * hw state and multiple sw state variables.
  12621.  */
  12622. #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
  12623.         if ((current_config->name != pipe_config->name) && \
  12624.                 (current_config->alt_name != pipe_config->name)) { \
  12625.                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12626.                                   "(expected %i or %i, found %i)\n", \
  12627.                                   current_config->name, \
  12628.                                   current_config->alt_name, \
  12629.                                   pipe_config->name); \
  12630.                         ret = false; \
  12631.         }
  12632.  
  12633. #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
  12634.         if ((current_config->name ^ pipe_config->name) & (mask)) { \
  12635.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
  12636.                           "(expected %i, found %i)\n", \
  12637.                           current_config->name & (mask), \
  12638.                           pipe_config->name & (mask)); \
  12639.                 ret = false; \
  12640.         }
  12641.  
  12642. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  12643.         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  12644.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12645.                           "(expected %i, found %i)\n", \
  12646.                           current_config->name, \
  12647.                           pipe_config->name); \
  12648.                 ret = false; \
  12649.         }
  12650.  
  12651. #define PIPE_CONF_QUIRK(quirk)  \
  12652.         ((current_config->quirks | pipe_config->quirks) & (quirk))
  12653.  
  12654.         PIPE_CONF_CHECK_I(cpu_transcoder);
  12655.  
  12656.         PIPE_CONF_CHECK_I(has_pch_encoder);
  12657.         PIPE_CONF_CHECK_I(fdi_lanes);
  12658.         PIPE_CONF_CHECK_M_N(fdi_m_n);
  12659.  
  12660.         PIPE_CONF_CHECK_I(has_dp_encoder);
  12661.         PIPE_CONF_CHECK_I(lane_count);
  12662.  
  12663.         if (INTEL_INFO(dev)->gen < 8) {
  12664.                 PIPE_CONF_CHECK_M_N(dp_m_n);
  12665.  
  12666.                 if (current_config->has_drrs)
  12667.                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
  12668.         } else
  12669.                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
  12670.  
  12671.         PIPE_CONF_CHECK_I(has_dsi_encoder);
  12672.  
  12673.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
  12674.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
  12675.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
  12676.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
  12677.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
  12678.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
  12679.  
  12680.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
  12681.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
  12682.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
  12683.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
  12684.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
  12685.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
  12686.  
  12687.         PIPE_CONF_CHECK_I(pixel_multiplier);
  12688.         PIPE_CONF_CHECK_I(has_hdmi_sink);
  12689.         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
  12690.             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  12691.                 PIPE_CONF_CHECK_I(limited_color_range);
  12692.         PIPE_CONF_CHECK_I(has_infoframe);
  12693.  
  12694.         PIPE_CONF_CHECK_I(has_audio);
  12695.  
  12696.         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12697.                               DRM_MODE_FLAG_INTERLACE);
  12698.  
  12699.         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  12700.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12701.                                       DRM_MODE_FLAG_PHSYNC);
  12702.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12703.                                       DRM_MODE_FLAG_NHSYNC);
  12704.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12705.                                       DRM_MODE_FLAG_PVSYNC);
  12706.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12707.                                       DRM_MODE_FLAG_NVSYNC);
  12708.         }
  12709.  
  12710.         PIPE_CONF_CHECK_X(gmch_pfit.control);
  12711.         /* pfit ratios are autocomputed by the hw on gen4+ */
  12712.         if (INTEL_INFO(dev)->gen < 4)
  12713.                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  12714.         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
  12715.  
  12716.         if (!adjust) {
  12717.                 PIPE_CONF_CHECK_I(pipe_src_w);
  12718.                 PIPE_CONF_CHECK_I(pipe_src_h);
  12719.  
  12720.                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
  12721.                 if (current_config->pch_pfit.enabled) {
  12722.                         PIPE_CONF_CHECK_X(pch_pfit.pos);
  12723.                         PIPE_CONF_CHECK_X(pch_pfit.size);
  12724.                 }
  12725.  
  12726.                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
  12727.         }
  12728.  
  12729.         /* BDW+ don't expose a synchronous way to read the state */
  12730.         if (IS_HASWELL(dev))
  12731.                 PIPE_CONF_CHECK_I(ips_enabled);
  12732.  
  12733.         PIPE_CONF_CHECK_I(double_wide);
  12734.  
  12735.         PIPE_CONF_CHECK_X(ddi_pll_sel);
  12736.  
  12737.         PIPE_CONF_CHECK_I(shared_dpll);
  12738.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  12739.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  12740.         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  12741.         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  12742.         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
  12743.         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
  12744.         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
  12745.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
  12746.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
  12747.  
  12748.         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  12749.                 PIPE_CONF_CHECK_I(pipe_bpp);
  12750.  
  12751.         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
  12752.         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  12753.  
  12754. #undef PIPE_CONF_CHECK_X
  12755. #undef PIPE_CONF_CHECK_I
  12756. #undef PIPE_CONF_CHECK_I_ALT
  12757. #undef PIPE_CONF_CHECK_FLAGS
  12758. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  12759. #undef PIPE_CONF_QUIRK
  12760. #undef INTEL_ERR_OR_DBG_KMS
  12761.  
  12762.         return ret;
  12763. }
  12764.  
  12765. static void check_wm_state(struct drm_device *dev)
  12766. {
  12767.         struct drm_i915_private *dev_priv = dev->dev_private;
  12768.         struct skl_ddb_allocation hw_ddb, *sw_ddb;
  12769.         struct intel_crtc *intel_crtc;
  12770.         int plane;
  12771.  
  12772.         if (INTEL_INFO(dev)->gen < 9)
  12773.                 return;
  12774.  
  12775.         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
  12776.         sw_ddb = &dev_priv->wm.skl_hw.ddb;
  12777.  
  12778.         for_each_intel_crtc(dev, intel_crtc) {
  12779.                 struct skl_ddb_entry *hw_entry, *sw_entry;
  12780.                 const enum pipe pipe = intel_crtc->pipe;
  12781.  
  12782.                 if (!intel_crtc->active)
  12783.                         continue;
  12784.  
  12785.                 /* planes */
  12786.                 for_each_plane(dev_priv, pipe, plane) {
  12787.                         hw_entry = &hw_ddb.plane[pipe][plane];
  12788.                         sw_entry = &sw_ddb->plane[pipe][plane];
  12789.  
  12790.                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12791.                                 continue;
  12792.  
  12793.                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
  12794.                                   "(expected (%u,%u), found (%u,%u))\n",
  12795.                                   pipe_name(pipe), plane + 1,
  12796.                                   sw_entry->start, sw_entry->end,
  12797.                                   hw_entry->start, hw_entry->end);
  12798.                 }
  12799.  
  12800.                 /* cursor */
  12801.                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
  12802.                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
  12803.  
  12804.                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12805.                         continue;
  12806.  
  12807.                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
  12808.                           "(expected (%u,%u), found (%u,%u))\n",
  12809.                           pipe_name(pipe),
  12810.                           sw_entry->start, sw_entry->end,
  12811.                           hw_entry->start, hw_entry->end);
  12812.         }
  12813. }
  12814.  
  12815. static void
  12816. check_connector_state(struct drm_device *dev,
  12817.                       struct drm_atomic_state *old_state)
  12818. {
  12819.         struct drm_connector_state *old_conn_state;
  12820.         struct drm_connector *connector;
  12821.         int i;
  12822.  
  12823.         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
  12824.                 struct drm_encoder *encoder = connector->encoder;
  12825.                 struct drm_connector_state *state = connector->state;
  12826.  
  12827.                 /* This also checks the encoder/connector hw state with the
  12828.                  * ->get_hw_state callbacks. */
  12829.                 intel_connector_check_state(to_intel_connector(connector));
  12830.  
  12831.                 I915_STATE_WARN(state->best_encoder != encoder,
  12832.                      "connector's atomic encoder doesn't match legacy encoder\n");
  12833.         }
  12834. }
  12835.  
  12836. static void
  12837. check_encoder_state(struct drm_device *dev)
  12838. {
  12839.         struct intel_encoder *encoder;
  12840.         struct intel_connector *connector;
  12841.  
  12842.         for_each_intel_encoder(dev, encoder) {
  12843.                 bool enabled = false;
  12844.                 enum pipe pipe;
  12845.  
  12846.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  12847.                               encoder->base.base.id,
  12848.                               encoder->base.name);
  12849.  
  12850.                 for_each_intel_connector(dev, connector) {
  12851.                         if (connector->base.state->best_encoder != &encoder->base)
  12852.                                 continue;
  12853.                         enabled = true;
  12854.  
  12855.                         I915_STATE_WARN(connector->base.state->crtc !=
  12856.                                         encoder->base.crtc,
  12857.                              "connector's crtc doesn't match encoder crtc\n");
  12858.                 }
  12859.  
  12860.                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
  12861.                      "encoder's enabled state mismatch "
  12862.                      "(expected %i, found %i)\n",
  12863.                      !!encoder->base.crtc, enabled);
  12864.  
  12865.                 if (!encoder->base.crtc) {
  12866.                         bool active;
  12867.  
  12868.                         active = encoder->get_hw_state(encoder, &pipe);
  12869.                         I915_STATE_WARN(active,
  12870.                              "encoder detached but still enabled on pipe %c.\n",
  12871.                              pipe_name(pipe));
  12872.                 }
  12873.         }
  12874. }
  12875.  
  12876. static void
  12877. check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
  12878. {
  12879.         struct drm_i915_private *dev_priv = dev->dev_private;
  12880.         struct intel_encoder *encoder;
  12881.         struct drm_crtc_state *old_crtc_state;
  12882.         struct drm_crtc *crtc;
  12883.         int i;
  12884.  
  12885.         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
  12886.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  12887.                 struct intel_crtc_state *pipe_config, *sw_config;
  12888.                 bool active;
  12889.  
  12890.                 if (!needs_modeset(crtc->state) &&
  12891.                     !to_intel_crtc_state(crtc->state)->update_pipe)
  12892.                         continue;
  12893.  
  12894.                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
  12895.                 pipe_config = to_intel_crtc_state(old_crtc_state);
  12896.                 memset(pipe_config, 0, sizeof(*pipe_config));
  12897.                 pipe_config->base.crtc = crtc;
  12898.                 pipe_config->base.state = old_state;
  12899.  
  12900.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  12901.                               crtc->base.id);
  12902.  
  12903.                 active = dev_priv->display.get_pipe_config(intel_crtc,
  12904.                                                            pipe_config);
  12905.  
  12906.                 /* hw state is inconsistent with the pipe quirk */
  12907.                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  12908.                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  12909.                         active = crtc->state->active;
  12910.  
  12911.                 I915_STATE_WARN(crtc->state->active != active,
  12912.                      "crtc active state doesn't match with hw state "
  12913.                      "(expected %i, found %i)\n", crtc->state->active, active);
  12914.  
  12915.                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
  12916.                      "transitional active state does not match atomic hw state "
  12917.                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
  12918.  
  12919.                 for_each_encoder_on_crtc(dev, crtc, encoder) {
  12920.                         enum pipe pipe;
  12921.  
  12922.                         active = encoder->get_hw_state(encoder, &pipe);
  12923.                         I915_STATE_WARN(active != crtc->state->active,
  12924.                                 "[ENCODER:%i] active %i with crtc active %i\n",
  12925.                                 encoder->base.base.id, active, crtc->state->active);
  12926.  
  12927.                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
  12928.                                         "Encoder connected to wrong pipe %c\n",
  12929.                                         pipe_name(pipe));
  12930.  
  12931.                         if (active)
  12932.                                 encoder->get_config(encoder, pipe_config);
  12933.                 }
  12934.  
  12935.                 if (!crtc->state->active)
  12936.                         continue;
  12937.  
  12938.                 sw_config = to_intel_crtc_state(crtc->state);
  12939.                 if (!intel_pipe_config_compare(dev, sw_config,
  12940.                                                pipe_config, false)) {
  12941.                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
  12942.                         intel_dump_pipe_config(intel_crtc, pipe_config,
  12943.                                                "[hw state]");
  12944.                         intel_dump_pipe_config(intel_crtc, sw_config,
  12945.                                                "[sw state]");
  12946.                 }
  12947.         }
  12948. }
  12949.  
  12950. static void
  12951. check_shared_dpll_state(struct drm_device *dev)
  12952. {
  12953.         struct drm_i915_private *dev_priv = dev->dev_private;
  12954.         struct intel_crtc *crtc;
  12955.         struct intel_dpll_hw_state dpll_hw_state;
  12956.         int i;
  12957.  
  12958.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  12959.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  12960.                 int enabled_crtcs = 0, active_crtcs = 0;
  12961.                 bool active;
  12962.  
  12963.                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  12964.  
  12965.                 DRM_DEBUG_KMS("%s\n", pll->name);
  12966.  
  12967.                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  12968.  
  12969.                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
  12970.                      "more active pll users than references: %i vs %i\n",
  12971.                      pll->active, hweight32(pll->config.crtc_mask));
  12972.                 I915_STATE_WARN(pll->active && !pll->on,
  12973.                      "pll in active use but not on in sw tracking\n");
  12974.                 I915_STATE_WARN(pll->on && !pll->active,
  12975.                      "pll in on but not on in use in sw tracking\n");
  12976.                 I915_STATE_WARN(pll->on != active,
  12977.                      "pll on state mismatch (expected %i, found %i)\n",
  12978.                      pll->on, active);
  12979.  
  12980.                 for_each_intel_crtc(dev, crtc) {
  12981.                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
  12982.                                 enabled_crtcs++;
  12983.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  12984.                                 active_crtcs++;
  12985.                 }
  12986.                 I915_STATE_WARN(pll->active != active_crtcs,
  12987.                      "pll active crtcs mismatch (expected %i, found %i)\n",
  12988.                      pll->active, active_crtcs);
  12989.                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
  12990.                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
  12991.                      hweight32(pll->config.crtc_mask), enabled_crtcs);
  12992.  
  12993.                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
  12994.                                        sizeof(dpll_hw_state)),
  12995.                      "pll hw state mismatch\n");
  12996.         }
  12997. }
  12998.  
  12999. static void
  13000. intel_modeset_check_state(struct drm_device *dev,
  13001.                           struct drm_atomic_state *old_state)
  13002. {
  13003.         check_wm_state(dev);
  13004.         check_connector_state(dev, old_state);
  13005.         check_encoder_state(dev);
  13006.         check_crtc_state(dev, old_state);
  13007.         check_shared_dpll_state(dev);
  13008. }
  13009.  
  13010. void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
  13011.                                      int dotclock)
  13012. {
  13013.         /*
  13014.          * FDI already provided one idea for the dotclock.
  13015.          * Yell if the encoder disagrees.
  13016.          */
  13017.         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
  13018.              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  13019.              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
  13020. }
  13021.  
  13022. static void update_scanline_offset(struct intel_crtc *crtc)
  13023. {
  13024.         struct drm_device *dev = crtc->base.dev;
  13025.  
  13026.         /*
  13027.          * The scanline counter increments at the leading edge of hsync.
  13028.          *
  13029.          * On most platforms it starts counting from vtotal-1 on the
  13030.          * first active line. That means the scanline counter value is
  13031.          * always one less than what we would expect. Ie. just after
  13032.          * start of vblank, which also occurs at start of hsync (on the
  13033.          * last active line), the scanline counter will read vblank_start-1.
  13034.          *
  13035.          * On gen2 the scanline counter starts counting from 1 instead
  13036.          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
  13037.          * to keep the value positive), instead of adding one.
  13038.          *
  13039.          * On HSW+ the behaviour of the scanline counter depends on the output
  13040.          * type. For DP ports it behaves like most other platforms, but on HDMI
  13041.          * there's an extra 1 line difference. So we need to add two instead of
  13042.          * one to the value.
  13043.          */
  13044.         if (IS_GEN2(dev)) {
  13045.                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  13046.                 int vtotal;
  13047.  
  13048.                 vtotal = adjusted_mode->crtc_vtotal;
  13049.                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  13050.                         vtotal /= 2;
  13051.  
  13052.                 crtc->scanline_offset = vtotal - 1;
  13053.         } else if (HAS_DDI(dev) &&
  13054.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
  13055.                 crtc->scanline_offset = 2;
  13056.         } else
  13057.                 crtc->scanline_offset = 1;
  13058. }
  13059.  
  13060. static void intel_modeset_clear_plls(struct drm_atomic_state *state)
  13061. {
  13062.         struct drm_device *dev = state->dev;
  13063.         struct drm_i915_private *dev_priv = to_i915(dev);
  13064.         struct intel_shared_dpll_config *shared_dpll = NULL;
  13065.         struct drm_crtc *crtc;
  13066.         struct drm_crtc_state *crtc_state;
  13067.         int i;
  13068.  
  13069.         if (!dev_priv->display.crtc_compute_clock)
  13070.                 return;
  13071.  
  13072.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13073.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13074.                 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
  13075.  
  13076.                 if (!needs_modeset(crtc_state))
  13077.                         continue;
  13078.  
  13079.                 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
  13080.  
  13081.                 if (old_dpll == DPLL_ID_PRIVATE)
  13082.                         continue;
  13083.  
  13084.                 if (!shared_dpll)
  13085.                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
  13086.  
  13087.                 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
  13088.         }
  13089. }
  13090.  
  13091. /*
  13092.  * This implements the workaround described in the "notes" section of the mode
  13093.  * set sequence documentation. When going from no pipes or single pipe to
  13094.  * multiple pipes, and planes are enabled after the pipe, we need to wait at
  13095.  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  13096.  */
  13097. static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
  13098. {
  13099.         struct drm_crtc_state *crtc_state;
  13100.         struct intel_crtc *intel_crtc;
  13101.         struct drm_crtc *crtc;
  13102.         struct intel_crtc_state *first_crtc_state = NULL;
  13103.         struct intel_crtc_state *other_crtc_state = NULL;
  13104.         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
  13105.         int i;
  13106.  
  13107.         /* look at all crtc's that are going to be enabled in during modeset */
  13108.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13109.                 intel_crtc = to_intel_crtc(crtc);
  13110.  
  13111.                 if (!crtc_state->active || !needs_modeset(crtc_state))
  13112.                         continue;
  13113.  
  13114.                 if (first_crtc_state) {
  13115.                         other_crtc_state = to_intel_crtc_state(crtc_state);
  13116.                         break;
  13117.                 } else {
  13118.                         first_crtc_state = to_intel_crtc_state(crtc_state);
  13119.                         first_pipe = intel_crtc->pipe;
  13120.                 }
  13121.         }
  13122.  
  13123.         /* No workaround needed? */
  13124.         if (!first_crtc_state)
  13125.                 return 0;
  13126.  
  13127.         /* w/a possibly needed, check how many crtc's are already enabled. */
  13128.         for_each_intel_crtc(state->dev, intel_crtc) {
  13129.                 struct intel_crtc_state *pipe_config;
  13130.  
  13131.                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
  13132.                 if (IS_ERR(pipe_config))
  13133.                         return PTR_ERR(pipe_config);
  13134.  
  13135.                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
  13136.  
  13137.                 if (!pipe_config->base.active ||
  13138.                     needs_modeset(&pipe_config->base))
  13139.                         continue;
  13140.  
  13141.                 /* 2 or more enabled crtcs means no need for w/a */
  13142.                 if (enabled_pipe != INVALID_PIPE)
  13143.                         return 0;
  13144.  
  13145.                 enabled_pipe = intel_crtc->pipe;
  13146.         }
  13147.  
  13148.         if (enabled_pipe != INVALID_PIPE)
  13149.                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
  13150.         else if (other_crtc_state)
  13151.                 other_crtc_state->hsw_workaround_pipe = first_pipe;
  13152.  
  13153.         return 0;
  13154. }
  13155.  
  13156. static int intel_modeset_all_pipes(struct drm_atomic_state *state)
  13157. {
  13158.         struct drm_crtc *crtc;
  13159.         struct drm_crtc_state *crtc_state;
  13160.         int ret = 0;
  13161.  
  13162.         /* add all active pipes to the state */
  13163.         for_each_crtc(state->dev, crtc) {
  13164.                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13165.                 if (IS_ERR(crtc_state))
  13166.                         return PTR_ERR(crtc_state);
  13167.  
  13168.                 if (!crtc_state->active || needs_modeset(crtc_state))
  13169.                         continue;
  13170.  
  13171.                 crtc_state->mode_changed = true;
  13172.  
  13173.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13174.                 if (ret)
  13175.                         break;
  13176.  
  13177.                 ret = drm_atomic_add_affected_planes(state, crtc);
  13178.                 if (ret)
  13179.                         break;
  13180.         }
  13181.  
  13182.         return ret;
  13183. }
  13184.  
  13185. static int intel_modeset_checks(struct drm_atomic_state *state)
  13186. {
  13187.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  13188.         struct drm_i915_private *dev_priv = state->dev->dev_private;
  13189.         struct drm_crtc *crtc;
  13190.         struct drm_crtc_state *crtc_state;
  13191.         int ret = 0, i;
  13192.  
  13193.         if (!check_digital_port_conflicts(state)) {
  13194.                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
  13195.                 return -EINVAL;
  13196.         }
  13197.  
  13198.         intel_state->modeset = true;
  13199.         intel_state->active_crtcs = dev_priv->active_crtcs;
  13200.  
  13201.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13202.                 if (crtc_state->active)
  13203.                         intel_state->active_crtcs |= 1 << i;
  13204.                 else
  13205.                         intel_state->active_crtcs &= ~(1 << i);
  13206.         }
  13207.  
  13208.         /*
  13209.          * See if the config requires any additional preparation, e.g.
  13210.          * to adjust global state with pipes off.  We need to do this
  13211.          * here so we can get the modeset_pipe updated config for the new
  13212.          * mode set on this crtc.  For other crtcs we need to use the
  13213.          * adjusted_mode bits in the crtc directly.
  13214.          */
  13215.         if (dev_priv->display.modeset_calc_cdclk) {
  13216.                 ret = dev_priv->display.modeset_calc_cdclk(state);
  13217.  
  13218.                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
  13219.                         ret = intel_modeset_all_pipes(state);
  13220.  
  13221.                 if (ret < 0)
  13222.                         return ret;
  13223.  
  13224.                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
  13225.                               intel_state->cdclk, intel_state->dev_cdclk);
  13226.         } else
  13227.                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
  13228.  
  13229.         intel_modeset_clear_plls(state);
  13230.  
  13231.         if (IS_HASWELL(dev_priv))
  13232.                 return haswell_mode_set_planes_workaround(state);
  13233.  
  13234.         return 0;
  13235. }
  13236.  
  13237. /*
  13238.  * Handle calculation of various watermark data at the end of the atomic check
  13239.  * phase.  The code here should be run after the per-crtc and per-plane 'check'
  13240.  * handlers to ensure that all derived state has been updated.
  13241.  */
  13242. static void calc_watermark_data(struct drm_atomic_state *state)
  13243. {
  13244.         struct drm_device *dev = state->dev;
  13245.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  13246.         struct drm_crtc *crtc;
  13247.         struct drm_crtc_state *cstate;
  13248.         struct drm_plane *plane;
  13249.         struct drm_plane_state *pstate;
  13250.  
  13251.         /*
  13252.          * Calculate watermark configuration details now that derived
  13253.          * plane/crtc state is all properly updated.
  13254.          */
  13255.         drm_for_each_crtc(crtc, dev) {
  13256.                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
  13257.                         crtc->state;
  13258.  
  13259.                 if (cstate->active)
  13260.                         intel_state->wm_config.num_pipes_active++;
  13261.         }
  13262.         drm_for_each_legacy_plane(plane, dev) {
  13263.                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
  13264.                         plane->state;
  13265.  
  13266.                 if (!to_intel_plane_state(pstate)->visible)
  13267.                         continue;
  13268.  
  13269.                 intel_state->wm_config.sprites_enabled = true;
  13270.                 if (pstate->crtc_w != pstate->src_w >> 16 ||
  13271.                     pstate->crtc_h != pstate->src_h >> 16)
  13272.                         intel_state->wm_config.sprites_scaled = true;
  13273.         }
  13274. }
  13275.  
  13276. /**
  13277.  * intel_atomic_check - validate state object
  13278.  * @dev: drm device
  13279.  * @state: state to validate
  13280.  */
  13281. static int intel_atomic_check(struct drm_device *dev,
  13282.                               struct drm_atomic_state *state)
  13283. {
  13284.         struct drm_i915_private *dev_priv = to_i915(dev);
  13285.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  13286.         struct drm_crtc *crtc;
  13287.         struct drm_crtc_state *crtc_state;
  13288.         int ret, i;
  13289.         bool any_ms = false;
  13290.  
  13291.         ret = drm_atomic_helper_check_modeset(dev, state);
  13292.         if (ret)
  13293.                 return ret;
  13294.  
  13295.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13296.                 struct intel_crtc_state *pipe_config =
  13297.                         to_intel_crtc_state(crtc_state);
  13298.  
  13299.                 memset(&to_intel_crtc(crtc)->atomic, 0,
  13300.                        sizeof(struct intel_crtc_atomic_commit));
  13301.  
  13302.                 /* Catch I915_MODE_FLAG_INHERITED */
  13303.                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
  13304.                         crtc_state->mode_changed = true;
  13305.  
  13306.                 if (!crtc_state->enable) {
  13307.                         if (needs_modeset(crtc_state))
  13308.                                 any_ms = true;
  13309.                         continue;
  13310.                 }
  13311.  
  13312.                 if (!needs_modeset(crtc_state))
  13313.                         continue;
  13314.  
  13315.                 /* FIXME: For only active_changed we shouldn't need to do any
  13316.                  * state recomputation at all. */
  13317.  
  13318.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13319.                 if (ret)
  13320.                         return ret;
  13321.  
  13322.                 ret = intel_modeset_pipe_config(crtc, pipe_config);
  13323.                 if (ret)
  13324.                         return ret;
  13325.  
  13326.                 if (i915.fastboot &&
  13327.                     intel_pipe_config_compare(dev,
  13328.                                         to_intel_crtc_state(crtc->state),
  13329.                                         pipe_config, true)) {
  13330.                         crtc_state->mode_changed = false;
  13331.                         to_intel_crtc_state(crtc_state)->update_pipe = true;
  13332.                 }
  13333.  
  13334.                 if (needs_modeset(crtc_state)) {
  13335.                         any_ms = true;
  13336.  
  13337.                         ret = drm_atomic_add_affected_planes(state, crtc);
  13338.                         if (ret)
  13339.                                 return ret;
  13340.                 }
  13341.  
  13342.                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  13343.                                        needs_modeset(crtc_state) ?
  13344.                                        "[modeset]" : "[fastset]");
  13345.         }
  13346.  
  13347.         if (any_ms) {
  13348.                 ret = intel_modeset_checks(state);
  13349.  
  13350.                 if (ret)
  13351.                         return ret;
  13352.         } else
  13353.                 intel_state->cdclk = dev_priv->cdclk_freq;
  13354.  
  13355.         ret = drm_atomic_helper_check_planes(dev, state);
  13356.         if (ret)
  13357.                 return ret;
  13358.  
  13359.         intel_fbc_choose_crtc(dev_priv, state);
  13360.         calc_watermark_data(state);
  13361.  
  13362.         return 0;
  13363. }
  13364.  
  13365. static int intel_atomic_prepare_commit(struct drm_device *dev,
  13366.                                        struct drm_atomic_state *state,
  13367.                                        bool async)
  13368. {
  13369.         struct drm_i915_private *dev_priv = dev->dev_private;
  13370.         struct drm_plane_state *plane_state;
  13371.         struct drm_crtc_state *crtc_state;
  13372.         struct drm_plane *plane;
  13373.         struct drm_crtc *crtc;
  13374.         int i, ret;
  13375.  
  13376.         if (async) {
  13377.                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
  13378.                 return -EINVAL;
  13379.         }
  13380.  
  13381.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13382.                 if (state->legacy_cursor_update)
  13383.                         continue;
  13384.  
  13385.                 ret = intel_crtc_wait_for_pending_flips(crtc);
  13386.                 if (ret)
  13387.                         return ret;
  13388.  
  13389. //              if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
  13390. //                      flush_workqueue(dev_priv->wq);
  13391.         }
  13392.  
  13393.         ret = mutex_lock_interruptible(&dev->struct_mutex);
  13394.         if (ret)
  13395.                 return ret;
  13396.  
  13397.         ret = drm_atomic_helper_prepare_planes(dev, state);
  13398.         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
  13399.                 u32 reset_counter;
  13400.  
  13401.                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  13402.                 mutex_unlock(&dev->struct_mutex);
  13403.  
  13404.                 for_each_plane_in_state(state, plane, plane_state, i) {
  13405.                         struct intel_plane_state *intel_plane_state =
  13406.                                 to_intel_plane_state(plane_state);
  13407.  
  13408.                         if (!intel_plane_state->wait_req)
  13409.                                 continue;
  13410.  
  13411.                         ret = __i915_wait_request(intel_plane_state->wait_req,
  13412.                                                   reset_counter, true,
  13413.                                                   NULL, NULL);
  13414.  
  13415.                         /* Swallow -EIO errors to allow updates during hw lockup. */
  13416.                         if (ret == -EIO)
  13417.                                 ret = 0;
  13418.  
  13419.                         if (ret)
  13420.                                 break;
  13421.                 }
  13422.  
  13423.                 if (!ret)
  13424.                         return 0;
  13425.  
  13426.                 mutex_lock(&dev->struct_mutex);
  13427.                 drm_atomic_helper_cleanup_planes(dev, state);
  13428.         }
  13429.  
  13430.         mutex_unlock(&dev->struct_mutex);
  13431.         return ret;
  13432. }
  13433.  
  13434. static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
  13435.                                           struct drm_i915_private *dev_priv,
  13436.                                           unsigned crtc_mask)
  13437. {
  13438.         unsigned last_vblank_count[I915_MAX_PIPES];
  13439.         enum pipe pipe;
  13440.         int ret;
  13441.  
  13442.         if (!crtc_mask)
  13443.                 return;
  13444.  
  13445.         for_each_pipe(dev_priv, pipe) {
  13446.                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  13447.  
  13448.                 if (!((1 << pipe) & crtc_mask))
  13449.                         continue;
  13450.  
  13451.                 ret = drm_crtc_vblank_get(crtc);
  13452.                 if (WARN_ON(ret != 0)) {
  13453.                         crtc_mask &= ~(1 << pipe);
  13454.                         continue;
  13455.                 }
  13456.  
  13457.                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
  13458.         }
  13459.  
  13460.         for_each_pipe(dev_priv, pipe) {
  13461.                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  13462.                 long lret;
  13463.  
  13464.                 if (!((1 << pipe) & crtc_mask))
  13465.                         continue;
  13466.  
  13467.                 lret = wait_event_timeout(dev->vblank[pipe].queue,
  13468.                                 last_vblank_count[pipe] !=
  13469.                                         drm_crtc_vblank_count(crtc),
  13470.                                 msecs_to_jiffies(50));
  13471.  
  13472.                 WARN_ON(!lret);
  13473.  
  13474.                 drm_crtc_vblank_put(crtc);
  13475.         }
  13476. }
  13477.  
  13478. static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
  13479. {
  13480.         /* fb updated, need to unpin old fb */
  13481.         if (crtc_state->fb_changed)
  13482.                 return true;
  13483.  
  13484.         /* wm changes, need vblank before final wm's */
  13485.         if (crtc_state->update_wm_post)
  13486.                 return true;
  13487.  
  13488.         /*
  13489.          * cxsr is re-enabled after vblank.
  13490.          * This is already handled by crtc_state->update_wm_post,
  13491.          * but added for clarity.
  13492.          */
  13493.         if (crtc_state->disable_cxsr)
  13494.                 return true;
  13495.  
  13496.         return false;
  13497. }
  13498.  
  13499. /**
  13500.  * intel_atomic_commit - commit validated state object
  13501.  * @dev: DRM device
  13502.  * @state: the top-level driver state object
  13503.  * @async: asynchronous commit
  13504.  *
  13505.  * This function commits a top-level state object that has been validated
  13506.  * with drm_atomic_helper_check().
  13507.  *
  13508.  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
  13509.  * we can only handle plane-related operations and do not yet support
  13510.  * asynchronous commit.
  13511.  *
  13512.  * RETURNS
  13513.  * Zero for success or -errno.
  13514.  */
  13515. static int intel_atomic_commit(struct drm_device *dev,
  13516.                                struct drm_atomic_state *state,
  13517.                                bool async)
  13518. {
  13519.         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  13520.         struct drm_i915_private *dev_priv = dev->dev_private;
  13521.         struct drm_crtc_state *crtc_state;
  13522.         struct drm_crtc *crtc;
  13523.         int ret = 0, i;
  13524.         bool hw_check = intel_state->modeset;
  13525.         unsigned long put_domains[I915_MAX_PIPES] = {};
  13526.         unsigned crtc_vblank_mask = 0;
  13527.  
  13528.         ret = intel_atomic_prepare_commit(dev, state, async);
  13529.         if (ret) {
  13530.                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
  13531.                 return ret;
  13532.         }
  13533.  
  13534.         drm_atomic_helper_swap_state(dev, state);
  13535.         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
  13536.  
  13537.         if (intel_state->modeset) {
  13538.                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
  13539.                        sizeof(intel_state->min_pixclk));
  13540.                 dev_priv->active_crtcs = intel_state->active_crtcs;
  13541.                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
  13542.  
  13543.                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
  13544.         }
  13545.  
  13546.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13547.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13548.  
  13549.                 if (needs_modeset(crtc->state) ||
  13550.                     to_intel_crtc_state(crtc->state)->update_pipe) {
  13551.                         hw_check = true;
  13552.  
  13553.                         put_domains[to_intel_crtc(crtc)->pipe] =
  13554.                                 modeset_get_crtc_power_domains(crtc,
  13555.                                         to_intel_crtc_state(crtc->state));
  13556.                 }
  13557.  
  13558.                 if (!needs_modeset(crtc->state))
  13559.                         continue;
  13560.  
  13561.                 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
  13562.  
  13563.                 if (crtc_state->active) {
  13564.                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
  13565.                         dev_priv->display.crtc_disable(crtc);
  13566.                         intel_crtc->active = false;
  13567.                         intel_fbc_disable(intel_crtc);
  13568.                         intel_disable_shared_dpll(intel_crtc);
  13569.  
  13570.                         /*
  13571.                          * Underruns don't always raise
  13572.                          * interrupts, so check manually.
  13573.                          */
  13574.                         intel_check_cpu_fifo_underruns(dev_priv);
  13575.                         intel_check_pch_fifo_underruns(dev_priv);
  13576.  
  13577.                         if (!crtc->state->active)
  13578.                                 intel_update_watermarks(crtc);
  13579.                 }
  13580.         }
  13581.  
  13582.         /* Only after disabling all output pipelines that will be changed can we
  13583.          * update the the output configuration. */
  13584.         intel_modeset_update_crtc_state(state);
  13585.  
  13586.         if (intel_state->modeset) {
  13587.                 intel_shared_dpll_commit(state);
  13588.  
  13589.                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
  13590.  
  13591.                 if (dev_priv->display.modeset_commit_cdclk &&
  13592.                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
  13593.                         dev_priv->display.modeset_commit_cdclk(state);
  13594.         }
  13595.  
  13596.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  13597.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13598.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13599.                 bool modeset = needs_modeset(crtc->state);
  13600.                 struct intel_crtc_state *pipe_config =
  13601.                         to_intel_crtc_state(crtc->state);
  13602.                 bool update_pipe = !modeset && pipe_config->update_pipe;
  13603.  
  13604.                 if (modeset && crtc->state->active) {
  13605.                         update_scanline_offset(to_intel_crtc(crtc));
  13606.                         dev_priv->display.crtc_enable(crtc);
  13607.                 }
  13608.  
  13609.                 if (!modeset)
  13610.                         intel_pre_plane_update(to_intel_crtc_state(crtc_state));
  13611.  
  13612.                 if (crtc->state->active && intel_crtc->atomic.update_fbc)
  13613.                         intel_fbc_enable(intel_crtc);
  13614.  
  13615.                 if (crtc->state->active &&
  13616.                     (crtc->state->planes_changed || update_pipe))
  13617.                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
  13618.  
  13619.                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
  13620.                         crtc_vblank_mask |= 1 << i;
  13621.         }
  13622.  
  13623.         /* FIXME: add subpixel order */
  13624.  
  13625.         if (!state->legacy_cursor_update)
  13626.                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
  13627.  
  13628.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13629.                 intel_post_plane_update(to_intel_crtc(crtc));
  13630.  
  13631.                 if (put_domains[i])
  13632.                         modeset_put_power_domains(dev_priv, put_domains[i]);
  13633.         }
  13634.  
  13635.         if (intel_state->modeset)
  13636.                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
  13637.  
  13638.         mutex_lock(&dev->struct_mutex);
  13639.         drm_atomic_helper_cleanup_planes(dev, state);
  13640.         mutex_unlock(&dev->struct_mutex);
  13641.  
  13642.         if (hw_check)
  13643.                 intel_modeset_check_state(dev, state);
  13644.  
  13645.         drm_atomic_state_free(state);
  13646.  
  13647.         /* As one of the primary mmio accessors, KMS has a high likelihood
  13648.          * of triggering bugs in unclaimed access. After we finish
  13649.          * modesetting, see if an error has been flagged, and if so
  13650.          * enable debugging for the next modeset - and hope we catch
  13651.          * the culprit.
  13652.          *
  13653.          * XXX note that we assume display power is on at this point.
  13654.          * This might hold true now but we need to add pm helper to check
  13655.          * unclaimed only when the hardware is on, as atomic commits
  13656.          * can happen also when the device is completely off.
  13657.          */
  13658.         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
  13659.  
  13660.         return 0;
  13661. }
  13662.  
  13663. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  13664. {
  13665.         struct drm_device *dev = crtc->dev;
  13666.         struct drm_atomic_state *state;
  13667.         struct drm_crtc_state *crtc_state;
  13668.         int ret;
  13669.  
  13670.         state = drm_atomic_state_alloc(dev);
  13671.         if (!state) {
  13672.                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
  13673.                               crtc->base.id);
  13674.                 return;
  13675.         }
  13676.  
  13677.         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  13678.  
  13679. retry:
  13680.         crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13681.         ret = PTR_ERR_OR_ZERO(crtc_state);
  13682.         if (!ret) {
  13683.                 if (!crtc_state->active)
  13684.                         goto out;
  13685.  
  13686.                 crtc_state->mode_changed = true;
  13687.                 ret = drm_atomic_commit(state);
  13688.         }
  13689.  
  13690.         if (ret == -EDEADLK) {
  13691.                 drm_atomic_state_clear(state);
  13692.                 drm_modeset_backoff(state->acquire_ctx);
  13693.                 goto retry;
  13694.         }
  13695.  
  13696.         if (ret)
  13697. out:
  13698.                 drm_atomic_state_free(state);
  13699. }
  13700.  
  13701. #undef for_each_intel_crtc_masked
  13702.  
  13703. static const struct drm_crtc_funcs intel_crtc_funcs = {
  13704.         .gamma_set = intel_crtc_gamma_set,
  13705.         .set_config = drm_atomic_helper_set_config,
  13706.         .destroy = intel_crtc_destroy,
  13707.         .page_flip = intel_crtc_page_flip,
  13708.         .atomic_duplicate_state = intel_crtc_duplicate_state,
  13709.         .atomic_destroy_state = intel_crtc_destroy_state,
  13710. };
  13711.  
  13712. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  13713.                                       struct intel_shared_dpll *pll,
  13714.                                       struct intel_dpll_hw_state *hw_state)
  13715. {
  13716.         uint32_t val;
  13717.  
  13718.         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  13719.                 return false;
  13720.  
  13721.         val = I915_READ(PCH_DPLL(pll->id));
  13722.         hw_state->dpll = val;
  13723.         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  13724.         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  13725.  
  13726.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  13727.  
  13728.         return val & DPLL_VCO_ENABLE;
  13729. }
  13730.  
  13731. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  13732.                                   struct intel_shared_dpll *pll)
  13733. {
  13734.         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  13735.         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  13736. }
  13737.  
  13738. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  13739.                                 struct intel_shared_dpll *pll)
  13740. {
  13741.         /* PCH refclock must be enabled first */
  13742.         ibx_assert_pch_refclk_enabled(dev_priv);
  13743.  
  13744.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13745.  
  13746.         /* Wait for the clocks to stabilize. */
  13747.         POSTING_READ(PCH_DPLL(pll->id));
  13748.         udelay(150);
  13749.  
  13750.         /* The pixel multiplier can only be updated once the
  13751.          * DPLL is enabled and the clocks are stable.
  13752.          *
  13753.          * So write it again.
  13754.          */
  13755.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13756.         POSTING_READ(PCH_DPLL(pll->id));
  13757.         udelay(200);
  13758. }
  13759.  
  13760. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  13761.                                  struct intel_shared_dpll *pll)
  13762. {
  13763.         struct drm_device *dev = dev_priv->dev;
  13764.         struct intel_crtc *crtc;
  13765.  
  13766.         /* Make sure no transcoder isn't still depending on us. */
  13767.         for_each_intel_crtc(dev, crtc) {
  13768.                 if (intel_crtc_to_shared_dpll(crtc) == pll)
  13769.                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  13770.         }
  13771.  
  13772.         I915_WRITE(PCH_DPLL(pll->id), 0);
  13773.         POSTING_READ(PCH_DPLL(pll->id));
  13774.         udelay(200);
  13775. }
  13776.  
  13777. static char *ibx_pch_dpll_names[] = {
  13778.         "PCH DPLL A",
  13779.         "PCH DPLL B",
  13780. };
  13781.  
  13782. static void ibx_pch_dpll_init(struct drm_device *dev)
  13783. {
  13784.         struct drm_i915_private *dev_priv = dev->dev_private;
  13785.         int i;
  13786.  
  13787.         dev_priv->num_shared_dpll = 2;
  13788.  
  13789.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  13790.                 dev_priv->shared_dplls[i].id = i;
  13791.                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  13792.                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  13793.                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  13794.                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  13795.                 dev_priv->shared_dplls[i].get_hw_state =
  13796.                         ibx_pch_dpll_get_hw_state;
  13797.         }
  13798. }
  13799.  
  13800. static void intel_shared_dpll_init(struct drm_device *dev)
  13801. {
  13802.         struct drm_i915_private *dev_priv = dev->dev_private;
  13803.  
  13804.         if (HAS_DDI(dev))
  13805.                 intel_ddi_pll_init(dev);
  13806.         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  13807.                 ibx_pch_dpll_init(dev);
  13808.         else
  13809.                 dev_priv->num_shared_dpll = 0;
  13810.  
  13811.         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  13812. }
  13813.  
  13814. /**
  13815.  * intel_prepare_plane_fb - Prepare fb for usage on plane
  13816.  * @plane: drm plane to prepare for
  13817.  * @fb: framebuffer to prepare for presentation
  13818.  *
  13819.  * Prepares a framebuffer for usage on a display plane.  Generally this
  13820.  * involves pinning the underlying object and updating the frontbuffer tracking
  13821.  * bits.  Some older platforms need special physical address handling for
  13822.  * cursor planes.
  13823.  *
  13824.  * Must be called with struct_mutex held.
  13825.  *
  13826.  * Returns 0 on success, negative error code on failure.
  13827.  */
  13828. int
  13829. intel_prepare_plane_fb(struct drm_plane *plane,
  13830.                        const struct drm_plane_state *new_state)
  13831. {
  13832.         struct drm_device *dev = plane->dev;
  13833.         struct drm_framebuffer *fb = new_state->fb;
  13834.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13835.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13836.         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
  13837.         int ret = 0;
  13838.  
  13839.         if (!obj && !old_obj)
  13840.                 return 0;
  13841.  
  13842.         if (old_obj) {
  13843.                 struct drm_crtc_state *crtc_state =
  13844.                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
  13845.  
  13846.                 /* Big Hammer, we also need to ensure that any pending
  13847.                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  13848.                  * current scanout is retired before unpinning the old
  13849.                  * framebuffer. Note that we rely on userspace rendering
  13850.                  * into the buffer attached to the pipe they are waiting
  13851.                  * on. If not, userspace generates a GPU hang with IPEHR
  13852.                  * point to the MI_WAIT_FOR_EVENT.
  13853.                  *
  13854.                  * This should only fail upon a hung GPU, in which case we
  13855.                  * can safely continue.
  13856.                  */
  13857.                 if (needs_modeset(crtc_state))
  13858.                         ret = i915_gem_object_wait_rendering(old_obj, true);
  13859.  
  13860.                 /* Swallow -EIO errors to allow updates during hw lockup. */
  13861.                 if (ret && ret != -EIO)
  13862.                         return ret;
  13863.         }
  13864.  
  13865.         /* For framebuffer backed by dmabuf, wait for fence */
  13866.  
  13867.         if (!obj) {
  13868.                 ret = 0;
  13869.         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
  13870.             INTEL_INFO(dev)->cursor_needs_physical) {
  13871.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  13872.                 ret = i915_gem_object_attach_phys(obj, align);
  13873.                 if (ret)
  13874.                         DRM_DEBUG_KMS("failed to attach phys object\n");
  13875.         } else {
  13876.                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
  13877.         }
  13878.  
  13879.         if (ret == 0) {
  13880.                 if (obj) {
  13881.                         struct intel_plane_state *plane_state =
  13882.                                 to_intel_plane_state(new_state);
  13883.  
  13884.                         i915_gem_request_assign(&plane_state->wait_req,
  13885.                                                 obj->last_write_req);
  13886.                 }
  13887.  
  13888.                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
  13889.         }
  13890.  
  13891.         return ret;
  13892. }
  13893.  
  13894. /**
  13895.  * intel_cleanup_plane_fb - Cleans up an fb after plane use
  13896.  * @plane: drm plane to clean up for
  13897.  * @fb: old framebuffer that was on plane
  13898.  *
  13899.  * Cleans up a framebuffer that has just been removed from a plane.
  13900.  *
  13901.  * Must be called with struct_mutex held.
  13902.  */
  13903. void
  13904. intel_cleanup_plane_fb(struct drm_plane *plane,
  13905.                        const struct drm_plane_state *old_state)
  13906. {
  13907.         struct drm_device *dev = plane->dev;
  13908.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13909.         struct intel_plane_state *old_intel_state;
  13910.         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
  13911.         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
  13912.  
  13913.         old_intel_state = to_intel_plane_state(old_state);
  13914.  
  13915.         if (!obj && !old_obj)
  13916.                 return;
  13917.  
  13918.         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
  13919.             !INTEL_INFO(dev)->cursor_needs_physical))
  13920.                 intel_unpin_fb_obj(old_state->fb, old_state);
  13921.  
  13922.         /* prepare_fb aborted? */
  13923.         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
  13924.             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
  13925.                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
  13926.  
  13927.         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
  13928.  
  13929. }
  13930.  
  13931. int
  13932. skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
  13933. {
  13934.         int max_scale;
  13935.         struct drm_device *dev;
  13936.         struct drm_i915_private *dev_priv;
  13937.         int crtc_clock, cdclk;
  13938.  
  13939.         if (!intel_crtc || !crtc_state->base.enable)
  13940.                 return DRM_PLANE_HELPER_NO_SCALING;
  13941.  
  13942.         dev = intel_crtc->base.dev;
  13943.         dev_priv = dev->dev_private;
  13944.         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
  13945.         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
  13946.  
  13947.         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
  13948.                 return DRM_PLANE_HELPER_NO_SCALING;
  13949.  
  13950.         /*
  13951.          * skl max scale is lower of:
  13952.          *    close to 3 but not 3, -1 is for that purpose
  13953.          *            or
  13954.          *    cdclk/crtc_clock
  13955.          */
  13956.         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
  13957.  
  13958.         return max_scale;
  13959. }
  13960.  
  13961. static int
  13962. intel_check_primary_plane(struct drm_plane *plane,
  13963.                           struct intel_crtc_state *crtc_state,
  13964.                           struct intel_plane_state *state)
  13965. {
  13966.         struct drm_crtc *crtc = state->base.crtc;
  13967.         struct drm_framebuffer *fb = state->base.fb;
  13968.         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
  13969.         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
  13970.         bool can_position = false;
  13971.  
  13972.         if (INTEL_INFO(plane->dev)->gen >= 9) {
  13973.                 /* use scaler when colorkey is not required */
  13974.                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
  13975.                         min_scale = 1;
  13976.                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
  13977.                 }
  13978.                 can_position = true;
  13979.         }
  13980.  
  13981.         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13982.                                              &state->dst, &state->clip,
  13983.                                              min_scale, max_scale,
  13984.                                              can_position, true,
  13985.                                              &state->visible);
  13986. }
  13987.  
  13988. static void intel_begin_crtc_commit(struct drm_crtc *crtc,
  13989.                                     struct drm_crtc_state *old_crtc_state)
  13990. {
  13991.         struct drm_device *dev = crtc->dev;
  13992.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13993.         struct intel_crtc_state *old_intel_state =
  13994.                 to_intel_crtc_state(old_crtc_state);
  13995.         bool modeset = needs_modeset(crtc->state);
  13996.  
  13997.         /* Perform vblank evasion around commit operation */
  13998.         intel_pipe_update_start(intel_crtc);
  13999.  
  14000.         if (modeset)
  14001.                 return;
  14002.  
  14003.         if (to_intel_crtc_state(crtc->state)->update_pipe)
  14004.                 intel_update_pipe_config(intel_crtc, old_intel_state);
  14005.         else if (INTEL_INFO(dev)->gen >= 9)
  14006.                 skl_detach_scalers(intel_crtc);
  14007. }
  14008.  
  14009. static void intel_finish_crtc_commit(struct drm_crtc *crtc,
  14010.                                      struct drm_crtc_state *old_crtc_state)
  14011. {
  14012.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  14013.  
  14014.         intel_pipe_update_end(intel_crtc);
  14015. }
  14016.  
  14017. /**
  14018.  * intel_plane_destroy - destroy a plane
  14019.  * @plane: plane to destroy
  14020.  *
  14021.  * Common destruction function for all types of planes (primary, cursor,
  14022.  * sprite).
  14023.  */
  14024. void intel_plane_destroy(struct drm_plane *plane)
  14025. {
  14026.         struct intel_plane *intel_plane = to_intel_plane(plane);
  14027.         drm_plane_cleanup(plane);
  14028.         kfree(intel_plane);
  14029. }
  14030.  
  14031. const struct drm_plane_funcs intel_plane_funcs = {
  14032.         .update_plane = drm_atomic_helper_update_plane,
  14033.         .disable_plane = drm_atomic_helper_disable_plane,
  14034.         .destroy = intel_plane_destroy,
  14035.         .set_property = drm_atomic_helper_plane_set_property,
  14036.         .atomic_get_property = intel_plane_atomic_get_property,
  14037.         .atomic_set_property = intel_plane_atomic_set_property,
  14038.         .atomic_duplicate_state = intel_plane_duplicate_state,
  14039.         .atomic_destroy_state = intel_plane_destroy_state,
  14040.  
  14041. };
  14042.  
  14043. static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
  14044.                                                     int pipe)
  14045. {
  14046.         struct intel_plane *primary;
  14047.         struct intel_plane_state *state;
  14048.         const uint32_t *intel_primary_formats;
  14049.         unsigned int num_formats;
  14050.  
  14051.         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
  14052.         if (primary == NULL)
  14053.                 return NULL;
  14054.  
  14055.         state = intel_create_plane_state(&primary->base);
  14056.         if (!state) {
  14057.                 kfree(primary);
  14058.                 return NULL;
  14059.         }
  14060.         primary->base.state = &state->base;
  14061.  
  14062.         primary->can_scale = false;
  14063.         primary->max_downscale = 1;
  14064.         if (INTEL_INFO(dev)->gen >= 9) {
  14065.                 primary->can_scale = true;
  14066.                 state->scaler_id = -1;
  14067.         }
  14068.         primary->pipe = pipe;
  14069.         primary->plane = pipe;
  14070.         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
  14071.         primary->check_plane = intel_check_primary_plane;
  14072.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
  14073.                 primary->plane = !pipe;
  14074.  
  14075.         if (INTEL_INFO(dev)->gen >= 9) {
  14076.                 intel_primary_formats = skl_primary_formats;
  14077.                 num_formats = ARRAY_SIZE(skl_primary_formats);
  14078.  
  14079.                 primary->update_plane = skylake_update_primary_plane;
  14080.                 primary->disable_plane = skylake_disable_primary_plane;
  14081.         } else if (HAS_PCH_SPLIT(dev)) {
  14082.                 intel_primary_formats = i965_primary_formats;
  14083.                 num_formats = ARRAY_SIZE(i965_primary_formats);
  14084.  
  14085.                 primary->update_plane = ironlake_update_primary_plane;
  14086.                 primary->disable_plane = i9xx_disable_primary_plane;
  14087.         } else if (INTEL_INFO(dev)->gen >= 4) {
  14088.                 intel_primary_formats = i965_primary_formats;
  14089.                 num_formats = ARRAY_SIZE(i965_primary_formats);
  14090.  
  14091.                 primary->update_plane = i9xx_update_primary_plane;
  14092.                 primary->disable_plane = i9xx_disable_primary_plane;
  14093.         } else {
  14094.                 intel_primary_formats = i8xx_primary_formats;
  14095.                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
  14096.  
  14097.                 primary->update_plane = i9xx_update_primary_plane;
  14098.                 primary->disable_plane = i9xx_disable_primary_plane;
  14099.         }
  14100.  
  14101.         drm_universal_plane_init(dev, &primary->base, 0,
  14102.                                  &intel_plane_funcs,
  14103.                                  intel_primary_formats, num_formats,
  14104.                                  DRM_PLANE_TYPE_PRIMARY, NULL);
  14105.  
  14106.         if (INTEL_INFO(dev)->gen >= 4)
  14107.                 intel_create_rotation_property(dev, primary);
  14108.  
  14109.         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
  14110.  
  14111.         return &primary->base;
  14112. }
  14113.  
  14114. void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
  14115. {
  14116.         if (!dev->mode_config.rotation_property) {
  14117.                 unsigned long flags = BIT(DRM_ROTATE_0) |
  14118.                         BIT(DRM_ROTATE_180);
  14119.  
  14120.                 if (INTEL_INFO(dev)->gen >= 9)
  14121.                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
  14122.  
  14123.                 dev->mode_config.rotation_property =
  14124.                         drm_mode_create_rotation_property(dev, flags);
  14125.         }
  14126.         if (dev->mode_config.rotation_property)
  14127.                 drm_object_attach_property(&plane->base.base,
  14128.                                 dev->mode_config.rotation_property,
  14129.                                 plane->base.state->rotation);
  14130. }
  14131.  
  14132. static int
  14133. intel_check_cursor_plane(struct drm_plane *plane,
  14134.                          struct intel_crtc_state *crtc_state,
  14135.                          struct intel_plane_state *state)
  14136. {
  14137.         struct drm_crtc *crtc = crtc_state->base.crtc;
  14138.         struct drm_framebuffer *fb = state->base.fb;
  14139.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  14140.         enum pipe pipe = to_intel_plane(plane)->pipe;
  14141.         unsigned stride;
  14142.         int ret;
  14143.  
  14144.         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  14145.                                             &state->dst, &state->clip,
  14146.                                             DRM_PLANE_HELPER_NO_SCALING,
  14147.                                             DRM_PLANE_HELPER_NO_SCALING,
  14148.                                             true, true, &state->visible);
  14149.         if (ret)
  14150.                 return ret;
  14151.  
  14152.         /* if we want to turn off the cursor ignore width and height */
  14153.         if (!obj)
  14154.                 return 0;
  14155.  
  14156.         /* Check for which cursor types we support */
  14157.         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
  14158.                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
  14159.                           state->base.crtc_w, state->base.crtc_h);
  14160.                 return -EINVAL;
  14161.         }
  14162.  
  14163.         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
  14164.         if (obj->base.size < stride * state->base.crtc_h) {
  14165.                 DRM_DEBUG_KMS("buffer is too small\n");
  14166.                 return -ENOMEM;
  14167.         }
  14168.  
  14169.         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
  14170.                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
  14171.                 return -EINVAL;
  14172.         }
  14173.  
  14174.         /*
  14175.          * There's something wrong with the cursor on CHV pipe C.
  14176.          * If it straddles the left edge of the screen then
  14177.          * moving it away from the edge or disabling it often
  14178.          * results in a pipe underrun, and often that can lead to
  14179.          * dead pipe (constant underrun reported, and it scans
  14180.          * out just a solid color). To recover from that, the
  14181.          * display power well must be turned off and on again.
  14182.          * Refuse the put the cursor into that compromised position.
  14183.          */
  14184.         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
  14185.             state->visible && state->base.crtc_x < 0) {
  14186.                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
  14187.                 return -EINVAL;
  14188.         }
  14189.  
  14190.         return 0;
  14191. }
  14192.  
  14193. static void
  14194. intel_disable_cursor_plane(struct drm_plane *plane,
  14195.                            struct drm_crtc *crtc)
  14196. {
  14197.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  14198.  
  14199.         intel_crtc->cursor_addr = 0;
  14200.         intel_crtc_update_cursor(crtc, NULL);
  14201. }
  14202.  
  14203. static void
  14204. intel_update_cursor_plane(struct drm_plane *plane,
  14205.                           const struct intel_crtc_state *crtc_state,
  14206.                           const struct intel_plane_state *state)
  14207. {
  14208.         struct drm_crtc *crtc = crtc_state->base.crtc;
  14209.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  14210.         struct drm_device *dev = plane->dev;
  14211.         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
  14212.         uint32_t addr;
  14213.  
  14214.         if (!obj)
  14215.                 addr = 0;
  14216.         else if (!INTEL_INFO(dev)->cursor_needs_physical)
  14217.                 addr = i915_gem_obj_ggtt_offset(obj);
  14218.         else
  14219.                 addr = obj->phys_handle->busaddr;
  14220.  
  14221.         intel_crtc->cursor_addr = addr;
  14222.         intel_crtc_update_cursor(crtc, state);
  14223. }
  14224.  
  14225. static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
  14226.                                                    int pipe)
  14227. {
  14228.         struct intel_plane *cursor;
  14229.         struct intel_plane_state *state;
  14230.  
  14231.         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
  14232.         if (cursor == NULL)
  14233.                 return NULL;
  14234.  
  14235.         state = intel_create_plane_state(&cursor->base);
  14236.         if (!state) {
  14237.                 kfree(cursor);
  14238.                 return NULL;
  14239.         }
  14240.         cursor->base.state = &state->base;
  14241.  
  14242.         cursor->can_scale = false;
  14243.         cursor->max_downscale = 1;
  14244.         cursor->pipe = pipe;
  14245.         cursor->plane = pipe;
  14246.         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
  14247.         cursor->check_plane = intel_check_cursor_plane;
  14248.         cursor->update_plane = intel_update_cursor_plane;
  14249.         cursor->disable_plane = intel_disable_cursor_plane;
  14250.  
  14251.         drm_universal_plane_init(dev, &cursor->base, 0,
  14252.                                  &intel_plane_funcs,
  14253.                                  intel_cursor_formats,
  14254.                                  ARRAY_SIZE(intel_cursor_formats),
  14255.                                  DRM_PLANE_TYPE_CURSOR, NULL);
  14256.  
  14257.         if (INTEL_INFO(dev)->gen >= 4) {
  14258.                 if (!dev->mode_config.rotation_property)
  14259.                         dev->mode_config.rotation_property =
  14260.                                 drm_mode_create_rotation_property(dev,
  14261.                                                         BIT(DRM_ROTATE_0) |
  14262.                                                         BIT(DRM_ROTATE_180));
  14263.                 if (dev->mode_config.rotation_property)
  14264.                         drm_object_attach_property(&cursor->base.base,
  14265.                                 dev->mode_config.rotation_property,
  14266.                                 state->base.rotation);
  14267.         }
  14268.  
  14269.         if (INTEL_INFO(dev)->gen >=9)
  14270.                 state->scaler_id = -1;
  14271.  
  14272.         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
  14273.  
  14274.         return &cursor->base;
  14275. }
  14276.  
  14277. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  14278.         struct intel_crtc_state *crtc_state)
  14279. {
  14280.         int i;
  14281.         struct intel_scaler *intel_scaler;
  14282.         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
  14283.  
  14284.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  14285.                 intel_scaler = &scaler_state->scalers[i];
  14286.                 intel_scaler->in_use = 0;
  14287.                 intel_scaler->mode = PS_SCALER_MODE_DYN;
  14288.         }
  14289.  
  14290.         scaler_state->scaler_id = -1;
  14291. }
  14292.  
  14293. static void intel_crtc_init(struct drm_device *dev, int pipe)
  14294. {
  14295.         struct drm_i915_private *dev_priv = dev->dev_private;
  14296.         struct intel_crtc *intel_crtc;
  14297.         struct intel_crtc_state *crtc_state = NULL;
  14298.         struct drm_plane *primary = NULL;
  14299.         struct drm_plane *cursor = NULL;
  14300.         int i, ret;
  14301.  
  14302.         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  14303.         if (intel_crtc == NULL)
  14304.                 return;
  14305.  
  14306.         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
  14307.         if (!crtc_state)
  14308.                 goto fail;
  14309.         intel_crtc->config = crtc_state;
  14310.         intel_crtc->base.state = &crtc_state->base;
  14311.         crtc_state->base.crtc = &intel_crtc->base;
  14312.  
  14313.         /* initialize shared scalers */
  14314.         if (INTEL_INFO(dev)->gen >= 9) {
  14315.                 if (pipe == PIPE_C)
  14316.                         intel_crtc->num_scalers = 1;
  14317.                 else
  14318.                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
  14319.  
  14320.                 skl_init_scalers(dev, intel_crtc, crtc_state);
  14321.         }
  14322.  
  14323.         primary = intel_primary_plane_create(dev, pipe);
  14324.         if (!primary)
  14325.                 goto fail;
  14326.  
  14327.         cursor = intel_cursor_plane_create(dev, pipe);
  14328.         if (!cursor)
  14329.                 goto fail;
  14330.  
  14331.         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
  14332.                                         cursor, &intel_crtc_funcs, NULL);
  14333.         if (ret)
  14334.                 goto fail;
  14335.  
  14336.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  14337.         for (i = 0; i < 256; i++) {
  14338.                 intel_crtc->lut_r[i] = i;
  14339.                 intel_crtc->lut_g[i] = i;
  14340.                 intel_crtc->lut_b[i] = i;
  14341.         }
  14342.  
  14343.         /*
  14344.          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
  14345.          * is hooked to pipe B. Hence we want plane A feeding pipe B.
  14346.          */
  14347.         intel_crtc->pipe = pipe;
  14348.         intel_crtc->plane = pipe;
  14349.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
  14350.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  14351.                 intel_crtc->plane = !pipe;
  14352.         }
  14353.  
  14354.         intel_crtc->cursor_base = ~0;
  14355.         intel_crtc->cursor_cntl = ~0;
  14356.         intel_crtc->cursor_size = ~0;
  14357.  
  14358.         intel_crtc->wm.cxsr_allowed = true;
  14359.  
  14360.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  14361.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  14362.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  14363.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  14364.  
  14365.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  14366.  
  14367.         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
  14368.         return;
  14369.  
  14370. fail:
  14371.         if (primary)
  14372.                 drm_plane_cleanup(primary);
  14373.         if (cursor)
  14374.                 drm_plane_cleanup(cursor);
  14375.         kfree(crtc_state);
  14376.         kfree(intel_crtc);
  14377. }
  14378.  
  14379. enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
  14380. {
  14381.         struct drm_encoder *encoder = connector->base.encoder;
  14382.         struct drm_device *dev = connector->base.dev;
  14383.  
  14384.         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  14385.  
  14386.         if (!encoder || WARN_ON(!encoder->crtc))
  14387.                 return INVALID_PIPE;
  14388.  
  14389.         return to_intel_crtc(encoder->crtc)->pipe;
  14390. }
  14391.  
  14392. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  14393.                                 struct drm_file *file)
  14394. {
  14395.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  14396.         struct drm_crtc *drmmode_crtc;
  14397.         struct intel_crtc *crtc;
  14398.  
  14399.         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
  14400.  
  14401.         if (!drmmode_crtc) {
  14402.                 DRM_ERROR("no such CRTC id\n");
  14403.                 return -ENOENT;
  14404.         }
  14405.  
  14406.         crtc = to_intel_crtc(drmmode_crtc);
  14407.         pipe_from_crtc_id->pipe = crtc->pipe;
  14408.  
  14409.         return 0;
  14410. }
  14411.  
  14412. static int intel_encoder_clones(struct intel_encoder *encoder)
  14413. {
  14414.         struct drm_device *dev = encoder->base.dev;
  14415.         struct intel_encoder *source_encoder;
  14416.         int index_mask = 0;
  14417.         int entry = 0;
  14418.  
  14419.         for_each_intel_encoder(dev, source_encoder) {
  14420.                 if (encoders_cloneable(encoder, source_encoder))
  14421.                         index_mask |= (1 << entry);
  14422.  
  14423.                 entry++;
  14424.         }
  14425.  
  14426.         return index_mask;
  14427. }
  14428.  
  14429. static bool has_edp_a(struct drm_device *dev)
  14430. {
  14431.         struct drm_i915_private *dev_priv = dev->dev_private;
  14432.  
  14433.         if (!IS_MOBILE(dev))
  14434.                 return false;
  14435.  
  14436.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  14437.                 return false;
  14438.  
  14439.         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
  14440.                 return false;
  14441.  
  14442.         return true;
  14443. }
  14444.  
  14445. static bool intel_crt_present(struct drm_device *dev)
  14446. {
  14447.         struct drm_i915_private *dev_priv = dev->dev_private;
  14448.  
  14449.         if (INTEL_INFO(dev)->gen >= 9)
  14450.                 return false;
  14451.  
  14452.         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
  14453.                 return false;
  14454.  
  14455.         if (IS_CHERRYVIEW(dev))
  14456.                 return false;
  14457.  
  14458.         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
  14459.                 return false;
  14460.  
  14461.         /* DDI E can't be used if DDI A requires 4 lanes */
  14462.         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
  14463.                 return false;
  14464.  
  14465.         if (!dev_priv->vbt.int_crt_support)
  14466.                 return false;
  14467.  
  14468.         return true;
  14469. }
  14470.  
  14471. static void intel_setup_outputs(struct drm_device *dev)
  14472. {
  14473.         struct drm_i915_private *dev_priv = dev->dev_private;
  14474.         struct intel_encoder *encoder;
  14475.         bool dpd_is_edp = false;
  14476.  
  14477.         intel_lvds_init(dev);
  14478.  
  14479.         if (intel_crt_present(dev))
  14480.                 intel_crt_init(dev);
  14481.  
  14482.         if (IS_BROXTON(dev)) {
  14483.                 /*
  14484.                  * FIXME: Broxton doesn't support port detection via the
  14485.                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
  14486.                  * detect the ports.
  14487.                  */
  14488.                 intel_ddi_init(dev, PORT_A);
  14489.                 intel_ddi_init(dev, PORT_B);
  14490.                 intel_ddi_init(dev, PORT_C);
  14491.         } else if (HAS_DDI(dev)) {
  14492.                 int found;
  14493.  
  14494.                 /*
  14495.                  * Haswell uses DDI functions to detect digital outputs.
  14496.                  * On SKL pre-D0 the strap isn't connected, so we assume
  14497.                  * it's there.
  14498.                  */
  14499.                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
  14500.                 /* WaIgnoreDDIAStrap: skl */
  14501.                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  14502.                         intel_ddi_init(dev, PORT_A);
  14503.  
  14504.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  14505.                  * register */
  14506.                 found = I915_READ(SFUSE_STRAP);
  14507.  
  14508.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  14509.                         intel_ddi_init(dev, PORT_B);
  14510.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  14511.                         intel_ddi_init(dev, PORT_C);
  14512.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  14513.                         intel_ddi_init(dev, PORT_D);
  14514.                 /*
  14515.                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
  14516.                  */
  14517.                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
  14518.                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
  14519.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
  14520.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
  14521.                         intel_ddi_init(dev, PORT_E);
  14522.  
  14523.         } else if (HAS_PCH_SPLIT(dev)) {
  14524.                 int found;
  14525.                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
  14526.  
  14527.                 if (has_edp_a(dev))
  14528.                         intel_dp_init(dev, DP_A, PORT_A);
  14529.  
  14530.                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  14531.                         /* PCH SDVOB multiplex with HDMIB */
  14532.                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
  14533.                         if (!found)
  14534.                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  14535.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  14536.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  14537.                 }
  14538.  
  14539.                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  14540.                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  14541.  
  14542.                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  14543.                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  14544.  
  14545.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  14546.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  14547.  
  14548.                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
  14549.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  14550.         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  14551.                 /*
  14552.                  * The DP_DETECTED bit is the latched state of the DDC
  14553.                  * SDA pin at boot. However since eDP doesn't require DDC
  14554.                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
  14555.                  * eDP ports may have been muxed to an alternate function.
  14556.                  * Thus we can't rely on the DP_DETECTED bit alone to detect
  14557.                  * eDP ports. Consult the VBT as well as DP_DETECTED to
  14558.                  * detect eDP ports.
  14559.                  */
  14560.                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
  14561.                     !intel_dp_is_edp(dev, PORT_B))
  14562.                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
  14563.                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
  14564.                     intel_dp_is_edp(dev, PORT_B))
  14565.                         intel_dp_init(dev, VLV_DP_B, PORT_B);
  14566.  
  14567.                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
  14568.                     !intel_dp_is_edp(dev, PORT_C))
  14569.                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
  14570.                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
  14571.                     intel_dp_is_edp(dev, PORT_C))
  14572.                         intel_dp_init(dev, VLV_DP_C, PORT_C);
  14573.  
  14574.                 if (IS_CHERRYVIEW(dev)) {
  14575.                         /* eDP not supported on port D, so don't check VBT */
  14576.                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
  14577.                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
  14578.                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
  14579.                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
  14580.                 }
  14581.  
  14582.                 intel_dsi_init(dev);
  14583.         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
  14584.                 bool found = false;
  14585.  
  14586.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14587.                         DRM_DEBUG_KMS("probing SDVOB\n");
  14588.                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
  14589.                         if (!found && IS_G4X(dev)) {
  14590.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  14591.                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  14592.                         }
  14593.  
  14594.                         if (!found && IS_G4X(dev))
  14595.                                 intel_dp_init(dev, DP_B, PORT_B);
  14596.                 }
  14597.  
  14598.                 /* Before G4X SDVOC doesn't have its own detect register */
  14599.  
  14600.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14601.                         DRM_DEBUG_KMS("probing SDVOC\n");
  14602.                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
  14603.                 }
  14604.  
  14605.                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  14606.  
  14607.                         if (IS_G4X(dev)) {
  14608.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  14609.                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  14610.                         }
  14611.                         if (IS_G4X(dev))
  14612.                                 intel_dp_init(dev, DP_C, PORT_C);
  14613.                 }
  14614.  
  14615.                 if (IS_G4X(dev) &&
  14616.                     (I915_READ(DP_D) & DP_DETECTED))
  14617.                         intel_dp_init(dev, DP_D, PORT_D);
  14618.         } else if (IS_GEN2(dev))
  14619.                 intel_dvo_init(dev);
  14620.  
  14621. //   if (SUPPORTS_TV(dev))
  14622. //       intel_tv_init(dev);
  14623.  
  14624.         intel_psr_init(dev);
  14625.  
  14626.         for_each_intel_encoder(dev, encoder) {
  14627.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  14628.                 encoder->base.possible_clones =
  14629.                         intel_encoder_clones(encoder);
  14630.         }
  14631.  
  14632.         intel_init_pch_refclk(dev);
  14633.  
  14634.         drm_helper_move_panel_connectors_to_head(dev);
  14635. }
  14636.  
  14637. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  14638. {
  14639.         struct drm_device *dev = fb->dev;
  14640.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14641.  
  14642.         drm_framebuffer_cleanup(fb);
  14643.         mutex_lock(&dev->struct_mutex);
  14644.         WARN_ON(!intel_fb->obj->framebuffer_references--);
  14645.         drm_gem_object_unreference(&intel_fb->obj->base);
  14646.         mutex_unlock(&dev->struct_mutex);
  14647.         kfree(intel_fb);
  14648. }
  14649.  
  14650. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  14651.                                                 struct drm_file *file,
  14652.                                                 unsigned int *handle)
  14653. {
  14654.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14655.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14656.  
  14657.         if (obj->userptr.mm) {
  14658.                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
  14659.                 return -EINVAL;
  14660.         }
  14661.  
  14662.         return drm_gem_handle_create(file, &obj->base, handle);
  14663. }
  14664.  
  14665. static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
  14666.                                         struct drm_file *file,
  14667.                                         unsigned flags, unsigned color,
  14668.                                         struct drm_clip_rect *clips,
  14669.                                         unsigned num_clips)
  14670. {
  14671.         struct drm_device *dev = fb->dev;
  14672.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14673.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14674.  
  14675.         mutex_lock(&dev->struct_mutex);
  14676.         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
  14677.         mutex_unlock(&dev->struct_mutex);
  14678.  
  14679.         return 0;
  14680. }
  14681.  
  14682. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  14683.         .destroy = intel_user_framebuffer_destroy,
  14684.         .create_handle = intel_user_framebuffer_create_handle,
  14685.         .dirty = intel_user_framebuffer_dirty,
  14686. };
  14687.  
  14688. static
  14689. u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
  14690.                          uint32_t pixel_format)
  14691. {
  14692.         u32 gen = INTEL_INFO(dev)->gen;
  14693.  
  14694.         if (gen >= 9) {
  14695.                 int cpp = drm_format_plane_cpp(pixel_format, 0);
  14696.  
  14697.                 /* "The stride in bytes must not exceed the of the size of 8K
  14698.                  *  pixels and 32K bytes."
  14699.                  */
  14700.                 return min(8192 * cpp, 32768);
  14701.         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  14702.                 return 32*1024;
  14703.         } else if (gen >= 4) {
  14704.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14705.                         return 16*1024;
  14706.                 else
  14707.                         return 32*1024;
  14708.         } else if (gen >= 3) {
  14709.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14710.                         return 8*1024;
  14711.                 else
  14712.                         return 16*1024;
  14713.         } else {
  14714.                 /* XXX DSPC is limited to 4k tiled */
  14715.                 return 8*1024;
  14716.         }
  14717. }
  14718.  
  14719. static int intel_framebuffer_init(struct drm_device *dev,
  14720.                                   struct intel_framebuffer *intel_fb,
  14721.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  14722.                                   struct drm_i915_gem_object *obj)
  14723. {
  14724.         struct drm_i915_private *dev_priv = to_i915(dev);
  14725.         unsigned int aligned_height;
  14726.         int ret;
  14727.         u32 pitch_limit, stride_alignment;
  14728.  
  14729.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  14730.  
  14731.         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
  14732.                 /* Enforce that fb modifier and tiling mode match, but only for
  14733.                  * X-tiled. This is needed for FBC. */
  14734.                 if (!!(obj->tiling_mode == I915_TILING_X) !=
  14735.                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
  14736.                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
  14737.                         return -EINVAL;
  14738.                 }
  14739.         } else {
  14740.                 if (obj->tiling_mode == I915_TILING_X)
  14741.                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
  14742.                 else if (obj->tiling_mode == I915_TILING_Y) {
  14743.                         DRM_DEBUG("No Y tiling for legacy addfb\n");
  14744.                         return -EINVAL;
  14745.                 }
  14746.         }
  14747.  
  14748.         /* Passed in modifier sanity checking. */
  14749.         switch (mode_cmd->modifier[0]) {
  14750.         case I915_FORMAT_MOD_Y_TILED:
  14751.         case I915_FORMAT_MOD_Yf_TILED:
  14752.                 if (INTEL_INFO(dev)->gen < 9) {
  14753.                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
  14754.                                   mode_cmd->modifier[0]);
  14755.                         return -EINVAL;
  14756.                 }
  14757.         case DRM_FORMAT_MOD_NONE:
  14758.         case I915_FORMAT_MOD_X_TILED:
  14759.                 break;
  14760.         default:
  14761.                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
  14762.                           mode_cmd->modifier[0]);
  14763.                 return -EINVAL;
  14764.         }
  14765.  
  14766.         stride_alignment = intel_fb_stride_alignment(dev_priv,
  14767.                                                      mode_cmd->modifier[0],
  14768.                                                      mode_cmd->pixel_format);
  14769.         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
  14770.                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
  14771.                           mode_cmd->pitches[0], stride_alignment);
  14772.                 return -EINVAL;
  14773.         }
  14774.  
  14775.         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
  14776.                                            mode_cmd->pixel_format);
  14777.         if (mode_cmd->pitches[0] > pitch_limit) {
  14778.                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
  14779.                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
  14780.                           "tiled" : "linear",
  14781.                           mode_cmd->pitches[0], pitch_limit);
  14782.                 return -EINVAL;
  14783.         }
  14784.  
  14785.         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
  14786.             mode_cmd->pitches[0] != obj->stride) {
  14787.                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  14788.                           mode_cmd->pitches[0], obj->stride);
  14789.                 return -EINVAL;
  14790.         }
  14791.  
  14792.         /* Reject formats not supported by any plane early. */
  14793.         switch (mode_cmd->pixel_format) {
  14794.         case DRM_FORMAT_C8:
  14795.         case DRM_FORMAT_RGB565:
  14796.         case DRM_FORMAT_XRGB8888:
  14797.         case DRM_FORMAT_ARGB8888:
  14798.                 break;
  14799.         case DRM_FORMAT_XRGB1555:
  14800.                 if (INTEL_INFO(dev)->gen > 3) {
  14801.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14802.                                   drm_get_format_name(mode_cmd->pixel_format));
  14803.                         return -EINVAL;
  14804.                 }
  14805.                 break;
  14806.         case DRM_FORMAT_ABGR8888:
  14807.                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
  14808.                     INTEL_INFO(dev)->gen < 9) {
  14809.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14810.                                   drm_get_format_name(mode_cmd->pixel_format));
  14811.                         return -EINVAL;
  14812.                 }
  14813.                 break;
  14814.         case DRM_FORMAT_XBGR8888:
  14815.         case DRM_FORMAT_XRGB2101010:
  14816.         case DRM_FORMAT_XBGR2101010:
  14817.                 if (INTEL_INFO(dev)->gen < 4) {
  14818.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14819.                                   drm_get_format_name(mode_cmd->pixel_format));
  14820.                         return -EINVAL;
  14821.                 }
  14822.                 break;
  14823.         case DRM_FORMAT_ABGR2101010:
  14824.                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  14825.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14826.                                   drm_get_format_name(mode_cmd->pixel_format));
  14827.                         return -EINVAL;
  14828.                 }
  14829.                 break;
  14830.         case DRM_FORMAT_YUYV:
  14831.         case DRM_FORMAT_UYVY:
  14832.         case DRM_FORMAT_YVYU:
  14833.         case DRM_FORMAT_VYUY:
  14834.                 if (INTEL_INFO(dev)->gen < 5) {
  14835.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14836.                                   drm_get_format_name(mode_cmd->pixel_format));
  14837.                         return -EINVAL;
  14838.                 }
  14839.                 break;
  14840.         default:
  14841.                 DRM_DEBUG("unsupported pixel format: %s\n",
  14842.                           drm_get_format_name(mode_cmd->pixel_format));
  14843.                 return -EINVAL;
  14844.         }
  14845.  
  14846.         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  14847.         if (mode_cmd->offsets[0] != 0)
  14848.                 return -EINVAL;
  14849.  
  14850.         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
  14851.                                                mode_cmd->pixel_format,
  14852.                                                mode_cmd->modifier[0]);
  14853.         /* FIXME drm helper for size checks (especially planar formats)? */
  14854.         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  14855.                 return -EINVAL;
  14856.  
  14857.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  14858.         intel_fb->obj = obj;
  14859.  
  14860.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  14861.         if (ret) {
  14862.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  14863.                 return ret;
  14864.         }
  14865.  
  14866.         intel_fb->obj->framebuffer_references++;
  14867.  
  14868.         kolibri_framebuffer_init(intel_fb);
  14869.  
  14870.         return 0;
  14871. }
  14872.  
  14873. static struct drm_framebuffer *
  14874. intel_user_framebuffer_create(struct drm_device *dev,
  14875.                               struct drm_file *filp,
  14876.                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
  14877. {
  14878.         struct drm_framebuffer *fb;
  14879.         struct drm_i915_gem_object *obj;
  14880.         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
  14881.  
  14882.         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  14883.                                                 mode_cmd.handles[0]));
  14884.         if (&obj->base == NULL)
  14885.                 return ERR_PTR(-ENOENT);
  14886.  
  14887.         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
  14888.         if (IS_ERR(fb))
  14889.                 drm_gem_object_unreference_unlocked(&obj->base);
  14890.  
  14891.         return fb;
  14892. }
  14893.  
  14894. #ifndef CONFIG_DRM_FBDEV_EMULATION
  14895. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  14896. {
  14897. }
  14898. #endif
  14899.  
  14900. static const struct drm_mode_config_funcs intel_mode_funcs = {
  14901.         .fb_create = intel_user_framebuffer_create,
  14902.         .output_poll_changed = intel_fbdev_output_poll_changed,
  14903.         .atomic_check = intel_atomic_check,
  14904.         .atomic_commit = intel_atomic_commit,
  14905.         .atomic_state_alloc = intel_atomic_state_alloc,
  14906.         .atomic_state_clear = intel_atomic_state_clear,
  14907. };
  14908.  
  14909. /* Set up chip specific display functions */
  14910. static void intel_init_display(struct drm_device *dev)
  14911. {
  14912.         struct drm_i915_private *dev_priv = dev->dev_private;
  14913.  
  14914.         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  14915.                 dev_priv->display.find_dpll = g4x_find_best_dpll;
  14916.         else if (IS_CHERRYVIEW(dev))
  14917.                 dev_priv->display.find_dpll = chv_find_best_dpll;
  14918.         else if (IS_VALLEYVIEW(dev))
  14919.                 dev_priv->display.find_dpll = vlv_find_best_dpll;
  14920.         else if (IS_PINEVIEW(dev))
  14921.                 dev_priv->display.find_dpll = pnv_find_best_dpll;
  14922.         else
  14923.                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
  14924.  
  14925.         if (INTEL_INFO(dev)->gen >= 9) {
  14926.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14927.                 dev_priv->display.get_initial_plane_config =
  14928.                         skylake_get_initial_plane_config;
  14929.                 dev_priv->display.crtc_compute_clock =
  14930.                         haswell_crtc_compute_clock;
  14931.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14932.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14933.         } else if (HAS_DDI(dev)) {
  14934.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14935.                 dev_priv->display.get_initial_plane_config =
  14936.                         ironlake_get_initial_plane_config;
  14937.                 dev_priv->display.crtc_compute_clock =
  14938.                         haswell_crtc_compute_clock;
  14939.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14940.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14941.         } else if (HAS_PCH_SPLIT(dev)) {
  14942.                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  14943.                 dev_priv->display.get_initial_plane_config =
  14944.                         ironlake_get_initial_plane_config;
  14945.                 dev_priv->display.crtc_compute_clock =
  14946.                         ironlake_crtc_compute_clock;
  14947.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  14948.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  14949.         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  14950.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14951.                 dev_priv->display.get_initial_plane_config =
  14952.                         i9xx_get_initial_plane_config;
  14953.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14954.                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
  14955.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14956.         } else {
  14957.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14958.                 dev_priv->display.get_initial_plane_config =
  14959.                         i9xx_get_initial_plane_config;
  14960.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14961.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  14962.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14963.         }
  14964.  
  14965.         /* Returns the core display clock speed */
  14966.         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  14967.                 dev_priv->display.get_display_clock_speed =
  14968.                         skylake_get_display_clock_speed;
  14969.         else if (IS_BROXTON(dev))
  14970.                 dev_priv->display.get_display_clock_speed =
  14971.                         broxton_get_display_clock_speed;
  14972.         else if (IS_BROADWELL(dev))
  14973.                 dev_priv->display.get_display_clock_speed =
  14974.                         broadwell_get_display_clock_speed;
  14975.         else if (IS_HASWELL(dev))
  14976.                 dev_priv->display.get_display_clock_speed =
  14977.                         haswell_get_display_clock_speed;
  14978.         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  14979.                 dev_priv->display.get_display_clock_speed =
  14980.                         valleyview_get_display_clock_speed;
  14981.         else if (IS_GEN5(dev))
  14982.                 dev_priv->display.get_display_clock_speed =
  14983.                         ilk_get_display_clock_speed;
  14984.         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
  14985.                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
  14986.                 dev_priv->display.get_display_clock_speed =
  14987.                         i945_get_display_clock_speed;
  14988.         else if (IS_GM45(dev))
  14989.                 dev_priv->display.get_display_clock_speed =
  14990.                         gm45_get_display_clock_speed;
  14991.         else if (IS_CRESTLINE(dev))
  14992.                 dev_priv->display.get_display_clock_speed =
  14993.                         i965gm_get_display_clock_speed;
  14994.         else if (IS_PINEVIEW(dev))
  14995.                 dev_priv->display.get_display_clock_speed =
  14996.                         pnv_get_display_clock_speed;
  14997.         else if (IS_G33(dev) || IS_G4X(dev))
  14998.                 dev_priv->display.get_display_clock_speed =
  14999.                         g33_get_display_clock_speed;
  15000.         else if (IS_I915G(dev))
  15001.                 dev_priv->display.get_display_clock_speed =
  15002.                         i915_get_display_clock_speed;
  15003.         else if (IS_I945GM(dev) || IS_845G(dev))
  15004.                 dev_priv->display.get_display_clock_speed =
  15005.                         i9xx_misc_get_display_clock_speed;
  15006.         else if (IS_I915GM(dev))
  15007.                 dev_priv->display.get_display_clock_speed =
  15008.                         i915gm_get_display_clock_speed;
  15009.         else if (IS_I865G(dev))
  15010.                 dev_priv->display.get_display_clock_speed =
  15011.                         i865_get_display_clock_speed;
  15012.         else if (IS_I85X(dev))
  15013.                 dev_priv->display.get_display_clock_speed =
  15014.                         i85x_get_display_clock_speed;
  15015.         else { /* 830 */
  15016.                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
  15017.                 dev_priv->display.get_display_clock_speed =
  15018.                         i830_get_display_clock_speed;
  15019.         }
  15020.  
  15021.         if (IS_GEN5(dev)) {
  15022.                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  15023.         } else if (IS_GEN6(dev)) {
  15024.                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  15025.         } else if (IS_IVYBRIDGE(dev)) {
  15026.                 /* FIXME: detect B0+ stepping and use auto training */
  15027.                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  15028.         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  15029.                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  15030.                 if (IS_BROADWELL(dev)) {
  15031.                         dev_priv->display.modeset_commit_cdclk =
  15032.                                 broadwell_modeset_commit_cdclk;
  15033.                         dev_priv->display.modeset_calc_cdclk =
  15034.                                 broadwell_modeset_calc_cdclk;
  15035.                 }
  15036.         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  15037.                 dev_priv->display.modeset_commit_cdclk =
  15038.                         valleyview_modeset_commit_cdclk;
  15039.                 dev_priv->display.modeset_calc_cdclk =
  15040.                         valleyview_modeset_calc_cdclk;
  15041.         } else if (IS_BROXTON(dev)) {
  15042.                 dev_priv->display.modeset_commit_cdclk =
  15043.                         broxton_modeset_commit_cdclk;
  15044.                 dev_priv->display.modeset_calc_cdclk =
  15045.                         broxton_modeset_calc_cdclk;
  15046.         }
  15047.  
  15048.         switch (INTEL_INFO(dev)->gen) {
  15049.         case 2:
  15050.                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
  15051.                 break;
  15052.  
  15053.         case 3:
  15054.                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
  15055.                 break;
  15056.  
  15057.         case 4:
  15058.         case 5:
  15059.                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
  15060.                 break;
  15061.  
  15062.         case 6:
  15063.                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
  15064.                 break;
  15065.         case 7:
  15066.         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
  15067.                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
  15068.                 break;
  15069.         case 9:
  15070.                 /* Drop through - unsupported since execlist only. */
  15071.         default:
  15072.                 /* Default just returns -ENODEV to indicate unsupported */
  15073.                 dev_priv->display.queue_flip = intel_default_queue_flip;
  15074.         }
  15075.  
  15076.         mutex_init(&dev_priv->pps_mutex);
  15077. }
  15078.  
  15079. /*
  15080.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  15081.  * resume, or other times.  This quirk makes sure that's the case for
  15082.  * affected systems.
  15083.  */
  15084. static void quirk_pipea_force(struct drm_device *dev)
  15085. {
  15086.         struct drm_i915_private *dev_priv = dev->dev_private;
  15087.  
  15088.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  15089.         DRM_INFO("applying pipe a force quirk\n");
  15090. }
  15091.  
  15092. static void quirk_pipeb_force(struct drm_device *dev)
  15093. {
  15094.         struct drm_i915_private *dev_priv = dev->dev_private;
  15095.  
  15096.         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
  15097.         DRM_INFO("applying pipe b force quirk\n");
  15098. }
  15099.  
  15100. /*
  15101.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  15102.  */
  15103. static void quirk_ssc_force_disable(struct drm_device *dev)
  15104. {
  15105.         struct drm_i915_private *dev_priv = dev->dev_private;
  15106.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  15107.         DRM_INFO("applying lvds SSC disable quirk\n");
  15108. }
  15109.  
  15110. /*
  15111.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  15112.  * brightness value
  15113.  */
  15114. static void quirk_invert_brightness(struct drm_device *dev)
  15115. {
  15116.         struct drm_i915_private *dev_priv = dev->dev_private;
  15117.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  15118.         DRM_INFO("applying inverted panel brightness quirk\n");
  15119. }
  15120.  
  15121. /* Some VBT's incorrectly indicate no backlight is present */
  15122. static void quirk_backlight_present(struct drm_device *dev)
  15123. {
  15124.         struct drm_i915_private *dev_priv = dev->dev_private;
  15125.         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
  15126.         DRM_INFO("applying backlight present quirk\n");
  15127. }
  15128.  
  15129. struct intel_quirk {
  15130.         int device;
  15131.         int subsystem_vendor;
  15132.         int subsystem_device;
  15133.         void (*hook)(struct drm_device *dev);
  15134. };
  15135.  
  15136. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  15137. struct intel_dmi_quirk {
  15138.         void (*hook)(struct drm_device *dev);
  15139.         const struct dmi_system_id (*dmi_id_list)[];
  15140. };
  15141.  
  15142. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  15143. {
  15144.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  15145.         return 1;
  15146. }
  15147.  
  15148. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  15149.         {
  15150.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  15151.                         {
  15152.                                 .callback = intel_dmi_reverse_brightness,
  15153.                                 .ident = "NCR Corporation",
  15154.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  15155.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  15156.                                 },
  15157.                         },
  15158.                         { }  /* terminating entry */
  15159.                 },
  15160.                 .hook = quirk_invert_brightness,
  15161.         },
  15162. };
  15163.  
  15164. static struct intel_quirk intel_quirks[] = {
  15165.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  15166.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  15167.  
  15168.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  15169.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  15170.  
  15171.         /* 830 needs to leave pipe A & dpll A up */
  15172.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  15173.  
  15174.         /* 830 needs to leave pipe B & dpll B up */
  15175.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
  15176.  
  15177.         /* Lenovo U160 cannot use SSC on LVDS */
  15178.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  15179.  
  15180.         /* Sony Vaio Y cannot use SSC on LVDS */
  15181.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  15182.  
  15183.         /* Acer Aspire 5734Z must invert backlight brightness */
  15184.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  15185.  
  15186.         /* Acer/eMachines G725 */
  15187.         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  15188.  
  15189.         /* Acer/eMachines e725 */
  15190.         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  15191.  
  15192.         /* Acer/Packard Bell NCL20 */
  15193.         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  15194.  
  15195.         /* Acer Aspire 4736Z */
  15196.         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  15197.  
  15198.         /* Acer Aspire 5336 */
  15199.         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
  15200.  
  15201.         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
  15202.         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
  15203.  
  15204.         /* Acer C720 Chromebook (Core i3 4005U) */
  15205.         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
  15206.  
  15207.         /* Apple Macbook 2,1 (Core 2 T7400) */
  15208.         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
  15209.  
  15210.         /* Apple Macbook 4,1 */
  15211.         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
  15212.  
  15213.         /* Toshiba CB35 Chromebook (Celeron 2955U) */
  15214.         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
  15215.  
  15216.         /* HP Chromebook 14 (Celeron 2955U) */
  15217.         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
  15218.  
  15219.         /* Dell Chromebook 11 */
  15220.         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
  15221.  
  15222.         /* Dell Chromebook 11 (2015 version) */
  15223.         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
  15224. };
  15225.  
  15226. static void intel_init_quirks(struct drm_device *dev)
  15227. {
  15228.         struct pci_dev *d = dev->pdev;
  15229.         int i;
  15230.  
  15231.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  15232.                 struct intel_quirk *q = &intel_quirks[i];
  15233.  
  15234.                 if (d->device == q->device &&
  15235.                     (d->subsystem_vendor == q->subsystem_vendor ||
  15236.                      q->subsystem_vendor == PCI_ANY_ID) &&
  15237.                     (d->subsystem_device == q->subsystem_device ||
  15238.                      q->subsystem_device == PCI_ANY_ID))
  15239.                         q->hook(dev);
  15240.         }
  15241.         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  15242.                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  15243.                         intel_dmi_quirks[i].hook(dev);
  15244.         }
  15245. }
  15246.  
  15247. /* Disable the VGA plane that we never use */
  15248. static void i915_disable_vga(struct drm_device *dev)
  15249. {
  15250.         struct drm_i915_private *dev_priv = dev->dev_private;
  15251.         u8 sr1;
  15252.         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
  15253.  
  15254.         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
  15255. //      vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  15256.         outb(SR01, VGA_SR_INDEX);
  15257.         sr1 = inb(VGA_SR_DATA);
  15258.         outb(sr1 | 1<<5, VGA_SR_DATA);
  15259. //      vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  15260.         udelay(300);
  15261.  
  15262.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  15263.         POSTING_READ(vga_reg);
  15264. }
  15265.  
  15266. void intel_modeset_init_hw(struct drm_device *dev)
  15267. {
  15268.         struct drm_i915_private *dev_priv = dev->dev_private;
  15269.  
  15270.         intel_update_cdclk(dev);
  15271.  
  15272.         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
  15273.  
  15274.         intel_init_clock_gating(dev);
  15275.         intel_enable_gt_powersave(dev);
  15276. }
  15277.  
  15278. /*
  15279.  * Calculate what we think the watermarks should be for the state we've read
  15280.  * out of the hardware and then immediately program those watermarks so that
  15281.  * we ensure the hardware settings match our internal state.
  15282.  *
  15283.  * We can calculate what we think WM's should be by creating a duplicate of the
  15284.  * current state (which was constructed during hardware readout) and running it
  15285.  * through the atomic check code to calculate new watermark values in the
  15286.  * state object.
  15287.  */
  15288. static void sanitize_watermarks(struct drm_device *dev)
  15289. {
  15290.         struct drm_i915_private *dev_priv = to_i915(dev);
  15291.         struct drm_atomic_state *state;
  15292.         struct drm_crtc *crtc;
  15293.         struct drm_crtc_state *cstate;
  15294.         struct drm_modeset_acquire_ctx ctx;
  15295.         int ret;
  15296.         int i;
  15297.  
  15298.         /* Only supported on platforms that use atomic watermark design */
  15299.         if (!dev_priv->display.program_watermarks)
  15300.                 return;
  15301.  
  15302.         /*
  15303.          * We need to hold connection_mutex before calling duplicate_state so
  15304.          * that the connector loop is protected.
  15305.          */
  15306.         drm_modeset_acquire_init(&ctx, 0);
  15307. retry:
  15308.         ret = drm_modeset_lock_all_ctx(dev, &ctx);
  15309.         if (ret == -EDEADLK) {
  15310.                 drm_modeset_backoff(&ctx);
  15311.                 goto retry;
  15312.         } else if (WARN_ON(ret)) {
  15313.                 goto fail;
  15314.         }
  15315.  
  15316.         state = drm_atomic_helper_duplicate_state(dev, &ctx);
  15317.         if (WARN_ON(IS_ERR(state)))
  15318.                 goto fail;
  15319.  
  15320.         ret = intel_atomic_check(dev, state);
  15321.         if (ret) {
  15322.                 /*
  15323.                  * If we fail here, it means that the hardware appears to be
  15324.                  * programmed in a way that shouldn't be possible, given our
  15325.                  * understanding of watermark requirements.  This might mean a
  15326.                  * mistake in the hardware readout code or a mistake in the
  15327.                  * watermark calculations for a given platform.  Raise a WARN
  15328.                  * so that this is noticeable.
  15329.                  *
  15330.                  * If this actually happens, we'll have to just leave the
  15331.                  * BIOS-programmed watermarks untouched and hope for the best.
  15332.                  */
  15333.                 WARN(true, "Could not determine valid watermarks for inherited state\n");
  15334.                 goto fail;
  15335.         }
  15336.  
  15337.         /* Write calculated watermark values back */
  15338.         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
  15339.         for_each_crtc_in_state(state, crtc, cstate, i) {
  15340.                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
  15341.  
  15342.                 dev_priv->display.program_watermarks(cs);
  15343.         }
  15344.  
  15345.         drm_atomic_state_free(state);
  15346. fail:
  15347.         drm_modeset_drop_locks(&ctx);
  15348.         drm_modeset_acquire_fini(&ctx);
  15349. }
  15350.  
  15351. void intel_modeset_init(struct drm_device *dev)
  15352. {
  15353.         struct drm_i915_private *dev_priv = dev->dev_private;
  15354.         int sprite, ret;
  15355.         enum pipe pipe;
  15356.         struct intel_crtc *crtc;
  15357.  
  15358.         drm_mode_config_init(dev);
  15359.  
  15360.         dev->mode_config.min_width = 0;
  15361.         dev->mode_config.min_height = 0;
  15362.  
  15363.         dev->mode_config.preferred_depth = 24;
  15364.         dev->mode_config.prefer_shadow = 1;
  15365.  
  15366.         dev->mode_config.allow_fb_modifiers = true;
  15367.  
  15368.         dev->mode_config.funcs = &intel_mode_funcs;
  15369.  
  15370.         intel_init_quirks(dev);
  15371.  
  15372.         intel_init_pm(dev);
  15373.  
  15374.         if (INTEL_INFO(dev)->num_pipes == 0)
  15375.                 return;
  15376.  
  15377.         /*
  15378.          * There may be no VBT; and if the BIOS enabled SSC we can
  15379.          * just keep using it to avoid unnecessary flicker.  Whereas if the
  15380.          * BIOS isn't using it, don't assume it will work even if the VBT
  15381.          * indicates as much.
  15382.          */
  15383.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  15384.                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
  15385.                                             DREF_SSC1_ENABLE);
  15386.  
  15387.                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
  15388.                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
  15389.                                      bios_lvds_use_ssc ? "en" : "dis",
  15390.                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
  15391.                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
  15392.                 }
  15393.         }
  15394.  
  15395.         intel_init_display(dev);
  15396.  
  15397.         if (IS_GEN2(dev)) {
  15398.                 dev->mode_config.max_width = 2048;
  15399.                 dev->mode_config.max_height = 2048;
  15400.         } else if (IS_GEN3(dev)) {
  15401.                 dev->mode_config.max_width = 4096;
  15402.                 dev->mode_config.max_height = 4096;
  15403.         } else {
  15404.                 dev->mode_config.max_width = 8192;
  15405.                 dev->mode_config.max_height = 8192;
  15406.         }
  15407.  
  15408.         if (IS_GEN2(dev)) {
  15409.                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
  15410.                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
  15411.         } else {
  15412.                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
  15413.                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
  15414.         }
  15415.  
  15416.         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  15417.  
  15418.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  15419.                       INTEL_INFO(dev)->num_pipes,
  15420.                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  15421.  
  15422.         for_each_pipe(dev_priv, pipe) {
  15423.                 intel_crtc_init(dev, pipe);
  15424.                 for_each_sprite(dev_priv, pipe, sprite) {
  15425.                         ret = intel_plane_init(dev, pipe, sprite);
  15426.                         if (ret)
  15427.                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  15428.                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
  15429.                 }
  15430.         }
  15431.  
  15432.         intel_update_czclk(dev_priv);
  15433.         intel_update_cdclk(dev);
  15434.  
  15435.         intel_shared_dpll_init(dev);
  15436.  
  15437.         /* Just disable it once at startup */
  15438.         i915_disable_vga(dev);
  15439.         intel_setup_outputs(dev);
  15440.  
  15441.         drm_modeset_lock_all(dev);
  15442.         intel_modeset_setup_hw_state(dev);
  15443.         drm_modeset_unlock_all(dev);
  15444.  
  15445.         for_each_intel_crtc(dev, crtc) {
  15446.                 struct intel_initial_plane_config plane_config = {};
  15447.  
  15448.                 if (!crtc->active)
  15449.                         continue;
  15450.  
  15451.                 /*
  15452.                  * Note that reserving the BIOS fb up front prevents us
  15453.                  * from stuffing other stolen allocations like the ring
  15454.                  * on top.  This prevents some ugliness at boot time, and
  15455.                  * can even allow for smooth boot transitions if the BIOS
  15456.                  * fb is large enough for the active pipe configuration.
  15457.                  */
  15458.                 dev_priv->display.get_initial_plane_config(crtc,
  15459.                                                            &plane_config);
  15460.  
  15461.                 /*
  15462.                  * If the fb is shared between multiple heads, we'll
  15463.                  * just get the first one.
  15464.                  */
  15465.                 intel_find_initial_plane_obj(crtc, &plane_config);
  15466.         }
  15467.  
  15468.         /*
  15469.          * Make sure hardware watermarks really match the state we read out.
  15470.          * Note that we need to do this after reconstructing the BIOS fb's
  15471.          * since the watermark calculation done here will use pstate->fb.
  15472.          */
  15473.         sanitize_watermarks(dev);
  15474. }
  15475.  
  15476. static void intel_enable_pipe_a(struct drm_device *dev)
  15477. {
  15478.         struct intel_connector *connector;
  15479.         struct drm_connector *crt = NULL;
  15480.         struct intel_load_detect_pipe load_detect_temp;
  15481.         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
  15482.  
  15483.         /* We can't just switch on the pipe A, we need to set things up with a
  15484.          * proper mode and output configuration. As a gross hack, enable pipe A
  15485.          * by enabling the load detect pipe once. */
  15486.         for_each_intel_connector(dev, connector) {
  15487.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  15488.                         crt = &connector->base;
  15489.                         break;
  15490.                 }
  15491.         }
  15492.  
  15493.         if (!crt)
  15494.                 return;
  15495.  
  15496.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
  15497.                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
  15498. }
  15499.  
  15500. static bool
  15501. intel_check_plane_mapping(struct intel_crtc *crtc)
  15502. {
  15503.         struct drm_device *dev = crtc->base.dev;
  15504.         struct drm_i915_private *dev_priv = dev->dev_private;
  15505.         u32 val;
  15506.  
  15507.         if (INTEL_INFO(dev)->num_pipes == 1)
  15508.                 return true;
  15509.  
  15510.         val = I915_READ(DSPCNTR(!crtc->plane));
  15511.  
  15512.         if ((val & DISPLAY_PLANE_ENABLE) &&
  15513.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  15514.                 return false;
  15515.  
  15516.         return true;
  15517. }
  15518.  
  15519. static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
  15520. {
  15521.         struct drm_device *dev = crtc->base.dev;
  15522.         struct intel_encoder *encoder;
  15523.  
  15524.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15525.                 return true;
  15526.  
  15527.         return false;
  15528. }
  15529.  
  15530. static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
  15531. {
  15532.         struct drm_device *dev = encoder->base.dev;
  15533.         struct intel_connector *connector;
  15534.  
  15535.         for_each_connector_on_encoder(dev, &encoder->base, connector)
  15536.                 return true;
  15537.  
  15538.         return false;
  15539. }
  15540.  
  15541. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  15542. {
  15543.         struct drm_device *dev = crtc->base.dev;
  15544.         struct drm_i915_private *dev_priv = dev->dev_private;
  15545.         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
  15546.  
  15547.         /* Clear any frame start delays used for debugging left by the BIOS */
  15548.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  15549.  
  15550.         /* restore vblank interrupts to correct state */
  15551.         drm_crtc_vblank_reset(&crtc->base);
  15552.         if (crtc->active) {
  15553.                 struct intel_plane *plane;
  15554.  
  15555.                 drm_crtc_vblank_on(&crtc->base);
  15556.  
  15557.                 /* Disable everything but the primary plane */
  15558.                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
  15559.                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  15560.                                 continue;
  15561.  
  15562.                         plane->disable_plane(&plane->base, &crtc->base);
  15563.                 }
  15564.         }
  15565.  
  15566.         /* We need to sanitize the plane -> pipe mapping first because this will
  15567.          * disable the crtc (and hence change the state) if it is wrong. Note
  15568.          * that gen4+ has a fixed plane -> pipe mapping.  */
  15569.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  15570.                 bool plane;
  15571.  
  15572.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  15573.                               crtc->base.base.id);
  15574.  
  15575.                 /* Pipe has the wrong plane attached and the plane is active.
  15576.                  * Temporarily change the plane mapping and disable everything
  15577.                  * ...  */
  15578.                 plane = crtc->plane;
  15579.                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
  15580.                 crtc->plane = !plane;
  15581.                 intel_crtc_disable_noatomic(&crtc->base);
  15582.                 crtc->plane = plane;
  15583.         }
  15584.  
  15585.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  15586.             crtc->pipe == PIPE_A && !crtc->active) {
  15587.                 /* BIOS forgot to enable pipe A, this mostly happens after
  15588.                  * resume. Force-enable the pipe to fix this, the update_dpms
  15589.                  * call below we restore the pipe to the right state, but leave
  15590.                  * the required bits on. */
  15591.                 intel_enable_pipe_a(dev);
  15592.         }
  15593.  
  15594.         /* Adjust the state of the output pipe according to whether we
  15595.          * have active connectors/encoders. */
  15596.         if (!intel_crtc_has_encoders(crtc))
  15597.                 intel_crtc_disable_noatomic(&crtc->base);
  15598.  
  15599.         if (crtc->active != crtc->base.state->active) {
  15600.                 struct intel_encoder *encoder;
  15601.  
  15602.                 /* This can happen either due to bugs in the get_hw_state
  15603.                  * functions or because of calls to intel_crtc_disable_noatomic,
  15604.                  * or because the pipe is force-enabled due to the
  15605.                  * pipe A quirk. */
  15606.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  15607.                               crtc->base.base.id,
  15608.                               crtc->base.state->enable ? "enabled" : "disabled",
  15609.                               crtc->active ? "enabled" : "disabled");
  15610.  
  15611.                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
  15612.                 crtc->base.state->active = crtc->active;
  15613.                 crtc->base.enabled = crtc->active;
  15614.                 crtc->base.state->connector_mask = 0;
  15615.                 crtc->base.state->encoder_mask = 0;
  15616.  
  15617.                 /* Because we only establish the connector -> encoder ->
  15618.                  * crtc links if something is active, this means the
  15619.                  * crtc is now deactivated. Break the links. connector
  15620.                  * -> encoder links are only establish when things are
  15621.                  *  actually up, hence no need to break them. */
  15622.                 WARN_ON(crtc->active);
  15623.  
  15624.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15625.                         encoder->base.crtc = NULL;
  15626.         }
  15627.  
  15628.         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
  15629.                 /*
  15630.                  * We start out with underrun reporting disabled to avoid races.
  15631.                  * For correct bookkeeping mark this on active crtcs.
  15632.                  *
  15633.                  * Also on gmch platforms we dont have any hardware bits to
  15634.                  * disable the underrun reporting. Which means we need to start
  15635.                  * out with underrun reporting disabled also on inactive pipes,
  15636.                  * since otherwise we'll complain about the garbage we read when
  15637.                  * e.g. coming up after runtime pm.
  15638.                  *
  15639.                  * No protection against concurrent access is required - at
  15640.                  * worst a fifo underrun happens which also sets this to false.
  15641.                  */
  15642.                 crtc->cpu_fifo_underrun_disabled = true;
  15643.                 crtc->pch_fifo_underrun_disabled = true;
  15644.         }
  15645. }
  15646.  
  15647. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  15648. {
  15649.         struct intel_connector *connector;
  15650.         struct drm_device *dev = encoder->base.dev;
  15651.  
  15652.         /* We need to check both for a crtc link (meaning that the
  15653.          * encoder is active and trying to read from a pipe) and the
  15654.          * pipe itself being active. */
  15655.         bool has_active_crtc = encoder->base.crtc &&
  15656.                 to_intel_crtc(encoder->base.crtc)->active;
  15657.  
  15658.         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
  15659.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  15660.                               encoder->base.base.id,
  15661.                               encoder->base.name);
  15662.  
  15663.                 /* Connector is active, but has no active pipe. This is
  15664.                  * fallout from our resume register restoring. Disable
  15665.                  * the encoder manually again. */
  15666.                 if (encoder->base.crtc) {
  15667.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  15668.                                       encoder->base.base.id,
  15669.                                       encoder->base.name);
  15670.                         encoder->disable(encoder);
  15671.                         if (encoder->post_disable)
  15672.                                 encoder->post_disable(encoder);
  15673.                 }
  15674.                 encoder->base.crtc = NULL;
  15675.  
  15676.                 /* Inconsistent output/port/pipe state happens presumably due to
  15677.                  * a bug in one of the get_hw_state functions. Or someplace else
  15678.                  * in our code, like the register restore mess on resume. Clamp
  15679.                  * things to off as a safer default. */
  15680.                 for_each_intel_connector(dev, connector) {
  15681.                         if (connector->encoder != encoder)
  15682.                                 continue;
  15683.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15684.                         connector->base.encoder = NULL;
  15685.                 }
  15686.         }
  15687.         /* Enabled encoders without active connectors will be fixed in
  15688.          * the crtc fixup. */
  15689. }
  15690.  
  15691. void i915_redisable_vga_power_on(struct drm_device *dev)
  15692. {
  15693.         struct drm_i915_private *dev_priv = dev->dev_private;
  15694.         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
  15695.  
  15696.         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  15697.                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  15698.                 i915_disable_vga(dev);
  15699.         }
  15700. }
  15701.  
  15702. void i915_redisable_vga(struct drm_device *dev)
  15703. {
  15704.         struct drm_i915_private *dev_priv = dev->dev_private;
  15705.  
  15706.         /* This function can be called both from intel_modeset_setup_hw_state or
  15707.          * at a very early point in our resume sequence, where the power well
  15708.          * structures are not yet restored. Since this function is at a very
  15709.          * paranoid "someone might have enabled VGA while we were not looking"
  15710.          * level, just check if the power well is enabled instead of trying to
  15711.          * follow the "don't touch the power well if we don't need it" policy
  15712.          * the rest of the driver uses. */
  15713.         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
  15714.                 return;
  15715.  
  15716.         i915_redisable_vga_power_on(dev);
  15717.  
  15718.         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
  15719. }
  15720.  
  15721. static bool primary_get_hw_state(struct intel_plane *plane)
  15722. {
  15723.         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  15724.  
  15725.         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
  15726. }
  15727.  
  15728. /* FIXME read out full plane state for all planes */
  15729. static void readout_plane_state(struct intel_crtc *crtc)
  15730. {
  15731.         struct drm_plane *primary = crtc->base.primary;
  15732.         struct intel_plane_state *plane_state =
  15733.                 to_intel_plane_state(primary->state);
  15734.  
  15735.         plane_state->visible = crtc->active &&
  15736.                 primary_get_hw_state(to_intel_plane(primary));
  15737.  
  15738.         if (plane_state->visible)
  15739.                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
  15740. }
  15741.  
  15742. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  15743. {
  15744.         struct drm_i915_private *dev_priv = dev->dev_private;
  15745.         enum pipe pipe;
  15746.         struct intel_crtc *crtc;
  15747.         struct intel_encoder *encoder;
  15748.         struct intel_connector *connector;
  15749.         int i;
  15750.  
  15751.         dev_priv->active_crtcs = 0;
  15752.  
  15753.         for_each_intel_crtc(dev, crtc) {
  15754.                 struct intel_crtc_state *crtc_state = crtc->config;
  15755.                 int pixclk = 0;
  15756.  
  15757.                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
  15758.                 memset(crtc_state, 0, sizeof(*crtc_state));
  15759.                 crtc_state->base.crtc = &crtc->base;
  15760.  
  15761.                 crtc_state->base.active = crtc_state->base.enable =
  15762.                         dev_priv->display.get_pipe_config(crtc, crtc_state);
  15763.  
  15764.                 crtc->base.enabled = crtc_state->base.enable;
  15765.                 crtc->active = crtc_state->base.active;
  15766.  
  15767.                 if (crtc_state->base.active) {
  15768.                         dev_priv->active_crtcs |= 1 << crtc->pipe;
  15769.  
  15770.                         if (IS_BROADWELL(dev_priv)) {
  15771.                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
  15772.  
  15773.                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
  15774.                                 if (crtc_state->ips_enabled)
  15775.                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
  15776.                         } else if (IS_VALLEYVIEW(dev_priv) ||
  15777.                                    IS_CHERRYVIEW(dev_priv) ||
  15778.                                    IS_BROXTON(dev_priv))
  15779.                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
  15780.                         else
  15781.                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
  15782.                 }
  15783.  
  15784.                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
  15785.  
  15786.                 readout_plane_state(crtc);
  15787.  
  15788.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  15789.                               crtc->base.base.id,
  15790.                               crtc->active ? "enabled" : "disabled");
  15791.         }
  15792.  
  15793.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15794.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15795.  
  15796.                 pll->on = pll->get_hw_state(dev_priv, pll,
  15797.                                             &pll->config.hw_state);
  15798.                 pll->active = 0;
  15799.                 pll->config.crtc_mask = 0;
  15800.                 for_each_intel_crtc(dev, crtc) {
  15801.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
  15802.                                 pll->active++;
  15803.                                 pll->config.crtc_mask |= 1 << crtc->pipe;
  15804.                         }
  15805.                 }
  15806.  
  15807.                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
  15808.                               pll->name, pll->config.crtc_mask, pll->on);
  15809.  
  15810.                 if (pll->config.crtc_mask)
  15811.                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  15812.         }
  15813.  
  15814.         for_each_intel_encoder(dev, encoder) {
  15815.                 pipe = 0;
  15816.  
  15817.                 if (encoder->get_hw_state(encoder, &pipe)) {
  15818.                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15819.                         encoder->base.crtc = &crtc->base;
  15820.                         encoder->get_config(encoder, crtc->config);
  15821.                 } else {
  15822.                         encoder->base.crtc = NULL;
  15823.                 }
  15824.  
  15825.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  15826.                               encoder->base.base.id,
  15827.                               encoder->base.name,
  15828.                               encoder->base.crtc ? "enabled" : "disabled",
  15829.                               pipe_name(pipe));
  15830.         }
  15831.  
  15832.         for_each_intel_connector(dev, connector) {
  15833.                 if (connector->get_hw_state(connector)) {
  15834.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  15835.  
  15836.                         encoder = connector->encoder;
  15837.                         connector->base.encoder = &encoder->base;
  15838.  
  15839.                         if (encoder->base.crtc &&
  15840.                             encoder->base.crtc->state->active) {
  15841.                                 /*
  15842.                                  * This has to be done during hardware readout
  15843.                                  * because anything calling .crtc_disable may
  15844.                                  * rely on the connector_mask being accurate.
  15845.                                  */
  15846.                                 encoder->base.crtc->state->connector_mask |=
  15847.                                         1 << drm_connector_index(&connector->base);
  15848.                                 encoder->base.crtc->state->encoder_mask |=
  15849.                                         1 << drm_encoder_index(&encoder->base);
  15850.                         }
  15851.  
  15852.                 } else {
  15853.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15854.                         connector->base.encoder = NULL;
  15855.                 }
  15856.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  15857.                               connector->base.base.id,
  15858.                               connector->base.name,
  15859.                               connector->base.encoder ? "enabled" : "disabled");
  15860.         }
  15861.  
  15862.         for_each_intel_crtc(dev, crtc) {
  15863.                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
  15864.  
  15865.                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
  15866.                 if (crtc->base.state->active) {
  15867.                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
  15868.                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
  15869.                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
  15870.  
  15871.                         /*
  15872.                          * The initial mode needs to be set in order to keep
  15873.                          * the atomic core happy. It wants a valid mode if the
  15874.                          * crtc's enabled, so we do the above call.
  15875.                          *
  15876.                          * At this point some state updated by the connectors
  15877.                          * in their ->detect() callback has not run yet, so
  15878.                          * no recalculation can be done yet.
  15879.                          *
  15880.                          * Even if we could do a recalculation and modeset
  15881.                          * right now it would cause a double modeset if
  15882.                          * fbdev or userspace chooses a different initial mode.
  15883.                          *
  15884.                          * If that happens, someone indicated they wanted a
  15885.                          * mode change, which means it's safe to do a full
  15886.                          * recalculation.
  15887.                          */
  15888.                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
  15889.  
  15890.                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
  15891.                         update_scanline_offset(crtc);
  15892.                 }
  15893.         }
  15894. }
  15895.  
  15896. /* Scan out the current hw modeset state,
  15897.  * and sanitizes it to the current state
  15898.  */
  15899. static void
  15900. intel_modeset_setup_hw_state(struct drm_device *dev)
  15901. {
  15902.         struct drm_i915_private *dev_priv = dev->dev_private;
  15903.         enum pipe pipe;
  15904.         struct intel_crtc *crtc;
  15905.         struct intel_encoder *encoder;
  15906.         int i;
  15907.  
  15908.         intel_modeset_readout_hw_state(dev);
  15909.  
  15910.         /* HW state is read out, now we need to sanitize this mess. */
  15911.         for_each_intel_encoder(dev, encoder) {
  15912.                 intel_sanitize_encoder(encoder);
  15913.         }
  15914.  
  15915.         for_each_pipe(dev_priv, pipe) {
  15916.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15917.                 intel_sanitize_crtc(crtc);
  15918.                 intel_dump_pipe_config(crtc, crtc->config,
  15919.                                        "[setup_hw_state]");
  15920.         }
  15921.  
  15922.         intel_modeset_update_connector_atomic_state(dev);
  15923.  
  15924.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15925.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15926.  
  15927.                 if (!pll->on || pll->active)
  15928.                         continue;
  15929.  
  15930.                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  15931.  
  15932.                 pll->disable(dev_priv, pll);
  15933.                 pll->on = false;
  15934.         }
  15935.  
  15936.         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  15937.                 vlv_wm_get_hw_state(dev);
  15938.         else if (IS_GEN9(dev))
  15939.                 skl_wm_get_hw_state(dev);
  15940.         else if (HAS_PCH_SPLIT(dev))
  15941.                 ilk_wm_get_hw_state(dev);
  15942.  
  15943.         for_each_intel_crtc(dev, crtc) {
  15944.                 unsigned long put_domains;
  15945.  
  15946.                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
  15947.                 if (WARN_ON(put_domains))
  15948.                         modeset_put_power_domains(dev_priv, put_domains);
  15949.         }
  15950.         intel_display_set_init_power(dev_priv, false);
  15951.  
  15952.         intel_fbc_init_pipe_state(dev_priv);
  15953. }
  15954.  
  15955. void intel_display_resume(struct drm_device *dev)
  15956. {
  15957.         struct drm_i915_private *dev_priv = to_i915(dev);
  15958.         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
  15959.         struct drm_modeset_acquire_ctx ctx;
  15960.         int ret;
  15961.         bool setup = false;
  15962.  
  15963.         dev_priv->modeset_restore_state = NULL;
  15964.  
  15965.         /*
  15966.          * This is a cludge because with real atomic modeset mode_config.mutex
  15967.          * won't be taken. Unfortunately some probed state like
  15968.          * audio_codec_enable is still protected by mode_config.mutex, so lock
  15969.          * it here for now.
  15970.          */
  15971.         mutex_lock(&dev->mode_config.mutex);
  15972.         drm_modeset_acquire_init(&ctx, 0);
  15973.  
  15974. retry:
  15975.         ret = drm_modeset_lock_all_ctx(dev, &ctx);
  15976.  
  15977.         /*
  15978.          * With MST, the number of connectors can change between suspend and
  15979.          * resume, which means that the state we want to restore might now be
  15980.          * impossible to use since it'll be pointing to non-existant
  15981.          * connectors.
  15982.          */
  15983.         if (ret == 0 && state &&
  15984.             state->num_connector != dev->mode_config.num_connector) {
  15985.                 drm_atomic_state_free(state);
  15986.                 state = NULL;
  15987.         }
  15988.  
  15989.         if (ret == 0 && !setup) {
  15990.                 setup = true;
  15991.  
  15992.                 intel_modeset_setup_hw_state(dev);
  15993.                 i915_redisable_vga(dev);
  15994.         }
  15995.  
  15996.         if (ret == 0 && state) {
  15997.                 struct drm_crtc_state *crtc_state;
  15998.                 struct drm_crtc *crtc;
  15999.                 int i;
  16000.  
  16001.                 state->acquire_ctx = &ctx;
  16002.  
  16003.                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
  16004.                         /*
  16005.                          * Force recalculation even if we restore
  16006.                          * current state. With fast modeset this may not result
  16007.                          * in a modeset when the state is compatible.
  16008.                          */
  16009.                         crtc_state->mode_changed = true;
  16010.                 }
  16011.  
  16012.                 ret = drm_atomic_commit(state);
  16013.         }
  16014.  
  16015.         if (ret == -EDEADLK) {
  16016.                 drm_modeset_backoff(&ctx);
  16017.                 goto retry;
  16018.         }
  16019.  
  16020.         drm_modeset_drop_locks(&ctx);
  16021.         drm_modeset_acquire_fini(&ctx);
  16022.         mutex_unlock(&dev->mode_config.mutex);
  16023.  
  16024.         if (ret) {
  16025.                 DRM_ERROR("Restoring old state failed with %i\n", ret);
  16026.                 drm_atomic_state_free(state);
  16027.         }
  16028. }
  16029.  
  16030. void intel_modeset_gem_init(struct drm_device *dev)
  16031. {
  16032.         struct drm_crtc *c;
  16033.         struct drm_i915_gem_object *obj;
  16034.         int ret;
  16035.  
  16036.         intel_init_gt_powersave(dev);
  16037.  
  16038.         intel_modeset_init_hw(dev);
  16039.  
  16040. //   intel_setup_overlay(dev);
  16041.  
  16042.         /*
  16043.          * Make sure any fbs we allocated at startup are properly
  16044.          * pinned & fenced.  When we do the allocation it's too early
  16045.          * for this.
  16046.          */
  16047.         for_each_crtc(dev, c) {
  16048.                 obj = intel_fb_obj(c->primary->fb);
  16049.                 if (obj == NULL)
  16050.                         continue;
  16051.  
  16052.                 mutex_lock(&dev->struct_mutex);
  16053.                 ret = intel_pin_and_fence_fb_obj(c->primary,
  16054.                                                  c->primary->fb,
  16055.                                                  c->primary->state);
  16056.                 mutex_unlock(&dev->struct_mutex);
  16057.                 if (ret) {
  16058.                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
  16059.                                   to_intel_crtc(c)->pipe);
  16060.                         drm_framebuffer_unreference(c->primary->fb);
  16061.                         c->primary->fb = NULL;
  16062.                         c->primary->crtc = c->primary->state->crtc = NULL;
  16063.                         update_state_fb(c->primary);
  16064.                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
  16065.                 }
  16066.         }
  16067.  
  16068.         intel_backlight_register(dev);
  16069. }
  16070.  
  16071. void intel_connector_unregister(struct intel_connector *intel_connector)
  16072. {
  16073.         struct drm_connector *connector = &intel_connector->base;
  16074.  
  16075.         intel_panel_destroy_backlight(connector);
  16076.         drm_connector_unregister(connector);
  16077. }
  16078.  
  16079. void intel_modeset_cleanup(struct drm_device *dev)
  16080. {
  16081. #if 0
  16082.         struct drm_i915_private *dev_priv = dev->dev_private;
  16083.         struct intel_connector *connector;
  16084.  
  16085.         intel_disable_gt_powersave(dev);
  16086.  
  16087.         intel_backlight_unregister(dev);
  16088.  
  16089.         /*
  16090.          * Interrupts and polling as the first thing to avoid creating havoc.
  16091.          * Too much stuff here (turning of connectors, ...) would
  16092.          * experience fancy races otherwise.
  16093.          */
  16094.         intel_irq_uninstall(dev_priv);
  16095.  
  16096.         /*
  16097.          * Due to the hpd irq storm handling the hotplug work can re-arm the
  16098.          * poll handlers. Hence disable polling after hpd handling is shut down.
  16099.          */
  16100.         drm_kms_helper_poll_fini(dev);
  16101.  
  16102.         intel_unregister_dsm_handler();
  16103.  
  16104.         intel_fbc_global_disable(dev_priv);
  16105.  
  16106.         /* flush any delayed tasks or pending work */
  16107.         flush_scheduled_work();
  16108.  
  16109.         /* destroy the backlight and sysfs files before encoders/connectors */
  16110.         for_each_intel_connector(dev, connector)
  16111.                 connector->unregister(connector);
  16112.  
  16113.         drm_mode_config_cleanup(dev);
  16114.  
  16115.         intel_cleanup_overlay(dev);
  16116.  
  16117.         intel_cleanup_gt_powersave(dev);
  16118. #endif
  16119. }
  16120.  
  16121. /*
  16122.  * Return which encoder is currently attached for connector.
  16123.  */
  16124. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  16125. {
  16126.         return &intel_attached_encoder(connector)->base;
  16127. }
  16128.  
  16129. void intel_connector_attach_encoder(struct intel_connector *connector,
  16130.                                     struct intel_encoder *encoder)
  16131. {
  16132.         connector->encoder = encoder;
  16133.         drm_mode_connector_attach_encoder(&connector->base,
  16134.                                           &encoder->base);
  16135. }
  16136.  
  16137. /*
  16138.  * set vga decode state - true == enable VGA decode
  16139.  */
  16140. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  16141. {
  16142.         struct drm_i915_private *dev_priv = dev->dev_private;
  16143.         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
  16144.         u16 gmch_ctrl;
  16145.  
  16146.         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
  16147.                 DRM_ERROR("failed to read control word\n");
  16148.                 return -EIO;
  16149.         }
  16150.  
  16151.         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
  16152.                 return 0;
  16153.  
  16154.         if (state)
  16155.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  16156.         else
  16157.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  16158.  
  16159.         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
  16160.                 DRM_ERROR("failed to write control word\n");
  16161.                 return -EIO;
  16162.         }
  16163.  
  16164.         return 0;
  16165. }
  16166.  
  16167. struct intel_display_error_state {
  16168.  
  16169.         u32 power_well_driver;
  16170.  
  16171.         int num_transcoders;
  16172.  
  16173.         struct intel_cursor_error_state {
  16174.                 u32 control;
  16175.                 u32 position;
  16176.                 u32 base;
  16177.                 u32 size;
  16178.         } cursor[I915_MAX_PIPES];
  16179.  
  16180.         struct intel_pipe_error_state {
  16181.                 bool power_domain_on;
  16182.                 u32 source;
  16183.                 u32 stat;
  16184.         } pipe[I915_MAX_PIPES];
  16185.  
  16186.         struct intel_plane_error_state {
  16187.                 u32 control;
  16188.                 u32 stride;
  16189.                 u32 size;
  16190.                 u32 pos;
  16191.                 u32 addr;
  16192.                 u32 surface;
  16193.                 u32 tile_offset;
  16194.         } plane[I915_MAX_PIPES];
  16195.  
  16196.         struct intel_transcoder_error_state {
  16197.                 bool power_domain_on;
  16198.                 enum transcoder cpu_transcoder;
  16199.  
  16200.                 u32 conf;
  16201.  
  16202.                 u32 htotal;
  16203.                 u32 hblank;
  16204.                 u32 hsync;
  16205.                 u32 vtotal;
  16206.                 u32 vblank;
  16207.                 u32 vsync;
  16208.         } transcoder[4];
  16209. };
  16210.  
  16211. struct intel_display_error_state *
  16212. intel_display_capture_error_state(struct drm_device *dev)
  16213. {
  16214.         struct drm_i915_private *dev_priv = dev->dev_private;
  16215.         struct intel_display_error_state *error;
  16216.         int transcoders[] = {
  16217.                 TRANSCODER_A,
  16218.                 TRANSCODER_B,
  16219.                 TRANSCODER_C,
  16220.                 TRANSCODER_EDP,
  16221.         };
  16222.         int i;
  16223.  
  16224.         if (INTEL_INFO(dev)->num_pipes == 0)
  16225.                 return NULL;
  16226.  
  16227.         error = kzalloc(sizeof(*error), GFP_ATOMIC);
  16228.         if (error == NULL)
  16229.                 return NULL;
  16230.  
  16231.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  16232.                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  16233.  
  16234.         for_each_pipe(dev_priv, i) {
  16235.                 error->pipe[i].power_domain_on =
  16236.                         __intel_display_power_is_enabled(dev_priv,
  16237.                                                          POWER_DOMAIN_PIPE(i));
  16238.                 if (!error->pipe[i].power_domain_on)
  16239.                         continue;
  16240.  
  16241.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  16242.                 error->cursor[i].position = I915_READ(CURPOS(i));
  16243.                 error->cursor[i].base = I915_READ(CURBASE(i));
  16244.  
  16245.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  16246.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  16247.                 if (INTEL_INFO(dev)->gen <= 3) {
  16248.                         error->plane[i].size = I915_READ(DSPSIZE(i));
  16249.                         error->plane[i].pos = I915_READ(DSPPOS(i));
  16250.                 }
  16251.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  16252.                         error->plane[i].addr = I915_READ(DSPADDR(i));
  16253.                 if (INTEL_INFO(dev)->gen >= 4) {
  16254.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  16255.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  16256.                 }
  16257.  
  16258.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  16259.  
  16260.                 if (HAS_GMCH_DISPLAY(dev))
  16261.                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
  16262.         }
  16263.  
  16264.         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  16265.         if (HAS_DDI(dev_priv->dev))
  16266.                 error->num_transcoders++; /* Account for eDP. */
  16267.  
  16268.         for (i = 0; i < error->num_transcoders; i++) {
  16269.                 enum transcoder cpu_transcoder = transcoders[i];
  16270.  
  16271.                 error->transcoder[i].power_domain_on =
  16272.                         __intel_display_power_is_enabled(dev_priv,
  16273.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
  16274.                 if (!error->transcoder[i].power_domain_on)
  16275.                         continue;
  16276.  
  16277.                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
  16278.  
  16279.                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  16280.                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  16281.                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  16282.                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  16283.                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  16284.                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  16285.                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  16286.         }
  16287.  
  16288.         return error;
  16289. }
  16290.  
  16291. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  16292.  
  16293. void
  16294. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  16295.                                 struct drm_device *dev,
  16296.                                 struct intel_display_error_state *error)
  16297. {
  16298.         struct drm_i915_private *dev_priv = dev->dev_private;
  16299.         int i;
  16300.  
  16301.         if (!error)
  16302.                 return;
  16303.  
  16304.         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  16305.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  16306.                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
  16307.                            error->power_well_driver);
  16308.         for_each_pipe(dev_priv, i) {
  16309.                 err_printf(m, "Pipe [%d]:\n", i);
  16310.                 err_printf(m, "  Power: %s\n",
  16311.                            onoff(error->pipe[i].power_domain_on));
  16312.                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  16313.                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
  16314.  
  16315.                 err_printf(m, "Plane [%d]:\n", i);
  16316.                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  16317.                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  16318.                 if (INTEL_INFO(dev)->gen <= 3) {
  16319.                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  16320.                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
  16321.                 }
  16322.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  16323.                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  16324.                 if (INTEL_INFO(dev)->gen >= 4) {
  16325.                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  16326.                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  16327.                 }
  16328.  
  16329.                 err_printf(m, "Cursor [%d]:\n", i);
  16330.                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  16331.                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
  16332.                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  16333.         }
  16334.  
  16335.         for (i = 0; i < error->num_transcoders; i++) {
  16336.                 err_printf(m, "CPU transcoder: %c\n",
  16337.                            transcoder_name(error->transcoder[i].cpu_transcoder));
  16338.                 err_printf(m, "  Power: %s\n",
  16339.                            onoff(error->transcoder[i].power_domain_on));
  16340.                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
  16341.                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
  16342.                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
  16343.                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
  16344.                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
  16345.                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
  16346.                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
  16347.         }
  16348. }
  16349.