Subversion Repositories Kolibri OS

Rev

Rev 6320 | Rev 6935 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *      Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. #include <linux/dmi.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_atomic.h>
  41. #include <drm/drm_atomic_helper.h>
  42. #include <drm/drm_dp_helper.h>
  43. #include <drm/drm_crtc_helper.h>
  44. #include <drm/drm_plane_helper.h>
  45. #include <drm/drm_rect.h>
  46. #include <linux/dma_remapping.h>
  47.  
  48. /* Primary plane formats for gen <= 3 */
  49. static const uint32_t i8xx_primary_formats[] = {
  50.         DRM_FORMAT_C8,
  51.         DRM_FORMAT_RGB565,
  52.         DRM_FORMAT_XRGB1555,
  53.         DRM_FORMAT_XRGB8888,
  54. };
  55.  
  56. /* Primary plane formats for gen >= 4 */
  57. static const uint32_t i965_primary_formats[] = {
  58.         DRM_FORMAT_C8,
  59.         DRM_FORMAT_RGB565,
  60.         DRM_FORMAT_XRGB8888,
  61.         DRM_FORMAT_XBGR8888,
  62.         DRM_FORMAT_XRGB2101010,
  63.         DRM_FORMAT_XBGR2101010,
  64. };
  65.  
  66. static const uint32_t skl_primary_formats[] = {
  67.         DRM_FORMAT_C8,
  68.         DRM_FORMAT_RGB565,
  69.         DRM_FORMAT_XRGB8888,
  70.         DRM_FORMAT_XBGR8888,
  71.         DRM_FORMAT_ARGB8888,
  72.         DRM_FORMAT_ABGR8888,
  73.         DRM_FORMAT_XRGB2101010,
  74.         DRM_FORMAT_XBGR2101010,
  75.         DRM_FORMAT_YUYV,
  76.         DRM_FORMAT_YVYU,
  77.         DRM_FORMAT_UYVY,
  78.         DRM_FORMAT_VYUY,
  79. };
  80.  
  81. /* Cursor formats */
  82. static const uint32_t intel_cursor_formats[] = {
  83.         DRM_FORMAT_ARGB8888,
  84. };
  85.  
  86. void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  87.  
  88. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  89.                                 struct intel_crtc_state *pipe_config);
  90. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  91.                                    struct intel_crtc_state *pipe_config);
  92.  
  93. static int intel_framebuffer_init(struct drm_device *dev,
  94.                                   struct intel_framebuffer *ifb,
  95.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  96.                                   struct drm_i915_gem_object *obj);
  97. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  98. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  99. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  100.                                          struct intel_link_m_n *m_n,
  101.                                          struct intel_link_m_n *m2_n2);
  102. static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  103. static void haswell_set_pipeconf(struct drm_crtc *crtc);
  104. static void intel_set_pipe_csc(struct drm_crtc *crtc);
  105. static void vlv_prepare_pll(struct intel_crtc *crtc,
  106.                             const struct intel_crtc_state *pipe_config);
  107. static void chv_prepare_pll(struct intel_crtc *crtc,
  108.                             const struct intel_crtc_state *pipe_config);
  109. static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  110. static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  111. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  112.         struct intel_crtc_state *crtc_state);
  113. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  114.                            int num_connectors);
  115. static void skylake_pfit_enable(struct intel_crtc *crtc);
  116. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
  117. static void ironlake_pfit_enable(struct intel_crtc *crtc);
  118. static void intel_modeset_setup_hw_state(struct drm_device *dev);
  119. static void intel_pre_disable_primary(struct drm_crtc *crtc);
  120.  
  121. typedef struct {
  122.         int     min, max;
  123. } intel_range_t;
  124.  
  125. typedef struct {
  126.         int     dot_limit;
  127.         int     p2_slow, p2_fast;
  128. } intel_p2_t;
  129.  
  130. typedef struct intel_limit intel_limit_t;
  131. struct intel_limit {
  132.         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  133.         intel_p2_t          p2;
  134. };
  135.  
  136. /* returns HPLL frequency in kHz */
  137. static int valleyview_get_vco(struct drm_i915_private *dev_priv)
  138. {
  139.         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
  140.  
  141.         /* Obtain SKU information */
  142.         mutex_lock(&dev_priv->sb_lock);
  143.         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
  144.                 CCK_FUSE_HPLL_FREQ_MASK;
  145.         mutex_unlock(&dev_priv->sb_lock);
  146.  
  147.         return vco_freq[hpll_freq] * 1000;
  148. }
  149.  
  150. static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
  151.                                   const char *name, u32 reg)
  152. {
  153.         u32 val;
  154.         int divider;
  155.  
  156.         if (dev_priv->hpll_freq == 0)
  157.                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
  158.  
  159.         mutex_lock(&dev_priv->sb_lock);
  160.         val = vlv_cck_read(dev_priv, reg);
  161.         mutex_unlock(&dev_priv->sb_lock);
  162.  
  163.         divider = val & CCK_FREQUENCY_VALUES;
  164.  
  165.         WARN((val & CCK_FREQUENCY_STATUS) !=
  166.              (divider << CCK_FREQUENCY_STATUS_SHIFT),
  167.              "%s change in progress\n", name);
  168.  
  169.         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
  170. }
  171.  
  172. int
  173. intel_pch_rawclk(struct drm_device *dev)
  174. {
  175.         struct drm_i915_private *dev_priv = dev->dev_private;
  176.  
  177.         WARN_ON(!HAS_PCH_SPLIT(dev));
  178.  
  179.         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  180. }
  181.  
  182. /* hrawclock is 1/4 the FSB frequency */
  183. int intel_hrawclk(struct drm_device *dev)
  184. {
  185.         struct drm_i915_private *dev_priv = dev->dev_private;
  186.         uint32_t clkcfg;
  187.  
  188.         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  189.         if (IS_VALLEYVIEW(dev))
  190.                 return 200;
  191.  
  192.         clkcfg = I915_READ(CLKCFG);
  193.         switch (clkcfg & CLKCFG_FSB_MASK) {
  194.         case CLKCFG_FSB_400:
  195.                 return 100;
  196.         case CLKCFG_FSB_533:
  197.                 return 133;
  198.         case CLKCFG_FSB_667:
  199.                 return 166;
  200.         case CLKCFG_FSB_800:
  201.                 return 200;
  202.         case CLKCFG_FSB_1067:
  203.                 return 266;
  204.         case CLKCFG_FSB_1333:
  205.                 return 333;
  206.         /* these two are just a guess; one of them might be right */
  207.         case CLKCFG_FSB_1600:
  208.         case CLKCFG_FSB_1600_ALT:
  209.                 return 400;
  210.         default:
  211.                 return 133;
  212.         }
  213. }
  214.  
  215. static void intel_update_czclk(struct drm_i915_private *dev_priv)
  216. {
  217.         if (!IS_VALLEYVIEW(dev_priv))
  218.                 return;
  219.  
  220.         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
  221.                                                       CCK_CZ_CLOCK_CONTROL);
  222.  
  223.         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
  224. }
  225.  
  226. static inline u32 /* units of 100MHz */
  227. intel_fdi_link_freq(struct drm_device *dev)
  228. {
  229.         if (IS_GEN5(dev)) {
  230.                 struct drm_i915_private *dev_priv = dev->dev_private;
  231.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  232.         } else
  233.                 return 27;
  234. }
  235.  
  236. static const intel_limit_t intel_limits_i8xx_dac = {
  237.         .dot = { .min = 25000, .max = 350000 },
  238.         .vco = { .min = 908000, .max = 1512000 },
  239.         .n = { .min = 2, .max = 16 },
  240.         .m = { .min = 96, .max = 140 },
  241.         .m1 = { .min = 18, .max = 26 },
  242.         .m2 = { .min = 6, .max = 16 },
  243.         .p = { .min = 4, .max = 128 },
  244.         .p1 = { .min = 2, .max = 33 },
  245.         .p2 = { .dot_limit = 165000,
  246.                 .p2_slow = 4, .p2_fast = 2 },
  247. };
  248.  
  249. static const intel_limit_t intel_limits_i8xx_dvo = {
  250.         .dot = { .min = 25000, .max = 350000 },
  251.         .vco = { .min = 908000, .max = 1512000 },
  252.         .n = { .min = 2, .max = 16 },
  253.         .m = { .min = 96, .max = 140 },
  254.         .m1 = { .min = 18, .max = 26 },
  255.         .m2 = { .min = 6, .max = 16 },
  256.         .p = { .min = 4, .max = 128 },
  257.         .p1 = { .min = 2, .max = 33 },
  258.         .p2 = { .dot_limit = 165000,
  259.                 .p2_slow = 4, .p2_fast = 4 },
  260. };
  261.  
  262. static const intel_limit_t intel_limits_i8xx_lvds = {
  263.         .dot = { .min = 25000, .max = 350000 },
  264.         .vco = { .min = 908000, .max = 1512000 },
  265.         .n = { .min = 2, .max = 16 },
  266.         .m = { .min = 96, .max = 140 },
  267.         .m1 = { .min = 18, .max = 26 },
  268.         .m2 = { .min = 6, .max = 16 },
  269.         .p = { .min = 4, .max = 128 },
  270.         .p1 = { .min = 1, .max = 6 },
  271.         .p2 = { .dot_limit = 165000,
  272.                 .p2_slow = 14, .p2_fast = 7 },
  273. };
  274.  
  275. static const intel_limit_t intel_limits_i9xx_sdvo = {
  276.         .dot = { .min = 20000, .max = 400000 },
  277.         .vco = { .min = 1400000, .max = 2800000 },
  278.         .n = { .min = 1, .max = 6 },
  279.         .m = { .min = 70, .max = 120 },
  280.         .m1 = { .min = 8, .max = 18 },
  281.         .m2 = { .min = 3, .max = 7 },
  282.         .p = { .min = 5, .max = 80 },
  283.         .p1 = { .min = 1, .max = 8 },
  284.         .p2 = { .dot_limit = 200000,
  285.                 .p2_slow = 10, .p2_fast = 5 },
  286. };
  287.  
  288. static const intel_limit_t intel_limits_i9xx_lvds = {
  289.         .dot = { .min = 20000, .max = 400000 },
  290.         .vco = { .min = 1400000, .max = 2800000 },
  291.         .n = { .min = 1, .max = 6 },
  292.         .m = { .min = 70, .max = 120 },
  293.         .m1 = { .min = 8, .max = 18 },
  294.         .m2 = { .min = 3, .max = 7 },
  295.         .p = { .min = 7, .max = 98 },
  296.         .p1 = { .min = 1, .max = 8 },
  297.         .p2 = { .dot_limit = 112000,
  298.                 .p2_slow = 14, .p2_fast = 7 },
  299. };
  300.  
  301.  
  302. static const intel_limit_t intel_limits_g4x_sdvo = {
  303.         .dot = { .min = 25000, .max = 270000 },
  304.         .vco = { .min = 1750000, .max = 3500000},
  305.         .n = { .min = 1, .max = 4 },
  306.         .m = { .min = 104, .max = 138 },
  307.         .m1 = { .min = 17, .max = 23 },
  308.         .m2 = { .min = 5, .max = 11 },
  309.         .p = { .min = 10, .max = 30 },
  310.         .p1 = { .min = 1, .max = 3},
  311.         .p2 = { .dot_limit = 270000,
  312.                 .p2_slow = 10,
  313.                 .p2_fast = 10
  314.         },
  315. };
  316.  
  317. static const intel_limit_t intel_limits_g4x_hdmi = {
  318.         .dot = { .min = 22000, .max = 400000 },
  319.         .vco = { .min = 1750000, .max = 3500000},
  320.         .n = { .min = 1, .max = 4 },
  321.         .m = { .min = 104, .max = 138 },
  322.         .m1 = { .min = 16, .max = 23 },
  323.         .m2 = { .min = 5, .max = 11 },
  324.         .p = { .min = 5, .max = 80 },
  325.         .p1 = { .min = 1, .max = 8},
  326.         .p2 = { .dot_limit = 165000,
  327.                 .p2_slow = 10, .p2_fast = 5 },
  328. };
  329.  
  330. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  331.         .dot = { .min = 20000, .max = 115000 },
  332.         .vco = { .min = 1750000, .max = 3500000 },
  333.         .n = { .min = 1, .max = 3 },
  334.         .m = { .min = 104, .max = 138 },
  335.         .m1 = { .min = 17, .max = 23 },
  336.         .m2 = { .min = 5, .max = 11 },
  337.         .p = { .min = 28, .max = 112 },
  338.         .p1 = { .min = 2, .max = 8 },
  339.         .p2 = { .dot_limit = 0,
  340.                 .p2_slow = 14, .p2_fast = 14
  341.         },
  342. };
  343.  
  344. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  345.         .dot = { .min = 80000, .max = 224000 },
  346.         .vco = { .min = 1750000, .max = 3500000 },
  347.         .n = { .min = 1, .max = 3 },
  348.         .m = { .min = 104, .max = 138 },
  349.         .m1 = { .min = 17, .max = 23 },
  350.         .m2 = { .min = 5, .max = 11 },
  351.         .p = { .min = 14, .max = 42 },
  352.         .p1 = { .min = 2, .max = 6 },
  353.         .p2 = { .dot_limit = 0,
  354.                 .p2_slow = 7, .p2_fast = 7
  355.         },
  356. };
  357.  
  358. static const intel_limit_t intel_limits_pineview_sdvo = {
  359.         .dot = { .min = 20000, .max = 400000},
  360.         .vco = { .min = 1700000, .max = 3500000 },
  361.         /* Pineview's Ncounter is a ring counter */
  362.         .n = { .min = 3, .max = 6 },
  363.         .m = { .min = 2, .max = 256 },
  364.         /* Pineview only has one combined m divider, which we treat as m2. */
  365.         .m1 = { .min = 0, .max = 0 },
  366.         .m2 = { .min = 0, .max = 254 },
  367.         .p = { .min = 5, .max = 80 },
  368.         .p1 = { .min = 1, .max = 8 },
  369.         .p2 = { .dot_limit = 200000,
  370.                 .p2_slow = 10, .p2_fast = 5 },
  371. };
  372.  
  373. static const intel_limit_t intel_limits_pineview_lvds = {
  374.         .dot = { .min = 20000, .max = 400000 },
  375.         .vco = { .min = 1700000, .max = 3500000 },
  376.         .n = { .min = 3, .max = 6 },
  377.         .m = { .min = 2, .max = 256 },
  378.         .m1 = { .min = 0, .max = 0 },
  379.         .m2 = { .min = 0, .max = 254 },
  380.         .p = { .min = 7, .max = 112 },
  381.         .p1 = { .min = 1, .max = 8 },
  382.         .p2 = { .dot_limit = 112000,
  383.                 .p2_slow = 14, .p2_fast = 14 },
  384. };
  385.  
  386. /* Ironlake / Sandybridge
  387.  *
  388.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  389.  * the range value for them is (actual_value - 2).
  390.  */
  391. static const intel_limit_t intel_limits_ironlake_dac = {
  392.         .dot = { .min = 25000, .max = 350000 },
  393.         .vco = { .min = 1760000, .max = 3510000 },
  394.         .n = { .min = 1, .max = 5 },
  395.         .m = { .min = 79, .max = 127 },
  396.         .m1 = { .min = 12, .max = 22 },
  397.         .m2 = { .min = 5, .max = 9 },
  398.         .p = { .min = 5, .max = 80 },
  399.         .p1 = { .min = 1, .max = 8 },
  400.         .p2 = { .dot_limit = 225000,
  401.                 .p2_slow = 10, .p2_fast = 5 },
  402. };
  403.  
  404. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  405.         .dot = { .min = 25000, .max = 350000 },
  406.         .vco = { .min = 1760000, .max = 3510000 },
  407.         .n = { .min = 1, .max = 3 },
  408.         .m = { .min = 79, .max = 118 },
  409.         .m1 = { .min = 12, .max = 22 },
  410.         .m2 = { .min = 5, .max = 9 },
  411.         .p = { .min = 28, .max = 112 },
  412.         .p1 = { .min = 2, .max = 8 },
  413.         .p2 = { .dot_limit = 225000,
  414.                 .p2_slow = 14, .p2_fast = 14 },
  415. };
  416.  
  417. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  418.         .dot = { .min = 25000, .max = 350000 },
  419.         .vco = { .min = 1760000, .max = 3510000 },
  420.         .n = { .min = 1, .max = 3 },
  421.         .m = { .min = 79, .max = 127 },
  422.         .m1 = { .min = 12, .max = 22 },
  423.         .m2 = { .min = 5, .max = 9 },
  424.         .p = { .min = 14, .max = 56 },
  425.         .p1 = { .min = 2, .max = 8 },
  426.         .p2 = { .dot_limit = 225000,
  427.                 .p2_slow = 7, .p2_fast = 7 },
  428. };
  429.  
  430. /* LVDS 100mhz refclk limits. */
  431. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  432.         .dot = { .min = 25000, .max = 350000 },
  433.         .vco = { .min = 1760000, .max = 3510000 },
  434.         .n = { .min = 1, .max = 2 },
  435.         .m = { .min = 79, .max = 126 },
  436.         .m1 = { .min = 12, .max = 22 },
  437.         .m2 = { .min = 5, .max = 9 },
  438.         .p = { .min = 28, .max = 112 },
  439.         .p1 = { .min = 2, .max = 8 },
  440.         .p2 = { .dot_limit = 225000,
  441.                 .p2_slow = 14, .p2_fast = 14 },
  442. };
  443.  
  444. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  445.         .dot = { .min = 25000, .max = 350000 },
  446.         .vco = { .min = 1760000, .max = 3510000 },
  447.         .n = { .min = 1, .max = 3 },
  448.         .m = { .min = 79, .max = 126 },
  449.         .m1 = { .min = 12, .max = 22 },
  450.         .m2 = { .min = 5, .max = 9 },
  451.         .p = { .min = 14, .max = 42 },
  452.         .p1 = { .min = 2, .max = 6 },
  453.         .p2 = { .dot_limit = 225000,
  454.                 .p2_slow = 7, .p2_fast = 7 },
  455. };
  456.  
  457. static const intel_limit_t intel_limits_vlv = {
  458.          /*
  459.           * These are the data rate limits (measured in fast clocks)
  460.           * since those are the strictest limits we have. The fast
  461.           * clock and actual rate limits are more relaxed, so checking
  462.           * them would make no difference.
  463.           */
  464.         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  465.         .vco = { .min = 4000000, .max = 6000000 },
  466.         .n = { .min = 1, .max = 7 },
  467.         .m1 = { .min = 2, .max = 3 },
  468.         .m2 = { .min = 11, .max = 156 },
  469.         .p1 = { .min = 2, .max = 3 },
  470.         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  471. };
  472.  
  473. static const intel_limit_t intel_limits_chv = {
  474.         /*
  475.          * These are the data rate limits (measured in fast clocks)
  476.          * since those are the strictest limits we have.  The fast
  477.          * clock and actual rate limits are more relaxed, so checking
  478.          * them would make no difference.
  479.          */
  480.         .dot = { .min = 25000 * 5, .max = 540000 * 5},
  481.         .vco = { .min = 4800000, .max = 6480000 },
  482.         .n = { .min = 1, .max = 1 },
  483.         .m1 = { .min = 2, .max = 2 },
  484.         .m2 = { .min = 24 << 22, .max = 175 << 22 },
  485.         .p1 = { .min = 2, .max = 4 },
  486.         .p2 = { .p2_slow = 1, .p2_fast = 14 },
  487. };
  488.  
  489. static const intel_limit_t intel_limits_bxt = {
  490.         /* FIXME: find real dot limits */
  491.         .dot = { .min = 0, .max = INT_MAX },
  492.         .vco = { .min = 4800000, .max = 6700000 },
  493.         .n = { .min = 1, .max = 1 },
  494.         .m1 = { .min = 2, .max = 2 },
  495.         /* FIXME: find real m2 limits */
  496.         .m2 = { .min = 2 << 22, .max = 255 << 22 },
  497.         .p1 = { .min = 2, .max = 4 },
  498.         .p2 = { .p2_slow = 1, .p2_fast = 20 },
  499. };
  500.  
  501. static bool
  502. needs_modeset(struct drm_crtc_state *state)
  503. {
  504.         return drm_atomic_crtc_needs_modeset(state);
  505. }
  506.  
  507. /**
  508.  * Returns whether any output on the specified pipe is of the specified type
  509.  */
  510. bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
  511. {
  512.         struct drm_device *dev = crtc->base.dev;
  513.         struct intel_encoder *encoder;
  514.  
  515.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  516.                 if (encoder->type == type)
  517.                         return true;
  518.  
  519.         return false;
  520. }
  521.  
  522. /**
  523.  * Returns whether any output on the specified pipe will have the specified
  524.  * type after a staged modeset is complete, i.e., the same as
  525.  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
  526.  * encoder->crtc.
  527.  */
  528. static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
  529.                                       int type)
  530. {
  531.         struct drm_atomic_state *state = crtc_state->base.state;
  532.         struct drm_connector *connector;
  533.         struct drm_connector_state *connector_state;
  534.         struct intel_encoder *encoder;
  535.         int i, num_connectors = 0;
  536.  
  537.         for_each_connector_in_state(state, connector, connector_state, i) {
  538.                 if (connector_state->crtc != crtc_state->base.crtc)
  539.                         continue;
  540.  
  541.                 num_connectors++;
  542.  
  543.                 encoder = to_intel_encoder(connector_state->best_encoder);
  544.                 if (encoder->type == type)
  545.                         return true;
  546.         }
  547.  
  548.         WARN_ON(num_connectors == 0);
  549.  
  550.         return false;
  551. }
  552.  
  553. static const intel_limit_t *
  554. intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
  555. {
  556.         struct drm_device *dev = crtc_state->base.crtc->dev;
  557.         const intel_limit_t *limit;
  558.  
  559.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  560.                 if (intel_is_dual_link_lvds(dev)) {
  561.                         if (refclk == 100000)
  562.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  563.                         else
  564.                                 limit = &intel_limits_ironlake_dual_lvds;
  565.                 } else {
  566.                         if (refclk == 100000)
  567.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  568.                         else
  569.                                 limit = &intel_limits_ironlake_single_lvds;
  570.                 }
  571.         } else
  572.                 limit = &intel_limits_ironlake_dac;
  573.  
  574.         return limit;
  575. }
  576.  
  577. static const intel_limit_t *
  578. intel_g4x_limit(struct intel_crtc_state *crtc_state)
  579. {
  580.         struct drm_device *dev = crtc_state->base.crtc->dev;
  581.         const intel_limit_t *limit;
  582.  
  583.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  584.                 if (intel_is_dual_link_lvds(dev))
  585.                         limit = &intel_limits_g4x_dual_channel_lvds;
  586.                 else
  587.                         limit = &intel_limits_g4x_single_channel_lvds;
  588.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
  589.                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  590.                 limit = &intel_limits_g4x_hdmi;
  591.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
  592.                 limit = &intel_limits_g4x_sdvo;
  593.         } else /* The option is for other outputs */
  594.                 limit = &intel_limits_i9xx_sdvo;
  595.  
  596.         return limit;
  597. }
  598.  
  599. static const intel_limit_t *
  600. intel_limit(struct intel_crtc_state *crtc_state, int refclk)
  601. {
  602.         struct drm_device *dev = crtc_state->base.crtc->dev;
  603.         const intel_limit_t *limit;
  604.  
  605.         if (IS_BROXTON(dev))
  606.                 limit = &intel_limits_bxt;
  607.         else if (HAS_PCH_SPLIT(dev))
  608.                 limit = intel_ironlake_limit(crtc_state, refclk);
  609.         else if (IS_G4X(dev)) {
  610.                 limit = intel_g4x_limit(crtc_state);
  611.         } else if (IS_PINEVIEW(dev)) {
  612.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  613.                         limit = &intel_limits_pineview_lvds;
  614.                 else
  615.                         limit = &intel_limits_pineview_sdvo;
  616.         } else if (IS_CHERRYVIEW(dev)) {
  617.                 limit = &intel_limits_chv;
  618.         } else if (IS_VALLEYVIEW(dev)) {
  619.                 limit = &intel_limits_vlv;
  620.         } else if (!IS_GEN2(dev)) {
  621.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  622.                         limit = &intel_limits_i9xx_lvds;
  623.                 else
  624.                         limit = &intel_limits_i9xx_sdvo;
  625.         } else {
  626.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  627.                         limit = &intel_limits_i8xx_lvds;
  628.                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  629.                         limit = &intel_limits_i8xx_dvo;
  630.                 else
  631.                         limit = &intel_limits_i8xx_dac;
  632.         }
  633.         return limit;
  634. }
  635.  
  636. /*
  637.  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
  638.  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
  639.  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
  640.  * The helpers' return value is the rate of the clock that is fed to the
  641.  * display engine's pipe which can be the above fast dot clock rate or a
  642.  * divided-down version of it.
  643.  */
  644. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  645. static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
  646. {
  647.         clock->m = clock->m2 + 2;
  648.         clock->p = clock->p1 * clock->p2;
  649.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  650.                 return 0;
  651.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  652.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  653.  
  654.         return clock->dot;
  655. }
  656.  
  657. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  658. {
  659.         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  660. }
  661.  
  662. static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
  663. {
  664.         clock->m = i9xx_dpll_compute_m(clock);
  665.         clock->p = clock->p1 * clock->p2;
  666.         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
  667.                 return 0;
  668.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  669.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  670.  
  671.         return clock->dot;
  672. }
  673.  
  674. static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
  675. {
  676.         clock->m = clock->m1 * clock->m2;
  677.         clock->p = clock->p1 * clock->p2;
  678.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  679.                 return 0;
  680.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  681.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  682.  
  683.         return clock->dot / 5;
  684. }
  685.  
  686. int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
  687. {
  688.         clock->m = clock->m1 * clock->m2;
  689.         clock->p = clock->p1 * clock->p2;
  690.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  691.                 return 0;
  692.         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
  693.                         clock->n << 22);
  694.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  695.  
  696.         return clock->dot / 5;
  697. }
  698.  
  699. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  700. /**
  701.  * Returns whether the given set of divisors are valid for a given refclk with
  702.  * the given connectors.
  703.  */
  704.  
  705. static bool intel_PLL_is_valid(struct drm_device *dev,
  706.                                const intel_limit_t *limit,
  707.                                const intel_clock_t *clock)
  708. {
  709.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  710.                 INTELPllInvalid("n out of range\n");
  711.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  712.                 INTELPllInvalid("p1 out of range\n");
  713.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  714.                 INTELPllInvalid("m2 out of range\n");
  715.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  716.                 INTELPllInvalid("m1 out of range\n");
  717.  
  718.         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
  719.                 if (clock->m1 <= clock->m2)
  720.                         INTELPllInvalid("m1 <= m2\n");
  721.  
  722.         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
  723.                 if (clock->p < limit->p.min || limit->p.max < clock->p)
  724.                         INTELPllInvalid("p out of range\n");
  725.                 if (clock->m < limit->m.min || limit->m.max < clock->m)
  726.                         INTELPllInvalid("m out of range\n");
  727.         }
  728.  
  729.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  730.                 INTELPllInvalid("vco out of range\n");
  731.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  732.          * connector, etc., rather than just a single range.
  733.          */
  734.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  735.                 INTELPllInvalid("dot out of range\n");
  736.  
  737.         return true;
  738. }
  739.  
  740. static int
  741. i9xx_select_p2_div(const intel_limit_t *limit,
  742.                    const struct intel_crtc_state *crtc_state,
  743.                    int target)
  744. {
  745.         struct drm_device *dev = crtc_state->base.crtc->dev;
  746.  
  747.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  748.                 /*
  749.                  * For LVDS just rely on its current settings for dual-channel.
  750.                  * We haven't figured out how to reliably set up different
  751.                  * single/dual channel state, if we even can.
  752.                  */
  753.                 if (intel_is_dual_link_lvds(dev))
  754.                         return limit->p2.p2_fast;
  755.                 else
  756.                         return limit->p2.p2_slow;
  757.         } else {
  758.                 if (target < limit->p2.dot_limit)
  759.                         return limit->p2.p2_slow;
  760.                 else
  761.                         return limit->p2.p2_fast;
  762.         }
  763. }
  764.  
  765. static bool
  766. i9xx_find_best_dpll(const intel_limit_t *limit,
  767.                     struct intel_crtc_state *crtc_state,
  768.                     int target, int refclk, intel_clock_t *match_clock,
  769.                     intel_clock_t *best_clock)
  770. {
  771.         struct drm_device *dev = crtc_state->base.crtc->dev;
  772.         intel_clock_t clock;
  773.         int err = target;
  774.  
  775.         memset(best_clock, 0, sizeof(*best_clock));
  776.  
  777.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  778.  
  779.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  780.              clock.m1++) {
  781.                 for (clock.m2 = limit->m2.min;
  782.                      clock.m2 <= limit->m2.max; clock.m2++) {
  783.                         if (clock.m2 >= clock.m1)
  784.                                 break;
  785.                         for (clock.n = limit->n.min;
  786.                              clock.n <= limit->n.max; clock.n++) {
  787.                                 for (clock.p1 = limit->p1.min;
  788.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  789.                                         int this_err;
  790.  
  791.                                         i9xx_calc_dpll_params(refclk, &clock);
  792.                                         if (!intel_PLL_is_valid(dev, limit,
  793.                                                                 &clock))
  794.                                                 continue;
  795.                                         if (match_clock &&
  796.                                             clock.p != match_clock->p)
  797.                                                 continue;
  798.  
  799.                                         this_err = abs(clock.dot - target);
  800.                                         if (this_err < err) {
  801.                                                 *best_clock = clock;
  802.                                                 err = this_err;
  803.                                         }
  804.                                 }
  805.                         }
  806.                 }
  807.         }
  808.  
  809.         return (err != target);
  810. }
  811.  
  812. static bool
  813. pnv_find_best_dpll(const intel_limit_t *limit,
  814.                    struct intel_crtc_state *crtc_state,
  815.                    int target, int refclk, intel_clock_t *match_clock,
  816.                    intel_clock_t *best_clock)
  817. {
  818.         struct drm_device *dev = crtc_state->base.crtc->dev;
  819.         intel_clock_t clock;
  820.         int err = target;
  821.  
  822.         memset(best_clock, 0, sizeof(*best_clock));
  823.  
  824.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  825.  
  826.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  827.              clock.m1++) {
  828.                 for (clock.m2 = limit->m2.min;
  829.                      clock.m2 <= limit->m2.max; clock.m2++) {
  830.                         for (clock.n = limit->n.min;
  831.                              clock.n <= limit->n.max; clock.n++) {
  832.                                 for (clock.p1 = limit->p1.min;
  833.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  834.                                         int this_err;
  835.  
  836.                                         pnv_calc_dpll_params(refclk, &clock);
  837.                                         if (!intel_PLL_is_valid(dev, limit,
  838.                                                                 &clock))
  839.                                                 continue;
  840.                                         if (match_clock &&
  841.                                             clock.p != match_clock->p)
  842.                                                 continue;
  843.  
  844.                                         this_err = abs(clock.dot - target);
  845.                                         if (this_err < err) {
  846.                                                 *best_clock = clock;
  847.                                                 err = this_err;
  848.                                         }
  849.                                 }
  850.                         }
  851.                 }
  852.         }
  853.  
  854.         return (err != target);
  855. }
  856.  
  857. static bool
  858. g4x_find_best_dpll(const intel_limit_t *limit,
  859.                    struct intel_crtc_state *crtc_state,
  860.                    int target, int refclk, intel_clock_t *match_clock,
  861.                    intel_clock_t *best_clock)
  862. {
  863.         struct drm_device *dev = crtc_state->base.crtc->dev;
  864.         intel_clock_t clock;
  865.         int max_n;
  866.         bool found = false;
  867.         /* approximately equals target * 0.00585 */
  868.         int err_most = (target >> 8) + (target >> 9);
  869.  
  870.         memset(best_clock, 0, sizeof(*best_clock));
  871.  
  872.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  873.  
  874.         max_n = limit->n.max;
  875.         /* based on hardware requirement, prefer smaller n to precision */
  876.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  877.                 /* based on hardware requirement, prefere larger m1,m2 */
  878.                 for (clock.m1 = limit->m1.max;
  879.                      clock.m1 >= limit->m1.min; clock.m1--) {
  880.                         for (clock.m2 = limit->m2.max;
  881.                              clock.m2 >= limit->m2.min; clock.m2--) {
  882.                                 for (clock.p1 = limit->p1.max;
  883.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  884.                                         int this_err;
  885.  
  886.                                         i9xx_calc_dpll_params(refclk, &clock);
  887.                                         if (!intel_PLL_is_valid(dev, limit,
  888.                                                                 &clock))
  889.                                                 continue;
  890.  
  891.                                         this_err = abs(clock.dot - target);
  892.                                         if (this_err < err_most) {
  893.                                                 *best_clock = clock;
  894.                                                 err_most = this_err;
  895.                                                 max_n = clock.n;
  896.                                                 found = true;
  897.                                         }
  898.                                 }
  899.                         }
  900.                 }
  901.         }
  902.         return found;
  903. }
  904.  
  905. /*
  906.  * Check if the calculated PLL configuration is more optimal compared to the
  907.  * best configuration and error found so far. Return the calculated error.
  908.  */
  909. static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
  910.                                const intel_clock_t *calculated_clock,
  911.                                const intel_clock_t *best_clock,
  912.                                unsigned int best_error_ppm,
  913.                                unsigned int *error_ppm)
  914. {
  915.         /*
  916.          * For CHV ignore the error and consider only the P value.
  917.          * Prefer a bigger P value based on HW requirements.
  918.          */
  919.         if (IS_CHERRYVIEW(dev)) {
  920.                 *error_ppm = 0;
  921.  
  922.                 return calculated_clock->p > best_clock->p;
  923.         }
  924.  
  925.         if (WARN_ON_ONCE(!target_freq))
  926.                 return false;
  927.  
  928.         *error_ppm = div_u64(1000000ULL *
  929.                                 abs(target_freq - calculated_clock->dot),
  930.                              target_freq);
  931.         /*
  932.          * Prefer a better P value over a better (smaller) error if the error
  933.          * is small. Ensure this preference for future configurations too by
  934.          * setting the error to 0.
  935.          */
  936.         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
  937.                 *error_ppm = 0;
  938.  
  939.                 return true;
  940.         }
  941.  
  942.         return *error_ppm + 10 < best_error_ppm;
  943. }
  944.  
  945. static bool
  946. vlv_find_best_dpll(const intel_limit_t *limit,
  947.                    struct intel_crtc_state *crtc_state,
  948.                    int target, int refclk, intel_clock_t *match_clock,
  949.                    intel_clock_t *best_clock)
  950. {
  951.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  952.         struct drm_device *dev = crtc->base.dev;
  953.         intel_clock_t clock;
  954.         unsigned int bestppm = 1000000;
  955.         /* min update 19.2 MHz */
  956.         int max_n = min(limit->n.max, refclk / 19200);
  957.         bool found = false;
  958.  
  959.         target *= 5; /* fast clock */
  960.  
  961.         memset(best_clock, 0, sizeof(*best_clock));
  962.  
  963.         /* based on hardware requirement, prefer smaller n to precision */
  964.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  965.                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  966.                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  967.                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  968.                                 clock.p = clock.p1 * clock.p2;
  969.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  970.                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  971.                                         unsigned int ppm;
  972.  
  973.                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  974.                                                                      refclk * clock.m1);
  975.  
  976.                                         vlv_calc_dpll_params(refclk, &clock);
  977.  
  978.                                         if (!intel_PLL_is_valid(dev, limit,
  979.                                                                 &clock))
  980.                                                 continue;
  981.  
  982.                                         if (!vlv_PLL_is_optimal(dev, target,
  983.                                                                 &clock,
  984.                                                                 best_clock,
  985.                                                                 bestppm, &ppm))
  986.                                                 continue;
  987.  
  988.                                         *best_clock = clock;
  989.                                         bestppm = ppm;
  990.                                         found = true;
  991.                                 }
  992.                         }
  993.                 }
  994.         }
  995.  
  996.         return found;
  997. }
  998.  
  999. static bool
  1000. chv_find_best_dpll(const intel_limit_t *limit,
  1001.                    struct intel_crtc_state *crtc_state,
  1002.                    int target, int refclk, intel_clock_t *match_clock,
  1003.                    intel_clock_t *best_clock)
  1004. {
  1005.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1006.         struct drm_device *dev = crtc->base.dev;
  1007.         unsigned int best_error_ppm;
  1008.         intel_clock_t clock;
  1009.         uint64_t m2;
  1010.         int found = false;
  1011.  
  1012.         memset(best_clock, 0, sizeof(*best_clock));
  1013.         best_error_ppm = 1000000;
  1014.  
  1015.         /*
  1016.          * Based on hardware doc, the n always set to 1, and m1 always
  1017.          * set to 2.  If requires to support 200Mhz refclk, we need to
  1018.          * revisit this because n may not 1 anymore.
  1019.          */
  1020.         clock.n = 1, clock.m1 = 2;
  1021.         target *= 5;    /* fast clock */
  1022.  
  1023.         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  1024.                 for (clock.p2 = limit->p2.p2_fast;
  1025.                                 clock.p2 >= limit->p2.p2_slow;
  1026.                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  1027.                         unsigned int error_ppm;
  1028.  
  1029.                         clock.p = clock.p1 * clock.p2;
  1030.  
  1031.                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
  1032.                                         clock.n) << 22, refclk * clock.m1);
  1033.  
  1034.                         if (m2 > INT_MAX/clock.m1)
  1035.                                 continue;
  1036.  
  1037.                         clock.m2 = m2;
  1038.  
  1039.                         chv_calc_dpll_params(refclk, &clock);
  1040.  
  1041.                         if (!intel_PLL_is_valid(dev, limit, &clock))
  1042.                                 continue;
  1043.  
  1044.                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
  1045.                                                 best_error_ppm, &error_ppm))
  1046.                                 continue;
  1047.  
  1048.                         *best_clock = clock;
  1049.                         best_error_ppm = error_ppm;
  1050.                         found = true;
  1051.                 }
  1052.         }
  1053.  
  1054.         return found;
  1055. }
  1056.  
  1057. bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
  1058.                         intel_clock_t *best_clock)
  1059. {
  1060.         int refclk = i9xx_get_refclk(crtc_state, 0);
  1061.  
  1062.         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
  1063.                                   target_clock, refclk, NULL, best_clock);
  1064. }
  1065.  
  1066. bool intel_crtc_active(struct drm_crtc *crtc)
  1067. {
  1068.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1069.  
  1070.         /* Be paranoid as we can arrive here with only partial
  1071.          * state retrieved from the hardware during setup.
  1072.          *
  1073.          * We can ditch the adjusted_mode.crtc_clock check as soon
  1074.          * as Haswell has gained clock readout/fastboot support.
  1075.          *
  1076.          * We can ditch the crtc->primary->fb check as soon as we can
  1077.          * properly reconstruct framebuffers.
  1078.          *
  1079.          * FIXME: The intel_crtc->active here should be switched to
  1080.          * crtc->state->active once we have proper CRTC states wired up
  1081.          * for atomic.
  1082.          */
  1083.         return intel_crtc->active && crtc->primary->state->fb &&
  1084.                 intel_crtc->config->base.adjusted_mode.crtc_clock;
  1085. }
  1086.  
  1087. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  1088.                                              enum pipe pipe)
  1089. {
  1090.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1091.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1092.  
  1093.         return intel_crtc->config->cpu_transcoder;
  1094. }
  1095.  
  1096. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  1097. {
  1098.         struct drm_i915_private *dev_priv = dev->dev_private;
  1099.         u32 reg = PIPEDSL(pipe);
  1100.         u32 line1, line2;
  1101.         u32 line_mask;
  1102.  
  1103.         if (IS_GEN2(dev))
  1104.                 line_mask = DSL_LINEMASK_GEN2;
  1105.         else
  1106.                 line_mask = DSL_LINEMASK_GEN3;
  1107.  
  1108.         line1 = I915_READ(reg) & line_mask;
  1109.         msleep(5);
  1110.         line2 = I915_READ(reg) & line_mask;
  1111.  
  1112.         return line1 == line2;
  1113. }
  1114.  
  1115. /*
  1116.  * intel_wait_for_pipe_off - wait for pipe to turn off
  1117.  * @crtc: crtc whose pipe to wait for
  1118.  *
  1119.  * After disabling a pipe, we can't wait for vblank in the usual way,
  1120.  * spinning on the vblank interrupt status bit, since we won't actually
  1121.  * see an interrupt when the pipe is disabled.
  1122.  *
  1123.  * On Gen4 and above:
  1124.  *   wait for the pipe register state bit to turn off
  1125.  *
  1126.  * Otherwise:
  1127.  *   wait for the display line value to settle (it usually
  1128.  *   ends up stopping at the start of the next frame).
  1129.  *
  1130.  */
  1131. static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
  1132. {
  1133.         struct drm_device *dev = crtc->base.dev;
  1134.         struct drm_i915_private *dev_priv = dev->dev_private;
  1135.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  1136.         enum pipe pipe = crtc->pipe;
  1137.  
  1138.         if (INTEL_INFO(dev)->gen >= 4) {
  1139.                 int reg = PIPECONF(cpu_transcoder);
  1140.  
  1141.                 /* Wait for the Pipe State to go off */
  1142.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  1143.                              100))
  1144.                         WARN(1, "pipe_off wait timed out\n");
  1145.         } else {
  1146.                 /* Wait for the display line to settle */
  1147.                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  1148.                         WARN(1, "pipe_off wait timed out\n");
  1149.         }
  1150. }
  1151.  
  1152. static const char *state_string(bool enabled)
  1153. {
  1154.         return enabled ? "on" : "off";
  1155. }
  1156.  
  1157. /* Only for pre-ILK configs */
  1158. void assert_pll(struct drm_i915_private *dev_priv,
  1159.                 enum pipe pipe, bool state)
  1160. {
  1161.         u32 val;
  1162.         bool cur_state;
  1163.  
  1164.         val = I915_READ(DPLL(pipe));
  1165.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1166.         I915_STATE_WARN(cur_state != state,
  1167.              "PLL state assertion failure (expected %s, current %s)\n",
  1168.              state_string(state), state_string(cur_state));
  1169. }
  1170.  
  1171. /* XXX: the dsi pll is shared between MIPI DSI ports */
  1172. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  1173. {
  1174.         u32 val;
  1175.         bool cur_state;
  1176.  
  1177.         mutex_lock(&dev_priv->sb_lock);
  1178.         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  1179.         mutex_unlock(&dev_priv->sb_lock);
  1180.  
  1181.         cur_state = val & DSI_PLL_VCO_EN;
  1182.         I915_STATE_WARN(cur_state != state,
  1183.              "DSI PLL state assertion failure (expected %s, current %s)\n",
  1184.              state_string(state), state_string(cur_state));
  1185. }
  1186. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  1187. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  1188.  
  1189. struct intel_shared_dpll *
  1190. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  1191. {
  1192.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1193.  
  1194.         if (crtc->config->shared_dpll < 0)
  1195.                 return NULL;
  1196.  
  1197.         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
  1198. }
  1199.  
  1200. /* For ILK+ */
  1201. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  1202.                         struct intel_shared_dpll *pll,
  1203.                         bool state)
  1204. {
  1205.         bool cur_state;
  1206.         struct intel_dpll_hw_state hw_state;
  1207.  
  1208.         if (WARN (!pll,
  1209.                   "asserting DPLL %s with no DPLL\n", state_string(state)))
  1210.                 return;
  1211.  
  1212.         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  1213.         I915_STATE_WARN(cur_state != state,
  1214.              "%s assertion failure (expected %s, current %s)\n",
  1215.              pll->name, state_string(state), state_string(cur_state));
  1216. }
  1217.  
  1218. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1219.                           enum pipe pipe, bool state)
  1220. {
  1221.         bool cur_state;
  1222.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1223.                                                                       pipe);
  1224.  
  1225.         if (HAS_DDI(dev_priv->dev)) {
  1226.                 /* DDI does not have a specific FDI_TX register */
  1227.                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1228.                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1229.         } else {
  1230.                 u32 val = I915_READ(FDI_TX_CTL(pipe));
  1231.                 cur_state = !!(val & FDI_TX_ENABLE);
  1232.         }
  1233.         I915_STATE_WARN(cur_state != state,
  1234.              "FDI TX state assertion failure (expected %s, current %s)\n",
  1235.              state_string(state), state_string(cur_state));
  1236. }
  1237. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1238. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1239.  
  1240. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1241.                           enum pipe pipe, bool state)
  1242. {
  1243.         u32 val;
  1244.         bool cur_state;
  1245.  
  1246.         val = I915_READ(FDI_RX_CTL(pipe));
  1247.         cur_state = !!(val & FDI_RX_ENABLE);
  1248.         I915_STATE_WARN(cur_state != state,
  1249.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1250.              state_string(state), state_string(cur_state));
  1251. }
  1252. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1253. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1254.  
  1255. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1256.                                       enum pipe pipe)
  1257. {
  1258.         u32 val;
  1259.  
  1260.         /* ILK FDI PLL is always enabled */
  1261.         if (INTEL_INFO(dev_priv->dev)->gen == 5)
  1262.                 return;
  1263.  
  1264.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1265.         if (HAS_DDI(dev_priv->dev))
  1266.                 return;
  1267.  
  1268.         val = I915_READ(FDI_TX_CTL(pipe));
  1269.         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1270. }
  1271.  
  1272. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  1273.                        enum pipe pipe, bool state)
  1274. {
  1275.         u32 val;
  1276.         bool cur_state;
  1277.  
  1278.         val = I915_READ(FDI_RX_CTL(pipe));
  1279.         cur_state = !!(val & FDI_RX_PLL_ENABLE);
  1280.         I915_STATE_WARN(cur_state != state,
  1281.              "FDI RX PLL assertion failure (expected %s, current %s)\n",
  1282.              state_string(state), state_string(cur_state));
  1283. }
  1284.  
  1285. void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1286.                            enum pipe pipe)
  1287. {
  1288.         struct drm_device *dev = dev_priv->dev;
  1289.         int pp_reg;
  1290.         u32 val;
  1291.         enum pipe panel_pipe = PIPE_A;
  1292.         bool locked = true;
  1293.  
  1294.         if (WARN_ON(HAS_DDI(dev)))
  1295.                 return;
  1296.  
  1297.         if (HAS_PCH_SPLIT(dev)) {
  1298.                 u32 port_sel;
  1299.  
  1300.                 pp_reg = PCH_PP_CONTROL;
  1301.                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
  1302.  
  1303.                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
  1304.                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
  1305.                         panel_pipe = PIPE_B;
  1306.                 /* XXX: else fix for eDP */
  1307.         } else if (IS_VALLEYVIEW(dev)) {
  1308.                 /* presumably write lock depends on pipe, not port select */
  1309.                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
  1310.                 panel_pipe = pipe;
  1311.         } else {
  1312.                 pp_reg = PP_CONTROL;
  1313.                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
  1314.                         panel_pipe = PIPE_B;
  1315.         }
  1316.  
  1317.         val = I915_READ(pp_reg);
  1318.         if (!(val & PANEL_POWER_ON) ||
  1319.             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
  1320.                 locked = false;
  1321.  
  1322.         I915_STATE_WARN(panel_pipe == pipe && locked,
  1323.              "panel assertion failure, pipe %c regs locked\n",
  1324.              pipe_name(pipe));
  1325. }
  1326.  
  1327. static void assert_cursor(struct drm_i915_private *dev_priv,
  1328.                           enum pipe pipe, bool state)
  1329. {
  1330.         struct drm_device *dev = dev_priv->dev;
  1331.         bool cur_state;
  1332.  
  1333.         if (IS_845G(dev) || IS_I865G(dev))
  1334.                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  1335.         else
  1336.                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1337.  
  1338.         I915_STATE_WARN(cur_state != state,
  1339.              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  1340.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1341. }
  1342. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  1343. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  1344.  
  1345. void assert_pipe(struct drm_i915_private *dev_priv,
  1346.                  enum pipe pipe, bool state)
  1347. {
  1348.         bool cur_state;
  1349.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1350.                                                                       pipe);
  1351.  
  1352.         /* if we need the pipe quirk it must be always on */
  1353.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1354.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1355.                 state = true;
  1356.  
  1357.         if (!intel_display_power_is_enabled(dev_priv,
  1358.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1359.                 cur_state = false;
  1360.         } else {
  1361.                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
  1362.                 cur_state = !!(val & PIPECONF_ENABLE);
  1363.         }
  1364.  
  1365.         I915_STATE_WARN(cur_state != state,
  1366.              "pipe %c assertion failure (expected %s, current %s)\n",
  1367.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1368. }
  1369.  
  1370. static void assert_plane(struct drm_i915_private *dev_priv,
  1371.                          enum plane plane, bool state)
  1372. {
  1373.         u32 val;
  1374.         bool cur_state;
  1375.  
  1376.         val = I915_READ(DSPCNTR(plane));
  1377.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1378.         I915_STATE_WARN(cur_state != state,
  1379.              "plane %c assertion failure (expected %s, current %s)\n",
  1380.              plane_name(plane), state_string(state), state_string(cur_state));
  1381. }
  1382.  
  1383. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1384. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1385.  
  1386. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1387.                                    enum pipe pipe)
  1388. {
  1389.         struct drm_device *dev = dev_priv->dev;
  1390.         int i;
  1391.  
  1392.         /* Primary planes are fixed to pipes on gen4+ */
  1393.         if (INTEL_INFO(dev)->gen >= 4) {
  1394.                 u32 val = I915_READ(DSPCNTR(pipe));
  1395.                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
  1396.                      "plane %c assertion failure, should be disabled but not\n",
  1397.                      plane_name(pipe));
  1398.                 return;
  1399.         }
  1400.  
  1401.         /* Need to check both planes against the pipe */
  1402.         for_each_pipe(dev_priv, i) {
  1403.                 u32 val = I915_READ(DSPCNTR(i));
  1404.                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1405.                         DISPPLANE_SEL_PIPE_SHIFT;
  1406.                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1407.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1408.                      plane_name(i), pipe_name(pipe));
  1409.         }
  1410. }
  1411.  
  1412. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1413.                                     enum pipe pipe)
  1414. {
  1415.         struct drm_device *dev = dev_priv->dev;
  1416.         int sprite;
  1417.  
  1418.         if (INTEL_INFO(dev)->gen >= 9) {
  1419.                 for_each_sprite(dev_priv, pipe, sprite) {
  1420.                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
  1421.                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
  1422.                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
  1423.                              sprite, pipe_name(pipe));
  1424.                 }
  1425.         } else if (IS_VALLEYVIEW(dev)) {
  1426.                 for_each_sprite(dev_priv, pipe, sprite) {
  1427.                         u32 val = I915_READ(SPCNTR(pipe, sprite));
  1428.                         I915_STATE_WARN(val & SP_ENABLE,
  1429.                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1430.                              sprite_name(pipe, sprite), pipe_name(pipe));
  1431.                 }
  1432.         } else if (INTEL_INFO(dev)->gen >= 7) {
  1433.                 u32 val = I915_READ(SPRCTL(pipe));
  1434.                 I915_STATE_WARN(val & SPRITE_ENABLE,
  1435.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1436.                      plane_name(pipe), pipe_name(pipe));
  1437.         } else if (INTEL_INFO(dev)->gen >= 5) {
  1438.                 u32 val = I915_READ(DVSCNTR(pipe));
  1439.                 I915_STATE_WARN(val & DVS_ENABLE,
  1440.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1441.                      plane_name(pipe), pipe_name(pipe));
  1442.         }
  1443. }
  1444.  
  1445. static void assert_vblank_disabled(struct drm_crtc *crtc)
  1446. {
  1447.         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
  1448.                 drm_crtc_vblank_put(crtc);
  1449. }
  1450.  
  1451. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1452. {
  1453.         u32 val;
  1454.         bool enabled;
  1455.  
  1456.         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
  1457.  
  1458.         val = I915_READ(PCH_DREF_CONTROL);
  1459.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1460.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1461.         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1462. }
  1463.  
  1464. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1465.                                            enum pipe pipe)
  1466. {
  1467.         u32 val;
  1468.         bool enabled;
  1469.  
  1470.         val = I915_READ(PCH_TRANSCONF(pipe));
  1471.         enabled = !!(val & TRANS_ENABLE);
  1472.         I915_STATE_WARN(enabled,
  1473.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1474.              pipe_name(pipe));
  1475. }
  1476.  
  1477. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1478.                             enum pipe pipe, u32 port_sel, u32 val)
  1479. {
  1480.         if ((val & DP_PORT_EN) == 0)
  1481.                 return false;
  1482.  
  1483.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1484.                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1485.                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1486.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1487.                         return false;
  1488.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1489.                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
  1490.                         return false;
  1491.         } else {
  1492.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1493.                         return false;
  1494.         }
  1495.         return true;
  1496. }
  1497.  
  1498. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1499.                               enum pipe pipe, u32 val)
  1500. {
  1501.         if ((val & SDVO_ENABLE) == 0)
  1502.                 return false;
  1503.  
  1504.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1505.                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1506.                         return false;
  1507.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1508.                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
  1509.                         return false;
  1510.         } else {
  1511.                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1512.                         return false;
  1513.         }
  1514.         return true;
  1515. }
  1516.  
  1517. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1518.                               enum pipe pipe, u32 val)
  1519. {
  1520.         if ((val & LVDS_PORT_EN) == 0)
  1521.                 return false;
  1522.  
  1523.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1524.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1525.                         return false;
  1526.         } else {
  1527.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1528.                         return false;
  1529.         }
  1530.         return true;
  1531. }
  1532.  
  1533. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1534.                               enum pipe pipe, u32 val)
  1535. {
  1536.         if ((val & ADPA_DAC_ENABLE) == 0)
  1537.                 return false;
  1538.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1539.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1540.                         return false;
  1541.         } else {
  1542.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1543.                         return false;
  1544.         }
  1545.         return true;
  1546. }
  1547.  
  1548. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1549.                                    enum pipe pipe, int reg, u32 port_sel)
  1550. {
  1551.         u32 val = I915_READ(reg);
  1552.         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1553.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1554.              reg, pipe_name(pipe));
  1555.  
  1556.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1557.              && (val & DP_PIPEB_SELECT),
  1558.              "IBX PCH dp port still using transcoder B\n");
  1559. }
  1560.  
  1561. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1562.                                      enum pipe pipe, int reg)
  1563. {
  1564.         u32 val = I915_READ(reg);
  1565.         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1566.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1567.              reg, pipe_name(pipe));
  1568.  
  1569.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1570.              && (val & SDVO_PIPE_B_SELECT),
  1571.              "IBX PCH hdmi port still using transcoder B\n");
  1572. }
  1573.  
  1574. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1575.                                       enum pipe pipe)
  1576. {
  1577.         u32 val;
  1578.  
  1579.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1580.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1581.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1582.  
  1583.         val = I915_READ(PCH_ADPA);
  1584.         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1585.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1586.              pipe_name(pipe));
  1587.  
  1588.         val = I915_READ(PCH_LVDS);
  1589.         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1590.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1591.              pipe_name(pipe));
  1592.  
  1593.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1594.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1595.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1596. }
  1597.  
  1598. static void vlv_enable_pll(struct intel_crtc *crtc,
  1599.                            const struct intel_crtc_state *pipe_config)
  1600. {
  1601.         struct drm_device *dev = crtc->base.dev;
  1602.         struct drm_i915_private *dev_priv = dev->dev_private;
  1603.         int reg = DPLL(crtc->pipe);
  1604.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  1605.  
  1606.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1607.  
  1608.         /* No really, not for ILK+ */
  1609.         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1610.  
  1611.         /* PLL is protected by panel, make sure we can write it */
  1612.         if (IS_MOBILE(dev_priv->dev))
  1613.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1614.  
  1615.         I915_WRITE(reg, dpll);
  1616.         POSTING_READ(reg);
  1617.         udelay(150);
  1618.  
  1619.         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1620.                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1621.  
  1622.         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
  1623.         POSTING_READ(DPLL_MD(crtc->pipe));
  1624.  
  1625.         /* We do this three times for luck */
  1626.         I915_WRITE(reg, dpll);
  1627.         POSTING_READ(reg);
  1628.         udelay(150); /* wait for warmup */
  1629.         I915_WRITE(reg, dpll);
  1630.         POSTING_READ(reg);
  1631.         udelay(150); /* wait for warmup */
  1632.         I915_WRITE(reg, dpll);
  1633.         POSTING_READ(reg);
  1634.         udelay(150); /* wait for warmup */
  1635. }
  1636.  
  1637. static void chv_enable_pll(struct intel_crtc *crtc,
  1638.                            const struct intel_crtc_state *pipe_config)
  1639. {
  1640.         struct drm_device *dev = crtc->base.dev;
  1641.         struct drm_i915_private *dev_priv = dev->dev_private;
  1642.         int pipe = crtc->pipe;
  1643.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1644.         u32 tmp;
  1645.  
  1646.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1647.  
  1648.         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
  1649.  
  1650.         mutex_lock(&dev_priv->sb_lock);
  1651.  
  1652.         /* Enable back the 10bit clock to display controller */
  1653.         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1654.         tmp |= DPIO_DCLKP_EN;
  1655.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
  1656.  
  1657.         mutex_unlock(&dev_priv->sb_lock);
  1658.  
  1659.         /*
  1660.          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
  1661.          */
  1662.         udelay(1);
  1663.  
  1664.         /* Enable PLL */
  1665.         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
  1666.  
  1667.         /* Check PLL is locked */
  1668.         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1669.                 DRM_ERROR("PLL %d failed to lock\n", pipe);
  1670.  
  1671.         /* not sure when this should be written */
  1672.         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
  1673.         POSTING_READ(DPLL_MD(pipe));
  1674. }
  1675.  
  1676. static int intel_num_dvo_pipes(struct drm_device *dev)
  1677. {
  1678.         struct intel_crtc *crtc;
  1679.         int count = 0;
  1680.  
  1681.         for_each_intel_crtc(dev, crtc)
  1682.                 count += crtc->base.state->active &&
  1683.                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
  1684.  
  1685.         return count;
  1686. }
  1687.  
  1688. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1689. {
  1690.         struct drm_device *dev = crtc->base.dev;
  1691.         struct drm_i915_private *dev_priv = dev->dev_private;
  1692.         int reg = DPLL(crtc->pipe);
  1693.         u32 dpll = crtc->config->dpll_hw_state.dpll;
  1694.  
  1695.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1696.  
  1697.         /* No really, not for ILK+ */
  1698.         BUG_ON(INTEL_INFO(dev)->gen >= 5);
  1699.  
  1700.         /* PLL is protected by panel, make sure we can write it */
  1701.         if (IS_MOBILE(dev) && !IS_I830(dev))
  1702.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1703.  
  1704.         /* Enable DVO 2x clock on both PLLs if necessary */
  1705.         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
  1706.                 /*
  1707.                  * It appears to be important that we don't enable this
  1708.                  * for the current pipe before otherwise configuring the
  1709.                  * PLL. No idea how this should be handled if multiple
  1710.                  * DVO outputs are enabled simultaneosly.
  1711.                  */
  1712.                 dpll |= DPLL_DVO_2X_MODE;
  1713.                 I915_WRITE(DPLL(!crtc->pipe),
  1714.                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
  1715.         }
  1716.  
  1717.         /*
  1718.          * Apparently we need to have VGA mode enabled prior to changing
  1719.          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
  1720.          * dividers, even though the register value does change.
  1721.          */
  1722.         I915_WRITE(reg, 0);
  1723.  
  1724.         I915_WRITE(reg, dpll);
  1725.  
  1726.         /* Wait for the clocks to stabilize. */
  1727.         POSTING_READ(reg);
  1728.         udelay(150);
  1729.  
  1730.         if (INTEL_INFO(dev)->gen >= 4) {
  1731.                 I915_WRITE(DPLL_MD(crtc->pipe),
  1732.                            crtc->config->dpll_hw_state.dpll_md);
  1733.         } else {
  1734.                 /* The pixel multiplier can only be updated once the
  1735.                  * DPLL is enabled and the clocks are stable.
  1736.                  *
  1737.                  * So write it again.
  1738.                  */
  1739.                 I915_WRITE(reg, dpll);
  1740.         }
  1741.  
  1742.         /* We do this three times for luck */
  1743.         I915_WRITE(reg, dpll);
  1744.         POSTING_READ(reg);
  1745.         udelay(150); /* wait for warmup */
  1746.         I915_WRITE(reg, dpll);
  1747.         POSTING_READ(reg);
  1748.         udelay(150); /* wait for warmup */
  1749.         I915_WRITE(reg, dpll);
  1750.         POSTING_READ(reg);
  1751.         udelay(150); /* wait for warmup */
  1752. }
  1753.  
  1754. /**
  1755.  * i9xx_disable_pll - disable a PLL
  1756.  * @dev_priv: i915 private structure
  1757.  * @pipe: pipe PLL to disable
  1758.  *
  1759.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1760.  *
  1761.  * Note!  This is for pre-ILK only.
  1762.  */
  1763. static void i9xx_disable_pll(struct intel_crtc *crtc)
  1764. {
  1765.         struct drm_device *dev = crtc->base.dev;
  1766.         struct drm_i915_private *dev_priv = dev->dev_private;
  1767.         enum pipe pipe = crtc->pipe;
  1768.  
  1769.         /* Disable DVO 2x clock on both PLLs if necessary */
  1770.         if (IS_I830(dev) &&
  1771.             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
  1772.             !intel_num_dvo_pipes(dev)) {
  1773.                 I915_WRITE(DPLL(PIPE_B),
  1774.                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
  1775.                 I915_WRITE(DPLL(PIPE_A),
  1776.                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
  1777.         }
  1778.  
  1779.         /* Don't disable pipe or pipe PLLs if needed */
  1780.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1781.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1782.                 return;
  1783.  
  1784.         /* Make sure the pipe isn't still relying on us */
  1785.         assert_pipe_disabled(dev_priv, pipe);
  1786.  
  1787.         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
  1788.         POSTING_READ(DPLL(pipe));
  1789. }
  1790.  
  1791. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1792. {
  1793.         u32 val;
  1794.  
  1795.         /* Make sure the pipe isn't still relying on us */
  1796.         assert_pipe_disabled(dev_priv, pipe);
  1797.  
  1798.         /*
  1799.          * Leave integrated clock source and reference clock enabled for pipe B.
  1800.          * The latter is needed for VGA hotplug / manual detection.
  1801.          */
  1802.         val = DPLL_VGA_MODE_DIS;
  1803.         if (pipe == PIPE_B)
  1804.                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
  1805.         I915_WRITE(DPLL(pipe), val);
  1806.         POSTING_READ(DPLL(pipe));
  1807.  
  1808. }
  1809.  
  1810. static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1811. {
  1812.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1813.         u32 val;
  1814.  
  1815.         /* Make sure the pipe isn't still relying on us */
  1816.         assert_pipe_disabled(dev_priv, pipe);
  1817.  
  1818.         /* Set PLL en = 0 */
  1819.         val = DPLL_SSC_REF_CLK_CHV |
  1820.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
  1821.         if (pipe != PIPE_A)
  1822.                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
  1823.         I915_WRITE(DPLL(pipe), val);
  1824.         POSTING_READ(DPLL(pipe));
  1825.  
  1826.         mutex_lock(&dev_priv->sb_lock);
  1827.  
  1828.         /* Disable 10bit clock to display controller */
  1829.         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1830.         val &= ~DPIO_DCLKP_EN;
  1831.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
  1832.  
  1833.         mutex_unlock(&dev_priv->sb_lock);
  1834. }
  1835.  
  1836. void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
  1837.                          struct intel_digital_port *dport,
  1838.                          unsigned int expected_mask)
  1839. {
  1840.         u32 port_mask;
  1841.         int dpll_reg;
  1842.  
  1843.         switch (dport->port) {
  1844.         case PORT_B:
  1845.                 port_mask = DPLL_PORTB_READY_MASK;
  1846.                 dpll_reg = DPLL(0);
  1847.                 break;
  1848.         case PORT_C:
  1849.                 port_mask = DPLL_PORTC_READY_MASK;
  1850.                 dpll_reg = DPLL(0);
  1851.                 expected_mask <<= 4;
  1852.                 break;
  1853.         case PORT_D:
  1854.                 port_mask = DPLL_PORTD_READY_MASK;
  1855.                 dpll_reg = DPIO_PHY_STATUS;
  1856.                 break;
  1857.         default:
  1858.                 BUG();
  1859.         }
  1860.  
  1861.         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
  1862.                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
  1863.                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
  1864. }
  1865.  
  1866. static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  1867. {
  1868.         struct drm_device *dev = crtc->base.dev;
  1869.         struct drm_i915_private *dev_priv = dev->dev_private;
  1870.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1871.  
  1872.         if (WARN_ON(pll == NULL))
  1873.                 return;
  1874.  
  1875.         WARN_ON(!pll->config.crtc_mask);
  1876.         if (pll->active == 0) {
  1877.                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  1878.                 WARN_ON(pll->on);
  1879.                 assert_shared_dpll_disabled(dev_priv, pll);
  1880.  
  1881.                 pll->mode_set(dev_priv, pll);
  1882.         }
  1883. }
  1884.  
  1885. /**
  1886.  * intel_enable_shared_dpll - enable PCH PLL
  1887.  * @dev_priv: i915 private structure
  1888.  * @pipe: pipe PLL to enable
  1889.  *
  1890.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1891.  * drives the transcoder clock.
  1892.  */
  1893. static void intel_enable_shared_dpll(struct intel_crtc *crtc)
  1894. {
  1895.         struct drm_device *dev = crtc->base.dev;
  1896.         struct drm_i915_private *dev_priv = dev->dev_private;
  1897.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1898.  
  1899.         if (WARN_ON(pll == NULL))
  1900.                 return;
  1901.  
  1902.         if (WARN_ON(pll->config.crtc_mask == 0))
  1903.                 return;
  1904.  
  1905.         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
  1906.                       pll->name, pll->active, pll->on,
  1907.                       crtc->base.base.id);
  1908.  
  1909.         if (pll->active++) {
  1910.                 WARN_ON(!pll->on);
  1911.                 assert_shared_dpll_enabled(dev_priv, pll);
  1912.                 return;
  1913.         }
  1914.         WARN_ON(pll->on);
  1915.  
  1916.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  1917.  
  1918.         DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1919.         pll->enable(dev_priv, pll);
  1920.         pll->on = true;
  1921. }
  1922.  
  1923. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1924. {
  1925.         struct drm_device *dev = crtc->base.dev;
  1926.         struct drm_i915_private *dev_priv = dev->dev_private;
  1927.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1928.  
  1929.         /* PCH only available on ILK+ */
  1930.         if (INTEL_INFO(dev)->gen < 5)
  1931.                 return;
  1932.  
  1933.         if (pll == NULL)
  1934.                 return;
  1935.  
  1936.         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
  1937.                 return;
  1938.  
  1939.         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1940.                       pll->name, pll->active, pll->on,
  1941.                       crtc->base.base.id);
  1942.  
  1943.         if (WARN_ON(pll->active == 0)) {
  1944.                 assert_shared_dpll_disabled(dev_priv, pll);
  1945.                 return;
  1946.         }
  1947.  
  1948.         assert_shared_dpll_enabled(dev_priv, pll);
  1949.         WARN_ON(!pll->on);
  1950.         if (--pll->active)
  1951.                 return;
  1952.  
  1953.         DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1954.         pll->disable(dev_priv, pll);
  1955.         pll->on = false;
  1956.  
  1957.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1958. }
  1959.  
  1960. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1961.                                            enum pipe pipe)
  1962. {
  1963.         struct drm_device *dev = dev_priv->dev;
  1964.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1965.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1966.         uint32_t reg, val, pipeconf_val;
  1967.  
  1968.         /* PCH only available on ILK+ */
  1969.         BUG_ON(!HAS_PCH_SPLIT(dev));
  1970.  
  1971.         /* Make sure PCH DPLL is enabled */
  1972.         assert_shared_dpll_enabled(dev_priv,
  1973.                                    intel_crtc_to_shared_dpll(intel_crtc));
  1974.  
  1975.         /* FDI must be feeding us bits for PCH ports */
  1976.         assert_fdi_tx_enabled(dev_priv, pipe);
  1977.         assert_fdi_rx_enabled(dev_priv, pipe);
  1978.  
  1979.         if (HAS_PCH_CPT(dev)) {
  1980.                 /* Workaround: Set the timing override bit before enabling the
  1981.                  * pch transcoder. */
  1982.                 reg = TRANS_CHICKEN2(pipe);
  1983.                 val = I915_READ(reg);
  1984.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1985.                 I915_WRITE(reg, val);
  1986.         }
  1987.  
  1988.         reg = PCH_TRANSCONF(pipe);
  1989.         val = I915_READ(reg);
  1990.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1991.  
  1992.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1993.                 /*
  1994.                  * Make the BPC in transcoder be consistent with
  1995.                  * that in pipeconf reg. For HDMI we must use 8bpc
  1996.                  * here for both 8bpc and 12bpc.
  1997.                  */
  1998.                 val &= ~PIPECONF_BPC_MASK;
  1999.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
  2000.                         val |= PIPECONF_8BPC;
  2001.                 else
  2002.                         val |= pipeconf_val & PIPECONF_BPC_MASK;
  2003.         }
  2004.  
  2005.         val &= ~TRANS_INTERLACE_MASK;
  2006.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  2007.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  2008.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  2009.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  2010.                 else
  2011.                         val |= TRANS_INTERLACED;
  2012.         else
  2013.                 val |= TRANS_PROGRESSIVE;
  2014.  
  2015.         I915_WRITE(reg, val | TRANS_ENABLE);
  2016.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  2017.                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  2018. }
  2019.  
  2020. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  2021.                                       enum transcoder cpu_transcoder)
  2022. {
  2023.         u32 val, pipeconf_val;
  2024.  
  2025.         /* PCH only available on ILK+ */
  2026.         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
  2027.  
  2028.         /* FDI must be feeding us bits for PCH ports */
  2029.         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  2030.         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  2031.  
  2032.         /* Workaround: set timing override bit. */
  2033.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2034.         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  2035.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2036.  
  2037.         val = TRANS_ENABLE;
  2038.         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  2039.  
  2040.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  2041.             PIPECONF_INTERLACED_ILK)
  2042.                 val |= TRANS_INTERLACED;
  2043.         else
  2044.                 val |= TRANS_PROGRESSIVE;
  2045.  
  2046.         I915_WRITE(LPT_TRANSCONF, val);
  2047.         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  2048.                 DRM_ERROR("Failed to enable PCH transcoder\n");
  2049. }
  2050.  
  2051. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  2052.                                             enum pipe pipe)
  2053. {
  2054.         struct drm_device *dev = dev_priv->dev;
  2055.         uint32_t reg, val;
  2056.  
  2057.         /* FDI relies on the transcoder */
  2058.         assert_fdi_tx_disabled(dev_priv, pipe);
  2059.         assert_fdi_rx_disabled(dev_priv, pipe);
  2060.  
  2061.         /* Ports must be off as well */
  2062.         assert_pch_ports_disabled(dev_priv, pipe);
  2063.  
  2064.         reg = PCH_TRANSCONF(pipe);
  2065.         val = I915_READ(reg);
  2066.         val &= ~TRANS_ENABLE;
  2067.         I915_WRITE(reg, val);
  2068.         /* wait for PCH transcoder off, transcoder state */
  2069.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  2070.                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  2071.  
  2072.         if (!HAS_PCH_IBX(dev)) {
  2073.                 /* Workaround: Clear the timing override chicken bit again. */
  2074.                 reg = TRANS_CHICKEN2(pipe);
  2075.                 val = I915_READ(reg);
  2076.                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2077.                 I915_WRITE(reg, val);
  2078.         }
  2079. }
  2080.  
  2081. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  2082. {
  2083.         u32 val;
  2084.  
  2085.         val = I915_READ(LPT_TRANSCONF);
  2086.         val &= ~TRANS_ENABLE;
  2087.         I915_WRITE(LPT_TRANSCONF, val);
  2088.         /* wait for PCH transcoder off, transcoder state */
  2089.         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  2090.                 DRM_ERROR("Failed to disable PCH transcoder\n");
  2091.  
  2092.         /* Workaround: clear timing override bit. */
  2093.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2094.         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2095.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2096. }
  2097.  
  2098. /**
  2099.  * intel_enable_pipe - enable a pipe, asserting requirements
  2100.  * @crtc: crtc responsible for the pipe
  2101.  *
  2102.  * Enable @crtc's pipe, making sure that various hardware specific requirements
  2103.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  2104.  */
  2105. static void intel_enable_pipe(struct intel_crtc *crtc)
  2106. {
  2107.         struct drm_device *dev = crtc->base.dev;
  2108.         struct drm_i915_private *dev_priv = dev->dev_private;
  2109.         enum pipe pipe = crtc->pipe;
  2110.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  2111.                                                                       pipe);
  2112.         enum pipe pch_transcoder;
  2113.         int reg;
  2114.         u32 val;
  2115.  
  2116.         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
  2117.  
  2118.         assert_planes_disabled(dev_priv, pipe);
  2119.         assert_cursor_disabled(dev_priv, pipe);
  2120.         assert_sprites_disabled(dev_priv, pipe);
  2121.  
  2122.         if (HAS_PCH_LPT(dev_priv->dev))
  2123.                 pch_transcoder = TRANSCODER_A;
  2124.         else
  2125.                 pch_transcoder = pipe;
  2126.  
  2127.         /*
  2128.          * A pipe without a PLL won't actually be able to drive bits from
  2129.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  2130.          * need the check.
  2131.          */
  2132.         if (HAS_GMCH_DISPLAY(dev_priv->dev))
  2133.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2134.                         assert_dsi_pll_enabled(dev_priv);
  2135.                 else
  2136.                         assert_pll_enabled(dev_priv, pipe);
  2137.         else {
  2138.                 if (crtc->config->has_pch_encoder) {
  2139.                         /* if driving the PCH, we need FDI enabled */
  2140.                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  2141.                         assert_fdi_tx_pll_enabled(dev_priv,
  2142.                                                   (enum pipe) cpu_transcoder);
  2143.                 }
  2144.                 /* FIXME: assert CPU port conditions for SNB+ */
  2145.         }
  2146.  
  2147.         reg = PIPECONF(cpu_transcoder);
  2148.         val = I915_READ(reg);
  2149.         if (val & PIPECONF_ENABLE) {
  2150.                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  2151.                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
  2152.                 return;
  2153.         }
  2154.  
  2155.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  2156.         POSTING_READ(reg);
  2157. }
  2158.  
  2159. /**
  2160.  * intel_disable_pipe - disable a pipe, asserting requirements
  2161.  * @crtc: crtc whose pipes is to be disabled
  2162.  *
  2163.  * Disable the pipe of @crtc, making sure that various hardware
  2164.  * specific requirements are met, if applicable, e.g. plane
  2165.  * disabled, panel fitter off, etc.
  2166.  *
  2167.  * Will wait until the pipe has shut down before returning.
  2168.  */
  2169. static void intel_disable_pipe(struct intel_crtc *crtc)
  2170. {
  2171.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2172.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  2173.         enum pipe pipe = crtc->pipe;
  2174.         int reg;
  2175.         u32 val;
  2176.  
  2177.         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
  2178.  
  2179.         /*
  2180.          * Make sure planes won't keep trying to pump pixels to us,
  2181.          * or we might hang the display.
  2182.          */
  2183.         assert_planes_disabled(dev_priv, pipe);
  2184.         assert_cursor_disabled(dev_priv, pipe);
  2185.         assert_sprites_disabled(dev_priv, pipe);
  2186.  
  2187.         reg = PIPECONF(cpu_transcoder);
  2188.         val = I915_READ(reg);
  2189.         if ((val & PIPECONF_ENABLE) == 0)
  2190.                 return;
  2191.  
  2192.         /*
  2193.          * Double wide has implications for planes
  2194.          * so best keep it disabled when not needed.
  2195.          */
  2196.         if (crtc->config->double_wide)
  2197.                 val &= ~PIPECONF_DOUBLE_WIDE;
  2198.  
  2199.         /* Don't disable pipe or pipe PLLs if needed */
  2200.         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
  2201.             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  2202.                 val &= ~PIPECONF_ENABLE;
  2203.  
  2204.         I915_WRITE(reg, val);
  2205.         if ((val & PIPECONF_ENABLE) == 0)
  2206.                 intel_wait_for_pipe_off(crtc);
  2207. }
  2208.  
  2209. static bool need_vtd_wa(struct drm_device *dev)
  2210. {
  2211. #ifdef CONFIG_INTEL_IOMMU
  2212.         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  2213.                 return true;
  2214. #endif
  2215.         return false;
  2216. }
  2217.  
  2218. unsigned int
  2219. intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
  2220.                   uint64_t fb_format_modifier, unsigned int plane)
  2221. {
  2222.         unsigned int tile_height;
  2223.         uint32_t pixel_bytes;
  2224.  
  2225.         switch (fb_format_modifier) {
  2226.         case DRM_FORMAT_MOD_NONE:
  2227.                 tile_height = 1;
  2228.                 break;
  2229.         case I915_FORMAT_MOD_X_TILED:
  2230.                 tile_height = IS_GEN2(dev) ? 16 : 8;
  2231.                 break;
  2232.         case I915_FORMAT_MOD_Y_TILED:
  2233.                 tile_height = 32;
  2234.                 break;
  2235.         case I915_FORMAT_MOD_Yf_TILED:
  2236.                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
  2237.                 switch (pixel_bytes) {
  2238.                 default:
  2239.                 case 1:
  2240.                         tile_height = 64;
  2241.                         break;
  2242.                 case 2:
  2243.                 case 4:
  2244.                         tile_height = 32;
  2245.                         break;
  2246.                 case 8:
  2247.                         tile_height = 16;
  2248.                         break;
  2249.                 case 16:
  2250.                         WARN_ONCE(1,
  2251.                                   "128-bit pixels are not supported for display!");
  2252.                         tile_height = 16;
  2253.                         break;
  2254.                 }
  2255.                 break;
  2256.         default:
  2257.                 MISSING_CASE(fb_format_modifier);
  2258.                 tile_height = 1;
  2259.                 break;
  2260.         }
  2261.  
  2262.         return tile_height;
  2263. }
  2264.  
  2265. unsigned int
  2266. intel_fb_align_height(struct drm_device *dev, unsigned int height,
  2267.                       uint32_t pixel_format, uint64_t fb_format_modifier)
  2268. {
  2269.         return ALIGN(height, intel_tile_height(dev, pixel_format,
  2270.                                                fb_format_modifier, 0));
  2271. }
  2272.  
  2273. static int
  2274. intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
  2275.                         const struct drm_plane_state *plane_state)
  2276. {
  2277.         struct intel_rotation_info *info = &view->rotation_info;
  2278.         unsigned int tile_height, tile_pitch;
  2279.  
  2280.         *view = i915_ggtt_view_normal;
  2281.  
  2282.         if (!plane_state)
  2283.                 return 0;
  2284.  
  2285.         if (!intel_rotation_90_or_270(plane_state->rotation))
  2286.                 return 0;
  2287.  
  2288.         *view = i915_ggtt_view_rotated;
  2289.  
  2290.         info->height = fb->height;
  2291.         info->pixel_format = fb->pixel_format;
  2292.         info->pitch = fb->pitches[0];
  2293.         info->uv_offset = fb->offsets[1];
  2294.         info->fb_modifier = fb->modifier[0];
  2295.  
  2296.         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2297.                                         fb->modifier[0], 0);
  2298.         tile_pitch = PAGE_SIZE / tile_height;
  2299.         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2300.         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
  2301.         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
  2302.  
  2303.         if (info->pixel_format == DRM_FORMAT_NV12) {
  2304.                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2305.                                                 fb->modifier[0], 1);
  2306.                 tile_pitch = PAGE_SIZE / tile_height;
  2307.                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2308.                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
  2309.                                                      tile_height);
  2310.                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
  2311.                                 PAGE_SIZE;
  2312.         }
  2313.  
  2314.         return 0;
  2315. }
  2316.  
  2317. static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
  2318. {
  2319.         if (INTEL_INFO(dev_priv)->gen >= 9)
  2320.                 return 256 * 1024;
  2321.         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
  2322.                  IS_VALLEYVIEW(dev_priv))
  2323.                 return 128 * 1024;
  2324.         else if (INTEL_INFO(dev_priv)->gen >= 4)
  2325.                 return 4 * 1024;
  2326.         else
  2327.                 return 0;
  2328. }
  2329.  
  2330. int
  2331. intel_pin_and_fence_fb_obj(struct drm_plane *plane,
  2332.                            struct drm_framebuffer *fb,
  2333.                            const struct drm_plane_state *plane_state,
  2334.                            struct intel_engine_cs *pipelined,
  2335.                            struct drm_i915_gem_request **pipelined_request)
  2336. {
  2337.         struct drm_device *dev = fb->dev;
  2338.         struct drm_i915_private *dev_priv = dev->dev_private;
  2339.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2340.         struct i915_ggtt_view view;
  2341.         u32 alignment;
  2342.         int ret;
  2343.  
  2344.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2345.  
  2346.         switch (fb->modifier[0]) {
  2347.         case DRM_FORMAT_MOD_NONE:
  2348.                 alignment = intel_linear_alignment(dev_priv);
  2349.                 break;
  2350.         case I915_FORMAT_MOD_X_TILED:
  2351.                 if (INTEL_INFO(dev)->gen >= 9)
  2352.                         alignment = 256 * 1024;
  2353.                 else {
  2354.                         /* pin() will align the object as required by fence */
  2355.                         alignment = 0;
  2356.                 }
  2357.                 break;
  2358.         case I915_FORMAT_MOD_Y_TILED:
  2359.         case I915_FORMAT_MOD_Yf_TILED:
  2360.                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
  2361.                           "Y tiling bo slipped through, driver bug!\n"))
  2362.                         return -EINVAL;
  2363.                 alignment = 1 * 1024 * 1024;
  2364.                 break;
  2365.         default:
  2366.                 MISSING_CASE(fb->modifier[0]);
  2367.                 return -EINVAL;
  2368.         }
  2369.  
  2370.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2371.         if (ret)
  2372.                 return ret;
  2373.  
  2374.         /* Note that the w/a also requires 64 PTE of padding following the
  2375.          * bo. We currently fill all unused PTE with the shadow page and so
  2376.          * we should always have valid PTE following the scanout preventing
  2377.          * the VT-d warning.
  2378.          */
  2379.         if (need_vtd_wa(dev) && alignment < 256 * 1024)
  2380.                 alignment = 256 * 1024;
  2381.  
  2382.         /*
  2383.          * Global gtt pte registers are special registers which actually forward
  2384.          * writes to a chunk of system memory. Which means that there is no risk
  2385.          * that the register values disappear as soon as we call
  2386.          * intel_runtime_pm_put(), so it is correct to wrap only the
  2387.          * pin/unpin/fence and not more.
  2388.          */
  2389.         intel_runtime_pm_get(dev_priv);
  2390.  
  2391.         dev_priv->mm.interruptible = false;
  2392.         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
  2393.                                                    pipelined_request, &view);
  2394.         if (ret)
  2395.                 goto err_interruptible;
  2396.  
  2397.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  2398.          * fence, whereas 965+ only requires a fence if using
  2399.          * framebuffer compression.  For simplicity, we always install
  2400.          * a fence as the cost is not that onerous.
  2401.          */
  2402.         if (view.type == I915_GGTT_VIEW_NORMAL) {
  2403.                 ret = i915_gem_object_get_fence(obj);
  2404.                 if (ret == -EDEADLK) {
  2405.                         /*
  2406.                          * -EDEADLK means there are no free fences
  2407.                          * no pending flips.
  2408.                          *
  2409.                          * This is propagated to atomic, but it uses
  2410.                          * -EDEADLK to force a locking recovery, so
  2411.                          * change the returned error to -EBUSY.
  2412.                          */
  2413.                         ret = -EBUSY;
  2414.                         goto err_unpin;
  2415.                 } else if (ret)
  2416.                         goto err_unpin;
  2417.  
  2418.                 i915_gem_object_pin_fence(obj);
  2419.         }
  2420.  
  2421.         dev_priv->mm.interruptible = true;
  2422.         intel_runtime_pm_put(dev_priv);
  2423.         return 0;
  2424.  
  2425. err_unpin:
  2426.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2427. err_interruptible:
  2428.         dev_priv->mm.interruptible = true;
  2429.         intel_runtime_pm_put(dev_priv);
  2430.         return ret;
  2431. }
  2432.  
  2433. static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
  2434.                                const struct drm_plane_state *plane_state)
  2435. {
  2436.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2437.         struct i915_ggtt_view view;
  2438.         int ret;
  2439.  
  2440.         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
  2441.  
  2442.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2443.         WARN_ONCE(ret, "Couldn't get view from plane state!");
  2444.  
  2445.         if (view.type == I915_GGTT_VIEW_NORMAL)
  2446.                 i915_gem_object_unpin_fence(obj);
  2447.  
  2448.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2449. }
  2450.  
  2451. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  2452.  * is assumed to be a power-of-two. */
  2453. unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
  2454.                                              int *x, int *y,
  2455.                                              unsigned int tiling_mode,
  2456.                                              unsigned int cpp,
  2457.                                              unsigned int pitch)
  2458. {
  2459.         if (tiling_mode != I915_TILING_NONE) {
  2460.                 unsigned int tile_rows, tiles;
  2461.  
  2462.                 tile_rows = *y / 8;
  2463.                 *y %= 8;
  2464.  
  2465.                 tiles = *x / (512/cpp);
  2466.                 *x %= 512/cpp;
  2467.  
  2468.                 return tile_rows * pitch * 8 + tiles * 4096;
  2469.         } else {
  2470.                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
  2471.                 unsigned int offset;
  2472.  
  2473.                 offset = *y * pitch + *x * cpp;
  2474.                 *y = (offset & alignment) / pitch;
  2475.                 *x = ((offset & alignment) - *y * pitch) / cpp;
  2476.                 return offset & ~alignment;
  2477.         }
  2478. }
  2479.  
  2480. static int i9xx_format_to_fourcc(int format)
  2481. {
  2482.         switch (format) {
  2483.         case DISPPLANE_8BPP:
  2484.                 return DRM_FORMAT_C8;
  2485.         case DISPPLANE_BGRX555:
  2486.                 return DRM_FORMAT_XRGB1555;
  2487.         case DISPPLANE_BGRX565:
  2488.                 return DRM_FORMAT_RGB565;
  2489.         default:
  2490.         case DISPPLANE_BGRX888:
  2491.                 return DRM_FORMAT_XRGB8888;
  2492.         case DISPPLANE_RGBX888:
  2493.                 return DRM_FORMAT_XBGR8888;
  2494.         case DISPPLANE_BGRX101010:
  2495.                 return DRM_FORMAT_XRGB2101010;
  2496.         case DISPPLANE_RGBX101010:
  2497.                 return DRM_FORMAT_XBGR2101010;
  2498.         }
  2499. }
  2500.  
  2501. static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
  2502. {
  2503.         switch (format) {
  2504.         case PLANE_CTL_FORMAT_RGB_565:
  2505.                 return DRM_FORMAT_RGB565;
  2506.         default:
  2507.         case PLANE_CTL_FORMAT_XRGB_8888:
  2508.                 if (rgb_order) {
  2509.                         if (alpha)
  2510.                                 return DRM_FORMAT_ABGR8888;
  2511.                         else
  2512.                                 return DRM_FORMAT_XBGR8888;
  2513.                 } else {
  2514.                         if (alpha)
  2515.                                 return DRM_FORMAT_ARGB8888;
  2516.                         else
  2517.                                 return DRM_FORMAT_XRGB8888;
  2518.                 }
  2519.         case PLANE_CTL_FORMAT_XRGB_2101010:
  2520.                 if (rgb_order)
  2521.                         return DRM_FORMAT_XBGR2101010;
  2522.                 else
  2523.                         return DRM_FORMAT_XRGB2101010;
  2524.         }
  2525. }
  2526.  
  2527. static bool
  2528. intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
  2529.                               struct intel_initial_plane_config *plane_config)
  2530. {
  2531.         struct drm_device *dev = crtc->base.dev;
  2532.         struct drm_i915_private *dev_priv = to_i915(dev);
  2533.         struct drm_i915_gem_object *obj = NULL;
  2534.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  2535.         struct drm_framebuffer *fb = &plane_config->fb->base;
  2536.         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
  2537.         u32 size_aligned = round_up(plane_config->base + plane_config->size,
  2538.                                     PAGE_SIZE);
  2539.  
  2540.         size_aligned -= base_aligned;
  2541.  
  2542.         if (plane_config->size == 0)
  2543.                 return false;
  2544.  
  2545.         /* If the FB is too big, just don't use it since fbdev is not very
  2546.          * important and we should probably use that space with FBC or other
  2547.          * features. */
  2548.         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
  2549.                 return false;
  2550.  
  2551.         obj = i915_gem_object_create_stolen_for_preallocated(dev,
  2552.                                                              base_aligned,
  2553.                                                              base_aligned,
  2554.                                                              size_aligned);
  2555.         if (!obj)
  2556.                 return false;
  2557.  
  2558.         obj->tiling_mode = plane_config->tiling;
  2559.         if (obj->tiling_mode == I915_TILING_X)
  2560.                 obj->stride = fb->pitches[0];
  2561.  
  2562.         mode_cmd.pixel_format = fb->pixel_format;
  2563.         mode_cmd.width = fb->width;
  2564.         mode_cmd.height = fb->height;
  2565.         mode_cmd.pitches[0] = fb->pitches[0];
  2566.         mode_cmd.modifier[0] = fb->modifier[0];
  2567.         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
  2568.  
  2569.         mutex_lock(&dev->struct_mutex);
  2570.         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
  2571.                                    &mode_cmd, obj)) {
  2572.                 DRM_DEBUG_KMS("intel fb init failed\n");
  2573.                 goto out_unref_obj;
  2574.         }
  2575.         mutex_unlock(&dev->struct_mutex);
  2576.  
  2577.         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
  2578.         return true;
  2579.  
  2580. out_unref_obj:
  2581.         drm_gem_object_unreference(&obj->base);
  2582.         mutex_unlock(&dev->struct_mutex);
  2583.         return false;
  2584. }
  2585.  
  2586. /* Update plane->state->fb to match plane->fb after driver-internal updates */
  2587. static void
  2588. update_state_fb(struct drm_plane *plane)
  2589. {
  2590.         if (plane->fb == plane->state->fb)
  2591.                 return;
  2592.  
  2593.         if (plane->state->fb)
  2594.                 drm_framebuffer_unreference(plane->state->fb);
  2595.         plane->state->fb = plane->fb;
  2596.         if (plane->state->fb)
  2597.                 drm_framebuffer_reference(plane->state->fb);
  2598. }
  2599.  
  2600. static void
  2601. intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
  2602.                              struct intel_initial_plane_config *plane_config)
  2603. {
  2604.         struct drm_device *dev = intel_crtc->base.dev;
  2605.         struct drm_i915_private *dev_priv = dev->dev_private;
  2606.         struct drm_crtc *c;
  2607.         struct intel_crtc *i;
  2608.         struct drm_i915_gem_object *obj;
  2609.         struct drm_plane *primary = intel_crtc->base.primary;
  2610.         struct drm_plane_state *plane_state = primary->state;
  2611.         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
  2612.         struct intel_plane *intel_plane = to_intel_plane(primary);
  2613.         struct drm_framebuffer *fb;
  2614.  
  2615.         if (!plane_config->fb)
  2616.                 return;
  2617.  
  2618.         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
  2619.                 fb = &plane_config->fb->base;
  2620.                 goto valid_fb;
  2621.         }
  2622.  
  2623.         kfree(plane_config->fb);
  2624.  
  2625.         /*
  2626.          * Failed to alloc the obj, check to see if we should share
  2627.          * an fb with another CRTC instead
  2628.          */
  2629.         for_each_crtc(dev, c) {
  2630.                 i = to_intel_crtc(c);
  2631.  
  2632.                 if (c == &intel_crtc->base)
  2633.                         continue;
  2634.  
  2635.                 if (!i->active)
  2636.                         continue;
  2637.  
  2638.                 fb = c->primary->fb;
  2639.                 if (!fb)
  2640.                         continue;
  2641.  
  2642.                 obj = intel_fb_obj(fb);
  2643.                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
  2644.                         drm_framebuffer_reference(fb);
  2645.                         goto valid_fb;
  2646.                 }
  2647.         }
  2648.  
  2649.         /*
  2650.          * We've failed to reconstruct the BIOS FB.  Current display state
  2651.          * indicates that the primary plane is visible, but has a NULL FB,
  2652.          * which will lead to problems later if we don't fix it up.  The
  2653.          * simplest solution is to just disable the primary plane now and
  2654.          * pretend the BIOS never had it enabled.
  2655.          */
  2656.         to_intel_plane_state(plane_state)->visible = false;
  2657.         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
  2658.         intel_pre_disable_primary(&intel_crtc->base);
  2659.         intel_plane->disable_plane(primary, &intel_crtc->base);
  2660.  
  2661.         return;
  2662.  
  2663. valid_fb:
  2664.         plane_state->src_x = 0;
  2665.         plane_state->src_y = 0;
  2666.         plane_state->src_w = fb->width << 16;
  2667.         plane_state->src_h = fb->height << 16;
  2668.  
  2669.         plane_state->crtc_x = 0;
  2670.         plane_state->crtc_y = 0;
  2671.         plane_state->crtc_w = fb->width;
  2672.         plane_state->crtc_h = fb->height;
  2673.  
  2674.         obj = intel_fb_obj(fb);
  2675.         if (obj->tiling_mode != I915_TILING_NONE)
  2676.                 dev_priv->preserve_bios_swizzle = true;
  2677.  
  2678.         drm_framebuffer_reference(fb);
  2679.         primary->fb = primary->state->fb = fb;
  2680.         primary->crtc = primary->state->crtc = &intel_crtc->base;
  2681.         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
  2682.         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
  2683. }
  2684.  
  2685. static void i9xx_update_primary_plane(struct drm_crtc *crtc,
  2686.                                       struct drm_framebuffer *fb,
  2687.                                       int x, int y)
  2688. {
  2689.         struct drm_device *dev = crtc->dev;
  2690.         struct drm_i915_private *dev_priv = dev->dev_private;
  2691.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2692.         struct drm_plane *primary = crtc->primary;
  2693.         bool visible = to_intel_plane_state(primary->state)->visible;
  2694.         struct drm_i915_gem_object *obj;
  2695.         int plane = intel_crtc->plane;
  2696.         unsigned long linear_offset;
  2697.         u32 dspcntr;
  2698.         u32 reg = DSPCNTR(plane);
  2699.         int pixel_size;
  2700.  
  2701.         if (!visible || !fb) {
  2702.                 I915_WRITE(reg, 0);
  2703.                 if (INTEL_INFO(dev)->gen >= 4)
  2704.                         I915_WRITE(DSPSURF(plane), 0);
  2705.                 else
  2706.                         I915_WRITE(DSPADDR(plane), 0);
  2707.                 POSTING_READ(reg);
  2708.                 return;
  2709.         }
  2710.  
  2711.         obj = intel_fb_obj(fb);
  2712.         if (WARN_ON(obj == NULL))
  2713.                 return;
  2714.  
  2715.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2716.  
  2717.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2718.  
  2719.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2720.  
  2721.         if (INTEL_INFO(dev)->gen < 4) {
  2722.                 if (intel_crtc->pipe == PIPE_B)
  2723.                         dspcntr |= DISPPLANE_SEL_PIPE_B;
  2724.  
  2725.                 /* pipesrc and dspsize control the size that is scaled from,
  2726.                  * which should always be the user's requested size.
  2727.                  */
  2728.                 I915_WRITE(DSPSIZE(plane),
  2729.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2730.                            (intel_crtc->config->pipe_src_w - 1));
  2731.                 I915_WRITE(DSPPOS(plane), 0);
  2732.         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
  2733.                 I915_WRITE(PRIMSIZE(plane),
  2734.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2735.                            (intel_crtc->config->pipe_src_w - 1));
  2736.                 I915_WRITE(PRIMPOS(plane), 0);
  2737.                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
  2738.         }
  2739.  
  2740.         switch (fb->pixel_format) {
  2741.         case DRM_FORMAT_C8:
  2742.                 dspcntr |= DISPPLANE_8BPP;
  2743.                 break;
  2744.         case DRM_FORMAT_XRGB1555:
  2745.                 dspcntr |= DISPPLANE_BGRX555;
  2746.                 break;
  2747.         case DRM_FORMAT_RGB565:
  2748.                 dspcntr |= DISPPLANE_BGRX565;
  2749.                 break;
  2750.         case DRM_FORMAT_XRGB8888:
  2751.                 dspcntr |= DISPPLANE_BGRX888;
  2752.                 break;
  2753.         case DRM_FORMAT_XBGR8888:
  2754.                 dspcntr |= DISPPLANE_RGBX888;
  2755.                 break;
  2756.         case DRM_FORMAT_XRGB2101010:
  2757.                 dspcntr |= DISPPLANE_BGRX101010;
  2758.                 break;
  2759.         case DRM_FORMAT_XBGR2101010:
  2760.                 dspcntr |= DISPPLANE_RGBX101010;
  2761.                 break;
  2762.         default:
  2763.                 BUG();
  2764.         }
  2765.  
  2766.         if (INTEL_INFO(dev)->gen >= 4 &&
  2767.             obj->tiling_mode != I915_TILING_NONE)
  2768.                 dspcntr |= DISPPLANE_TILED;
  2769.  
  2770.         if (IS_G4X(dev))
  2771.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2772.  
  2773.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2774.  
  2775.         if (INTEL_INFO(dev)->gen >= 4) {
  2776.                 intel_crtc->dspaddr_offset =
  2777.                         intel_gen4_compute_page_offset(dev_priv,
  2778.                                                        &x, &y, obj->tiling_mode,
  2779.                                                        pixel_size,
  2780.                                                        fb->pitches[0]);
  2781.                 linear_offset -= intel_crtc->dspaddr_offset;
  2782.         } else {
  2783.                 intel_crtc->dspaddr_offset = linear_offset;
  2784.         }
  2785.  
  2786.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2787.                 dspcntr |= DISPPLANE_ROTATE_180;
  2788.  
  2789.                 x += (intel_crtc->config->pipe_src_w - 1);
  2790.                 y += (intel_crtc->config->pipe_src_h - 1);
  2791.  
  2792.                 /* Finding the last pixel of the last line of the display
  2793.                 data and adding to linear_offset*/
  2794.                 linear_offset +=
  2795.                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2796.                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2797.         }
  2798.  
  2799.         intel_crtc->adjusted_x = x;
  2800.         intel_crtc->adjusted_y = y;
  2801.  
  2802.         I915_WRITE(reg, dspcntr);
  2803.  
  2804.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2805.         if (INTEL_INFO(dev)->gen >= 4) {
  2806.                 I915_WRITE(DSPSURF(plane),
  2807.                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2808.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2809.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2810.         } else
  2811.                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  2812.         POSTING_READ(reg);
  2813. }
  2814.  
  2815. static void ironlake_update_primary_plane(struct drm_crtc *crtc,
  2816.                                           struct drm_framebuffer *fb,
  2817.                                           int x, int y)
  2818. {
  2819.         struct drm_device *dev = crtc->dev;
  2820.         struct drm_i915_private *dev_priv = dev->dev_private;
  2821.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2822.         struct drm_plane *primary = crtc->primary;
  2823.         bool visible = to_intel_plane_state(primary->state)->visible;
  2824.         struct drm_i915_gem_object *obj;
  2825.         int plane = intel_crtc->plane;
  2826.         unsigned long linear_offset;
  2827.         u32 dspcntr;
  2828.         u32 reg = DSPCNTR(plane);
  2829.         int pixel_size;
  2830.  
  2831.         if (!visible || !fb) {
  2832.                 I915_WRITE(reg, 0);
  2833.                 I915_WRITE(DSPSURF(plane), 0);
  2834.                 POSTING_READ(reg);
  2835.                 return;
  2836.         }
  2837.  
  2838.         obj = intel_fb_obj(fb);
  2839.         if (WARN_ON(obj == NULL))
  2840.                 return;
  2841.  
  2842.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2843.  
  2844.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2845.  
  2846.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2847.  
  2848.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2849.                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
  2850.  
  2851.         switch (fb->pixel_format) {
  2852.         case DRM_FORMAT_C8:
  2853.                 dspcntr |= DISPPLANE_8BPP;
  2854.                 break;
  2855.         case DRM_FORMAT_RGB565:
  2856.                 dspcntr |= DISPPLANE_BGRX565;
  2857.                 break;
  2858.         case DRM_FORMAT_XRGB8888:
  2859.                 dspcntr |= DISPPLANE_BGRX888;
  2860.                 break;
  2861.         case DRM_FORMAT_XBGR8888:
  2862.                 dspcntr |= DISPPLANE_RGBX888;
  2863.                 break;
  2864.         case DRM_FORMAT_XRGB2101010:
  2865.                 dspcntr |= DISPPLANE_BGRX101010;
  2866.                 break;
  2867.         case DRM_FORMAT_XBGR2101010:
  2868.                 dspcntr |= DISPPLANE_RGBX101010;
  2869.                 break;
  2870.         default:
  2871.                 BUG();
  2872.         }
  2873.  
  2874.         if (obj->tiling_mode != I915_TILING_NONE)
  2875.                 dspcntr |= DISPPLANE_TILED;
  2876.  
  2877.         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
  2878.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2879.  
  2880.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2881.         intel_crtc->dspaddr_offset =
  2882.                 intel_gen4_compute_page_offset(dev_priv,
  2883.                                                &x, &y, obj->tiling_mode,
  2884.                                                pixel_size,
  2885.                                                fb->pitches[0]);
  2886.         linear_offset -= intel_crtc->dspaddr_offset;
  2887.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2888.                 dspcntr |= DISPPLANE_ROTATE_180;
  2889.  
  2890.                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  2891.                         x += (intel_crtc->config->pipe_src_w - 1);
  2892.                         y += (intel_crtc->config->pipe_src_h - 1);
  2893.  
  2894.                         /* Finding the last pixel of the last line of the display
  2895.                         data and adding to linear_offset*/
  2896.                         linear_offset +=
  2897.                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2898.                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2899.                 }
  2900.         }
  2901.  
  2902.         intel_crtc->adjusted_x = x;
  2903.         intel_crtc->adjusted_y = y;
  2904.  
  2905.         I915_WRITE(reg, dspcntr);
  2906.  
  2907.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2908.         I915_WRITE(DSPSURF(plane),
  2909.                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2910.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2911.                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  2912.         } else {
  2913.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2914.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2915.         }
  2916.         POSTING_READ(reg);
  2917. }
  2918.  
  2919. u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
  2920.                               uint32_t pixel_format)
  2921. {
  2922.         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
  2923.  
  2924.         /*
  2925.          * The stride is either expressed as a multiple of 64 bytes
  2926.          * chunks for linear buffers or in number of tiles for tiled
  2927.          * buffers.
  2928.          */
  2929.         switch (fb_modifier) {
  2930.         case DRM_FORMAT_MOD_NONE:
  2931.                 return 64;
  2932.         case I915_FORMAT_MOD_X_TILED:
  2933.                 if (INTEL_INFO(dev)->gen == 2)
  2934.                         return 128;
  2935.                 return 512;
  2936.         case I915_FORMAT_MOD_Y_TILED:
  2937.                 /* No need to check for old gens and Y tiling since this is
  2938.                  * about the display engine and those will be blocked before
  2939.                  * we get here.
  2940.                  */
  2941.                 return 128;
  2942.         case I915_FORMAT_MOD_Yf_TILED:
  2943.                 if (bits_per_pixel == 8)
  2944.                         return 64;
  2945.                 else
  2946.                         return 128;
  2947.         default:
  2948.                 MISSING_CASE(fb_modifier);
  2949.                 return 64;
  2950.         }
  2951. }
  2952.  
  2953. u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
  2954.                                      struct drm_i915_gem_object *obj,
  2955.                                      unsigned int plane)
  2956. {
  2957.         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
  2958.         struct i915_vma *vma;
  2959.         u64 offset;
  2960.  
  2961.         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
  2962.                 view = &i915_ggtt_view_rotated;
  2963.  
  2964.         vma = i915_gem_obj_to_ggtt_view(obj, view);
  2965.         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
  2966.                 view->type))
  2967.                 return -1;
  2968.  
  2969.         offset = vma->node.start;
  2970.  
  2971.         if (plane == 1) {
  2972.                 offset += vma->ggtt_view.rotation_info.uv_start_page *
  2973.                           PAGE_SIZE;
  2974.         }
  2975.  
  2976.         WARN_ON(upper_32_bits(offset));
  2977.  
  2978.         return lower_32_bits(offset);
  2979. }
  2980.  
  2981. static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
  2982. {
  2983.         struct drm_device *dev = intel_crtc->base.dev;
  2984.         struct drm_i915_private *dev_priv = dev->dev_private;
  2985.  
  2986.         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
  2987.         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
  2988.         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
  2989. }
  2990.  
  2991. /*
  2992.  * This function detaches (aka. unbinds) unused scalers in hardware
  2993.  */
  2994. static void skl_detach_scalers(struct intel_crtc *intel_crtc)
  2995. {
  2996.         struct intel_crtc_scaler_state *scaler_state;
  2997.         int i;
  2998.  
  2999.         scaler_state = &intel_crtc->config->scaler_state;
  3000.  
  3001.         /* loop through and disable scalers that aren't in use */
  3002.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  3003.                 if (!scaler_state->scalers[i].in_use)
  3004.                         skl_detach_scaler(intel_crtc, i);
  3005.         }
  3006. }
  3007.  
  3008. u32 skl_plane_ctl_format(uint32_t pixel_format)
  3009. {
  3010.         switch (pixel_format) {
  3011.         case DRM_FORMAT_C8:
  3012.                 return PLANE_CTL_FORMAT_INDEXED;
  3013.         case DRM_FORMAT_RGB565:
  3014.                 return PLANE_CTL_FORMAT_RGB_565;
  3015.         case DRM_FORMAT_XBGR8888:
  3016.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
  3017.         case DRM_FORMAT_XRGB8888:
  3018.                 return PLANE_CTL_FORMAT_XRGB_8888;
  3019.         /*
  3020.          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
  3021.          * to be already pre-multiplied. We need to add a knob (or a different
  3022.          * DRM_FORMAT) for user-space to configure that.
  3023.          */
  3024.         case DRM_FORMAT_ABGR8888:
  3025.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
  3026.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3027.         case DRM_FORMAT_ARGB8888:
  3028.                 return PLANE_CTL_FORMAT_XRGB_8888 |
  3029.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3030.         case DRM_FORMAT_XRGB2101010:
  3031.                 return PLANE_CTL_FORMAT_XRGB_2101010;
  3032.         case DRM_FORMAT_XBGR2101010:
  3033.                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
  3034.         case DRM_FORMAT_YUYV:
  3035.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
  3036.         case DRM_FORMAT_YVYU:
  3037.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
  3038.         case DRM_FORMAT_UYVY:
  3039.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
  3040.         case DRM_FORMAT_VYUY:
  3041.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
  3042.         default:
  3043.                 MISSING_CASE(pixel_format);
  3044.         }
  3045.  
  3046.         return 0;
  3047. }
  3048.  
  3049. u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
  3050. {
  3051.         switch (fb_modifier) {
  3052.         case DRM_FORMAT_MOD_NONE:
  3053.                 break;
  3054.         case I915_FORMAT_MOD_X_TILED:
  3055.                 return PLANE_CTL_TILED_X;
  3056.         case I915_FORMAT_MOD_Y_TILED:
  3057.                 return PLANE_CTL_TILED_Y;
  3058.         case I915_FORMAT_MOD_Yf_TILED:
  3059.                 return PLANE_CTL_TILED_YF;
  3060.         default:
  3061.                 MISSING_CASE(fb_modifier);
  3062.         }
  3063.  
  3064.         return 0;
  3065. }
  3066.  
  3067. u32 skl_plane_ctl_rotation(unsigned int rotation)
  3068. {
  3069.         switch (rotation) {
  3070.         case BIT(DRM_ROTATE_0):
  3071.                 break;
  3072.         /*
  3073.          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
  3074.          * while i915 HW rotation is clockwise, thats why this swapping.
  3075.          */
  3076.         case BIT(DRM_ROTATE_90):
  3077.                 return PLANE_CTL_ROTATE_270;
  3078.         case BIT(DRM_ROTATE_180):
  3079.                 return PLANE_CTL_ROTATE_180;
  3080.         case BIT(DRM_ROTATE_270):
  3081.                 return PLANE_CTL_ROTATE_90;
  3082.         default:
  3083.                 MISSING_CASE(rotation);
  3084.         }
  3085.  
  3086.         return 0;
  3087. }
  3088.  
  3089. static void skylake_update_primary_plane(struct drm_crtc *crtc,
  3090.                                          struct drm_framebuffer *fb,
  3091.                                          int x, int y)
  3092. {
  3093.         struct drm_device *dev = crtc->dev;
  3094.         struct drm_i915_private *dev_priv = dev->dev_private;
  3095.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3096.         struct drm_plane *plane = crtc->primary;
  3097.         bool visible = to_intel_plane_state(plane->state)->visible;
  3098.         struct drm_i915_gem_object *obj;
  3099.         int pipe = intel_crtc->pipe;
  3100.         u32 plane_ctl, stride_div, stride;
  3101.         u32 tile_height, plane_offset, plane_size;
  3102.         unsigned int rotation;
  3103.         int x_offset, y_offset;
  3104.         u32 surf_addr;
  3105.         struct intel_crtc_state *crtc_state = intel_crtc->config;
  3106.         struct intel_plane_state *plane_state;
  3107.         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
  3108.         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
  3109.         int scaler_id = -1;
  3110.  
  3111.         plane_state = to_intel_plane_state(plane->state);
  3112.  
  3113.         if (!visible || !fb) {
  3114.                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
  3115.                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
  3116.                 POSTING_READ(PLANE_CTL(pipe, 0));
  3117.                 return;
  3118.         }
  3119.  
  3120.         plane_ctl = PLANE_CTL_ENABLE |
  3121.                     PLANE_CTL_PIPE_GAMMA_ENABLE |
  3122.                     PLANE_CTL_PIPE_CSC_ENABLE;
  3123.  
  3124.         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
  3125.         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
  3126.         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
  3127.  
  3128.         rotation = plane->state->rotation;
  3129.         plane_ctl |= skl_plane_ctl_rotation(rotation);
  3130.  
  3131.         obj = intel_fb_obj(fb);
  3132.         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
  3133.                                                fb->pixel_format);
  3134.         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
  3135.  
  3136.         WARN_ON(drm_rect_width(&plane_state->src) == 0);
  3137.  
  3138.         scaler_id = plane_state->scaler_id;
  3139.         src_x = plane_state->src.x1 >> 16;
  3140.         src_y = plane_state->src.y1 >> 16;
  3141.         src_w = drm_rect_width(&plane_state->src) >> 16;
  3142.         src_h = drm_rect_height(&plane_state->src) >> 16;
  3143.         dst_x = plane_state->dst.x1;
  3144.         dst_y = plane_state->dst.y1;
  3145.         dst_w = drm_rect_width(&plane_state->dst);
  3146.         dst_h = drm_rect_height(&plane_state->dst);
  3147.  
  3148.         WARN_ON(x != src_x || y != src_y);
  3149.  
  3150.         if (intel_rotation_90_or_270(rotation)) {
  3151.                 /* stride = Surface height in tiles */
  3152.                 tile_height = intel_tile_height(dev, fb->pixel_format,
  3153.                                                 fb->modifier[0], 0);
  3154.                 stride = DIV_ROUND_UP(fb->height, tile_height);
  3155.                 x_offset = stride * tile_height - y - src_h;
  3156.                 y_offset = x;
  3157.                 plane_size = (src_w - 1) << 16 | (src_h - 1);
  3158.         } else {
  3159.                 stride = fb->pitches[0] / stride_div;
  3160.                 x_offset = x;
  3161.                 y_offset = y;
  3162.                 plane_size = (src_h - 1) << 16 | (src_w - 1);
  3163.         }
  3164.         plane_offset = y_offset << 16 | x_offset;
  3165.  
  3166.         intel_crtc->adjusted_x = x_offset;
  3167.         intel_crtc->adjusted_y = y_offset;
  3168.  
  3169.         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
  3170.         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
  3171.         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
  3172.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  3173.  
  3174.         if (scaler_id >= 0) {
  3175.                 uint32_t ps_ctrl = 0;
  3176.  
  3177.                 WARN_ON(!dst_w || !dst_h);
  3178.                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
  3179.                         crtc_state->scaler_state.scalers[scaler_id].mode;
  3180.                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
  3181.                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
  3182.                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
  3183.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
  3184.                 I915_WRITE(PLANE_POS(pipe, 0), 0);
  3185.         } else {
  3186.                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
  3187.         }
  3188.  
  3189.         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
  3190.  
  3191.         POSTING_READ(PLANE_SURF(pipe, 0));
  3192. }
  3193.  
  3194. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  3195. static int
  3196. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  3197.                            int x, int y, enum mode_set_atomic state)
  3198. {
  3199.         struct drm_device *dev = crtc->dev;
  3200.         struct drm_i915_private *dev_priv = dev->dev_private;
  3201.  
  3202.         if (dev_priv->fbc.disable_fbc)
  3203.                 dev_priv->fbc.disable_fbc(dev_priv);
  3204.  
  3205.         dev_priv->display.update_primary_plane(crtc, fb, x, y);
  3206.  
  3207.         return 0;
  3208. }
  3209.  
  3210. static void intel_complete_page_flips(struct drm_device *dev)
  3211. {
  3212.         struct drm_crtc *crtc;
  3213.  
  3214.         for_each_crtc(dev, crtc) {
  3215.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3216.                 enum plane plane = intel_crtc->plane;
  3217.  
  3218.                 intel_prepare_page_flip(dev, plane);
  3219.                 intel_finish_page_flip_plane(dev, plane);
  3220.         }
  3221. }
  3222.  
  3223. static void intel_update_primary_planes(struct drm_device *dev)
  3224. {
  3225.         struct drm_crtc *crtc;
  3226.  
  3227.         for_each_crtc(dev, crtc) {
  3228.                 struct intel_plane *plane = to_intel_plane(crtc->primary);
  3229.                 struct intel_plane_state *plane_state;
  3230.  
  3231.                 drm_modeset_lock_crtc(crtc, &plane->base);
  3232.  
  3233.                 plane_state = to_intel_plane_state(plane->base.state);
  3234.  
  3235.                 if (plane_state->base.fb)
  3236.                         plane->commit_plane(&plane->base, plane_state);
  3237.  
  3238.                 drm_modeset_unlock_crtc(crtc);
  3239.         }
  3240. }
  3241.  
  3242. void intel_prepare_reset(struct drm_device *dev)
  3243. {
  3244.         /* no reset support for gen2 */
  3245.         if (IS_GEN2(dev))
  3246.                 return;
  3247.  
  3248.         /* reset doesn't touch the display */
  3249.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  3250.                 return;
  3251.  
  3252.         drm_modeset_lock_all(dev);
  3253.         /*
  3254.          * Disabling the crtcs gracefully seems nicer. Also the
  3255.          * g33 docs say we should at least disable all the planes.
  3256.          */
  3257.         intel_display_suspend(dev);
  3258. }
  3259.  
  3260. void intel_finish_reset(struct drm_device *dev)
  3261. {
  3262.         struct drm_i915_private *dev_priv = to_i915(dev);
  3263.  
  3264.         /*
  3265.          * Flips in the rings will be nuked by the reset,
  3266.          * so complete all pending flips so that user space
  3267.          * will get its events and not get stuck.
  3268.          */
  3269.         intel_complete_page_flips(dev);
  3270.  
  3271.         /* no reset support for gen2 */
  3272.         if (IS_GEN2(dev))
  3273.                 return;
  3274.  
  3275.         /* reset doesn't touch the display */
  3276.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
  3277.                 /*
  3278.                  * Flips in the rings have been nuked by the reset,
  3279.                  * so update the base address of all primary
  3280.                  * planes to the the last fb to make sure we're
  3281.                  * showing the correct fb after a reset.
  3282.                  *
  3283.                  * FIXME: Atomic will make this obsolete since we won't schedule
  3284.                  * CS-based flips (which might get lost in gpu resets) any more.
  3285.                  */
  3286.                 intel_update_primary_planes(dev);
  3287.                 return;
  3288.         }
  3289.  
  3290.         /*
  3291.          * The display has been reset as well,
  3292.          * so need a full re-initialization.
  3293.          */
  3294.         intel_runtime_pm_disable_interrupts(dev_priv);
  3295.         intel_runtime_pm_enable_interrupts(dev_priv);
  3296.  
  3297.         intel_modeset_init_hw(dev);
  3298.  
  3299.         spin_lock_irq(&dev_priv->irq_lock);
  3300.         if (dev_priv->display.hpd_irq_setup)
  3301.                 dev_priv->display.hpd_irq_setup(dev);
  3302.         spin_unlock_irq(&dev_priv->irq_lock);
  3303.  
  3304.         intel_display_resume(dev);
  3305.  
  3306.         intel_hpd_init(dev_priv);
  3307.  
  3308.         drm_modeset_unlock_all(dev);
  3309. }
  3310.  
  3311. static void
  3312. intel_finish_fb(struct drm_framebuffer *old_fb)
  3313. {
  3314.         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
  3315.         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  3316.         bool was_interruptible = dev_priv->mm.interruptible;
  3317.         int ret;
  3318.  
  3319.         /* Big Hammer, we also need to ensure that any pending
  3320.          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  3321.          * current scanout is retired before unpinning the old
  3322.          * framebuffer. Note that we rely on userspace rendering
  3323.          * into the buffer attached to the pipe they are waiting
  3324.          * on. If not, userspace generates a GPU hang with IPEHR
  3325.          * point to the MI_WAIT_FOR_EVENT.
  3326.          *
  3327.          * This should only fail upon a hung GPU, in which case we
  3328.          * can safely continue.
  3329.          */
  3330.         dev_priv->mm.interruptible = false;
  3331.         ret = i915_gem_object_wait_rendering(obj, true);
  3332.         dev_priv->mm.interruptible = was_interruptible;
  3333.  
  3334.         WARN_ON(ret);
  3335. }
  3336.  
  3337. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  3338. {
  3339.         struct drm_device *dev = crtc->dev;
  3340.         struct drm_i915_private *dev_priv = dev->dev_private;
  3341.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3342.         bool pending;
  3343.  
  3344.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  3345.             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  3346.                 return false;
  3347.  
  3348.         spin_lock_irq(&dev->event_lock);
  3349.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  3350.         spin_unlock_irq(&dev->event_lock);
  3351.  
  3352.         return pending;
  3353. }
  3354.  
  3355. static void intel_update_pipe_config(struct intel_crtc *crtc,
  3356.                                      struct intel_crtc_state *old_crtc_state)
  3357. {
  3358.         struct drm_device *dev = crtc->base.dev;
  3359.         struct drm_i915_private *dev_priv = dev->dev_private;
  3360.         struct intel_crtc_state *pipe_config =
  3361.                 to_intel_crtc_state(crtc->base.state);
  3362.  
  3363.         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
  3364.         crtc->base.mode = crtc->base.state->mode;
  3365.  
  3366.         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
  3367.                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
  3368.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  3369.  
  3370.         if (HAS_DDI(dev))
  3371.                 intel_set_pipe_csc(&crtc->base);
  3372.  
  3373.         /*
  3374.          * Update pipe size and adjust fitter if needed: the reason for this is
  3375.          * that in compute_mode_changes we check the native mode (not the pfit
  3376.          * mode) to see if we can flip rather than do a full mode set. In the
  3377.          * fastboot case, we'll flip, but if we don't update the pipesrc and
  3378.          * pfit state, we'll end up with a big fb scanned out into the wrong
  3379.          * sized surface.
  3380.          */
  3381.  
  3382.         I915_WRITE(PIPESRC(crtc->pipe),
  3383.                    ((pipe_config->pipe_src_w - 1) << 16) |
  3384.                    (pipe_config->pipe_src_h - 1));
  3385.  
  3386.         /* on skylake this is done by detaching scalers */
  3387.         if (INTEL_INFO(dev)->gen >= 9) {
  3388.                 skl_detach_scalers(crtc);
  3389.  
  3390.                 if (pipe_config->pch_pfit.enabled)
  3391.                         skylake_pfit_enable(crtc);
  3392.         } else if (HAS_PCH_SPLIT(dev)) {
  3393.                 if (pipe_config->pch_pfit.enabled)
  3394.                         ironlake_pfit_enable(crtc);
  3395.                 else if (old_crtc_state->pch_pfit.enabled)
  3396.                         ironlake_pfit_disable(crtc, true);
  3397.         }
  3398. }
  3399.  
  3400. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  3401. {
  3402.         struct drm_device *dev = crtc->dev;
  3403.         struct drm_i915_private *dev_priv = dev->dev_private;
  3404.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3405.         int pipe = intel_crtc->pipe;
  3406.         u32 reg, temp;
  3407.  
  3408.         /* enable normal train */
  3409.         reg = FDI_TX_CTL(pipe);
  3410.         temp = I915_READ(reg);
  3411.         if (IS_IVYBRIDGE(dev)) {
  3412.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3413.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  3414.         } else {
  3415.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3416.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  3417.         }
  3418.         I915_WRITE(reg, temp);
  3419.  
  3420.         reg = FDI_RX_CTL(pipe);
  3421.         temp = I915_READ(reg);
  3422.         if (HAS_PCH_CPT(dev)) {
  3423.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3424.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  3425.         } else {
  3426.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3427.                 temp |= FDI_LINK_TRAIN_NONE;
  3428.         }
  3429.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  3430.  
  3431.         /* wait one idle pattern time */
  3432.         POSTING_READ(reg);
  3433.         udelay(1000);
  3434.  
  3435.         /* IVB wants error correction enabled */
  3436.         if (IS_IVYBRIDGE(dev))
  3437.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  3438.                            FDI_FE_ERRC_ENABLE);
  3439. }
  3440.  
  3441. /* The FDI link training functions for ILK/Ibexpeak. */
  3442. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  3443. {
  3444.         struct drm_device *dev = crtc->dev;
  3445.         struct drm_i915_private *dev_priv = dev->dev_private;
  3446.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3447.         int pipe = intel_crtc->pipe;
  3448.         u32 reg, temp, tries;
  3449.  
  3450.         /* FDI needs bits from pipe first */
  3451.         assert_pipe_enabled(dev_priv, pipe);
  3452.  
  3453.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3454.            for train result */
  3455.         reg = FDI_RX_IMR(pipe);
  3456.         temp = I915_READ(reg);
  3457.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3458.         temp &= ~FDI_RX_BIT_LOCK;
  3459.         I915_WRITE(reg, temp);
  3460.         I915_READ(reg);
  3461.         udelay(150);
  3462.  
  3463.         /* enable CPU FDI TX and PCH FDI RX */
  3464.         reg = FDI_TX_CTL(pipe);
  3465.         temp = I915_READ(reg);
  3466.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3467.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3468.         temp &= ~FDI_LINK_TRAIN_NONE;
  3469.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3470.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3471.  
  3472.         reg = FDI_RX_CTL(pipe);
  3473.         temp = I915_READ(reg);
  3474.         temp &= ~FDI_LINK_TRAIN_NONE;
  3475.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3476.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3477.  
  3478.         POSTING_READ(reg);
  3479.         udelay(150);
  3480.  
  3481.         /* Ironlake workaround, enable clock pointer after FDI enable*/
  3482.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3483.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  3484.                    FDI_RX_PHASE_SYNC_POINTER_EN);
  3485.  
  3486.         reg = FDI_RX_IIR(pipe);
  3487.         for (tries = 0; tries < 5; tries++) {
  3488.                 temp = I915_READ(reg);
  3489.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3490.  
  3491.                 if ((temp & FDI_RX_BIT_LOCK)) {
  3492.                         DRM_DEBUG_KMS("FDI train 1 done.\n");
  3493.                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3494.                         break;
  3495.                 }
  3496.         }
  3497.         if (tries == 5)
  3498.                 DRM_ERROR("FDI train 1 fail!\n");
  3499.  
  3500.         /* Train 2 */
  3501.         reg = FDI_TX_CTL(pipe);
  3502.         temp = I915_READ(reg);
  3503.         temp &= ~FDI_LINK_TRAIN_NONE;
  3504.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3505.         I915_WRITE(reg, temp);
  3506.  
  3507.         reg = FDI_RX_CTL(pipe);
  3508.         temp = I915_READ(reg);
  3509.         temp &= ~FDI_LINK_TRAIN_NONE;
  3510.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3511.         I915_WRITE(reg, temp);
  3512.  
  3513.         POSTING_READ(reg);
  3514.         udelay(150);
  3515.  
  3516.         reg = FDI_RX_IIR(pipe);
  3517.         for (tries = 0; tries < 5; tries++) {
  3518.                 temp = I915_READ(reg);
  3519.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3520.  
  3521.                 if (temp & FDI_RX_SYMBOL_LOCK) {
  3522.                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3523.                         DRM_DEBUG_KMS("FDI train 2 done.\n");
  3524.                         break;
  3525.                 }
  3526.         }
  3527.         if (tries == 5)
  3528.                 DRM_ERROR("FDI train 2 fail!\n");
  3529.  
  3530.         DRM_DEBUG_KMS("FDI train done\n");
  3531.  
  3532. }
  3533.  
  3534. static const int snb_b_fdi_train_param[] = {
  3535.         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  3536.         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  3537.         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  3538.         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  3539. };
  3540.  
  3541. /* The FDI link training functions for SNB/Cougarpoint. */
  3542. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  3543. {
  3544.         struct drm_device *dev = crtc->dev;
  3545.         struct drm_i915_private *dev_priv = dev->dev_private;
  3546.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3547.         int pipe = intel_crtc->pipe;
  3548.         u32 reg, temp, i, retry;
  3549.  
  3550.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3551.            for train result */
  3552.         reg = FDI_RX_IMR(pipe);
  3553.         temp = I915_READ(reg);
  3554.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3555.         temp &= ~FDI_RX_BIT_LOCK;
  3556.         I915_WRITE(reg, temp);
  3557.  
  3558.         POSTING_READ(reg);
  3559.         udelay(150);
  3560.  
  3561.         /* enable CPU FDI TX and PCH FDI RX */
  3562.         reg = FDI_TX_CTL(pipe);
  3563.         temp = I915_READ(reg);
  3564.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3565.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3566.         temp &= ~FDI_LINK_TRAIN_NONE;
  3567.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3568.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3569.         /* SNB-B */
  3570.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3571.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3572.  
  3573.         I915_WRITE(FDI_RX_MISC(pipe),
  3574.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3575.  
  3576.         reg = FDI_RX_CTL(pipe);
  3577.         temp = I915_READ(reg);
  3578.         if (HAS_PCH_CPT(dev)) {
  3579.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3580.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3581.         } else {
  3582.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3583.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3584.         }
  3585.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3586.  
  3587.         POSTING_READ(reg);
  3588.         udelay(150);
  3589.  
  3590.         for (i = 0; i < 4; i++) {
  3591.                 reg = FDI_TX_CTL(pipe);
  3592.                 temp = I915_READ(reg);
  3593.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3594.                 temp |= snb_b_fdi_train_param[i];
  3595.                 I915_WRITE(reg, temp);
  3596.  
  3597.                 POSTING_READ(reg);
  3598.                 udelay(500);
  3599.  
  3600.                 for (retry = 0; retry < 5; retry++) {
  3601.                         reg = FDI_RX_IIR(pipe);
  3602.                         temp = I915_READ(reg);
  3603.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3604.                         if (temp & FDI_RX_BIT_LOCK) {
  3605.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3606.                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
  3607.                                 break;
  3608.                         }
  3609.                         udelay(50);
  3610.                 }
  3611.                 if (retry < 5)
  3612.                         break;
  3613.         }
  3614.         if (i == 4)
  3615.                 DRM_ERROR("FDI train 1 fail!\n");
  3616.  
  3617.         /* Train 2 */
  3618.         reg = FDI_TX_CTL(pipe);
  3619.         temp = I915_READ(reg);
  3620.         temp &= ~FDI_LINK_TRAIN_NONE;
  3621.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3622.         if (IS_GEN6(dev)) {
  3623.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3624.                 /* SNB-B */
  3625.                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3626.         }
  3627.         I915_WRITE(reg, temp);
  3628.  
  3629.         reg = FDI_RX_CTL(pipe);
  3630.         temp = I915_READ(reg);
  3631.         if (HAS_PCH_CPT(dev)) {
  3632.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3633.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3634.         } else {
  3635.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3636.                 temp |= FDI_LINK_TRAIN_PATTERN_2;
  3637.         }
  3638.         I915_WRITE(reg, temp);
  3639.  
  3640.         POSTING_READ(reg);
  3641.         udelay(150);
  3642.  
  3643.         for (i = 0; i < 4; i++) {
  3644.                 reg = FDI_TX_CTL(pipe);
  3645.                 temp = I915_READ(reg);
  3646.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3647.                 temp |= snb_b_fdi_train_param[i];
  3648.                 I915_WRITE(reg, temp);
  3649.  
  3650.                 POSTING_READ(reg);
  3651.                 udelay(500);
  3652.  
  3653.                 for (retry = 0; retry < 5; retry++) {
  3654.                         reg = FDI_RX_IIR(pipe);
  3655.                         temp = I915_READ(reg);
  3656.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3657.                         if (temp & FDI_RX_SYMBOL_LOCK) {
  3658.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3659.                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
  3660.                                 break;
  3661.                         }
  3662.                         udelay(50);
  3663.                 }
  3664.                 if (retry < 5)
  3665.                         break;
  3666.         }
  3667.         if (i == 4)
  3668.                 DRM_ERROR("FDI train 2 fail!\n");
  3669.  
  3670.         DRM_DEBUG_KMS("FDI train done.\n");
  3671. }
  3672.  
  3673. /* Manual link training for Ivy Bridge A0 parts */
  3674. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  3675. {
  3676.         struct drm_device *dev = crtc->dev;
  3677.         struct drm_i915_private *dev_priv = dev->dev_private;
  3678.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3679.         int pipe = intel_crtc->pipe;
  3680.         u32 reg, temp, i, j;
  3681.  
  3682.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3683.            for train result */
  3684.         reg = FDI_RX_IMR(pipe);
  3685.         temp = I915_READ(reg);
  3686.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3687.         temp &= ~FDI_RX_BIT_LOCK;
  3688.         I915_WRITE(reg, temp);
  3689.  
  3690.         POSTING_READ(reg);
  3691.         udelay(150);
  3692.  
  3693.         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  3694.                       I915_READ(FDI_RX_IIR(pipe)));
  3695.  
  3696.         /* Try each vswing and preemphasis setting twice before moving on */
  3697.         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  3698.                 /* disable first in case we need to retry */
  3699.                 reg = FDI_TX_CTL(pipe);
  3700.                 temp = I915_READ(reg);
  3701.                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  3702.                 temp &= ~FDI_TX_ENABLE;
  3703.                 I915_WRITE(reg, temp);
  3704.  
  3705.                 reg = FDI_RX_CTL(pipe);
  3706.                 temp = I915_READ(reg);
  3707.                 temp &= ~FDI_LINK_TRAIN_AUTO;
  3708.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3709.                 temp &= ~FDI_RX_ENABLE;
  3710.                 I915_WRITE(reg, temp);
  3711.  
  3712.                 /* enable CPU FDI TX and PCH FDI RX */
  3713.                 reg = FDI_TX_CTL(pipe);
  3714.                 temp = I915_READ(reg);
  3715.                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3716.                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3717.                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  3718.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3719.                 temp |= snb_b_fdi_train_param[j/2];
  3720.                 temp |= FDI_COMPOSITE_SYNC;
  3721.                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3722.  
  3723.                 I915_WRITE(FDI_RX_MISC(pipe),
  3724.                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3725.  
  3726.                 reg = FDI_RX_CTL(pipe);
  3727.                 temp = I915_READ(reg);
  3728.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3729.                 temp |= FDI_COMPOSITE_SYNC;
  3730.                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3731.  
  3732.                 POSTING_READ(reg);
  3733.                 udelay(1); /* should be 0.5us */
  3734.  
  3735.                 for (i = 0; i < 4; i++) {
  3736.                         reg = FDI_RX_IIR(pipe);
  3737.                         temp = I915_READ(reg);
  3738.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3739.  
  3740.                         if (temp & FDI_RX_BIT_LOCK ||
  3741.                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  3742.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3743.                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  3744.                                               i);
  3745.                                 break;
  3746.                         }
  3747.                         udelay(1); /* should be 0.5us */
  3748.                 }
  3749.                 if (i == 4) {
  3750.                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  3751.                         continue;
  3752.                 }
  3753.  
  3754.                 /* Train 2 */
  3755.                 reg = FDI_TX_CTL(pipe);
  3756.                 temp = I915_READ(reg);
  3757.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3758.                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  3759.                 I915_WRITE(reg, temp);
  3760.  
  3761.                 reg = FDI_RX_CTL(pipe);
  3762.                 temp = I915_READ(reg);
  3763.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3764.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3765.                 I915_WRITE(reg, temp);
  3766.  
  3767.                 POSTING_READ(reg);
  3768.                 udelay(2); /* should be 1.5us */
  3769.  
  3770.                 for (i = 0; i < 4; i++) {
  3771.                         reg = FDI_RX_IIR(pipe);
  3772.                         temp = I915_READ(reg);
  3773.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3774.  
  3775.                         if (temp & FDI_RX_SYMBOL_LOCK ||
  3776.                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  3777.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3778.                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  3779.                                               i);
  3780.                                 goto train_done;
  3781.                         }
  3782.                         udelay(2); /* should be 1.5us */
  3783.                 }
  3784.                 if (i == 4)
  3785.                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  3786.         }
  3787.  
  3788. train_done:
  3789.         DRM_DEBUG_KMS("FDI train done.\n");
  3790. }
  3791.  
  3792. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  3793. {
  3794.         struct drm_device *dev = intel_crtc->base.dev;
  3795.         struct drm_i915_private *dev_priv = dev->dev_private;
  3796.         int pipe = intel_crtc->pipe;
  3797.         u32 reg, temp;
  3798.  
  3799.  
  3800.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  3801.         reg = FDI_RX_CTL(pipe);
  3802.         temp = I915_READ(reg);
  3803.         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  3804.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3805.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3806.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  3807.  
  3808.         POSTING_READ(reg);
  3809.         udelay(200);
  3810.  
  3811.         /* Switch from Rawclk to PCDclk */
  3812.         temp = I915_READ(reg);
  3813.         I915_WRITE(reg, temp | FDI_PCDCLK);
  3814.  
  3815.         POSTING_READ(reg);
  3816.         udelay(200);
  3817.  
  3818.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  3819.         reg = FDI_TX_CTL(pipe);
  3820.         temp = I915_READ(reg);
  3821.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  3822.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  3823.  
  3824.                 POSTING_READ(reg);
  3825.                 udelay(100);
  3826.         }
  3827. }
  3828.  
  3829. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  3830. {
  3831.         struct drm_device *dev = intel_crtc->base.dev;
  3832.         struct drm_i915_private *dev_priv = dev->dev_private;
  3833.         int pipe = intel_crtc->pipe;
  3834.         u32 reg, temp;
  3835.  
  3836.         /* Switch from PCDclk to Rawclk */
  3837.         reg = FDI_RX_CTL(pipe);
  3838.         temp = I915_READ(reg);
  3839.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  3840.  
  3841.         /* Disable CPU FDI TX PLL */
  3842.         reg = FDI_TX_CTL(pipe);
  3843.         temp = I915_READ(reg);
  3844.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  3845.  
  3846.         POSTING_READ(reg);
  3847.         udelay(100);
  3848.  
  3849.         reg = FDI_RX_CTL(pipe);
  3850.         temp = I915_READ(reg);
  3851.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  3852.  
  3853.         /* Wait for the clocks to turn off. */
  3854.         POSTING_READ(reg);
  3855.         udelay(100);
  3856. }
  3857.  
  3858. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  3859. {
  3860.         struct drm_device *dev = crtc->dev;
  3861.         struct drm_i915_private *dev_priv = dev->dev_private;
  3862.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3863.         int pipe = intel_crtc->pipe;
  3864.         u32 reg, temp;
  3865.  
  3866.         /* disable CPU FDI tx and PCH FDI rx */
  3867.         reg = FDI_TX_CTL(pipe);
  3868.         temp = I915_READ(reg);
  3869.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  3870.         POSTING_READ(reg);
  3871.  
  3872.         reg = FDI_RX_CTL(pipe);
  3873.         temp = I915_READ(reg);
  3874.         temp &= ~(0x7 << 16);
  3875.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3876.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  3877.  
  3878.         POSTING_READ(reg);
  3879.         udelay(100);
  3880.  
  3881.         /* Ironlake workaround, disable clock pointer after downing FDI */
  3882.         if (HAS_PCH_IBX(dev))
  3883.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3884.  
  3885.         /* still set train pattern 1 */
  3886.         reg = FDI_TX_CTL(pipe);
  3887.         temp = I915_READ(reg);
  3888.         temp &= ~FDI_LINK_TRAIN_NONE;
  3889.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3890.         I915_WRITE(reg, temp);
  3891.  
  3892.         reg = FDI_RX_CTL(pipe);
  3893.         temp = I915_READ(reg);
  3894.         if (HAS_PCH_CPT(dev)) {
  3895.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3896.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3897.         } else {
  3898.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3899.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3900.         }
  3901.         /* BPC in FDI rx is consistent with that in PIPECONF */
  3902.         temp &= ~(0x07 << 16);
  3903.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3904.         I915_WRITE(reg, temp);
  3905.  
  3906.         POSTING_READ(reg);
  3907.         udelay(100);
  3908. }
  3909.  
  3910. bool intel_has_pending_fb_unpin(struct drm_device *dev)
  3911. {
  3912.         struct intel_crtc *crtc;
  3913.  
  3914.         /* Note that we don't need to be called with mode_config.lock here
  3915.          * as our list of CRTC objects is static for the lifetime of the
  3916.          * device and so cannot disappear as we iterate. Similarly, we can
  3917.          * happily treat the predicates as racy, atomic checks as userspace
  3918.          * cannot claim and pin a new fb without at least acquring the
  3919.          * struct_mutex and so serialising with us.
  3920.          */
  3921.         for_each_intel_crtc(dev, crtc) {
  3922.                 if (atomic_read(&crtc->unpin_work_count) == 0)
  3923.                         continue;
  3924.  
  3925.                 if (crtc->unpin_work)
  3926.                         intel_wait_for_vblank(dev, crtc->pipe);
  3927.  
  3928.                 return true;
  3929.         }
  3930.  
  3931.         return false;
  3932. }
  3933.  
  3934. static void page_flip_completed(struct intel_crtc *intel_crtc)
  3935. {
  3936.         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
  3937.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  3938.  
  3939.         /* ensure that the unpin work is consistent wrt ->pending. */
  3940.         smp_rmb();
  3941.         intel_crtc->unpin_work = NULL;
  3942.  
  3943.         if (work->event)
  3944.                 drm_send_vblank_event(intel_crtc->base.dev,
  3945.                                       intel_crtc->pipe,
  3946.                                       work->event);
  3947.  
  3948.         drm_crtc_vblank_put(&intel_crtc->base);
  3949.  
  3950.         wake_up_all(&dev_priv->pending_flip_queue);
  3951.         queue_work(dev_priv->wq, &work->work);
  3952.  
  3953.         trace_i915_flip_complete(intel_crtc->plane,
  3954.                                  work->pending_flip_obj);
  3955. }
  3956.  
  3957. void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  3958. {
  3959.         struct drm_device *dev = crtc->dev;
  3960.         struct drm_i915_private *dev_priv = dev->dev_private;
  3961.  
  3962.         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  3963.         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
  3964.                                        !intel_crtc_has_pending_flip(crtc),
  3965.                                        60*HZ) == 0)) {
  3966.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3967.  
  3968.                 spin_lock_irq(&dev->event_lock);
  3969.                 if (intel_crtc->unpin_work) {
  3970.                         WARN_ONCE(1, "Removing stuck page flip\n");
  3971.                         page_flip_completed(intel_crtc);
  3972.                 }
  3973.                 spin_unlock_irq(&dev->event_lock);
  3974.         }
  3975.  
  3976.         if (crtc->primary->fb) {
  3977.                 mutex_lock(&dev->struct_mutex);
  3978.                 intel_finish_fb(crtc->primary->fb);
  3979.                 mutex_unlock(&dev->struct_mutex);
  3980.         }
  3981. }
  3982.  
  3983. /* Program iCLKIP clock to the desired frequency */
  3984. static void lpt_program_iclkip(struct drm_crtc *crtc)
  3985. {
  3986.         struct drm_device *dev = crtc->dev;
  3987.         struct drm_i915_private *dev_priv = dev->dev_private;
  3988.         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
  3989.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  3990.         u32 temp;
  3991.  
  3992.         mutex_lock(&dev_priv->sb_lock);
  3993.  
  3994.         /* It is necessary to ungate the pixclk gate prior to programming
  3995.          * the divisors, and gate it back when it is done.
  3996.          */
  3997.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  3998.  
  3999.         /* Disable SSCCTL */
  4000.         intel_sbi_write(dev_priv, SBI_SSCCTL6,
  4001.                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  4002.                                 SBI_SSCCTL_DISABLE,
  4003.                         SBI_ICLK);
  4004.  
  4005.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  4006.         if (clock == 20000) {
  4007.                 auxdiv = 1;
  4008.                 divsel = 0x41;
  4009.                 phaseinc = 0x20;
  4010.         } else {
  4011.                 /* The iCLK virtual clock root frequency is in MHz,
  4012.                  * but the adjusted_mode->crtc_clock in in KHz. To get the
  4013.                  * divisors, it is necessary to divide one by another, so we
  4014.                  * convert the virtual clock precision to KHz here for higher
  4015.                  * precision.
  4016.                  */
  4017.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  4018.                 u32 iclk_pi_range = 64;
  4019.                 u32 desired_divisor, msb_divisor_value, pi_value;
  4020.  
  4021.                 desired_divisor = (iclk_virtual_root_freq / clock);
  4022.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  4023.                 pi_value = desired_divisor % iclk_pi_range;
  4024.  
  4025.                 auxdiv = 0;
  4026.                 divsel = msb_divisor_value - 2;
  4027.                 phaseinc = pi_value;
  4028.         }
  4029.  
  4030.         /* This should not happen with any sane values */
  4031.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  4032.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  4033.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  4034.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  4035.  
  4036.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  4037.                         clock,
  4038.                         auxdiv,
  4039.                         divsel,
  4040.                         phasedir,
  4041.                         phaseinc);
  4042.  
  4043.         /* Program SSCDIVINTPHASE6 */
  4044.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  4045.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  4046.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  4047.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  4048.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  4049.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  4050.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  4051.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  4052.  
  4053.         /* Program SSCAUXDIV */
  4054.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  4055.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  4056.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  4057.         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  4058.  
  4059.         /* Enable modulator and associated divider */
  4060.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  4061.         temp &= ~SBI_SSCCTL_DISABLE;
  4062.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  4063.  
  4064.         /* Wait for initialization time */
  4065.         udelay(24);
  4066.  
  4067.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  4068.  
  4069.         mutex_unlock(&dev_priv->sb_lock);
  4070. }
  4071.  
  4072. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  4073.                                                 enum pipe pch_transcoder)
  4074. {
  4075.         struct drm_device *dev = crtc->base.dev;
  4076.         struct drm_i915_private *dev_priv = dev->dev_private;
  4077.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  4078.  
  4079.         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  4080.                    I915_READ(HTOTAL(cpu_transcoder)));
  4081.         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  4082.                    I915_READ(HBLANK(cpu_transcoder)));
  4083.         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  4084.                    I915_READ(HSYNC(cpu_transcoder)));
  4085.  
  4086.         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  4087.                    I915_READ(VTOTAL(cpu_transcoder)));
  4088.         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  4089.                    I915_READ(VBLANK(cpu_transcoder)));
  4090.         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  4091.                    I915_READ(VSYNC(cpu_transcoder)));
  4092.         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  4093.                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
  4094. }
  4095.  
  4096. static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
  4097. {
  4098.         struct drm_i915_private *dev_priv = dev->dev_private;
  4099.         uint32_t temp;
  4100.  
  4101.         temp = I915_READ(SOUTH_CHICKEN1);
  4102.         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
  4103.                 return;
  4104.  
  4105.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4106.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4107.  
  4108.         temp &= ~FDI_BC_BIFURCATION_SELECT;
  4109.         if (enable)
  4110.                 temp |= FDI_BC_BIFURCATION_SELECT;
  4111.  
  4112.         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
  4113.         I915_WRITE(SOUTH_CHICKEN1, temp);
  4114.         POSTING_READ(SOUTH_CHICKEN1);
  4115. }
  4116.  
  4117. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4118. {
  4119.         struct drm_device *dev = intel_crtc->base.dev;
  4120.  
  4121.         switch (intel_crtc->pipe) {
  4122.         case PIPE_A:
  4123.                 break;
  4124.         case PIPE_B:
  4125.                 if (intel_crtc->config->fdi_lanes > 2)
  4126.                         cpt_set_fdi_bc_bifurcation(dev, false);
  4127.                 else
  4128.                         cpt_set_fdi_bc_bifurcation(dev, true);
  4129.  
  4130.                 break;
  4131.         case PIPE_C:
  4132.                 cpt_set_fdi_bc_bifurcation(dev, true);
  4133.  
  4134.                 break;
  4135.         default:
  4136.                 BUG();
  4137.         }
  4138. }
  4139.  
  4140. /*
  4141.  * Enable PCH resources required for PCH ports:
  4142.  *   - PCH PLLs
  4143.  *   - FDI training & RX/TX
  4144.  *   - update transcoder timings
  4145.  *   - DP transcoding bits
  4146.  *   - transcoder
  4147.  */
  4148. static void ironlake_pch_enable(struct drm_crtc *crtc)
  4149. {
  4150.         struct drm_device *dev = crtc->dev;
  4151.         struct drm_i915_private *dev_priv = dev->dev_private;
  4152.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4153.         int pipe = intel_crtc->pipe;
  4154.         u32 reg, temp;
  4155.  
  4156.         assert_pch_transcoder_disabled(dev_priv, pipe);
  4157.  
  4158.         if (IS_IVYBRIDGE(dev))
  4159.                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4160.  
  4161.         /* Write the TU size bits before fdi link training, so that error
  4162.          * detection works. */
  4163.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  4164.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  4165.  
  4166.         /* For PCH output, training FDI link */
  4167.         dev_priv->display.fdi_link_train(crtc);
  4168.  
  4169.         /* We need to program the right clock selection before writing the pixel
  4170.          * mutliplier into the DPLL. */
  4171.         if (HAS_PCH_CPT(dev)) {
  4172.                 u32 sel;
  4173.  
  4174.                 temp = I915_READ(PCH_DPLL_SEL);
  4175.                 temp |= TRANS_DPLL_ENABLE(pipe);
  4176.                 sel = TRANS_DPLLB_SEL(pipe);
  4177.                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
  4178.                         temp |= sel;
  4179.                 else
  4180.                         temp &= ~sel;
  4181.                 I915_WRITE(PCH_DPLL_SEL, temp);
  4182.         }
  4183.  
  4184.         /* XXX: pch pll's can be enabled any time before we enable the PCH
  4185.          * transcoder, and we actually should do this to not upset any PCH
  4186.          * transcoder that already use the clock when we share it.
  4187.          *
  4188.          * Note that enable_shared_dpll tries to do the right thing, but
  4189.          * get_shared_dpll unconditionally resets the pll - we need that to have
  4190.          * the right LVDS enable sequence. */
  4191.         intel_enable_shared_dpll(intel_crtc);
  4192.  
  4193.         /* set transcoder timing, panel must allow it */
  4194.         assert_panel_unlocked(dev_priv, pipe);
  4195.         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  4196.  
  4197.         intel_fdi_normal_train(crtc);
  4198.  
  4199.         /* For PCH DP, enable TRANS_DP_CTL */
  4200.         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
  4201.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  4202.                 reg = TRANS_DP_CTL(pipe);
  4203.                 temp = I915_READ(reg);
  4204.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  4205.                           TRANS_DP_SYNC_MASK |
  4206.                           TRANS_DP_BPC_MASK);
  4207.                 temp |= TRANS_DP_OUTPUT_ENABLE;
  4208.                 temp |= bpc << 9; /* same format but at 11:9 */
  4209.  
  4210.                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  4211.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  4212.                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  4213.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  4214.  
  4215.                 switch (intel_trans_dp_port_sel(crtc)) {
  4216.                 case PCH_DP_B:
  4217.                         temp |= TRANS_DP_PORT_SEL_B;
  4218.                         break;
  4219.                 case PCH_DP_C:
  4220.                         temp |= TRANS_DP_PORT_SEL_C;
  4221.                         break;
  4222.                 case PCH_DP_D:
  4223.                         temp |= TRANS_DP_PORT_SEL_D;
  4224.                         break;
  4225.                 default:
  4226.                         BUG();
  4227.                 }
  4228.  
  4229.                 I915_WRITE(reg, temp);
  4230.         }
  4231.  
  4232.         ironlake_enable_pch_transcoder(dev_priv, pipe);
  4233. }
  4234.  
  4235. static void lpt_pch_enable(struct drm_crtc *crtc)
  4236. {
  4237.         struct drm_device *dev = crtc->dev;
  4238.         struct drm_i915_private *dev_priv = dev->dev_private;
  4239.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4240.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  4241.  
  4242.         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  4243.  
  4244.         lpt_program_iclkip(crtc);
  4245.  
  4246.         /* Set transcoder timing. */
  4247.         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  4248.  
  4249.         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  4250. }
  4251.  
  4252. struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
  4253.                                                 struct intel_crtc_state *crtc_state)
  4254. {
  4255.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  4256.         struct intel_shared_dpll *pll;
  4257.         struct intel_shared_dpll_config *shared_dpll;
  4258.         enum intel_dpll_id i;
  4259.         int max = dev_priv->num_shared_dpll;
  4260.  
  4261.         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  4262.  
  4263.         if (HAS_PCH_IBX(dev_priv->dev)) {
  4264.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  4265.                 i = (enum intel_dpll_id) crtc->pipe;
  4266.                 pll = &dev_priv->shared_dplls[i];
  4267.  
  4268.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4269.                               crtc->base.base.id, pll->name);
  4270.  
  4271.                 WARN_ON(shared_dpll[i].crtc_mask);
  4272.  
  4273.                 goto found;
  4274.         }
  4275.  
  4276.         if (IS_BROXTON(dev_priv->dev)) {
  4277.                 /* PLL is attached to port in bxt */
  4278.                 struct intel_encoder *encoder;
  4279.                 struct intel_digital_port *intel_dig_port;
  4280.  
  4281.                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
  4282.                 if (WARN_ON(!encoder))
  4283.                         return NULL;
  4284.  
  4285.                 intel_dig_port = enc_to_dig_port(&encoder->base);
  4286.                 /* 1:1 mapping between ports and PLLs */
  4287.                 i = (enum intel_dpll_id)intel_dig_port->port;
  4288.                 pll = &dev_priv->shared_dplls[i];
  4289.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4290.                         crtc->base.base.id, pll->name);
  4291.                 WARN_ON(shared_dpll[i].crtc_mask);
  4292.  
  4293.                 goto found;
  4294.         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
  4295.                 /* Do not consider SPLL */
  4296.                 max = 2;
  4297.  
  4298.         for (i = 0; i < max; i++) {
  4299.                 pll = &dev_priv->shared_dplls[i];
  4300.  
  4301.                 /* Only want to check enabled timings first */
  4302.                 if (shared_dpll[i].crtc_mask == 0)
  4303.                         continue;
  4304.  
  4305.                 if (memcmp(&crtc_state->dpll_hw_state,
  4306.                            &shared_dpll[i].hw_state,
  4307.                            sizeof(crtc_state->dpll_hw_state)) == 0) {
  4308.                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
  4309.                                       crtc->base.base.id, pll->name,
  4310.                                       shared_dpll[i].crtc_mask,
  4311.                                       pll->active);
  4312.                         goto found;
  4313.                 }
  4314.         }
  4315.  
  4316.         /* Ok no matching timings, maybe there's a free one? */
  4317.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4318.                 pll = &dev_priv->shared_dplls[i];
  4319.                 if (shared_dpll[i].crtc_mask == 0) {
  4320.                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  4321.                                       crtc->base.base.id, pll->name);
  4322.                         goto found;
  4323.                 }
  4324.         }
  4325.  
  4326.         return NULL;
  4327.  
  4328. found:
  4329.         if (shared_dpll[i].crtc_mask == 0)
  4330.                 shared_dpll[i].hw_state =
  4331.                         crtc_state->dpll_hw_state;
  4332.  
  4333.         crtc_state->shared_dpll = i;
  4334.         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  4335.                          pipe_name(crtc->pipe));
  4336.  
  4337.         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
  4338.  
  4339.         return pll;
  4340. }
  4341.  
  4342. static void intel_shared_dpll_commit(struct drm_atomic_state *state)
  4343. {
  4344.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  4345.         struct intel_shared_dpll_config *shared_dpll;
  4346.         struct intel_shared_dpll *pll;
  4347.         enum intel_dpll_id i;
  4348.  
  4349.         if (!to_intel_atomic_state(state)->dpll_set)
  4350.                 return;
  4351.  
  4352.         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  4353.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4354.                 pll = &dev_priv->shared_dplls[i];
  4355.                 pll->config = shared_dpll[i];
  4356.         }
  4357. }
  4358.  
  4359. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  4360. {
  4361.         struct drm_i915_private *dev_priv = dev->dev_private;
  4362.         int dslreg = PIPEDSL(pipe);
  4363.         u32 temp;
  4364.  
  4365.         temp = I915_READ(dslreg);
  4366.         udelay(500);
  4367.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  4368.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  4369.                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  4370.         }
  4371. }
  4372.  
  4373. static int
  4374. skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
  4375.                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
  4376.                   int src_w, int src_h, int dst_w, int dst_h)
  4377. {
  4378.         struct intel_crtc_scaler_state *scaler_state =
  4379.                 &crtc_state->scaler_state;
  4380.         struct intel_crtc *intel_crtc =
  4381.                 to_intel_crtc(crtc_state->base.crtc);
  4382.         int need_scaling;
  4383.  
  4384.         need_scaling = intel_rotation_90_or_270(rotation) ?
  4385.                 (src_h != dst_w || src_w != dst_h):
  4386.                 (src_w != dst_w || src_h != dst_h);
  4387.  
  4388.         /*
  4389.          * if plane is being disabled or scaler is no more required or force detach
  4390.          *  - free scaler binded to this plane/crtc
  4391.          *  - in order to do this, update crtc->scaler_usage
  4392.          *
  4393.          * Here scaler state in crtc_state is set free so that
  4394.          * scaler can be assigned to other user. Actual register
  4395.          * update to free the scaler is done in plane/panel-fit programming.
  4396.          * For this purpose crtc/plane_state->scaler_id isn't reset here.
  4397.          */
  4398.         if (force_detach || !need_scaling) {
  4399.                 if (*scaler_id >= 0) {
  4400.                         scaler_state->scaler_users &= ~(1 << scaler_user);
  4401.                         scaler_state->scalers[*scaler_id].in_use = 0;
  4402.  
  4403.                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4404.                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
  4405.                                 intel_crtc->pipe, scaler_user, *scaler_id,
  4406.                                 scaler_state->scaler_users);
  4407.                         *scaler_id = -1;
  4408.                 }
  4409.                 return 0;
  4410.         }
  4411.  
  4412.         /* range checks */
  4413.         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
  4414.                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
  4415.  
  4416.                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
  4417.                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
  4418.                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
  4419.                         "size is out of scaler range\n",
  4420.                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
  4421.                 return -EINVAL;
  4422.         }
  4423.  
  4424.         /* mark this plane as a scaler user in crtc_state */
  4425.         scaler_state->scaler_users |= (1 << scaler_user);
  4426.         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4427.                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
  4428.                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
  4429.                 scaler_state->scaler_users);
  4430.  
  4431.         return 0;
  4432. }
  4433.  
  4434. /**
  4435.  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
  4436.  *
  4437.  * @state: crtc's scaler state
  4438.  *
  4439.  * Return
  4440.  *     0 - scaler_usage updated successfully
  4441.  *    error - requested scaling cannot be supported or other error condition
  4442.  */
  4443. int skl_update_scaler_crtc(struct intel_crtc_state *state)
  4444. {
  4445.         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
  4446.         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
  4447.  
  4448.         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
  4449.                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
  4450.  
  4451.         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
  4452.                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
  4453.                 state->pipe_src_w, state->pipe_src_h,
  4454.                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
  4455. }
  4456.  
  4457. /**
  4458.  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
  4459.  *
  4460.  * @state: crtc's scaler state
  4461.  * @plane_state: atomic plane state to update
  4462.  *
  4463.  * Return
  4464.  *     0 - scaler_usage updated successfully
  4465.  *    error - requested scaling cannot be supported or other error condition
  4466.  */
  4467. static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
  4468.                                    struct intel_plane_state *plane_state)
  4469. {
  4470.  
  4471.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  4472.         struct intel_plane *intel_plane =
  4473.                 to_intel_plane(plane_state->base.plane);
  4474.         struct drm_framebuffer *fb = plane_state->base.fb;
  4475.         int ret;
  4476.  
  4477.         bool force_detach = !fb || !plane_state->visible;
  4478.  
  4479.         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
  4480.                       intel_plane->base.base.id, intel_crtc->pipe,
  4481.                       drm_plane_index(&intel_plane->base));
  4482.  
  4483.         ret = skl_update_scaler(crtc_state, force_detach,
  4484.                                 drm_plane_index(&intel_plane->base),
  4485.                                 &plane_state->scaler_id,
  4486.                                 plane_state->base.rotation,
  4487.                                 drm_rect_width(&plane_state->src) >> 16,
  4488.                                 drm_rect_height(&plane_state->src) >> 16,
  4489.                                 drm_rect_width(&plane_state->dst),
  4490.                                 drm_rect_height(&plane_state->dst));
  4491.  
  4492.         if (ret || plane_state->scaler_id < 0)
  4493.                 return ret;
  4494.  
  4495.         /* check colorkey */
  4496.         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
  4497.                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
  4498.                               intel_plane->base.base.id);
  4499.                 return -EINVAL;
  4500.         }
  4501.  
  4502.         /* Check src format */
  4503.         switch (fb->pixel_format) {
  4504.         case DRM_FORMAT_RGB565:
  4505.         case DRM_FORMAT_XBGR8888:
  4506.         case DRM_FORMAT_XRGB8888:
  4507.         case DRM_FORMAT_ABGR8888:
  4508.         case DRM_FORMAT_ARGB8888:
  4509.         case DRM_FORMAT_XRGB2101010:
  4510.         case DRM_FORMAT_XBGR2101010:
  4511.         case DRM_FORMAT_YUYV:
  4512.         case DRM_FORMAT_YVYU:
  4513.         case DRM_FORMAT_UYVY:
  4514.         case DRM_FORMAT_VYUY:
  4515.                 break;
  4516.         default:
  4517.                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
  4518.                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
  4519.                 return -EINVAL;
  4520.         }
  4521.  
  4522.         return 0;
  4523. }
  4524.  
  4525. static void skylake_scaler_disable(struct intel_crtc *crtc)
  4526. {
  4527.         int i;
  4528.  
  4529.         for (i = 0; i < crtc->num_scalers; i++)
  4530.                 skl_detach_scaler(crtc, i);
  4531. }
  4532.  
  4533. static void skylake_pfit_enable(struct intel_crtc *crtc)
  4534. {
  4535.         struct drm_device *dev = crtc->base.dev;
  4536.         struct drm_i915_private *dev_priv = dev->dev_private;
  4537.         int pipe = crtc->pipe;
  4538.         struct intel_crtc_scaler_state *scaler_state =
  4539.                 &crtc->config->scaler_state;
  4540.  
  4541.         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
  4542.  
  4543.         if (crtc->config->pch_pfit.enabled) {
  4544.                 int id;
  4545.  
  4546.                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
  4547.                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
  4548.                         return;
  4549.                 }
  4550.  
  4551.                 id = scaler_state->scaler_id;
  4552.                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
  4553.                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
  4554.                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
  4555.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
  4556.  
  4557.                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
  4558.         }
  4559. }
  4560.  
  4561. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  4562. {
  4563.         struct drm_device *dev = crtc->base.dev;
  4564.         struct drm_i915_private *dev_priv = dev->dev_private;
  4565.         int pipe = crtc->pipe;
  4566.  
  4567.         if (crtc->config->pch_pfit.enabled) {
  4568.                 /* Force use of hard-coded filter coefficients
  4569.                  * as some pre-programmed values are broken,
  4570.                  * e.g. x201.
  4571.                  */
  4572.                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4573.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  4574.                                                  PF_PIPE_SEL_IVB(pipe));
  4575.                 else
  4576.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  4577.                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
  4578.                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
  4579.         }
  4580. }
  4581.  
  4582. void hsw_enable_ips(struct intel_crtc *crtc)
  4583. {
  4584.         struct drm_device *dev = crtc->base.dev;
  4585.         struct drm_i915_private *dev_priv = dev->dev_private;
  4586.  
  4587.         if (!crtc->config->ips_enabled)
  4588.                 return;
  4589.  
  4590.         /* We can only enable IPS after we enable a plane and wait for a vblank */
  4591.         intel_wait_for_vblank(dev, crtc->pipe);
  4592.  
  4593.         assert_plane_enabled(dev_priv, crtc->plane);
  4594.         if (IS_BROADWELL(dev)) {
  4595.                 mutex_lock(&dev_priv->rps.hw_lock);
  4596.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
  4597.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4598.                 /* Quoting Art Runyan: "its not safe to expect any particular
  4599.                  * value in IPS_CTL bit 31 after enabling IPS through the
  4600.                  * mailbox." Moreover, the mailbox may return a bogus state,
  4601.                  * so we need to just enable it and continue on.
  4602.                  */
  4603.         } else {
  4604.                 I915_WRITE(IPS_CTL, IPS_ENABLE);
  4605.                 /* The bit only becomes 1 in the next vblank, so this wait here
  4606.                  * is essentially intel_wait_for_vblank. If we don't have this
  4607.                  * and don't wait for vblanks until the end of crtc_enable, then
  4608.                  * the HW state readout code will complain that the expected
  4609.                  * IPS_CTL value is not the one we read. */
  4610.                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  4611.                         DRM_ERROR("Timed out waiting for IPS enable\n");
  4612.         }
  4613. }
  4614.  
  4615. void hsw_disable_ips(struct intel_crtc *crtc)
  4616. {
  4617.         struct drm_device *dev = crtc->base.dev;
  4618.         struct drm_i915_private *dev_priv = dev->dev_private;
  4619.  
  4620.         if (!crtc->config->ips_enabled)
  4621.                 return;
  4622.  
  4623.         assert_plane_enabled(dev_priv, crtc->plane);
  4624.         if (IS_BROADWELL(dev)) {
  4625.                 mutex_lock(&dev_priv->rps.hw_lock);
  4626.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
  4627.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4628.                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
  4629.                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
  4630.                         DRM_ERROR("Timed out waiting for IPS disable\n");
  4631.         } else {
  4632.                 I915_WRITE(IPS_CTL, 0);
  4633.                 POSTING_READ(IPS_CTL);
  4634.         }
  4635.  
  4636.         /* We need to wait for a vblank before we can disable the plane. */
  4637.         intel_wait_for_vblank(dev, crtc->pipe);
  4638. }
  4639.  
  4640. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4641. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  4642. {
  4643.         struct drm_device *dev = crtc->dev;
  4644.         struct drm_i915_private *dev_priv = dev->dev_private;
  4645.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4646.         enum pipe pipe = intel_crtc->pipe;
  4647.         int i;
  4648.         bool reenable_ips = false;
  4649.  
  4650.         /* The clocks have to be on to load the palette. */
  4651.         if (!crtc->state->active)
  4652.                 return;
  4653.  
  4654.         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
  4655.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
  4656.                         assert_dsi_pll_enabled(dev_priv);
  4657.                 else
  4658.                         assert_pll_enabled(dev_priv, pipe);
  4659.         }
  4660.  
  4661.         /* Workaround : Do not read or write the pipe palette/gamma data while
  4662.          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  4663.          */
  4664.         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
  4665.             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  4666.              GAMMA_MODE_MODE_SPLIT)) {
  4667.                 hsw_disable_ips(intel_crtc);
  4668.                 reenable_ips = true;
  4669.         }
  4670.  
  4671.         for (i = 0; i < 256; i++) {
  4672.                 u32 palreg;
  4673.  
  4674.                 if (HAS_GMCH_DISPLAY(dev))
  4675.                         palreg = PALETTE(pipe, i);
  4676.                 else
  4677.                         palreg = LGC_PALETTE(pipe, i);
  4678.  
  4679.                 I915_WRITE(palreg,
  4680.                            (intel_crtc->lut_r[i] << 16) |
  4681.                            (intel_crtc->lut_g[i] << 8) |
  4682.                            intel_crtc->lut_b[i]);
  4683.         }
  4684.  
  4685.         if (reenable_ips)
  4686.                 hsw_enable_ips(intel_crtc);
  4687. }
  4688.  
  4689. static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
  4690. {
  4691.         if (intel_crtc->overlay) {
  4692.                 struct drm_device *dev = intel_crtc->base.dev;
  4693.                 struct drm_i915_private *dev_priv = dev->dev_private;
  4694.  
  4695.                 mutex_lock(&dev->struct_mutex);
  4696.                 dev_priv->mm.interruptible = false;
  4697. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  4698.                 dev_priv->mm.interruptible = true;
  4699.                 mutex_unlock(&dev->struct_mutex);
  4700.         }
  4701.  
  4702.         /* Let userspace switch the overlay on again. In most cases userspace
  4703.          * has to recompute where to put it anyway.
  4704.          */
  4705. }
  4706.  
  4707. /**
  4708.  * intel_post_enable_primary - Perform operations after enabling primary plane
  4709.  * @crtc: the CRTC whose primary plane was just enabled
  4710.  *
  4711.  * Performs potentially sleeping operations that must be done after the primary
  4712.  * plane is enabled, such as updating FBC and IPS.  Note that this may be
  4713.  * called due to an explicit primary plane update, or due to an implicit
  4714.  * re-enable that is caused when a sprite plane is updated to no longer
  4715.  * completely hide the primary plane.
  4716.  */
  4717. static void
  4718. intel_post_enable_primary(struct drm_crtc *crtc)
  4719. {
  4720.         struct drm_device *dev = crtc->dev;
  4721.         struct drm_i915_private *dev_priv = dev->dev_private;
  4722.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4723.         int pipe = intel_crtc->pipe;
  4724.  
  4725.         /*
  4726.          * BDW signals flip done immediately if the plane
  4727.          * is disabled, even if the plane enable is already
  4728.          * armed to occur at the next vblank :(
  4729.          */
  4730.         if (IS_BROADWELL(dev))
  4731.                 intel_wait_for_vblank(dev, pipe);
  4732.  
  4733.         /*
  4734.          * FIXME IPS should be fine as long as one plane is
  4735.          * enabled, but in practice it seems to have problems
  4736.          * when going from primary only to sprite only and vice
  4737.          * versa.
  4738.          */
  4739.         hsw_enable_ips(intel_crtc);
  4740.  
  4741.         /*
  4742.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4743.          * So don't enable underrun reporting before at least some planes
  4744.          * are enabled.
  4745.          * FIXME: Need to fix the logic to work when we turn off all planes
  4746.          * but leave the pipe running.
  4747.          */
  4748.         if (IS_GEN2(dev))
  4749.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4750.  
  4751.         /* Underruns don't raise interrupts, so check manually. */
  4752.         if (HAS_GMCH_DISPLAY(dev))
  4753.                 i9xx_check_fifo_underruns(dev_priv);
  4754. }
  4755.  
  4756. /**
  4757.  * intel_pre_disable_primary - Perform operations before disabling primary plane
  4758.  * @crtc: the CRTC whose primary plane is to be disabled
  4759.  *
  4760.  * Performs potentially sleeping operations that must be done before the
  4761.  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
  4762.  * be called due to an explicit primary plane update, or due to an implicit
  4763.  * disable that is caused when a sprite plane completely hides the primary
  4764.  * plane.
  4765.  */
  4766. static void
  4767. intel_pre_disable_primary(struct drm_crtc *crtc)
  4768. {
  4769.         struct drm_device *dev = crtc->dev;
  4770.         struct drm_i915_private *dev_priv = dev->dev_private;
  4771.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4772.         int pipe = intel_crtc->pipe;
  4773.  
  4774.         /*
  4775.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4776.          * So diasble underrun reporting before all the planes get disabled.
  4777.          * FIXME: Need to fix the logic to work when we turn off all planes
  4778.          * but leave the pipe running.
  4779.          */
  4780.         if (IS_GEN2(dev))
  4781.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4782.  
  4783.         /*
  4784.          * Vblank time updates from the shadow to live plane control register
  4785.          * are blocked if the memory self-refresh mode is active at that
  4786.          * moment. So to make sure the plane gets truly disabled, disable
  4787.          * first the self-refresh mode. The self-refresh enable bit in turn
  4788.          * will be checked/applied by the HW only at the next frame start
  4789.          * event which is after the vblank start event, so we need to have a
  4790.          * wait-for-vblank between disabling the plane and the pipe.
  4791.          */
  4792.         if (HAS_GMCH_DISPLAY(dev)) {
  4793.                 intel_set_memory_cxsr(dev_priv, false);
  4794.                 dev_priv->wm.vlv.cxsr = false;
  4795.                 intel_wait_for_vblank(dev, pipe);
  4796.         }
  4797.  
  4798.         /*
  4799.          * FIXME IPS should be fine as long as one plane is
  4800.          * enabled, but in practice it seems to have problems
  4801.          * when going from primary only to sprite only and vice
  4802.          * versa.
  4803.          */
  4804.         hsw_disable_ips(intel_crtc);
  4805. }
  4806.  
  4807. static void intel_post_plane_update(struct intel_crtc *crtc)
  4808. {
  4809.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4810.         struct drm_device *dev = crtc->base.dev;
  4811.         struct drm_i915_private *dev_priv = dev->dev_private;
  4812.         struct drm_plane *plane;
  4813.  
  4814.         if (atomic->wait_vblank)
  4815.                 intel_wait_for_vblank(dev, crtc->pipe);
  4816.  
  4817.         intel_frontbuffer_flip(dev, atomic->fb_bits);
  4818.  
  4819.         if (atomic->disable_cxsr)
  4820.                 crtc->wm.cxsr_allowed = true;
  4821.  
  4822.         if (crtc->atomic.update_wm_post)
  4823.                 intel_update_watermarks(&crtc->base);
  4824.  
  4825.         if (atomic->update_fbc)
  4826.                 intel_fbc_update(dev_priv);
  4827.  
  4828.         if (atomic->post_enable_primary)
  4829.                 intel_post_enable_primary(&crtc->base);
  4830.  
  4831.         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
  4832.                 intel_update_sprite_watermarks(plane, &crtc->base,
  4833.                                                0, 0, 0, false, false);
  4834.  
  4835.         memset(atomic, 0, sizeof(*atomic));
  4836. }
  4837.  
  4838. static void intel_pre_plane_update(struct intel_crtc *crtc)
  4839. {
  4840.         struct drm_device *dev = crtc->base.dev;
  4841.         struct drm_i915_private *dev_priv = dev->dev_private;
  4842.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4843.         struct drm_plane *p;
  4844.  
  4845.         /* Track fb's for any planes being disabled */
  4846.         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
  4847.                 struct intel_plane *plane = to_intel_plane(p);
  4848.  
  4849.                 mutex_lock(&dev->struct_mutex);
  4850.                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
  4851.                                   plane->frontbuffer_bit);
  4852.                 mutex_unlock(&dev->struct_mutex);
  4853.         }
  4854.  
  4855.         if (atomic->wait_for_flips)
  4856.                 intel_crtc_wait_for_pending_flips(&crtc->base);
  4857.  
  4858.         if (atomic->disable_fbc)
  4859.                 intel_fbc_disable_crtc(crtc);
  4860.  
  4861.         if (crtc->atomic.disable_ips)
  4862.                 hsw_disable_ips(crtc);
  4863.  
  4864.         if (atomic->pre_disable_primary)
  4865.                 intel_pre_disable_primary(&crtc->base);
  4866.  
  4867.         if (atomic->disable_cxsr) {
  4868.                 crtc->wm.cxsr_allowed = false;
  4869.                 intel_set_memory_cxsr(dev_priv, false);
  4870.         }
  4871. }
  4872.  
  4873. static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
  4874. {
  4875.         struct drm_device *dev = crtc->dev;
  4876.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4877.         struct drm_plane *p;
  4878.         int pipe = intel_crtc->pipe;
  4879.  
  4880.         intel_crtc_dpms_overlay_disable(intel_crtc);
  4881.  
  4882.         drm_for_each_plane_mask(p, dev, plane_mask)
  4883.                 to_intel_plane(p)->disable_plane(p, crtc);
  4884.  
  4885.         /*
  4886.          * FIXME: Once we grow proper nuclear flip support out of this we need
  4887.          * to compute the mask of flip planes precisely. For the time being
  4888.          * consider this a flip to a NULL plane.
  4889.          */
  4890.         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
  4891. }
  4892.  
  4893. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  4894. {
  4895.         struct drm_device *dev = crtc->dev;
  4896.         struct drm_i915_private *dev_priv = dev->dev_private;
  4897.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4898.         struct intel_encoder *encoder;
  4899.         int pipe = intel_crtc->pipe;
  4900.  
  4901.         if (WARN_ON(intel_crtc->active))
  4902.                 return;
  4903.  
  4904.         if (intel_crtc->config->has_pch_encoder)
  4905.                 intel_prepare_shared_dpll(intel_crtc);
  4906.  
  4907.         if (intel_crtc->config->has_dp_encoder)
  4908.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4909.  
  4910.         intel_set_pipe_timings(intel_crtc);
  4911.  
  4912.         if (intel_crtc->config->has_pch_encoder) {
  4913.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4914.                                      &intel_crtc->config->fdi_m_n, NULL);
  4915.         }
  4916.  
  4917.         ironlake_set_pipeconf(crtc);
  4918.  
  4919.         intel_crtc->active = true;
  4920.  
  4921.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4922.         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
  4923.  
  4924.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4925.                 if (encoder->pre_enable)
  4926.                         encoder->pre_enable(encoder);
  4927.  
  4928.         if (intel_crtc->config->has_pch_encoder) {
  4929.                 /* Note: FDI PLL enabling _must_ be done before we enable the
  4930.                  * cpu pipes, hence this is separate from all the other fdi/pch
  4931.                  * enabling. */
  4932.                 ironlake_fdi_pll_enable(intel_crtc);
  4933.         } else {
  4934.                 assert_fdi_tx_disabled(dev_priv, pipe);
  4935.                 assert_fdi_rx_disabled(dev_priv, pipe);
  4936.         }
  4937.  
  4938.         ironlake_pfit_enable(intel_crtc);
  4939.  
  4940.         /*
  4941.          * On ILK+ LUT must be loaded before the pipe is running but with
  4942.          * clocks enabled
  4943.          */
  4944.         intel_crtc_load_lut(crtc);
  4945.  
  4946.         intel_update_watermarks(crtc);
  4947.         intel_enable_pipe(intel_crtc);
  4948.  
  4949.         if (intel_crtc->config->has_pch_encoder)
  4950.                 ironlake_pch_enable(crtc);
  4951.  
  4952.         assert_vblank_disabled(crtc);
  4953.         drm_crtc_vblank_on(crtc);
  4954.  
  4955.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4956.                 encoder->enable(encoder);
  4957.  
  4958.         if (HAS_PCH_CPT(dev))
  4959.                 cpt_verify_modeset(dev, intel_crtc->pipe);
  4960. }
  4961.  
  4962. /* IPS only exists on ULT machines and is tied to pipe A. */
  4963. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  4964. {
  4965.         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  4966. }
  4967.  
  4968. static void haswell_crtc_enable(struct drm_crtc *crtc)
  4969. {
  4970.         struct drm_device *dev = crtc->dev;
  4971.         struct drm_i915_private *dev_priv = dev->dev_private;
  4972.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4973.         struct intel_encoder *encoder;
  4974.         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
  4975.         struct intel_crtc_state *pipe_config =
  4976.                 to_intel_crtc_state(crtc->state);
  4977.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  4978.  
  4979.         if (WARN_ON(intel_crtc->active))
  4980.                 return;
  4981.  
  4982.         if (intel_crtc_to_shared_dpll(intel_crtc))
  4983.                 intel_enable_shared_dpll(intel_crtc);
  4984.  
  4985.         if (intel_crtc->config->has_dp_encoder)
  4986.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4987.  
  4988.         intel_set_pipe_timings(intel_crtc);
  4989.  
  4990.         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
  4991.                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
  4992.                            intel_crtc->config->pixel_multiplier - 1);
  4993.         }
  4994.  
  4995.         if (intel_crtc->config->has_pch_encoder) {
  4996.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4997.                                      &intel_crtc->config->fdi_m_n, NULL);
  4998.         }
  4999.  
  5000.         haswell_set_pipeconf(crtc);
  5001.  
  5002.         intel_set_pipe_csc(crtc);
  5003.  
  5004.         intel_crtc->active = true;
  5005.  
  5006.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  5007.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5008.                 if (encoder->pre_pll_enable)
  5009.                         encoder->pre_pll_enable(encoder);
  5010.                 if (encoder->pre_enable)
  5011.                         encoder->pre_enable(encoder);
  5012.         }
  5013.  
  5014.         if (intel_crtc->config->has_pch_encoder) {
  5015.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5016.                                                       true);
  5017.                 dev_priv->display.fdi_link_train(crtc);
  5018.         }
  5019.  
  5020.         if (!is_dsi)
  5021.                 intel_ddi_enable_pipe_clock(intel_crtc);
  5022.  
  5023.         if (INTEL_INFO(dev)->gen >= 9)
  5024.                 skylake_pfit_enable(intel_crtc);
  5025.         else
  5026.                 ironlake_pfit_enable(intel_crtc);
  5027.  
  5028.         /*
  5029.          * On ILK+ LUT must be loaded before the pipe is running but with
  5030.          * clocks enabled
  5031.          */
  5032.         intel_crtc_load_lut(crtc);
  5033.  
  5034.         intel_ddi_set_pipe_settings(crtc);
  5035.         if (!is_dsi)
  5036.                 intel_ddi_enable_transcoder_func(crtc);
  5037.  
  5038.         intel_update_watermarks(crtc);
  5039.         intel_enable_pipe(intel_crtc);
  5040.  
  5041.         if (intel_crtc->config->has_pch_encoder)
  5042.                 lpt_pch_enable(crtc);
  5043.  
  5044.         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
  5045.                 intel_ddi_set_vc_payload_alloc(crtc, true);
  5046.  
  5047.         assert_vblank_disabled(crtc);
  5048.         drm_crtc_vblank_on(crtc);
  5049.  
  5050.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5051.                 encoder->enable(encoder);
  5052.                 intel_opregion_notify_encoder(encoder, true);
  5053.         }
  5054.  
  5055.         /* If we change the relative order between pipe/planes enabling, we need
  5056.          * to change the workaround. */
  5057.         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
  5058.         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
  5059.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5060.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5061.         }
  5062. }
  5063.  
  5064. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
  5065. {
  5066.         struct drm_device *dev = crtc->base.dev;
  5067.         struct drm_i915_private *dev_priv = dev->dev_private;
  5068.         int pipe = crtc->pipe;
  5069.  
  5070.         /* To avoid upsetting the power well on haswell only disable the pfit if
  5071.          * it's in use. The hw state code will make sure we get this right. */
  5072.         if (force || crtc->config->pch_pfit.enabled) {
  5073.                 I915_WRITE(PF_CTL(pipe), 0);
  5074.                 I915_WRITE(PF_WIN_POS(pipe), 0);
  5075.                 I915_WRITE(PF_WIN_SZ(pipe), 0);
  5076.         }
  5077. }
  5078.  
  5079. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  5080. {
  5081.         struct drm_device *dev = crtc->dev;
  5082.         struct drm_i915_private *dev_priv = dev->dev_private;
  5083.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5084.         struct intel_encoder *encoder;
  5085.         int pipe = intel_crtc->pipe;
  5086.         u32 reg, temp;
  5087.  
  5088.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5089.                 encoder->disable(encoder);
  5090.  
  5091.         drm_crtc_vblank_off(crtc);
  5092.         assert_vblank_disabled(crtc);
  5093.  
  5094.         if (intel_crtc->config->has_pch_encoder)
  5095.                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
  5096.  
  5097.         intel_disable_pipe(intel_crtc);
  5098.  
  5099.         ironlake_pfit_disable(intel_crtc, false);
  5100.  
  5101.         if (intel_crtc->config->has_pch_encoder)
  5102.                 ironlake_fdi_disable(crtc);
  5103.  
  5104.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5105.                 if (encoder->post_disable)
  5106.                         encoder->post_disable(encoder);
  5107.  
  5108.         if (intel_crtc->config->has_pch_encoder) {
  5109.                 ironlake_disable_pch_transcoder(dev_priv, pipe);
  5110.  
  5111.                 if (HAS_PCH_CPT(dev)) {
  5112.                         /* disable TRANS_DP_CTL */
  5113.                         reg = TRANS_DP_CTL(pipe);
  5114.                         temp = I915_READ(reg);
  5115.                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  5116.                                   TRANS_DP_PORT_SEL_MASK);
  5117.                         temp |= TRANS_DP_PORT_SEL_NONE;
  5118.                         I915_WRITE(reg, temp);
  5119.  
  5120.                         /* disable DPLL_SEL */
  5121.                         temp = I915_READ(PCH_DPLL_SEL);
  5122.                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  5123.                         I915_WRITE(PCH_DPLL_SEL, temp);
  5124.                 }
  5125.  
  5126.                 ironlake_fdi_pll_disable(intel_crtc);
  5127.         }
  5128. }
  5129.  
  5130. static void haswell_crtc_disable(struct drm_crtc *crtc)
  5131. {
  5132.         struct drm_device *dev = crtc->dev;
  5133.         struct drm_i915_private *dev_priv = dev->dev_private;
  5134.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5135.         struct intel_encoder *encoder;
  5136.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  5137.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  5138.  
  5139.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5140.                 intel_opregion_notify_encoder(encoder, false);
  5141.                 encoder->disable(encoder);
  5142.         }
  5143.  
  5144.         drm_crtc_vblank_off(crtc);
  5145.         assert_vblank_disabled(crtc);
  5146.  
  5147.         if (intel_crtc->config->has_pch_encoder)
  5148.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5149.                                                       false);
  5150.         intel_disable_pipe(intel_crtc);
  5151.  
  5152.         if (intel_crtc->config->dp_encoder_is_mst)
  5153.                 intel_ddi_set_vc_payload_alloc(crtc, false);
  5154.  
  5155.         if (!is_dsi)
  5156.                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  5157.  
  5158.         if (INTEL_INFO(dev)->gen >= 9)
  5159.                 skylake_scaler_disable(intel_crtc);
  5160.         else
  5161.                 ironlake_pfit_disable(intel_crtc, false);
  5162.  
  5163.         if (!is_dsi)
  5164.                 intel_ddi_disable_pipe_clock(intel_crtc);
  5165.  
  5166.         if (intel_crtc->config->has_pch_encoder) {
  5167.                 lpt_disable_pch_transcoder(dev_priv);
  5168.                 intel_ddi_fdi_disable(crtc);
  5169.         }
  5170.  
  5171.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5172.                 if (encoder->post_disable)
  5173.                         encoder->post_disable(encoder);
  5174. }
  5175.  
  5176. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  5177. {
  5178.         struct drm_device *dev = crtc->base.dev;
  5179.         struct drm_i915_private *dev_priv = dev->dev_private;
  5180.         struct intel_crtc_state *pipe_config = crtc->config;
  5181.  
  5182.         if (!pipe_config->gmch_pfit.control)
  5183.                 return;
  5184.  
  5185.         /*
  5186.          * The panel fitter should only be adjusted whilst the pipe is disabled,
  5187.          * according to register description and PRM.
  5188.          */
  5189.         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  5190.         assert_pipe_disabled(dev_priv, crtc->pipe);
  5191.  
  5192.         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  5193.         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  5194.  
  5195.         /* Border color in case we don't scale up to the full screen. Black by
  5196.          * default, change to something else for debugging. */
  5197.         I915_WRITE(BCLRPAT(crtc->pipe), 0);
  5198. }
  5199.  
  5200. static enum intel_display_power_domain port_to_power_domain(enum port port)
  5201. {
  5202.         switch (port) {
  5203.         case PORT_A:
  5204.                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
  5205.         case PORT_B:
  5206.                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
  5207.         case PORT_C:
  5208.                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
  5209.         case PORT_D:
  5210.                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
  5211.         case PORT_E:
  5212.                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
  5213.         default:
  5214.                 MISSING_CASE(port);
  5215.                 return POWER_DOMAIN_PORT_OTHER;
  5216.         }
  5217. }
  5218.  
  5219. static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
  5220. {
  5221.         switch (port) {
  5222.         case PORT_A:
  5223.                 return POWER_DOMAIN_AUX_A;
  5224.         case PORT_B:
  5225.                 return POWER_DOMAIN_AUX_B;
  5226.         case PORT_C:
  5227.                 return POWER_DOMAIN_AUX_C;
  5228.         case PORT_D:
  5229.                 return POWER_DOMAIN_AUX_D;
  5230.         case PORT_E:
  5231.                 /* FIXME: Check VBT for actual wiring of PORT E */
  5232.                 return POWER_DOMAIN_AUX_D;
  5233.         default:
  5234.                 MISSING_CASE(port);
  5235.                 return POWER_DOMAIN_AUX_A;
  5236.         }
  5237. }
  5238.  
  5239. #define for_each_power_domain(domain, mask)                             \
  5240.         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
  5241.                 if ((1 << (domain)) & (mask))
  5242.  
  5243. enum intel_display_power_domain
  5244. intel_display_port_power_domain(struct intel_encoder *intel_encoder)
  5245. {
  5246.         struct drm_device *dev = intel_encoder->base.dev;
  5247.         struct intel_digital_port *intel_dig_port;
  5248.  
  5249.         switch (intel_encoder->type) {
  5250.         case INTEL_OUTPUT_UNKNOWN:
  5251.                 /* Only DDI platforms should ever use this output type */
  5252.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5253.         case INTEL_OUTPUT_DISPLAYPORT:
  5254.         case INTEL_OUTPUT_HDMI:
  5255.         case INTEL_OUTPUT_EDP:
  5256.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5257.                 return port_to_power_domain(intel_dig_port->port);
  5258.         case INTEL_OUTPUT_DP_MST:
  5259.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5260.                 return port_to_power_domain(intel_dig_port->port);
  5261.         case INTEL_OUTPUT_ANALOG:
  5262.                 return POWER_DOMAIN_PORT_CRT;
  5263.         case INTEL_OUTPUT_DSI:
  5264.                 return POWER_DOMAIN_PORT_DSI;
  5265.         default:
  5266.                 return POWER_DOMAIN_PORT_OTHER;
  5267.         }
  5268. }
  5269.  
  5270. enum intel_display_power_domain
  5271. intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
  5272. {
  5273.         struct drm_device *dev = intel_encoder->base.dev;
  5274.         struct intel_digital_port *intel_dig_port;
  5275.  
  5276.         switch (intel_encoder->type) {
  5277.         case INTEL_OUTPUT_UNKNOWN:
  5278.         case INTEL_OUTPUT_HDMI:
  5279.                 /*
  5280.                  * Only DDI platforms should ever use these output types.
  5281.                  * We can get here after the HDMI detect code has already set
  5282.                  * the type of the shared encoder. Since we can't be sure
  5283.                  * what's the status of the given connectors, play safe and
  5284.                  * run the DP detection too.
  5285.                  */
  5286.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5287.         case INTEL_OUTPUT_DISPLAYPORT:
  5288.         case INTEL_OUTPUT_EDP:
  5289.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5290.                 return port_to_aux_power_domain(intel_dig_port->port);
  5291.         case INTEL_OUTPUT_DP_MST:
  5292.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5293.                 return port_to_aux_power_domain(intel_dig_port->port);
  5294.         default:
  5295.                 MISSING_CASE(intel_encoder->type);
  5296.                 return POWER_DOMAIN_AUX_A;
  5297.         }
  5298. }
  5299.  
  5300. static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
  5301. {
  5302.         struct drm_device *dev = crtc->dev;
  5303.         struct intel_encoder *intel_encoder;
  5304.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5305.         enum pipe pipe = intel_crtc->pipe;
  5306.         unsigned long mask;
  5307.         enum transcoder transcoder;
  5308.  
  5309.         if (!crtc->state->active)
  5310.                 return 0;
  5311.  
  5312.         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
  5313.  
  5314.         mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5315.         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5316.         if (intel_crtc->config->pch_pfit.enabled ||
  5317.             intel_crtc->config->pch_pfit.force_thru)
  5318.                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5319.  
  5320.         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  5321.                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
  5322.  
  5323.         return mask;
  5324. }
  5325.  
  5326. static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
  5327. {
  5328.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5329.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5330.         enum intel_display_power_domain domain;
  5331.         unsigned long domains, new_domains, old_domains;
  5332.  
  5333.         old_domains = intel_crtc->enabled_power_domains;
  5334.         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
  5335.  
  5336.         domains = new_domains & ~old_domains;
  5337.  
  5338.         for_each_power_domain(domain, domains)
  5339.                 intel_display_power_get(dev_priv, domain);
  5340.  
  5341.         return old_domains & ~new_domains;
  5342. }
  5343.  
  5344. static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
  5345.                                       unsigned long domains)
  5346. {
  5347.         enum intel_display_power_domain domain;
  5348.  
  5349.         for_each_power_domain(domain, domains)
  5350.                 intel_display_power_put(dev_priv, domain);
  5351. }
  5352.  
  5353. static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
  5354. {
  5355.         struct drm_device *dev = state->dev;
  5356.         struct drm_i915_private *dev_priv = dev->dev_private;
  5357.         unsigned long put_domains[I915_MAX_PIPES] = {};
  5358.         struct drm_crtc_state *crtc_state;
  5359.         struct drm_crtc *crtc;
  5360.         int i;
  5361.  
  5362.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  5363.                 if (needs_modeset(crtc->state))
  5364.                         put_domains[to_intel_crtc(crtc)->pipe] =
  5365.                                 modeset_get_crtc_power_domains(crtc);
  5366.         }
  5367.  
  5368.         if (dev_priv->display.modeset_commit_cdclk) {
  5369.                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
  5370.  
  5371.                 if (cdclk != dev_priv->cdclk_freq &&
  5372.                     !WARN_ON(!state->allow_modeset))
  5373.                         dev_priv->display.modeset_commit_cdclk(state);
  5374.         }
  5375.  
  5376.         for (i = 0; i < I915_MAX_PIPES; i++)
  5377.                 if (put_domains[i])
  5378.                         modeset_put_power_domains(dev_priv, put_domains[i]);
  5379. }
  5380.  
  5381. static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
  5382. {
  5383.         int max_cdclk_freq = dev_priv->max_cdclk_freq;
  5384.  
  5385.         if (INTEL_INFO(dev_priv)->gen >= 9 ||
  5386.             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5387.                 return max_cdclk_freq;
  5388.         else if (IS_CHERRYVIEW(dev_priv))
  5389.                 return max_cdclk_freq*95/100;
  5390.         else if (INTEL_INFO(dev_priv)->gen < 4)
  5391.                 return 2*max_cdclk_freq*90/100;
  5392.         else
  5393.                 return max_cdclk_freq*90/100;
  5394. }
  5395.  
  5396. static void intel_update_max_cdclk(struct drm_device *dev)
  5397. {
  5398.         struct drm_i915_private *dev_priv = dev->dev_private;
  5399.  
  5400.         if (IS_SKYLAKE(dev)) {
  5401.                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
  5402.  
  5403.                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
  5404.                         dev_priv->max_cdclk_freq = 675000;
  5405.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
  5406.                         dev_priv->max_cdclk_freq = 540000;
  5407.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
  5408.                         dev_priv->max_cdclk_freq = 450000;
  5409.                 else
  5410.                         dev_priv->max_cdclk_freq = 337500;
  5411.         } else if (IS_BROADWELL(dev))  {
  5412.                 /*
  5413.                  * FIXME with extra cooling we can allow
  5414.                  * 540 MHz for ULX and 675 Mhz for ULT.
  5415.                  * How can we know if extra cooling is
  5416.                  * available? PCI ID, VTB, something else?
  5417.                  */
  5418.                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  5419.                         dev_priv->max_cdclk_freq = 450000;
  5420.                 else if (IS_BDW_ULX(dev))
  5421.                         dev_priv->max_cdclk_freq = 450000;
  5422.                 else if (IS_BDW_ULT(dev))
  5423.                         dev_priv->max_cdclk_freq = 540000;
  5424.                 else
  5425.                         dev_priv->max_cdclk_freq = 675000;
  5426.         } else if (IS_CHERRYVIEW(dev)) {
  5427.                 dev_priv->max_cdclk_freq = 320000;
  5428.         } else if (IS_VALLEYVIEW(dev)) {
  5429.                 dev_priv->max_cdclk_freq = 400000;
  5430.         } else {
  5431.                 /* otherwise assume cdclk is fixed */
  5432.                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
  5433.         }
  5434.  
  5435.         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
  5436.  
  5437.         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
  5438.                          dev_priv->max_cdclk_freq);
  5439.  
  5440.         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
  5441.                          dev_priv->max_dotclk_freq);
  5442. }
  5443.  
  5444. static void intel_update_cdclk(struct drm_device *dev)
  5445. {
  5446.         struct drm_i915_private *dev_priv = dev->dev_private;
  5447.  
  5448.         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  5449.         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
  5450.                          dev_priv->cdclk_freq);
  5451.  
  5452.         /*
  5453.          * Program the gmbus_freq based on the cdclk frequency.
  5454.          * BSpec erroneously claims we should aim for 4MHz, but
  5455.          * in fact 1MHz is the correct frequency.
  5456.          */
  5457.         if (IS_VALLEYVIEW(dev)) {
  5458.                 /*
  5459.                  * Program the gmbus_freq based on the cdclk frequency.
  5460.                  * BSpec erroneously claims we should aim for 4MHz, but
  5461.                  * in fact 1MHz is the correct frequency.
  5462.                  */
  5463.                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
  5464.         }
  5465.  
  5466.         if (dev_priv->max_cdclk_freq == 0)
  5467.                 intel_update_max_cdclk(dev);
  5468. }
  5469.  
  5470. static void broxton_set_cdclk(struct drm_device *dev, int frequency)
  5471. {
  5472.         struct drm_i915_private *dev_priv = dev->dev_private;
  5473.         uint32_t divider;
  5474.         uint32_t ratio;
  5475.         uint32_t current_freq;
  5476.         int ret;
  5477.  
  5478.         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
  5479.         switch (frequency) {
  5480.         case 144000:
  5481.                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
  5482.                 ratio = BXT_DE_PLL_RATIO(60);
  5483.                 break;
  5484.         case 288000:
  5485.                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
  5486.                 ratio = BXT_DE_PLL_RATIO(60);
  5487.                 break;
  5488.         case 384000:
  5489.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
  5490.                 ratio = BXT_DE_PLL_RATIO(60);
  5491.                 break;
  5492.         case 576000:
  5493.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5494.                 ratio = BXT_DE_PLL_RATIO(60);
  5495.                 break;
  5496.         case 624000:
  5497.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5498.                 ratio = BXT_DE_PLL_RATIO(65);
  5499.                 break;
  5500.         case 19200:
  5501.                 /*
  5502.                  * Bypass frequency with DE PLL disabled. Init ratio, divider
  5503.                  * to suppress GCC warning.
  5504.                  */
  5505.                 ratio = 0;
  5506.                 divider = 0;
  5507.                 break;
  5508.         default:
  5509.                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
  5510.  
  5511.                 return;
  5512.         }
  5513.  
  5514.         mutex_lock(&dev_priv->rps.hw_lock);
  5515.         /* Inform power controller of upcoming frequency change */
  5516.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5517.                                       0x80000000);
  5518.         mutex_unlock(&dev_priv->rps.hw_lock);
  5519.  
  5520.         if (ret) {
  5521.                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
  5522.                           ret, frequency);
  5523.                 return;
  5524.         }
  5525.  
  5526.         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
  5527.         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
  5528.         current_freq = current_freq * 500 + 1000;
  5529.  
  5530.         /*
  5531.          * DE PLL has to be disabled when
  5532.          * - setting to 19.2MHz (bypass, PLL isn't used)
  5533.          * - before setting to 624MHz (PLL needs toggling)
  5534.          * - before setting to any frequency from 624MHz (PLL needs toggling)
  5535.          */
  5536.         if (frequency == 19200 || frequency == 624000 ||
  5537.             current_freq == 624000) {
  5538.                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
  5539.                 /* Timeout 200us */
  5540.                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
  5541.                              1))
  5542.                         DRM_ERROR("timout waiting for DE PLL unlock\n");
  5543.         }
  5544.  
  5545.         if (frequency != 19200) {
  5546.                 uint32_t val;
  5547.  
  5548.                 val = I915_READ(BXT_DE_PLL_CTL);
  5549.                 val &= ~BXT_DE_PLL_RATIO_MASK;
  5550.                 val |= ratio;
  5551.                 I915_WRITE(BXT_DE_PLL_CTL, val);
  5552.  
  5553.                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
  5554.                 /* Timeout 200us */
  5555.                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
  5556.                         DRM_ERROR("timeout waiting for DE PLL lock\n");
  5557.  
  5558.                 val = I915_READ(CDCLK_CTL);
  5559.                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
  5560.                 val |= divider;
  5561.                 /*
  5562.                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
  5563.                  * enable otherwise.
  5564.                  */
  5565.                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5566.                 if (frequency >= 500000)
  5567.                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5568.  
  5569.                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
  5570.                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
  5571.                 val |= (frequency - 1000) / 500;
  5572.                 I915_WRITE(CDCLK_CTL, val);
  5573.         }
  5574.  
  5575.         mutex_lock(&dev_priv->rps.hw_lock);
  5576.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5577.                                       DIV_ROUND_UP(frequency, 25000));
  5578.         mutex_unlock(&dev_priv->rps.hw_lock);
  5579.  
  5580.         if (ret) {
  5581.                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
  5582.                           ret, frequency);
  5583.                 return;
  5584.         }
  5585.  
  5586.         intel_update_cdclk(dev);
  5587. }
  5588.  
  5589. void broxton_init_cdclk(struct drm_device *dev)
  5590. {
  5591.         struct drm_i915_private *dev_priv = dev->dev_private;
  5592.         uint32_t val;
  5593.  
  5594.         /*
  5595.          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
  5596.          * or else the reset will hang because there is no PCH to respond.
  5597.          * Move the handshake programming to initialization sequence.
  5598.          * Previously was left up to BIOS.
  5599.          */
  5600.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5601.         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
  5602.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
  5603.  
  5604.         /* Enable PG1 for cdclk */
  5605.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5606.  
  5607.         /* check if cd clock is enabled */
  5608.         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
  5609.                 DRM_DEBUG_KMS("Display already initialized\n");
  5610.                 return;
  5611.         }
  5612.  
  5613.         /*
  5614.          * FIXME:
  5615.          * - The initial CDCLK needs to be read from VBT.
  5616.          *   Need to make this change after VBT has changes for BXT.
  5617.          * - check if setting the max (or any) cdclk freq is really necessary
  5618.          *   here, it belongs to modeset time
  5619.          */
  5620.         broxton_set_cdclk(dev, 624000);
  5621.  
  5622.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5623.         POSTING_READ(DBUF_CTL);
  5624.  
  5625.         udelay(10);
  5626.  
  5627.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5628.                 DRM_ERROR("DBuf power enable timeout!\n");
  5629. }
  5630.  
  5631. void broxton_uninit_cdclk(struct drm_device *dev)
  5632. {
  5633.         struct drm_i915_private *dev_priv = dev->dev_private;
  5634.  
  5635.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5636.         POSTING_READ(DBUF_CTL);
  5637.  
  5638.         udelay(10);
  5639.  
  5640.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5641.                 DRM_ERROR("DBuf power disable timeout!\n");
  5642.  
  5643.         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
  5644.         broxton_set_cdclk(dev, 19200);
  5645.  
  5646.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5647. }
  5648.  
  5649. static const struct skl_cdclk_entry {
  5650.         unsigned int freq;
  5651.         unsigned int vco;
  5652. } skl_cdclk_frequencies[] = {
  5653.         { .freq = 308570, .vco = 8640 },
  5654.         { .freq = 337500, .vco = 8100 },
  5655.         { .freq = 432000, .vco = 8640 },
  5656.         { .freq = 450000, .vco = 8100 },
  5657.         { .freq = 540000, .vco = 8100 },
  5658.         { .freq = 617140, .vco = 8640 },
  5659.         { .freq = 675000, .vco = 8100 },
  5660. };
  5661.  
  5662. static unsigned int skl_cdclk_decimal(unsigned int freq)
  5663. {
  5664.         return (freq - 1000) / 500;
  5665. }
  5666.  
  5667. static unsigned int skl_cdclk_get_vco(unsigned int freq)
  5668. {
  5669.         unsigned int i;
  5670.  
  5671.         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
  5672.                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
  5673.  
  5674.                 if (e->freq == freq)
  5675.                         return e->vco;
  5676.         }
  5677.  
  5678.         return 8100;
  5679. }
  5680.  
  5681. static void
  5682. skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
  5683. {
  5684.         unsigned int min_freq;
  5685.         u32 val;
  5686.  
  5687.         /* select the minimum CDCLK before enabling DPLL 0 */
  5688.         val = I915_READ(CDCLK_CTL);
  5689.         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
  5690.         val |= CDCLK_FREQ_337_308;
  5691.  
  5692.         if (required_vco == 8640)
  5693.                 min_freq = 308570;
  5694.         else
  5695.                 min_freq = 337500;
  5696.  
  5697.         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
  5698.  
  5699.         I915_WRITE(CDCLK_CTL, val);
  5700.         POSTING_READ(CDCLK_CTL);
  5701.  
  5702.         /*
  5703.          * We always enable DPLL0 with the lowest link rate possible, but still
  5704.          * taking into account the VCO required to operate the eDP panel at the
  5705.          * desired frequency. The usual DP link rates operate with a VCO of
  5706.          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
  5707.          * The modeset code is responsible for the selection of the exact link
  5708.          * rate later on, with the constraint of choosing a frequency that
  5709.          * works with required_vco.
  5710.          */
  5711.         val = I915_READ(DPLL_CTRL1);
  5712.  
  5713.         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
  5714.                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
  5715.         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
  5716.         if (required_vco == 8640)
  5717.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
  5718.                                             SKL_DPLL0);
  5719.         else
  5720.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
  5721.                                             SKL_DPLL0);
  5722.  
  5723.         I915_WRITE(DPLL_CTRL1, val);
  5724.         POSTING_READ(DPLL_CTRL1);
  5725.  
  5726.         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
  5727.  
  5728.         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
  5729.                 DRM_ERROR("DPLL0 not locked\n");
  5730. }
  5731.  
  5732. static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
  5733. {
  5734.         int ret;
  5735.         u32 val;
  5736.  
  5737.         /* inform PCU we want to change CDCLK */
  5738.         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
  5739.         mutex_lock(&dev_priv->rps.hw_lock);
  5740.         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
  5741.         mutex_unlock(&dev_priv->rps.hw_lock);
  5742.  
  5743.         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
  5744. }
  5745.  
  5746. static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
  5747. {
  5748.         unsigned int i;
  5749.  
  5750.         for (i = 0; i < 15; i++) {
  5751.                 if (skl_cdclk_pcu_ready(dev_priv))
  5752.                         return true;
  5753.                 udelay(10);
  5754.         }
  5755.  
  5756.         return false;
  5757. }
  5758.  
  5759. static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
  5760. {
  5761.         struct drm_device *dev = dev_priv->dev;
  5762.         u32 freq_select, pcu_ack;
  5763.  
  5764.         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
  5765.  
  5766.         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
  5767.                 DRM_ERROR("failed to inform PCU about cdclk change\n");
  5768.                 return;
  5769.         }
  5770.  
  5771.         /* set CDCLK_CTL */
  5772.         switch(freq) {
  5773.         case 450000:
  5774.         case 432000:
  5775.                 freq_select = CDCLK_FREQ_450_432;
  5776.                 pcu_ack = 1;
  5777.                 break;
  5778.         case 540000:
  5779.                 freq_select = CDCLK_FREQ_540;
  5780.                 pcu_ack = 2;
  5781.                 break;
  5782.         case 308570:
  5783.         case 337500:
  5784.         default:
  5785.                 freq_select = CDCLK_FREQ_337_308;
  5786.                 pcu_ack = 0;
  5787.                 break;
  5788.         case 617140:
  5789.         case 675000:
  5790.                 freq_select = CDCLK_FREQ_675_617;
  5791.                 pcu_ack = 3;
  5792.                 break;
  5793.         }
  5794.  
  5795.         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
  5796.         POSTING_READ(CDCLK_CTL);
  5797.  
  5798.         /* inform PCU of the change */
  5799.         mutex_lock(&dev_priv->rps.hw_lock);
  5800.         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
  5801.         mutex_unlock(&dev_priv->rps.hw_lock);
  5802.  
  5803.         intel_update_cdclk(dev);
  5804. }
  5805.  
  5806. void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
  5807. {
  5808.         /* disable DBUF power */
  5809.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5810.         POSTING_READ(DBUF_CTL);
  5811.  
  5812.         udelay(10);
  5813.  
  5814.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5815.                 DRM_ERROR("DBuf power disable timeout\n");
  5816.  
  5817.         /*
  5818.          * DMC assumes ownership of LCPLL and will get confused if we touch it.
  5819.          */
  5820.         if (dev_priv->csr.dmc_payload) {
  5821.                 /* disable DPLL0 */
  5822.                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
  5823.                                         ~LCPLL_PLL_ENABLE);
  5824.                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
  5825.                         DRM_ERROR("Couldn't disable DPLL0\n");
  5826.         }
  5827.  
  5828.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5829. }
  5830.  
  5831. void skl_init_cdclk(struct drm_i915_private *dev_priv)
  5832. {
  5833.         u32 val;
  5834.         unsigned int required_vco;
  5835.  
  5836.         /* enable PCH reset handshake */
  5837.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5838.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
  5839.  
  5840.         /* enable PG1 and Misc I/O */
  5841.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5842.  
  5843.         /* DPLL0 not enabled (happens on early BIOS versions) */
  5844.         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
  5845.                 /* enable DPLL0 */
  5846.                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
  5847.                 skl_dpll0_enable(dev_priv, required_vco);
  5848.         }
  5849.  
  5850.         /* set CDCLK to the frequency the BIOS chose */
  5851.         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
  5852.  
  5853.         /* enable DBUF power */
  5854.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5855.         POSTING_READ(DBUF_CTL);
  5856.  
  5857.         udelay(10);
  5858.  
  5859.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5860.                 DRM_ERROR("DBuf power enable timeout\n");
  5861. }
  5862.  
  5863. /* Adjust CDclk dividers to allow high res or save power if possible */
  5864. static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
  5865. {
  5866.         struct drm_i915_private *dev_priv = dev->dev_private;
  5867.         u32 val, cmd;
  5868.  
  5869.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5870.                                         != dev_priv->cdclk_freq);
  5871.  
  5872.         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
  5873.                 cmd = 2;
  5874.         else if (cdclk == 266667)
  5875.                 cmd = 1;
  5876.         else
  5877.                 cmd = 0;
  5878.  
  5879.         mutex_lock(&dev_priv->rps.hw_lock);
  5880.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5881.         val &= ~DSPFREQGUAR_MASK;
  5882.         val |= (cmd << DSPFREQGUAR_SHIFT);
  5883.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5884.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5885.                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
  5886.                      50)) {
  5887.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5888.         }
  5889.         mutex_unlock(&dev_priv->rps.hw_lock);
  5890.  
  5891.         mutex_lock(&dev_priv->sb_lock);
  5892.  
  5893.         if (cdclk == 400000) {
  5894.                 u32 divider;
  5895.  
  5896.                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5897.  
  5898.                 /* adjust cdclk divider */
  5899.                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
  5900.                 val &= ~CCK_FREQUENCY_VALUES;
  5901.                 val |= divider;
  5902.                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
  5903.  
  5904.                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
  5905.                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
  5906.                              50))
  5907.                         DRM_ERROR("timed out waiting for CDclk change\n");
  5908.         }
  5909.  
  5910.         /* adjust self-refresh exit latency value */
  5911.         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
  5912.         val &= ~0x7f;
  5913.  
  5914.         /*
  5915.          * For high bandwidth configs, we set a higher latency in the bunit
  5916.          * so that the core display fetch happens in time to avoid underruns.
  5917.          */
  5918.         if (cdclk == 400000)
  5919.                 val |= 4500 / 250; /* 4.5 usec */
  5920.         else
  5921.                 val |= 3000 / 250; /* 3.0 usec */
  5922.         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
  5923.  
  5924.         mutex_unlock(&dev_priv->sb_lock);
  5925.  
  5926.         intel_update_cdclk(dev);
  5927. }
  5928.  
  5929. static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
  5930. {
  5931.         struct drm_i915_private *dev_priv = dev->dev_private;
  5932.         u32 val, cmd;
  5933.  
  5934.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5935.                                                 != dev_priv->cdclk_freq);
  5936.  
  5937.         switch (cdclk) {
  5938.         case 333333:
  5939.         case 320000:
  5940.         case 266667:
  5941.         case 200000:
  5942.                 break;
  5943.         default:
  5944.                 MISSING_CASE(cdclk);
  5945.                 return;
  5946.         }
  5947.  
  5948.         /*
  5949.          * Specs are full of misinformation, but testing on actual
  5950.          * hardware has shown that we just need to write the desired
  5951.          * CCK divider into the Punit register.
  5952.          */
  5953.         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5954.  
  5955.         mutex_lock(&dev_priv->rps.hw_lock);
  5956.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5957.         val &= ~DSPFREQGUAR_MASK_CHV;
  5958.         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
  5959.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5960.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5961.                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
  5962.                      50)) {
  5963.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5964.         }
  5965.         mutex_unlock(&dev_priv->rps.hw_lock);
  5966.  
  5967.         intel_update_cdclk(dev);
  5968. }
  5969.  
  5970. static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
  5971.                                  int max_pixclk)
  5972. {
  5973.         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
  5974.         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
  5975.  
  5976.         /*
  5977.          * Really only a few cases to deal with, as only 4 CDclks are supported:
  5978.          *   200MHz
  5979.          *   267MHz
  5980.          *   320/333MHz (depends on HPLL freq)
  5981.          *   400MHz (VLV only)
  5982.          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
  5983.          * of the lower bin and adjust if needed.
  5984.          *
  5985.          * We seem to get an unstable or solid color picture at 200MHz.
  5986.          * Not sure what's wrong. For now use 200MHz only when all pipes
  5987.          * are off.
  5988.          */
  5989.         if (!IS_CHERRYVIEW(dev_priv) &&
  5990.             max_pixclk > freq_320*limit/100)
  5991.                 return 400000;
  5992.         else if (max_pixclk > 266667*limit/100)
  5993.                 return freq_320;
  5994.         else if (max_pixclk > 0)
  5995.                 return 266667;
  5996.         else
  5997.                 return 200000;
  5998. }
  5999.  
  6000. static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
  6001.                               int max_pixclk)
  6002. {
  6003.         /*
  6004.          * FIXME:
  6005.          * - remove the guardband, it's not needed on BXT
  6006.          * - set 19.2MHz bypass frequency if there are no active pipes
  6007.          */
  6008.         if (max_pixclk > 576000*9/10)
  6009.                 return 624000;
  6010.         else if (max_pixclk > 384000*9/10)
  6011.                 return 576000;
  6012.         else if (max_pixclk > 288000*9/10)
  6013.                 return 384000;
  6014.         else if (max_pixclk > 144000*9/10)
  6015.                 return 288000;
  6016.         else
  6017.                 return 144000;
  6018. }
  6019.  
  6020. /* Compute the max pixel clock for new configuration. Uses atomic state if
  6021.  * that's non-NULL, look at current state otherwise. */
  6022. static int intel_mode_max_pixclk(struct drm_device *dev,
  6023.                                  struct drm_atomic_state *state)
  6024. {
  6025.         struct intel_crtc *intel_crtc;
  6026.         struct intel_crtc_state *crtc_state;
  6027.         int max_pixclk = 0;
  6028.  
  6029.         for_each_intel_crtc(dev, intel_crtc) {
  6030.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  6031.                 if (IS_ERR(crtc_state))
  6032.                         return PTR_ERR(crtc_state);
  6033.  
  6034.                 if (!crtc_state->base.enable)
  6035.                         continue;
  6036.  
  6037.                 max_pixclk = max(max_pixclk,
  6038.                                  crtc_state->base.adjusted_mode.crtc_clock);
  6039.         }
  6040.  
  6041.         return max_pixclk;
  6042. }
  6043.  
  6044. static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
  6045. {
  6046.         struct drm_device *dev = state->dev;
  6047.         struct drm_i915_private *dev_priv = dev->dev_private;
  6048.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6049.  
  6050.         if (max_pixclk < 0)
  6051.                 return max_pixclk;
  6052.  
  6053.         to_intel_atomic_state(state)->cdclk =
  6054.                 valleyview_calc_cdclk(dev_priv, max_pixclk);
  6055.  
  6056.         return 0;
  6057. }
  6058.  
  6059. static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
  6060. {
  6061.         struct drm_device *dev = state->dev;
  6062.         struct drm_i915_private *dev_priv = dev->dev_private;
  6063.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6064.  
  6065.         if (max_pixclk < 0)
  6066.                 return max_pixclk;
  6067.  
  6068.         to_intel_atomic_state(state)->cdclk =
  6069.                 broxton_calc_cdclk(dev_priv, max_pixclk);
  6070.  
  6071.         return 0;
  6072. }
  6073.  
  6074. static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
  6075. {
  6076.         unsigned int credits, default_credits;
  6077.  
  6078.         if (IS_CHERRYVIEW(dev_priv))
  6079.                 default_credits = PFI_CREDIT(12);
  6080.         else
  6081.                 default_credits = PFI_CREDIT(8);
  6082.  
  6083.         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
  6084.                 /* CHV suggested value is 31 or 63 */
  6085.                 if (IS_CHERRYVIEW(dev_priv))
  6086.                         credits = PFI_CREDIT_63;
  6087.                 else
  6088.                         credits = PFI_CREDIT(15);
  6089.         } else {
  6090.                 credits = default_credits;
  6091.         }
  6092.  
  6093.         /*
  6094.          * WA - write default credits before re-programming
  6095.          * FIXME: should we also set the resend bit here?
  6096.          */
  6097.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6098.                    default_credits);
  6099.  
  6100.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6101.                    credits | PFI_CREDIT_RESEND);
  6102.  
  6103.         /*
  6104.          * FIXME is this guaranteed to clear
  6105.          * immediately or should we poll for it?
  6106.          */
  6107.         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
  6108. }
  6109.  
  6110. static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  6111. {
  6112.         struct drm_device *dev = old_state->dev;
  6113.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  6114.         struct drm_i915_private *dev_priv = dev->dev_private;
  6115.  
  6116.         /*
  6117.          * FIXME: We can end up here with all power domains off, yet
  6118.          * with a CDCLK frequency other than the minimum. To account
  6119.          * for this take the PIPE-A power domain, which covers the HW
  6120.          * blocks needed for the following programming. This can be
  6121.          * removed once it's guaranteed that we get here either with
  6122.          * the minimum CDCLK set, or the required power domains
  6123.          * enabled.
  6124.          */
  6125.         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
  6126.  
  6127.         if (IS_CHERRYVIEW(dev))
  6128.                 cherryview_set_cdclk(dev, req_cdclk);
  6129.         else
  6130.                 valleyview_set_cdclk(dev, req_cdclk);
  6131.  
  6132.         vlv_program_pfi_credits(dev_priv);
  6133.  
  6134.         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
  6135. }
  6136.  
  6137. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  6138. {
  6139.         struct drm_device *dev = crtc->dev;
  6140.         struct drm_i915_private *dev_priv = to_i915(dev);
  6141.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6142.         struct intel_encoder *encoder;
  6143.         int pipe = intel_crtc->pipe;
  6144.         bool is_dsi;
  6145.  
  6146.         if (WARN_ON(intel_crtc->active))
  6147.                 return;
  6148.  
  6149.         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  6150.  
  6151.         if (intel_crtc->config->has_dp_encoder)
  6152.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6153.  
  6154.         intel_set_pipe_timings(intel_crtc);
  6155.  
  6156.         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
  6157.                 struct drm_i915_private *dev_priv = dev->dev_private;
  6158.  
  6159.                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
  6160.                 I915_WRITE(CHV_CANVAS(pipe), 0);
  6161.         }
  6162.  
  6163.         i9xx_set_pipeconf(intel_crtc);
  6164.  
  6165.         intel_crtc->active = true;
  6166.  
  6167.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6168.  
  6169.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6170.                 if (encoder->pre_pll_enable)
  6171.                         encoder->pre_pll_enable(encoder);
  6172.  
  6173.         if (!is_dsi) {
  6174.                 if (IS_CHERRYVIEW(dev)) {
  6175.                         chv_prepare_pll(intel_crtc, intel_crtc->config);
  6176.                         chv_enable_pll(intel_crtc, intel_crtc->config);
  6177.                 } else {
  6178.                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
  6179.                         vlv_enable_pll(intel_crtc, intel_crtc->config);
  6180.                 }
  6181.         }
  6182.  
  6183.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6184.                 if (encoder->pre_enable)
  6185.                         encoder->pre_enable(encoder);
  6186.  
  6187.         i9xx_pfit_enable(intel_crtc);
  6188.  
  6189.         intel_crtc_load_lut(crtc);
  6190.  
  6191.         intel_enable_pipe(intel_crtc);
  6192.  
  6193.         assert_vblank_disabled(crtc);
  6194.         drm_crtc_vblank_on(crtc);
  6195.  
  6196.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6197.                 encoder->enable(encoder);
  6198. }
  6199.  
  6200. static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
  6201. {
  6202.         struct drm_device *dev = crtc->base.dev;
  6203.         struct drm_i915_private *dev_priv = dev->dev_private;
  6204.  
  6205.         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
  6206.         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
  6207. }
  6208.  
  6209. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  6210. {
  6211.         struct drm_device *dev = crtc->dev;
  6212.         struct drm_i915_private *dev_priv = to_i915(dev);
  6213.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6214.         struct intel_encoder *encoder;
  6215.         int pipe = intel_crtc->pipe;
  6216.  
  6217.         if (WARN_ON(intel_crtc->active))
  6218.                 return;
  6219.  
  6220.         i9xx_set_pll_dividers(intel_crtc);
  6221.  
  6222.         if (intel_crtc->config->has_dp_encoder)
  6223.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6224.  
  6225.         intel_set_pipe_timings(intel_crtc);
  6226.  
  6227.         i9xx_set_pipeconf(intel_crtc);
  6228.  
  6229.         intel_crtc->active = true;
  6230.  
  6231.         if (!IS_GEN2(dev))
  6232.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6233.  
  6234.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6235.                 if (encoder->pre_enable)
  6236.                         encoder->pre_enable(encoder);
  6237.  
  6238.         i9xx_enable_pll(intel_crtc);
  6239.  
  6240.         i9xx_pfit_enable(intel_crtc);
  6241.  
  6242.         intel_crtc_load_lut(crtc);
  6243.  
  6244.         intel_update_watermarks(crtc);
  6245.         intel_enable_pipe(intel_crtc);
  6246.  
  6247.         assert_vblank_disabled(crtc);
  6248.         drm_crtc_vblank_on(crtc);
  6249.  
  6250.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6251.                 encoder->enable(encoder);
  6252. }
  6253.  
  6254. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  6255. {
  6256.         struct drm_device *dev = crtc->base.dev;
  6257.         struct drm_i915_private *dev_priv = dev->dev_private;
  6258.  
  6259.         if (!crtc->config->gmch_pfit.control)
  6260.                 return;
  6261.  
  6262.         assert_pipe_disabled(dev_priv, crtc->pipe);
  6263.  
  6264.         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  6265.                          I915_READ(PFIT_CONTROL));
  6266.         I915_WRITE(PFIT_CONTROL, 0);
  6267. }
  6268.  
  6269. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  6270. {
  6271.         struct drm_device *dev = crtc->dev;
  6272.         struct drm_i915_private *dev_priv = dev->dev_private;
  6273.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6274.         struct intel_encoder *encoder;
  6275.         int pipe = intel_crtc->pipe;
  6276.  
  6277.         /*
  6278.          * On gen2 planes are double buffered but the pipe isn't, so we must
  6279.          * wait for planes to fully turn off before disabling the pipe.
  6280.          * We also need to wait on all gmch platforms because of the
  6281.          * self-refresh mode constraint explained above.
  6282.          */
  6283.         intel_wait_for_vblank(dev, pipe);
  6284.  
  6285.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6286.                 encoder->disable(encoder);
  6287.  
  6288.         drm_crtc_vblank_off(crtc);
  6289.         assert_vblank_disabled(crtc);
  6290.  
  6291.         intel_disable_pipe(intel_crtc);
  6292.  
  6293.         i9xx_pfit_disable(intel_crtc);
  6294.  
  6295.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6296.                 if (encoder->post_disable)
  6297.                         encoder->post_disable(encoder);
  6298.  
  6299.         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
  6300.                 if (IS_CHERRYVIEW(dev))
  6301.                         chv_disable_pll(dev_priv, pipe);
  6302.                 else if (IS_VALLEYVIEW(dev))
  6303.                         vlv_disable_pll(dev_priv, pipe);
  6304.                 else
  6305.                         i9xx_disable_pll(intel_crtc);
  6306.         }
  6307.  
  6308.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6309.                 if (encoder->post_pll_disable)
  6310.                         encoder->post_pll_disable(encoder);
  6311.  
  6312.         if (!IS_GEN2(dev))
  6313.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  6314. }
  6315.  
  6316. static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
  6317. {
  6318.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6319.         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  6320.         enum intel_display_power_domain domain;
  6321.         unsigned long domains;
  6322.  
  6323.         if (!intel_crtc->active)
  6324.                 return;
  6325.  
  6326.         if (to_intel_plane_state(crtc->primary->state)->visible) {
  6327.                 intel_crtc_wait_for_pending_flips(crtc);
  6328.                 intel_pre_disable_primary(crtc);
  6329.  
  6330.                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
  6331.                 to_intel_plane_state(crtc->primary->state)->visible = false;
  6332.         }
  6333.  
  6334.         dev_priv->display.crtc_disable(crtc);
  6335.         intel_crtc->active = false;
  6336.         intel_update_watermarks(crtc);
  6337.         intel_disable_shared_dpll(intel_crtc);
  6338.  
  6339.         domains = intel_crtc->enabled_power_domains;
  6340.         for_each_power_domain(domain, domains)
  6341.                 intel_display_power_put(dev_priv, domain);
  6342.         intel_crtc->enabled_power_domains = 0;
  6343. }
  6344.  
  6345. /*
  6346.  * turn all crtc's off, but do not adjust state
  6347.  * This has to be paired with a call to intel_modeset_setup_hw_state.
  6348.  */
  6349. int intel_display_suspend(struct drm_device *dev)
  6350. {
  6351.         struct drm_mode_config *config = &dev->mode_config;
  6352.         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
  6353.         struct drm_atomic_state *state;
  6354.         struct drm_crtc *crtc;
  6355.         unsigned crtc_mask = 0;
  6356.         int ret = 0;
  6357.  
  6358.         if (WARN_ON(!ctx))
  6359.                 return 0;
  6360.  
  6361.         lockdep_assert_held(&ctx->ww_ctx);
  6362.         state = drm_atomic_state_alloc(dev);
  6363.         if (WARN_ON(!state))
  6364.                 return -ENOMEM;
  6365.  
  6366.         state->acquire_ctx = ctx;
  6367.         state->allow_modeset = true;
  6368.  
  6369.         for_each_crtc(dev, crtc) {
  6370.                 struct drm_crtc_state *crtc_state =
  6371.                         drm_atomic_get_crtc_state(state, crtc);
  6372.  
  6373.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  6374.                 if (ret)
  6375.                         goto free;
  6376.  
  6377.                 if (!crtc_state->active)
  6378.                         continue;
  6379.  
  6380.                 crtc_state->active = false;
  6381.                 crtc_mask |= 1 << drm_crtc_index(crtc);
  6382.         }
  6383.  
  6384.         if (crtc_mask) {
  6385.                 ret = drm_atomic_commit(state);
  6386.  
  6387.                 if (!ret) {
  6388.                         for_each_crtc(dev, crtc)
  6389.                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
  6390.                                         crtc->state->active = true;
  6391.  
  6392.                         return ret;
  6393.                 }
  6394.         }
  6395.  
  6396. free:
  6397.         if (ret)
  6398.                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
  6399.         drm_atomic_state_free(state);
  6400.         return ret;
  6401. }
  6402.  
  6403. void intel_encoder_destroy(struct drm_encoder *encoder)
  6404. {
  6405.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  6406.  
  6407.         drm_encoder_cleanup(encoder);
  6408.         kfree(intel_encoder);
  6409. }
  6410.  
  6411. /* Cross check the actual hw state with our own modeset state tracking (and it's
  6412.  * internal consistency). */
  6413. static void intel_connector_check_state(struct intel_connector *connector)
  6414. {
  6415.         struct drm_crtc *crtc = connector->base.state->crtc;
  6416.  
  6417.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  6418.                       connector->base.base.id,
  6419.                       connector->base.name);
  6420.  
  6421.         if (connector->get_hw_state(connector)) {
  6422.                 struct intel_encoder *encoder = connector->encoder;
  6423.                 struct drm_connector_state *conn_state = connector->base.state;
  6424.  
  6425.                 I915_STATE_WARN(!crtc,
  6426.                          "connector enabled without attached crtc\n");
  6427.  
  6428.                 if (!crtc)
  6429.                         return;
  6430.  
  6431.                 I915_STATE_WARN(!crtc->state->active,
  6432.                       "connector is active, but attached crtc isn't\n");
  6433.  
  6434.                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
  6435.                         return;
  6436.  
  6437.                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
  6438.                         "atomic encoder doesn't match attached encoder\n");
  6439.  
  6440.                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
  6441.                         "attached encoder crtc differs from connector crtc\n");
  6442.         } else {
  6443.                 I915_STATE_WARN(crtc && crtc->state->active,
  6444.                         "attached crtc is active, but connector isn't\n");
  6445.                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
  6446.                         "best encoder set without crtc!\n");
  6447.         }
  6448. }
  6449.  
  6450. int intel_connector_init(struct intel_connector *connector)
  6451. {
  6452.         struct drm_connector_state *connector_state;
  6453.  
  6454.         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
  6455.         if (!connector_state)
  6456.                 return -ENOMEM;
  6457.  
  6458.         connector->base.state = connector_state;
  6459.         return 0;
  6460. }
  6461.  
  6462. struct intel_connector *intel_connector_alloc(void)
  6463. {
  6464.         struct intel_connector *connector;
  6465.  
  6466.         connector = kzalloc(sizeof *connector, GFP_KERNEL);
  6467.         if (!connector)
  6468.                 return NULL;
  6469.  
  6470.         if (intel_connector_init(connector) < 0) {
  6471.                 kfree(connector);
  6472.                 return NULL;
  6473.         }
  6474.  
  6475.         return connector;
  6476. }
  6477.  
  6478. /* Simple connector->get_hw_state implementation for encoders that support only
  6479.  * one connector and no cloning and hence the encoder state determines the state
  6480.  * of the connector. */
  6481. bool intel_connector_get_hw_state(struct intel_connector *connector)
  6482. {
  6483.         enum pipe pipe = 0;
  6484.         struct intel_encoder *encoder = connector->encoder;
  6485.  
  6486.         return encoder->get_hw_state(encoder, &pipe);
  6487. }
  6488.  
  6489. static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
  6490. {
  6491.         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
  6492.                 return crtc_state->fdi_lanes;
  6493.  
  6494.         return 0;
  6495. }
  6496.  
  6497. static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  6498.                                      struct intel_crtc_state *pipe_config)
  6499. {
  6500.         struct drm_atomic_state *state = pipe_config->base.state;
  6501.         struct intel_crtc *other_crtc;
  6502.         struct intel_crtc_state *other_crtc_state;
  6503.  
  6504.         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  6505.                       pipe_name(pipe), pipe_config->fdi_lanes);
  6506.         if (pipe_config->fdi_lanes > 4) {
  6507.                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  6508.                               pipe_name(pipe), pipe_config->fdi_lanes);
  6509.                 return -EINVAL;
  6510.         }
  6511.  
  6512.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6513.                 if (pipe_config->fdi_lanes > 2) {
  6514.                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  6515.                                       pipe_config->fdi_lanes);
  6516.                         return -EINVAL;
  6517.                 } else {
  6518.                         return 0;
  6519.                 }
  6520.         }
  6521.  
  6522.         if (INTEL_INFO(dev)->num_pipes == 2)
  6523.                 return 0;
  6524.  
  6525.         /* Ivybridge 3 pipe is really complicated */
  6526.         switch (pipe) {
  6527.         case PIPE_A:
  6528.                 return 0;
  6529.         case PIPE_B:
  6530.                 if (pipe_config->fdi_lanes <= 2)
  6531.                         return 0;
  6532.  
  6533.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
  6534.                 other_crtc_state =
  6535.                         intel_atomic_get_crtc_state(state, other_crtc);
  6536.                 if (IS_ERR(other_crtc_state))
  6537.                         return PTR_ERR(other_crtc_state);
  6538.  
  6539.                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
  6540.                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  6541.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6542.                         return -EINVAL;
  6543.                 }
  6544.                 return 0;
  6545.         case PIPE_C:
  6546.                 if (pipe_config->fdi_lanes > 2) {
  6547.                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
  6548.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6549.                         return -EINVAL;
  6550.                 }
  6551.  
  6552.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
  6553.                 other_crtc_state =
  6554.                         intel_atomic_get_crtc_state(state, other_crtc);
  6555.                 if (IS_ERR(other_crtc_state))
  6556.                         return PTR_ERR(other_crtc_state);
  6557.  
  6558.                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
  6559.                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  6560.                         return -EINVAL;
  6561.                 }
  6562.                 return 0;
  6563.         default:
  6564.                 BUG();
  6565.         }
  6566. }
  6567.  
  6568. #define RETRY 1
  6569. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  6570.                                        struct intel_crtc_state *pipe_config)
  6571. {
  6572.         struct drm_device *dev = intel_crtc->base.dev;
  6573.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6574.         int lane, link_bw, fdi_dotclock, ret;
  6575.         bool needs_recompute = false;
  6576.  
  6577. retry:
  6578.         /* FDI is a binary signal running at ~2.7GHz, encoding
  6579.          * each output octet as 10 bits. The actual frequency
  6580.          * is stored as a divider into a 100MHz clock, and the
  6581.          * mode pixel clock is stored in units of 1KHz.
  6582.          * Hence the bw of each lane in terms of the mode signal
  6583.          * is:
  6584.          */
  6585.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  6586.  
  6587.         fdi_dotclock = adjusted_mode->crtc_clock;
  6588.  
  6589.         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  6590.                                            pipe_config->pipe_bpp);
  6591.  
  6592.         pipe_config->fdi_lanes = lane;
  6593.  
  6594.         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  6595.                                link_bw, &pipe_config->fdi_m_n);
  6596.  
  6597.         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  6598.                                        intel_crtc->pipe, pipe_config);
  6599.         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
  6600.                 pipe_config->pipe_bpp -= 2*3;
  6601.                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  6602.                               pipe_config->pipe_bpp);
  6603.                 needs_recompute = true;
  6604.                 pipe_config->bw_constrained = true;
  6605.  
  6606.                 goto retry;
  6607.         }
  6608.  
  6609.         if (needs_recompute)
  6610.                 return RETRY;
  6611.  
  6612.         return ret;
  6613. }
  6614.  
  6615. static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
  6616.                                      struct intel_crtc_state *pipe_config)
  6617. {
  6618.         if (pipe_config->pipe_bpp > 24)
  6619.                 return false;
  6620.  
  6621.         /* HSW can handle pixel rate up to cdclk? */
  6622.         if (IS_HASWELL(dev_priv->dev))
  6623.                 return true;
  6624.  
  6625.         /*
  6626.          * We compare against max which means we must take
  6627.          * the increased cdclk requirement into account when
  6628.          * calculating the new cdclk.
  6629.          *
  6630.          * Should measure whether using a lower cdclk w/o IPS
  6631.          */
  6632.         return ilk_pipe_pixel_rate(pipe_config) <=
  6633.                 dev_priv->max_cdclk_freq * 95 / 100;
  6634. }
  6635.  
  6636. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  6637.                                    struct intel_crtc_state *pipe_config)
  6638. {
  6639.         struct drm_device *dev = crtc->base.dev;
  6640.         struct drm_i915_private *dev_priv = dev->dev_private;
  6641.  
  6642.         pipe_config->ips_enabled = i915.enable_ips &&
  6643.                 hsw_crtc_supports_ips(crtc) &&
  6644.                 pipe_config_supports_ips(dev_priv, pipe_config);
  6645. }
  6646.  
  6647. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  6648.                                      struct intel_crtc_state *pipe_config)
  6649. {
  6650.         struct drm_device *dev = crtc->base.dev;
  6651.         struct drm_i915_private *dev_priv = dev->dev_private;
  6652.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6653.  
  6654.         /* FIXME should check pixel clock limits on all platforms */
  6655.         if (INTEL_INFO(dev)->gen < 4) {
  6656.                 int clock_limit = dev_priv->max_cdclk_freq;
  6657.  
  6658.                 /*
  6659.                  * Enable pixel doubling when the dot clock
  6660.                  * is > 90% of the (display) core speed.
  6661.                  *
  6662.                  * GDG double wide on either pipe,
  6663.                  * otherwise pipe A only.
  6664.                  */
  6665.                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  6666.                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  6667.                         clock_limit *= 2;
  6668.                         pipe_config->double_wide = true;
  6669.                 }
  6670.  
  6671.                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  6672.                         return -EINVAL;
  6673.         }
  6674.  
  6675.         /*
  6676.          * Pipe horizontal size must be even in:
  6677.          * - DVO ganged mode
  6678.          * - LVDS dual channel mode
  6679.          * - Double wide pipe
  6680.          */
  6681.         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
  6682.              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  6683.                 pipe_config->pipe_src_w &= ~1;
  6684.  
  6685.         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  6686.          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  6687.          */
  6688.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  6689.                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
  6690.                 return -EINVAL;
  6691.  
  6692.         if (HAS_IPS(dev))
  6693.                 hsw_compute_ips_config(crtc, pipe_config);
  6694.  
  6695.         if (pipe_config->has_pch_encoder)
  6696.                 return ironlake_fdi_compute_config(crtc, pipe_config);
  6697.  
  6698.         return 0;
  6699. }
  6700.  
  6701. static int skylake_get_display_clock_speed(struct drm_device *dev)
  6702. {
  6703.         struct drm_i915_private *dev_priv = to_i915(dev);
  6704.         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  6705.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6706.         uint32_t linkrate;
  6707.  
  6708.         if (!(lcpll1 & LCPLL_PLL_ENABLE))
  6709.                 return 24000; /* 24MHz is the cd freq with NSSC ref */
  6710.  
  6711.         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  6712.                 return 540000;
  6713.  
  6714.         linkrate = (I915_READ(DPLL_CTRL1) &
  6715.                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  6716.  
  6717.         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
  6718.             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
  6719.                 /* vco 8640 */
  6720.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6721.                 case CDCLK_FREQ_450_432:
  6722.                         return 432000;
  6723.                 case CDCLK_FREQ_337_308:
  6724.                         return 308570;
  6725.                 case CDCLK_FREQ_675_617:
  6726.                         return 617140;
  6727.                 default:
  6728.                         WARN(1, "Unknown cd freq selection\n");
  6729.                 }
  6730.         } else {
  6731.                 /* vco 8100 */
  6732.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6733.                 case CDCLK_FREQ_450_432:
  6734.                         return 450000;
  6735.                 case CDCLK_FREQ_337_308:
  6736.                         return 337500;
  6737.                 case CDCLK_FREQ_675_617:
  6738.                         return 675000;
  6739.                 default:
  6740.                         WARN(1, "Unknown cd freq selection\n");
  6741.                 }
  6742.         }
  6743.  
  6744.         /* error case, do as if DPLL0 isn't enabled */
  6745.         return 24000;
  6746. }
  6747.  
  6748. static int broxton_get_display_clock_speed(struct drm_device *dev)
  6749. {
  6750.         struct drm_i915_private *dev_priv = to_i915(dev);
  6751.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6752.         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
  6753.         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
  6754.         int cdclk;
  6755.  
  6756.         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
  6757.                 return 19200;
  6758.  
  6759.         cdclk = 19200 * pll_ratio / 2;
  6760.  
  6761.         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
  6762.         case BXT_CDCLK_CD2X_DIV_SEL_1:
  6763.                 return cdclk;  /* 576MHz or 624MHz */
  6764.         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
  6765.                 return cdclk * 2 / 3; /* 384MHz */
  6766.         case BXT_CDCLK_CD2X_DIV_SEL_2:
  6767.                 return cdclk / 2; /* 288MHz */
  6768.         case BXT_CDCLK_CD2X_DIV_SEL_4:
  6769.                 return cdclk / 4; /* 144MHz */
  6770.         }
  6771.  
  6772.         /* error case, do as if DE PLL isn't enabled */
  6773.         return 19200;
  6774. }
  6775.  
  6776. static int broadwell_get_display_clock_speed(struct drm_device *dev)
  6777. {
  6778.         struct drm_i915_private *dev_priv = dev->dev_private;
  6779.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6780.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6781.  
  6782.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6783.                 return 800000;
  6784.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6785.                 return 450000;
  6786.         else if (freq == LCPLL_CLK_FREQ_450)
  6787.                 return 450000;
  6788.         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  6789.                 return 540000;
  6790.         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  6791.                 return 337500;
  6792.         else
  6793.                 return 675000;
  6794. }
  6795.  
  6796. static int haswell_get_display_clock_speed(struct drm_device *dev)
  6797. {
  6798.         struct drm_i915_private *dev_priv = dev->dev_private;
  6799.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6800.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6801.  
  6802.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6803.                 return 800000;
  6804.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6805.                 return 450000;
  6806.         else if (freq == LCPLL_CLK_FREQ_450)
  6807.                 return 450000;
  6808.         else if (IS_HSW_ULT(dev))
  6809.                 return 337500;
  6810.         else
  6811.                 return 540000;
  6812. }
  6813.  
  6814. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  6815. {
  6816.         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
  6817.                                       CCK_DISPLAY_CLOCK_CONTROL);
  6818. }
  6819.  
  6820. static int ilk_get_display_clock_speed(struct drm_device *dev)
  6821. {
  6822.         return 450000;
  6823. }
  6824.  
  6825. static int i945_get_display_clock_speed(struct drm_device *dev)
  6826. {
  6827.         return 400000;
  6828. }
  6829.  
  6830. static int i915_get_display_clock_speed(struct drm_device *dev)
  6831. {
  6832.         return 333333;
  6833. }
  6834.  
  6835. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  6836. {
  6837.         return 200000;
  6838. }
  6839.  
  6840. static int pnv_get_display_clock_speed(struct drm_device *dev)
  6841. {
  6842.         u16 gcfgc = 0;
  6843.  
  6844.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6845.  
  6846.         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6847.         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  6848.                 return 266667;
  6849.         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  6850.                 return 333333;
  6851.         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  6852.                 return 444444;
  6853.         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  6854.                 return 200000;
  6855.         default:
  6856.                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  6857.         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  6858.                 return 133333;
  6859.         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  6860.                 return 166667;
  6861.         }
  6862. }
  6863.  
  6864. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  6865. {
  6866.         u16 gcfgc = 0;
  6867.  
  6868.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6869.  
  6870.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  6871.                 return 133333;
  6872.         else {
  6873.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6874.                 case GC_DISPLAY_CLOCK_333_MHZ:
  6875.                         return 333333;
  6876.                 default:
  6877.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  6878.                         return 190000;
  6879.                 }
  6880.         }
  6881. }
  6882.  
  6883. static int i865_get_display_clock_speed(struct drm_device *dev)
  6884. {
  6885.         return 266667;
  6886. }
  6887.  
  6888. static int i85x_get_display_clock_speed(struct drm_device *dev)
  6889. {
  6890.         u16 hpllcc = 0;
  6891.  
  6892.         /*
  6893.          * 852GM/852GMV only supports 133 MHz and the HPLLCC
  6894.          * encoding is different :(
  6895.          * FIXME is this the right way to detect 852GM/852GMV?
  6896.          */
  6897.         if (dev->pdev->revision == 0x1)
  6898.                 return 133333;
  6899.  
  6900. //   pci_bus_read_config_word(dev->pdev->bus,
  6901. //                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
  6902.  
  6903.         /* Assume that the hardware is in the high speed state.  This
  6904.          * should be the default.
  6905.          */
  6906.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  6907.         case GC_CLOCK_133_200:
  6908.         case GC_CLOCK_133_200_2:
  6909.         case GC_CLOCK_100_200:
  6910.                 return 200000;
  6911.         case GC_CLOCK_166_250:
  6912.                 return 250000;
  6913.         case GC_CLOCK_100_133:
  6914.                 return 133333;
  6915.         case GC_CLOCK_133_266:
  6916.         case GC_CLOCK_133_266_2:
  6917.         case GC_CLOCK_166_266:
  6918.                 return 266667;
  6919.         }
  6920.  
  6921.         /* Shouldn't happen */
  6922.         return 0;
  6923. }
  6924.  
  6925. static int i830_get_display_clock_speed(struct drm_device *dev)
  6926. {
  6927.         return 133333;
  6928. }
  6929.  
  6930. static unsigned int intel_hpll_vco(struct drm_device *dev)
  6931. {
  6932.         struct drm_i915_private *dev_priv = dev->dev_private;
  6933.         static const unsigned int blb_vco[8] = {
  6934.                 [0] = 3200000,
  6935.                 [1] = 4000000,
  6936.                 [2] = 5333333,
  6937.                 [3] = 4800000,
  6938.                 [4] = 6400000,
  6939.         };
  6940.         static const unsigned int pnv_vco[8] = {
  6941.                 [0] = 3200000,
  6942.                 [1] = 4000000,
  6943.                 [2] = 5333333,
  6944.                 [3] = 4800000,
  6945.                 [4] = 2666667,
  6946.         };
  6947.         static const unsigned int cl_vco[8] = {
  6948.                 [0] = 3200000,
  6949.                 [1] = 4000000,
  6950.                 [2] = 5333333,
  6951.                 [3] = 6400000,
  6952.                 [4] = 3333333,
  6953.                 [5] = 3566667,
  6954.                 [6] = 4266667,
  6955.         };
  6956.         static const unsigned int elk_vco[8] = {
  6957.                 [0] = 3200000,
  6958.                 [1] = 4000000,
  6959.                 [2] = 5333333,
  6960.                 [3] = 4800000,
  6961.         };
  6962.         static const unsigned int ctg_vco[8] = {
  6963.                 [0] = 3200000,
  6964.                 [1] = 4000000,
  6965.                 [2] = 5333333,
  6966.                 [3] = 6400000,
  6967.                 [4] = 2666667,
  6968.                 [5] = 4266667,
  6969.         };
  6970.         const unsigned int *vco_table;
  6971.         unsigned int vco;
  6972.         uint8_t tmp = 0;
  6973.  
  6974.         /* FIXME other chipsets? */
  6975.         if (IS_GM45(dev))
  6976.                 vco_table = ctg_vco;
  6977.         else if (IS_G4X(dev))
  6978.                 vco_table = elk_vco;
  6979.         else if (IS_CRESTLINE(dev))
  6980.                 vco_table = cl_vco;
  6981.         else if (IS_PINEVIEW(dev))
  6982.                 vco_table = pnv_vco;
  6983.         else if (IS_G33(dev))
  6984.                 vco_table = blb_vco;
  6985.         else
  6986.                 return 0;
  6987.  
  6988.         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
  6989.  
  6990.         vco = vco_table[tmp & 0x7];
  6991.         if (vco == 0)
  6992.                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
  6993.         else
  6994.                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
  6995.  
  6996.         return vco;
  6997. }
  6998.  
  6999. static int gm45_get_display_clock_speed(struct drm_device *dev)
  7000. {
  7001.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7002.         uint16_t tmp = 0;
  7003.  
  7004.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7005.  
  7006.         cdclk_sel = (tmp >> 12) & 0x1;
  7007.  
  7008.         switch (vco) {
  7009.         case 2666667:
  7010.         case 4000000:
  7011.         case 5333333:
  7012.                 return cdclk_sel ? 333333 : 222222;
  7013.         case 3200000:
  7014.                 return cdclk_sel ? 320000 : 228571;
  7015.         default:
  7016.                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
  7017.                 return 222222;
  7018.         }
  7019. }
  7020.  
  7021. static int i965gm_get_display_clock_speed(struct drm_device *dev)
  7022. {
  7023.         static const uint8_t div_3200[] = { 16, 10,  8 };
  7024.         static const uint8_t div_4000[] = { 20, 12, 10 };
  7025.         static const uint8_t div_5333[] = { 24, 16, 14 };
  7026.         const uint8_t *div_table;
  7027.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7028.         uint16_t tmp = 0;
  7029.  
  7030.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7031.  
  7032.         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
  7033.  
  7034.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7035.                 goto fail;
  7036.  
  7037.         switch (vco) {
  7038.         case 3200000:
  7039.                 div_table = div_3200;
  7040.                 break;
  7041.         case 4000000:
  7042.                 div_table = div_4000;
  7043.                 break;
  7044.         case 5333333:
  7045.                 div_table = div_5333;
  7046.                 break;
  7047.         default:
  7048.                 goto fail;
  7049.         }
  7050.  
  7051.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7052.  
  7053. fail:
  7054.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
  7055.         return 200000;
  7056. }
  7057.  
  7058. static int g33_get_display_clock_speed(struct drm_device *dev)
  7059. {
  7060.         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
  7061.         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
  7062.         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
  7063.         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
  7064.         const uint8_t *div_table;
  7065.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7066.         uint16_t tmp = 0;
  7067.  
  7068.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7069.  
  7070.         cdclk_sel = (tmp >> 4) & 0x7;
  7071.  
  7072.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7073.                 goto fail;
  7074.  
  7075.         switch (vco) {
  7076.         case 3200000:
  7077.                 div_table = div_3200;
  7078.                 break;
  7079.         case 4000000:
  7080.                 div_table = div_4000;
  7081.                 break;
  7082.         case 4800000:
  7083.                 div_table = div_4800;
  7084.                 break;
  7085.         case 5333333:
  7086.                 div_table = div_5333;
  7087.                 break;
  7088.         default:
  7089.                 goto fail;
  7090.         }
  7091.  
  7092.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7093.  
  7094. fail:
  7095.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
  7096.         return 190476;
  7097. }
  7098.  
  7099. static void
  7100. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  7101. {
  7102.         while (*num > DATA_LINK_M_N_MASK ||
  7103.                *den > DATA_LINK_M_N_MASK) {
  7104.                 *num >>= 1;
  7105.                 *den >>= 1;
  7106.         }
  7107. }
  7108.  
  7109. static void compute_m_n(unsigned int m, unsigned int n,
  7110.                         uint32_t *ret_m, uint32_t *ret_n)
  7111. {
  7112.         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  7113.         *ret_m = div_u64((uint64_t) m * *ret_n, n);
  7114.         intel_reduce_m_n_ratio(ret_m, ret_n);
  7115. }
  7116.  
  7117. void
  7118. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  7119.                        int pixel_clock, int link_clock,
  7120.                        struct intel_link_m_n *m_n)
  7121. {
  7122.         m_n->tu = 64;
  7123.  
  7124.         compute_m_n(bits_per_pixel * pixel_clock,
  7125.                     link_clock * nlanes * 8,
  7126.                     &m_n->gmch_m, &m_n->gmch_n);
  7127.  
  7128.         compute_m_n(pixel_clock, link_clock,
  7129.                     &m_n->link_m, &m_n->link_n);
  7130. }
  7131.  
  7132. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  7133. {
  7134.         if (i915.panel_use_ssc >= 0)
  7135.                 return i915.panel_use_ssc != 0;
  7136.         return dev_priv->vbt.lvds_use_ssc
  7137.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  7138. }
  7139.  
  7140. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  7141.                            int num_connectors)
  7142. {
  7143.         struct drm_device *dev = crtc_state->base.crtc->dev;
  7144.         struct drm_i915_private *dev_priv = dev->dev_private;
  7145.         int refclk;
  7146.  
  7147.         WARN_ON(!crtc_state->base.state);
  7148.  
  7149.         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
  7150.                 refclk = 100000;
  7151.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7152.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  7153.                 refclk = dev_priv->vbt.lvds_ssc_freq;
  7154.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
  7155.         } else if (!IS_GEN2(dev)) {
  7156.                 refclk = 96000;
  7157.         } else {
  7158.                 refclk = 48000;
  7159.         }
  7160.  
  7161.         return refclk;
  7162. }
  7163.  
  7164. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  7165. {
  7166.         return (1 << dpll->n) << 16 | dpll->m2;
  7167. }
  7168.  
  7169. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  7170. {
  7171.         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  7172. }
  7173.  
  7174. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  7175.                                      struct intel_crtc_state *crtc_state,
  7176.                                      intel_clock_t *reduced_clock)
  7177. {
  7178.         struct drm_device *dev = crtc->base.dev;
  7179.         u32 fp, fp2 = 0;
  7180.  
  7181.         if (IS_PINEVIEW(dev)) {
  7182.                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
  7183.                 if (reduced_clock)
  7184.                         fp2 = pnv_dpll_compute_fp(reduced_clock);
  7185.         } else {
  7186.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  7187.                 if (reduced_clock)
  7188.                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
  7189.         }
  7190.  
  7191.         crtc_state->dpll_hw_state.fp0 = fp;
  7192.  
  7193.         crtc->lowfreq_avail = false;
  7194.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7195.             reduced_clock) {
  7196.                 crtc_state->dpll_hw_state.fp1 = fp2;
  7197.                 crtc->lowfreq_avail = true;
  7198.         } else {
  7199.                 crtc_state->dpll_hw_state.fp1 = fp;
  7200.         }
  7201. }
  7202.  
  7203. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  7204.                 pipe)
  7205. {
  7206.         u32 reg_val;
  7207.  
  7208.         /*
  7209.          * PLLB opamp always calibrates to max value of 0x3f, force enable it
  7210.          * and set it to a reasonable value instead.
  7211.          */
  7212.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7213.         reg_val &= 0xffffff00;
  7214.         reg_val |= 0x00000030;
  7215.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7216.  
  7217.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7218.         reg_val &= 0x8cffffff;
  7219.         reg_val = 0x8c000000;
  7220.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7221.  
  7222.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7223.         reg_val &= 0xffffff00;
  7224.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7225.  
  7226.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7227.         reg_val &= 0x00ffffff;
  7228.         reg_val |= 0xb0000000;
  7229.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7230. }
  7231.  
  7232. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  7233.                                          struct intel_link_m_n *m_n)
  7234. {
  7235.         struct drm_device *dev = crtc->base.dev;
  7236.         struct drm_i915_private *dev_priv = dev->dev_private;
  7237.         int pipe = crtc->pipe;
  7238.  
  7239.         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7240.         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  7241.         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  7242.         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  7243. }
  7244.  
  7245. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  7246.                                          struct intel_link_m_n *m_n,
  7247.                                          struct intel_link_m_n *m2_n2)
  7248. {
  7249.         struct drm_device *dev = crtc->base.dev;
  7250.         struct drm_i915_private *dev_priv = dev->dev_private;
  7251.         int pipe = crtc->pipe;
  7252.         enum transcoder transcoder = crtc->config->cpu_transcoder;
  7253.  
  7254.         if (INTEL_INFO(dev)->gen >= 5) {
  7255.                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7256.                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  7257.                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  7258.                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  7259.                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
  7260.                  * for gen < 8) and if DRRS is supported (to make sure the
  7261.                  * registers are not unnecessarily accessed).
  7262.                  */
  7263.                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
  7264.                         crtc->config->has_drrs) {
  7265.                         I915_WRITE(PIPE_DATA_M2(transcoder),
  7266.                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
  7267.                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
  7268.                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
  7269.                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
  7270.                 }
  7271.         } else {
  7272.                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7273.                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  7274.                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  7275.                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  7276.         }
  7277. }
  7278.  
  7279. void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
  7280. {
  7281.         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
  7282.  
  7283.         if (m_n == M1_N1) {
  7284.                 dp_m_n = &crtc->config->dp_m_n;
  7285.                 dp_m2_n2 = &crtc->config->dp_m2_n2;
  7286.         } else if (m_n == M2_N2) {
  7287.  
  7288.                 /*
  7289.                  * M2_N2 registers are not supported. Hence m2_n2 divider value
  7290.                  * needs to be programmed into M1_N1.
  7291.                  */
  7292.                 dp_m_n = &crtc->config->dp_m2_n2;
  7293.         } else {
  7294.                 DRM_ERROR("Unsupported divider value\n");
  7295.                 return;
  7296.         }
  7297.  
  7298.         if (crtc->config->has_pch_encoder)
  7299.                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
  7300.         else
  7301.                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
  7302. }
  7303.  
  7304. static void vlv_compute_dpll(struct intel_crtc *crtc,
  7305.                              struct intel_crtc_state *pipe_config)
  7306. {
  7307.         u32 dpll, dpll_md;
  7308.  
  7309.         /*
  7310.          * Enable DPIO clock input. We should never disable the reference
  7311.          * clock for pipe B, since VGA hotplug / manual detection depends
  7312.          * on it.
  7313.          */
  7314.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
  7315.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
  7316.         /* We should never disable this, set it here for state tracking */
  7317.         if (crtc->pipe == PIPE_B)
  7318.                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7319.         dpll |= DPLL_VCO_ENABLE;
  7320.         pipe_config->dpll_hw_state.dpll = dpll;
  7321.  
  7322.         dpll_md = (pipe_config->pixel_multiplier - 1)
  7323.                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7324.         pipe_config->dpll_hw_state.dpll_md = dpll_md;
  7325. }
  7326.  
  7327. static void vlv_prepare_pll(struct intel_crtc *crtc,
  7328.                             const struct intel_crtc_state *pipe_config)
  7329. {
  7330.         struct drm_device *dev = crtc->base.dev;
  7331.         struct drm_i915_private *dev_priv = dev->dev_private;
  7332.         int pipe = crtc->pipe;
  7333.         u32 mdiv;
  7334.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  7335.         u32 coreclk, reg_val;
  7336.  
  7337.         mutex_lock(&dev_priv->sb_lock);
  7338.  
  7339.         bestn = pipe_config->dpll.n;
  7340.         bestm1 = pipe_config->dpll.m1;
  7341.         bestm2 = pipe_config->dpll.m2;
  7342.         bestp1 = pipe_config->dpll.p1;
  7343.         bestp2 = pipe_config->dpll.p2;
  7344.  
  7345.         /* See eDP HDMI DPIO driver vbios notes doc */
  7346.  
  7347.         /* PLL B needs special handling */
  7348.         if (pipe == PIPE_B)
  7349.                 vlv_pllb_recal_opamp(dev_priv, pipe);
  7350.  
  7351.         /* Set up Tx target for periodic Rcomp update */
  7352.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
  7353.  
  7354.         /* Disable target IRef on PLL */
  7355.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
  7356.         reg_val &= 0x00ffffff;
  7357.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
  7358.  
  7359.         /* Disable fast lock */
  7360.         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
  7361.  
  7362.         /* Set idtafcrecal before PLL is enabled */
  7363.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  7364.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  7365.         mdiv |= ((bestn << DPIO_N_SHIFT));
  7366.         mdiv |= (1 << DPIO_K_SHIFT);
  7367.  
  7368.         /*
  7369.          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  7370.          * but we don't support that).
  7371.          * Note: don't use the DAC post divider as it seems unstable.
  7372.          */
  7373.         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  7374.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7375.  
  7376.         mdiv |= DPIO_ENABLE_CALIBRATION;
  7377.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7378.  
  7379.         /* Set HBR and RBR LPF coefficients */
  7380.         if (pipe_config->port_clock == 162000 ||
  7381.             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
  7382.             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  7383.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7384.                                  0x009f0003);
  7385.         else
  7386.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7387.                                  0x00d0000f);
  7388.  
  7389.         if (pipe_config->has_dp_encoder) {
  7390.                 /* Use SSC source */
  7391.                 if (pipe == PIPE_A)
  7392.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7393.                                          0x0df40000);
  7394.                 else
  7395.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7396.                                          0x0df70000);
  7397.         } else { /* HDMI or VGA */
  7398.                 /* Use bend source */
  7399.                 if (pipe == PIPE_A)
  7400.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7401.                                          0x0df70000);
  7402.                 else
  7403.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7404.                                          0x0df40000);
  7405.         }
  7406.  
  7407.         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
  7408.         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  7409.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  7410.             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  7411.                 coreclk |= 0x01000000;
  7412.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
  7413.  
  7414.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
  7415.         mutex_unlock(&dev_priv->sb_lock);
  7416. }
  7417.  
  7418. static void chv_compute_dpll(struct intel_crtc *crtc,
  7419.                              struct intel_crtc_state *pipe_config)
  7420. {
  7421.         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
  7422.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
  7423.                 DPLL_VCO_ENABLE;
  7424.         if (crtc->pipe != PIPE_A)
  7425.                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7426.  
  7427.         pipe_config->dpll_hw_state.dpll_md =
  7428.                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7429. }
  7430.  
  7431. static void chv_prepare_pll(struct intel_crtc *crtc,
  7432.                             const struct intel_crtc_state *pipe_config)
  7433. {
  7434.         struct drm_device *dev = crtc->base.dev;
  7435.         struct drm_i915_private *dev_priv = dev->dev_private;
  7436.         int pipe = crtc->pipe;
  7437.         int dpll_reg = DPLL(crtc->pipe);
  7438.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  7439.         u32 loopfilter, tribuf_calcntr;
  7440.         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
  7441.         u32 dpio_val;
  7442.         int vco;
  7443.  
  7444.         bestn = pipe_config->dpll.n;
  7445.         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
  7446.         bestm1 = pipe_config->dpll.m1;
  7447.         bestm2 = pipe_config->dpll.m2 >> 22;
  7448.         bestp1 = pipe_config->dpll.p1;
  7449.         bestp2 = pipe_config->dpll.p2;
  7450.         vco = pipe_config->dpll.vco;
  7451.         dpio_val = 0;
  7452.         loopfilter = 0;
  7453.  
  7454.         /*
  7455.          * Enable Refclk and SSC
  7456.          */
  7457.         I915_WRITE(dpll_reg,
  7458.                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
  7459.  
  7460.         mutex_lock(&dev_priv->sb_lock);
  7461.  
  7462.         /* p1 and p2 divider */
  7463.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
  7464.                         5 << DPIO_CHV_S1_DIV_SHIFT |
  7465.                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
  7466.                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
  7467.                         1 << DPIO_CHV_K_DIV_SHIFT);
  7468.  
  7469.         /* Feedback post-divider - m2 */
  7470.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
  7471.  
  7472.         /* Feedback refclk divider - n and m1 */
  7473.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
  7474.                         DPIO_CHV_M1_DIV_BY_2 |
  7475.                         1 << DPIO_CHV_N_DIV_SHIFT);
  7476.  
  7477.         /* M2 fraction division */
  7478.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
  7479.  
  7480.         /* M2 fraction division enable */
  7481.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  7482.         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
  7483.         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
  7484.         if (bestm2_frac)
  7485.                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
  7486.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
  7487.  
  7488.         /* Program digital lock detect threshold */
  7489.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
  7490.         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
  7491.                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
  7492.         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
  7493.         if (!bestm2_frac)
  7494.                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
  7495.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
  7496.  
  7497.         /* Loop filter */
  7498.         if (vco == 5400000) {
  7499.                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
  7500.                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
  7501.                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7502.                 tribuf_calcntr = 0x9;
  7503.         } else if (vco <= 6200000) {
  7504.                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
  7505.                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
  7506.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7507.                 tribuf_calcntr = 0x9;
  7508.         } else if (vco <= 6480000) {
  7509.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7510.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7511.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7512.                 tribuf_calcntr = 0x8;
  7513.         } else {
  7514.                 /* Not supported. Apply the same limits as in the max case */
  7515.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7516.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7517.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7518.                 tribuf_calcntr = 0;
  7519.         }
  7520.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
  7521.  
  7522.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
  7523.         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
  7524.         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
  7525.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
  7526.  
  7527.         /* AFC Recal */
  7528.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
  7529.                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
  7530.                         DPIO_AFC_RECAL);
  7531.  
  7532.         mutex_unlock(&dev_priv->sb_lock);
  7533. }
  7534.  
  7535. /**
  7536.  * vlv_force_pll_on - forcibly enable just the PLL
  7537.  * @dev_priv: i915 private structure
  7538.  * @pipe: pipe PLL to enable
  7539.  * @dpll: PLL configuration
  7540.  *
  7541.  * Enable the PLL for @pipe using the supplied @dpll config. To be used
  7542.  * in cases where we need the PLL enabled even when @pipe is not going to
  7543.  * be enabled.
  7544.  */
  7545. void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
  7546.                       const struct dpll *dpll)
  7547. {
  7548.         struct intel_crtc *crtc =
  7549.                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  7550.         struct intel_crtc_state pipe_config = {
  7551.                 .base.crtc = &crtc->base,
  7552.                 .pixel_multiplier = 1,
  7553.                 .dpll = *dpll,
  7554.         };
  7555.  
  7556.         if (IS_CHERRYVIEW(dev)) {
  7557.                 chv_compute_dpll(crtc, &pipe_config);
  7558.                 chv_prepare_pll(crtc, &pipe_config);
  7559.                 chv_enable_pll(crtc, &pipe_config);
  7560.         } else {
  7561.                 vlv_compute_dpll(crtc, &pipe_config);
  7562.                 vlv_prepare_pll(crtc, &pipe_config);
  7563.                 vlv_enable_pll(crtc, &pipe_config);
  7564.         }
  7565. }
  7566.  
  7567. /**
  7568.  * vlv_force_pll_off - forcibly disable just the PLL
  7569.  * @dev_priv: i915 private structure
  7570.  * @pipe: pipe PLL to disable
  7571.  *
  7572.  * Disable the PLL for @pipe. To be used in cases where we need
  7573.  * the PLL enabled even when @pipe is not going to be enabled.
  7574.  */
  7575. void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
  7576. {
  7577.         if (IS_CHERRYVIEW(dev))
  7578.                 chv_disable_pll(to_i915(dev), pipe);
  7579.         else
  7580.                 vlv_disable_pll(to_i915(dev), pipe);
  7581. }
  7582.  
  7583. static void i9xx_compute_dpll(struct intel_crtc *crtc,
  7584.                               struct intel_crtc_state *crtc_state,
  7585.                               intel_clock_t *reduced_clock,
  7586.                               int num_connectors)
  7587. {
  7588.         struct drm_device *dev = crtc->base.dev;
  7589.         struct drm_i915_private *dev_priv = dev->dev_private;
  7590.         u32 dpll;
  7591.         bool is_sdvo;
  7592.         struct dpll *clock = &crtc_state->dpll;
  7593.  
  7594.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7595.  
  7596.         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
  7597.                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
  7598.  
  7599.         dpll = DPLL_VGA_MODE_DIS;
  7600.  
  7601.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  7602.                 dpll |= DPLLB_MODE_LVDS;
  7603.         else
  7604.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  7605.  
  7606.         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  7607.                 dpll |= (crtc_state->pixel_multiplier - 1)
  7608.                         << SDVO_MULTIPLIER_SHIFT_HIRES;
  7609.         }
  7610.  
  7611.         if (is_sdvo)
  7612.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7613.  
  7614.         if (crtc_state->has_dp_encoder)
  7615.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7616.  
  7617.         /* compute bitmask from p1 value */
  7618.         if (IS_PINEVIEW(dev))
  7619.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  7620.         else {
  7621.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7622.                 if (IS_G4X(dev) && reduced_clock)
  7623.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  7624.         }
  7625.         switch (clock->p2) {
  7626.         case 5:
  7627.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  7628.                 break;
  7629.         case 7:
  7630.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  7631.                 break;
  7632.         case 10:
  7633.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  7634.                 break;
  7635.         case 14:
  7636.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  7637.                 break;
  7638.         }
  7639.         if (INTEL_INFO(dev)->gen >= 4)
  7640.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  7641.  
  7642.         if (crtc_state->sdvo_tv_clock)
  7643.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  7644.         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7645.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7646.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7647.         else
  7648.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7649.  
  7650.         dpll |= DPLL_VCO_ENABLE;
  7651.         crtc_state->dpll_hw_state.dpll = dpll;
  7652.  
  7653.         if (INTEL_INFO(dev)->gen >= 4) {
  7654.                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
  7655.                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7656.                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
  7657.         }
  7658. }
  7659.  
  7660. static void i8xx_compute_dpll(struct intel_crtc *crtc,
  7661.                               struct intel_crtc_state *crtc_state,
  7662.                               intel_clock_t *reduced_clock,
  7663.                               int num_connectors)
  7664. {
  7665.         struct drm_device *dev = crtc->base.dev;
  7666.         struct drm_i915_private *dev_priv = dev->dev_private;
  7667.         u32 dpll;
  7668.         struct dpll *clock = &crtc_state->dpll;
  7669.  
  7670.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7671.  
  7672.         dpll = DPLL_VGA_MODE_DIS;
  7673.  
  7674.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  7675.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7676.         } else {
  7677.                 if (clock->p1 == 2)
  7678.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  7679.                 else
  7680.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7681.                 if (clock->p2 == 4)
  7682.                         dpll |= PLL_P2_DIVIDE_BY_4;
  7683.         }
  7684.  
  7685.         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  7686.                 dpll |= DPLL_DVO_2X_MODE;
  7687.  
  7688.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7689.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7690.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7691.         else
  7692.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7693.  
  7694.         dpll |= DPLL_VCO_ENABLE;
  7695.         crtc_state->dpll_hw_state.dpll = dpll;
  7696. }
  7697.  
  7698. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  7699. {
  7700.         struct drm_device *dev = intel_crtc->base.dev;
  7701.         struct drm_i915_private *dev_priv = dev->dev_private;
  7702.         enum pipe pipe = intel_crtc->pipe;
  7703.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  7704.         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  7705.         uint32_t crtc_vtotal, crtc_vblank_end;
  7706.         int vsyncshift = 0;
  7707.  
  7708.         /* We need to be careful not to changed the adjusted mode, for otherwise
  7709.          * the hw state checker will get angry at the mismatch. */
  7710.         crtc_vtotal = adjusted_mode->crtc_vtotal;
  7711.         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  7712.  
  7713.         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  7714.                 /* the chip adds 2 halflines automatically */
  7715.                 crtc_vtotal -= 1;
  7716.                 crtc_vblank_end -= 1;
  7717.  
  7718.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7719.                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
  7720.                 else
  7721.                         vsyncshift = adjusted_mode->crtc_hsync_start -
  7722.                                 adjusted_mode->crtc_htotal / 2;
  7723.                 if (vsyncshift < 0)
  7724.                         vsyncshift += adjusted_mode->crtc_htotal;
  7725.         }
  7726.  
  7727.         if (INTEL_INFO(dev)->gen > 3)
  7728.                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  7729.  
  7730.         I915_WRITE(HTOTAL(cpu_transcoder),
  7731.                    (adjusted_mode->crtc_hdisplay - 1) |
  7732.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  7733.         I915_WRITE(HBLANK(cpu_transcoder),
  7734.                    (adjusted_mode->crtc_hblank_start - 1) |
  7735.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  7736.         I915_WRITE(HSYNC(cpu_transcoder),
  7737.                    (adjusted_mode->crtc_hsync_start - 1) |
  7738.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  7739.  
  7740.         I915_WRITE(VTOTAL(cpu_transcoder),
  7741.                    (adjusted_mode->crtc_vdisplay - 1) |
  7742.                    ((crtc_vtotal - 1) << 16));
  7743.         I915_WRITE(VBLANK(cpu_transcoder),
  7744.                    (adjusted_mode->crtc_vblank_start - 1) |
  7745.                    ((crtc_vblank_end - 1) << 16));
  7746.         I915_WRITE(VSYNC(cpu_transcoder),
  7747.                    (adjusted_mode->crtc_vsync_start - 1) |
  7748.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  7749.  
  7750.         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  7751.          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  7752.          * documented on the DDI_FUNC_CTL register description, EDP Input Select
  7753.          * bits. */
  7754.         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  7755.             (pipe == PIPE_B || pipe == PIPE_C))
  7756.                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  7757.  
  7758.         /* pipesrc controls the size that is scaled from, which should
  7759.          * always be the user's requested size.
  7760.          */
  7761.         I915_WRITE(PIPESRC(pipe),
  7762.                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
  7763.                    (intel_crtc->config->pipe_src_h - 1));
  7764. }
  7765.  
  7766. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  7767.                                    struct intel_crtc_state *pipe_config)
  7768. {
  7769.         struct drm_device *dev = crtc->base.dev;
  7770.         struct drm_i915_private *dev_priv = dev->dev_private;
  7771.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  7772.         uint32_t tmp;
  7773.  
  7774.         tmp = I915_READ(HTOTAL(cpu_transcoder));
  7775.         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  7776.         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  7777.         tmp = I915_READ(HBLANK(cpu_transcoder));
  7778.         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  7779.         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  7780.         tmp = I915_READ(HSYNC(cpu_transcoder));
  7781.         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  7782.         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  7783.  
  7784.         tmp = I915_READ(VTOTAL(cpu_transcoder));
  7785.         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  7786.         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  7787.         tmp = I915_READ(VBLANK(cpu_transcoder));
  7788.         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  7789.         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  7790.         tmp = I915_READ(VSYNC(cpu_transcoder));
  7791.         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  7792.         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  7793.  
  7794.         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  7795.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  7796.                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
  7797.                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
  7798.         }
  7799.  
  7800.         tmp = I915_READ(PIPESRC(crtc->pipe));
  7801.         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  7802.         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  7803.  
  7804.         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
  7805.         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
  7806. }
  7807.  
  7808. void intel_mode_from_pipe_config(struct drm_display_mode *mode,
  7809.                                  struct intel_crtc_state *pipe_config)
  7810. {
  7811.         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
  7812.         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
  7813.         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
  7814.         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
  7815.  
  7816.         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
  7817.         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
  7818.         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
  7819.         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
  7820.  
  7821.         mode->flags = pipe_config->base.adjusted_mode.flags;
  7822.         mode->type = DRM_MODE_TYPE_DRIVER;
  7823.  
  7824.         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
  7825.         mode->flags |= pipe_config->base.adjusted_mode.flags;
  7826.  
  7827.         mode->hsync = drm_mode_hsync(mode);
  7828.         mode->vrefresh = drm_mode_vrefresh(mode);
  7829.         drm_mode_set_name(mode);
  7830. }
  7831.  
  7832. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  7833. {
  7834.         struct drm_device *dev = intel_crtc->base.dev;
  7835.         struct drm_i915_private *dev_priv = dev->dev_private;
  7836.         uint32_t pipeconf;
  7837.  
  7838.         pipeconf = 0;
  7839.  
  7840.         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  7841.             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  7842.                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
  7843.  
  7844.         if (intel_crtc->config->double_wide)
  7845.                 pipeconf |= PIPECONF_DOUBLE_WIDE;
  7846.  
  7847.         /* only g4x and later have fancy bpc/dither controls */
  7848.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  7849.                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
  7850.                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
  7851.                         pipeconf |= PIPECONF_DITHER_EN |
  7852.                                     PIPECONF_DITHER_TYPE_SP;
  7853.  
  7854.                 switch (intel_crtc->config->pipe_bpp) {
  7855.                 case 18:
  7856.                         pipeconf |= PIPECONF_6BPC;
  7857.                         break;
  7858.                 case 24:
  7859.                         pipeconf |= PIPECONF_8BPC;
  7860.                         break;
  7861.                 case 30:
  7862.                         pipeconf |= PIPECONF_10BPC;
  7863.                         break;
  7864.                 default:
  7865.                         /* Case prevented by intel_choose_pipe_bpp_dither. */
  7866.                         BUG();
  7867.                 }
  7868.         }
  7869.  
  7870.         if (HAS_PIPE_CXSR(dev)) {
  7871.                 if (intel_crtc->lowfreq_avail) {
  7872.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  7873.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  7874.                 } else {
  7875.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  7876.                 }
  7877.         }
  7878.  
  7879.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  7880.                 if (INTEL_INFO(dev)->gen < 4 ||
  7881.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7882.                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  7883.                 else
  7884.                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
  7885.         } else
  7886.                 pipeconf |= PIPECONF_PROGRESSIVE;
  7887.  
  7888.         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
  7889.                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  7890.  
  7891.         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  7892.         POSTING_READ(PIPECONF(intel_crtc->pipe));
  7893. }
  7894.  
  7895. static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
  7896.                                    struct intel_crtc_state *crtc_state)
  7897. {
  7898.         struct drm_device *dev = crtc->base.dev;
  7899.         struct drm_i915_private *dev_priv = dev->dev_private;
  7900.         int refclk, num_connectors = 0;
  7901.         intel_clock_t clock;
  7902.         bool ok;
  7903.         bool is_dsi = false;
  7904.         struct intel_encoder *encoder;
  7905.         const intel_limit_t *limit;
  7906.         struct drm_atomic_state *state = crtc_state->base.state;
  7907.         struct drm_connector *connector;
  7908.         struct drm_connector_state *connector_state;
  7909.         int i;
  7910.  
  7911.         memset(&crtc_state->dpll_hw_state, 0,
  7912.                sizeof(crtc_state->dpll_hw_state));
  7913.  
  7914.         for_each_connector_in_state(state, connector, connector_state, i) {
  7915.                 if (connector_state->crtc != &crtc->base)
  7916.                         continue;
  7917.  
  7918.                 encoder = to_intel_encoder(connector_state->best_encoder);
  7919.  
  7920.                 switch (encoder->type) {
  7921.                 case INTEL_OUTPUT_DSI:
  7922.                         is_dsi = true;
  7923.                         break;
  7924.                 default:
  7925.                         break;
  7926.                 }
  7927.  
  7928.                 num_connectors++;
  7929.         }
  7930.  
  7931.         if (is_dsi)
  7932.                 return 0;
  7933.  
  7934.         if (!crtc_state->clock_set) {
  7935.                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
  7936.  
  7937.                 /*
  7938.                  * Returns a set of divisors for the desired target clock with
  7939.                  * the given refclk, or FALSE.  The returned values represent
  7940.                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  7941.                  * 2) / p1 / p2.
  7942.                  */
  7943.                 limit = intel_limit(crtc_state, refclk);
  7944.                 ok = dev_priv->display.find_dpll(limit, crtc_state,
  7945.                                                  crtc_state->port_clock,
  7946.                                                  refclk, NULL, &clock);
  7947.                 if (!ok) {
  7948.                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
  7949.                         return -EINVAL;
  7950.                 }
  7951.  
  7952.                 /* Compat-code for transition, will disappear. */
  7953.                 crtc_state->dpll.n = clock.n;
  7954.                 crtc_state->dpll.m1 = clock.m1;
  7955.                 crtc_state->dpll.m2 = clock.m2;
  7956.                 crtc_state->dpll.p1 = clock.p1;
  7957.                 crtc_state->dpll.p2 = clock.p2;
  7958.         }
  7959.  
  7960.         if (IS_GEN2(dev)) {
  7961.                 i8xx_compute_dpll(crtc, crtc_state, NULL,
  7962.                                   num_connectors);
  7963.         } else if (IS_CHERRYVIEW(dev)) {
  7964.                 chv_compute_dpll(crtc, crtc_state);
  7965.         } else if (IS_VALLEYVIEW(dev)) {
  7966.                 vlv_compute_dpll(crtc, crtc_state);
  7967.         } else {
  7968.                 i9xx_compute_dpll(crtc, crtc_state, NULL,
  7969.                                   num_connectors);
  7970.         }
  7971.  
  7972.         return 0;
  7973. }
  7974.  
  7975. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  7976.                                  struct intel_crtc_state *pipe_config)
  7977. {
  7978.         struct drm_device *dev = crtc->base.dev;
  7979.         struct drm_i915_private *dev_priv = dev->dev_private;
  7980.         uint32_t tmp;
  7981.  
  7982.         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
  7983.                 return;
  7984.  
  7985.         tmp = I915_READ(PFIT_CONTROL);
  7986.         if (!(tmp & PFIT_ENABLE))
  7987.                 return;
  7988.  
  7989.         /* Check whether the pfit is attached to our pipe. */
  7990.         if (INTEL_INFO(dev)->gen < 4) {
  7991.                 if (crtc->pipe != PIPE_B)
  7992.                         return;
  7993.         } else {
  7994.                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  7995.                         return;
  7996.         }
  7997.  
  7998.         pipe_config->gmch_pfit.control = tmp;
  7999.         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  8000.         if (INTEL_INFO(dev)->gen < 5)
  8001.                 pipe_config->gmch_pfit.lvds_border_bits =
  8002.                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  8003. }
  8004.  
  8005. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  8006.                                struct intel_crtc_state *pipe_config)
  8007. {
  8008.         struct drm_device *dev = crtc->base.dev;
  8009.         struct drm_i915_private *dev_priv = dev->dev_private;
  8010.         int pipe = pipe_config->cpu_transcoder;
  8011.         intel_clock_t clock;
  8012.         u32 mdiv;
  8013.         int refclk = 100000;
  8014.  
  8015.         /* In case of MIPI DPLL will not even be used */
  8016.         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
  8017.                 return;
  8018.  
  8019.         mutex_lock(&dev_priv->sb_lock);
  8020.         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
  8021.         mutex_unlock(&dev_priv->sb_lock);
  8022.  
  8023.         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  8024.         clock.m2 = mdiv & DPIO_M2DIV_MASK;
  8025.         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  8026.         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  8027.         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  8028.  
  8029.         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
  8030. }
  8031.  
  8032. static void
  8033. i9xx_get_initial_plane_config(struct intel_crtc *crtc,
  8034.                               struct intel_initial_plane_config *plane_config)
  8035. {
  8036.         struct drm_device *dev = crtc->base.dev;
  8037.         struct drm_i915_private *dev_priv = dev->dev_private;
  8038.         u32 val, base, offset;
  8039.         int pipe = crtc->pipe, plane = crtc->plane;
  8040.         int fourcc, pixel_format;
  8041.         unsigned int aligned_height;
  8042.         struct drm_framebuffer *fb;
  8043.         struct intel_framebuffer *intel_fb;
  8044.  
  8045.         val = I915_READ(DSPCNTR(plane));
  8046.         if (!(val & DISPLAY_PLANE_ENABLE))
  8047.                 return;
  8048.  
  8049.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  8050.         if (!intel_fb) {
  8051.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  8052.                 return;
  8053.         }
  8054.  
  8055.         fb = &intel_fb->base;
  8056.  
  8057.         if (INTEL_INFO(dev)->gen >= 4) {
  8058.                 if (val & DISPPLANE_TILED) {
  8059.                         plane_config->tiling = I915_TILING_X;
  8060.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  8061.                 }
  8062.         }
  8063.  
  8064.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  8065.         fourcc = i9xx_format_to_fourcc(pixel_format);
  8066.         fb->pixel_format = fourcc;
  8067.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  8068.  
  8069.         if (INTEL_INFO(dev)->gen >= 4) {
  8070.                 if (plane_config->tiling)
  8071.                         offset = I915_READ(DSPTILEOFF(plane));
  8072.                 else
  8073.                         offset = I915_READ(DSPLINOFF(plane));
  8074.                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
  8075.         } else {
  8076.                 base = I915_READ(DSPADDR(plane));
  8077.         }
  8078.         plane_config->base = base;
  8079.  
  8080.         val = I915_READ(PIPESRC(pipe));
  8081.         fb->width = ((val >> 16) & 0xfff) + 1;
  8082.         fb->height = ((val >> 0) & 0xfff) + 1;
  8083.  
  8084.         val = I915_READ(DSPSTRIDE(pipe));
  8085.         fb->pitches[0] = val & 0xffffffc0;
  8086.  
  8087.         aligned_height = intel_fb_align_height(dev, fb->height,
  8088.                                                fb->pixel_format,
  8089.                                                fb->modifier[0]);
  8090.  
  8091.         plane_config->size = fb->pitches[0] * aligned_height;
  8092.  
  8093.         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  8094.                       pipe_name(pipe), plane, fb->width, fb->height,
  8095.                       fb->bits_per_pixel, base, fb->pitches[0],
  8096.                       plane_config->size);
  8097.  
  8098.         plane_config->fb = intel_fb;
  8099. }
  8100.  
  8101. static void chv_crtc_clock_get(struct intel_crtc *crtc,
  8102.                                struct intel_crtc_state *pipe_config)
  8103. {
  8104.         struct drm_device *dev = crtc->base.dev;
  8105.         struct drm_i915_private *dev_priv = dev->dev_private;
  8106.         int pipe = pipe_config->cpu_transcoder;
  8107.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  8108.         intel_clock_t clock;
  8109.         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
  8110.         int refclk = 100000;
  8111.  
  8112.         mutex_lock(&dev_priv->sb_lock);
  8113.         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
  8114.         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
  8115.         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
  8116.         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
  8117.         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  8118.         mutex_unlock(&dev_priv->sb_lock);
  8119.  
  8120.         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
  8121.         clock.m2 = (pll_dw0 & 0xff) << 22;
  8122.         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
  8123.                 clock.m2 |= pll_dw2 & 0x3fffff;
  8124.         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
  8125.         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
  8126.         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
  8127.  
  8128.         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
  8129. }
  8130.  
  8131. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  8132.                                  struct intel_crtc_state *pipe_config)
  8133. {
  8134.         struct drm_device *dev = crtc->base.dev;
  8135.         struct drm_i915_private *dev_priv = dev->dev_private;
  8136.         uint32_t tmp;
  8137.  
  8138.         if (!intel_display_power_is_enabled(dev_priv,
  8139.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  8140.                 return false;
  8141.  
  8142.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  8143.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  8144.  
  8145.         tmp = I915_READ(PIPECONF(crtc->pipe));
  8146.         if (!(tmp & PIPECONF_ENABLE))
  8147.                 return false;
  8148.  
  8149.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  8150.                 switch (tmp & PIPECONF_BPC_MASK) {
  8151.                 case PIPECONF_6BPC:
  8152.                         pipe_config->pipe_bpp = 18;
  8153.                         break;
  8154.                 case PIPECONF_8BPC:
  8155.                         pipe_config->pipe_bpp = 24;
  8156.                         break;
  8157.                 case PIPECONF_10BPC:
  8158.                         pipe_config->pipe_bpp = 30;
  8159.                         break;
  8160.                 default:
  8161.                         break;
  8162.                 }
  8163.         }
  8164.  
  8165.         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
  8166.                 pipe_config->limited_color_range = true;
  8167.  
  8168.         if (INTEL_INFO(dev)->gen < 4)
  8169.                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  8170.  
  8171.         intel_get_pipe_timings(crtc, pipe_config);
  8172.  
  8173.         i9xx_get_pfit_config(crtc, pipe_config);
  8174.  
  8175.         if (INTEL_INFO(dev)->gen >= 4) {
  8176.                 tmp = I915_READ(DPLL_MD(crtc->pipe));
  8177.                 pipe_config->pixel_multiplier =
  8178.                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  8179.                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  8180.                 pipe_config->dpll_hw_state.dpll_md = tmp;
  8181.         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  8182.                 tmp = I915_READ(DPLL(crtc->pipe));
  8183.                 pipe_config->pixel_multiplier =
  8184.                         ((tmp & SDVO_MULTIPLIER_MASK)
  8185.                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  8186.         } else {
  8187.                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
  8188.                  * port and will be fixed up in the encoder->get_config
  8189.                  * function. */
  8190.                 pipe_config->pixel_multiplier = 1;
  8191.         }
  8192.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  8193.         if (!IS_VALLEYVIEW(dev)) {
  8194.                 /*
  8195.                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
  8196.                  * on 830. Filter it out here so that we don't
  8197.                  * report errors due to that.
  8198.                  */
  8199.                 if (IS_I830(dev))
  8200.                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
  8201.  
  8202.                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  8203.                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  8204.         } else {
  8205.                 /* Mask out read-only status bits. */
  8206.                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  8207.                                                      DPLL_PORTC_READY_MASK |
  8208.                                                      DPLL_PORTB_READY_MASK);
  8209.         }
  8210.  
  8211.         if (IS_CHERRYVIEW(dev))
  8212.                 chv_crtc_clock_get(crtc, pipe_config);
  8213.         else if (IS_VALLEYVIEW(dev))
  8214.                 vlv_crtc_clock_get(crtc, pipe_config);
  8215.         else
  8216.                 i9xx_crtc_clock_get(crtc, pipe_config);
  8217.  
  8218.         /*
  8219.          * Normally the dotclock is filled in by the encoder .get_config()
  8220.          * but in case the pipe is enabled w/o any ports we need a sane
  8221.          * default.
  8222.          */
  8223.         pipe_config->base.adjusted_mode.crtc_clock =
  8224.                 pipe_config->port_clock / pipe_config->pixel_multiplier;
  8225.  
  8226.         return true;
  8227. }
  8228.  
  8229. static void ironlake_init_pch_refclk(struct drm_device *dev)
  8230. {
  8231.         struct drm_i915_private *dev_priv = dev->dev_private;
  8232.         struct intel_encoder *encoder;
  8233.         int i;
  8234.         u32 val, final;
  8235.         bool has_lvds = false;
  8236.         bool has_cpu_edp = false;
  8237.         bool has_panel = false;
  8238.         bool has_ck505 = false;
  8239.         bool can_ssc = false;
  8240.         bool using_ssc_source = false;
  8241.  
  8242.         /* We need to take the global config into account */
  8243.         for_each_intel_encoder(dev, encoder) {
  8244.                 switch (encoder->type) {
  8245.                 case INTEL_OUTPUT_LVDS:
  8246.                         has_panel = true;
  8247.                         has_lvds = true;
  8248.                         break;
  8249.                 case INTEL_OUTPUT_EDP:
  8250.                         has_panel = true;
  8251.                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  8252.                                 has_cpu_edp = true;
  8253.                         break;
  8254.                 default:
  8255.                         break;
  8256.                 }
  8257.         }
  8258.  
  8259.         if (HAS_PCH_IBX(dev)) {
  8260.                 has_ck505 = dev_priv->vbt.display_clock_mode;
  8261.                 can_ssc = has_ck505;
  8262.         } else {
  8263.                 has_ck505 = false;
  8264.                 can_ssc = true;
  8265.         }
  8266.  
  8267.         /* Check if any DPLLs are using the SSC source */
  8268.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8269.                 u32 temp = I915_READ(PCH_DPLL(i));
  8270.  
  8271.                 if (!(temp & DPLL_VCO_ENABLE))
  8272.                         continue;
  8273.  
  8274.                 if ((temp & PLL_REF_INPUT_MASK) ==
  8275.                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  8276.                         using_ssc_source = true;
  8277.                         break;
  8278.                 }
  8279.         }
  8280.  
  8281.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
  8282.                       has_panel, has_lvds, has_ck505, using_ssc_source);
  8283.  
  8284.         /* Ironlake: try to setup display ref clock before DPLL
  8285.          * enabling. This is only under driver's control after
  8286.          * PCH B stepping, previous chipset stepping should be
  8287.          * ignoring this setting.
  8288.          */
  8289.         val = I915_READ(PCH_DREF_CONTROL);
  8290.  
  8291.         /* As we must carefully and slowly disable/enable each source in turn,
  8292.          * compute the final state we want first and check if we need to
  8293.          * make any changes at all.
  8294.          */
  8295.         final = val;
  8296.         final &= ~DREF_NONSPREAD_SOURCE_MASK;
  8297.         if (has_ck505)
  8298.                 final |= DREF_NONSPREAD_CK505_ENABLE;
  8299.         else
  8300.                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
  8301.  
  8302.         final &= ~DREF_SSC_SOURCE_MASK;
  8303.         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8304.         final &= ~DREF_SSC1_ENABLE;
  8305.  
  8306.         if (has_panel) {
  8307.                 final |= DREF_SSC_SOURCE_ENABLE;
  8308.  
  8309.                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8310.                         final |= DREF_SSC1_ENABLE;
  8311.  
  8312.                 if (has_cpu_edp) {
  8313.                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8314.                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8315.                         else
  8316.                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8317.                 } else
  8318.                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8319.         } else if (using_ssc_source) {
  8320.                 final |= DREF_SSC_SOURCE_ENABLE;
  8321.                 final |= DREF_SSC1_ENABLE;
  8322.         }
  8323.  
  8324.         if (final == val)
  8325.                 return;
  8326.  
  8327.         /* Always enable nonspread source */
  8328.         val &= ~DREF_NONSPREAD_SOURCE_MASK;
  8329.  
  8330.         if (has_ck505)
  8331.                 val |= DREF_NONSPREAD_CK505_ENABLE;
  8332.         else
  8333.                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
  8334.  
  8335.         if (has_panel) {
  8336.                 val &= ~DREF_SSC_SOURCE_MASK;
  8337.                 val |= DREF_SSC_SOURCE_ENABLE;
  8338.  
  8339.                 /* SSC must be turned on before enabling the CPU output  */
  8340.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8341.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  8342.                         val |= DREF_SSC1_ENABLE;
  8343.                 } else
  8344.                         val &= ~DREF_SSC1_ENABLE;
  8345.  
  8346.                 /* Get SSC going before enabling the outputs */
  8347.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8348.                 POSTING_READ(PCH_DREF_CONTROL);
  8349.                 udelay(200);
  8350.  
  8351.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8352.  
  8353.                 /* Enable CPU source on CPU attached eDP */
  8354.                 if (has_cpu_edp) {
  8355.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8356.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  8357.                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8358.                         } else
  8359.                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8360.                 } else
  8361.                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8362.  
  8363.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8364.                 POSTING_READ(PCH_DREF_CONTROL);
  8365.                 udelay(200);
  8366.         } else {
  8367.                 DRM_DEBUG_KMS("Disabling CPU source output\n");
  8368.  
  8369.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8370.  
  8371.                 /* Turn off CPU output */
  8372.                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8373.  
  8374.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8375.                 POSTING_READ(PCH_DREF_CONTROL);
  8376.                 udelay(200);
  8377.  
  8378.                 if (!using_ssc_source) {
  8379.                         DRM_DEBUG_KMS("Disabling SSC source\n");
  8380.  
  8381.                 /* Turn off the SSC source */
  8382.                 val &= ~DREF_SSC_SOURCE_MASK;
  8383.                 val |= DREF_SSC_SOURCE_DISABLE;
  8384.  
  8385.                 /* Turn off SSC1 */
  8386.                 val &= ~DREF_SSC1_ENABLE;
  8387.  
  8388.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8389.                 POSTING_READ(PCH_DREF_CONTROL);
  8390.                 udelay(200);
  8391.         }
  8392.         }
  8393.  
  8394.         BUG_ON(val != final);
  8395. }
  8396.  
  8397. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  8398. {
  8399.         uint32_t tmp;
  8400.  
  8401.         tmp = I915_READ(SOUTH_CHICKEN2);
  8402.         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  8403.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8404.  
  8405.         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  8406.                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  8407.                 DRM_ERROR("FDI mPHY reset assert timeout\n");
  8408.  
  8409.         tmp = I915_READ(SOUTH_CHICKEN2);
  8410.         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  8411.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8412.  
  8413.         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  8414.                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  8415.                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  8416. }
  8417.  
  8418. /* WaMPhyProgramming:hsw */
  8419. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  8420. {
  8421.         uint32_t tmp;
  8422.  
  8423.         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  8424.         tmp &= ~(0xFF << 24);
  8425.         tmp |= (0x12 << 24);
  8426.         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  8427.  
  8428.         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  8429.         tmp |= (1 << 11);
  8430.         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  8431.  
  8432.         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  8433.         tmp |= (1 << 11);
  8434.         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  8435.  
  8436.         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  8437.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8438.         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  8439.  
  8440.         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  8441.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8442.         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  8443.  
  8444.         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  8445.         tmp &= ~(7 << 13);
  8446.         tmp |= (5 << 13);
  8447.         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  8448.  
  8449.         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  8450.         tmp &= ~(7 << 13);
  8451.         tmp |= (5 << 13);
  8452.         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  8453.  
  8454.         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  8455.         tmp &= ~0xFF;
  8456.         tmp |= 0x1C;
  8457.         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  8458.  
  8459.         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  8460.         tmp &= ~0xFF;
  8461.         tmp |= 0x1C;
  8462.         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  8463.  
  8464.         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  8465.         tmp &= ~(0xFF << 16);
  8466.         tmp |= (0x1C << 16);
  8467.         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  8468.  
  8469.         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  8470.         tmp &= ~(0xFF << 16);
  8471.         tmp |= (0x1C << 16);
  8472.         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  8473.  
  8474.         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  8475.         tmp |= (1 << 27);
  8476.         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  8477.  
  8478.         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  8479.         tmp |= (1 << 27);
  8480.         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  8481.  
  8482.         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  8483.         tmp &= ~(0xF << 28);
  8484.         tmp |= (4 << 28);
  8485.         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  8486.  
  8487.         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  8488.         tmp &= ~(0xF << 28);
  8489.         tmp |= (4 << 28);
  8490.         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  8491. }
  8492.  
  8493. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  8494.  * Programming" based on the parameters passed:
  8495.  * - Sequence to enable CLKOUT_DP
  8496.  * - Sequence to enable CLKOUT_DP without spread
  8497.  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  8498.  */
  8499. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  8500.                                  bool with_fdi)
  8501. {
  8502.         struct drm_i915_private *dev_priv = dev->dev_private;
  8503.         uint32_t reg, tmp;
  8504.  
  8505.         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  8506.                 with_spread = true;
  8507.         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
  8508.                 with_fdi = false;
  8509.  
  8510.         mutex_lock(&dev_priv->sb_lock);
  8511.  
  8512.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8513.         tmp &= ~SBI_SSCCTL_DISABLE;
  8514.         tmp |= SBI_SSCCTL_PATHALT;
  8515.         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8516.  
  8517.         udelay(24);
  8518.  
  8519.         if (with_spread) {
  8520.                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8521.                 tmp &= ~SBI_SSCCTL_PATHALT;
  8522.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8523.  
  8524.                 if (with_fdi) {
  8525.                         lpt_reset_fdi_mphy(dev_priv);
  8526.                         lpt_program_fdi_mphy(dev_priv);
  8527.                 }
  8528.         }
  8529.  
  8530.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8531.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8532.         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8533.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8534.  
  8535.         mutex_unlock(&dev_priv->sb_lock);
  8536. }
  8537.  
  8538. /* Sequence to disable CLKOUT_DP */
  8539. static void lpt_disable_clkout_dp(struct drm_device *dev)
  8540. {
  8541.         struct drm_i915_private *dev_priv = dev->dev_private;
  8542.         uint32_t reg, tmp;
  8543.  
  8544.         mutex_lock(&dev_priv->sb_lock);
  8545.  
  8546.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8547.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8548.         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8549.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8550.  
  8551.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8552.         if (!(tmp & SBI_SSCCTL_DISABLE)) {
  8553.                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
  8554.                         tmp |= SBI_SSCCTL_PATHALT;
  8555.                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8556.                         udelay(32);
  8557.                 }
  8558.                 tmp |= SBI_SSCCTL_DISABLE;
  8559.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8560.         }
  8561.  
  8562.         mutex_unlock(&dev_priv->sb_lock);
  8563. }
  8564.  
  8565. static void lpt_init_pch_refclk(struct drm_device *dev)
  8566. {
  8567.         struct intel_encoder *encoder;
  8568.         bool has_vga = false;
  8569.  
  8570.         for_each_intel_encoder(dev, encoder) {
  8571.                 switch (encoder->type) {
  8572.                 case INTEL_OUTPUT_ANALOG:
  8573.                         has_vga = true;
  8574.                         break;
  8575.                 default:
  8576.                         break;
  8577.                 }
  8578.         }
  8579.  
  8580.         if (has_vga)
  8581.                 lpt_enable_clkout_dp(dev, true, true);
  8582.         else
  8583.                 lpt_disable_clkout_dp(dev);
  8584. }
  8585.  
  8586. /*
  8587.  * Initialize reference clocks when the driver loads
  8588.  */
  8589. void intel_init_pch_refclk(struct drm_device *dev)
  8590. {
  8591.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8592.                 ironlake_init_pch_refclk(dev);
  8593.         else if (HAS_PCH_LPT(dev))
  8594.                 lpt_init_pch_refclk(dev);
  8595. }
  8596.  
  8597. static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
  8598. {
  8599.         struct drm_device *dev = crtc_state->base.crtc->dev;
  8600.         struct drm_i915_private *dev_priv = dev->dev_private;
  8601.         struct drm_atomic_state *state = crtc_state->base.state;
  8602.         struct drm_connector *connector;
  8603.         struct drm_connector_state *connector_state;
  8604.         struct intel_encoder *encoder;
  8605.         int num_connectors = 0, i;
  8606.         bool is_lvds = false;
  8607.  
  8608.         for_each_connector_in_state(state, connector, connector_state, i) {
  8609.                 if (connector_state->crtc != crtc_state->base.crtc)
  8610.                         continue;
  8611.  
  8612.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8613.  
  8614.                 switch (encoder->type) {
  8615.                 case INTEL_OUTPUT_LVDS:
  8616.                         is_lvds = true;
  8617.                         break;
  8618.                 default:
  8619.                         break;
  8620.                 }
  8621.                 num_connectors++;
  8622.         }
  8623.  
  8624.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  8625.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
  8626.                               dev_priv->vbt.lvds_ssc_freq);
  8627.                 return dev_priv->vbt.lvds_ssc_freq;
  8628.         }
  8629.  
  8630.         return 120000;
  8631. }
  8632.  
  8633. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  8634. {
  8635.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  8636.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8637.         int pipe = intel_crtc->pipe;
  8638.         uint32_t val;
  8639.  
  8640.         val = 0;
  8641.  
  8642.         switch (intel_crtc->config->pipe_bpp) {
  8643.         case 18:
  8644.                 val |= PIPECONF_6BPC;
  8645.                 break;
  8646.         case 24:
  8647.                 val |= PIPECONF_8BPC;
  8648.                 break;
  8649.         case 30:
  8650.                 val |= PIPECONF_10BPC;
  8651.                 break;
  8652.         case 36:
  8653.                 val |= PIPECONF_12BPC;
  8654.                 break;
  8655.         default:
  8656.                 /* Case prevented by intel_choose_pipe_bpp_dither. */
  8657.                 BUG();
  8658.         }
  8659.  
  8660.         if (intel_crtc->config->dither)
  8661.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8662.  
  8663.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8664.                 val |= PIPECONF_INTERLACED_ILK;
  8665.         else
  8666.                 val |= PIPECONF_PROGRESSIVE;
  8667.  
  8668.         if (intel_crtc->config->limited_color_range)
  8669.                 val |= PIPECONF_COLOR_RANGE_SELECT;
  8670.  
  8671.         I915_WRITE(PIPECONF(pipe), val);
  8672.         POSTING_READ(PIPECONF(pipe));
  8673. }
  8674.  
  8675. /*
  8676.  * Set up the pipe CSC unit.
  8677.  *
  8678.  * Currently only full range RGB to limited range RGB conversion
  8679.  * is supported, but eventually this should handle various
  8680.  * RGB<->YCbCr scenarios as well.
  8681.  */
  8682. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  8683. {
  8684.         struct drm_device *dev = crtc->dev;
  8685.         struct drm_i915_private *dev_priv = dev->dev_private;
  8686.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8687.         int pipe = intel_crtc->pipe;
  8688.         uint16_t coeff = 0x7800; /* 1.0 */
  8689.  
  8690.         /*
  8691.          * TODO: Check what kind of values actually come out of the pipe
  8692.          * with these coeff/postoff values and adjust to get the best
  8693.          * accuracy. Perhaps we even need to take the bpc value into
  8694.          * consideration.
  8695.          */
  8696.  
  8697.         if (intel_crtc->config->limited_color_range)
  8698.                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  8699.  
  8700.         /*
  8701.          * GY/GU and RY/RU should be the other way around according
  8702.          * to BSpec, but reality doesn't agree. Just set them up in
  8703.          * a way that results in the correct picture.
  8704.          */
  8705.         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  8706.         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  8707.  
  8708.         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  8709.         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  8710.  
  8711.         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  8712.         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  8713.  
  8714.         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  8715.         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  8716.         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  8717.  
  8718.         if (INTEL_INFO(dev)->gen > 6) {
  8719.                 uint16_t postoff = 0;
  8720.  
  8721.                 if (intel_crtc->config->limited_color_range)
  8722.                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
  8723.  
  8724.                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  8725.                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  8726.                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  8727.  
  8728.                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  8729.         } else {
  8730.                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
  8731.  
  8732.                 if (intel_crtc->config->limited_color_range)
  8733.                         mode |= CSC_BLACK_SCREEN_OFFSET;
  8734.  
  8735.                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  8736.         }
  8737. }
  8738.  
  8739. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  8740. {
  8741.         struct drm_device *dev = crtc->dev;
  8742.         struct drm_i915_private *dev_priv = dev->dev_private;
  8743.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8744.         enum pipe pipe = intel_crtc->pipe;
  8745.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  8746.         uint32_t val;
  8747.  
  8748.         val = 0;
  8749.  
  8750.         if (IS_HASWELL(dev) && intel_crtc->config->dither)
  8751.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8752.  
  8753.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8754.                 val |= PIPECONF_INTERLACED_ILK;
  8755.         else
  8756.                 val |= PIPECONF_PROGRESSIVE;
  8757.  
  8758.         I915_WRITE(PIPECONF(cpu_transcoder), val);
  8759.         POSTING_READ(PIPECONF(cpu_transcoder));
  8760.  
  8761.         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  8762.         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  8763.  
  8764.         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
  8765.                 val = 0;
  8766.  
  8767.                 switch (intel_crtc->config->pipe_bpp) {
  8768.                 case 18:
  8769.                         val |= PIPEMISC_DITHER_6_BPC;
  8770.                         break;
  8771.                 case 24:
  8772.                         val |= PIPEMISC_DITHER_8_BPC;
  8773.                         break;
  8774.                 case 30:
  8775.                         val |= PIPEMISC_DITHER_10_BPC;
  8776.                         break;
  8777.                 case 36:
  8778.                         val |= PIPEMISC_DITHER_12_BPC;
  8779.                         break;
  8780.                 default:
  8781.                         /* Case prevented by pipe_config_set_bpp. */
  8782.                         BUG();
  8783.                 }
  8784.  
  8785.                 if (intel_crtc->config->dither)
  8786.                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
  8787.  
  8788.                 I915_WRITE(PIPEMISC(pipe), val);
  8789.         }
  8790. }
  8791.  
  8792. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  8793.                                     struct intel_crtc_state *crtc_state,
  8794.                                     intel_clock_t *clock,
  8795.                                     bool *has_reduced_clock,
  8796.                                     intel_clock_t *reduced_clock)
  8797. {
  8798.         struct drm_device *dev = crtc->dev;
  8799.         struct drm_i915_private *dev_priv = dev->dev_private;
  8800.         int refclk;
  8801.         const intel_limit_t *limit;
  8802.         bool ret;
  8803.  
  8804.         refclk = ironlake_get_refclk(crtc_state);
  8805.  
  8806.         /*
  8807.          * Returns a set of divisors for the desired target clock with the given
  8808.          * refclk, or FALSE.  The returned values represent the clock equation:
  8809.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  8810.          */
  8811.         limit = intel_limit(crtc_state, refclk);
  8812.         ret = dev_priv->display.find_dpll(limit, crtc_state,
  8813.                                           crtc_state->port_clock,
  8814.                                           refclk, NULL, clock);
  8815.         if (!ret)
  8816.                 return false;
  8817.  
  8818.         return true;
  8819. }
  8820.  
  8821. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  8822. {
  8823.         /*
  8824.          * Account for spread spectrum to avoid
  8825.          * oversubscribing the link. Max center spread
  8826.          * is 2.5%; use 5% for safety's sake.
  8827.          */
  8828.         u32 bps = target_clock * bpp * 21 / 20;
  8829.         return DIV_ROUND_UP(bps, link_bw * 8);
  8830. }
  8831.  
  8832. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  8833. {
  8834.         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  8835. }
  8836.  
  8837. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  8838.                                       struct intel_crtc_state *crtc_state,
  8839.                                       u32 *fp,
  8840.                                       intel_clock_t *reduced_clock, u32 *fp2)
  8841. {
  8842.         struct drm_crtc *crtc = &intel_crtc->base;
  8843.         struct drm_device *dev = crtc->dev;
  8844.         struct drm_i915_private *dev_priv = dev->dev_private;
  8845.         struct drm_atomic_state *state = crtc_state->base.state;
  8846.         struct drm_connector *connector;
  8847.         struct drm_connector_state *connector_state;
  8848.         struct intel_encoder *encoder;
  8849.         uint32_t dpll;
  8850.         int factor, num_connectors = 0, i;
  8851.         bool is_lvds = false, is_sdvo = false;
  8852.  
  8853.         for_each_connector_in_state(state, connector, connector_state, i) {
  8854.                 if (connector_state->crtc != crtc_state->base.crtc)
  8855.                         continue;
  8856.  
  8857.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8858.  
  8859.                 switch (encoder->type) {
  8860.                 case INTEL_OUTPUT_LVDS:
  8861.                         is_lvds = true;
  8862.                         break;
  8863.                 case INTEL_OUTPUT_SDVO:
  8864.                 case INTEL_OUTPUT_HDMI:
  8865.                         is_sdvo = true;
  8866.                         break;
  8867.                 default:
  8868.                         break;
  8869.                 }
  8870.  
  8871.                 num_connectors++;
  8872.         }
  8873.  
  8874.         /* Enable autotuning of the PLL clock (if permissible) */
  8875.         factor = 21;
  8876.         if (is_lvds) {
  8877.                 if ((intel_panel_use_ssc(dev_priv) &&
  8878.                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
  8879.                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  8880.                         factor = 25;
  8881.         } else if (crtc_state->sdvo_tv_clock)
  8882.                 factor = 20;
  8883.  
  8884.         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
  8885.                 *fp |= FP_CB_TUNE;
  8886.  
  8887.         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  8888.                 *fp2 |= FP_CB_TUNE;
  8889.  
  8890.         dpll = 0;
  8891.  
  8892.         if (is_lvds)
  8893.                 dpll |= DPLLB_MODE_LVDS;
  8894.         else
  8895.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  8896.  
  8897.         dpll |= (crtc_state->pixel_multiplier - 1)
  8898.                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  8899.  
  8900.         if (is_sdvo)
  8901.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8902.         if (crtc_state->has_dp_encoder)
  8903.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8904.  
  8905.         /* compute bitmask from p1 value */
  8906.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  8907.         /* also FPA1 */
  8908.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  8909.  
  8910.         switch (crtc_state->dpll.p2) {
  8911.         case 5:
  8912.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  8913.                 break;
  8914.         case 7:
  8915.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  8916.                 break;
  8917.         case 10:
  8918.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  8919.                 break;
  8920.         case 14:
  8921.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  8922.                 break;
  8923.         }
  8924.  
  8925.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  8926.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  8927.         else
  8928.                 dpll |= PLL_REF_INPUT_DREFCLK;
  8929.  
  8930.         return dpll | DPLL_VCO_ENABLE;
  8931. }
  8932.  
  8933. static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
  8934.                                        struct intel_crtc_state *crtc_state)
  8935. {
  8936.         struct drm_device *dev = crtc->base.dev;
  8937.         intel_clock_t clock, reduced_clock;
  8938.         u32 dpll = 0, fp = 0, fp2 = 0;
  8939.         bool ok, has_reduced_clock = false;
  8940.         bool is_lvds = false;
  8941.         struct intel_shared_dpll *pll;
  8942.  
  8943.         memset(&crtc_state->dpll_hw_state, 0,
  8944.                sizeof(crtc_state->dpll_hw_state));
  8945.  
  8946.         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
  8947.  
  8948.         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  8949.              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  8950.  
  8951.         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
  8952.                                      &has_reduced_clock, &reduced_clock);
  8953.         if (!ok && !crtc_state->clock_set) {
  8954.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  8955.                 return -EINVAL;
  8956.         }
  8957.         /* Compat-code for transition, will disappear. */
  8958.         if (!crtc_state->clock_set) {
  8959.                 crtc_state->dpll.n = clock.n;
  8960.                 crtc_state->dpll.m1 = clock.m1;
  8961.                 crtc_state->dpll.m2 = clock.m2;
  8962.                 crtc_state->dpll.p1 = clock.p1;
  8963.                 crtc_state->dpll.p2 = clock.p2;
  8964.         }
  8965.  
  8966.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  8967.         if (crtc_state->has_pch_encoder) {
  8968.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  8969.                 if (has_reduced_clock)
  8970.                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  8971.  
  8972.                 dpll = ironlake_compute_dpll(crtc, crtc_state,
  8973.                                              &fp, &reduced_clock,
  8974.                                              has_reduced_clock ? &fp2 : NULL);
  8975.  
  8976.                 crtc_state->dpll_hw_state.dpll = dpll;
  8977.                 crtc_state->dpll_hw_state.fp0 = fp;
  8978.                 if (has_reduced_clock)
  8979.                         crtc_state->dpll_hw_state.fp1 = fp2;
  8980.                 else
  8981.                         crtc_state->dpll_hw_state.fp1 = fp;
  8982.  
  8983.                 pll = intel_get_shared_dpll(crtc, crtc_state);
  8984.                 if (pll == NULL) {
  8985.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  8986.                                          pipe_name(crtc->pipe));
  8987.                         return -EINVAL;
  8988.                 }
  8989.         }
  8990.  
  8991.         if (is_lvds && has_reduced_clock)
  8992.                 crtc->lowfreq_avail = true;
  8993.         else
  8994.                 crtc->lowfreq_avail = false;
  8995.  
  8996.         return 0;
  8997. }
  8998.  
  8999. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  9000.                                          struct intel_link_m_n *m_n)
  9001. {
  9002.         struct drm_device *dev = crtc->base.dev;
  9003.         struct drm_i915_private *dev_priv = dev->dev_private;
  9004.         enum pipe pipe = crtc->pipe;
  9005.  
  9006.         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  9007.         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  9008.         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  9009.                 & ~TU_SIZE_MASK;
  9010.         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  9011.         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  9012.                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9013. }
  9014.  
  9015. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  9016.                                          enum transcoder transcoder,
  9017.                                          struct intel_link_m_n *m_n,
  9018.                                          struct intel_link_m_n *m2_n2)
  9019. {
  9020.         struct drm_device *dev = crtc->base.dev;
  9021.         struct drm_i915_private *dev_priv = dev->dev_private;
  9022.         enum pipe pipe = crtc->pipe;
  9023.  
  9024.         if (INTEL_INFO(dev)->gen >= 5) {
  9025.                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  9026.                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  9027.                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  9028.                         & ~TU_SIZE_MASK;
  9029.                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  9030.                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  9031.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9032.                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
  9033.                  * gen < 8) and if DRRS is supported (to make sure the
  9034.                  * registers are not unnecessarily read).
  9035.                  */
  9036.                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
  9037.                         crtc->config->has_drrs) {
  9038.                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
  9039.                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
  9040.                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
  9041.                                         & ~TU_SIZE_MASK;
  9042.                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
  9043.                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
  9044.                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9045.                 }
  9046.         } else {
  9047.                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  9048.                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  9049.                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  9050.                         & ~TU_SIZE_MASK;
  9051.                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  9052.                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  9053.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9054.         }
  9055. }
  9056.  
  9057. void intel_dp_get_m_n(struct intel_crtc *crtc,
  9058.                       struct intel_crtc_state *pipe_config)
  9059. {
  9060.         if (pipe_config->has_pch_encoder)
  9061.                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  9062.         else
  9063.                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9064.                                              &pipe_config->dp_m_n,
  9065.                                              &pipe_config->dp_m2_n2);
  9066. }
  9067.  
  9068. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  9069.                                         struct intel_crtc_state *pipe_config)
  9070. {
  9071.         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9072.                                      &pipe_config->fdi_m_n, NULL);
  9073. }
  9074.  
  9075. static void skylake_get_pfit_config(struct intel_crtc *crtc,
  9076.                                     struct intel_crtc_state *pipe_config)
  9077. {
  9078.         struct drm_device *dev = crtc->base.dev;
  9079.         struct drm_i915_private *dev_priv = dev->dev_private;
  9080.         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
  9081.         uint32_t ps_ctrl = 0;
  9082.         int id = -1;
  9083.         int i;
  9084.  
  9085.         /* find scaler attached to this pipe */
  9086.         for (i = 0; i < crtc->num_scalers; i++) {
  9087.                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
  9088.                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
  9089.                         id = i;
  9090.                         pipe_config->pch_pfit.enabled = true;
  9091.                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
  9092.                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
  9093.                         break;
  9094.                 }
  9095.         }
  9096.  
  9097.         scaler_state->scaler_id = id;
  9098.         if (id >= 0) {
  9099.                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
  9100.         } else {
  9101.                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9102.         }
  9103. }
  9104.  
  9105. static void
  9106. skylake_get_initial_plane_config(struct intel_crtc *crtc,
  9107.                                  struct intel_initial_plane_config *plane_config)
  9108. {
  9109.         struct drm_device *dev = crtc->base.dev;
  9110.         struct drm_i915_private *dev_priv = dev->dev_private;
  9111.         u32 val, base, offset, stride_mult, tiling;
  9112.         int pipe = crtc->pipe;
  9113.         int fourcc, pixel_format;
  9114.         unsigned int aligned_height;
  9115.         struct drm_framebuffer *fb;
  9116.         struct intel_framebuffer *intel_fb;
  9117.  
  9118.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9119.         if (!intel_fb) {
  9120.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9121.                 return;
  9122.         }
  9123.  
  9124.         fb = &intel_fb->base;
  9125.  
  9126.         val = I915_READ(PLANE_CTL(pipe, 0));
  9127.         if (!(val & PLANE_CTL_ENABLE))
  9128.                 goto error;
  9129.  
  9130.         pixel_format = val & PLANE_CTL_FORMAT_MASK;
  9131.         fourcc = skl_format_to_fourcc(pixel_format,
  9132.                                       val & PLANE_CTL_ORDER_RGBX,
  9133.                                       val & PLANE_CTL_ALPHA_MASK);
  9134.         fb->pixel_format = fourcc;
  9135.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9136.  
  9137.         tiling = val & PLANE_CTL_TILED_MASK;
  9138.         switch (tiling) {
  9139.         case PLANE_CTL_TILED_LINEAR:
  9140.                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
  9141.                 break;
  9142.         case PLANE_CTL_TILED_X:
  9143.                 plane_config->tiling = I915_TILING_X;
  9144.                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9145.                 break;
  9146.         case PLANE_CTL_TILED_Y:
  9147.                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
  9148.                 break;
  9149.         case PLANE_CTL_TILED_YF:
  9150.                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
  9151.                 break;
  9152.         default:
  9153.                 MISSING_CASE(tiling);
  9154.                 goto error;
  9155.         }
  9156.  
  9157.         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
  9158.         plane_config->base = base;
  9159.  
  9160.         offset = I915_READ(PLANE_OFFSET(pipe, 0));
  9161.  
  9162.         val = I915_READ(PLANE_SIZE(pipe, 0));
  9163.         fb->height = ((val >> 16) & 0xfff) + 1;
  9164.         fb->width = ((val >> 0) & 0x1fff) + 1;
  9165.  
  9166.         val = I915_READ(PLANE_STRIDE(pipe, 0));
  9167.         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
  9168.                                                 fb->pixel_format);
  9169.         fb->pitches[0] = (val & 0x3ff) * stride_mult;
  9170.  
  9171.         aligned_height = intel_fb_align_height(dev, fb->height,
  9172.                                                fb->pixel_format,
  9173.                                                fb->modifier[0]);
  9174.  
  9175.         plane_config->size = fb->pitches[0] * aligned_height;
  9176.  
  9177.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9178.                       pipe_name(pipe), fb->width, fb->height,
  9179.                       fb->bits_per_pixel, base, fb->pitches[0],
  9180.                       plane_config->size);
  9181.  
  9182.         plane_config->fb = intel_fb;
  9183.         return;
  9184.  
  9185. error:
  9186.         kfree(fb);
  9187. }
  9188.  
  9189. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  9190.                                      struct intel_crtc_state *pipe_config)
  9191. {
  9192.         struct drm_device *dev = crtc->base.dev;
  9193.         struct drm_i915_private *dev_priv = dev->dev_private;
  9194.         uint32_t tmp;
  9195.  
  9196.         tmp = I915_READ(PF_CTL(crtc->pipe));
  9197.  
  9198.         if (tmp & PF_ENABLE) {
  9199.                 pipe_config->pch_pfit.enabled = true;
  9200.                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  9201.                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  9202.  
  9203.                 /* We currently do not free assignements of panel fitters on
  9204.                  * ivb/hsw (since we don't use the higher upscaling modes which
  9205.                  * differentiates them) so just WARN about this case for now. */
  9206.                 if (IS_GEN7(dev)) {
  9207.                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  9208.                                 PF_PIPE_SEL_IVB(crtc->pipe));
  9209.                 }
  9210.         }
  9211. }
  9212.  
  9213. static void
  9214. ironlake_get_initial_plane_config(struct intel_crtc *crtc,
  9215.                                   struct intel_initial_plane_config *plane_config)
  9216. {
  9217.         struct drm_device *dev = crtc->base.dev;
  9218.         struct drm_i915_private *dev_priv = dev->dev_private;
  9219.         u32 val, base, offset;
  9220.         int pipe = crtc->pipe;
  9221.         int fourcc, pixel_format;
  9222.         unsigned int aligned_height;
  9223.         struct drm_framebuffer *fb;
  9224.         struct intel_framebuffer *intel_fb;
  9225.  
  9226.         val = I915_READ(DSPCNTR(pipe));
  9227.         if (!(val & DISPLAY_PLANE_ENABLE))
  9228.                 return;
  9229.  
  9230.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9231.         if (!intel_fb) {
  9232.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9233.                 return;
  9234.         }
  9235.  
  9236.         fb = &intel_fb->base;
  9237.  
  9238.         if (INTEL_INFO(dev)->gen >= 4) {
  9239.                 if (val & DISPPLANE_TILED) {
  9240.                         plane_config->tiling = I915_TILING_X;
  9241.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9242.                 }
  9243.         }
  9244.  
  9245.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  9246.         fourcc = i9xx_format_to_fourcc(pixel_format);
  9247.         fb->pixel_format = fourcc;
  9248.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9249.  
  9250.         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
  9251.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  9252.                 offset = I915_READ(DSPOFFSET(pipe));
  9253.         } else {
  9254.                 if (plane_config->tiling)
  9255.                         offset = I915_READ(DSPTILEOFF(pipe));
  9256.                 else
  9257.                         offset = I915_READ(DSPLINOFF(pipe));
  9258.         }
  9259.         plane_config->base = base;
  9260.  
  9261.         val = I915_READ(PIPESRC(pipe));
  9262.         fb->width = ((val >> 16) & 0xfff) + 1;
  9263.         fb->height = ((val >> 0) & 0xfff) + 1;
  9264.  
  9265.         val = I915_READ(DSPSTRIDE(pipe));
  9266.         fb->pitches[0] = val & 0xffffffc0;
  9267.  
  9268.         aligned_height = intel_fb_align_height(dev, fb->height,
  9269.                                                fb->pixel_format,
  9270.                                                fb->modifier[0]);
  9271.  
  9272.         plane_config->size = fb->pitches[0] * aligned_height;
  9273.  
  9274.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9275.                       pipe_name(pipe), fb->width, fb->height,
  9276.                       fb->bits_per_pixel, base, fb->pitches[0],
  9277.                       plane_config->size);
  9278.  
  9279.         plane_config->fb = intel_fb;
  9280. }
  9281.  
  9282. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  9283.                                      struct intel_crtc_state *pipe_config)
  9284. {
  9285.         struct drm_device *dev = crtc->base.dev;
  9286.         struct drm_i915_private *dev_priv = dev->dev_private;
  9287.         uint32_t tmp;
  9288.  
  9289.         if (!intel_display_power_is_enabled(dev_priv,
  9290.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  9291.                 return false;
  9292.  
  9293.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9294.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9295.  
  9296.         tmp = I915_READ(PIPECONF(crtc->pipe));
  9297.         if (!(tmp & PIPECONF_ENABLE))
  9298.                 return false;
  9299.  
  9300.         switch (tmp & PIPECONF_BPC_MASK) {
  9301.         case PIPECONF_6BPC:
  9302.                 pipe_config->pipe_bpp = 18;
  9303.                 break;
  9304.         case PIPECONF_8BPC:
  9305.                 pipe_config->pipe_bpp = 24;
  9306.                 break;
  9307.         case PIPECONF_10BPC:
  9308.                 pipe_config->pipe_bpp = 30;
  9309.                 break;
  9310.         case PIPECONF_12BPC:
  9311.                 pipe_config->pipe_bpp = 36;
  9312.                 break;
  9313.         default:
  9314.                 break;
  9315.         }
  9316.  
  9317.         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
  9318.                 pipe_config->limited_color_range = true;
  9319.  
  9320.         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  9321.                 struct intel_shared_dpll *pll;
  9322.  
  9323.                 pipe_config->has_pch_encoder = true;
  9324.  
  9325.                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  9326.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9327.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9328.  
  9329.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9330.  
  9331.                 if (HAS_PCH_IBX(dev_priv->dev)) {
  9332.                         pipe_config->shared_dpll =
  9333.                                 (enum intel_dpll_id) crtc->pipe;
  9334.                 } else {
  9335.                         tmp = I915_READ(PCH_DPLL_SEL);
  9336.                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  9337.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  9338.                         else
  9339.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  9340.                 }
  9341.  
  9342.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9343.  
  9344.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9345.                                            &pipe_config->dpll_hw_state));
  9346.  
  9347.                 tmp = pipe_config->dpll_hw_state.dpll;
  9348.                 pipe_config->pixel_multiplier =
  9349.                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  9350.                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  9351.  
  9352.                 ironlake_pch_clock_get(crtc, pipe_config);
  9353.         } else {
  9354.                 pipe_config->pixel_multiplier = 1;
  9355.         }
  9356.  
  9357.         intel_get_pipe_timings(crtc, pipe_config);
  9358.  
  9359.         ironlake_get_pfit_config(crtc, pipe_config);
  9360.  
  9361.         return true;
  9362. }
  9363.  
  9364. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  9365. {
  9366.         struct drm_device *dev = dev_priv->dev;
  9367.         struct intel_crtc *crtc;
  9368.  
  9369.         for_each_intel_crtc(dev, crtc)
  9370.                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
  9371.                      pipe_name(crtc->pipe));
  9372.  
  9373.         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  9374.         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
  9375.         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
  9376.         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
  9377.         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  9378.         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  9379.              "CPU PWM1 enabled\n");
  9380.         if (IS_HASWELL(dev))
  9381.                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  9382.                      "CPU PWM2 enabled\n");
  9383.         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  9384.              "PCH PWM1 enabled\n");
  9385.         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  9386.              "Utility pin enabled\n");
  9387.         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  9388.  
  9389.         /*
  9390.          * In theory we can still leave IRQs enabled, as long as only the HPD
  9391.          * interrupts remain enabled. We used to check for that, but since it's
  9392.          * gen-specific and since we only disable LCPLL after we fully disable
  9393.          * the interrupts, the check below should be enough.
  9394.          */
  9395.         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
  9396. }
  9397.  
  9398. static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
  9399. {
  9400.         struct drm_device *dev = dev_priv->dev;
  9401.  
  9402.         if (IS_HASWELL(dev))
  9403.                 return I915_READ(D_COMP_HSW);
  9404.         else
  9405.                 return I915_READ(D_COMP_BDW);
  9406. }
  9407.  
  9408. static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
  9409. {
  9410.         struct drm_device *dev = dev_priv->dev;
  9411.  
  9412.         if (IS_HASWELL(dev)) {
  9413.                 mutex_lock(&dev_priv->rps.hw_lock);
  9414.                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
  9415.                                             val))
  9416.                         DRM_ERROR("Failed to write to D_COMP\n");
  9417.                 mutex_unlock(&dev_priv->rps.hw_lock);
  9418.         } else {
  9419.                 I915_WRITE(D_COMP_BDW, val);
  9420.                 POSTING_READ(D_COMP_BDW);
  9421.         }
  9422. }
  9423.  
  9424. /*
  9425.  * This function implements pieces of two sequences from BSpec:
  9426.  * - Sequence for display software to disable LCPLL
  9427.  * - Sequence for display software to allow package C8+
  9428.  * The steps implemented here are just the steps that actually touch the LCPLL
  9429.  * register. Callers should take care of disabling all the display engine
  9430.  * functions, doing the mode unset, fixing interrupts, etc.
  9431.  */
  9432. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  9433.                               bool switch_to_fclk, bool allow_power_down)
  9434. {
  9435.         uint32_t val;
  9436.  
  9437.         assert_can_disable_lcpll(dev_priv);
  9438.  
  9439.         val = I915_READ(LCPLL_CTL);
  9440.  
  9441.         if (switch_to_fclk) {
  9442.                 val |= LCPLL_CD_SOURCE_FCLK;
  9443.                 I915_WRITE(LCPLL_CTL, val);
  9444.  
  9445.                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9446.                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9447.                         DRM_ERROR("Switching to FCLK failed\n");
  9448.  
  9449.                 val = I915_READ(LCPLL_CTL);
  9450.         }
  9451.  
  9452.         val |= LCPLL_PLL_DISABLE;
  9453.         I915_WRITE(LCPLL_CTL, val);
  9454.         POSTING_READ(LCPLL_CTL);
  9455.  
  9456.         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  9457.                 DRM_ERROR("LCPLL still locked\n");
  9458.  
  9459.         val = hsw_read_dcomp(dev_priv);
  9460.         val |= D_COMP_COMP_DISABLE;
  9461.         hsw_write_dcomp(dev_priv, val);
  9462.         ndelay(100);
  9463.  
  9464.         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
  9465.                      1))
  9466.                 DRM_ERROR("D_COMP RCOMP still in progress\n");
  9467.  
  9468.         if (allow_power_down) {
  9469.                 val = I915_READ(LCPLL_CTL);
  9470.                 val |= LCPLL_POWER_DOWN_ALLOW;
  9471.                 I915_WRITE(LCPLL_CTL, val);
  9472.                 POSTING_READ(LCPLL_CTL);
  9473.         }
  9474. }
  9475.  
  9476. /*
  9477.  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  9478.  * source.
  9479.  */
  9480. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  9481. {
  9482.         uint32_t val;
  9483.  
  9484.         val = I915_READ(LCPLL_CTL);
  9485.  
  9486.         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  9487.                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  9488.                 return;
  9489.  
  9490.         /*
  9491.          * Make sure we're not on PC8 state before disabling PC8, otherwise
  9492.          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
  9493.          */
  9494.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  9495.  
  9496.         if (val & LCPLL_POWER_DOWN_ALLOW) {
  9497.                 val &= ~LCPLL_POWER_DOWN_ALLOW;
  9498.                 I915_WRITE(LCPLL_CTL, val);
  9499.                 POSTING_READ(LCPLL_CTL);
  9500.         }
  9501.  
  9502.         val = hsw_read_dcomp(dev_priv);
  9503.         val |= D_COMP_COMP_FORCE;
  9504.         val &= ~D_COMP_COMP_DISABLE;
  9505.         hsw_write_dcomp(dev_priv, val);
  9506.  
  9507.         val = I915_READ(LCPLL_CTL);
  9508.         val &= ~LCPLL_PLL_DISABLE;
  9509.         I915_WRITE(LCPLL_CTL, val);
  9510.  
  9511.         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  9512.                 DRM_ERROR("LCPLL not locked yet\n");
  9513.  
  9514.         if (val & LCPLL_CD_SOURCE_FCLK) {
  9515.                 val = I915_READ(LCPLL_CTL);
  9516.                 val &= ~LCPLL_CD_SOURCE_FCLK;
  9517.                 I915_WRITE(LCPLL_CTL, val);
  9518.  
  9519.                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9520.                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9521.                         DRM_ERROR("Switching back to LCPLL failed\n");
  9522.         }
  9523.  
  9524.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  9525.         intel_update_cdclk(dev_priv->dev);
  9526. }
  9527.  
  9528. /*
  9529.  * Package states C8 and deeper are really deep PC states that can only be
  9530.  * reached when all the devices on the system allow it, so even if the graphics
  9531.  * device allows PC8+, it doesn't mean the system will actually get to these
  9532.  * states. Our driver only allows PC8+ when going into runtime PM.
  9533.  *
  9534.  * The requirements for PC8+ are that all the outputs are disabled, the power
  9535.  * well is disabled and most interrupts are disabled, and these are also
  9536.  * requirements for runtime PM. When these conditions are met, we manually do
  9537.  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
  9538.  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
  9539.  * hang the machine.
  9540.  *
  9541.  * When we really reach PC8 or deeper states (not just when we allow it) we lose
  9542.  * the state of some registers, so when we come back from PC8+ we need to
  9543.  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
  9544.  * need to take care of the registers kept by RC6. Notice that this happens even
  9545.  * if we don't put the device in PCI D3 state (which is what currently happens
  9546.  * because of the runtime PM support).
  9547.  *
  9548.  * For more, read "Display Sequences for Package C8" on the hardware
  9549.  * documentation.
  9550.  */
  9551. void hsw_enable_pc8(struct drm_i915_private *dev_priv)
  9552. {
  9553.         struct drm_device *dev = dev_priv->dev;
  9554.         uint32_t val;
  9555.  
  9556.         DRM_DEBUG_KMS("Enabling package C8+\n");
  9557.  
  9558.         if (HAS_PCH_LPT_LP(dev)) {
  9559.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9560.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  9561.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9562.         }
  9563.  
  9564.         lpt_disable_clkout_dp(dev);
  9565.         hsw_disable_lcpll(dev_priv, true, true);
  9566. }
  9567.  
  9568. void hsw_disable_pc8(struct drm_i915_private *dev_priv)
  9569. {
  9570.         struct drm_device *dev = dev_priv->dev;
  9571.         uint32_t val;
  9572.  
  9573.         DRM_DEBUG_KMS("Disabling package C8+\n");
  9574.  
  9575.         hsw_restore_lcpll(dev_priv);
  9576.         lpt_init_pch_refclk(dev);
  9577.  
  9578.         if (HAS_PCH_LPT_LP(dev)) {
  9579.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9580.                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  9581.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9582.         }
  9583.  
  9584.         intel_prepare_ddi(dev);
  9585. }
  9586.  
  9587. static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9588. {
  9589.         struct drm_device *dev = old_state->dev;
  9590.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9591.  
  9592.         broxton_set_cdclk(dev, req_cdclk);
  9593. }
  9594.  
  9595. /* compute the max rate for new configuration */
  9596. static int ilk_max_pixel_rate(struct drm_atomic_state *state)
  9597. {
  9598.         struct intel_crtc *intel_crtc;
  9599.         struct intel_crtc_state *crtc_state;
  9600.         int max_pixel_rate = 0;
  9601.  
  9602.         for_each_intel_crtc(state->dev, intel_crtc) {
  9603.                 int pixel_rate;
  9604.  
  9605.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  9606.                 if (IS_ERR(crtc_state))
  9607.                         return PTR_ERR(crtc_state);
  9608.  
  9609.                 if (!crtc_state->base.enable)
  9610.                         continue;
  9611.  
  9612.                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
  9613.  
  9614.                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
  9615.                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
  9616.                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
  9617.  
  9618.                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
  9619.         }
  9620.  
  9621.         return max_pixel_rate;
  9622. }
  9623.  
  9624. static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
  9625. {
  9626.         struct drm_i915_private *dev_priv = dev->dev_private;
  9627.         uint32_t val, data;
  9628.         int ret;
  9629.  
  9630.         if (WARN((I915_READ(LCPLL_CTL) &
  9631.                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
  9632.                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
  9633.                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
  9634.                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
  9635.                  "trying to change cdclk frequency with cdclk not enabled\n"))
  9636.                 return;
  9637.  
  9638.         mutex_lock(&dev_priv->rps.hw_lock);
  9639.         ret = sandybridge_pcode_write(dev_priv,
  9640.                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
  9641.         mutex_unlock(&dev_priv->rps.hw_lock);
  9642.         if (ret) {
  9643.                 DRM_ERROR("failed to inform pcode about cdclk change\n");
  9644.                 return;
  9645.         }
  9646.  
  9647.         val = I915_READ(LCPLL_CTL);
  9648.         val |= LCPLL_CD_SOURCE_FCLK;
  9649.         I915_WRITE(LCPLL_CTL, val);
  9650.  
  9651.         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9652.                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9653.                 DRM_ERROR("Switching to FCLK failed\n");
  9654.  
  9655.         val = I915_READ(LCPLL_CTL);
  9656.         val &= ~LCPLL_CLK_FREQ_MASK;
  9657.  
  9658.         switch (cdclk) {
  9659.         case 450000:
  9660.                 val |= LCPLL_CLK_FREQ_450;
  9661.                 data = 0;
  9662.                 break;
  9663.         case 540000:
  9664.                 val |= LCPLL_CLK_FREQ_54O_BDW;
  9665.                 data = 1;
  9666.                 break;
  9667.         case 337500:
  9668.                 val |= LCPLL_CLK_FREQ_337_5_BDW;
  9669.                 data = 2;
  9670.                 break;
  9671.         case 675000:
  9672.                 val |= LCPLL_CLK_FREQ_675_BDW;
  9673.                 data = 3;
  9674.                 break;
  9675.         default:
  9676.                 WARN(1, "invalid cdclk frequency\n");
  9677.                 return;
  9678.         }
  9679.  
  9680.         I915_WRITE(LCPLL_CTL, val);
  9681.  
  9682.         val = I915_READ(LCPLL_CTL);
  9683.         val &= ~LCPLL_CD_SOURCE_FCLK;
  9684.         I915_WRITE(LCPLL_CTL, val);
  9685.  
  9686.         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9687.                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9688.                 DRM_ERROR("Switching back to LCPLL failed\n");
  9689.  
  9690.         mutex_lock(&dev_priv->rps.hw_lock);
  9691.         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
  9692.         mutex_unlock(&dev_priv->rps.hw_lock);
  9693.  
  9694.         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
  9695.  
  9696.         intel_update_cdclk(dev);
  9697.  
  9698.         WARN(cdclk != dev_priv->cdclk_freq,
  9699.              "cdclk requested %d kHz but got %d kHz\n",
  9700.              cdclk, dev_priv->cdclk_freq);
  9701. }
  9702.  
  9703. static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
  9704. {
  9705.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  9706.         int max_pixclk = ilk_max_pixel_rate(state);
  9707.         int cdclk;
  9708.  
  9709.         /*
  9710.          * FIXME should also account for plane ratio
  9711.          * once 64bpp pixel formats are supported.
  9712.          */
  9713.         if (max_pixclk > 540000)
  9714.                 cdclk = 675000;
  9715.         else if (max_pixclk > 450000)
  9716.                 cdclk = 540000;
  9717.         else if (max_pixclk > 337500)
  9718.                 cdclk = 450000;
  9719.         else
  9720.                 cdclk = 337500;
  9721.  
  9722.         /*
  9723.          * FIXME move the cdclk caclulation to
  9724.          * compute_config() so we can fail gracegully.
  9725.          */
  9726.         if (cdclk > dev_priv->max_cdclk_freq) {
  9727.                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
  9728.                           cdclk, dev_priv->max_cdclk_freq);
  9729.                 cdclk = dev_priv->max_cdclk_freq;
  9730.         }
  9731.  
  9732.         to_intel_atomic_state(state)->cdclk = cdclk;
  9733.  
  9734.         return 0;
  9735. }
  9736.  
  9737. static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9738. {
  9739.         struct drm_device *dev = old_state->dev;
  9740.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9741.  
  9742.         broadwell_set_cdclk(dev, req_cdclk);
  9743. }
  9744.  
  9745. static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
  9746.                                       struct intel_crtc_state *crtc_state)
  9747. {
  9748.         if (!intel_ddi_pll_select(crtc, crtc_state))
  9749.                 return -EINVAL;
  9750.  
  9751.         crtc->lowfreq_avail = false;
  9752.  
  9753.         return 0;
  9754. }
  9755.  
  9756. static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
  9757.                                 enum port port,
  9758.                                 struct intel_crtc_state *pipe_config)
  9759. {
  9760.         switch (port) {
  9761.         case PORT_A:
  9762.                 pipe_config->ddi_pll_sel = SKL_DPLL0;
  9763.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9764.                 break;
  9765.         case PORT_B:
  9766.                 pipe_config->ddi_pll_sel = SKL_DPLL1;
  9767.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9768.                 break;
  9769.         case PORT_C:
  9770.                 pipe_config->ddi_pll_sel = SKL_DPLL2;
  9771.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9772.                 break;
  9773.         default:
  9774.                 DRM_ERROR("Incorrect port type\n");
  9775.         }
  9776. }
  9777.  
  9778. static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
  9779.                                 enum port port,
  9780.                                 struct intel_crtc_state *pipe_config)
  9781. {
  9782.         u32 temp, dpll_ctl1;
  9783.  
  9784.         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
  9785.         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
  9786.  
  9787.         switch (pipe_config->ddi_pll_sel) {
  9788.         case SKL_DPLL0:
  9789.                 /*
  9790.                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
  9791.                  * of the shared DPLL framework and thus needs to be read out
  9792.                  * separately
  9793.                  */
  9794.                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
  9795.                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
  9796.                 break;
  9797.         case SKL_DPLL1:
  9798.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9799.                 break;
  9800.         case SKL_DPLL2:
  9801.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9802.                 break;
  9803.         case SKL_DPLL3:
  9804.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9805.                 break;
  9806.         }
  9807. }
  9808.  
  9809. static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
  9810.                                 enum port port,
  9811.                                 struct intel_crtc_state *pipe_config)
  9812. {
  9813.         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
  9814.  
  9815.         switch (pipe_config->ddi_pll_sel) {
  9816.         case PORT_CLK_SEL_WRPLL1:
  9817.                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
  9818.                 break;
  9819.         case PORT_CLK_SEL_WRPLL2:
  9820.                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
  9821.                 break;
  9822.         case PORT_CLK_SEL_SPLL:
  9823.                 pipe_config->shared_dpll = DPLL_ID_SPLL;
  9824.         }
  9825. }
  9826.  
  9827. static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
  9828.                                        struct intel_crtc_state *pipe_config)
  9829. {
  9830.         struct drm_device *dev = crtc->base.dev;
  9831.         struct drm_i915_private *dev_priv = dev->dev_private;
  9832.         struct intel_shared_dpll *pll;
  9833.         enum port port;
  9834.         uint32_t tmp;
  9835.  
  9836.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  9837.  
  9838.         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
  9839.  
  9840.         if (IS_SKYLAKE(dev))
  9841.                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
  9842.         else if (IS_BROXTON(dev))
  9843.                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
  9844.         else
  9845.                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
  9846.  
  9847.         if (pipe_config->shared_dpll >= 0) {
  9848.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9849.  
  9850.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9851.                                            &pipe_config->dpll_hw_state));
  9852.         }
  9853.  
  9854.         /*
  9855.          * Haswell has only FDI/PCH transcoder A. It is which is connected to
  9856.          * DDI E. So just check whether this pipe is wired to DDI E and whether
  9857.          * the PCH transcoder is on.
  9858.          */
  9859.         if (INTEL_INFO(dev)->gen < 9 &&
  9860.             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  9861.                 pipe_config->has_pch_encoder = true;
  9862.  
  9863.                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  9864.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9865.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9866.  
  9867.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9868.         }
  9869. }
  9870.  
  9871. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  9872.                                     struct intel_crtc_state *pipe_config)
  9873. {
  9874.         struct drm_device *dev = crtc->base.dev;
  9875.         struct drm_i915_private *dev_priv = dev->dev_private;
  9876.         enum intel_display_power_domain pfit_domain;
  9877.         uint32_t tmp;
  9878.  
  9879.         if (!intel_display_power_is_enabled(dev_priv,
  9880.                                          POWER_DOMAIN_PIPE(crtc->pipe)))
  9881.                 return false;
  9882.  
  9883.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9884.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9885.  
  9886.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  9887.         if (tmp & TRANS_DDI_FUNC_ENABLE) {
  9888.                 enum pipe trans_edp_pipe;
  9889.                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  9890.                 default:
  9891.                         WARN(1, "unknown pipe linked to edp transcoder\n");
  9892.                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
  9893.                 case TRANS_DDI_EDP_INPUT_A_ON:
  9894.                         trans_edp_pipe = PIPE_A;
  9895.                         break;
  9896.                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
  9897.                         trans_edp_pipe = PIPE_B;
  9898.                         break;
  9899.                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
  9900.                         trans_edp_pipe = PIPE_C;
  9901.                         break;
  9902.                 }
  9903.  
  9904.                 if (trans_edp_pipe == crtc->pipe)
  9905.                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
  9906.         }
  9907.  
  9908.         if (!intel_display_power_is_enabled(dev_priv,
  9909.                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  9910.                 return false;
  9911.  
  9912.         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  9913.         if (!(tmp & PIPECONF_ENABLE))
  9914.                 return false;
  9915.  
  9916.         haswell_get_ddi_port_state(crtc, pipe_config);
  9917.  
  9918.         intel_get_pipe_timings(crtc, pipe_config);
  9919.  
  9920.         if (INTEL_INFO(dev)->gen >= 9) {
  9921.                 skl_init_scalers(dev, crtc, pipe_config);
  9922.         }
  9923.  
  9924.         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  9925.  
  9926.         if (INTEL_INFO(dev)->gen >= 9) {
  9927.                 pipe_config->scaler_state.scaler_id = -1;
  9928.                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9929.         }
  9930.  
  9931.         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
  9932.                 if (INTEL_INFO(dev)->gen >= 9)
  9933.                         skylake_get_pfit_config(crtc, pipe_config);
  9934.                 else
  9935.                         ironlake_get_pfit_config(crtc, pipe_config);
  9936.         }
  9937.  
  9938.         if (IS_HASWELL(dev))
  9939.                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  9940.                         (I915_READ(IPS_CTL) & IPS_ENABLE);
  9941.  
  9942.         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
  9943.                 pipe_config->pixel_multiplier =
  9944.                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
  9945.         } else {
  9946.                 pipe_config->pixel_multiplier = 1;
  9947.         }
  9948.  
  9949.         return true;
  9950. }
  9951.  
  9952. static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  9953. {
  9954.         struct drm_device *dev = crtc->dev;
  9955.         struct drm_i915_private *dev_priv = dev->dev_private;
  9956.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  9957.         uint32_t cntl = 0, size = 0;
  9958.  
  9959.         if (on) {
  9960.                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
  9961.                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
  9962.                 unsigned int stride = roundup_pow_of_two(width) * 4;
  9963.  
  9964.                 switch (stride) {
  9965.                 default:
  9966.                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
  9967.                                   width, stride);
  9968.                         stride = 256;
  9969.                         /* fallthrough */
  9970.                 case 256:
  9971.                 case 512:
  9972.                 case 1024:
  9973.                 case 2048:
  9974.                         break;
  9975.                 }
  9976.  
  9977.                 cntl |= CURSOR_ENABLE |
  9978.                         CURSOR_GAMMA_ENABLE |
  9979.                         CURSOR_FORMAT_ARGB |
  9980.                         CURSOR_STRIDE(stride);
  9981.  
  9982.                 size = (height << 12) | width;
  9983.         }
  9984.  
  9985.         if (intel_crtc->cursor_cntl != 0 &&
  9986.             (intel_crtc->cursor_base != base ||
  9987.              intel_crtc->cursor_size != size ||
  9988.              intel_crtc->cursor_cntl != cntl)) {
  9989.                 /* On these chipsets we can only modify the base/size/stride
  9990.                  * whilst the cursor is disabled.
  9991.                  */
  9992.                 I915_WRITE(CURCNTR(PIPE_A), 0);
  9993.                 POSTING_READ(CURCNTR(PIPE_A));
  9994.                 intel_crtc->cursor_cntl = 0;
  9995.         }
  9996.  
  9997.         if (intel_crtc->cursor_base != base) {
  9998.                 I915_WRITE(CURBASE(PIPE_A), base);
  9999.                 intel_crtc->cursor_base = base;
  10000.         }
  10001.  
  10002.         if (intel_crtc->cursor_size != size) {
  10003.                 I915_WRITE(CURSIZE, size);
  10004.                 intel_crtc->cursor_size = size;
  10005.         }
  10006.  
  10007.         if (intel_crtc->cursor_cntl != cntl) {
  10008.                 I915_WRITE(CURCNTR(PIPE_A), cntl);
  10009.                 POSTING_READ(CURCNTR(PIPE_A));
  10010.                 intel_crtc->cursor_cntl = cntl;
  10011.         }
  10012. }
  10013.  
  10014. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  10015. {
  10016.         struct drm_device *dev = crtc->dev;
  10017.         struct drm_i915_private *dev_priv = dev->dev_private;
  10018.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10019.         int pipe = intel_crtc->pipe;
  10020.         uint32_t cntl = 0;
  10021.  
  10022.         if (on) {
  10023.                 cntl = MCURSOR_GAMMA_ENABLE;
  10024.                 switch (intel_crtc->base.cursor->state->crtc_w) {
  10025.                         case 64:
  10026.                                 cntl |= CURSOR_MODE_64_ARGB_AX;
  10027.                                 break;
  10028.                         case 128:
  10029.                                 cntl |= CURSOR_MODE_128_ARGB_AX;
  10030.                                 break;
  10031.                         case 256:
  10032.                                 cntl |= CURSOR_MODE_256_ARGB_AX;
  10033.                                 break;
  10034.                         default:
  10035.                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
  10036.                                 return;
  10037.                 }
  10038.                 cntl |= pipe << 28; /* Connect to correct pipe */
  10039.  
  10040.                 if (HAS_DDI(dev))
  10041.                         cntl |= CURSOR_PIPE_CSC_ENABLE;
  10042.         }
  10043.  
  10044.         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
  10045.                 cntl |= CURSOR_ROTATE_180;
  10046.  
  10047.         if (intel_crtc->cursor_cntl != cntl) {
  10048.                 I915_WRITE(CURCNTR(pipe), cntl);
  10049.                 POSTING_READ(CURCNTR(pipe));
  10050.                 intel_crtc->cursor_cntl = cntl;
  10051.         }
  10052.  
  10053.         /* and commit changes on next vblank */
  10054.         I915_WRITE(CURBASE(pipe), base);
  10055.         POSTING_READ(CURBASE(pipe));
  10056.  
  10057.         intel_crtc->cursor_base = base;
  10058. }
  10059.  
  10060. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  10061. void intel_crtc_update_cursor(struct drm_crtc *crtc,
  10062.                                      bool on)
  10063. {
  10064.         struct drm_device *dev = crtc->dev;
  10065.         struct drm_i915_private *dev_priv = dev->dev_private;
  10066.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10067.         int pipe = intel_crtc->pipe;
  10068.         struct drm_plane_state *cursor_state = crtc->cursor->state;
  10069.         int x = cursor_state->crtc_x;
  10070.         int y = cursor_state->crtc_y;
  10071.         u32 base = 0, pos = 0;
  10072.  
  10073.         base = intel_crtc->cursor_addr;
  10074.  
  10075.         if (x >= intel_crtc->config->pipe_src_w)
  10076.                 on = false;
  10077.  
  10078.         if (y >= intel_crtc->config->pipe_src_h)
  10079.                 on = false;
  10080.  
  10081.         if (x < 0) {
  10082.                 if (x + cursor_state->crtc_w <= 0)
  10083.                         on = false;
  10084.  
  10085.                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  10086.                 x = -x;
  10087.         }
  10088.         pos |= x << CURSOR_X_SHIFT;
  10089.  
  10090.         if (y < 0) {
  10091.                 if (y + cursor_state->crtc_h <= 0)
  10092.                         on = false;
  10093.  
  10094.                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  10095.                 y = -y;
  10096.         }
  10097.         pos |= y << CURSOR_Y_SHIFT;
  10098.  
  10099.         I915_WRITE(CURPOS(pipe), pos);
  10100.  
  10101.         /* ILK+ do this automagically */
  10102.         if (HAS_GMCH_DISPLAY(dev) &&
  10103.             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
  10104.                 base += (cursor_state->crtc_h *
  10105.                          cursor_state->crtc_w - 1) * 4;
  10106.         }
  10107.  
  10108.         if (IS_845G(dev) || IS_I865G(dev))
  10109.                 i845_update_cursor(crtc, base, on);
  10110.         else
  10111.                 i9xx_update_cursor(crtc, base, on);
  10112. }
  10113.  
  10114. static bool cursor_size_ok(struct drm_device *dev,
  10115.                            uint32_t width, uint32_t height)
  10116. {
  10117.         if (width == 0 || height == 0)
  10118.                 return false;
  10119.  
  10120.         /*
  10121.          * 845g/865g are special in that they are only limited by
  10122.          * the width of their cursors, the height is arbitrary up to
  10123.          * the precision of the register. Everything else requires
  10124.          * square cursors, limited to a few power-of-two sizes.
  10125.          */
  10126.         if (IS_845G(dev) || IS_I865G(dev)) {
  10127.                 if ((width & 63) != 0)
  10128.                         return false;
  10129.  
  10130.                 if (width > (IS_845G(dev) ? 64 : 512))
  10131.                         return false;
  10132.  
  10133.                 if (height > 1023)
  10134.                         return false;
  10135.         } else {
  10136.                 switch (width | height) {
  10137.                 case 256:
  10138.                 case 128:
  10139.                         if (IS_GEN2(dev))
  10140.                                 return false;
  10141.                 case 64:
  10142.                         break;
  10143.                 default:
  10144.                         return false;
  10145.                 }
  10146.         }
  10147.  
  10148.         return true;
  10149. }
  10150.  
  10151. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  10152.                                  u16 *blue, uint32_t start, uint32_t size)
  10153. {
  10154.         int end = (start + size > 256) ? 256 : start + size, i;
  10155.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10156.  
  10157.         for (i = start; i < end; i++) {
  10158.                 intel_crtc->lut_r[i] = red[i] >> 8;
  10159.                 intel_crtc->lut_g[i] = green[i] >> 8;
  10160.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  10161.         }
  10162.  
  10163.         intel_crtc_load_lut(crtc);
  10164. }
  10165.  
  10166. /* VESA 640x480x72Hz mode to set on the pipe */
  10167. static struct drm_display_mode load_detect_mode = {
  10168.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  10169.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  10170. };
  10171.  
  10172. struct drm_framebuffer *
  10173. __intel_framebuffer_create(struct drm_device *dev,
  10174.                            struct drm_mode_fb_cmd2 *mode_cmd,
  10175.                            struct drm_i915_gem_object *obj)
  10176. {
  10177.         struct intel_framebuffer *intel_fb;
  10178.         int ret;
  10179.  
  10180.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  10181.         if (!intel_fb) {
  10182.                 drm_gem_object_unreference(&obj->base);
  10183.                 return ERR_PTR(-ENOMEM);
  10184.         }
  10185.  
  10186.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  10187.         if (ret)
  10188.                 goto err;
  10189.  
  10190.         return &intel_fb->base;
  10191. err:
  10192.         drm_gem_object_unreference(&obj->base);
  10193.         kfree(intel_fb);
  10194.  
  10195.         return ERR_PTR(ret);
  10196. }
  10197.  
  10198. static struct drm_framebuffer *
  10199. intel_framebuffer_create(struct drm_device *dev,
  10200.                          struct drm_mode_fb_cmd2 *mode_cmd,
  10201.                          struct drm_i915_gem_object *obj)
  10202. {
  10203.         struct drm_framebuffer *fb;
  10204.         int ret;
  10205.  
  10206.         ret = i915_mutex_lock_interruptible(dev);
  10207.         if (ret)
  10208.                 return ERR_PTR(ret);
  10209.         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
  10210.         mutex_unlock(&dev->struct_mutex);
  10211.  
  10212.         return fb;
  10213. }
  10214.  
  10215. static u32
  10216. intel_framebuffer_pitch_for_width(int width, int bpp)
  10217. {
  10218.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  10219.         return ALIGN(pitch, 64);
  10220. }
  10221.  
  10222. static u32
  10223. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  10224. {
  10225.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  10226.         return PAGE_ALIGN(pitch * mode->vdisplay);
  10227. }
  10228.  
  10229. static struct drm_framebuffer *
  10230. intel_framebuffer_create_for_mode(struct drm_device *dev,
  10231.                                   struct drm_display_mode *mode,
  10232.                                   int depth, int bpp)
  10233. {
  10234.         struct drm_i915_gem_object *obj;
  10235.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  10236.  
  10237.         obj = i915_gem_alloc_object(dev,
  10238.                                     intel_framebuffer_size_for_mode(mode, bpp));
  10239.         if (obj == NULL)
  10240.                 return ERR_PTR(-ENOMEM);
  10241.  
  10242.         mode_cmd.width = mode->hdisplay;
  10243.         mode_cmd.height = mode->vdisplay;
  10244.         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  10245.                                                                 bpp);
  10246.         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  10247.  
  10248.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  10249. }
  10250.  
  10251. static struct drm_framebuffer *
  10252. mode_fits_in_fbdev(struct drm_device *dev,
  10253.                    struct drm_display_mode *mode)
  10254. {
  10255. #ifdef CONFIG_DRM_FBDEV_EMULATION
  10256.         struct drm_i915_private *dev_priv = dev->dev_private;
  10257.         struct drm_i915_gem_object *obj;
  10258.         struct drm_framebuffer *fb;
  10259.  
  10260.         if (!dev_priv->fbdev)
  10261.                 return NULL;
  10262.  
  10263.         if (!dev_priv->fbdev->fb)
  10264.                 return NULL;
  10265.  
  10266.         obj = dev_priv->fbdev->fb->obj;
  10267.         BUG_ON(!obj);
  10268.  
  10269.         fb = &dev_priv->fbdev->fb->base;
  10270.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  10271.                                                                fb->bits_per_pixel))
  10272.                 return NULL;
  10273.  
  10274.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  10275.                 return NULL;
  10276.  
  10277.         return fb;
  10278. #else
  10279.         return NULL;
  10280. #endif
  10281. }
  10282.  
  10283. static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
  10284.                                            struct drm_crtc *crtc,
  10285.                                            struct drm_display_mode *mode,
  10286.                                            struct drm_framebuffer *fb,
  10287.                                            int x, int y)
  10288. {
  10289.         struct drm_plane_state *plane_state;
  10290.         int hdisplay, vdisplay;
  10291.         int ret;
  10292.  
  10293.         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
  10294.         if (IS_ERR(plane_state))
  10295.                 return PTR_ERR(plane_state);
  10296.  
  10297.         if (mode)
  10298.                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
  10299.         else
  10300.                 hdisplay = vdisplay = 0;
  10301.  
  10302.         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
  10303.         if (ret)
  10304.                 return ret;
  10305.         drm_atomic_set_fb_for_plane(plane_state, fb);
  10306.         plane_state->crtc_x = 0;
  10307.         plane_state->crtc_y = 0;
  10308.         plane_state->crtc_w = hdisplay;
  10309.         plane_state->crtc_h = vdisplay;
  10310.         plane_state->src_x = x << 16;
  10311.         plane_state->src_y = y << 16;
  10312.         plane_state->src_w = hdisplay << 16;
  10313.         plane_state->src_h = vdisplay << 16;
  10314.  
  10315.         return 0;
  10316. }
  10317.  
  10318. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  10319.                                 struct drm_display_mode *mode,
  10320.                                 struct intel_load_detect_pipe *old,
  10321.                                 struct drm_modeset_acquire_ctx *ctx)
  10322. {
  10323.         struct intel_crtc *intel_crtc;
  10324.         struct intel_encoder *intel_encoder =
  10325.                 intel_attached_encoder(connector);
  10326.         struct drm_crtc *possible_crtc;
  10327.         struct drm_encoder *encoder = &intel_encoder->base;
  10328.         struct drm_crtc *crtc = NULL;
  10329.         struct drm_device *dev = encoder->dev;
  10330.         struct drm_framebuffer *fb;
  10331.         struct drm_mode_config *config = &dev->mode_config;
  10332.         struct drm_atomic_state *state = NULL;
  10333.         struct drm_connector_state *connector_state;
  10334.         struct intel_crtc_state *crtc_state;
  10335.         int ret, i = -1;
  10336.  
  10337.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10338.                       connector->base.id, connector->name,
  10339.                       encoder->base.id, encoder->name);
  10340.  
  10341. retry:
  10342.         ret = drm_modeset_lock(&config->connection_mutex, ctx);
  10343.         if (ret)
  10344.                 goto fail;
  10345.  
  10346.         /*
  10347.          * Algorithm gets a little messy:
  10348.          *
  10349.          *   - if the connector already has an assigned crtc, use it (but make
  10350.          *     sure it's on first)
  10351.          *
  10352.          *   - try to find the first unused crtc that can drive this connector,
  10353.          *     and use that if we find one
  10354.          */
  10355.  
  10356.         /* See if we already have a CRTC for this connector */
  10357.         if (encoder->crtc) {
  10358.                 crtc = encoder->crtc;
  10359.  
  10360.                 ret = drm_modeset_lock(&crtc->mutex, ctx);
  10361.                 if (ret)
  10362.                         goto fail;
  10363.                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10364.                 if (ret)
  10365.                         goto fail;
  10366.  
  10367.                 old->dpms_mode = connector->dpms;
  10368.                 old->load_detect_temp = false;
  10369.  
  10370.                 /* Make sure the crtc and connector are running */
  10371.                 if (connector->dpms != DRM_MODE_DPMS_ON)
  10372.                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  10373.  
  10374.                 return true;
  10375.         }
  10376.  
  10377.         /* Find an unused one (if possible) */
  10378.         for_each_crtc(dev, possible_crtc) {
  10379.                 i++;
  10380.                 if (!(encoder->possible_crtcs & (1 << i)))
  10381.                         continue;
  10382.                 if (possible_crtc->state->enable)
  10383.                         continue;
  10384.  
  10385.                 crtc = possible_crtc;
  10386.                 break;
  10387.         }
  10388.  
  10389.         /*
  10390.          * If we didn't find an unused CRTC, don't use any.
  10391.          */
  10392.         if (!crtc) {
  10393.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  10394.                 goto fail;
  10395.         }
  10396.  
  10397.         ret = drm_modeset_lock(&crtc->mutex, ctx);
  10398.         if (ret)
  10399.                 goto fail;
  10400.         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10401.         if (ret)
  10402.                 goto fail;
  10403.  
  10404.         intel_crtc = to_intel_crtc(crtc);
  10405.         old->dpms_mode = connector->dpms;
  10406.         old->load_detect_temp = true;
  10407.         old->release_fb = NULL;
  10408.  
  10409.         state = drm_atomic_state_alloc(dev);
  10410.         if (!state)
  10411.                 return false;
  10412.  
  10413.         state->acquire_ctx = ctx;
  10414.  
  10415.         connector_state = drm_atomic_get_connector_state(state, connector);
  10416.         if (IS_ERR(connector_state)) {
  10417.                 ret = PTR_ERR(connector_state);
  10418.                 goto fail;
  10419.         }
  10420.  
  10421.         connector_state->crtc = crtc;
  10422.         connector_state->best_encoder = &intel_encoder->base;
  10423.  
  10424.         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10425.         if (IS_ERR(crtc_state)) {
  10426.                 ret = PTR_ERR(crtc_state);
  10427.                 goto fail;
  10428.         }
  10429.  
  10430.         crtc_state->base.active = crtc_state->base.enable = true;
  10431.  
  10432.         if (!mode)
  10433.                 mode = &load_detect_mode;
  10434.  
  10435.         /* We need a framebuffer large enough to accommodate all accesses
  10436.          * that the plane may generate whilst we perform load detection.
  10437.          * We can not rely on the fbcon either being present (we get called
  10438.          * during its initialisation to detect all boot displays, or it may
  10439.          * not even exist) or that it is large enough to satisfy the
  10440.          * requested mode.
  10441.          */
  10442.         fb = mode_fits_in_fbdev(dev, mode);
  10443.         if (fb == NULL) {
  10444.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  10445.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  10446.                 old->release_fb = fb;
  10447.         } else
  10448.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  10449.         if (IS_ERR(fb)) {
  10450.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  10451.                 goto fail;
  10452.         }
  10453.  
  10454.         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
  10455.         if (ret)
  10456.                 goto fail;
  10457.  
  10458.         drm_mode_copy(&crtc_state->base.mode, mode);
  10459.  
  10460.         if (drm_atomic_commit(state)) {
  10461.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  10462.                 if (old->release_fb)
  10463.                         old->release_fb->funcs->destroy(old->release_fb);
  10464.                 goto fail;
  10465.         }
  10466.         crtc->primary->crtc = crtc;
  10467.  
  10468.         /* let the connector get through one full cycle before testing */
  10469.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  10470.         return true;
  10471.  
  10472. fail:
  10473.         drm_atomic_state_free(state);
  10474.         state = NULL;
  10475.  
  10476.         if (ret == -EDEADLK) {
  10477.                 drm_modeset_backoff(ctx);
  10478.                 goto retry;
  10479.         }
  10480.  
  10481.         return false;
  10482. }
  10483.  
  10484. void intel_release_load_detect_pipe(struct drm_connector *connector,
  10485.                                     struct intel_load_detect_pipe *old,
  10486.                                     struct drm_modeset_acquire_ctx *ctx)
  10487. {
  10488.         struct drm_device *dev = connector->dev;
  10489.         struct intel_encoder *intel_encoder =
  10490.                 intel_attached_encoder(connector);
  10491.         struct drm_encoder *encoder = &intel_encoder->base;
  10492.         struct drm_crtc *crtc = encoder->crtc;
  10493.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10494.         struct drm_atomic_state *state;
  10495.         struct drm_connector_state *connector_state;
  10496.         struct intel_crtc_state *crtc_state;
  10497.         int ret;
  10498.  
  10499.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10500.                       connector->base.id, connector->name,
  10501.                       encoder->base.id, encoder->name);
  10502.  
  10503.         if (old->load_detect_temp) {
  10504.                 state = drm_atomic_state_alloc(dev);
  10505.                 if (!state)
  10506.                         goto fail;
  10507.  
  10508.                 state->acquire_ctx = ctx;
  10509.  
  10510.                 connector_state = drm_atomic_get_connector_state(state, connector);
  10511.                 if (IS_ERR(connector_state))
  10512.                         goto fail;
  10513.  
  10514.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10515.                 if (IS_ERR(crtc_state))
  10516.                         goto fail;
  10517.  
  10518.                 connector_state->best_encoder = NULL;
  10519.                 connector_state->crtc = NULL;
  10520.  
  10521.                 crtc_state->base.enable = crtc_state->base.active = false;
  10522.  
  10523.                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
  10524.                                                       0, 0);
  10525.                 if (ret)
  10526.                         goto fail;
  10527.  
  10528.                 ret = drm_atomic_commit(state);
  10529.                 if (ret)
  10530.                         goto fail;
  10531.  
  10532.                 if (old->release_fb) {
  10533.                         drm_framebuffer_unregister_private(old->release_fb);
  10534.                         drm_framebuffer_unreference(old->release_fb);
  10535.                 }
  10536.  
  10537.                 return;
  10538.         }
  10539.  
  10540.         /* Switch crtc and encoder back off if necessary */
  10541.         if (old->dpms_mode != DRM_MODE_DPMS_ON)
  10542.                 connector->funcs->dpms(connector, old->dpms_mode);
  10543.  
  10544.         return;
  10545. fail:
  10546.         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
  10547.         drm_atomic_state_free(state);
  10548. }
  10549.  
  10550. static int i9xx_pll_refclk(struct drm_device *dev,
  10551.                            const struct intel_crtc_state *pipe_config)
  10552. {
  10553.         struct drm_i915_private *dev_priv = dev->dev_private;
  10554.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10555.  
  10556.         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  10557.                 return dev_priv->vbt.lvds_ssc_freq;
  10558.         else if (HAS_PCH_SPLIT(dev))
  10559.                 return 120000;
  10560.         else if (!IS_GEN2(dev))
  10561.                 return 96000;
  10562.         else
  10563.                 return 48000;
  10564. }
  10565.  
  10566. /* Returns the clock of the currently programmed mode of the given pipe. */
  10567. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  10568.                                 struct intel_crtc_state *pipe_config)
  10569. {
  10570.         struct drm_device *dev = crtc->base.dev;
  10571.         struct drm_i915_private *dev_priv = dev->dev_private;
  10572.         int pipe = pipe_config->cpu_transcoder;
  10573.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10574.         u32 fp;
  10575.         intel_clock_t clock;
  10576.         int port_clock;
  10577.         int refclk = i9xx_pll_refclk(dev, pipe_config);
  10578.  
  10579.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  10580.                 fp = pipe_config->dpll_hw_state.fp0;
  10581.         else
  10582.                 fp = pipe_config->dpll_hw_state.fp1;
  10583.  
  10584.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  10585.         if (IS_PINEVIEW(dev)) {
  10586.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  10587.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10588.         } else {
  10589.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  10590.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10591.         }
  10592.  
  10593.         if (!IS_GEN2(dev)) {
  10594.                 if (IS_PINEVIEW(dev))
  10595.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  10596.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  10597.                 else
  10598.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  10599.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  10600.  
  10601.                 switch (dpll & DPLL_MODE_MASK) {
  10602.                 case DPLLB_MODE_DAC_SERIAL:
  10603.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  10604.                                 5 : 10;
  10605.                         break;
  10606.                 case DPLLB_MODE_LVDS:
  10607.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  10608.                                 7 : 14;
  10609.                         break;
  10610.                 default:
  10611.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  10612.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  10613.                         return;
  10614.                 }
  10615.  
  10616.                 if (IS_PINEVIEW(dev))
  10617.                         port_clock = pnv_calc_dpll_params(refclk, &clock);
  10618.                 else
  10619.                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10620.         } else {
  10621.                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
  10622.                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
  10623.  
  10624.                 if (is_lvds) {
  10625.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  10626.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  10627.  
  10628.                         if (lvds & LVDS_CLKB_POWER_UP)
  10629.                                 clock.p2 = 7;
  10630.                         else
  10631.                                 clock.p2 = 14;
  10632.                 } else {
  10633.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  10634.                                 clock.p1 = 2;
  10635.                         else {
  10636.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  10637.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  10638.                         }
  10639.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  10640.                                 clock.p2 = 4;
  10641.                         else
  10642.                                 clock.p2 = 2;
  10643.                 }
  10644.  
  10645.                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10646.         }
  10647.  
  10648.         /*
  10649.          * This value includes pixel_multiplier. We will use
  10650.          * port_clock to compute adjusted_mode.crtc_clock in the
  10651.          * encoder's get_config() function.
  10652.          */
  10653.         pipe_config->port_clock = port_clock;
  10654. }
  10655.  
  10656. int intel_dotclock_calculate(int link_freq,
  10657.                              const struct intel_link_m_n *m_n)
  10658. {
  10659.         /*
  10660.          * The calculation for the data clock is:
  10661.          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  10662.          * But we want to avoid losing precison if possible, so:
  10663.          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  10664.          *
  10665.          * and the link clock is simpler:
  10666.          * link_clock = (m * link_clock) / n
  10667.          */
  10668.  
  10669.         if (!m_n->link_n)
  10670.                 return 0;
  10671.  
  10672.         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  10673. }
  10674.  
  10675. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  10676.                                    struct intel_crtc_state *pipe_config)
  10677. {
  10678.         struct drm_device *dev = crtc->base.dev;
  10679.  
  10680.         /* read out port_clock from the DPLL */
  10681.         i9xx_crtc_clock_get(crtc, pipe_config);
  10682.  
  10683.         /*
  10684.          * This value does not include pixel_multiplier.
  10685.          * We will check that port_clock and adjusted_mode.crtc_clock
  10686.          * agree once we know their relationship in the encoder's
  10687.          * get_config() function.
  10688.          */
  10689.         pipe_config->base.adjusted_mode.crtc_clock =
  10690.                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  10691.                                          &pipe_config->fdi_m_n);
  10692. }
  10693.  
  10694. /** Returns the currently programmed mode of the given pipe. */
  10695. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  10696.                                              struct drm_crtc *crtc)
  10697. {
  10698.         struct drm_i915_private *dev_priv = dev->dev_private;
  10699.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10700.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  10701.         struct drm_display_mode *mode;
  10702.         struct intel_crtc_state pipe_config;
  10703.         int htot = I915_READ(HTOTAL(cpu_transcoder));
  10704.         int hsync = I915_READ(HSYNC(cpu_transcoder));
  10705.         int vtot = I915_READ(VTOTAL(cpu_transcoder));
  10706.         int vsync = I915_READ(VSYNC(cpu_transcoder));
  10707.         enum pipe pipe = intel_crtc->pipe;
  10708.  
  10709.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  10710.         if (!mode)
  10711.                 return NULL;
  10712.  
  10713.         /*
  10714.          * Construct a pipe_config sufficient for getting the clock info
  10715.          * back out of crtc_clock_get.
  10716.          *
  10717.          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  10718.          * to use a real value here instead.
  10719.          */
  10720.         pipe_config.cpu_transcoder = (enum transcoder) pipe;
  10721.         pipe_config.pixel_multiplier = 1;
  10722.         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  10723.         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  10724.         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  10725.         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  10726.  
  10727.         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  10728.         mode->hdisplay = (htot & 0xffff) + 1;
  10729.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  10730.         mode->hsync_start = (hsync & 0xffff) + 1;
  10731.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  10732.         mode->vdisplay = (vtot & 0xffff) + 1;
  10733.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  10734.         mode->vsync_start = (vsync & 0xffff) + 1;
  10735.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  10736.  
  10737.         drm_mode_set_name(mode);
  10738.  
  10739.         return mode;
  10740. }
  10741.  
  10742. void intel_mark_busy(struct drm_device *dev)
  10743. {
  10744.         struct drm_i915_private *dev_priv = dev->dev_private;
  10745.  
  10746.         if (dev_priv->mm.busy)
  10747.                 return;
  10748.  
  10749.         intel_runtime_pm_get(dev_priv);
  10750.         i915_update_gfx_val(dev_priv);
  10751.         if (INTEL_INFO(dev)->gen >= 6)
  10752.                 gen6_rps_busy(dev_priv);
  10753.         dev_priv->mm.busy = true;
  10754. }
  10755.  
  10756. void intel_mark_idle(struct drm_device *dev)
  10757. {
  10758.         struct drm_i915_private *dev_priv = dev->dev_private;
  10759.  
  10760.         if (!dev_priv->mm.busy)
  10761.                 return;
  10762.  
  10763.         dev_priv->mm.busy = false;
  10764.  
  10765.         if (INTEL_INFO(dev)->gen >= 6)
  10766.                 gen6_rps_idle(dev->dev_private);
  10767.  
  10768.         intel_runtime_pm_put(dev_priv);
  10769. }
  10770.  
  10771. static void intel_crtc_destroy(struct drm_crtc *crtc)
  10772. {
  10773.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10774.         struct drm_device *dev = crtc->dev;
  10775.         struct intel_unpin_work *work;
  10776.  
  10777.         spin_lock_irq(&dev->event_lock);
  10778.         work = intel_crtc->unpin_work;
  10779.         intel_crtc->unpin_work = NULL;
  10780.         spin_unlock_irq(&dev->event_lock);
  10781.  
  10782.         if (work) {
  10783.                 cancel_work_sync(&work->work);
  10784.                 kfree(work);
  10785.         }
  10786.  
  10787.         drm_crtc_cleanup(crtc);
  10788.  
  10789.         kfree(intel_crtc);
  10790. }
  10791.  
  10792. static void intel_unpin_work_fn(struct work_struct *__work)
  10793. {
  10794.         struct intel_unpin_work *work =
  10795.                 container_of(__work, struct intel_unpin_work, work);
  10796.         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
  10797.         struct drm_device *dev = crtc->base.dev;
  10798.         struct drm_plane *primary = crtc->base.primary;
  10799.  
  10800.         mutex_lock(&dev->struct_mutex);
  10801.         intel_unpin_fb_obj(work->old_fb, primary->state);
  10802.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  10803.  
  10804.         if (work->flip_queued_req)
  10805.                 i915_gem_request_assign(&work->flip_queued_req, NULL);
  10806.         mutex_unlock(&dev->struct_mutex);
  10807.  
  10808.         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
  10809.         drm_framebuffer_unreference(work->old_fb);
  10810.  
  10811.         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
  10812.         atomic_dec(&crtc->unpin_work_count);
  10813.  
  10814.         kfree(work);
  10815. }
  10816.  
  10817. static void do_intel_finish_page_flip(struct drm_device *dev,
  10818.                                       struct drm_crtc *crtc)
  10819. {
  10820.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10821.         struct intel_unpin_work *work;
  10822.         unsigned long flags;
  10823.  
  10824.         /* Ignore early vblank irqs */
  10825.         if (intel_crtc == NULL)
  10826.                 return;
  10827.  
  10828.         /*
  10829.          * This is called both by irq handlers and the reset code (to complete
  10830.          * lost pageflips) so needs the full irqsave spinlocks.
  10831.          */
  10832.         spin_lock_irqsave(&dev->event_lock, flags);
  10833.         work = intel_crtc->unpin_work;
  10834.  
  10835.         /* Ensure we don't miss a work->pending update ... */
  10836.         smp_rmb();
  10837.  
  10838.         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  10839.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  10840.                 return;
  10841.         }
  10842.  
  10843.         page_flip_completed(intel_crtc);
  10844.  
  10845.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10846. }
  10847.  
  10848. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  10849. {
  10850.         struct drm_i915_private *dev_priv = dev->dev_private;
  10851.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  10852.  
  10853.         do_intel_finish_page_flip(dev, crtc);
  10854. }
  10855.  
  10856. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  10857. {
  10858.         struct drm_i915_private *dev_priv = dev->dev_private;
  10859.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  10860.  
  10861.         do_intel_finish_page_flip(dev, crtc);
  10862. }
  10863.  
  10864. /* Is 'a' after or equal to 'b'? */
  10865. static bool g4x_flip_count_after_eq(u32 a, u32 b)
  10866. {
  10867.         return !((a - b) & 0x80000000);
  10868. }
  10869.  
  10870. static bool page_flip_finished(struct intel_crtc *crtc)
  10871. {
  10872.         struct drm_device *dev = crtc->base.dev;
  10873.         struct drm_i915_private *dev_priv = dev->dev_private;
  10874.  
  10875.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  10876.             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  10877.                 return true;
  10878.  
  10879.         /*
  10880.          * The relevant registers doen't exist on pre-ctg.
  10881.          * As the flip done interrupt doesn't trigger for mmio
  10882.          * flips on gmch platforms, a flip count check isn't
  10883.          * really needed there. But since ctg has the registers,
  10884.          * include it in the check anyway.
  10885.          */
  10886.         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
  10887.                 return true;
  10888.  
  10889.         /*
  10890.          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
  10891.          * used the same base address. In that case the mmio flip might
  10892.          * have completed, but the CS hasn't even executed the flip yet.
  10893.          *
  10894.          * A flip count check isn't enough as the CS might have updated
  10895.          * the base address just after start of vblank, but before we
  10896.          * managed to process the interrupt. This means we'd complete the
  10897.          * CS flip too soon.
  10898.          *
  10899.          * Combining both checks should get us a good enough result. It may
  10900.          * still happen that the CS flip has been executed, but has not
  10901.          * yet actually completed. But in case the base address is the same
  10902.          * anyway, we don't really care.
  10903.          */
  10904.         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
  10905.                 crtc->unpin_work->gtt_offset &&
  10906.                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
  10907.                                     crtc->unpin_work->flip_count);
  10908. }
  10909.  
  10910. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  10911. {
  10912.         struct drm_i915_private *dev_priv = dev->dev_private;
  10913.         struct intel_crtc *intel_crtc =
  10914.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  10915.         unsigned long flags;
  10916.  
  10917.  
  10918.         /*
  10919.          * This is called both by irq handlers and the reset code (to complete
  10920.          * lost pageflips) so needs the full irqsave spinlocks.
  10921.          *
  10922.          * NB: An MMIO update of the plane base pointer will also
  10923.          * generate a page-flip completion irq, i.e. every modeset
  10924.          * is also accompanied by a spurious intel_prepare_page_flip().
  10925.          */
  10926.         spin_lock_irqsave(&dev->event_lock, flags);
  10927.         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
  10928.                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  10929.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10930. }
  10931.  
  10932. static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
  10933. {
  10934.         /* Ensure that the work item is consistent when activating it ... */
  10935.         smp_wmb();
  10936.         atomic_set(&work->pending, INTEL_FLIP_PENDING);
  10937.         /* and that it is marked active as soon as the irq could fire. */
  10938.         smp_wmb();
  10939. }
  10940.  
  10941. static int intel_gen2_queue_flip(struct drm_device *dev,
  10942.                                  struct drm_crtc *crtc,
  10943.                                  struct drm_framebuffer *fb,
  10944.                                  struct drm_i915_gem_object *obj,
  10945.                                  struct drm_i915_gem_request *req,
  10946.                                  uint32_t flags)
  10947. {
  10948.         struct intel_engine_cs *ring = req->ring;
  10949.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10950.         u32 flip_mask;
  10951.         int ret;
  10952.  
  10953.         ret = intel_ring_begin(req, 6);
  10954.         if (ret)
  10955.                 return ret;
  10956.  
  10957.         /* Can't queue multiple flips, so wait for the previous
  10958.          * one to finish before executing the next.
  10959.          */
  10960.         if (intel_crtc->plane)
  10961.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10962.         else
  10963.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10964.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10965.         intel_ring_emit(ring, MI_NOOP);
  10966.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  10967.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  10968.         intel_ring_emit(ring, fb->pitches[0]);
  10969.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  10970.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  10971.  
  10972.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  10973.         return 0;
  10974. }
  10975.  
  10976. static int intel_gen3_queue_flip(struct drm_device *dev,
  10977.                                  struct drm_crtc *crtc,
  10978.                                  struct drm_framebuffer *fb,
  10979.                                  struct drm_i915_gem_object *obj,
  10980.                                  struct drm_i915_gem_request *req,
  10981.                                  uint32_t flags)
  10982. {
  10983.         struct intel_engine_cs *ring = req->ring;
  10984.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10985.         u32 flip_mask;
  10986.         int ret;
  10987.  
  10988.         ret = intel_ring_begin(req, 6);
  10989.         if (ret)
  10990.                 return ret;
  10991.  
  10992.         if (intel_crtc->plane)
  10993.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10994.         else
  10995.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10996.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10997.         intel_ring_emit(ring, MI_NOOP);
  10998.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  10999.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11000.         intel_ring_emit(ring, fb->pitches[0]);
  11001.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11002.         intel_ring_emit(ring, MI_NOOP);
  11003.  
  11004.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11005.         return 0;
  11006. }
  11007.  
  11008. static int intel_gen4_queue_flip(struct drm_device *dev,
  11009.                                  struct drm_crtc *crtc,
  11010.                                  struct drm_framebuffer *fb,
  11011.                                  struct drm_i915_gem_object *obj,
  11012.                                  struct drm_i915_gem_request *req,
  11013.                                  uint32_t flags)
  11014. {
  11015.         struct intel_engine_cs *ring = req->ring;
  11016.         struct drm_i915_private *dev_priv = dev->dev_private;
  11017.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11018.         uint32_t pf, pipesrc;
  11019.         int ret;
  11020.  
  11021.         ret = intel_ring_begin(req, 4);
  11022.         if (ret)
  11023.                 return ret;
  11024.  
  11025.         /* i965+ uses the linear or tiled offsets from the
  11026.          * Display Registers (which do not change across a page-flip)
  11027.          * so we need only reprogram the base address.
  11028.          */
  11029.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11030.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11031.         intel_ring_emit(ring, fb->pitches[0]);
  11032.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
  11033.                         obj->tiling_mode);
  11034.  
  11035.         /* XXX Enabling the panel-fitter across page-flip is so far
  11036.          * untested on non-native modes, so ignore it for now.
  11037.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  11038.          */
  11039.         pf = 0;
  11040.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11041.         intel_ring_emit(ring, pf | pipesrc);
  11042.  
  11043.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11044.         return 0;
  11045. }
  11046.  
  11047. static int intel_gen6_queue_flip(struct drm_device *dev,
  11048.                                  struct drm_crtc *crtc,
  11049.                                  struct drm_framebuffer *fb,
  11050.                                  struct drm_i915_gem_object *obj,
  11051.                                  struct drm_i915_gem_request *req,
  11052.                                  uint32_t flags)
  11053. {
  11054.         struct intel_engine_cs *ring = req->ring;
  11055.         struct drm_i915_private *dev_priv = dev->dev_private;
  11056.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11057.         uint32_t pf, pipesrc;
  11058.         int ret;
  11059.  
  11060.         ret = intel_ring_begin(req, 4);
  11061.         if (ret)
  11062.                 return ret;
  11063.  
  11064.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11065.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11066.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  11067.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11068.  
  11069.         /* Contrary to the suggestions in the documentation,
  11070.          * "Enable Panel Fitter" does not seem to be required when page
  11071.          * flipping with a non-native mode, and worse causes a normal
  11072.          * modeset to fail.
  11073.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  11074.          */
  11075.         pf = 0;
  11076.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11077.         intel_ring_emit(ring, pf | pipesrc);
  11078.  
  11079.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11080.         return 0;
  11081. }
  11082.  
  11083. static int intel_gen7_queue_flip(struct drm_device *dev,
  11084.                                  struct drm_crtc *crtc,
  11085.                                  struct drm_framebuffer *fb,
  11086.                                  struct drm_i915_gem_object *obj,
  11087.                                  struct drm_i915_gem_request *req,
  11088.                                  uint32_t flags)
  11089. {
  11090.         struct intel_engine_cs *ring = req->ring;
  11091.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11092.         uint32_t plane_bit = 0;
  11093.         int len, ret;
  11094.  
  11095.         switch (intel_crtc->plane) {
  11096.         case PLANE_A:
  11097.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  11098.                 break;
  11099.         case PLANE_B:
  11100.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  11101.                 break;
  11102.         case PLANE_C:
  11103.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  11104.                 break;
  11105.         default:
  11106.                 WARN_ONCE(1, "unknown plane in flip command\n");
  11107.                 return -ENODEV;
  11108.         }
  11109.  
  11110.         len = 4;
  11111.         if (ring->id == RCS) {
  11112.                 len += 6;
  11113.                 /*
  11114.                  * On Gen 8, SRM is now taking an extra dword to accommodate
  11115.                  * 48bits addresses, and we need a NOOP for the batch size to
  11116.                  * stay even.
  11117.                  */
  11118.                 if (IS_GEN8(dev))
  11119.                         len += 2;
  11120.         }
  11121.  
  11122.         /*
  11123.          * BSpec MI_DISPLAY_FLIP for IVB:
  11124.          * "The full packet must be contained within the same cache line."
  11125.          *
  11126.          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
  11127.          * cacheline, if we ever start emitting more commands before
  11128.          * the MI_DISPLAY_FLIP we may need to first emit everything else,
  11129.          * then do the cacheline alignment, and finally emit the
  11130.          * MI_DISPLAY_FLIP.
  11131.          */
  11132.         ret = intel_ring_cacheline_align(req);
  11133.         if (ret)
  11134.                 return ret;
  11135.  
  11136.         ret = intel_ring_begin(req, len);
  11137.         if (ret)
  11138.                 return ret;
  11139.  
  11140.         /* Unmask the flip-done completion message. Note that the bspec says that
  11141.          * we should do this for both the BCS and RCS, and that we must not unmask
  11142.          * more than one flip event at any time (or ensure that one flip message
  11143.          * can be sent by waiting for flip-done prior to queueing new flips).
  11144.          * Experimentation says that BCS works despite DERRMR masking all
  11145.          * flip-done completion events and that unmasking all planes at once
  11146.          * for the RCS also doesn't appear to drop events. Setting the DERRMR
  11147.          * to zero does lead to lockups within MI_DISPLAY_FLIP.
  11148.          */
  11149.         if (ring->id == RCS) {
  11150.                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  11151.                 intel_ring_emit(ring, DERRMR);
  11152.                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  11153.                                         DERRMR_PIPEB_PRI_FLIP_DONE |
  11154.                                         DERRMR_PIPEC_PRI_FLIP_DONE));
  11155.                 if (IS_GEN8(dev))
  11156.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
  11157.                                               MI_SRM_LRM_GLOBAL_GTT);
  11158.                 else
  11159.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
  11160.                                               MI_SRM_LRM_GLOBAL_GTT);
  11161.                 intel_ring_emit(ring, DERRMR);
  11162.                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  11163.                 if (IS_GEN8(dev)) {
  11164.                         intel_ring_emit(ring, 0);
  11165.                         intel_ring_emit(ring, MI_NOOP);
  11166.                 }
  11167.         }
  11168.  
  11169.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  11170.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  11171.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11172.         intel_ring_emit(ring, (MI_NOOP));
  11173.  
  11174.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11175.         return 0;
  11176. }
  11177.  
  11178. static bool use_mmio_flip(struct intel_engine_cs *ring,
  11179.                           struct drm_i915_gem_object *obj)
  11180. {
  11181.         /*
  11182.          * This is not being used for older platforms, because
  11183.          * non-availability of flip done interrupt forces us to use
  11184.          * CS flips. Older platforms derive flip done using some clever
  11185.          * tricks involving the flip_pending status bits and vblank irqs.
  11186.          * So using MMIO flips there would disrupt this mechanism.
  11187.          */
  11188.  
  11189.         if (ring == NULL)
  11190.                 return true;
  11191.  
  11192.         if (INTEL_INFO(ring->dev)->gen < 5)
  11193.                 return false;
  11194.  
  11195.         if (i915.use_mmio_flip < 0)
  11196.                 return false;
  11197.         else if (i915.use_mmio_flip > 0)
  11198.                 return true;
  11199.         else if (i915.enable_execlists)
  11200.                 return true;
  11201.         else
  11202.                 return ring != i915_gem_request_get_ring(obj->last_write_req);
  11203. }
  11204.  
  11205. static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
  11206.                              struct intel_unpin_work *work)
  11207. {
  11208.         struct drm_device *dev = intel_crtc->base.dev;
  11209.         struct drm_i915_private *dev_priv = dev->dev_private;
  11210.         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
  11211.         const enum pipe pipe = intel_crtc->pipe;
  11212.         u32 ctl, stride;
  11213.  
  11214.         ctl = I915_READ(PLANE_CTL(pipe, 0));
  11215.         ctl &= ~PLANE_CTL_TILED_MASK;
  11216.         switch (fb->modifier[0]) {
  11217.         case DRM_FORMAT_MOD_NONE:
  11218.                 break;
  11219.         case I915_FORMAT_MOD_X_TILED:
  11220.                 ctl |= PLANE_CTL_TILED_X;
  11221.                 break;
  11222.         case I915_FORMAT_MOD_Y_TILED:
  11223.                 ctl |= PLANE_CTL_TILED_Y;
  11224.                 break;
  11225.         case I915_FORMAT_MOD_Yf_TILED:
  11226.                 ctl |= PLANE_CTL_TILED_YF;
  11227.                 break;
  11228.         default:
  11229.                 MISSING_CASE(fb->modifier[0]);
  11230.         }
  11231.  
  11232.         /*
  11233.          * The stride is either expressed as a multiple of 64 bytes chunks for
  11234.          * linear buffers or in number of tiles for tiled buffers.
  11235.          */
  11236.         stride = fb->pitches[0] /
  11237.                  intel_fb_stride_alignment(dev, fb->modifier[0],
  11238.                                            fb->pixel_format);
  11239.  
  11240.         /*
  11241.          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
  11242.          * PLANE_SURF updates, the update is then guaranteed to be atomic.
  11243.          */
  11244.         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
  11245.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  11246.  
  11247.         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
  11248.         POSTING_READ(PLANE_SURF(pipe, 0));
  11249. }
  11250.  
  11251. static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
  11252.                              struct intel_unpin_work *work)
  11253. {
  11254.         struct drm_device *dev = intel_crtc->base.dev;
  11255.         struct drm_i915_private *dev_priv = dev->dev_private;
  11256.         struct intel_framebuffer *intel_fb =
  11257.                 to_intel_framebuffer(intel_crtc->base.primary->fb);
  11258.         struct drm_i915_gem_object *obj = intel_fb->obj;
  11259.         u32 dspcntr;
  11260.         u32 reg;
  11261.  
  11262.         reg = DSPCNTR(intel_crtc->plane);
  11263.         dspcntr = I915_READ(reg);
  11264.  
  11265.         if (obj->tiling_mode != I915_TILING_NONE)
  11266.                 dspcntr |= DISPPLANE_TILED;
  11267.         else
  11268.                 dspcntr &= ~DISPPLANE_TILED;
  11269.  
  11270.         I915_WRITE(reg, dspcntr);
  11271.  
  11272.         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
  11273.         POSTING_READ(DSPSURF(intel_crtc->plane));
  11274. }
  11275.  
  11276. /*
  11277.  * XXX: This is the temporary way to update the plane registers until we get
  11278.  * around to using the usual plane update functions for MMIO flips
  11279.  */
  11280. static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
  11281. {
  11282.         struct intel_crtc *crtc = mmio_flip->crtc;
  11283.         struct intel_unpin_work *work;
  11284.  
  11285.         spin_lock_irq(&crtc->base.dev->event_lock);
  11286.         work = crtc->unpin_work;
  11287.         spin_unlock_irq(&crtc->base.dev->event_lock);
  11288.         if (work == NULL)
  11289.                 return;
  11290.  
  11291.         intel_mark_page_flip_active(work);
  11292.  
  11293.         intel_pipe_update_start(crtc);
  11294.  
  11295.         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
  11296.                 skl_do_mmio_flip(crtc, work);
  11297.         else
  11298.                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
  11299.                 ilk_do_mmio_flip(crtc, work);
  11300.  
  11301.         intel_pipe_update_end(crtc);
  11302. }
  11303.  
  11304. static void intel_mmio_flip_work_func(struct work_struct *work)
  11305. {
  11306.         struct intel_mmio_flip *mmio_flip =
  11307.                 container_of(work, struct intel_mmio_flip, work);
  11308.  
  11309.         if (mmio_flip->req) {
  11310.                 WARN_ON(__i915_wait_request(mmio_flip->req,
  11311.                                             mmio_flip->crtc->reset_counter,
  11312.                                             false, NULL,
  11313.                                             &mmio_flip->i915->rps.mmioflips));
  11314.                 i915_gem_request_unreference__unlocked(mmio_flip->req);
  11315.         }
  11316.  
  11317.         intel_do_mmio_flip(mmio_flip);
  11318.         kfree(mmio_flip);
  11319. }
  11320.  
  11321. static int intel_queue_mmio_flip(struct drm_device *dev,
  11322.                                  struct drm_crtc *crtc,
  11323.                                  struct drm_framebuffer *fb,
  11324.                                  struct drm_i915_gem_object *obj,
  11325.                                  struct intel_engine_cs *ring,
  11326.                                  uint32_t flags)
  11327. {
  11328.         struct intel_mmio_flip *mmio_flip;
  11329.  
  11330.         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
  11331.         if (mmio_flip == NULL)
  11332.                 return -ENOMEM;
  11333.  
  11334.         mmio_flip->i915 = to_i915(dev);
  11335.         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
  11336.         mmio_flip->crtc = to_intel_crtc(crtc);
  11337.  
  11338.         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
  11339.         schedule_work(&mmio_flip->work);
  11340.  
  11341.         return 0;
  11342. }
  11343.  
  11344. static int intel_default_queue_flip(struct drm_device *dev,
  11345.                                     struct drm_crtc *crtc,
  11346.                                     struct drm_framebuffer *fb,
  11347.                                     struct drm_i915_gem_object *obj,
  11348.                                     struct drm_i915_gem_request *req,
  11349.                                     uint32_t flags)
  11350. {
  11351.         return -ENODEV;
  11352. }
  11353.  
  11354. static bool __intel_pageflip_stall_check(struct drm_device *dev,
  11355.                                          struct drm_crtc *crtc)
  11356. {
  11357.         struct drm_i915_private *dev_priv = dev->dev_private;
  11358.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11359.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  11360.         u32 addr;
  11361.  
  11362.         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
  11363.                 return true;
  11364.  
  11365.         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
  11366.                 return false;
  11367.  
  11368.         if (!work->enable_stall_check)
  11369.                 return false;
  11370.  
  11371.         if (work->flip_ready_vblank == 0) {
  11372.                 if (work->flip_queued_req &&
  11373.                     !i915_gem_request_completed(work->flip_queued_req, true))
  11374.                         return false;
  11375.  
  11376.                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
  11377.         }
  11378.  
  11379.         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
  11380.                 return false;
  11381.  
  11382.         /* Potential stall - if we see that the flip has happened,
  11383.          * assume a missed interrupt. */
  11384.         if (INTEL_INFO(dev)->gen >= 4)
  11385.                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
  11386.         else
  11387.                 addr = I915_READ(DSPADDR(intel_crtc->plane));
  11388.  
  11389.         /* There is a potential issue here with a false positive after a flip
  11390.          * to the same address. We could address this by checking for a
  11391.          * non-incrementing frame counter.
  11392.          */
  11393.         return addr == work->gtt_offset;
  11394. }
  11395.  
  11396. void intel_check_page_flip(struct drm_device *dev, int pipe)
  11397. {
  11398.         struct drm_i915_private *dev_priv = dev->dev_private;
  11399.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  11400.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11401.         struct intel_unpin_work *work;
  11402.  
  11403.         if (crtc == NULL)
  11404.                 return;
  11405.  
  11406.         spin_lock(&dev->event_lock);
  11407.         work = intel_crtc->unpin_work;
  11408.         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
  11409.                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
  11410.                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
  11411.                 page_flip_completed(intel_crtc);
  11412.                 work = NULL;
  11413.         }
  11414.         if (work != NULL &&
  11415.             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
  11416.                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
  11417.         spin_unlock(&dev->event_lock);
  11418. }
  11419.  
  11420. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  11421.                                 struct drm_framebuffer *fb,
  11422.                                 struct drm_pending_vblank_event *event,
  11423.                                 uint32_t page_flip_flags)
  11424. {
  11425.         struct drm_device *dev = crtc->dev;
  11426.         struct drm_i915_private *dev_priv = dev->dev_private;
  11427.         struct drm_framebuffer *old_fb = crtc->primary->fb;
  11428.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  11429.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11430.         struct drm_plane *primary = crtc->primary;
  11431.         enum pipe pipe = intel_crtc->pipe;
  11432.         struct intel_unpin_work *work;
  11433.         struct intel_engine_cs *ring;
  11434.         bool mmio_flip;
  11435.         struct drm_i915_gem_request *request = NULL;
  11436.         int ret;
  11437.  
  11438.         /*
  11439.          * drm_mode_page_flip_ioctl() should already catch this, but double
  11440.          * check to be safe.  In the future we may enable pageflipping from
  11441.          * a disabled primary plane.
  11442.          */
  11443.         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
  11444.                 return -EBUSY;
  11445.  
  11446.         /* Can't change pixel format via MI display flips. */
  11447.         if (fb->pixel_format != crtc->primary->fb->pixel_format)
  11448.                 return -EINVAL;
  11449.  
  11450.         /*
  11451.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  11452.          * Note that pitch changes could also affect these register.
  11453.          */
  11454.         if (INTEL_INFO(dev)->gen > 3 &&
  11455.             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
  11456.              fb->pitches[0] != crtc->primary->fb->pitches[0]))
  11457.                 return -EINVAL;
  11458.  
  11459.         if (i915_terminally_wedged(&dev_priv->gpu_error))
  11460.                 goto out_hang;
  11461.  
  11462.         work = kzalloc(sizeof(*work), GFP_KERNEL);
  11463.         if (work == NULL)
  11464.                 return -ENOMEM;
  11465.  
  11466.         work->event = event;
  11467.         work->crtc = crtc;
  11468.         work->old_fb = old_fb;
  11469.         INIT_WORK(&work->work, intel_unpin_work_fn);
  11470.  
  11471.         ret = drm_crtc_vblank_get(crtc);
  11472.         if (ret)
  11473.                 goto free_work;
  11474.  
  11475.         /* We borrow the event spin lock for protecting unpin_work */
  11476.         spin_lock_irq(&dev->event_lock);
  11477.         if (intel_crtc->unpin_work) {
  11478.                 /* Before declaring the flip queue wedged, check if
  11479.                  * the hardware completed the operation behind our backs.
  11480.                  */
  11481.                 if (__intel_pageflip_stall_check(dev, crtc)) {
  11482.                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
  11483.                         page_flip_completed(intel_crtc);
  11484.                 } else {
  11485.                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  11486.                         spin_unlock_irq(&dev->event_lock);
  11487.  
  11488.                         drm_crtc_vblank_put(crtc);
  11489.                         kfree(work);
  11490.                         return -EBUSY;
  11491.                 }
  11492.         }
  11493.         intel_crtc->unpin_work = work;
  11494.         spin_unlock_irq(&dev->event_lock);
  11495.  
  11496. //   if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  11497. //       flush_workqueue(dev_priv->wq);
  11498.  
  11499.         /* Reference the objects for the scheduled work. */
  11500.         drm_framebuffer_reference(work->old_fb);
  11501.         drm_gem_object_reference(&obj->base);
  11502.  
  11503.         crtc->primary->fb = fb;
  11504.         update_state_fb(crtc->primary);
  11505.  
  11506.         work->pending_flip_obj = obj;
  11507.  
  11508.         ret = i915_mutex_lock_interruptible(dev);
  11509.         if (ret)
  11510.                 goto cleanup;
  11511.  
  11512.         atomic_inc(&intel_crtc->unpin_work_count);
  11513.         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  11514.  
  11515.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  11516.                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
  11517.  
  11518.         if (IS_VALLEYVIEW(dev)) {
  11519.                 ring = &dev_priv->ring[BCS];
  11520.                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
  11521.                         /* vlv: DISPLAY_FLIP fails to change tiling */
  11522.                         ring = NULL;
  11523.         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  11524.                 ring = &dev_priv->ring[BCS];
  11525.         } else if (INTEL_INFO(dev)->gen >= 7) {
  11526.                 ring = i915_gem_request_get_ring(obj->last_write_req);
  11527.                 if (ring == NULL || ring->id != RCS)
  11528.                         ring = &dev_priv->ring[BCS];
  11529.         } else {
  11530.                 ring = &dev_priv->ring[RCS];
  11531.         }
  11532.  
  11533.         mmio_flip = use_mmio_flip(ring, obj);
  11534.  
  11535.         /* When using CS flips, we want to emit semaphores between rings.
  11536.          * However, when using mmio flips we will create a task to do the
  11537.          * synchronisation, so all we want here is to pin the framebuffer
  11538.          * into the display plane and skip any waits.
  11539.          */
  11540.         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
  11541.                                          crtc->primary->state,
  11542.                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
  11543.         if (ret)
  11544.                 goto cleanup_pending;
  11545.  
  11546.         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
  11547.                                                   obj, 0);
  11548.         work->gtt_offset += intel_crtc->dspaddr_offset;
  11549.  
  11550.         if (mmio_flip) {
  11551.                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
  11552.                                             page_flip_flags);
  11553.                 if (ret)
  11554.                         goto cleanup_unpin;
  11555.  
  11556.                 i915_gem_request_assign(&work->flip_queued_req,
  11557.                                         obj->last_write_req);
  11558.         } else {
  11559.                 if (!request) {
  11560.                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
  11561.                         if (ret)
  11562.                                 goto cleanup_unpin;
  11563.                 }
  11564.  
  11565.                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
  11566.                                                    page_flip_flags);
  11567.                 if (ret)
  11568.                         goto cleanup_unpin;
  11569.  
  11570.                 i915_gem_request_assign(&work->flip_queued_req, request);
  11571.         }
  11572.  
  11573.         if (request)
  11574.                 i915_add_request_no_flush(request);
  11575.  
  11576.         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
  11577.         work->enable_stall_check = true;
  11578.  
  11579.         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
  11580.                           to_intel_plane(primary)->frontbuffer_bit);
  11581.         mutex_unlock(&dev->struct_mutex);
  11582.  
  11583.         intel_fbc_disable_crtc(intel_crtc);
  11584.         intel_frontbuffer_flip_prepare(dev,
  11585.                                        to_intel_plane(primary)->frontbuffer_bit);
  11586.  
  11587.         trace_i915_flip_request(intel_crtc->plane, obj);
  11588.  
  11589.         return 0;
  11590.  
  11591. cleanup_unpin:
  11592.         intel_unpin_fb_obj(fb, crtc->primary->state);
  11593. cleanup_pending:
  11594.         if (request)
  11595.                 i915_gem_request_cancel(request);
  11596.         atomic_dec(&intel_crtc->unpin_work_count);
  11597.         mutex_unlock(&dev->struct_mutex);
  11598. cleanup:
  11599.         crtc->primary->fb = old_fb;
  11600.         update_state_fb(crtc->primary);
  11601.  
  11602.         drm_gem_object_unreference_unlocked(&obj->base);
  11603.         drm_framebuffer_unreference(work->old_fb);
  11604.  
  11605.         spin_lock_irq(&dev->event_lock);
  11606.         intel_crtc->unpin_work = NULL;
  11607.         spin_unlock_irq(&dev->event_lock);
  11608.  
  11609.         drm_crtc_vblank_put(crtc);
  11610. free_work:
  11611.         kfree(work);
  11612.  
  11613.         if (ret == -EIO) {
  11614.                 struct drm_atomic_state *state;
  11615.                 struct drm_plane_state *plane_state;
  11616.  
  11617. out_hang:
  11618.                 state = drm_atomic_state_alloc(dev);
  11619.                 if (!state)
  11620.                         return -ENOMEM;
  11621.                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  11622.  
  11623. retry:
  11624.                 plane_state = drm_atomic_get_plane_state(state, primary);
  11625.                 ret = PTR_ERR_OR_ZERO(plane_state);
  11626.                 if (!ret) {
  11627.                         drm_atomic_set_fb_for_plane(plane_state, fb);
  11628.  
  11629.                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
  11630.                         if (!ret)
  11631.                                 ret = drm_atomic_commit(state);
  11632.                 }
  11633.  
  11634.                 if (ret == -EDEADLK) {
  11635.                         drm_modeset_backoff(state->acquire_ctx);
  11636.                         drm_atomic_state_clear(state);
  11637.                         goto retry;
  11638.                 }
  11639.  
  11640.                 if (ret)
  11641.                         drm_atomic_state_free(state);
  11642.  
  11643.                 if (ret == 0 && event) {
  11644.                         spin_lock_irq(&dev->event_lock);
  11645.                         drm_send_vblank_event(dev, pipe, event);
  11646.                         spin_unlock_irq(&dev->event_lock);
  11647.                 }
  11648.         }
  11649.         return ret;
  11650. }
  11651.  
  11652.  
  11653. /**
  11654.  * intel_wm_need_update - Check whether watermarks need updating
  11655.  * @plane: drm plane
  11656.  * @state: new plane state
  11657.  *
  11658.  * Check current plane state versus the new one to determine whether
  11659.  * watermarks need to be recalculated.
  11660.  *
  11661.  * Returns true or false.
  11662.  */
  11663. static bool intel_wm_need_update(struct drm_plane *plane,
  11664.                                  struct drm_plane_state *state)
  11665. {
  11666.         /* Update watermarks on tiling changes. */
  11667.         if (!plane->state->fb || !state->fb ||
  11668.             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
  11669.             plane->state->rotation != state->rotation)
  11670.                 return true;
  11671.  
  11672.         if (plane->state->crtc_w != state->crtc_w)
  11673.                 return true;
  11674.  
  11675.         return false;
  11676. }
  11677.  
  11678. int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
  11679.                                     struct drm_plane_state *plane_state)
  11680. {
  11681.         struct drm_crtc *crtc = crtc_state->crtc;
  11682.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11683.         struct drm_plane *plane = plane_state->plane;
  11684.         struct drm_device *dev = crtc->dev;
  11685.         struct drm_i915_private *dev_priv = dev->dev_private;
  11686.         struct intel_plane_state *old_plane_state =
  11687.                 to_intel_plane_state(plane->state);
  11688.         int idx = intel_crtc->base.base.id, ret;
  11689.         int i = drm_plane_index(plane);
  11690.         bool mode_changed = needs_modeset(crtc_state);
  11691.         bool was_crtc_enabled = crtc->state->active;
  11692.         bool is_crtc_enabled = crtc_state->active;
  11693.  
  11694.         bool turn_off, turn_on, visible, was_visible;
  11695.         struct drm_framebuffer *fb = plane_state->fb;
  11696.  
  11697.         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
  11698.             plane->type != DRM_PLANE_TYPE_CURSOR) {
  11699.                 ret = skl_update_scaler_plane(
  11700.                         to_intel_crtc_state(crtc_state),
  11701.                         to_intel_plane_state(plane_state));
  11702.                 if (ret)
  11703.                         return ret;
  11704.         }
  11705.  
  11706.         /*
  11707.          * Disabling a plane is always okay; we just need to update
  11708.          * fb tracking in a special way since cleanup_fb() won't
  11709.          * get called by the plane helpers.
  11710.          */
  11711.         if (old_plane_state->base.fb && !fb)
  11712.                 intel_crtc->atomic.disabled_planes |= 1 << i;
  11713.  
  11714.         was_visible = old_plane_state->visible;
  11715.         visible = to_intel_plane_state(plane_state)->visible;
  11716.  
  11717.         if (!was_crtc_enabled && WARN_ON(was_visible))
  11718.                 was_visible = false;
  11719.  
  11720.         if (!is_crtc_enabled && WARN_ON(visible))
  11721.                 visible = false;
  11722.  
  11723.         if (!was_visible && !visible)
  11724.                 return 0;
  11725.  
  11726.         turn_off = was_visible && (!visible || mode_changed);
  11727.         turn_on = visible && (!was_visible || mode_changed);
  11728.  
  11729.         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
  11730.                          plane->base.id, fb ? fb->base.id : -1);
  11731.  
  11732.         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
  11733.                          plane->base.id, was_visible, visible,
  11734.                          turn_off, turn_on, mode_changed);
  11735.  
  11736.         if (turn_on) {
  11737.                 intel_crtc->atomic.update_wm_pre = true;
  11738.                 /* must disable cxsr around plane enable/disable */
  11739.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11740.                         intel_crtc->atomic.disable_cxsr = true;
  11741.                         /* to potentially re-enable cxsr */
  11742.                         intel_crtc->atomic.wait_vblank = true;
  11743.                         intel_crtc->atomic.update_wm_post = true;
  11744.                 }
  11745.         } else if (turn_off) {
  11746.                 intel_crtc->atomic.update_wm_post = true;
  11747.                 /* must disable cxsr around plane enable/disable */
  11748.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11749.                         if (is_crtc_enabled)
  11750.                                 intel_crtc->atomic.wait_vblank = true;
  11751.                         intel_crtc->atomic.disable_cxsr = true;
  11752.                 }
  11753.         } else if (intel_wm_need_update(plane, plane_state)) {
  11754.                 intel_crtc->atomic.update_wm_pre = true;
  11755.         }
  11756.  
  11757.         if (visible || was_visible)
  11758.                 intel_crtc->atomic.fb_bits |=
  11759.                         to_intel_plane(plane)->frontbuffer_bit;
  11760.  
  11761.         switch (plane->type) {
  11762.         case DRM_PLANE_TYPE_PRIMARY:
  11763.                 intel_crtc->atomic.wait_for_flips = true;
  11764.                 intel_crtc->atomic.pre_disable_primary = turn_off;
  11765.                 intel_crtc->atomic.post_enable_primary = turn_on;
  11766.  
  11767.                 if (turn_off) {
  11768.                         /*
  11769.                          * FIXME: Actually if we will still have any other
  11770.                          * plane enabled on the pipe we could let IPS enabled
  11771.                          * still, but for now lets consider that when we make
  11772.                          * primary invisible by setting DSPCNTR to 0 on
  11773.                          * update_primary_plane function IPS needs to be
  11774.                          * disable.
  11775.                          */
  11776.                         intel_crtc->atomic.disable_ips = true;
  11777.  
  11778.                         intel_crtc->atomic.disable_fbc = true;
  11779.                 }
  11780.  
  11781.                 /*
  11782.                  * FBC does not work on some platforms for rotated
  11783.                  * planes, so disable it when rotation is not 0 and
  11784.                  * update it when rotation is set back to 0.
  11785.                  *
  11786.                  * FIXME: This is redundant with the fbc update done in
  11787.                  * the primary plane enable function except that that
  11788.                  * one is done too late. We eventually need to unify
  11789.                  * this.
  11790.                  */
  11791.  
  11792.                 if (visible &&
  11793.                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  11794.                     dev_priv->fbc.crtc == intel_crtc &&
  11795.                     plane_state->rotation != BIT(DRM_ROTATE_0))
  11796.                         intel_crtc->atomic.disable_fbc = true;
  11797.  
  11798.                 /*
  11799.                  * BDW signals flip done immediately if the plane
  11800.                  * is disabled, even if the plane enable is already
  11801.                  * armed to occur at the next vblank :(
  11802.                  */
  11803.                 if (turn_on && IS_BROADWELL(dev))
  11804.                         intel_crtc->atomic.wait_vblank = true;
  11805.  
  11806.                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
  11807.                 break;
  11808.         case DRM_PLANE_TYPE_CURSOR:
  11809.                 break;
  11810.         case DRM_PLANE_TYPE_OVERLAY:
  11811.                 if (turn_off && !mode_changed) {
  11812.                         intel_crtc->atomic.wait_vblank = true;
  11813.                         intel_crtc->atomic.update_sprite_watermarks |=
  11814.                                 1 << i;
  11815.                 }
  11816.         }
  11817.         return 0;
  11818. }
  11819.  
  11820. static bool encoders_cloneable(const struct intel_encoder *a,
  11821.                                const struct intel_encoder *b)
  11822. {
  11823.         /* masks could be asymmetric, so check both ways */
  11824.         return a == b || (a->cloneable & (1 << b->type) &&
  11825.                           b->cloneable & (1 << a->type));
  11826. }
  11827.  
  11828. static bool check_single_encoder_cloning(struct drm_atomic_state *state,
  11829.                                          struct intel_crtc *crtc,
  11830.                                          struct intel_encoder *encoder)
  11831. {
  11832.         struct intel_encoder *source_encoder;
  11833.         struct drm_connector *connector;
  11834.         struct drm_connector_state *connector_state;
  11835.         int i;
  11836.  
  11837.         for_each_connector_in_state(state, connector, connector_state, i) {
  11838.                 if (connector_state->crtc != &crtc->base)
  11839.                         continue;
  11840.  
  11841.                 source_encoder =
  11842.                         to_intel_encoder(connector_state->best_encoder);
  11843.                 if (!encoders_cloneable(encoder, source_encoder))
  11844.                         return false;
  11845.         }
  11846.  
  11847.         return true;
  11848. }
  11849.  
  11850. static bool check_encoder_cloning(struct drm_atomic_state *state,
  11851.                                   struct intel_crtc *crtc)
  11852. {
  11853.         struct intel_encoder *encoder;
  11854.         struct drm_connector *connector;
  11855.         struct drm_connector_state *connector_state;
  11856.         int i;
  11857.  
  11858.         for_each_connector_in_state(state, connector, connector_state, i) {
  11859.                 if (connector_state->crtc != &crtc->base)
  11860.                         continue;
  11861.  
  11862.                 encoder = to_intel_encoder(connector_state->best_encoder);
  11863.                 if (!check_single_encoder_cloning(state, crtc, encoder))
  11864.                         return false;
  11865.         }
  11866.  
  11867.         return true;
  11868. }
  11869.  
  11870. static int intel_crtc_atomic_check(struct drm_crtc *crtc,
  11871.                                    struct drm_crtc_state *crtc_state)
  11872. {
  11873.         struct drm_device *dev = crtc->dev;
  11874.         struct drm_i915_private *dev_priv = dev->dev_private;
  11875.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11876.         struct intel_crtc_state *pipe_config =
  11877.                 to_intel_crtc_state(crtc_state);
  11878.         struct drm_atomic_state *state = crtc_state->state;
  11879.         int ret;
  11880.         bool mode_changed = needs_modeset(crtc_state);
  11881.  
  11882.         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
  11883.                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  11884.                 return -EINVAL;
  11885.         }
  11886.  
  11887.         if (mode_changed && !crtc_state->active)
  11888.                 intel_crtc->atomic.update_wm_post = true;
  11889.  
  11890.         if (mode_changed && crtc_state->enable &&
  11891.             dev_priv->display.crtc_compute_clock &&
  11892.             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
  11893.                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
  11894.                                                            pipe_config);
  11895.                 if (ret)
  11896.                         return ret;
  11897.         }
  11898.  
  11899.         ret = 0;
  11900.         if (INTEL_INFO(dev)->gen >= 9) {
  11901.                 if (mode_changed)
  11902.                         ret = skl_update_scaler_crtc(pipe_config);
  11903.  
  11904.                 if (!ret)
  11905.                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
  11906.                                                          pipe_config);
  11907.         }
  11908.  
  11909.         return ret;
  11910. }
  11911.  
  11912. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  11913.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  11914.         .load_lut = intel_crtc_load_lut,
  11915.         .atomic_begin = intel_begin_crtc_commit,
  11916.         .atomic_flush = intel_finish_crtc_commit,
  11917.         .atomic_check = intel_crtc_atomic_check,
  11918. };
  11919.  
  11920. static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
  11921. {
  11922.         struct intel_connector *connector;
  11923.  
  11924.         for_each_intel_connector(dev, connector) {
  11925.                 if (connector->base.encoder) {
  11926.                         connector->base.state->best_encoder =
  11927.                                 connector->base.encoder;
  11928.                         connector->base.state->crtc =
  11929.                                 connector->base.encoder->crtc;
  11930.                 } else {
  11931.                         connector->base.state->best_encoder = NULL;
  11932.                         connector->base.state->crtc = NULL;
  11933.                 }
  11934.         }
  11935. }
  11936.  
  11937. static void
  11938. connected_sink_compute_bpp(struct intel_connector *connector,
  11939.                            struct intel_crtc_state *pipe_config)
  11940. {
  11941.         int bpp = pipe_config->pipe_bpp;
  11942.  
  11943.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  11944.                 connector->base.base.id,
  11945.                 connector->base.name);
  11946.  
  11947.         /* Don't use an invalid EDID bpc value */
  11948.         if (connector->base.display_info.bpc &&
  11949.             connector->base.display_info.bpc * 3 < bpp) {
  11950.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  11951.                               bpp, connector->base.display_info.bpc*3);
  11952.                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  11953.         }
  11954.  
  11955.         /* Clamp bpp to 8 on screens without EDID 1.4 */
  11956.         if (connector->base.display_info.bpc == 0 && bpp > 24) {
  11957.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  11958.                               bpp);
  11959.                 pipe_config->pipe_bpp = 24;
  11960.         }
  11961. }
  11962.  
  11963. static int
  11964. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  11965.                           struct intel_crtc_state *pipe_config)
  11966. {
  11967.         struct drm_device *dev = crtc->base.dev;
  11968.         struct drm_atomic_state *state;
  11969.         struct drm_connector *connector;
  11970.         struct drm_connector_state *connector_state;
  11971.         int bpp, i;
  11972.  
  11973.         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
  11974.                 bpp = 10*3;
  11975.         else if (INTEL_INFO(dev)->gen >= 5)
  11976.                 bpp = 12*3;
  11977.         else
  11978.                 bpp = 8*3;
  11979.  
  11980.  
  11981.         pipe_config->pipe_bpp = bpp;
  11982.  
  11983.         state = pipe_config->base.state;
  11984.  
  11985.         /* Clamp display bpp to EDID value */
  11986.         for_each_connector_in_state(state, connector, connector_state, i) {
  11987.                 if (connector_state->crtc != &crtc->base)
  11988.                         continue;
  11989.  
  11990.                 connected_sink_compute_bpp(to_intel_connector(connector),
  11991.                                            pipe_config);
  11992.         }
  11993.  
  11994.         return bpp;
  11995. }
  11996.  
  11997. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  11998. {
  11999.         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  12000.                         "type: 0x%x flags: 0x%x\n",
  12001.                 mode->crtc_clock,
  12002.                 mode->crtc_hdisplay, mode->crtc_hsync_start,
  12003.                 mode->crtc_hsync_end, mode->crtc_htotal,
  12004.                 mode->crtc_vdisplay, mode->crtc_vsync_start,
  12005.                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  12006. }
  12007.  
  12008. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  12009.                                    struct intel_crtc_state *pipe_config,
  12010.                                    const char *context)
  12011. {
  12012.         struct drm_device *dev = crtc->base.dev;
  12013.         struct drm_plane *plane;
  12014.         struct intel_plane *intel_plane;
  12015.         struct intel_plane_state *state;
  12016.         struct drm_framebuffer *fb;
  12017.  
  12018.         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
  12019.                       context, pipe_config, pipe_name(crtc->pipe));
  12020.  
  12021.         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  12022.         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  12023.                       pipe_config->pipe_bpp, pipe_config->dither);
  12024.         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12025.                       pipe_config->has_pch_encoder,
  12026.                       pipe_config->fdi_lanes,
  12027.                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  12028.                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  12029.                       pipe_config->fdi_m_n.tu);
  12030.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12031.                       pipe_config->has_dp_encoder,
  12032.                       pipe_config->lane_count,
  12033.                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  12034.                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  12035.                       pipe_config->dp_m_n.tu);
  12036.  
  12037.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
  12038.                       pipe_config->has_dp_encoder,
  12039.                       pipe_config->lane_count,
  12040.                       pipe_config->dp_m2_n2.gmch_m,
  12041.                       pipe_config->dp_m2_n2.gmch_n,
  12042.                       pipe_config->dp_m2_n2.link_m,
  12043.                       pipe_config->dp_m2_n2.link_n,
  12044.                       pipe_config->dp_m2_n2.tu);
  12045.  
  12046.         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
  12047.                       pipe_config->has_audio,
  12048.                       pipe_config->has_infoframe);
  12049.  
  12050.         DRM_DEBUG_KMS("requested mode:\n");
  12051.         drm_mode_debug_printmodeline(&pipe_config->base.mode);
  12052.         DRM_DEBUG_KMS("adjusted mode:\n");
  12053.         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
  12054.         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
  12055.         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  12056.         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  12057.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  12058.         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
  12059.                       crtc->num_scalers,
  12060.                       pipe_config->scaler_state.scaler_users,
  12061.                       pipe_config->scaler_state.scaler_id);
  12062.         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  12063.                       pipe_config->gmch_pfit.control,
  12064.                       pipe_config->gmch_pfit.pgm_ratios,
  12065.                       pipe_config->gmch_pfit.lvds_border_bits);
  12066.         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  12067.                       pipe_config->pch_pfit.pos,
  12068.                       pipe_config->pch_pfit.size,
  12069.                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  12070.         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  12071.         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  12072.  
  12073.         if (IS_BROXTON(dev)) {
  12074.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  12075.                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  12076.                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  12077.                               pipe_config->ddi_pll_sel,
  12078.                               pipe_config->dpll_hw_state.ebb0,
  12079.                               pipe_config->dpll_hw_state.ebb4,
  12080.                               pipe_config->dpll_hw_state.pll0,
  12081.                               pipe_config->dpll_hw_state.pll1,
  12082.                               pipe_config->dpll_hw_state.pll2,
  12083.                               pipe_config->dpll_hw_state.pll3,
  12084.                               pipe_config->dpll_hw_state.pll6,
  12085.                               pipe_config->dpll_hw_state.pll8,
  12086.                               pipe_config->dpll_hw_state.pll9,
  12087.                               pipe_config->dpll_hw_state.pll10,
  12088.                               pipe_config->dpll_hw_state.pcsdw12);
  12089.         } else if (IS_SKYLAKE(dev)) {
  12090.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
  12091.                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  12092.                               pipe_config->ddi_pll_sel,
  12093.                               pipe_config->dpll_hw_state.ctrl1,
  12094.                               pipe_config->dpll_hw_state.cfgcr1,
  12095.                               pipe_config->dpll_hw_state.cfgcr2);
  12096.         } else if (HAS_DDI(dev)) {
  12097.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  12098.                               pipe_config->ddi_pll_sel,
  12099.                               pipe_config->dpll_hw_state.wrpll,
  12100.                               pipe_config->dpll_hw_state.spll);
  12101.         } else {
  12102.                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  12103.                               "fp0: 0x%x, fp1: 0x%x\n",
  12104.                               pipe_config->dpll_hw_state.dpll,
  12105.                               pipe_config->dpll_hw_state.dpll_md,
  12106.                               pipe_config->dpll_hw_state.fp0,
  12107.                               pipe_config->dpll_hw_state.fp1);
  12108.         }
  12109.  
  12110.         DRM_DEBUG_KMS("planes on this crtc\n");
  12111.         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  12112.                 intel_plane = to_intel_plane(plane);
  12113.                 if (intel_plane->pipe != crtc->pipe)
  12114.                         continue;
  12115.  
  12116.                 state = to_intel_plane_state(plane->state);
  12117.                 fb = state->base.fb;
  12118.                 if (!fb) {
  12119.                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
  12120.                                 "disabled, scaler_id = %d\n",
  12121.                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12122.                                 plane->base.id, intel_plane->pipe,
  12123.                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
  12124.                                 drm_plane_index(plane), state->scaler_id);
  12125.                         continue;
  12126.                 }
  12127.  
  12128.                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
  12129.                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12130.                         plane->base.id, intel_plane->pipe,
  12131.                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
  12132.                         drm_plane_index(plane));
  12133.                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
  12134.                         fb->base.id, fb->width, fb->height, fb->pixel_format);
  12135.                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
  12136.                         state->scaler_id,
  12137.                         state->src.x1 >> 16, state->src.y1 >> 16,
  12138.                         drm_rect_width(&state->src) >> 16,
  12139.                         drm_rect_height(&state->src) >> 16,
  12140.                         state->dst.x1, state->dst.y1,
  12141.                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
  12142.         }
  12143. }
  12144.  
  12145. static bool check_digital_port_conflicts(struct drm_atomic_state *state)
  12146. {
  12147.         struct drm_device *dev = state->dev;
  12148.         struct drm_connector *connector;
  12149.         unsigned int used_ports = 0;
  12150.  
  12151.         /*
  12152.          * Walk the connector list instead of the encoder
  12153.          * list to detect the problem on ddi platforms
  12154.          * where there's just one encoder per digital port.
  12155.          */
  12156.         drm_for_each_connector(connector, dev) {
  12157.                 struct drm_connector_state *connector_state;
  12158.                 struct intel_encoder *encoder;
  12159.  
  12160.                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
  12161.                 if (!connector_state)
  12162.                         connector_state = connector->state;
  12163.  
  12164.                 if (!connector_state->best_encoder)
  12165.                         continue;
  12166.  
  12167.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12168.  
  12169.                 WARN_ON(!connector_state->crtc);
  12170.  
  12171.                 switch (encoder->type) {
  12172.                         unsigned int port_mask;
  12173.                 case INTEL_OUTPUT_UNKNOWN:
  12174.                         if (WARN_ON(!HAS_DDI(dev)))
  12175.                                 break;
  12176.                 case INTEL_OUTPUT_DISPLAYPORT:
  12177.                 case INTEL_OUTPUT_HDMI:
  12178.                 case INTEL_OUTPUT_EDP:
  12179.                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
  12180.  
  12181.                         /* the same port mustn't appear more than once */
  12182.                         if (used_ports & port_mask)
  12183.                                 return false;
  12184.  
  12185.                         used_ports |= port_mask;
  12186.                 default:
  12187.                         break;
  12188.                 }
  12189.         }
  12190.  
  12191.         return true;
  12192. }
  12193.  
  12194. static void
  12195. clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
  12196. {
  12197.         struct drm_crtc_state tmp_state;
  12198.         struct intel_crtc_scaler_state scaler_state;
  12199.         struct intel_dpll_hw_state dpll_hw_state;
  12200.         enum intel_dpll_id shared_dpll;
  12201.         uint32_t ddi_pll_sel;
  12202.         bool force_thru;
  12203.  
  12204.         /* FIXME: before the switch to atomic started, a new pipe_config was
  12205.          * kzalloc'd. Code that depends on any field being zero should be
  12206.          * fixed, so that the crtc_state can be safely duplicated. For now,
  12207.          * only fields that are know to not cause problems are preserved. */
  12208.  
  12209.         tmp_state = crtc_state->base;
  12210.         scaler_state = crtc_state->scaler_state;
  12211.         shared_dpll = crtc_state->shared_dpll;
  12212.         dpll_hw_state = crtc_state->dpll_hw_state;
  12213.         ddi_pll_sel = crtc_state->ddi_pll_sel;
  12214.         force_thru = crtc_state->pch_pfit.force_thru;
  12215.  
  12216.         memset(crtc_state, 0, sizeof *crtc_state);
  12217.  
  12218.         crtc_state->base = tmp_state;
  12219.         crtc_state->scaler_state = scaler_state;
  12220.         crtc_state->shared_dpll = shared_dpll;
  12221.         crtc_state->dpll_hw_state = dpll_hw_state;
  12222.         crtc_state->ddi_pll_sel = ddi_pll_sel;
  12223.         crtc_state->pch_pfit.force_thru = force_thru;
  12224. }
  12225.  
  12226. static int
  12227. intel_modeset_pipe_config(struct drm_crtc *crtc,
  12228.                           struct intel_crtc_state *pipe_config)
  12229. {
  12230.         struct drm_atomic_state *state = pipe_config->base.state;
  12231.         struct intel_encoder *encoder;
  12232.         struct drm_connector *connector;
  12233.         struct drm_connector_state *connector_state;
  12234.         int base_bpp, ret = -EINVAL;
  12235.         int i;
  12236.         bool retry = true;
  12237.  
  12238.         clear_intel_crtc_state(pipe_config);
  12239.  
  12240.         pipe_config->cpu_transcoder =
  12241.                 (enum transcoder) to_intel_crtc(crtc)->pipe;
  12242.  
  12243.         /*
  12244.          * Sanitize sync polarity flags based on requested ones. If neither
  12245.          * positive or negative polarity is requested, treat this as meaning
  12246.          * negative polarity.
  12247.          */
  12248.         if (!(pipe_config->base.adjusted_mode.flags &
  12249.               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  12250.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  12251.  
  12252.         if (!(pipe_config->base.adjusted_mode.flags &
  12253.               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  12254.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  12255.  
  12256.         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  12257.                                              pipe_config);
  12258.         if (base_bpp < 0)
  12259.                 goto fail;
  12260.  
  12261.         /*
  12262.          * Determine the real pipe dimensions. Note that stereo modes can
  12263.          * increase the actual pipe size due to the frame doubling and
  12264.          * insertion of additional space for blanks between the frame. This
  12265.          * is stored in the crtc timings. We use the requested mode to do this
  12266.          * computation to clearly distinguish it from the adjusted mode, which
  12267.          * can be changed by the connectors in the below retry loop.
  12268.          */
  12269.         drm_crtc_get_hv_timing(&pipe_config->base.mode,
  12270.                                &pipe_config->pipe_src_w,
  12271.                                &pipe_config->pipe_src_h);
  12272.  
  12273. encoder_retry:
  12274.         /* Ensure the port clock defaults are reset when retrying. */
  12275.         pipe_config->port_clock = 0;
  12276.         pipe_config->pixel_multiplier = 1;
  12277.  
  12278.         /* Fill in default crtc timings, allow encoders to overwrite them. */
  12279.         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
  12280.                               CRTC_STEREO_DOUBLE);
  12281.  
  12282.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  12283.          * adjust it according to limitations or connector properties, and also
  12284.          * a chance to reject the mode entirely.
  12285.          */
  12286.         for_each_connector_in_state(state, connector, connector_state, i) {
  12287.                 if (connector_state->crtc != crtc)
  12288.                         continue;
  12289.  
  12290.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12291.  
  12292.                 if (!(encoder->compute_config(encoder, pipe_config))) {
  12293.                         DRM_DEBUG_KMS("Encoder config failure\n");
  12294.                         goto fail;
  12295.                 }
  12296.         }
  12297.  
  12298.         /* Set default port clock if not overwritten by the encoder. Needs to be
  12299.          * done afterwards in case the encoder adjusts the mode. */
  12300.         if (!pipe_config->port_clock)
  12301.                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
  12302.                         * pipe_config->pixel_multiplier;
  12303.  
  12304.         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  12305.         if (ret < 0) {
  12306.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  12307.                 goto fail;
  12308.         }
  12309.  
  12310.         if (ret == RETRY) {
  12311.                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
  12312.                         ret = -EINVAL;
  12313.                         goto fail;
  12314.                 }
  12315.  
  12316.                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  12317.                 retry = false;
  12318.                 goto encoder_retry;
  12319.         }
  12320.  
  12321.         /* Dithering seems to not pass-through bits correctly when it should, so
  12322.          * only enable it on 6bpc panels. */
  12323.         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
  12324.         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
  12325.                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  12326.  
  12327. fail:
  12328.         return ret;
  12329. }
  12330.  
  12331. static void
  12332. intel_modeset_update_crtc_state(struct drm_atomic_state *state)
  12333. {
  12334.         struct drm_crtc *crtc;
  12335.         struct drm_crtc_state *crtc_state;
  12336.         int i;
  12337.  
  12338.         /* Double check state. */
  12339.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12340.                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
  12341.  
  12342.                 /* Update hwmode for vblank functions */
  12343.                 if (crtc->state->active)
  12344.                         crtc->hwmode = crtc->state->adjusted_mode;
  12345.                 else
  12346.                         crtc->hwmode.crtc_clock = 0;
  12347.         }
  12348. }
  12349.  
  12350. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  12351. {
  12352.         int diff;
  12353.  
  12354.         if (clock1 == clock2)
  12355.                 return true;
  12356.  
  12357.         if (!clock1 || !clock2)
  12358.                 return false;
  12359.  
  12360.         diff = abs(clock1 - clock2);
  12361.  
  12362.         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  12363.                 return true;
  12364.  
  12365.         return false;
  12366. }
  12367.  
  12368. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  12369.         list_for_each_entry((intel_crtc), \
  12370.                             &(dev)->mode_config.crtc_list, \
  12371.                             base.head) \
  12372.                 if (mask & (1 <<(intel_crtc)->pipe))
  12373.  
  12374. static bool
  12375. intel_compare_m_n(unsigned int m, unsigned int n,
  12376.                   unsigned int m2, unsigned int n2,
  12377.                   bool exact)
  12378. {
  12379.         if (m == m2 && n == n2)
  12380.                 return true;
  12381.  
  12382.         if (exact || !m || !n || !m2 || !n2)
  12383.                 return false;
  12384.  
  12385.         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
  12386.  
  12387.         if (m > m2) {
  12388.                 while (m > m2) {
  12389.                         m2 <<= 1;
  12390.                         n2 <<= 1;
  12391.                 }
  12392.         } else if (m < m2) {
  12393.                 while (m < m2) {
  12394.                         m <<= 1;
  12395.                         n <<= 1;
  12396.                 }
  12397.         }
  12398.  
  12399.         return m == m2 && n == n2;
  12400. }
  12401.  
  12402. static bool
  12403. intel_compare_link_m_n(const struct intel_link_m_n *m_n,
  12404.                        struct intel_link_m_n *m2_n2,
  12405.                        bool adjust)
  12406. {
  12407.         if (m_n->tu == m2_n2->tu &&
  12408.             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
  12409.                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
  12410.             intel_compare_m_n(m_n->link_m, m_n->link_n,
  12411.                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
  12412.                 if (adjust)
  12413.                         *m2_n2 = *m_n;
  12414.  
  12415.                 return true;
  12416.         }
  12417.  
  12418.         return false;
  12419. }
  12420.  
  12421. static bool
  12422. intel_pipe_config_compare(struct drm_device *dev,
  12423.                           struct intel_crtc_state *current_config,
  12424.                           struct intel_crtc_state *pipe_config,
  12425.                           bool adjust)
  12426. {
  12427.         bool ret = true;
  12428.  
  12429. #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
  12430.         do { \
  12431.                 if (!adjust) \
  12432.                         DRM_ERROR(fmt, ##__VA_ARGS__); \
  12433.                 else \
  12434.                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
  12435.         } while (0)
  12436.  
  12437. #define PIPE_CONF_CHECK_X(name) \
  12438.         if (current_config->name != pipe_config->name) { \
  12439.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12440.                           "(expected 0x%08x, found 0x%08x)\n", \
  12441.                           current_config->name, \
  12442.                           pipe_config->name); \
  12443.                 ret = false; \
  12444.         }
  12445.  
  12446. #define PIPE_CONF_CHECK_I(name) \
  12447.         if (current_config->name != pipe_config->name) { \
  12448.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12449.                           "(expected %i, found %i)\n", \
  12450.                           current_config->name, \
  12451.                           pipe_config->name); \
  12452.                 ret = false; \
  12453.         }
  12454.  
  12455. #define PIPE_CONF_CHECK_M_N(name) \
  12456.         if (!intel_compare_link_m_n(&current_config->name, \
  12457.                                     &pipe_config->name,\
  12458.                                     adjust)) { \
  12459.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12460.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12461.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12462.                           current_config->name.tu, \
  12463.                           current_config->name.gmch_m, \
  12464.                           current_config->name.gmch_n, \
  12465.                           current_config->name.link_m, \
  12466.                           current_config->name.link_n, \
  12467.                           pipe_config->name.tu, \
  12468.                           pipe_config->name.gmch_m, \
  12469.                           pipe_config->name.gmch_n, \
  12470.                           pipe_config->name.link_m, \
  12471.                           pipe_config->name.link_n); \
  12472.                 ret = false; \
  12473.         }
  12474.  
  12475. #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
  12476.         if (!intel_compare_link_m_n(&current_config->name, \
  12477.                                     &pipe_config->name, adjust) && \
  12478.             !intel_compare_link_m_n(&current_config->alt_name, \
  12479.                                     &pipe_config->name, adjust)) { \
  12480.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12481.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12482.                           "or tu %i gmch %i/%i link %i/%i, " \
  12483.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12484.                           current_config->name.tu, \
  12485.                           current_config->name.gmch_m, \
  12486.                           current_config->name.gmch_n, \
  12487.                           current_config->name.link_m, \
  12488.                           current_config->name.link_n, \
  12489.                           current_config->alt_name.tu, \
  12490.                           current_config->alt_name.gmch_m, \
  12491.                           current_config->alt_name.gmch_n, \
  12492.                           current_config->alt_name.link_m, \
  12493.                           current_config->alt_name.link_n, \
  12494.                           pipe_config->name.tu, \
  12495.                           pipe_config->name.gmch_m, \
  12496.                           pipe_config->name.gmch_n, \
  12497.                           pipe_config->name.link_m, \
  12498.                           pipe_config->name.link_n); \
  12499.                 ret = false; \
  12500.         }
  12501.  
  12502. /* This is required for BDW+ where there is only one set of registers for
  12503.  * switching between high and low RR.
  12504.  * This macro can be used whenever a comparison has to be made between one
  12505.  * hw state and multiple sw state variables.
  12506.  */
  12507. #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
  12508.         if ((current_config->name != pipe_config->name) && \
  12509.                 (current_config->alt_name != pipe_config->name)) { \
  12510.                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12511.                                   "(expected %i or %i, found %i)\n", \
  12512.                                   current_config->name, \
  12513.                                   current_config->alt_name, \
  12514.                                   pipe_config->name); \
  12515.                         ret = false; \
  12516.         }
  12517.  
  12518. #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
  12519.         if ((current_config->name ^ pipe_config->name) & (mask)) { \
  12520.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
  12521.                           "(expected %i, found %i)\n", \
  12522.                           current_config->name & (mask), \
  12523.                           pipe_config->name & (mask)); \
  12524.                 ret = false; \
  12525.         }
  12526.  
  12527. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  12528.         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  12529.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12530.                           "(expected %i, found %i)\n", \
  12531.                           current_config->name, \
  12532.                           pipe_config->name); \
  12533.                 ret = false; \
  12534.         }
  12535.  
  12536. #define PIPE_CONF_QUIRK(quirk)  \
  12537.         ((current_config->quirks | pipe_config->quirks) & (quirk))
  12538.  
  12539.         PIPE_CONF_CHECK_I(cpu_transcoder);
  12540.  
  12541.         PIPE_CONF_CHECK_I(has_pch_encoder);
  12542.         PIPE_CONF_CHECK_I(fdi_lanes);
  12543.         PIPE_CONF_CHECK_M_N(fdi_m_n);
  12544.  
  12545.         PIPE_CONF_CHECK_I(has_dp_encoder);
  12546.         PIPE_CONF_CHECK_I(lane_count);
  12547.  
  12548.         if (INTEL_INFO(dev)->gen < 8) {
  12549.                 PIPE_CONF_CHECK_M_N(dp_m_n);
  12550.  
  12551.                 if (current_config->has_drrs)
  12552.                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
  12553.         } else
  12554.                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
  12555.  
  12556.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
  12557.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
  12558.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
  12559.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
  12560.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
  12561.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
  12562.  
  12563.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
  12564.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
  12565.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
  12566.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
  12567.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
  12568.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
  12569.  
  12570.         PIPE_CONF_CHECK_I(pixel_multiplier);
  12571.         PIPE_CONF_CHECK_I(has_hdmi_sink);
  12572.         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
  12573.             IS_VALLEYVIEW(dev))
  12574.                 PIPE_CONF_CHECK_I(limited_color_range);
  12575.         PIPE_CONF_CHECK_I(has_infoframe);
  12576.  
  12577.         PIPE_CONF_CHECK_I(has_audio);
  12578.  
  12579.         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12580.                               DRM_MODE_FLAG_INTERLACE);
  12581.  
  12582.         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  12583.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12584.                                       DRM_MODE_FLAG_PHSYNC);
  12585.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12586.                                       DRM_MODE_FLAG_NHSYNC);
  12587.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12588.                                       DRM_MODE_FLAG_PVSYNC);
  12589.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12590.                                       DRM_MODE_FLAG_NVSYNC);
  12591.         }
  12592.  
  12593.         PIPE_CONF_CHECK_X(gmch_pfit.control);
  12594.         /* pfit ratios are autocomputed by the hw on gen4+ */
  12595.         if (INTEL_INFO(dev)->gen < 4)
  12596.                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  12597.         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
  12598.  
  12599.         if (!adjust) {
  12600.                 PIPE_CONF_CHECK_I(pipe_src_w);
  12601.                 PIPE_CONF_CHECK_I(pipe_src_h);
  12602.  
  12603.                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
  12604.                 if (current_config->pch_pfit.enabled) {
  12605.                         PIPE_CONF_CHECK_X(pch_pfit.pos);
  12606.                         PIPE_CONF_CHECK_X(pch_pfit.size);
  12607.                 }
  12608.  
  12609.                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
  12610.         }
  12611.  
  12612.         /* BDW+ don't expose a synchronous way to read the state */
  12613.         if (IS_HASWELL(dev))
  12614.                 PIPE_CONF_CHECK_I(ips_enabled);
  12615.  
  12616.         PIPE_CONF_CHECK_I(double_wide);
  12617.  
  12618.         PIPE_CONF_CHECK_X(ddi_pll_sel);
  12619.  
  12620.         PIPE_CONF_CHECK_I(shared_dpll);
  12621.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  12622.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  12623.         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  12624.         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  12625.         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
  12626.         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
  12627.         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
  12628.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
  12629.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
  12630.  
  12631.         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  12632.                 PIPE_CONF_CHECK_I(pipe_bpp);
  12633.  
  12634.         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
  12635.         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  12636.  
  12637. #undef PIPE_CONF_CHECK_X
  12638. #undef PIPE_CONF_CHECK_I
  12639. #undef PIPE_CONF_CHECK_I_ALT
  12640. #undef PIPE_CONF_CHECK_FLAGS
  12641. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  12642. #undef PIPE_CONF_QUIRK
  12643. #undef INTEL_ERR_OR_DBG_KMS
  12644.  
  12645.         return ret;
  12646. }
  12647.  
  12648. static void check_wm_state(struct drm_device *dev)
  12649. {
  12650.         struct drm_i915_private *dev_priv = dev->dev_private;
  12651.         struct skl_ddb_allocation hw_ddb, *sw_ddb;
  12652.         struct intel_crtc *intel_crtc;
  12653.         int plane;
  12654.  
  12655.         if (INTEL_INFO(dev)->gen < 9)
  12656.                 return;
  12657.  
  12658.         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
  12659.         sw_ddb = &dev_priv->wm.skl_hw.ddb;
  12660.  
  12661.         for_each_intel_crtc(dev, intel_crtc) {
  12662.                 struct skl_ddb_entry *hw_entry, *sw_entry;
  12663.                 const enum pipe pipe = intel_crtc->pipe;
  12664.  
  12665.                 if (!intel_crtc->active)
  12666.                         continue;
  12667.  
  12668.                 /* planes */
  12669.                 for_each_plane(dev_priv, pipe, plane) {
  12670.                         hw_entry = &hw_ddb.plane[pipe][plane];
  12671.                         sw_entry = &sw_ddb->plane[pipe][plane];
  12672.  
  12673.                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12674.                                 continue;
  12675.  
  12676.                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
  12677.                                   "(expected (%u,%u), found (%u,%u))\n",
  12678.                                   pipe_name(pipe), plane + 1,
  12679.                                   sw_entry->start, sw_entry->end,
  12680.                                   hw_entry->start, hw_entry->end);
  12681.                 }
  12682.  
  12683.                 /* cursor */
  12684.                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
  12685.                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
  12686.  
  12687.                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12688.                         continue;
  12689.  
  12690.                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
  12691.                           "(expected (%u,%u), found (%u,%u))\n",
  12692.                           pipe_name(pipe),
  12693.                           sw_entry->start, sw_entry->end,
  12694.                           hw_entry->start, hw_entry->end);
  12695.         }
  12696. }
  12697.  
  12698. static void
  12699. check_connector_state(struct drm_device *dev,
  12700.                       struct drm_atomic_state *old_state)
  12701. {
  12702.         struct drm_connector_state *old_conn_state;
  12703.         struct drm_connector *connector;
  12704.         int i;
  12705.  
  12706.         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
  12707.                 struct drm_encoder *encoder = connector->encoder;
  12708.                 struct drm_connector_state *state = connector->state;
  12709.  
  12710.                 /* This also checks the encoder/connector hw state with the
  12711.                  * ->get_hw_state callbacks. */
  12712.                 intel_connector_check_state(to_intel_connector(connector));
  12713.  
  12714.                 I915_STATE_WARN(state->best_encoder != encoder,
  12715.                      "connector's atomic encoder doesn't match legacy encoder\n");
  12716.         }
  12717. }
  12718.  
  12719. static void
  12720. check_encoder_state(struct drm_device *dev)
  12721. {
  12722.         struct intel_encoder *encoder;
  12723.         struct intel_connector *connector;
  12724.  
  12725.         for_each_intel_encoder(dev, encoder) {
  12726.                 bool enabled = false;
  12727.                 enum pipe pipe;
  12728.  
  12729.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  12730.                               encoder->base.base.id,
  12731.                               encoder->base.name);
  12732.  
  12733.                 for_each_intel_connector(dev, connector) {
  12734.                         if (connector->base.state->best_encoder != &encoder->base)
  12735.                                 continue;
  12736.                         enabled = true;
  12737.  
  12738.                         I915_STATE_WARN(connector->base.state->crtc !=
  12739.                                         encoder->base.crtc,
  12740.                              "connector's crtc doesn't match encoder crtc\n");
  12741.                 }
  12742.  
  12743.                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
  12744.                      "encoder's enabled state mismatch "
  12745.                      "(expected %i, found %i)\n",
  12746.                      !!encoder->base.crtc, enabled);
  12747.  
  12748.                 if (!encoder->base.crtc) {
  12749.                         bool active;
  12750.  
  12751.                         active = encoder->get_hw_state(encoder, &pipe);
  12752.                         I915_STATE_WARN(active,
  12753.                              "encoder detached but still enabled on pipe %c.\n",
  12754.                              pipe_name(pipe));
  12755.                 }
  12756.         }
  12757. }
  12758.  
  12759. static void
  12760. check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
  12761. {
  12762.         struct drm_i915_private *dev_priv = dev->dev_private;
  12763.         struct intel_encoder *encoder;
  12764.         struct drm_crtc_state *old_crtc_state;
  12765.         struct drm_crtc *crtc;
  12766.         int i;
  12767.  
  12768.         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
  12769.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  12770.                 struct intel_crtc_state *pipe_config, *sw_config;
  12771.                 bool active;
  12772.  
  12773.                 if (!needs_modeset(crtc->state) &&
  12774.                     !to_intel_crtc_state(crtc->state)->update_pipe)
  12775.                         continue;
  12776.  
  12777.                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
  12778.                 pipe_config = to_intel_crtc_state(old_crtc_state);
  12779.                 memset(pipe_config, 0, sizeof(*pipe_config));
  12780.                 pipe_config->base.crtc = crtc;
  12781.                 pipe_config->base.state = old_state;
  12782.  
  12783.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  12784.                               crtc->base.id);
  12785.  
  12786.                 active = dev_priv->display.get_pipe_config(intel_crtc,
  12787.                                                            pipe_config);
  12788.  
  12789.                 /* hw state is inconsistent with the pipe quirk */
  12790.                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  12791.                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  12792.                         active = crtc->state->active;
  12793.  
  12794.                 I915_STATE_WARN(crtc->state->active != active,
  12795.                      "crtc active state doesn't match with hw state "
  12796.                      "(expected %i, found %i)\n", crtc->state->active, active);
  12797.  
  12798.                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
  12799.                      "transitional active state does not match atomic hw state "
  12800.                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
  12801.  
  12802.                 for_each_encoder_on_crtc(dev, crtc, encoder) {
  12803.                         enum pipe pipe;
  12804.  
  12805.                         active = encoder->get_hw_state(encoder, &pipe);
  12806.                         I915_STATE_WARN(active != crtc->state->active,
  12807.                                 "[ENCODER:%i] active %i with crtc active %i\n",
  12808.                                 encoder->base.base.id, active, crtc->state->active);
  12809.  
  12810.                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
  12811.                                         "Encoder connected to wrong pipe %c\n",
  12812.                                         pipe_name(pipe));
  12813.  
  12814.                         if (active)
  12815.                                 encoder->get_config(encoder, pipe_config);
  12816.                 }
  12817.  
  12818.                 if (!crtc->state->active)
  12819.                         continue;
  12820.  
  12821.                 sw_config = to_intel_crtc_state(crtc->state);
  12822.                 if (!intel_pipe_config_compare(dev, sw_config,
  12823.                                                pipe_config, false)) {
  12824.                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
  12825.                         intel_dump_pipe_config(intel_crtc, pipe_config,
  12826.                                                "[hw state]");
  12827.                         intel_dump_pipe_config(intel_crtc, sw_config,
  12828.                                                "[sw state]");
  12829.                 }
  12830.         }
  12831. }
  12832.  
  12833. static void
  12834. check_shared_dpll_state(struct drm_device *dev)
  12835. {
  12836.         struct drm_i915_private *dev_priv = dev->dev_private;
  12837.         struct intel_crtc *crtc;
  12838.         struct intel_dpll_hw_state dpll_hw_state;
  12839.         int i;
  12840.  
  12841.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  12842.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  12843.                 int enabled_crtcs = 0, active_crtcs = 0;
  12844.                 bool active;
  12845.  
  12846.                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  12847.  
  12848.                 DRM_DEBUG_KMS("%s\n", pll->name);
  12849.  
  12850.                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  12851.  
  12852.                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
  12853.                      "more active pll users than references: %i vs %i\n",
  12854.                      pll->active, hweight32(pll->config.crtc_mask));
  12855.                 I915_STATE_WARN(pll->active && !pll->on,
  12856.                      "pll in active use but not on in sw tracking\n");
  12857.                 I915_STATE_WARN(pll->on && !pll->active,
  12858.                      "pll in on but not on in use in sw tracking\n");
  12859.                 I915_STATE_WARN(pll->on != active,
  12860.                      "pll on state mismatch (expected %i, found %i)\n",
  12861.                      pll->on, active);
  12862.  
  12863.                 for_each_intel_crtc(dev, crtc) {
  12864.                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
  12865.                                 enabled_crtcs++;
  12866.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  12867.                                 active_crtcs++;
  12868.                 }
  12869.                 I915_STATE_WARN(pll->active != active_crtcs,
  12870.                      "pll active crtcs mismatch (expected %i, found %i)\n",
  12871.                      pll->active, active_crtcs);
  12872.                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
  12873.                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
  12874.                      hweight32(pll->config.crtc_mask), enabled_crtcs);
  12875.  
  12876.                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
  12877.                                        sizeof(dpll_hw_state)),
  12878.                      "pll hw state mismatch\n");
  12879.         }
  12880. }
  12881.  
  12882. static void
  12883. intel_modeset_check_state(struct drm_device *dev,
  12884.                           struct drm_atomic_state *old_state)
  12885. {
  12886.         check_wm_state(dev);
  12887.         check_connector_state(dev, old_state);
  12888.         check_encoder_state(dev);
  12889.         check_crtc_state(dev, old_state);
  12890.         check_shared_dpll_state(dev);
  12891. }
  12892.  
  12893. void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
  12894.                                      int dotclock)
  12895. {
  12896.         /*
  12897.          * FDI already provided one idea for the dotclock.
  12898.          * Yell if the encoder disagrees.
  12899.          */
  12900.         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
  12901.              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  12902.              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
  12903. }
  12904.  
  12905. static void update_scanline_offset(struct intel_crtc *crtc)
  12906. {
  12907.         struct drm_device *dev = crtc->base.dev;
  12908.  
  12909.         /*
  12910.          * The scanline counter increments at the leading edge of hsync.
  12911.          *
  12912.          * On most platforms it starts counting from vtotal-1 on the
  12913.          * first active line. That means the scanline counter value is
  12914.          * always one less than what we would expect. Ie. just after
  12915.          * start of vblank, which also occurs at start of hsync (on the
  12916.          * last active line), the scanline counter will read vblank_start-1.
  12917.          *
  12918.          * On gen2 the scanline counter starts counting from 1 instead
  12919.          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
  12920.          * to keep the value positive), instead of adding one.
  12921.          *
  12922.          * On HSW+ the behaviour of the scanline counter depends on the output
  12923.          * type. For DP ports it behaves like most other platforms, but on HDMI
  12924.          * there's an extra 1 line difference. So we need to add two instead of
  12925.          * one to the value.
  12926.          */
  12927.         if (IS_GEN2(dev)) {
  12928.                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  12929.                 int vtotal;
  12930.  
  12931.                 vtotal = adjusted_mode->crtc_vtotal;
  12932.                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  12933.                         vtotal /= 2;
  12934.  
  12935.                 crtc->scanline_offset = vtotal - 1;
  12936.         } else if (HAS_DDI(dev) &&
  12937.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
  12938.                 crtc->scanline_offset = 2;
  12939.         } else
  12940.                 crtc->scanline_offset = 1;
  12941. }
  12942.  
  12943. static void intel_modeset_clear_plls(struct drm_atomic_state *state)
  12944. {
  12945.         struct drm_device *dev = state->dev;
  12946.         struct drm_i915_private *dev_priv = to_i915(dev);
  12947.         struct intel_shared_dpll_config *shared_dpll = NULL;
  12948.         struct intel_crtc *intel_crtc;
  12949.         struct intel_crtc_state *intel_crtc_state;
  12950.         struct drm_crtc *crtc;
  12951.         struct drm_crtc_state *crtc_state;
  12952.         int i;
  12953.  
  12954.         if (!dev_priv->display.crtc_compute_clock)
  12955.                 return;
  12956.  
  12957.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12958.                 int dpll;
  12959.  
  12960.                 intel_crtc = to_intel_crtc(crtc);
  12961.                 intel_crtc_state = to_intel_crtc_state(crtc_state);
  12962.                 dpll = intel_crtc_state->shared_dpll;
  12963.  
  12964.                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
  12965.                         continue;
  12966.  
  12967.                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
  12968.  
  12969.                 if (!shared_dpll)
  12970.                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
  12971.  
  12972.                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
  12973.         }
  12974. }
  12975.  
  12976. /*
  12977.  * This implements the workaround described in the "notes" section of the mode
  12978.  * set sequence documentation. When going from no pipes or single pipe to
  12979.  * multiple pipes, and planes are enabled after the pipe, we need to wait at
  12980.  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  12981.  */
  12982. static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
  12983. {
  12984.         struct drm_crtc_state *crtc_state;
  12985.         struct intel_crtc *intel_crtc;
  12986.         struct drm_crtc *crtc;
  12987.         struct intel_crtc_state *first_crtc_state = NULL;
  12988.         struct intel_crtc_state *other_crtc_state = NULL;
  12989.         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
  12990.         int i;
  12991.  
  12992.         /* look at all crtc's that are going to be enabled in during modeset */
  12993.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12994.                 intel_crtc = to_intel_crtc(crtc);
  12995.  
  12996.                 if (!crtc_state->active || !needs_modeset(crtc_state))
  12997.                         continue;
  12998.  
  12999.                 if (first_crtc_state) {
  13000.                         other_crtc_state = to_intel_crtc_state(crtc_state);
  13001.                         break;
  13002.                 } else {
  13003.                         first_crtc_state = to_intel_crtc_state(crtc_state);
  13004.                         first_pipe = intel_crtc->pipe;
  13005.                 }
  13006.         }
  13007.  
  13008.         /* No workaround needed? */
  13009.         if (!first_crtc_state)
  13010.                 return 0;
  13011.  
  13012.         /* w/a possibly needed, check how many crtc's are already enabled. */
  13013.         for_each_intel_crtc(state->dev, intel_crtc) {
  13014.                 struct intel_crtc_state *pipe_config;
  13015.  
  13016.                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
  13017.                 if (IS_ERR(pipe_config))
  13018.                         return PTR_ERR(pipe_config);
  13019.  
  13020.                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
  13021.  
  13022.                 if (!pipe_config->base.active ||
  13023.                     needs_modeset(&pipe_config->base))
  13024.                         continue;
  13025.  
  13026.                 /* 2 or more enabled crtcs means no need for w/a */
  13027.                 if (enabled_pipe != INVALID_PIPE)
  13028.                         return 0;
  13029.  
  13030.                 enabled_pipe = intel_crtc->pipe;
  13031.         }
  13032.  
  13033.         if (enabled_pipe != INVALID_PIPE)
  13034.                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
  13035.         else if (other_crtc_state)
  13036.                 other_crtc_state->hsw_workaround_pipe = first_pipe;
  13037.  
  13038.         return 0;
  13039. }
  13040.  
  13041. static int intel_modeset_all_pipes(struct drm_atomic_state *state)
  13042. {
  13043.         struct drm_crtc *crtc;
  13044.         struct drm_crtc_state *crtc_state;
  13045.         int ret = 0;
  13046.  
  13047.         /* add all active pipes to the state */
  13048.         for_each_crtc(state->dev, crtc) {
  13049.                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13050.                 if (IS_ERR(crtc_state))
  13051.                         return PTR_ERR(crtc_state);
  13052.  
  13053.                 if (!crtc_state->active || needs_modeset(crtc_state))
  13054.                         continue;
  13055.  
  13056.                 crtc_state->mode_changed = true;
  13057.  
  13058.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13059.                 if (ret)
  13060.                         break;
  13061.  
  13062.                 ret = drm_atomic_add_affected_planes(state, crtc);
  13063.                 if (ret)
  13064.                         break;
  13065.         }
  13066.  
  13067.         return ret;
  13068. }
  13069.  
  13070. static int intel_modeset_checks(struct drm_atomic_state *state)
  13071. {
  13072.         struct drm_device *dev = state->dev;
  13073.         struct drm_i915_private *dev_priv = dev->dev_private;
  13074.         int ret;
  13075.  
  13076.         if (!check_digital_port_conflicts(state)) {
  13077.                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
  13078.                 return -EINVAL;
  13079.         }
  13080.  
  13081.         /*
  13082.          * See if the config requires any additional preparation, e.g.
  13083.          * to adjust global state with pipes off.  We need to do this
  13084.          * here so we can get the modeset_pipe updated config for the new
  13085.          * mode set on this crtc.  For other crtcs we need to use the
  13086.          * adjusted_mode bits in the crtc directly.
  13087.          */
  13088.         if (dev_priv->display.modeset_calc_cdclk) {
  13089.                 unsigned int cdclk;
  13090.  
  13091.                 ret = dev_priv->display.modeset_calc_cdclk(state);
  13092.  
  13093.                 cdclk = to_intel_atomic_state(state)->cdclk;
  13094.                 if (!ret && cdclk != dev_priv->cdclk_freq)
  13095.                         ret = intel_modeset_all_pipes(state);
  13096.  
  13097.                 if (ret < 0)
  13098.                         return ret;
  13099.         } else
  13100.                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
  13101.  
  13102.         intel_modeset_clear_plls(state);
  13103.  
  13104.         if (IS_HASWELL(dev))
  13105.                 return haswell_mode_set_planes_workaround(state);
  13106.  
  13107.         return 0;
  13108. }
  13109.  
  13110. /**
  13111.  * intel_atomic_check - validate state object
  13112.  * @dev: drm device
  13113.  * @state: state to validate
  13114.  */
  13115. static int intel_atomic_check(struct drm_device *dev,
  13116.                               struct drm_atomic_state *state)
  13117. {
  13118.         struct drm_crtc *crtc;
  13119.         struct drm_crtc_state *crtc_state;
  13120.         int ret, i;
  13121.         bool any_ms = false;
  13122.  
  13123.         ret = drm_atomic_helper_check_modeset(dev, state);
  13124.         if (ret)
  13125.                 return ret;
  13126.  
  13127.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13128.                 struct intel_crtc_state *pipe_config =
  13129.                         to_intel_crtc_state(crtc_state);
  13130.  
  13131.                 memset(&to_intel_crtc(crtc)->atomic, 0,
  13132.                        sizeof(struct intel_crtc_atomic_commit));
  13133.  
  13134.                 /* Catch I915_MODE_FLAG_INHERITED */
  13135.                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
  13136.                         crtc_state->mode_changed = true;
  13137.  
  13138.                 if (!crtc_state->enable) {
  13139.                         if (needs_modeset(crtc_state))
  13140.                                 any_ms = true;
  13141.                         continue;
  13142.                 }
  13143.  
  13144.                 if (!needs_modeset(crtc_state))
  13145.                         continue;
  13146.  
  13147.                 /* FIXME: For only active_changed we shouldn't need to do any
  13148.                  * state recomputation at all. */
  13149.  
  13150.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13151.                 if (ret)
  13152.                         return ret;
  13153.  
  13154.                 ret = intel_modeset_pipe_config(crtc, pipe_config);
  13155.                 if (ret)
  13156.                         return ret;
  13157.  
  13158.                 if (i915.fastboot &&
  13159.                     intel_pipe_config_compare(state->dev,
  13160.                                         to_intel_crtc_state(crtc->state),
  13161.                                         pipe_config, true)) {
  13162.                         crtc_state->mode_changed = false;
  13163.                         to_intel_crtc_state(crtc_state)->update_pipe = true;
  13164.                 }
  13165.  
  13166.                 if (needs_modeset(crtc_state)) {
  13167.                         any_ms = true;
  13168.  
  13169.                         ret = drm_atomic_add_affected_planes(state, crtc);
  13170.                         if (ret)
  13171.                                 return ret;
  13172.                 }
  13173.  
  13174.                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  13175.                                        needs_modeset(crtc_state) ?
  13176.                                        "[modeset]" : "[fastset]");
  13177.         }
  13178.  
  13179.         if (any_ms) {
  13180.                 ret = intel_modeset_checks(state);
  13181.  
  13182.                 if (ret)
  13183.                         return ret;
  13184.         } else
  13185.                 to_intel_atomic_state(state)->cdclk =
  13186.                         to_i915(state->dev)->cdclk_freq;
  13187.  
  13188.         return drm_atomic_helper_check_planes(state->dev, state);
  13189. }
  13190.  
  13191. /**
  13192.  * intel_atomic_commit - commit validated state object
  13193.  * @dev: DRM device
  13194.  * @state: the top-level driver state object
  13195.  * @async: asynchronous commit
  13196.  *
  13197.  * This function commits a top-level state object that has been validated
  13198.  * with drm_atomic_helper_check().
  13199.  *
  13200.  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
  13201.  * we can only handle plane-related operations and do not yet support
  13202.  * asynchronous commit.
  13203.  *
  13204.  * RETURNS
  13205.  * Zero for success or -errno.
  13206.  */
  13207. static int intel_atomic_commit(struct drm_device *dev,
  13208.                                struct drm_atomic_state *state,
  13209.                                bool async)
  13210. {
  13211.         struct drm_i915_private *dev_priv = dev->dev_private;
  13212.         struct drm_crtc *crtc;
  13213.         struct drm_crtc_state *crtc_state;
  13214.         int ret = 0;
  13215.         int i;
  13216.         bool any_ms = false;
  13217.  
  13218.         if (async) {
  13219.                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
  13220.                 return -EINVAL;
  13221.         }
  13222.  
  13223.         ret = drm_atomic_helper_prepare_planes(dev, state);
  13224.         if (ret)
  13225.                 return ret;
  13226.  
  13227.         drm_atomic_helper_swap_state(dev, state);
  13228.  
  13229.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13230.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13231.  
  13232.                 if (!needs_modeset(crtc->state))
  13233.                         continue;
  13234.  
  13235.                 any_ms = true;
  13236.                 intel_pre_plane_update(intel_crtc);
  13237.  
  13238.                 if (crtc_state->active) {
  13239.                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
  13240.                         dev_priv->display.crtc_disable(crtc);
  13241.                         intel_crtc->active = false;
  13242.                         intel_disable_shared_dpll(intel_crtc);
  13243.                 }
  13244.         }
  13245.  
  13246.         /* Only after disabling all output pipelines that will be changed can we
  13247.          * update the the output configuration. */
  13248.         intel_modeset_update_crtc_state(state);
  13249.  
  13250.         if (any_ms) {
  13251.                 intel_shared_dpll_commit(state);
  13252.  
  13253.                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
  13254.                 modeset_update_crtc_power_domains(state);
  13255.         }
  13256.  
  13257.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  13258.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13259.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13260.                 bool modeset = needs_modeset(crtc->state);
  13261.                 bool update_pipe = !modeset &&
  13262.                         to_intel_crtc_state(crtc->state)->update_pipe;
  13263.                 unsigned long put_domains = 0;
  13264.  
  13265.                 if (modeset && crtc->state->active) {
  13266.                         update_scanline_offset(to_intel_crtc(crtc));
  13267.                         dev_priv->display.crtc_enable(crtc);
  13268.                 }
  13269.  
  13270.                 if (update_pipe) {
  13271.                         put_domains = modeset_get_crtc_power_domains(crtc);
  13272.  
  13273.                         /* make sure intel_modeset_check_state runs */
  13274.                         any_ms = true;
  13275.                 }
  13276.  
  13277.                 if (!modeset)
  13278.                         intel_pre_plane_update(intel_crtc);
  13279.  
  13280.                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
  13281.  
  13282.                 if (put_domains)
  13283.                         modeset_put_power_domains(dev_priv, put_domains);
  13284.  
  13285.                 intel_post_plane_update(intel_crtc);
  13286.         }
  13287.  
  13288.         /* FIXME: add subpixel order */
  13289.  
  13290.         drm_atomic_helper_wait_for_vblanks(dev, state);
  13291.         drm_atomic_helper_cleanup_planes(dev, state);
  13292.  
  13293.         if (any_ms)
  13294.                 intel_modeset_check_state(dev, state);
  13295.  
  13296.         drm_atomic_state_free(state);
  13297.  
  13298.         return 0;
  13299. }
  13300.  
  13301. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  13302. {
  13303.         struct drm_device *dev = crtc->dev;
  13304.         struct drm_atomic_state *state;
  13305.         struct drm_crtc_state *crtc_state;
  13306.         int ret;
  13307.  
  13308.         state = drm_atomic_state_alloc(dev);
  13309.         if (!state) {
  13310.                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
  13311.                               crtc->base.id);
  13312.                 return;
  13313.         }
  13314.  
  13315.         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  13316.  
  13317. retry:
  13318.         crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13319.         ret = PTR_ERR_OR_ZERO(crtc_state);
  13320.         if (!ret) {
  13321.                 if (!crtc_state->active)
  13322.                         goto out;
  13323.  
  13324.                 crtc_state->mode_changed = true;
  13325.                 ret = drm_atomic_commit(state);
  13326.         }
  13327.  
  13328.         if (ret == -EDEADLK) {
  13329.                 drm_atomic_state_clear(state);
  13330.                 drm_modeset_backoff(state->acquire_ctx);
  13331.                 goto retry;
  13332.         }
  13333.  
  13334.         if (ret)
  13335. out:
  13336.                 drm_atomic_state_free(state);
  13337. }
  13338.  
  13339. #undef for_each_intel_crtc_masked
  13340.  
  13341. static const struct drm_crtc_funcs intel_crtc_funcs = {
  13342.         .gamma_set = intel_crtc_gamma_set,
  13343.         .set_config = drm_atomic_helper_set_config,
  13344.         .destroy = intel_crtc_destroy,
  13345.         .page_flip = intel_crtc_page_flip,
  13346.         .atomic_duplicate_state = intel_crtc_duplicate_state,
  13347.         .atomic_destroy_state = intel_crtc_destroy_state,
  13348. };
  13349.  
  13350. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  13351.                                       struct intel_shared_dpll *pll,
  13352.                                       struct intel_dpll_hw_state *hw_state)
  13353. {
  13354.         uint32_t val;
  13355.  
  13356.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  13357.                 return false;
  13358.  
  13359.         val = I915_READ(PCH_DPLL(pll->id));
  13360.         hw_state->dpll = val;
  13361.         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  13362.         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  13363.  
  13364.         return val & DPLL_VCO_ENABLE;
  13365. }
  13366.  
  13367. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  13368.                                   struct intel_shared_dpll *pll)
  13369. {
  13370.         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  13371.         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  13372. }
  13373.  
  13374. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  13375.                                 struct intel_shared_dpll *pll)
  13376. {
  13377.         /* PCH refclock must be enabled first */
  13378.         ibx_assert_pch_refclk_enabled(dev_priv);
  13379.  
  13380.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13381.  
  13382.         /* Wait for the clocks to stabilize. */
  13383.         POSTING_READ(PCH_DPLL(pll->id));
  13384.         udelay(150);
  13385.  
  13386.         /* The pixel multiplier can only be updated once the
  13387.          * DPLL is enabled and the clocks are stable.
  13388.          *
  13389.          * So write it again.
  13390.          */
  13391.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13392.         POSTING_READ(PCH_DPLL(pll->id));
  13393.         udelay(200);
  13394. }
  13395.  
  13396. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  13397.                                  struct intel_shared_dpll *pll)
  13398. {
  13399.         struct drm_device *dev = dev_priv->dev;
  13400.         struct intel_crtc *crtc;
  13401.  
  13402.         /* Make sure no transcoder isn't still depending on us. */
  13403.         for_each_intel_crtc(dev, crtc) {
  13404.                 if (intel_crtc_to_shared_dpll(crtc) == pll)
  13405.                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  13406.         }
  13407.  
  13408.         I915_WRITE(PCH_DPLL(pll->id), 0);
  13409.         POSTING_READ(PCH_DPLL(pll->id));
  13410.         udelay(200);
  13411. }
  13412.  
  13413. static char *ibx_pch_dpll_names[] = {
  13414.         "PCH DPLL A",
  13415.         "PCH DPLL B",
  13416. };
  13417.  
  13418. static void ibx_pch_dpll_init(struct drm_device *dev)
  13419. {
  13420.         struct drm_i915_private *dev_priv = dev->dev_private;
  13421.         int i;
  13422.  
  13423.         dev_priv->num_shared_dpll = 2;
  13424.  
  13425.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  13426.                 dev_priv->shared_dplls[i].id = i;
  13427.                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  13428.                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  13429.                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  13430.                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  13431.                 dev_priv->shared_dplls[i].get_hw_state =
  13432.                         ibx_pch_dpll_get_hw_state;
  13433.         }
  13434. }
  13435.  
  13436. static void intel_shared_dpll_init(struct drm_device *dev)
  13437. {
  13438.         struct drm_i915_private *dev_priv = dev->dev_private;
  13439.  
  13440.         if (HAS_DDI(dev))
  13441.                 intel_ddi_pll_init(dev);
  13442.         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  13443.                 ibx_pch_dpll_init(dev);
  13444.         else
  13445.                 dev_priv->num_shared_dpll = 0;
  13446.  
  13447.         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  13448. }
  13449.  
  13450. /**
  13451.  * intel_prepare_plane_fb - Prepare fb for usage on plane
  13452.  * @plane: drm plane to prepare for
  13453.  * @fb: framebuffer to prepare for presentation
  13454.  *
  13455.  * Prepares a framebuffer for usage on a display plane.  Generally this
  13456.  * involves pinning the underlying object and updating the frontbuffer tracking
  13457.  * bits.  Some older platforms need special physical address handling for
  13458.  * cursor planes.
  13459.  *
  13460.  * Returns 0 on success, negative error code on failure.
  13461.  */
  13462. int
  13463. intel_prepare_plane_fb(struct drm_plane *plane,
  13464.                        const struct drm_plane_state *new_state)
  13465. {
  13466.         struct drm_device *dev = plane->dev;
  13467.         struct drm_framebuffer *fb = new_state->fb;
  13468.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13469.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13470.         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
  13471.         int ret = 0;
  13472.  
  13473.         if (!obj)
  13474.                 return 0;
  13475.  
  13476.         mutex_lock(&dev->struct_mutex);
  13477.  
  13478.         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
  13479.             INTEL_INFO(dev)->cursor_needs_physical) {
  13480.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  13481.         ret = 1;
  13482.                 if (ret)
  13483.                         DRM_DEBUG_KMS("failed to attach phys object\n");
  13484.         } else {
  13485.                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
  13486.         }
  13487.  
  13488.         if (ret == 0)
  13489.                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
  13490.  
  13491.         mutex_unlock(&dev->struct_mutex);
  13492.  
  13493.         return ret;
  13494. }
  13495.  
  13496. /**
  13497.  * intel_cleanup_plane_fb - Cleans up an fb after plane use
  13498.  * @plane: drm plane to clean up for
  13499.  * @fb: old framebuffer that was on plane
  13500.  *
  13501.  * Cleans up a framebuffer that has just been removed from a plane.
  13502.  */
  13503. void
  13504. intel_cleanup_plane_fb(struct drm_plane *plane,
  13505.                        const struct drm_plane_state *old_state)
  13506. {
  13507.         struct drm_device *dev = plane->dev;
  13508.         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
  13509.  
  13510.         if (!obj)
  13511.                 return;
  13512.  
  13513.         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
  13514.             !INTEL_INFO(dev)->cursor_needs_physical) {
  13515.                 mutex_lock(&dev->struct_mutex);
  13516.                 intel_unpin_fb_obj(old_state->fb, old_state);
  13517.                 mutex_unlock(&dev->struct_mutex);
  13518.         }
  13519. }
  13520.  
  13521. int
  13522. skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
  13523. {
  13524.         int max_scale;
  13525.         struct drm_device *dev;
  13526.         struct drm_i915_private *dev_priv;
  13527.         int crtc_clock, cdclk;
  13528.  
  13529.         if (!intel_crtc || !crtc_state)
  13530.                 return DRM_PLANE_HELPER_NO_SCALING;
  13531.  
  13532.         dev = intel_crtc->base.dev;
  13533.         dev_priv = dev->dev_private;
  13534.         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
  13535.         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
  13536.  
  13537.         if (!crtc_clock || !cdclk)
  13538.                 return DRM_PLANE_HELPER_NO_SCALING;
  13539.  
  13540.         /*
  13541.          * skl max scale is lower of:
  13542.          *    close to 3 but not 3, -1 is for that purpose
  13543.          *            or
  13544.          *    cdclk/crtc_clock
  13545.          */
  13546.         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
  13547.  
  13548.         return max_scale;
  13549. }
  13550.  
  13551. static int
  13552. intel_check_primary_plane(struct drm_plane *plane,
  13553.                           struct intel_crtc_state *crtc_state,
  13554.                           struct intel_plane_state *state)
  13555. {
  13556.         struct drm_crtc *crtc = state->base.crtc;
  13557.         struct drm_framebuffer *fb = state->base.fb;
  13558.         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
  13559.         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
  13560.         bool can_position = false;
  13561.  
  13562.         if (INTEL_INFO(plane->dev)->gen >= 9) {
  13563.         /* use scaler when colorkey is not required */
  13564.                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
  13565.                 min_scale = 1;
  13566.                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
  13567.                 }
  13568.                 can_position = true;
  13569.         }
  13570.  
  13571.         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13572.                                              &state->dst, &state->clip,
  13573.                                              min_scale, max_scale,
  13574.                                              can_position, true,
  13575.                                              &state->visible);
  13576. }
  13577.  
  13578. static void
  13579. intel_commit_primary_plane(struct drm_plane *plane,
  13580.                            struct intel_plane_state *state)
  13581. {
  13582.         struct drm_crtc *crtc = state->base.crtc;
  13583.         struct drm_framebuffer *fb = state->base.fb;
  13584.         struct drm_device *dev = plane->dev;
  13585.         struct drm_i915_private *dev_priv = dev->dev_private;
  13586.         struct intel_crtc *intel_crtc;
  13587.         struct drm_rect *src = &state->src;
  13588.  
  13589.         crtc = crtc ? crtc : plane->crtc;
  13590.         intel_crtc = to_intel_crtc(crtc);
  13591.  
  13592.         plane->fb = fb;
  13593.         crtc->x = src->x1 >> 16;
  13594.         crtc->y = src->y1 >> 16;
  13595.  
  13596.         if (!crtc->state->active)
  13597.                 return;
  13598.  
  13599.         dev_priv->display.update_primary_plane(crtc, fb,
  13600.                                                state->src.x1 >> 16,
  13601.                                                state->src.y1 >> 16);
  13602. }
  13603.  
  13604. static void
  13605. intel_disable_primary_plane(struct drm_plane *plane,
  13606.                             struct drm_crtc *crtc)
  13607. {
  13608.         struct drm_device *dev = plane->dev;
  13609.         struct drm_i915_private *dev_priv = dev->dev_private;
  13610.  
  13611.         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
  13612. }
  13613.  
  13614. static void intel_begin_crtc_commit(struct drm_crtc *crtc,
  13615.                                     struct drm_crtc_state *old_crtc_state)
  13616. {
  13617.         struct drm_device *dev = crtc->dev;
  13618.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13619.         struct intel_crtc_state *old_intel_state =
  13620.                 to_intel_crtc_state(old_crtc_state);
  13621.         bool modeset = needs_modeset(crtc->state);
  13622.  
  13623.         if (intel_crtc->atomic.update_wm_pre)
  13624.                 intel_update_watermarks(crtc);
  13625.  
  13626.         /* Perform vblank evasion around commit operation */
  13627.         if (crtc->state->active)
  13628.                 intel_pipe_update_start(intel_crtc);
  13629.  
  13630.         if (modeset)
  13631.                 return;
  13632.  
  13633.         if (to_intel_crtc_state(crtc->state)->update_pipe)
  13634.                 intel_update_pipe_config(intel_crtc, old_intel_state);
  13635.         else if (INTEL_INFO(dev)->gen >= 9)
  13636.                 skl_detach_scalers(intel_crtc);
  13637. }
  13638.  
  13639. static void intel_finish_crtc_commit(struct drm_crtc *crtc,
  13640.                                      struct drm_crtc_state *old_crtc_state)
  13641. {
  13642.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13643.  
  13644.         if (crtc->state->active)
  13645.                 intel_pipe_update_end(intel_crtc);
  13646. }
  13647.  
  13648. /**
  13649.  * intel_plane_destroy - destroy a plane
  13650.  * @plane: plane to destroy
  13651.  *
  13652.  * Common destruction function for all types of planes (primary, cursor,
  13653.  * sprite).
  13654.  */
  13655. void intel_plane_destroy(struct drm_plane *plane)
  13656. {
  13657.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13658.         drm_plane_cleanup(plane);
  13659.         kfree(intel_plane);
  13660. }
  13661.  
  13662. const struct drm_plane_funcs intel_plane_funcs = {
  13663.         .update_plane = drm_atomic_helper_update_plane,
  13664.         .disable_plane = drm_atomic_helper_disable_plane,
  13665.         .destroy = intel_plane_destroy,
  13666.         .set_property = drm_atomic_helper_plane_set_property,
  13667.         .atomic_get_property = intel_plane_atomic_get_property,
  13668.         .atomic_set_property = intel_plane_atomic_set_property,
  13669.         .atomic_duplicate_state = intel_plane_duplicate_state,
  13670.         .atomic_destroy_state = intel_plane_destroy_state,
  13671.  
  13672. };
  13673.  
  13674. static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
  13675.                                                     int pipe)
  13676. {
  13677.         struct intel_plane *primary;
  13678.         struct intel_plane_state *state;
  13679.         const uint32_t *intel_primary_formats;
  13680.         unsigned int num_formats;
  13681.  
  13682.         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
  13683.         if (primary == NULL)
  13684.                 return NULL;
  13685.  
  13686.         state = intel_create_plane_state(&primary->base);
  13687.         if (!state) {
  13688.                 kfree(primary);
  13689.                 return NULL;
  13690.         }
  13691.         primary->base.state = &state->base;
  13692.  
  13693.         primary->can_scale = false;
  13694.         primary->max_downscale = 1;
  13695.         if (INTEL_INFO(dev)->gen >= 9) {
  13696.                 primary->can_scale = true;
  13697.                 state->scaler_id = -1;
  13698.         }
  13699.         primary->pipe = pipe;
  13700.         primary->plane = pipe;
  13701.         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
  13702.         primary->check_plane = intel_check_primary_plane;
  13703.         primary->commit_plane = intel_commit_primary_plane;
  13704.         primary->disable_plane = intel_disable_primary_plane;
  13705.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
  13706.                 primary->plane = !pipe;
  13707.  
  13708.         if (INTEL_INFO(dev)->gen >= 9) {
  13709.                 intel_primary_formats = skl_primary_formats;
  13710.                 num_formats = ARRAY_SIZE(skl_primary_formats);
  13711.         } else if (INTEL_INFO(dev)->gen >= 4) {
  13712.                 intel_primary_formats = i965_primary_formats;
  13713.                 num_formats = ARRAY_SIZE(i965_primary_formats);
  13714.         } else {
  13715.                 intel_primary_formats = i8xx_primary_formats;
  13716.                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
  13717.         }
  13718.  
  13719.         drm_universal_plane_init(dev, &primary->base, 0,
  13720.                                  &intel_plane_funcs,
  13721.                                  intel_primary_formats, num_formats,
  13722.                                  DRM_PLANE_TYPE_PRIMARY);
  13723.  
  13724.         if (INTEL_INFO(dev)->gen >= 4)
  13725.                 intel_create_rotation_property(dev, primary);
  13726.  
  13727.         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
  13728.  
  13729.         return &primary->base;
  13730. }
  13731.  
  13732. void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
  13733. {
  13734.         if (!dev->mode_config.rotation_property) {
  13735.                 unsigned long flags = BIT(DRM_ROTATE_0) |
  13736.                         BIT(DRM_ROTATE_180);
  13737.  
  13738.                 if (INTEL_INFO(dev)->gen >= 9)
  13739.                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
  13740.  
  13741.                 dev->mode_config.rotation_property =
  13742.                         drm_mode_create_rotation_property(dev, flags);
  13743.         }
  13744.         if (dev->mode_config.rotation_property)
  13745.                 drm_object_attach_property(&plane->base.base,
  13746.                                 dev->mode_config.rotation_property,
  13747.                                 plane->base.state->rotation);
  13748. }
  13749.  
  13750. static int
  13751. intel_check_cursor_plane(struct drm_plane *plane,
  13752.                          struct intel_crtc_state *crtc_state,
  13753.                          struct intel_plane_state *state)
  13754. {
  13755.         struct drm_crtc *crtc = crtc_state->base.crtc;
  13756.         struct drm_framebuffer *fb = state->base.fb;
  13757.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13758.         enum pipe pipe = to_intel_plane(plane)->pipe;
  13759.         unsigned stride;
  13760.         int ret;
  13761.  
  13762.         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13763.                                             &state->dst, &state->clip,
  13764.                                             DRM_PLANE_HELPER_NO_SCALING,
  13765.                                             DRM_PLANE_HELPER_NO_SCALING,
  13766.                                             true, true, &state->visible);
  13767.         if (ret)
  13768.                 return ret;
  13769.  
  13770.         /* if we want to turn off the cursor ignore width and height */
  13771.         if (!obj)
  13772.                 return 0;
  13773.  
  13774.         /* Check for which cursor types we support */
  13775.         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
  13776.                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
  13777.                           state->base.crtc_w, state->base.crtc_h);
  13778.                 return -EINVAL;
  13779.         }
  13780.  
  13781.         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
  13782.         if (obj->base.size < stride * state->base.crtc_h) {
  13783.                 DRM_DEBUG_KMS("buffer is too small\n");
  13784.                 return -ENOMEM;
  13785.         }
  13786.  
  13787.         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
  13788.                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
  13789.                 return -EINVAL;
  13790.         }
  13791.  
  13792.         /*
  13793.          * There's something wrong with the cursor on CHV pipe C.
  13794.          * If it straddles the left edge of the screen then
  13795.          * moving it away from the edge or disabling it often
  13796.          * results in a pipe underrun, and often that can lead to
  13797.          * dead pipe (constant underrun reported, and it scans
  13798.          * out just a solid color). To recover from that, the
  13799.          * display power well must be turned off and on again.
  13800.          * Refuse the put the cursor into that compromised position.
  13801.          */
  13802.         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
  13803.             state->visible && state->base.crtc_x < 0) {
  13804.                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
  13805.                 return -EINVAL;
  13806.         }
  13807.  
  13808.         return 0;
  13809. }
  13810.  
  13811. static void
  13812. intel_disable_cursor_plane(struct drm_plane *plane,
  13813.                            struct drm_crtc *crtc)
  13814. {
  13815.         intel_crtc_update_cursor(crtc, false);
  13816. }
  13817.  
  13818. static void
  13819. intel_commit_cursor_plane(struct drm_plane *plane,
  13820.                           struct intel_plane_state *state)
  13821. {
  13822.         struct drm_crtc *crtc = state->base.crtc;
  13823.         struct drm_device *dev = plane->dev;
  13824.         struct intel_crtc *intel_crtc;
  13825.         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
  13826.         uint32_t addr;
  13827.  
  13828.         crtc = crtc ? crtc : plane->crtc;
  13829.         intel_crtc = to_intel_crtc(crtc);
  13830.  
  13831.         if (!obj)
  13832.                 addr = 0;
  13833.         else if (!INTEL_INFO(dev)->cursor_needs_physical)
  13834.                 addr = i915_gem_obj_ggtt_offset(obj);
  13835.         else
  13836.                 addr = obj->phys_handle->busaddr;
  13837.  
  13838.         intel_crtc->cursor_addr = addr;
  13839.  
  13840.         if (crtc->state->active)
  13841.                 intel_crtc_update_cursor(crtc, state->visible);
  13842. }
  13843.  
  13844. static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
  13845.                                                    int pipe)
  13846. {
  13847.         struct intel_plane *cursor;
  13848.         struct intel_plane_state *state;
  13849.  
  13850.         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
  13851.         if (cursor == NULL)
  13852.                 return NULL;
  13853.  
  13854.         state = intel_create_plane_state(&cursor->base);
  13855.         if (!state) {
  13856.                 kfree(cursor);
  13857.                 return NULL;
  13858.         }
  13859.         cursor->base.state = &state->base;
  13860.  
  13861.         cursor->can_scale = false;
  13862.         cursor->max_downscale = 1;
  13863.         cursor->pipe = pipe;
  13864.         cursor->plane = pipe;
  13865.         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
  13866.         cursor->check_plane = intel_check_cursor_plane;
  13867.         cursor->commit_plane = intel_commit_cursor_plane;
  13868.         cursor->disable_plane = intel_disable_cursor_plane;
  13869.  
  13870.         drm_universal_plane_init(dev, &cursor->base, 0,
  13871.                                  &intel_plane_funcs,
  13872.                                  intel_cursor_formats,
  13873.                                  ARRAY_SIZE(intel_cursor_formats),
  13874.                                  DRM_PLANE_TYPE_CURSOR);
  13875.  
  13876.         if (INTEL_INFO(dev)->gen >= 4) {
  13877.                 if (!dev->mode_config.rotation_property)
  13878.                         dev->mode_config.rotation_property =
  13879.                                 drm_mode_create_rotation_property(dev,
  13880.                                                         BIT(DRM_ROTATE_0) |
  13881.                                                         BIT(DRM_ROTATE_180));
  13882.                 if (dev->mode_config.rotation_property)
  13883.                         drm_object_attach_property(&cursor->base.base,
  13884.                                 dev->mode_config.rotation_property,
  13885.                                 state->base.rotation);
  13886.         }
  13887.  
  13888.         if (INTEL_INFO(dev)->gen >=9)
  13889.                 state->scaler_id = -1;
  13890.  
  13891.         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
  13892.  
  13893.         return &cursor->base;
  13894. }
  13895.  
  13896. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  13897.         struct intel_crtc_state *crtc_state)
  13898. {
  13899.         int i;
  13900.         struct intel_scaler *intel_scaler;
  13901.         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
  13902.  
  13903.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  13904.                 intel_scaler = &scaler_state->scalers[i];
  13905.                 intel_scaler->in_use = 0;
  13906.                 intel_scaler->mode = PS_SCALER_MODE_DYN;
  13907.         }
  13908.  
  13909.         scaler_state->scaler_id = -1;
  13910. }
  13911.  
  13912. static void intel_crtc_init(struct drm_device *dev, int pipe)
  13913. {
  13914.         struct drm_i915_private *dev_priv = dev->dev_private;
  13915.         struct intel_crtc *intel_crtc;
  13916.         struct intel_crtc_state *crtc_state = NULL;
  13917.         struct drm_plane *primary = NULL;
  13918.         struct drm_plane *cursor = NULL;
  13919.         int i, ret;
  13920.  
  13921.         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  13922.         if (intel_crtc == NULL)
  13923.                 return;
  13924.  
  13925.         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
  13926.         if (!crtc_state)
  13927.                 goto fail;
  13928.         intel_crtc->config = crtc_state;
  13929.         intel_crtc->base.state = &crtc_state->base;
  13930.         crtc_state->base.crtc = &intel_crtc->base;
  13931.  
  13932.         /* initialize shared scalers */
  13933.         if (INTEL_INFO(dev)->gen >= 9) {
  13934.                 if (pipe == PIPE_C)
  13935.                         intel_crtc->num_scalers = 1;
  13936.                 else
  13937.                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
  13938.  
  13939.                 skl_init_scalers(dev, intel_crtc, crtc_state);
  13940.         }
  13941.  
  13942.         primary = intel_primary_plane_create(dev, pipe);
  13943.         if (!primary)
  13944.                 goto fail;
  13945.  
  13946.         cursor = intel_cursor_plane_create(dev, pipe);
  13947.         if (!cursor)
  13948.                 goto fail;
  13949.  
  13950.         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
  13951.                                         cursor, &intel_crtc_funcs);
  13952.         if (ret)
  13953.                 goto fail;
  13954.  
  13955.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  13956.         for (i = 0; i < 256; i++) {
  13957.                 intel_crtc->lut_r[i] = i;
  13958.                 intel_crtc->lut_g[i] = i;
  13959.                 intel_crtc->lut_b[i] = i;
  13960.         }
  13961.  
  13962.         /*
  13963.          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
  13964.          * is hooked to pipe B. Hence we want plane A feeding pipe B.
  13965.          */
  13966.         intel_crtc->pipe = pipe;
  13967.         intel_crtc->plane = pipe;
  13968.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
  13969.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  13970.                 intel_crtc->plane = !pipe;
  13971.         }
  13972.  
  13973.         intel_crtc->cursor_base = ~0;
  13974.         intel_crtc->cursor_cntl = ~0;
  13975.         intel_crtc->cursor_size = ~0;
  13976.  
  13977.         intel_crtc->wm.cxsr_allowed = true;
  13978.  
  13979.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  13980.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  13981.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  13982.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  13983.  
  13984.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  13985.  
  13986.         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
  13987.         return;
  13988.  
  13989. fail:
  13990.         if (primary)
  13991.                 drm_plane_cleanup(primary);
  13992.         if (cursor)
  13993.                 drm_plane_cleanup(cursor);
  13994.         kfree(crtc_state);
  13995.         kfree(intel_crtc);
  13996. }
  13997.  
  13998. enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
  13999. {
  14000.         struct drm_encoder *encoder = connector->base.encoder;
  14001.         struct drm_device *dev = connector->base.dev;
  14002.  
  14003.         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  14004.  
  14005.         if (!encoder || WARN_ON(!encoder->crtc))
  14006.                 return INVALID_PIPE;
  14007.  
  14008.         return to_intel_crtc(encoder->crtc)->pipe;
  14009. }
  14010.  
  14011. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  14012.                                 struct drm_file *file)
  14013. {
  14014.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  14015.         struct drm_crtc *drmmode_crtc;
  14016.         struct intel_crtc *crtc;
  14017.  
  14018.         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
  14019.  
  14020.         if (!drmmode_crtc) {
  14021.                 DRM_ERROR("no such CRTC id\n");
  14022.                 return -ENOENT;
  14023.         }
  14024.  
  14025.         crtc = to_intel_crtc(drmmode_crtc);
  14026.         pipe_from_crtc_id->pipe = crtc->pipe;
  14027.  
  14028.         return 0;
  14029. }
  14030.  
  14031. static int intel_encoder_clones(struct intel_encoder *encoder)
  14032. {
  14033.         struct drm_device *dev = encoder->base.dev;
  14034.         struct intel_encoder *source_encoder;
  14035.         int index_mask = 0;
  14036.         int entry = 0;
  14037.  
  14038.         for_each_intel_encoder(dev, source_encoder) {
  14039.                 if (encoders_cloneable(encoder, source_encoder))
  14040.                         index_mask |= (1 << entry);
  14041.  
  14042.                 entry++;
  14043.         }
  14044.  
  14045.         return index_mask;
  14046. }
  14047.  
  14048. static bool has_edp_a(struct drm_device *dev)
  14049. {
  14050.         struct drm_i915_private *dev_priv = dev->dev_private;
  14051.  
  14052.         if (!IS_MOBILE(dev))
  14053.                 return false;
  14054.  
  14055.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  14056.                 return false;
  14057.  
  14058.         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
  14059.                 return false;
  14060.  
  14061.         return true;
  14062. }
  14063.  
  14064. static bool intel_crt_present(struct drm_device *dev)
  14065. {
  14066.         struct drm_i915_private *dev_priv = dev->dev_private;
  14067.  
  14068.         if (INTEL_INFO(dev)->gen >= 9)
  14069.                 return false;
  14070.  
  14071.         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
  14072.                 return false;
  14073.  
  14074.         if (IS_CHERRYVIEW(dev))
  14075.                 return false;
  14076.  
  14077.         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
  14078.                 return false;
  14079.  
  14080.         return true;
  14081. }
  14082.  
  14083. static void intel_setup_outputs(struct drm_device *dev)
  14084. {
  14085.         struct drm_i915_private *dev_priv = dev->dev_private;
  14086.         struct intel_encoder *encoder;
  14087.         bool dpd_is_edp = false;
  14088.  
  14089.         intel_lvds_init(dev);
  14090.  
  14091.         if (intel_crt_present(dev))
  14092.                 intel_crt_init(dev);
  14093.  
  14094.         if (IS_BROXTON(dev)) {
  14095.                 /*
  14096.                  * FIXME: Broxton doesn't support port detection via the
  14097.                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
  14098.                  * detect the ports.
  14099.                  */
  14100.                 intel_ddi_init(dev, PORT_A);
  14101.                 intel_ddi_init(dev, PORT_B);
  14102.                 intel_ddi_init(dev, PORT_C);
  14103.         } else if (HAS_DDI(dev)) {
  14104.                 int found;
  14105.  
  14106.                 /*
  14107.                  * Haswell uses DDI functions to detect digital outputs.
  14108.                  * On SKL pre-D0 the strap isn't connected, so we assume
  14109.                  * it's there.
  14110.                  */
  14111.                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
  14112.                 /* WaIgnoreDDIAStrap: skl */
  14113.                 if (found || IS_SKYLAKE(dev))
  14114.                         intel_ddi_init(dev, PORT_A);
  14115.  
  14116.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  14117.                  * register */
  14118.                 found = I915_READ(SFUSE_STRAP);
  14119.  
  14120.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  14121.                         intel_ddi_init(dev, PORT_B);
  14122.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  14123.                         intel_ddi_init(dev, PORT_C);
  14124.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  14125.                         intel_ddi_init(dev, PORT_D);
  14126.                 /*
  14127.                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
  14128.                  */
  14129.                 if (IS_SKYLAKE(dev) &&
  14130.                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
  14131.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
  14132.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
  14133.                         intel_ddi_init(dev, PORT_E);
  14134.  
  14135.         } else if (HAS_PCH_SPLIT(dev)) {
  14136.                 int found;
  14137.                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
  14138.  
  14139.                 if (has_edp_a(dev))
  14140.                         intel_dp_init(dev, DP_A, PORT_A);
  14141.  
  14142.                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  14143.                         /* PCH SDVOB multiplex with HDMIB */
  14144.                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
  14145.                         if (!found)
  14146.                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  14147.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  14148.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  14149.                 }
  14150.  
  14151.                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  14152.                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  14153.  
  14154.                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  14155.                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  14156.  
  14157.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  14158.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  14159.  
  14160.                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
  14161.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  14162.         } else if (IS_VALLEYVIEW(dev)) {
  14163.                 bool has_edp, has_port;
  14164.  
  14165.                 /*
  14166.                  * The DP_DETECTED bit is the latched state of the DDC
  14167.                  * SDA pin at boot. However since eDP doesn't require DDC
  14168.                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
  14169.                  * eDP ports may have been muxed to an alternate function.
  14170.                  * Thus we can't rely on the DP_DETECTED bit alone to detect
  14171.                  * eDP ports. Consult the VBT as well as DP_DETECTED to
  14172.                  * detect eDP ports.
  14173.                  *
  14174.                  * Sadly the straps seem to be missing sometimes even for HDMI
  14175.                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
  14176.                  * and VBT for the presence of the port. Additionally we can't
  14177.                  * trust the port type the VBT declares as we've seen at least
  14178.                  * HDMI ports that the VBT claim are DP or eDP.
  14179.                  */
  14180.                 has_edp = intel_dp_is_edp(dev, PORT_B);
  14181.                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
  14182.                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
  14183.                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
  14184.                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
  14185.                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
  14186.  
  14187.                 has_edp = intel_dp_is_edp(dev, PORT_C);
  14188.                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
  14189.                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
  14190.                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
  14191.                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
  14192.                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
  14193.  
  14194.                 if (IS_CHERRYVIEW(dev)) {
  14195.                         /*
  14196.                          * eDP not supported on port D,
  14197.                          * so no need to worry about it
  14198.                          */
  14199.                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
  14200.                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
  14201.                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
  14202.                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
  14203.                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
  14204.                 }
  14205.  
  14206.                 intel_dsi_init(dev);
  14207.         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
  14208.                 bool found = false;
  14209.  
  14210.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14211.                         DRM_DEBUG_KMS("probing SDVOB\n");
  14212.                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  14213.                         if (!found && IS_G4X(dev)) {
  14214.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  14215.                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  14216.                         }
  14217.  
  14218.                         if (!found && IS_G4X(dev))
  14219.                                 intel_dp_init(dev, DP_B, PORT_B);
  14220.                 }
  14221.  
  14222.                 /* Before G4X SDVOC doesn't have its own detect register */
  14223.  
  14224.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14225.                         DRM_DEBUG_KMS("probing SDVOC\n");
  14226.                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  14227.                 }
  14228.  
  14229.                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  14230.  
  14231.                         if (IS_G4X(dev)) {
  14232.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  14233.                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  14234.                         }
  14235.                         if (IS_G4X(dev))
  14236.                                 intel_dp_init(dev, DP_C, PORT_C);
  14237.                 }
  14238.  
  14239.                 if (IS_G4X(dev) &&
  14240.                     (I915_READ(DP_D) & DP_DETECTED))
  14241.                         intel_dp_init(dev, DP_D, PORT_D);
  14242.         } else if (IS_GEN2(dev))
  14243.                 intel_dvo_init(dev);
  14244.  
  14245.         intel_psr_init(dev);
  14246.  
  14247.         for_each_intel_encoder(dev, encoder) {
  14248.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  14249.                 encoder->base.possible_clones =
  14250.                         intel_encoder_clones(encoder);
  14251.         }
  14252.  
  14253.         intel_init_pch_refclk(dev);
  14254.  
  14255.         drm_helper_move_panel_connectors_to_head(dev);
  14256. }
  14257.  
  14258. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  14259. {
  14260.         struct drm_device *dev = fb->dev;
  14261.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14262.  
  14263.         drm_framebuffer_cleanup(fb);
  14264.         mutex_lock(&dev->struct_mutex);
  14265.         WARN_ON(!intel_fb->obj->framebuffer_references--);
  14266.         drm_gem_object_unreference(&intel_fb->obj->base);
  14267.         mutex_unlock(&dev->struct_mutex);
  14268.         kfree(intel_fb);
  14269. }
  14270.  
  14271. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  14272.                                                 struct drm_file *file,
  14273.                                                 unsigned int *handle)
  14274. {
  14275.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14276.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14277.  
  14278.         if (obj->userptr.mm) {
  14279.                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
  14280.                 return -EINVAL;
  14281.         }
  14282.  
  14283.         return drm_gem_handle_create(file, &obj->base, handle);
  14284. }
  14285.  
  14286. static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
  14287.                                         struct drm_file *file,
  14288.                                         unsigned flags, unsigned color,
  14289.                                         struct drm_clip_rect *clips,
  14290.                                         unsigned num_clips)
  14291. {
  14292.         struct drm_device *dev = fb->dev;
  14293.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14294.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14295.  
  14296.         mutex_lock(&dev->struct_mutex);
  14297.         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
  14298.         mutex_unlock(&dev->struct_mutex);
  14299.  
  14300.         return 0;
  14301. }
  14302.  
  14303. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  14304.         .destroy = intel_user_framebuffer_destroy,
  14305.         .create_handle = intel_user_framebuffer_create_handle,
  14306.         .dirty = intel_user_framebuffer_dirty,
  14307. };
  14308.  
  14309. static
  14310. u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
  14311.                          uint32_t pixel_format)
  14312. {
  14313.         u32 gen = INTEL_INFO(dev)->gen;
  14314.  
  14315.         if (gen >= 9) {
  14316.                 /* "The stride in bytes must not exceed the of the size of 8K
  14317.                  *  pixels and 32K bytes."
  14318.                  */
  14319.                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
  14320.         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
  14321.                 return 32*1024;
  14322.         } else if (gen >= 4) {
  14323.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14324.                         return 16*1024;
  14325.                 else
  14326.                         return 32*1024;
  14327.         } else if (gen >= 3) {
  14328.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14329.                         return 8*1024;
  14330.                 else
  14331.                         return 16*1024;
  14332.         } else {
  14333.                 /* XXX DSPC is limited to 4k tiled */
  14334.                 return 8*1024;
  14335.         }
  14336. }
  14337.  
  14338. static int intel_framebuffer_init(struct drm_device *dev,
  14339.                                   struct intel_framebuffer *intel_fb,
  14340.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  14341.                                   struct drm_i915_gem_object *obj)
  14342. {
  14343.         unsigned int aligned_height;
  14344.         int ret;
  14345.         u32 pitch_limit, stride_alignment;
  14346.  
  14347.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  14348.  
  14349.         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
  14350.                 /* Enforce that fb modifier and tiling mode match, but only for
  14351.                  * X-tiled. This is needed for FBC. */
  14352.                 if (!!(obj->tiling_mode == I915_TILING_X) !=
  14353.                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
  14354.                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
  14355.                         return -EINVAL;
  14356.                 }
  14357.         } else {
  14358.                 if (obj->tiling_mode == I915_TILING_X)
  14359.                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
  14360.                 else if (obj->tiling_mode == I915_TILING_Y) {
  14361.                         DRM_DEBUG("No Y tiling for legacy addfb\n");
  14362.                         return -EINVAL;
  14363.                 }
  14364.         }
  14365.  
  14366.         /* Passed in modifier sanity checking. */
  14367.         switch (mode_cmd->modifier[0]) {
  14368.         case I915_FORMAT_MOD_Y_TILED:
  14369.         case I915_FORMAT_MOD_Yf_TILED:
  14370.                 if (INTEL_INFO(dev)->gen < 9) {
  14371.                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
  14372.                                   mode_cmd->modifier[0]);
  14373.                         return -EINVAL;
  14374.                 }
  14375.         case DRM_FORMAT_MOD_NONE:
  14376.         case I915_FORMAT_MOD_X_TILED:
  14377.                 break;
  14378.         default:
  14379.                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
  14380.                           mode_cmd->modifier[0]);
  14381.                 return -EINVAL;
  14382.         }
  14383.  
  14384.         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
  14385.                                                      mode_cmd->pixel_format);
  14386.         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
  14387.                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
  14388.                           mode_cmd->pitches[0], stride_alignment);
  14389.                 return -EINVAL;
  14390.         }
  14391.  
  14392.         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
  14393.                                            mode_cmd->pixel_format);
  14394.         if (mode_cmd->pitches[0] > pitch_limit) {
  14395.                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
  14396.                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
  14397.                           "tiled" : "linear",
  14398.                           mode_cmd->pitches[0], pitch_limit);
  14399.                 return -EINVAL;
  14400.         }
  14401.  
  14402.         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
  14403.             mode_cmd->pitches[0] != obj->stride) {
  14404.                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  14405.                           mode_cmd->pitches[0], obj->stride);
  14406.                 return -EINVAL;
  14407.         }
  14408.  
  14409.         /* Reject formats not supported by any plane early. */
  14410.         switch (mode_cmd->pixel_format) {
  14411.         case DRM_FORMAT_C8:
  14412.         case DRM_FORMAT_RGB565:
  14413.         case DRM_FORMAT_XRGB8888:
  14414.         case DRM_FORMAT_ARGB8888:
  14415.                 break;
  14416.         case DRM_FORMAT_XRGB1555:
  14417.                 if (INTEL_INFO(dev)->gen > 3) {
  14418.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14419.                                   drm_get_format_name(mode_cmd->pixel_format));
  14420.                         return -EINVAL;
  14421.                 }
  14422.                 break;
  14423.         case DRM_FORMAT_ABGR8888:
  14424.                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
  14425.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14426.                                   drm_get_format_name(mode_cmd->pixel_format));
  14427.                         return -EINVAL;
  14428.                 }
  14429.                 break;
  14430.         case DRM_FORMAT_XBGR8888:
  14431.         case DRM_FORMAT_XRGB2101010:
  14432.         case DRM_FORMAT_XBGR2101010:
  14433.                 if (INTEL_INFO(dev)->gen < 4) {
  14434.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14435.                                   drm_get_format_name(mode_cmd->pixel_format));
  14436.                         return -EINVAL;
  14437.                 }
  14438.                 break;
  14439.         case DRM_FORMAT_ABGR2101010:
  14440.                 if (!IS_VALLEYVIEW(dev)) {
  14441.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14442.                                   drm_get_format_name(mode_cmd->pixel_format));
  14443.                         return -EINVAL;
  14444.                 }
  14445.                 break;
  14446.         case DRM_FORMAT_YUYV:
  14447.         case DRM_FORMAT_UYVY:
  14448.         case DRM_FORMAT_YVYU:
  14449.         case DRM_FORMAT_VYUY:
  14450.                 if (INTEL_INFO(dev)->gen < 5) {
  14451.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14452.                                   drm_get_format_name(mode_cmd->pixel_format));
  14453.                         return -EINVAL;
  14454.                 }
  14455.                 break;
  14456.         default:
  14457.                 DRM_DEBUG("unsupported pixel format: %s\n",
  14458.                           drm_get_format_name(mode_cmd->pixel_format));
  14459.                 return -EINVAL;
  14460.         }
  14461.  
  14462.         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  14463.         if (mode_cmd->offsets[0] != 0)
  14464.                 return -EINVAL;
  14465.  
  14466.         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
  14467.                                                mode_cmd->pixel_format,
  14468.                                                mode_cmd->modifier[0]);
  14469.         /* FIXME drm helper for size checks (especially planar formats)? */
  14470.         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  14471.                 return -EINVAL;
  14472.  
  14473.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  14474.         intel_fb->obj = obj;
  14475.         intel_fb->obj->framebuffer_references++;
  14476.  
  14477.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  14478.         if (ret) {
  14479.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  14480.                 return ret;
  14481.         }
  14482.         kolibri_framebuffer_init(intel_fb);
  14483.         return 0;
  14484. }
  14485.  
  14486. static struct drm_framebuffer *
  14487. intel_user_framebuffer_create(struct drm_device *dev,
  14488.                               struct drm_file *filp,
  14489.                               struct drm_mode_fb_cmd2 *user_mode_cmd)
  14490. {
  14491.         struct drm_i915_gem_object *obj;
  14492.         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
  14493.  
  14494.         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  14495.                                                 mode_cmd.handles[0]));
  14496.         if (&obj->base == NULL)
  14497.                 return ERR_PTR(-ENOENT);
  14498.  
  14499.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  14500. }
  14501.  
  14502. #ifndef CONFIG_DRM_FBDEV_EMULATION
  14503. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  14504. {
  14505. }
  14506. #endif
  14507.  
  14508. static const struct drm_mode_config_funcs intel_mode_funcs = {
  14509.         .fb_create = intel_user_framebuffer_create,
  14510.         .output_poll_changed = intel_fbdev_output_poll_changed,
  14511.         .atomic_check = intel_atomic_check,
  14512.         .atomic_commit = intel_atomic_commit,
  14513.         .atomic_state_alloc = intel_atomic_state_alloc,
  14514.         .atomic_state_clear = intel_atomic_state_clear,
  14515. };
  14516.  
  14517. /* Set up chip specific display functions */
  14518. static void intel_init_display(struct drm_device *dev)
  14519. {
  14520.         struct drm_i915_private *dev_priv = dev->dev_private;
  14521.  
  14522.         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  14523.                 dev_priv->display.find_dpll = g4x_find_best_dpll;
  14524.         else if (IS_CHERRYVIEW(dev))
  14525.                 dev_priv->display.find_dpll = chv_find_best_dpll;
  14526.         else if (IS_VALLEYVIEW(dev))
  14527.                 dev_priv->display.find_dpll = vlv_find_best_dpll;
  14528.         else if (IS_PINEVIEW(dev))
  14529.                 dev_priv->display.find_dpll = pnv_find_best_dpll;
  14530.         else
  14531.                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
  14532.  
  14533.         if (INTEL_INFO(dev)->gen >= 9) {
  14534.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14535.                 dev_priv->display.get_initial_plane_config =
  14536.                         skylake_get_initial_plane_config;
  14537.                 dev_priv->display.crtc_compute_clock =
  14538.                         haswell_crtc_compute_clock;
  14539.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14540.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14541.                 dev_priv->display.update_primary_plane =
  14542.                         skylake_update_primary_plane;
  14543.         } else if (HAS_DDI(dev)) {
  14544.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14545.                 dev_priv->display.get_initial_plane_config =
  14546.                         ironlake_get_initial_plane_config;
  14547.                 dev_priv->display.crtc_compute_clock =
  14548.                         haswell_crtc_compute_clock;
  14549.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14550.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14551.                 dev_priv->display.update_primary_plane =
  14552.                         ironlake_update_primary_plane;
  14553.         } else if (HAS_PCH_SPLIT(dev)) {
  14554.                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  14555.                 dev_priv->display.get_initial_plane_config =
  14556.                         ironlake_get_initial_plane_config;
  14557.                 dev_priv->display.crtc_compute_clock =
  14558.                         ironlake_crtc_compute_clock;
  14559.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  14560.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  14561.                 dev_priv->display.update_primary_plane =
  14562.                         ironlake_update_primary_plane;
  14563.         } else if (IS_VALLEYVIEW(dev)) {
  14564.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14565.                 dev_priv->display.get_initial_plane_config =
  14566.                         i9xx_get_initial_plane_config;
  14567.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14568.                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
  14569.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14570.                 dev_priv->display.update_primary_plane =
  14571.                         i9xx_update_primary_plane;
  14572.         } else {
  14573.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14574.                 dev_priv->display.get_initial_plane_config =
  14575.                         i9xx_get_initial_plane_config;
  14576.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14577.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  14578.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14579.                 dev_priv->display.update_primary_plane =
  14580.                         i9xx_update_primary_plane;
  14581.         }
  14582.  
  14583.         /* Returns the core display clock speed */
  14584.         if (IS_SKYLAKE(dev))
  14585.                 dev_priv->display.get_display_clock_speed =
  14586.                         skylake_get_display_clock_speed;
  14587.         else if (IS_BROXTON(dev))
  14588.                 dev_priv->display.get_display_clock_speed =
  14589.                         broxton_get_display_clock_speed;
  14590.         else if (IS_BROADWELL(dev))
  14591.                 dev_priv->display.get_display_clock_speed =
  14592.                         broadwell_get_display_clock_speed;
  14593.         else if (IS_HASWELL(dev))
  14594.                 dev_priv->display.get_display_clock_speed =
  14595.                         haswell_get_display_clock_speed;
  14596.         else if (IS_VALLEYVIEW(dev))
  14597.                 dev_priv->display.get_display_clock_speed =
  14598.                         valleyview_get_display_clock_speed;
  14599.         else if (IS_GEN5(dev))
  14600.                 dev_priv->display.get_display_clock_speed =
  14601.                         ilk_get_display_clock_speed;
  14602.         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
  14603.                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
  14604.                 dev_priv->display.get_display_clock_speed =
  14605.                         i945_get_display_clock_speed;
  14606.         else if (IS_GM45(dev))
  14607.                 dev_priv->display.get_display_clock_speed =
  14608.                         gm45_get_display_clock_speed;
  14609.         else if (IS_CRESTLINE(dev))
  14610.                 dev_priv->display.get_display_clock_speed =
  14611.                         i965gm_get_display_clock_speed;
  14612.         else if (IS_PINEVIEW(dev))
  14613.                 dev_priv->display.get_display_clock_speed =
  14614.                         pnv_get_display_clock_speed;
  14615.         else if (IS_G33(dev) || IS_G4X(dev))
  14616.                 dev_priv->display.get_display_clock_speed =
  14617.                         g33_get_display_clock_speed;
  14618.         else if (IS_I915G(dev))
  14619.                 dev_priv->display.get_display_clock_speed =
  14620.                         i915_get_display_clock_speed;
  14621.         else if (IS_I945GM(dev) || IS_845G(dev))
  14622.                 dev_priv->display.get_display_clock_speed =
  14623.                         i9xx_misc_get_display_clock_speed;
  14624.         else if (IS_PINEVIEW(dev))
  14625.                 dev_priv->display.get_display_clock_speed =
  14626.                         pnv_get_display_clock_speed;
  14627.         else if (IS_I915GM(dev))
  14628.                 dev_priv->display.get_display_clock_speed =
  14629.                         i915gm_get_display_clock_speed;
  14630.         else if (IS_I865G(dev))
  14631.                 dev_priv->display.get_display_clock_speed =
  14632.                         i865_get_display_clock_speed;
  14633.         else if (IS_I85X(dev))
  14634.                 dev_priv->display.get_display_clock_speed =
  14635.                         i85x_get_display_clock_speed;
  14636.         else { /* 830 */
  14637.                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
  14638.                 dev_priv->display.get_display_clock_speed =
  14639.                         i830_get_display_clock_speed;
  14640.         }
  14641.  
  14642.         if (IS_GEN5(dev)) {
  14643.                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  14644.         } else if (IS_GEN6(dev)) {
  14645.                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  14646.         } else if (IS_IVYBRIDGE(dev)) {
  14647.                 /* FIXME: detect B0+ stepping and use auto training */
  14648.                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  14649.         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  14650.                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  14651.                 if (IS_BROADWELL(dev)) {
  14652.                         dev_priv->display.modeset_commit_cdclk =
  14653.                                 broadwell_modeset_commit_cdclk;
  14654.                         dev_priv->display.modeset_calc_cdclk =
  14655.                                 broadwell_modeset_calc_cdclk;
  14656.                 }
  14657.         } else if (IS_VALLEYVIEW(dev)) {
  14658.                 dev_priv->display.modeset_commit_cdclk =
  14659.                         valleyview_modeset_commit_cdclk;
  14660.                 dev_priv->display.modeset_calc_cdclk =
  14661.                         valleyview_modeset_calc_cdclk;
  14662.         } else if (IS_BROXTON(dev)) {
  14663.                 dev_priv->display.modeset_commit_cdclk =
  14664.                         broxton_modeset_commit_cdclk;
  14665.                 dev_priv->display.modeset_calc_cdclk =
  14666.                         broxton_modeset_calc_cdclk;
  14667.         }
  14668.  
  14669.         switch (INTEL_INFO(dev)->gen) {
  14670.         case 2:
  14671.                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
  14672.                 break;
  14673.  
  14674.         case 3:
  14675.                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
  14676.                 break;
  14677.  
  14678.         case 4:
  14679.         case 5:
  14680.                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
  14681.                 break;
  14682.  
  14683.         case 6:
  14684.                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
  14685.                 break;
  14686.         case 7:
  14687.         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
  14688.                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
  14689.                 break;
  14690.         case 9:
  14691.                 /* Drop through - unsupported since execlist only. */
  14692.         default:
  14693.                 /* Default just returns -ENODEV to indicate unsupported */
  14694.                 dev_priv->display.queue_flip = intel_default_queue_flip;
  14695.         }
  14696.  
  14697.         mutex_init(&dev_priv->pps_mutex);
  14698. }
  14699.  
  14700. /*
  14701.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  14702.  * resume, or other times.  This quirk makes sure that's the case for
  14703.  * affected systems.
  14704.  */
  14705. static void quirk_pipea_force(struct drm_device *dev)
  14706. {
  14707.         struct drm_i915_private *dev_priv = dev->dev_private;
  14708.  
  14709.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  14710.         DRM_INFO("applying pipe a force quirk\n");
  14711. }
  14712.  
  14713. static void quirk_pipeb_force(struct drm_device *dev)
  14714. {
  14715.         struct drm_i915_private *dev_priv = dev->dev_private;
  14716.  
  14717.         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
  14718.         DRM_INFO("applying pipe b force quirk\n");
  14719. }
  14720.  
  14721. /*
  14722.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  14723.  */
  14724. static void quirk_ssc_force_disable(struct drm_device *dev)
  14725. {
  14726.         struct drm_i915_private *dev_priv = dev->dev_private;
  14727.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  14728.         DRM_INFO("applying lvds SSC disable quirk\n");
  14729. }
  14730.  
  14731. /*
  14732.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  14733.  * brightness value
  14734.  */
  14735. static void quirk_invert_brightness(struct drm_device *dev)
  14736. {
  14737.         struct drm_i915_private *dev_priv = dev->dev_private;
  14738.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  14739.         DRM_INFO("applying inverted panel brightness quirk\n");
  14740. }
  14741.  
  14742. /* Some VBT's incorrectly indicate no backlight is present */
  14743. static void quirk_backlight_present(struct drm_device *dev)
  14744. {
  14745.         struct drm_i915_private *dev_priv = dev->dev_private;
  14746.         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
  14747.         DRM_INFO("applying backlight present quirk\n");
  14748. }
  14749.  
  14750. struct intel_quirk {
  14751.         int device;
  14752.         int subsystem_vendor;
  14753.         int subsystem_device;
  14754.         void (*hook)(struct drm_device *dev);
  14755. };
  14756.  
  14757. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  14758. struct intel_dmi_quirk {
  14759.         void (*hook)(struct drm_device *dev);
  14760.         const struct dmi_system_id (*dmi_id_list)[];
  14761. };
  14762.  
  14763. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  14764. {
  14765.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  14766.         return 1;
  14767. }
  14768.  
  14769. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  14770.         {
  14771.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  14772.                         {
  14773.                                 .callback = intel_dmi_reverse_brightness,
  14774.                                 .ident = "NCR Corporation",
  14775.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  14776.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  14777.                                 },
  14778.                         },
  14779.                         { }  /* terminating entry */
  14780.                 },
  14781.                 .hook = quirk_invert_brightness,
  14782.         },
  14783. };
  14784.  
  14785. static struct intel_quirk intel_quirks[] = {
  14786.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  14787.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  14788.  
  14789.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  14790.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  14791.  
  14792.         /* 830 needs to leave pipe A & dpll A up */
  14793.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  14794.  
  14795.         /* 830 needs to leave pipe B & dpll B up */
  14796.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
  14797.  
  14798.         /* Lenovo U160 cannot use SSC on LVDS */
  14799.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  14800.  
  14801.         /* Sony Vaio Y cannot use SSC on LVDS */
  14802.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  14803.  
  14804.         /* Acer Aspire 5734Z must invert backlight brightness */
  14805.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  14806.  
  14807.         /* Acer/eMachines G725 */
  14808.         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  14809.  
  14810.         /* Acer/eMachines e725 */
  14811.         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  14812.  
  14813.         /* Acer/Packard Bell NCL20 */
  14814.         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  14815.  
  14816.         /* Acer Aspire 4736Z */
  14817.         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  14818.  
  14819.         /* Acer Aspire 5336 */
  14820.         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
  14821.  
  14822.         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
  14823.         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
  14824.  
  14825.         /* Acer C720 Chromebook (Core i3 4005U) */
  14826.         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
  14827.  
  14828.         /* Apple Macbook 2,1 (Core 2 T7400) */
  14829.         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
  14830.  
  14831.         /* Apple Macbook 4,1 */
  14832.         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
  14833.  
  14834.         /* Toshiba CB35 Chromebook (Celeron 2955U) */
  14835.         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
  14836.  
  14837.         /* HP Chromebook 14 (Celeron 2955U) */
  14838.         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
  14839.  
  14840.         /* Dell Chromebook 11 */
  14841.         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
  14842.  
  14843.         /* Dell Chromebook 11 (2015 version) */
  14844.         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
  14845. };
  14846.  
  14847. static void intel_init_quirks(struct drm_device *dev)
  14848. {
  14849.         struct pci_dev *d = dev->pdev;
  14850.         int i;
  14851.  
  14852.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  14853.                 struct intel_quirk *q = &intel_quirks[i];
  14854.  
  14855.                 if (d->device == q->device &&
  14856.                     (d->subsystem_vendor == q->subsystem_vendor ||
  14857.                      q->subsystem_vendor == PCI_ANY_ID) &&
  14858.                     (d->subsystem_device == q->subsystem_device ||
  14859.                      q->subsystem_device == PCI_ANY_ID))
  14860.                         q->hook(dev);
  14861.         }
  14862.         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  14863.                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  14864.                         intel_dmi_quirks[i].hook(dev);
  14865.         }
  14866. }
  14867.  
  14868. /* Disable the VGA plane that we never use */
  14869. static void i915_disable_vga(struct drm_device *dev)
  14870. {
  14871.         struct drm_i915_private *dev_priv = dev->dev_private;
  14872.         u8 sr1;
  14873.         u32 vga_reg = i915_vgacntrl_reg(dev);
  14874.  
  14875.         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
  14876. //      vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  14877.         outb(SR01, VGA_SR_INDEX);
  14878.         sr1 = inb(VGA_SR_DATA);
  14879.         outb(sr1 | 1<<5, VGA_SR_DATA);
  14880. //      vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  14881.         udelay(300);
  14882.  
  14883.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  14884.         POSTING_READ(vga_reg);
  14885. }
  14886.  
  14887. void intel_modeset_init_hw(struct drm_device *dev)
  14888. {
  14889.         intel_update_cdclk(dev);
  14890.         intel_prepare_ddi(dev);
  14891.         intel_init_clock_gating(dev);
  14892.         intel_enable_gt_powersave(dev);
  14893. }
  14894.  
  14895. void intel_modeset_init(struct drm_device *dev)
  14896. {
  14897.         struct drm_i915_private *dev_priv = dev->dev_private;
  14898.         int sprite, ret;
  14899.         enum pipe pipe;
  14900.         struct intel_crtc *crtc;
  14901.  
  14902.         drm_mode_config_init(dev);
  14903.  
  14904.         dev->mode_config.min_width = 0;
  14905.         dev->mode_config.min_height = 0;
  14906.  
  14907.         dev->mode_config.preferred_depth = 24;
  14908.         dev->mode_config.prefer_shadow = 1;
  14909.  
  14910.         dev->mode_config.allow_fb_modifiers = true;
  14911.  
  14912.         dev->mode_config.funcs = &intel_mode_funcs;
  14913.  
  14914.         intel_init_quirks(dev);
  14915.  
  14916.         intel_init_pm(dev);
  14917.  
  14918.         if (INTEL_INFO(dev)->num_pipes == 0)
  14919.                 return;
  14920.  
  14921.         /*
  14922.          * There may be no VBT; and if the BIOS enabled SSC we can
  14923.          * just keep using it to avoid unnecessary flicker.  Whereas if the
  14924.          * BIOS isn't using it, don't assume it will work even if the VBT
  14925.          * indicates as much.
  14926.          */
  14927.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  14928.                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
  14929.                                             DREF_SSC1_ENABLE);
  14930.  
  14931.                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
  14932.                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
  14933.                                      bios_lvds_use_ssc ? "en" : "dis",
  14934.                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
  14935.                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
  14936.                 }
  14937.         }
  14938.  
  14939.         intel_init_display(dev);
  14940.  
  14941.         if (IS_GEN2(dev)) {
  14942.                 dev->mode_config.max_width = 2048;
  14943.                 dev->mode_config.max_height = 2048;
  14944.         } else if (IS_GEN3(dev)) {
  14945.                 dev->mode_config.max_width = 4096;
  14946.                 dev->mode_config.max_height = 4096;
  14947.         } else {
  14948.                 dev->mode_config.max_width = 8192;
  14949.                 dev->mode_config.max_height = 8192;
  14950.         }
  14951.  
  14952.         if (IS_GEN2(dev)) {
  14953.                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
  14954.                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
  14955.         } else {
  14956.                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
  14957.                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
  14958.         }
  14959.  
  14960.         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  14961.  
  14962.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  14963.                       INTEL_INFO(dev)->num_pipes,
  14964.                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  14965.  
  14966.         for_each_pipe(dev_priv, pipe) {
  14967.                 intel_crtc_init(dev, pipe);
  14968.                 for_each_sprite(dev_priv, pipe, sprite) {
  14969.                         ret = intel_plane_init(dev, pipe, sprite);
  14970.                         if (ret)
  14971.                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  14972.                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
  14973.                 }
  14974.         }
  14975.  
  14976.         intel_update_czclk(dev_priv);
  14977.         intel_update_cdclk(dev);
  14978.  
  14979.         intel_shared_dpll_init(dev);
  14980.  
  14981.         /* Just disable it once at startup */
  14982.         i915_disable_vga(dev);
  14983.         intel_setup_outputs(dev);
  14984.  
  14985.         /* Just in case the BIOS is doing something questionable. */
  14986.         intel_fbc_disable(dev_priv);
  14987.  
  14988.         drm_modeset_lock_all(dev);
  14989.         intel_modeset_setup_hw_state(dev);
  14990.         drm_modeset_unlock_all(dev);
  14991.  
  14992.         for_each_intel_crtc(dev, crtc) {
  14993.                 struct intel_initial_plane_config plane_config = {};
  14994.  
  14995.                 if (!crtc->active)
  14996.                         continue;
  14997.  
  14998.                 /*
  14999.                  * Note that reserving the BIOS fb up front prevents us
  15000.                  * from stuffing other stolen allocations like the ring
  15001.                  * on top.  This prevents some ugliness at boot time, and
  15002.                  * can even allow for smooth boot transitions if the BIOS
  15003.                  * fb is large enough for the active pipe configuration.
  15004.                  */
  15005.                 dev_priv->display.get_initial_plane_config(crtc,
  15006.                                                            &plane_config);
  15007.  
  15008.                 /*
  15009.                  * If the fb is shared between multiple heads, we'll
  15010.                  * just get the first one.
  15011.                  */
  15012.                 intel_find_initial_plane_obj(crtc, &plane_config);
  15013.         }
  15014. }
  15015.  
  15016. static void intel_enable_pipe_a(struct drm_device *dev)
  15017. {
  15018.         struct intel_connector *connector;
  15019.         struct drm_connector *crt = NULL;
  15020.         struct intel_load_detect_pipe load_detect_temp;
  15021.         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
  15022.  
  15023.         /* We can't just switch on the pipe A, we need to set things up with a
  15024.          * proper mode and output configuration. As a gross hack, enable pipe A
  15025.          * by enabling the load detect pipe once. */
  15026.         for_each_intel_connector(dev, connector) {
  15027.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  15028.                         crt = &connector->base;
  15029.                         break;
  15030.                 }
  15031.         }
  15032.  
  15033.         if (!crt)
  15034.                 return;
  15035.  
  15036.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
  15037.                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
  15038. }
  15039.  
  15040. static bool
  15041. intel_check_plane_mapping(struct intel_crtc *crtc)
  15042. {
  15043.         struct drm_device *dev = crtc->base.dev;
  15044.         struct drm_i915_private *dev_priv = dev->dev_private;
  15045.         u32 val;
  15046.  
  15047.         if (INTEL_INFO(dev)->num_pipes == 1)
  15048.                 return true;
  15049.  
  15050.         val = I915_READ(DSPCNTR(!crtc->plane));
  15051.  
  15052.         if ((val & DISPLAY_PLANE_ENABLE) &&
  15053.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  15054.                 return false;
  15055.  
  15056.         return true;
  15057. }
  15058.  
  15059. static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
  15060. {
  15061.         struct drm_device *dev = crtc->base.dev;
  15062.         struct intel_encoder *encoder;
  15063.  
  15064.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15065.                 return true;
  15066.  
  15067.         return false;
  15068. }
  15069.  
  15070. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  15071. {
  15072.         struct drm_device *dev = crtc->base.dev;
  15073.         struct drm_i915_private *dev_priv = dev->dev_private;
  15074.         u32 reg;
  15075.  
  15076.         /* Clear any frame start delays used for debugging left by the BIOS */
  15077.         reg = PIPECONF(crtc->config->cpu_transcoder);
  15078.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  15079.  
  15080.         /* restore vblank interrupts to correct state */
  15081.         drm_crtc_vblank_reset(&crtc->base);
  15082.         if (crtc->active) {
  15083.                 struct intel_plane *plane;
  15084.  
  15085.                 drm_crtc_vblank_on(&crtc->base);
  15086.  
  15087.                 /* Disable everything but the primary plane */
  15088.                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
  15089.                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  15090.                                 continue;
  15091.  
  15092.                         plane->disable_plane(&plane->base, &crtc->base);
  15093.                 }
  15094.         }
  15095.  
  15096.         /* We need to sanitize the plane -> pipe mapping first because this will
  15097.          * disable the crtc (and hence change the state) if it is wrong. Note
  15098.          * that gen4+ has a fixed plane -> pipe mapping.  */
  15099.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  15100.                 bool plane;
  15101.  
  15102.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  15103.                               crtc->base.base.id);
  15104.  
  15105.                 /* Pipe has the wrong plane attached and the plane is active.
  15106.                  * Temporarily change the plane mapping and disable everything
  15107.                  * ...  */
  15108.                 plane = crtc->plane;
  15109.                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
  15110.                 crtc->plane = !plane;
  15111.                 intel_crtc_disable_noatomic(&crtc->base);
  15112.                 crtc->plane = plane;
  15113.         }
  15114.  
  15115.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  15116.             crtc->pipe == PIPE_A && !crtc->active) {
  15117.                 /* BIOS forgot to enable pipe A, this mostly happens after
  15118.                  * resume. Force-enable the pipe to fix this, the update_dpms
  15119.                  * call below we restore the pipe to the right state, but leave
  15120.                  * the required bits on. */
  15121.                 intel_enable_pipe_a(dev);
  15122.         }
  15123.  
  15124.         /* Adjust the state of the output pipe according to whether we
  15125.          * have active connectors/encoders. */
  15126.         if (!intel_crtc_has_encoders(crtc))
  15127.                 intel_crtc_disable_noatomic(&crtc->base);
  15128.  
  15129.         if (crtc->active != crtc->base.state->active) {
  15130.                 struct intel_encoder *encoder;
  15131.  
  15132.                 /* This can happen either due to bugs in the get_hw_state
  15133.                  * functions or because of calls to intel_crtc_disable_noatomic,
  15134.                  * or because the pipe is force-enabled due to the
  15135.                  * pipe A quirk. */
  15136.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  15137.                               crtc->base.base.id,
  15138.                               crtc->base.state->enable ? "enabled" : "disabled",
  15139.                               crtc->active ? "enabled" : "disabled");
  15140.  
  15141.                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
  15142.                 crtc->base.state->active = crtc->active;
  15143.                 crtc->base.enabled = crtc->active;
  15144.  
  15145.                 /* Because we only establish the connector -> encoder ->
  15146.                  * crtc links if something is active, this means the
  15147.                  * crtc is now deactivated. Break the links. connector
  15148.                  * -> encoder links are only establish when things are
  15149.                  *  actually up, hence no need to break them. */
  15150.                 WARN_ON(crtc->active);
  15151.  
  15152.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15153.                         encoder->base.crtc = NULL;
  15154.         }
  15155.  
  15156.         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
  15157.                 /*
  15158.                  * We start out with underrun reporting disabled to avoid races.
  15159.                  * For correct bookkeeping mark this on active crtcs.
  15160.                  *
  15161.                  * Also on gmch platforms we dont have any hardware bits to
  15162.                  * disable the underrun reporting. Which means we need to start
  15163.                  * out with underrun reporting disabled also on inactive pipes,
  15164.                  * since otherwise we'll complain about the garbage we read when
  15165.                  * e.g. coming up after runtime pm.
  15166.                  *
  15167.                  * No protection against concurrent access is required - at
  15168.                  * worst a fifo underrun happens which also sets this to false.
  15169.                  */
  15170.                 crtc->cpu_fifo_underrun_disabled = true;
  15171.                 crtc->pch_fifo_underrun_disabled = true;
  15172.         }
  15173. }
  15174.  
  15175. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  15176. {
  15177.         struct intel_connector *connector;
  15178.         struct drm_device *dev = encoder->base.dev;
  15179.         bool active = false;
  15180.  
  15181.         /* We need to check both for a crtc link (meaning that the
  15182.          * encoder is active and trying to read from a pipe) and the
  15183.          * pipe itself being active. */
  15184.         bool has_active_crtc = encoder->base.crtc &&
  15185.                 to_intel_crtc(encoder->base.crtc)->active;
  15186.  
  15187.         for_each_intel_connector(dev, connector) {
  15188.                 if (connector->base.encoder != &encoder->base)
  15189.                         continue;
  15190.  
  15191.                 active = true;
  15192.                 break;
  15193.         }
  15194.  
  15195.         if (active && !has_active_crtc) {
  15196.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  15197.                               encoder->base.base.id,
  15198.                               encoder->base.name);
  15199.  
  15200.                 /* Connector is active, but has no active pipe. This is
  15201.                  * fallout from our resume register restoring. Disable
  15202.                  * the encoder manually again. */
  15203.                 if (encoder->base.crtc) {
  15204.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  15205.                                       encoder->base.base.id,
  15206.                                       encoder->base.name);
  15207.                         encoder->disable(encoder);
  15208.                         if (encoder->post_disable)
  15209.                                 encoder->post_disable(encoder);
  15210.                 }
  15211.                 encoder->base.crtc = NULL;
  15212.  
  15213.                 /* Inconsistent output/port/pipe state happens presumably due to
  15214.                  * a bug in one of the get_hw_state functions. Or someplace else
  15215.                  * in our code, like the register restore mess on resume. Clamp
  15216.                  * things to off as a safer default. */
  15217.                 for_each_intel_connector(dev, connector) {
  15218.                         if (connector->encoder != encoder)
  15219.                                 continue;
  15220.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15221.                         connector->base.encoder = NULL;
  15222.                 }
  15223.         }
  15224.         /* Enabled encoders without active connectors will be fixed in
  15225.          * the crtc fixup. */
  15226. }
  15227.  
  15228. void i915_redisable_vga_power_on(struct drm_device *dev)
  15229. {
  15230.         struct drm_i915_private *dev_priv = dev->dev_private;
  15231.         u32 vga_reg = i915_vgacntrl_reg(dev);
  15232.  
  15233.         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  15234.                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  15235.                 i915_disable_vga(dev);
  15236.         }
  15237. }
  15238.  
  15239. void i915_redisable_vga(struct drm_device *dev)
  15240. {
  15241.         struct drm_i915_private *dev_priv = dev->dev_private;
  15242.  
  15243.         /* This function can be called both from intel_modeset_setup_hw_state or
  15244.          * at a very early point in our resume sequence, where the power well
  15245.          * structures are not yet restored. Since this function is at a very
  15246.          * paranoid "someone might have enabled VGA while we were not looking"
  15247.          * level, just check if the power well is enabled instead of trying to
  15248.          * follow the "don't touch the power well if we don't need it" policy
  15249.          * the rest of the driver uses. */
  15250.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
  15251.                 return;
  15252.  
  15253.         i915_redisable_vga_power_on(dev);
  15254. }
  15255.  
  15256. static bool primary_get_hw_state(struct intel_plane *plane)
  15257. {
  15258.         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  15259.  
  15260.         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
  15261. }
  15262.  
  15263. /* FIXME read out full plane state for all planes */
  15264. static void readout_plane_state(struct intel_crtc *crtc)
  15265. {
  15266.         struct drm_plane *primary = crtc->base.primary;
  15267.         struct intel_plane_state *plane_state =
  15268.                 to_intel_plane_state(primary->state);
  15269.  
  15270.         plane_state->visible =
  15271.                 primary_get_hw_state(to_intel_plane(primary));
  15272.  
  15273.         if (plane_state->visible)
  15274.                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
  15275. }
  15276.  
  15277. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  15278. {
  15279.         struct drm_i915_private *dev_priv = dev->dev_private;
  15280.         enum pipe pipe;
  15281.         struct intel_crtc *crtc;
  15282.         struct intel_encoder *encoder;
  15283.         struct intel_connector *connector;
  15284.         int i;
  15285.  
  15286.         for_each_intel_crtc(dev, crtc) {
  15287.                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
  15288.                 memset(crtc->config, 0, sizeof(*crtc->config));
  15289.                 crtc->config->base.crtc = &crtc->base;
  15290.  
  15291.                 crtc->active = dev_priv->display.get_pipe_config(crtc,
  15292.                                                                  crtc->config);
  15293.  
  15294.                 crtc->base.state->active = crtc->active;
  15295.                 crtc->base.enabled = crtc->active;
  15296.  
  15297.                 readout_plane_state(crtc);
  15298.  
  15299.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  15300.                               crtc->base.base.id,
  15301.                               crtc->active ? "enabled" : "disabled");
  15302.         }
  15303.  
  15304.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15305.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15306.  
  15307.                 pll->on = pll->get_hw_state(dev_priv, pll,
  15308.                                             &pll->config.hw_state);
  15309.                 pll->active = 0;
  15310.                 pll->config.crtc_mask = 0;
  15311.                 for_each_intel_crtc(dev, crtc) {
  15312.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
  15313.                                 pll->active++;
  15314.                                 pll->config.crtc_mask |= 1 << crtc->pipe;
  15315.                         }
  15316.                 }
  15317.  
  15318.                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
  15319.                               pll->name, pll->config.crtc_mask, pll->on);
  15320.  
  15321.                 if (pll->config.crtc_mask)
  15322.                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  15323.         }
  15324.  
  15325.         for_each_intel_encoder(dev, encoder) {
  15326.                 pipe = 0;
  15327.  
  15328.                 if (encoder->get_hw_state(encoder, &pipe)) {
  15329.                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15330.                         encoder->base.crtc = &crtc->base;
  15331.                         encoder->get_config(encoder, crtc->config);
  15332.                 } else {
  15333.                         encoder->base.crtc = NULL;
  15334.                 }
  15335.  
  15336.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  15337.                               encoder->base.base.id,
  15338.                               encoder->base.name,
  15339.                               encoder->base.crtc ? "enabled" : "disabled",
  15340.                               pipe_name(pipe));
  15341.         }
  15342.  
  15343.         for_each_intel_connector(dev, connector) {
  15344.                 if (connector->get_hw_state(connector)) {
  15345.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  15346.                         connector->base.encoder = &connector->encoder->base;
  15347.                 } else {
  15348.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15349.                         connector->base.encoder = NULL;
  15350.                 }
  15351.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  15352.                               connector->base.base.id,
  15353.                               connector->base.name,
  15354.                               connector->base.encoder ? "enabled" : "disabled");
  15355.         }
  15356.  
  15357.         for_each_intel_crtc(dev, crtc) {
  15358.                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
  15359.  
  15360.                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
  15361.                 if (crtc->base.state->active) {
  15362.                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
  15363.                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
  15364.                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
  15365.  
  15366.                         /*
  15367.                          * The initial mode needs to be set in order to keep
  15368.                          * the atomic core happy. It wants a valid mode if the
  15369.                          * crtc's enabled, so we do the above call.
  15370.                          *
  15371.                          * At this point some state updated by the connectors
  15372.                          * in their ->detect() callback has not run yet, so
  15373.                          * no recalculation can be done yet.
  15374.                          *
  15375.                          * Even if we could do a recalculation and modeset
  15376.                          * right now it would cause a double modeset if
  15377.                          * fbdev or userspace chooses a different initial mode.
  15378.                          *
  15379.                          * If that happens, someone indicated they wanted a
  15380.                          * mode change, which means it's safe to do a full
  15381.                          * recalculation.
  15382.                          */
  15383.                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
  15384.  
  15385.                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
  15386.                         update_scanline_offset(crtc);
  15387.                 }
  15388.         }
  15389. }
  15390.  
  15391. /* Scan out the current hw modeset state,
  15392.  * and sanitizes it to the current state
  15393.  */
  15394. static void
  15395. intel_modeset_setup_hw_state(struct drm_device *dev)
  15396. {
  15397.         struct drm_i915_private *dev_priv = dev->dev_private;
  15398.         enum pipe pipe;
  15399.         struct intel_crtc *crtc;
  15400.         struct intel_encoder *encoder;
  15401.         int i;
  15402.  
  15403.         intel_modeset_readout_hw_state(dev);
  15404.  
  15405.         /* HW state is read out, now we need to sanitize this mess. */
  15406.         for_each_intel_encoder(dev, encoder) {
  15407.                 intel_sanitize_encoder(encoder);
  15408.         }
  15409.  
  15410.         for_each_pipe(dev_priv, pipe) {
  15411.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15412.                 intel_sanitize_crtc(crtc);
  15413.                 intel_dump_pipe_config(crtc, crtc->config,
  15414.                                        "[setup_hw_state]");
  15415.         }
  15416.  
  15417.         intel_modeset_update_connector_atomic_state(dev);
  15418.  
  15419.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15420.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15421.  
  15422.                 if (!pll->on || pll->active)
  15423.                         continue;
  15424.  
  15425.                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  15426.  
  15427.                 pll->disable(dev_priv, pll);
  15428.                 pll->on = false;
  15429.         }
  15430.  
  15431.         if (IS_VALLEYVIEW(dev))
  15432.                 vlv_wm_get_hw_state(dev);
  15433.         else if (IS_GEN9(dev))
  15434.                 skl_wm_get_hw_state(dev);
  15435.         else if (HAS_PCH_SPLIT(dev))
  15436.                 ilk_wm_get_hw_state(dev);
  15437.  
  15438.         for_each_intel_crtc(dev, crtc) {
  15439.                 unsigned long put_domains;
  15440.  
  15441.                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
  15442.                 if (WARN_ON(put_domains))
  15443.                         modeset_put_power_domains(dev_priv, put_domains);
  15444.         }
  15445.         intel_display_set_init_power(dev_priv, false);
  15446. }
  15447.  
  15448. void intel_display_resume(struct drm_device *dev)
  15449. {
  15450.         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
  15451.         struct intel_connector *conn;
  15452.         struct intel_plane *plane;
  15453.         struct drm_crtc *crtc;
  15454.         int ret;
  15455.  
  15456.         if (!state)
  15457.                 return;
  15458.  
  15459.         state->acquire_ctx = dev->mode_config.acquire_ctx;
  15460.  
  15461.         /* preserve complete old state, including dpll */
  15462.         intel_atomic_get_shared_dpll_state(state);
  15463.  
  15464.         for_each_crtc(dev, crtc) {
  15465.                 struct drm_crtc_state *crtc_state =
  15466.                         drm_atomic_get_crtc_state(state, crtc);
  15467.  
  15468.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  15469.                 if (ret)
  15470.                         goto err;
  15471.  
  15472.                 /* force a restore */
  15473.                 crtc_state->mode_changed = true;
  15474.         }
  15475.  
  15476.         for_each_intel_plane(dev, plane) {
  15477.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
  15478.                 if (ret)
  15479.                         goto err;
  15480.         }
  15481.  
  15482.         for_each_intel_connector(dev, conn) {
  15483.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
  15484.                 if (ret)
  15485.                         goto err;
  15486.         }
  15487.  
  15488.         intel_modeset_setup_hw_state(dev);
  15489.  
  15490.         i915_redisable_vga(dev);
  15491.         ret = drm_atomic_commit(state);
  15492.         if (!ret)
  15493.                 return;
  15494.  
  15495. err:
  15496.         DRM_ERROR("Restoring old state failed with %i\n", ret);
  15497.         drm_atomic_state_free(state);
  15498. }
  15499.  
  15500. void intel_modeset_gem_init(struct drm_device *dev)
  15501. {
  15502.         struct drm_crtc *c;
  15503.         struct drm_i915_gem_object *obj;
  15504.         int ret;
  15505.  
  15506.         mutex_lock(&dev->struct_mutex);
  15507.         intel_init_gt_powersave(dev);
  15508.         mutex_unlock(&dev->struct_mutex);
  15509.  
  15510.         intel_modeset_init_hw(dev);
  15511.  
  15512. //   intel_setup_overlay(dev);
  15513.  
  15514.         /*
  15515.          * Make sure any fbs we allocated at startup are properly
  15516.          * pinned & fenced.  When we do the allocation it's too early
  15517.          * for this.
  15518.          */
  15519.         for_each_crtc(dev, c) {
  15520.                 obj = intel_fb_obj(c->primary->fb);
  15521.                 if (obj == NULL)
  15522.                         continue;
  15523.  
  15524.                 mutex_lock(&dev->struct_mutex);
  15525.                 ret = intel_pin_and_fence_fb_obj(c->primary,
  15526.                                                  c->primary->fb,
  15527.                                                  c->primary->state,
  15528.                                                  NULL, NULL);
  15529.                 mutex_unlock(&dev->struct_mutex);
  15530.                 if (ret) {
  15531.                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
  15532.                                   to_intel_crtc(c)->pipe);
  15533.                         drm_framebuffer_unreference(c->primary->fb);
  15534.                         c->primary->fb = NULL;
  15535.                         c->primary->crtc = c->primary->state->crtc = NULL;
  15536.                         update_state_fb(c->primary);
  15537.                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
  15538.                 }
  15539.         }
  15540.  
  15541.         intel_backlight_register(dev);
  15542. }
  15543.  
  15544. void intel_connector_unregister(struct intel_connector *intel_connector)
  15545. {
  15546.         struct drm_connector *connector = &intel_connector->base;
  15547.  
  15548.         intel_panel_destroy_backlight(connector);
  15549.         drm_connector_unregister(connector);
  15550. }
  15551.  
  15552. void intel_modeset_cleanup(struct drm_device *dev)
  15553. {
  15554. #if 0
  15555.         struct drm_i915_private *dev_priv = dev->dev_private;
  15556.         struct drm_connector *connector;
  15557.  
  15558.         intel_disable_gt_powersave(dev);
  15559.  
  15560.         intel_backlight_unregister(dev);
  15561.  
  15562.         /*
  15563.          * Interrupts and polling as the first thing to avoid creating havoc.
  15564.          * Too much stuff here (turning of connectors, ...) would
  15565.          * experience fancy races otherwise.
  15566.          */
  15567.         intel_irq_uninstall(dev_priv);
  15568.  
  15569.         /*
  15570.          * Due to the hpd irq storm handling the hotplug work can re-arm the
  15571.          * poll handlers. Hence disable polling after hpd handling is shut down.
  15572.          */
  15573.         drm_kms_helper_poll_fini(dev);
  15574.  
  15575.         intel_unregister_dsm_handler();
  15576.  
  15577.         intel_fbc_disable(dev_priv);
  15578.  
  15579.         /* flush any delayed tasks or pending work */
  15580.         flush_scheduled_work();
  15581.  
  15582.         /* destroy the backlight and sysfs files before encoders/connectors */
  15583.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  15584.                 struct intel_connector *intel_connector;
  15585.  
  15586.                 intel_connector = to_intel_connector(connector);
  15587.                 intel_connector->unregister(intel_connector);
  15588.         }
  15589.  
  15590.         drm_mode_config_cleanup(dev);
  15591.  
  15592.         intel_cleanup_overlay(dev);
  15593.  
  15594.         mutex_lock(&dev->struct_mutex);
  15595.         intel_cleanup_gt_powersave(dev);
  15596.         mutex_unlock(&dev->struct_mutex);
  15597. #endif
  15598. }
  15599.  
  15600. /*
  15601.  * Return which encoder is currently attached for connector.
  15602.  */
  15603. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  15604. {
  15605.         return &intel_attached_encoder(connector)->base;
  15606. }
  15607.  
  15608. void intel_connector_attach_encoder(struct intel_connector *connector,
  15609.                                     struct intel_encoder *encoder)
  15610. {
  15611.         connector->encoder = encoder;
  15612.         drm_mode_connector_attach_encoder(&connector->base,
  15613.                                           &encoder->base);
  15614. }
  15615.  
  15616. /*
  15617.  * set vga decode state - true == enable VGA decode
  15618.  */
  15619. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  15620. {
  15621.         struct drm_i915_private *dev_priv = dev->dev_private;
  15622.         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
  15623.         u16 gmch_ctrl;
  15624.  
  15625.         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
  15626.                 DRM_ERROR("failed to read control word\n");
  15627.                 return -EIO;
  15628.         }
  15629.  
  15630.         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
  15631.                 return 0;
  15632.  
  15633.         if (state)
  15634.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  15635.         else
  15636.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  15637.  
  15638.         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
  15639.                 DRM_ERROR("failed to write control word\n");
  15640.                 return -EIO;
  15641.         }
  15642.  
  15643.         return 0;
  15644. }
  15645.  
  15646. #ifdef CONFIG_DEBUG_FS
  15647.  
  15648. struct intel_display_error_state {
  15649.  
  15650.         u32 power_well_driver;
  15651.  
  15652.         int num_transcoders;
  15653.  
  15654.         struct intel_cursor_error_state {
  15655.                 u32 control;
  15656.                 u32 position;
  15657.                 u32 base;
  15658.                 u32 size;
  15659.         } cursor[I915_MAX_PIPES];
  15660.  
  15661.         struct intel_pipe_error_state {
  15662.                 bool power_domain_on;
  15663.                 u32 source;
  15664.                 u32 stat;
  15665.         } pipe[I915_MAX_PIPES];
  15666.  
  15667.         struct intel_plane_error_state {
  15668.                 u32 control;
  15669.                 u32 stride;
  15670.                 u32 size;
  15671.                 u32 pos;
  15672.                 u32 addr;
  15673.                 u32 surface;
  15674.                 u32 tile_offset;
  15675.         } plane[I915_MAX_PIPES];
  15676.  
  15677.         struct intel_transcoder_error_state {
  15678.                 bool power_domain_on;
  15679.                 enum transcoder cpu_transcoder;
  15680.  
  15681.                 u32 conf;
  15682.  
  15683.                 u32 htotal;
  15684.                 u32 hblank;
  15685.                 u32 hsync;
  15686.                 u32 vtotal;
  15687.                 u32 vblank;
  15688.                 u32 vsync;
  15689.         } transcoder[4];
  15690. };
  15691.  
  15692. struct intel_display_error_state *
  15693. intel_display_capture_error_state(struct drm_device *dev)
  15694. {
  15695.         struct drm_i915_private *dev_priv = dev->dev_private;
  15696.         struct intel_display_error_state *error;
  15697.         int transcoders[] = {
  15698.                 TRANSCODER_A,
  15699.                 TRANSCODER_B,
  15700.                 TRANSCODER_C,
  15701.                 TRANSCODER_EDP,
  15702.         };
  15703.         int i;
  15704.  
  15705.         if (INTEL_INFO(dev)->num_pipes == 0)
  15706.                 return NULL;
  15707.  
  15708.         error = kzalloc(sizeof(*error), GFP_ATOMIC);
  15709.         if (error == NULL)
  15710.                 return NULL;
  15711.  
  15712.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15713.                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  15714.  
  15715.         for_each_pipe(dev_priv, i) {
  15716.                 error->pipe[i].power_domain_on =
  15717.                         __intel_display_power_is_enabled(dev_priv,
  15718.                                                          POWER_DOMAIN_PIPE(i));
  15719.                 if (!error->pipe[i].power_domain_on)
  15720.                         continue;
  15721.  
  15722.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  15723.                 error->cursor[i].position = I915_READ(CURPOS(i));
  15724.                 error->cursor[i].base = I915_READ(CURBASE(i));
  15725.  
  15726.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  15727.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  15728.                 if (INTEL_INFO(dev)->gen <= 3) {
  15729.                         error->plane[i].size = I915_READ(DSPSIZE(i));
  15730.                         error->plane[i].pos = I915_READ(DSPPOS(i));
  15731.                 }
  15732.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15733.                         error->plane[i].addr = I915_READ(DSPADDR(i));
  15734.                 if (INTEL_INFO(dev)->gen >= 4) {
  15735.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  15736.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  15737.                 }
  15738.  
  15739.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  15740.  
  15741.                 if (HAS_GMCH_DISPLAY(dev))
  15742.                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
  15743.         }
  15744.  
  15745.         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  15746.         if (HAS_DDI(dev_priv->dev))
  15747.                 error->num_transcoders++; /* Account for eDP. */
  15748.  
  15749.         for (i = 0; i < error->num_transcoders; i++) {
  15750.                 enum transcoder cpu_transcoder = transcoders[i];
  15751.  
  15752.                 error->transcoder[i].power_domain_on =
  15753.                         __intel_display_power_is_enabled(dev_priv,
  15754.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
  15755.                 if (!error->transcoder[i].power_domain_on)
  15756.                         continue;
  15757.  
  15758.                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
  15759.  
  15760.                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  15761.                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  15762.                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  15763.                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  15764.                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  15765.                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  15766.                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  15767.         }
  15768.  
  15769.         return error;
  15770. }
  15771.  
  15772. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  15773.  
  15774. void
  15775. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  15776.                                 struct drm_device *dev,
  15777.                                 struct intel_display_error_state *error)
  15778. {
  15779.         struct drm_i915_private *dev_priv = dev->dev_private;
  15780.         int i;
  15781.  
  15782.         if (!error)
  15783.                 return;
  15784.  
  15785.         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  15786.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15787.                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
  15788.                            error->power_well_driver);
  15789.         for_each_pipe(dev_priv, i) {
  15790.                 err_printf(m, "Pipe [%d]:\n", i);
  15791.                 err_printf(m, "  Power: %s\n",
  15792.                            error->pipe[i].power_domain_on ? "on" : "off");
  15793.                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  15794.                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
  15795.  
  15796.                 err_printf(m, "Plane [%d]:\n", i);
  15797.                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  15798.                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  15799.                 if (INTEL_INFO(dev)->gen <= 3) {
  15800.                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  15801.                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
  15802.                 }
  15803.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15804.                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  15805.                 if (INTEL_INFO(dev)->gen >= 4) {
  15806.                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  15807.                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  15808.                 }
  15809.  
  15810.                 err_printf(m, "Cursor [%d]:\n", i);
  15811.                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  15812.                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
  15813.                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  15814.         }
  15815.  
  15816.         for (i = 0; i < error->num_transcoders; i++) {
  15817.                 err_printf(m, "CPU transcoder: %c\n",
  15818.                            transcoder_name(error->transcoder[i].cpu_transcoder));
  15819.                 err_printf(m, "  Power: %s\n",
  15820.                            error->transcoder[i].power_domain_on ? "on" : "off");
  15821.                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
  15822.                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
  15823.                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
  15824.                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
  15825.                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
  15826.                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
  15827.                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
  15828.         }
  15829. }
  15830. #endif
  15831.  
  15832. void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
  15833. {
  15834.         struct intel_crtc *crtc;
  15835.  
  15836.         for_each_intel_crtc(dev, crtc) {
  15837.                 struct intel_unpin_work *work;
  15838.  
  15839.                 spin_lock_irq(&dev->event_lock);
  15840.  
  15841.                 work = crtc->unpin_work;
  15842.  
  15843.                 if (work && work->event &&
  15844.                     work->event->base.file_priv == file) {
  15845.                         kfree(work->event);
  15846.                         work->event = NULL;
  15847.                 }
  15848.  
  15849.                 spin_unlock_irq(&dev->event_lock);
  15850.         }
  15851. }
  15852.