Subversion Repositories Kolibri OS

Rev

Rev 6296 | Rev 6660 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *      Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. #include <linux/dmi.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_atomic.h>
  41. #include <drm/drm_atomic_helper.h>
  42. #include <drm/drm_dp_helper.h>
  43. #include <drm/drm_crtc_helper.h>
  44. #include <drm/drm_plane_helper.h>
  45. #include <drm/drm_rect.h>
  46. #include <linux/dma_remapping.h>
  47.  
  48. /* Primary plane formats for gen <= 3 */
  49. static const uint32_t i8xx_primary_formats[] = {
  50.         DRM_FORMAT_C8,
  51.         DRM_FORMAT_RGB565,
  52.         DRM_FORMAT_XRGB1555,
  53.         DRM_FORMAT_XRGB8888,
  54. };
  55.  
  56. /* Primary plane formats for gen >= 4 */
  57. static const uint32_t i965_primary_formats[] = {
  58.         DRM_FORMAT_C8,
  59.         DRM_FORMAT_RGB565,
  60.         DRM_FORMAT_XRGB8888,
  61.         DRM_FORMAT_XBGR8888,
  62.         DRM_FORMAT_XRGB2101010,
  63.         DRM_FORMAT_XBGR2101010,
  64. };
  65.  
  66. static const uint32_t skl_primary_formats[] = {
  67.         DRM_FORMAT_C8,
  68.         DRM_FORMAT_RGB565,
  69.         DRM_FORMAT_XRGB8888,
  70.         DRM_FORMAT_XBGR8888,
  71.         DRM_FORMAT_ARGB8888,
  72.         DRM_FORMAT_ABGR8888,
  73.         DRM_FORMAT_XRGB2101010,
  74.         DRM_FORMAT_XBGR2101010,
  75.         DRM_FORMAT_YUYV,
  76.         DRM_FORMAT_YVYU,
  77.         DRM_FORMAT_UYVY,
  78.         DRM_FORMAT_VYUY,
  79. };
  80.  
  81. /* Cursor formats */
  82. static const uint32_t intel_cursor_formats[] = {
  83.         DRM_FORMAT_ARGB8888,
  84. };
  85.  
  86. void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  87.  
  88. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  89.                                 struct intel_crtc_state *pipe_config);
  90. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  91.                                    struct intel_crtc_state *pipe_config);
  92.  
  93. static int intel_framebuffer_init(struct drm_device *dev,
  94.                                   struct intel_framebuffer *ifb,
  95.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  96.                                   struct drm_i915_gem_object *obj);
  97. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  98. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  99. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  100.                                          struct intel_link_m_n *m_n,
  101.                                          struct intel_link_m_n *m2_n2);
  102. static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  103. static void haswell_set_pipeconf(struct drm_crtc *crtc);
  104. static void intel_set_pipe_csc(struct drm_crtc *crtc);
  105. static void vlv_prepare_pll(struct intel_crtc *crtc,
  106.                             const struct intel_crtc_state *pipe_config);
  107. static void chv_prepare_pll(struct intel_crtc *crtc,
  108.                             const struct intel_crtc_state *pipe_config);
  109. static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  110. static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  111. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  112.         struct intel_crtc_state *crtc_state);
  113. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  114.                            int num_connectors);
  115. static void skylake_pfit_enable(struct intel_crtc *crtc);
  116. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
  117. static void ironlake_pfit_enable(struct intel_crtc *crtc);
  118. static void intel_modeset_setup_hw_state(struct drm_device *dev);
  119. static void intel_pre_disable_primary(struct drm_crtc *crtc);
  120.  
  121. typedef struct {
  122.         int     min, max;
  123. } intel_range_t;
  124.  
  125. typedef struct {
  126.         int     dot_limit;
  127.         int     p2_slow, p2_fast;
  128. } intel_p2_t;
  129.  
  130. typedef struct intel_limit intel_limit_t;
  131. struct intel_limit {
  132.         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  133.         intel_p2_t          p2;
  134. };
  135.  
  136. /* returns HPLL frequency in kHz */
  137. static int valleyview_get_vco(struct drm_i915_private *dev_priv)
  138. {
  139.         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
  140.  
  141.         /* Obtain SKU information */
  142.         mutex_lock(&dev_priv->sb_lock);
  143.         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
  144.                 CCK_FUSE_HPLL_FREQ_MASK;
  145.         mutex_unlock(&dev_priv->sb_lock);
  146.  
  147.         return vco_freq[hpll_freq] * 1000;
  148. }
  149.  
  150. static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
  151.                                   const char *name, u32 reg)
  152. {
  153.         u32 val;
  154.         int divider;
  155.  
  156.         if (dev_priv->hpll_freq == 0)
  157.                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
  158.  
  159.         mutex_lock(&dev_priv->sb_lock);
  160.         val = vlv_cck_read(dev_priv, reg);
  161.         mutex_unlock(&dev_priv->sb_lock);
  162.  
  163.         divider = val & CCK_FREQUENCY_VALUES;
  164.  
  165.         WARN((val & CCK_FREQUENCY_STATUS) !=
  166.              (divider << CCK_FREQUENCY_STATUS_SHIFT),
  167.              "%s change in progress\n", name);
  168.  
  169.         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
  170. }
  171.  
  172. int
  173. intel_pch_rawclk(struct drm_device *dev)
  174. {
  175.         struct drm_i915_private *dev_priv = dev->dev_private;
  176.  
  177.         WARN_ON(!HAS_PCH_SPLIT(dev));
  178.  
  179.         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  180. }
  181.  
  182. /* hrawclock is 1/4 the FSB frequency */
  183. int intel_hrawclk(struct drm_device *dev)
  184. {
  185.         struct drm_i915_private *dev_priv = dev->dev_private;
  186.         uint32_t clkcfg;
  187.  
  188.         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  189.         if (IS_VALLEYVIEW(dev))
  190.                 return 200;
  191.  
  192.         clkcfg = I915_READ(CLKCFG);
  193.         switch (clkcfg & CLKCFG_FSB_MASK) {
  194.         case CLKCFG_FSB_400:
  195.                 return 100;
  196.         case CLKCFG_FSB_533:
  197.                 return 133;
  198.         case CLKCFG_FSB_667:
  199.                 return 166;
  200.         case CLKCFG_FSB_800:
  201.                 return 200;
  202.         case CLKCFG_FSB_1067:
  203.                 return 266;
  204.         case CLKCFG_FSB_1333:
  205.                 return 333;
  206.         /* these two are just a guess; one of them might be right */
  207.         case CLKCFG_FSB_1600:
  208.         case CLKCFG_FSB_1600_ALT:
  209.                 return 400;
  210.         default:
  211.                 return 133;
  212.         }
  213. }
  214.  
  215. static void intel_update_czclk(struct drm_i915_private *dev_priv)
  216. {
  217.         if (!IS_VALLEYVIEW(dev_priv))
  218.                 return;
  219.  
  220.         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
  221.                                                       CCK_CZ_CLOCK_CONTROL);
  222.  
  223.         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
  224. }
  225.  
  226. static inline u32 /* units of 100MHz */
  227. intel_fdi_link_freq(struct drm_device *dev)
  228. {
  229.         if (IS_GEN5(dev)) {
  230.                 struct drm_i915_private *dev_priv = dev->dev_private;
  231.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  232.         } else
  233.                 return 27;
  234. }
  235.  
  236. static const intel_limit_t intel_limits_i8xx_dac = {
  237.         .dot = { .min = 25000, .max = 350000 },
  238.         .vco = { .min = 908000, .max = 1512000 },
  239.         .n = { .min = 2, .max = 16 },
  240.         .m = { .min = 96, .max = 140 },
  241.         .m1 = { .min = 18, .max = 26 },
  242.         .m2 = { .min = 6, .max = 16 },
  243.         .p = { .min = 4, .max = 128 },
  244.         .p1 = { .min = 2, .max = 33 },
  245.         .p2 = { .dot_limit = 165000,
  246.                 .p2_slow = 4, .p2_fast = 2 },
  247. };
  248.  
  249. static const intel_limit_t intel_limits_i8xx_dvo = {
  250.         .dot = { .min = 25000, .max = 350000 },
  251.         .vco = { .min = 908000, .max = 1512000 },
  252.         .n = { .min = 2, .max = 16 },
  253.         .m = { .min = 96, .max = 140 },
  254.         .m1 = { .min = 18, .max = 26 },
  255.         .m2 = { .min = 6, .max = 16 },
  256.         .p = { .min = 4, .max = 128 },
  257.         .p1 = { .min = 2, .max = 33 },
  258.         .p2 = { .dot_limit = 165000,
  259.                 .p2_slow = 4, .p2_fast = 4 },
  260. };
  261.  
  262. static const intel_limit_t intel_limits_i8xx_lvds = {
  263.         .dot = { .min = 25000, .max = 350000 },
  264.         .vco = { .min = 908000, .max = 1512000 },
  265.         .n = { .min = 2, .max = 16 },
  266.         .m = { .min = 96, .max = 140 },
  267.         .m1 = { .min = 18, .max = 26 },
  268.         .m2 = { .min = 6, .max = 16 },
  269.         .p = { .min = 4, .max = 128 },
  270.         .p1 = { .min = 1, .max = 6 },
  271.         .p2 = { .dot_limit = 165000,
  272.                 .p2_slow = 14, .p2_fast = 7 },
  273. };
  274.  
  275. static const intel_limit_t intel_limits_i9xx_sdvo = {
  276.         .dot = { .min = 20000, .max = 400000 },
  277.         .vco = { .min = 1400000, .max = 2800000 },
  278.         .n = { .min = 1, .max = 6 },
  279.         .m = { .min = 70, .max = 120 },
  280.         .m1 = { .min = 8, .max = 18 },
  281.         .m2 = { .min = 3, .max = 7 },
  282.         .p = { .min = 5, .max = 80 },
  283.         .p1 = { .min = 1, .max = 8 },
  284.         .p2 = { .dot_limit = 200000,
  285.                 .p2_slow = 10, .p2_fast = 5 },
  286. };
  287.  
  288. static const intel_limit_t intel_limits_i9xx_lvds = {
  289.         .dot = { .min = 20000, .max = 400000 },
  290.         .vco = { .min = 1400000, .max = 2800000 },
  291.         .n = { .min = 1, .max = 6 },
  292.         .m = { .min = 70, .max = 120 },
  293.         .m1 = { .min = 8, .max = 18 },
  294.         .m2 = { .min = 3, .max = 7 },
  295.         .p = { .min = 7, .max = 98 },
  296.         .p1 = { .min = 1, .max = 8 },
  297.         .p2 = { .dot_limit = 112000,
  298.                 .p2_slow = 14, .p2_fast = 7 },
  299. };
  300.  
  301.  
  302. static const intel_limit_t intel_limits_g4x_sdvo = {
  303.         .dot = { .min = 25000, .max = 270000 },
  304.         .vco = { .min = 1750000, .max = 3500000},
  305.         .n = { .min = 1, .max = 4 },
  306.         .m = { .min = 104, .max = 138 },
  307.         .m1 = { .min = 17, .max = 23 },
  308.         .m2 = { .min = 5, .max = 11 },
  309.         .p = { .min = 10, .max = 30 },
  310.         .p1 = { .min = 1, .max = 3},
  311.         .p2 = { .dot_limit = 270000,
  312.                 .p2_slow = 10,
  313.                 .p2_fast = 10
  314.         },
  315. };
  316.  
  317. static const intel_limit_t intel_limits_g4x_hdmi = {
  318.         .dot = { .min = 22000, .max = 400000 },
  319.         .vco = { .min = 1750000, .max = 3500000},
  320.         .n = { .min = 1, .max = 4 },
  321.         .m = { .min = 104, .max = 138 },
  322.         .m1 = { .min = 16, .max = 23 },
  323.         .m2 = { .min = 5, .max = 11 },
  324.         .p = { .min = 5, .max = 80 },
  325.         .p1 = { .min = 1, .max = 8},
  326.         .p2 = { .dot_limit = 165000,
  327.                 .p2_slow = 10, .p2_fast = 5 },
  328. };
  329.  
  330. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  331.         .dot = { .min = 20000, .max = 115000 },
  332.         .vco = { .min = 1750000, .max = 3500000 },
  333.         .n = { .min = 1, .max = 3 },
  334.         .m = { .min = 104, .max = 138 },
  335.         .m1 = { .min = 17, .max = 23 },
  336.         .m2 = { .min = 5, .max = 11 },
  337.         .p = { .min = 28, .max = 112 },
  338.         .p1 = { .min = 2, .max = 8 },
  339.         .p2 = { .dot_limit = 0,
  340.                 .p2_slow = 14, .p2_fast = 14
  341.         },
  342. };
  343.  
  344. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  345.         .dot = { .min = 80000, .max = 224000 },
  346.         .vco = { .min = 1750000, .max = 3500000 },
  347.         .n = { .min = 1, .max = 3 },
  348.         .m = { .min = 104, .max = 138 },
  349.         .m1 = { .min = 17, .max = 23 },
  350.         .m2 = { .min = 5, .max = 11 },
  351.         .p = { .min = 14, .max = 42 },
  352.         .p1 = { .min = 2, .max = 6 },
  353.         .p2 = { .dot_limit = 0,
  354.                 .p2_slow = 7, .p2_fast = 7
  355.         },
  356. };
  357.  
  358. static const intel_limit_t intel_limits_pineview_sdvo = {
  359.         .dot = { .min = 20000, .max = 400000},
  360.         .vco = { .min = 1700000, .max = 3500000 },
  361.         /* Pineview's Ncounter is a ring counter */
  362.         .n = { .min = 3, .max = 6 },
  363.         .m = { .min = 2, .max = 256 },
  364.         /* Pineview only has one combined m divider, which we treat as m2. */
  365.         .m1 = { .min = 0, .max = 0 },
  366.         .m2 = { .min = 0, .max = 254 },
  367.         .p = { .min = 5, .max = 80 },
  368.         .p1 = { .min = 1, .max = 8 },
  369.         .p2 = { .dot_limit = 200000,
  370.                 .p2_slow = 10, .p2_fast = 5 },
  371. };
  372.  
  373. static const intel_limit_t intel_limits_pineview_lvds = {
  374.         .dot = { .min = 20000, .max = 400000 },
  375.         .vco = { .min = 1700000, .max = 3500000 },
  376.         .n = { .min = 3, .max = 6 },
  377.         .m = { .min = 2, .max = 256 },
  378.         .m1 = { .min = 0, .max = 0 },
  379.         .m2 = { .min = 0, .max = 254 },
  380.         .p = { .min = 7, .max = 112 },
  381.         .p1 = { .min = 1, .max = 8 },
  382.         .p2 = { .dot_limit = 112000,
  383.                 .p2_slow = 14, .p2_fast = 14 },
  384. };
  385.  
  386. /* Ironlake / Sandybridge
  387.  *
  388.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  389.  * the range value for them is (actual_value - 2).
  390.  */
  391. static const intel_limit_t intel_limits_ironlake_dac = {
  392.         .dot = { .min = 25000, .max = 350000 },
  393.         .vco = { .min = 1760000, .max = 3510000 },
  394.         .n = { .min = 1, .max = 5 },
  395.         .m = { .min = 79, .max = 127 },
  396.         .m1 = { .min = 12, .max = 22 },
  397.         .m2 = { .min = 5, .max = 9 },
  398.         .p = { .min = 5, .max = 80 },
  399.         .p1 = { .min = 1, .max = 8 },
  400.         .p2 = { .dot_limit = 225000,
  401.                 .p2_slow = 10, .p2_fast = 5 },
  402. };
  403.  
  404. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  405.         .dot = { .min = 25000, .max = 350000 },
  406.         .vco = { .min = 1760000, .max = 3510000 },
  407.         .n = { .min = 1, .max = 3 },
  408.         .m = { .min = 79, .max = 118 },
  409.         .m1 = { .min = 12, .max = 22 },
  410.         .m2 = { .min = 5, .max = 9 },
  411.         .p = { .min = 28, .max = 112 },
  412.         .p1 = { .min = 2, .max = 8 },
  413.         .p2 = { .dot_limit = 225000,
  414.                 .p2_slow = 14, .p2_fast = 14 },
  415. };
  416.  
  417. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  418.         .dot = { .min = 25000, .max = 350000 },
  419.         .vco = { .min = 1760000, .max = 3510000 },
  420.         .n = { .min = 1, .max = 3 },
  421.         .m = { .min = 79, .max = 127 },
  422.         .m1 = { .min = 12, .max = 22 },
  423.         .m2 = { .min = 5, .max = 9 },
  424.         .p = { .min = 14, .max = 56 },
  425.         .p1 = { .min = 2, .max = 8 },
  426.         .p2 = { .dot_limit = 225000,
  427.                 .p2_slow = 7, .p2_fast = 7 },
  428. };
  429.  
  430. /* LVDS 100mhz refclk limits. */
  431. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  432.         .dot = { .min = 25000, .max = 350000 },
  433.         .vco = { .min = 1760000, .max = 3510000 },
  434.         .n = { .min = 1, .max = 2 },
  435.         .m = { .min = 79, .max = 126 },
  436.         .m1 = { .min = 12, .max = 22 },
  437.         .m2 = { .min = 5, .max = 9 },
  438.         .p = { .min = 28, .max = 112 },
  439.         .p1 = { .min = 2, .max = 8 },
  440.         .p2 = { .dot_limit = 225000,
  441.                 .p2_slow = 14, .p2_fast = 14 },
  442. };
  443.  
  444. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  445.         .dot = { .min = 25000, .max = 350000 },
  446.         .vco = { .min = 1760000, .max = 3510000 },
  447.         .n = { .min = 1, .max = 3 },
  448.         .m = { .min = 79, .max = 126 },
  449.         .m1 = { .min = 12, .max = 22 },
  450.         .m2 = { .min = 5, .max = 9 },
  451.         .p = { .min = 14, .max = 42 },
  452.         .p1 = { .min = 2, .max = 6 },
  453.         .p2 = { .dot_limit = 225000,
  454.                 .p2_slow = 7, .p2_fast = 7 },
  455. };
  456.  
  457. static const intel_limit_t intel_limits_vlv = {
  458.          /*
  459.           * These are the data rate limits (measured in fast clocks)
  460.           * since those are the strictest limits we have. The fast
  461.           * clock and actual rate limits are more relaxed, so checking
  462.           * them would make no difference.
  463.           */
  464.         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
  465.         .vco = { .min = 4000000, .max = 6000000 },
  466.         .n = { .min = 1, .max = 7 },
  467.         .m1 = { .min = 2, .max = 3 },
  468.         .m2 = { .min = 11, .max = 156 },
  469.         .p1 = { .min = 2, .max = 3 },
  470.         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  471. };
  472.  
  473. static const intel_limit_t intel_limits_chv = {
  474.         /*
  475.          * These are the data rate limits (measured in fast clocks)
  476.          * since those are the strictest limits we have.  The fast
  477.          * clock and actual rate limits are more relaxed, so checking
  478.          * them would make no difference.
  479.          */
  480.         .dot = { .min = 25000 * 5, .max = 540000 * 5},
  481.         .vco = { .min = 4800000, .max = 6480000 },
  482.         .n = { .min = 1, .max = 1 },
  483.         .m1 = { .min = 2, .max = 2 },
  484.         .m2 = { .min = 24 << 22, .max = 175 << 22 },
  485.         .p1 = { .min = 2, .max = 4 },
  486.         .p2 = { .p2_slow = 1, .p2_fast = 14 },
  487. };
  488.  
  489. static const intel_limit_t intel_limits_bxt = {
  490.         /* FIXME: find real dot limits */
  491.         .dot = { .min = 0, .max = INT_MAX },
  492.         .vco = { .min = 4800000, .max = 6700000 },
  493.         .n = { .min = 1, .max = 1 },
  494.         .m1 = { .min = 2, .max = 2 },
  495.         /* FIXME: find real m2 limits */
  496.         .m2 = { .min = 2 << 22, .max = 255 << 22 },
  497.         .p1 = { .min = 2, .max = 4 },
  498.         .p2 = { .p2_slow = 1, .p2_fast = 20 },
  499. };
  500.  
  501. static bool
  502. needs_modeset(struct drm_crtc_state *state)
  503. {
  504.         return drm_atomic_crtc_needs_modeset(state);
  505. }
  506.  
  507. /**
  508.  * Returns whether any output on the specified pipe is of the specified type
  509.  */
  510. bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
  511. {
  512.         struct drm_device *dev = crtc->base.dev;
  513.         struct intel_encoder *encoder;
  514.  
  515.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  516.                 if (encoder->type == type)
  517.                         return true;
  518.  
  519.         return false;
  520. }
  521.  
  522. /**
  523.  * Returns whether any output on the specified pipe will have the specified
  524.  * type after a staged modeset is complete, i.e., the same as
  525.  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
  526.  * encoder->crtc.
  527.  */
  528. static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
  529.                                       int type)
  530. {
  531.         struct drm_atomic_state *state = crtc_state->base.state;
  532.         struct drm_connector *connector;
  533.         struct drm_connector_state *connector_state;
  534.         struct intel_encoder *encoder;
  535.         int i, num_connectors = 0;
  536.  
  537.         for_each_connector_in_state(state, connector, connector_state, i) {
  538.                 if (connector_state->crtc != crtc_state->base.crtc)
  539.                         continue;
  540.  
  541.                 num_connectors++;
  542.  
  543.                 encoder = to_intel_encoder(connector_state->best_encoder);
  544.                 if (encoder->type == type)
  545.                         return true;
  546.         }
  547.  
  548.         WARN_ON(num_connectors == 0);
  549.  
  550.         return false;
  551. }
  552.  
  553. static const intel_limit_t *
  554. intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
  555. {
  556.         struct drm_device *dev = crtc_state->base.crtc->dev;
  557.         const intel_limit_t *limit;
  558.  
  559.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  560.                 if (intel_is_dual_link_lvds(dev)) {
  561.                         if (refclk == 100000)
  562.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  563.                         else
  564.                                 limit = &intel_limits_ironlake_dual_lvds;
  565.                 } else {
  566.                         if (refclk == 100000)
  567.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  568.                         else
  569.                                 limit = &intel_limits_ironlake_single_lvds;
  570.                 }
  571.         } else
  572.                 limit = &intel_limits_ironlake_dac;
  573.  
  574.         return limit;
  575. }
  576.  
  577. static const intel_limit_t *
  578. intel_g4x_limit(struct intel_crtc_state *crtc_state)
  579. {
  580.         struct drm_device *dev = crtc_state->base.crtc->dev;
  581.         const intel_limit_t *limit;
  582.  
  583.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  584.                 if (intel_is_dual_link_lvds(dev))
  585.                         limit = &intel_limits_g4x_dual_channel_lvds;
  586.                 else
  587.                         limit = &intel_limits_g4x_single_channel_lvds;
  588.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
  589.                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  590.                 limit = &intel_limits_g4x_hdmi;
  591.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
  592.                 limit = &intel_limits_g4x_sdvo;
  593.         } else /* The option is for other outputs */
  594.                 limit = &intel_limits_i9xx_sdvo;
  595.  
  596.         return limit;
  597. }
  598.  
  599. static const intel_limit_t *
  600. intel_limit(struct intel_crtc_state *crtc_state, int refclk)
  601. {
  602.         struct drm_device *dev = crtc_state->base.crtc->dev;
  603.         const intel_limit_t *limit;
  604.  
  605.         if (IS_BROXTON(dev))
  606.                 limit = &intel_limits_bxt;
  607.         else if (HAS_PCH_SPLIT(dev))
  608.                 limit = intel_ironlake_limit(crtc_state, refclk);
  609.         else if (IS_G4X(dev)) {
  610.                 limit = intel_g4x_limit(crtc_state);
  611.         } else if (IS_PINEVIEW(dev)) {
  612.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  613.                         limit = &intel_limits_pineview_lvds;
  614.                 else
  615.                         limit = &intel_limits_pineview_sdvo;
  616.         } else if (IS_CHERRYVIEW(dev)) {
  617.                 limit = &intel_limits_chv;
  618.         } else if (IS_VALLEYVIEW(dev)) {
  619.                 limit = &intel_limits_vlv;
  620.         } else if (!IS_GEN2(dev)) {
  621.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  622.                         limit = &intel_limits_i9xx_lvds;
  623.                 else
  624.                         limit = &intel_limits_i9xx_sdvo;
  625.         } else {
  626.                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  627.                         limit = &intel_limits_i8xx_lvds;
  628.                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  629.                         limit = &intel_limits_i8xx_dvo;
  630.                 else
  631.                         limit = &intel_limits_i8xx_dac;
  632.         }
  633.         return limit;
  634. }
  635.  
  636. /*
  637.  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
  638.  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
  639.  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
  640.  * The helpers' return value is the rate of the clock that is fed to the
  641.  * display engine's pipe which can be the above fast dot clock rate or a
  642.  * divided-down version of it.
  643.  */
  644. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  645. static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
  646. {
  647.         clock->m = clock->m2 + 2;
  648.         clock->p = clock->p1 * clock->p2;
  649.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  650.                 return 0;
  651.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  652.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  653.  
  654.         return clock->dot;
  655. }
  656.  
  657. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  658. {
  659.         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  660. }
  661.  
  662. static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
  663. {
  664.         clock->m = i9xx_dpll_compute_m(clock);
  665.         clock->p = clock->p1 * clock->p2;
  666.         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
  667.                 return 0;
  668.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  669.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  670.  
  671.         return clock->dot;
  672. }
  673.  
  674. static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
  675. {
  676.         clock->m = clock->m1 * clock->m2;
  677.         clock->p = clock->p1 * clock->p2;
  678.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  679.                 return 0;
  680.         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  681.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  682.  
  683.         return clock->dot / 5;
  684. }
  685.  
  686. int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
  687. {
  688.         clock->m = clock->m1 * clock->m2;
  689.         clock->p = clock->p1 * clock->p2;
  690.         if (WARN_ON(clock->n == 0 || clock->p == 0))
  691.                 return 0;
  692.         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
  693.                         clock->n << 22);
  694.         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  695.  
  696.         return clock->dot / 5;
  697. }
  698.  
  699. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  700. /**
  701.  * Returns whether the given set of divisors are valid for a given refclk with
  702.  * the given connectors.
  703.  */
  704.  
  705. static bool intel_PLL_is_valid(struct drm_device *dev,
  706.                                const intel_limit_t *limit,
  707.                                const intel_clock_t *clock)
  708. {
  709.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  710.                 INTELPllInvalid("n out of range\n");
  711.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  712.                 INTELPllInvalid("p1 out of range\n");
  713.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  714.                 INTELPllInvalid("m2 out of range\n");
  715.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  716.                 INTELPllInvalid("m1 out of range\n");
  717.  
  718.         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
  719.                 if (clock->m1 <= clock->m2)
  720.                         INTELPllInvalid("m1 <= m2\n");
  721.  
  722.         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
  723.                 if (clock->p < limit->p.min || limit->p.max < clock->p)
  724.                         INTELPllInvalid("p out of range\n");
  725.                 if (clock->m < limit->m.min || limit->m.max < clock->m)
  726.                         INTELPllInvalid("m out of range\n");
  727.         }
  728.  
  729.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  730.                 INTELPllInvalid("vco out of range\n");
  731.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  732.          * connector, etc., rather than just a single range.
  733.          */
  734.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  735.                 INTELPllInvalid("dot out of range\n");
  736.  
  737.         return true;
  738. }
  739.  
  740. static int
  741. i9xx_select_p2_div(const intel_limit_t *limit,
  742.                    const struct intel_crtc_state *crtc_state,
  743.                    int target)
  744. {
  745.         struct drm_device *dev = crtc_state->base.crtc->dev;
  746.  
  747.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  748.                 /*
  749.                  * For LVDS just rely on its current settings for dual-channel.
  750.                  * We haven't figured out how to reliably set up different
  751.                  * single/dual channel state, if we even can.
  752.                  */
  753.                 if (intel_is_dual_link_lvds(dev))
  754.                         return limit->p2.p2_fast;
  755.                 else
  756.                         return limit->p2.p2_slow;
  757.         } else {
  758.                 if (target < limit->p2.dot_limit)
  759.                         return limit->p2.p2_slow;
  760.                 else
  761.                         return limit->p2.p2_fast;
  762.         }
  763. }
  764.  
  765. static bool
  766. i9xx_find_best_dpll(const intel_limit_t *limit,
  767.                     struct intel_crtc_state *crtc_state,
  768.                     int target, int refclk, intel_clock_t *match_clock,
  769.                     intel_clock_t *best_clock)
  770. {
  771.         struct drm_device *dev = crtc_state->base.crtc->dev;
  772.         intel_clock_t clock;
  773.         int err = target;
  774.  
  775.         memset(best_clock, 0, sizeof(*best_clock));
  776.  
  777.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  778.  
  779.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  780.              clock.m1++) {
  781.                 for (clock.m2 = limit->m2.min;
  782.                      clock.m2 <= limit->m2.max; clock.m2++) {
  783.                         if (clock.m2 >= clock.m1)
  784.                                 break;
  785.                         for (clock.n = limit->n.min;
  786.                              clock.n <= limit->n.max; clock.n++) {
  787.                                 for (clock.p1 = limit->p1.min;
  788.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  789.                                         int this_err;
  790.  
  791.                                         i9xx_calc_dpll_params(refclk, &clock);
  792.                                         if (!intel_PLL_is_valid(dev, limit,
  793.                                                                 &clock))
  794.                                                 continue;
  795.                                         if (match_clock &&
  796.                                             clock.p != match_clock->p)
  797.                                                 continue;
  798.  
  799.                                         this_err = abs(clock.dot - target);
  800.                                         if (this_err < err) {
  801.                                                 *best_clock = clock;
  802.                                                 err = this_err;
  803.                                         }
  804.                                 }
  805.                         }
  806.                 }
  807.         }
  808.  
  809.         return (err != target);
  810. }
  811.  
  812. static bool
  813. pnv_find_best_dpll(const intel_limit_t *limit,
  814.                    struct intel_crtc_state *crtc_state,
  815.                    int target, int refclk, intel_clock_t *match_clock,
  816.                    intel_clock_t *best_clock)
  817. {
  818.         struct drm_device *dev = crtc_state->base.crtc->dev;
  819.         intel_clock_t clock;
  820.         int err = target;
  821.  
  822.         memset(best_clock, 0, sizeof(*best_clock));
  823.  
  824.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  825.  
  826.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  827.              clock.m1++) {
  828.                 for (clock.m2 = limit->m2.min;
  829.                      clock.m2 <= limit->m2.max; clock.m2++) {
  830.                         for (clock.n = limit->n.min;
  831.                              clock.n <= limit->n.max; clock.n++) {
  832.                                 for (clock.p1 = limit->p1.min;
  833.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  834.                                         int this_err;
  835.  
  836.                                         pnv_calc_dpll_params(refclk, &clock);
  837.                                         if (!intel_PLL_is_valid(dev, limit,
  838.                                                                 &clock))
  839.                                                 continue;
  840.                                         if (match_clock &&
  841.                                             clock.p != match_clock->p)
  842.                                                 continue;
  843.  
  844.                                         this_err = abs(clock.dot - target);
  845.                                         if (this_err < err) {
  846.                                                 *best_clock = clock;
  847.                                                 err = this_err;
  848.                                         }
  849.                                 }
  850.                         }
  851.                 }
  852.         }
  853.  
  854.         return (err != target);
  855. }
  856.  
  857. static bool
  858. g4x_find_best_dpll(const intel_limit_t *limit,
  859.                    struct intel_crtc_state *crtc_state,
  860.                    int target, int refclk, intel_clock_t *match_clock,
  861.                    intel_clock_t *best_clock)
  862. {
  863.         struct drm_device *dev = crtc_state->base.crtc->dev;
  864.         intel_clock_t clock;
  865.         int max_n;
  866.         bool found = false;
  867.         /* approximately equals target * 0.00585 */
  868.         int err_most = (target >> 8) + (target >> 9);
  869.  
  870.         memset(best_clock, 0, sizeof(*best_clock));
  871.  
  872.         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  873.  
  874.         max_n = limit->n.max;
  875.         /* based on hardware requirement, prefer smaller n to precision */
  876.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  877.                 /* based on hardware requirement, prefere larger m1,m2 */
  878.                 for (clock.m1 = limit->m1.max;
  879.                      clock.m1 >= limit->m1.min; clock.m1--) {
  880.                         for (clock.m2 = limit->m2.max;
  881.                              clock.m2 >= limit->m2.min; clock.m2--) {
  882.                                 for (clock.p1 = limit->p1.max;
  883.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  884.                                         int this_err;
  885.  
  886.                                         i9xx_calc_dpll_params(refclk, &clock);
  887.                                         if (!intel_PLL_is_valid(dev, limit,
  888.                                                                 &clock))
  889.                                                 continue;
  890.  
  891.                                         this_err = abs(clock.dot - target);
  892.                                         if (this_err < err_most) {
  893.                                                 *best_clock = clock;
  894.                                                 err_most = this_err;
  895.                                                 max_n = clock.n;
  896.                                                 found = true;
  897.                                         }
  898.                                 }
  899.                         }
  900.                 }
  901.         }
  902.         return found;
  903. }
  904.  
  905. /*
  906.  * Check if the calculated PLL configuration is more optimal compared to the
  907.  * best configuration and error found so far. Return the calculated error.
  908.  */
  909. static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
  910.                                const intel_clock_t *calculated_clock,
  911.                                const intel_clock_t *best_clock,
  912.                                unsigned int best_error_ppm,
  913.                                unsigned int *error_ppm)
  914. {
  915.         /*
  916.          * For CHV ignore the error and consider only the P value.
  917.          * Prefer a bigger P value based on HW requirements.
  918.          */
  919.         if (IS_CHERRYVIEW(dev)) {
  920.                 *error_ppm = 0;
  921.  
  922.                 return calculated_clock->p > best_clock->p;
  923.         }
  924.  
  925.         if (WARN_ON_ONCE(!target_freq))
  926.                 return false;
  927.  
  928.         *error_ppm = div_u64(1000000ULL *
  929.                                 abs(target_freq - calculated_clock->dot),
  930.                              target_freq);
  931.         /*
  932.          * Prefer a better P value over a better (smaller) error if the error
  933.          * is small. Ensure this preference for future configurations too by
  934.          * setting the error to 0.
  935.          */
  936.         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
  937.                 *error_ppm = 0;
  938.  
  939.                 return true;
  940.         }
  941.  
  942.         return *error_ppm + 10 < best_error_ppm;
  943. }
  944.  
  945. static bool
  946. vlv_find_best_dpll(const intel_limit_t *limit,
  947.                    struct intel_crtc_state *crtc_state,
  948.                    int target, int refclk, intel_clock_t *match_clock,
  949.                    intel_clock_t *best_clock)
  950. {
  951.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  952.         struct drm_device *dev = crtc->base.dev;
  953.         intel_clock_t clock;
  954.         unsigned int bestppm = 1000000;
  955.         /* min update 19.2 MHz */
  956.         int max_n = min(limit->n.max, refclk / 19200);
  957.         bool found = false;
  958.  
  959.         target *= 5; /* fast clock */
  960.  
  961.         memset(best_clock, 0, sizeof(*best_clock));
  962.  
  963.         /* based on hardware requirement, prefer smaller n to precision */
  964.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  965.                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  966.                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  967.                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  968.                                 clock.p = clock.p1 * clock.p2;
  969.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  970.                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  971.                                         unsigned int ppm;
  972.  
  973.                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  974.                                                                      refclk * clock.m1);
  975.  
  976.                                         vlv_calc_dpll_params(refclk, &clock);
  977.  
  978.                                         if (!intel_PLL_is_valid(dev, limit,
  979.                                                                 &clock))
  980.                                                 continue;
  981.  
  982.                                         if (!vlv_PLL_is_optimal(dev, target,
  983.                                                                 &clock,
  984.                                                                 best_clock,
  985.                                                                 bestppm, &ppm))
  986.                                                 continue;
  987.  
  988.                                         *best_clock = clock;
  989.                                         bestppm = ppm;
  990.                                         found = true;
  991.                                 }
  992.                         }
  993.                 }
  994.         }
  995.  
  996.         return found;
  997. }
  998.  
  999. static bool
  1000. chv_find_best_dpll(const intel_limit_t *limit,
  1001.                    struct intel_crtc_state *crtc_state,
  1002.                    int target, int refclk, intel_clock_t *match_clock,
  1003.                    intel_clock_t *best_clock)
  1004. {
  1005.         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1006.         struct drm_device *dev = crtc->base.dev;
  1007.         unsigned int best_error_ppm;
  1008.         intel_clock_t clock;
  1009.         uint64_t m2;
  1010.         int found = false;
  1011.  
  1012.         memset(best_clock, 0, sizeof(*best_clock));
  1013.         best_error_ppm = 1000000;
  1014.  
  1015.         /*
  1016.          * Based on hardware doc, the n always set to 1, and m1 always
  1017.          * set to 2.  If requires to support 200Mhz refclk, we need to
  1018.          * revisit this because n may not 1 anymore.
  1019.          */
  1020.         clock.n = 1, clock.m1 = 2;
  1021.         target *= 5;    /* fast clock */
  1022.  
  1023.         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  1024.                 for (clock.p2 = limit->p2.p2_fast;
  1025.                                 clock.p2 >= limit->p2.p2_slow;
  1026.                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  1027.                         unsigned int error_ppm;
  1028.  
  1029.                         clock.p = clock.p1 * clock.p2;
  1030.  
  1031.                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
  1032.                                         clock.n) << 22, refclk * clock.m1);
  1033.  
  1034.                         if (m2 > INT_MAX/clock.m1)
  1035.                                 continue;
  1036.  
  1037.                         clock.m2 = m2;
  1038.  
  1039.                         chv_calc_dpll_params(refclk, &clock);
  1040.  
  1041.                         if (!intel_PLL_is_valid(dev, limit, &clock))
  1042.                                 continue;
  1043.  
  1044.                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
  1045.                                                 best_error_ppm, &error_ppm))
  1046.                                 continue;
  1047.  
  1048.                         *best_clock = clock;
  1049.                         best_error_ppm = error_ppm;
  1050.                         found = true;
  1051.                 }
  1052.         }
  1053.  
  1054.         return found;
  1055. }
  1056.  
  1057. bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
  1058.                         intel_clock_t *best_clock)
  1059. {
  1060.         int refclk = i9xx_get_refclk(crtc_state, 0);
  1061.  
  1062.         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
  1063.                                   target_clock, refclk, NULL, best_clock);
  1064. }
  1065.  
  1066. bool intel_crtc_active(struct drm_crtc *crtc)
  1067. {
  1068.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1069.  
  1070.         /* Be paranoid as we can arrive here with only partial
  1071.          * state retrieved from the hardware during setup.
  1072.          *
  1073.          * We can ditch the adjusted_mode.crtc_clock check as soon
  1074.          * as Haswell has gained clock readout/fastboot support.
  1075.          *
  1076.          * We can ditch the crtc->primary->fb check as soon as we can
  1077.          * properly reconstruct framebuffers.
  1078.          *
  1079.          * FIXME: The intel_crtc->active here should be switched to
  1080.          * crtc->state->active once we have proper CRTC states wired up
  1081.          * for atomic.
  1082.          */
  1083.         return intel_crtc->active && crtc->primary->state->fb &&
  1084.                 intel_crtc->config->base.adjusted_mode.crtc_clock;
  1085. }
  1086.  
  1087. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  1088.                                              enum pipe pipe)
  1089. {
  1090.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1091.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1092.  
  1093.         return intel_crtc->config->cpu_transcoder;
  1094. }
  1095.  
  1096. static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
  1097. {
  1098.         struct drm_i915_private *dev_priv = dev->dev_private;
  1099.         u32 reg = PIPEDSL(pipe);
  1100.         u32 line1, line2;
  1101.         u32 line_mask;
  1102.  
  1103.         if (IS_GEN2(dev))
  1104.                 line_mask = DSL_LINEMASK_GEN2;
  1105.         else
  1106.                 line_mask = DSL_LINEMASK_GEN3;
  1107.  
  1108.         line1 = I915_READ(reg) & line_mask;
  1109.         msleep(5);
  1110.         line2 = I915_READ(reg) & line_mask;
  1111.  
  1112.         return line1 == line2;
  1113. }
  1114.  
  1115. /*
  1116.  * intel_wait_for_pipe_off - wait for pipe to turn off
  1117.  * @crtc: crtc whose pipe to wait for
  1118.  *
  1119.  * After disabling a pipe, we can't wait for vblank in the usual way,
  1120.  * spinning on the vblank interrupt status bit, since we won't actually
  1121.  * see an interrupt when the pipe is disabled.
  1122.  *
  1123.  * On Gen4 and above:
  1124.  *   wait for the pipe register state bit to turn off
  1125.  *
  1126.  * Otherwise:
  1127.  *   wait for the display line value to settle (it usually
  1128.  *   ends up stopping at the start of the next frame).
  1129.  *
  1130.  */
  1131. static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
  1132. {
  1133.         struct drm_device *dev = crtc->base.dev;
  1134.         struct drm_i915_private *dev_priv = dev->dev_private;
  1135.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  1136.         enum pipe pipe = crtc->pipe;
  1137.  
  1138.         if (INTEL_INFO(dev)->gen >= 4) {
  1139.                 int reg = PIPECONF(cpu_transcoder);
  1140.  
  1141.                 /* Wait for the Pipe State to go off */
  1142.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  1143.                              100))
  1144.                         WARN(1, "pipe_off wait timed out\n");
  1145.         } else {
  1146.                 /* Wait for the display line to settle */
  1147.                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
  1148.                         WARN(1, "pipe_off wait timed out\n");
  1149.         }
  1150. }
  1151.  
  1152. static const char *state_string(bool enabled)
  1153. {
  1154.         return enabled ? "on" : "off";
  1155. }
  1156.  
  1157. /* Only for pre-ILK configs */
  1158. void assert_pll(struct drm_i915_private *dev_priv,
  1159.                 enum pipe pipe, bool state)
  1160. {
  1161.         u32 val;
  1162.         bool cur_state;
  1163.  
  1164.         val = I915_READ(DPLL(pipe));
  1165.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1166.         I915_STATE_WARN(cur_state != state,
  1167.              "PLL state assertion failure (expected %s, current %s)\n",
  1168.              state_string(state), state_string(cur_state));
  1169. }
  1170.  
  1171. /* XXX: the dsi pll is shared between MIPI DSI ports */
  1172. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  1173. {
  1174.         u32 val;
  1175.         bool cur_state;
  1176.  
  1177.         mutex_lock(&dev_priv->sb_lock);
  1178.         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  1179.         mutex_unlock(&dev_priv->sb_lock);
  1180.  
  1181.         cur_state = val & DSI_PLL_VCO_EN;
  1182.         I915_STATE_WARN(cur_state != state,
  1183.              "DSI PLL state assertion failure (expected %s, current %s)\n",
  1184.              state_string(state), state_string(cur_state));
  1185. }
  1186. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  1187. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  1188.  
  1189. struct intel_shared_dpll *
  1190. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  1191. {
  1192.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1193.  
  1194.         if (crtc->config->shared_dpll < 0)
  1195.                 return NULL;
  1196.  
  1197.         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
  1198. }
  1199.  
  1200. /* For ILK+ */
  1201. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  1202.                         struct intel_shared_dpll *pll,
  1203.                         bool state)
  1204. {
  1205.         bool cur_state;
  1206.         struct intel_dpll_hw_state hw_state;
  1207.  
  1208.         if (WARN (!pll,
  1209.                   "asserting DPLL %s with no DPLL\n", state_string(state)))
  1210.                 return;
  1211.  
  1212.         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  1213.         I915_STATE_WARN(cur_state != state,
  1214.              "%s assertion failure (expected %s, current %s)\n",
  1215.              pll->name, state_string(state), state_string(cur_state));
  1216. }
  1217.  
  1218. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1219.                           enum pipe pipe, bool state)
  1220. {
  1221.         bool cur_state;
  1222.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1223.                                                                       pipe);
  1224.  
  1225.         if (HAS_DDI(dev_priv->dev)) {
  1226.                 /* DDI does not have a specific FDI_TX register */
  1227.                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1228.                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1229.         } else {
  1230.                 u32 val = I915_READ(FDI_TX_CTL(pipe));
  1231.                 cur_state = !!(val & FDI_TX_ENABLE);
  1232.         }
  1233.         I915_STATE_WARN(cur_state != state,
  1234.              "FDI TX state assertion failure (expected %s, current %s)\n",
  1235.              state_string(state), state_string(cur_state));
  1236. }
  1237. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1238. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1239.  
  1240. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1241.                           enum pipe pipe, bool state)
  1242. {
  1243.         u32 val;
  1244.         bool cur_state;
  1245.  
  1246.         val = I915_READ(FDI_RX_CTL(pipe));
  1247.         cur_state = !!(val & FDI_RX_ENABLE);
  1248.         I915_STATE_WARN(cur_state != state,
  1249.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1250.              state_string(state), state_string(cur_state));
  1251. }
  1252. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1253. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1254.  
  1255. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1256.                                       enum pipe pipe)
  1257. {
  1258.         u32 val;
  1259.  
  1260.         /* ILK FDI PLL is always enabled */
  1261.         if (INTEL_INFO(dev_priv->dev)->gen == 5)
  1262.                 return;
  1263.  
  1264.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1265.         if (HAS_DDI(dev_priv->dev))
  1266.                 return;
  1267.  
  1268.         val = I915_READ(FDI_TX_CTL(pipe));
  1269.         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1270. }
  1271.  
  1272. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  1273.                        enum pipe pipe, bool state)
  1274. {
  1275.         u32 val;
  1276.         bool cur_state;
  1277.  
  1278.         val = I915_READ(FDI_RX_CTL(pipe));
  1279.         cur_state = !!(val & FDI_RX_PLL_ENABLE);
  1280.         I915_STATE_WARN(cur_state != state,
  1281.              "FDI RX PLL assertion failure (expected %s, current %s)\n",
  1282.              state_string(state), state_string(cur_state));
  1283. }
  1284.  
  1285. void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1286.                            enum pipe pipe)
  1287. {
  1288.         struct drm_device *dev = dev_priv->dev;
  1289.         int pp_reg;
  1290.         u32 val;
  1291.         enum pipe panel_pipe = PIPE_A;
  1292.         bool locked = true;
  1293.  
  1294.         if (WARN_ON(HAS_DDI(dev)))
  1295.                 return;
  1296.  
  1297.         if (HAS_PCH_SPLIT(dev)) {
  1298.                 u32 port_sel;
  1299.  
  1300.                 pp_reg = PCH_PP_CONTROL;
  1301.                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
  1302.  
  1303.                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
  1304.                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
  1305.                         panel_pipe = PIPE_B;
  1306.                 /* XXX: else fix for eDP */
  1307.         } else if (IS_VALLEYVIEW(dev)) {
  1308.                 /* presumably write lock depends on pipe, not port select */
  1309.                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
  1310.                 panel_pipe = pipe;
  1311.         } else {
  1312.                 pp_reg = PP_CONTROL;
  1313.                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
  1314.                         panel_pipe = PIPE_B;
  1315.         }
  1316.  
  1317.         val = I915_READ(pp_reg);
  1318.         if (!(val & PANEL_POWER_ON) ||
  1319.             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
  1320.                 locked = false;
  1321.  
  1322.         I915_STATE_WARN(panel_pipe == pipe && locked,
  1323.              "panel assertion failure, pipe %c regs locked\n",
  1324.              pipe_name(pipe));
  1325. }
  1326.  
  1327. static void assert_cursor(struct drm_i915_private *dev_priv,
  1328.                           enum pipe pipe, bool state)
  1329. {
  1330.         struct drm_device *dev = dev_priv->dev;
  1331.         bool cur_state;
  1332.  
  1333.         if (IS_845G(dev) || IS_I865G(dev))
  1334.                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  1335.         else
  1336.                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1337.  
  1338.         I915_STATE_WARN(cur_state != state,
  1339.              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  1340.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1341. }
  1342. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  1343. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  1344.  
  1345. void assert_pipe(struct drm_i915_private *dev_priv,
  1346.                  enum pipe pipe, bool state)
  1347. {
  1348.         bool cur_state;
  1349.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1350.                                                                       pipe);
  1351.  
  1352.         /* if we need the pipe quirk it must be always on */
  1353.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1354.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1355.                 state = true;
  1356.  
  1357.         if (!intel_display_power_is_enabled(dev_priv,
  1358.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1359.                 cur_state = false;
  1360.         } else {
  1361.                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
  1362.                 cur_state = !!(val & PIPECONF_ENABLE);
  1363.         }
  1364.  
  1365.         I915_STATE_WARN(cur_state != state,
  1366.              "pipe %c assertion failure (expected %s, current %s)\n",
  1367.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1368. }
  1369.  
  1370. static void assert_plane(struct drm_i915_private *dev_priv,
  1371.                          enum plane plane, bool state)
  1372. {
  1373.         u32 val;
  1374.         bool cur_state;
  1375.  
  1376.         val = I915_READ(DSPCNTR(plane));
  1377.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1378.         I915_STATE_WARN(cur_state != state,
  1379.              "plane %c assertion failure (expected %s, current %s)\n",
  1380.              plane_name(plane), state_string(state), state_string(cur_state));
  1381. }
  1382.  
  1383. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1384. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1385.  
  1386. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1387.                                    enum pipe pipe)
  1388. {
  1389.         struct drm_device *dev = dev_priv->dev;
  1390.         int i;
  1391.  
  1392.         /* Primary planes are fixed to pipes on gen4+ */
  1393.         if (INTEL_INFO(dev)->gen >= 4) {
  1394.                 u32 val = I915_READ(DSPCNTR(pipe));
  1395.                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
  1396.                      "plane %c assertion failure, should be disabled but not\n",
  1397.                      plane_name(pipe));
  1398.                 return;
  1399.         }
  1400.  
  1401.         /* Need to check both planes against the pipe */
  1402.         for_each_pipe(dev_priv, i) {
  1403.                 u32 val = I915_READ(DSPCNTR(i));
  1404.                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1405.                         DISPPLANE_SEL_PIPE_SHIFT;
  1406.                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1407.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1408.                      plane_name(i), pipe_name(pipe));
  1409.         }
  1410. }
  1411.  
  1412. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1413.                                     enum pipe pipe)
  1414. {
  1415.         struct drm_device *dev = dev_priv->dev;
  1416.         int sprite;
  1417.  
  1418.         if (INTEL_INFO(dev)->gen >= 9) {
  1419.                 for_each_sprite(dev_priv, pipe, sprite) {
  1420.                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
  1421.                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
  1422.                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
  1423.                              sprite, pipe_name(pipe));
  1424.                 }
  1425.         } else if (IS_VALLEYVIEW(dev)) {
  1426.                 for_each_sprite(dev_priv, pipe, sprite) {
  1427.                         u32 val = I915_READ(SPCNTR(pipe, sprite));
  1428.                         I915_STATE_WARN(val & SP_ENABLE,
  1429.                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1430.                              sprite_name(pipe, sprite), pipe_name(pipe));
  1431.                 }
  1432.         } else if (INTEL_INFO(dev)->gen >= 7) {
  1433.                 u32 val = I915_READ(SPRCTL(pipe));
  1434.                 I915_STATE_WARN(val & SPRITE_ENABLE,
  1435.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1436.                      plane_name(pipe), pipe_name(pipe));
  1437.         } else if (INTEL_INFO(dev)->gen >= 5) {
  1438.                 u32 val = I915_READ(DVSCNTR(pipe));
  1439.                 I915_STATE_WARN(val & DVS_ENABLE,
  1440.                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1441.                      plane_name(pipe), pipe_name(pipe));
  1442.         }
  1443. }
  1444.  
  1445. static void assert_vblank_disabled(struct drm_crtc *crtc)
  1446. {
  1447.         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
  1448.                 drm_crtc_vblank_put(crtc);
  1449. }
  1450.  
  1451. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1452. {
  1453.         u32 val;
  1454.         bool enabled;
  1455.  
  1456.         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
  1457.  
  1458.         val = I915_READ(PCH_DREF_CONTROL);
  1459.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1460.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1461.         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1462. }
  1463.  
  1464. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1465.                                            enum pipe pipe)
  1466. {
  1467.         u32 val;
  1468.         bool enabled;
  1469.  
  1470.         val = I915_READ(PCH_TRANSCONF(pipe));
  1471.         enabled = !!(val & TRANS_ENABLE);
  1472.         I915_STATE_WARN(enabled,
  1473.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1474.              pipe_name(pipe));
  1475. }
  1476.  
  1477. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1478.                             enum pipe pipe, u32 port_sel, u32 val)
  1479. {
  1480.         if ((val & DP_PORT_EN) == 0)
  1481.                 return false;
  1482.  
  1483.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1484.                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1485.                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1486.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1487.                         return false;
  1488.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1489.                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
  1490.                         return false;
  1491.         } else {
  1492.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1493.                         return false;
  1494.         }
  1495.         return true;
  1496. }
  1497.  
  1498. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1499.                               enum pipe pipe, u32 val)
  1500. {
  1501.         if ((val & SDVO_ENABLE) == 0)
  1502.                 return false;
  1503.  
  1504.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1505.                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1506.                         return false;
  1507.         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  1508.                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
  1509.                         return false;
  1510.         } else {
  1511.                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1512.                         return false;
  1513.         }
  1514.         return true;
  1515. }
  1516.  
  1517. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1518.                               enum pipe pipe, u32 val)
  1519. {
  1520.         if ((val & LVDS_PORT_EN) == 0)
  1521.                 return false;
  1522.  
  1523.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1524.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1525.                         return false;
  1526.         } else {
  1527.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1528.                         return false;
  1529.         }
  1530.         return true;
  1531. }
  1532.  
  1533. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1534.                               enum pipe pipe, u32 val)
  1535. {
  1536.         if ((val & ADPA_DAC_ENABLE) == 0)
  1537.                 return false;
  1538.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1539.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1540.                         return false;
  1541.         } else {
  1542.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1543.                         return false;
  1544.         }
  1545.         return true;
  1546. }
  1547.  
  1548. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1549.                                    enum pipe pipe, int reg, u32 port_sel)
  1550. {
  1551.         u32 val = I915_READ(reg);
  1552.         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1553.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1554.              reg, pipe_name(pipe));
  1555.  
  1556.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1557.              && (val & DP_PIPEB_SELECT),
  1558.              "IBX PCH dp port still using transcoder B\n");
  1559. }
  1560.  
  1561. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1562.                                      enum pipe pipe, int reg)
  1563. {
  1564.         u32 val = I915_READ(reg);
  1565.         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1566.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1567.              reg, pipe_name(pipe));
  1568.  
  1569.         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1570.              && (val & SDVO_PIPE_B_SELECT),
  1571.              "IBX PCH hdmi port still using transcoder B\n");
  1572. }
  1573.  
  1574. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1575.                                       enum pipe pipe)
  1576. {
  1577.         u32 val;
  1578.  
  1579.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1580.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1581.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1582.  
  1583.         val = I915_READ(PCH_ADPA);
  1584.         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1585.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1586.              pipe_name(pipe));
  1587.  
  1588.         val = I915_READ(PCH_LVDS);
  1589.         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1590.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1591.              pipe_name(pipe));
  1592.  
  1593.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1594.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1595.         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1596. }
  1597.  
  1598. static void vlv_enable_pll(struct intel_crtc *crtc,
  1599.                            const struct intel_crtc_state *pipe_config)
  1600. {
  1601.         struct drm_device *dev = crtc->base.dev;
  1602.         struct drm_i915_private *dev_priv = dev->dev_private;
  1603.         int reg = DPLL(crtc->pipe);
  1604.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  1605.  
  1606.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1607.  
  1608.         /* No really, not for ILK+ */
  1609.         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1610.  
  1611.         /* PLL is protected by panel, make sure we can write it */
  1612.         if (IS_MOBILE(dev_priv->dev))
  1613.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1614.  
  1615.         I915_WRITE(reg, dpll);
  1616.         POSTING_READ(reg);
  1617.         udelay(150);
  1618.  
  1619.         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1620.                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1621.  
  1622.         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
  1623.         POSTING_READ(DPLL_MD(crtc->pipe));
  1624.  
  1625.         /* We do this three times for luck */
  1626.         I915_WRITE(reg, dpll);
  1627.         POSTING_READ(reg);
  1628.         udelay(150); /* wait for warmup */
  1629.         I915_WRITE(reg, dpll);
  1630.         POSTING_READ(reg);
  1631.         udelay(150); /* wait for warmup */
  1632.         I915_WRITE(reg, dpll);
  1633.         POSTING_READ(reg);
  1634.         udelay(150); /* wait for warmup */
  1635. }
  1636.  
  1637. static void chv_enable_pll(struct intel_crtc *crtc,
  1638.                            const struct intel_crtc_state *pipe_config)
  1639. {
  1640.         struct drm_device *dev = crtc->base.dev;
  1641.         struct drm_i915_private *dev_priv = dev->dev_private;
  1642.         int pipe = crtc->pipe;
  1643.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1644.         u32 tmp;
  1645.  
  1646.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1647.  
  1648.         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
  1649.  
  1650.         mutex_lock(&dev_priv->sb_lock);
  1651.  
  1652.         /* Enable back the 10bit clock to display controller */
  1653.         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1654.         tmp |= DPIO_DCLKP_EN;
  1655.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
  1656.  
  1657.         mutex_unlock(&dev_priv->sb_lock);
  1658.  
  1659.         /*
  1660.          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
  1661.          */
  1662.         udelay(1);
  1663.  
  1664.         /* Enable PLL */
  1665.         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
  1666.  
  1667.         /* Check PLL is locked */
  1668.         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1669.                 DRM_ERROR("PLL %d failed to lock\n", pipe);
  1670.  
  1671.         /* not sure when this should be written */
  1672.         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
  1673.         POSTING_READ(DPLL_MD(pipe));
  1674. }
  1675.  
  1676. static int intel_num_dvo_pipes(struct drm_device *dev)
  1677. {
  1678.         struct intel_crtc *crtc;
  1679.         int count = 0;
  1680.  
  1681.         for_each_intel_crtc(dev, crtc)
  1682.                 count += crtc->base.state->active &&
  1683.                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
  1684.  
  1685.         return count;
  1686. }
  1687.  
  1688. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1689. {
  1690.         struct drm_device *dev = crtc->base.dev;
  1691.         struct drm_i915_private *dev_priv = dev->dev_private;
  1692.         int reg = DPLL(crtc->pipe);
  1693.         u32 dpll = crtc->config->dpll_hw_state.dpll;
  1694.  
  1695.         assert_pipe_disabled(dev_priv, crtc->pipe);
  1696.  
  1697.         /* No really, not for ILK+ */
  1698.         BUG_ON(INTEL_INFO(dev)->gen >= 5);
  1699.  
  1700.         /* PLL is protected by panel, make sure we can write it */
  1701.         if (IS_MOBILE(dev) && !IS_I830(dev))
  1702.                 assert_panel_unlocked(dev_priv, crtc->pipe);
  1703.  
  1704.         /* Enable DVO 2x clock on both PLLs if necessary */
  1705.         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
  1706.                 /*
  1707.                  * It appears to be important that we don't enable this
  1708.                  * for the current pipe before otherwise configuring the
  1709.                  * PLL. No idea how this should be handled if multiple
  1710.                  * DVO outputs are enabled simultaneosly.
  1711.                  */
  1712.                 dpll |= DPLL_DVO_2X_MODE;
  1713.                 I915_WRITE(DPLL(!crtc->pipe),
  1714.                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
  1715.         }
  1716.  
  1717.         /*
  1718.          * Apparently we need to have VGA mode enabled prior to changing
  1719.          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
  1720.          * dividers, even though the register value does change.
  1721.          */
  1722.         I915_WRITE(reg, 0);
  1723.  
  1724.         I915_WRITE(reg, dpll);
  1725.  
  1726.         /* Wait for the clocks to stabilize. */
  1727.         POSTING_READ(reg);
  1728.         udelay(150);
  1729.  
  1730.         if (INTEL_INFO(dev)->gen >= 4) {
  1731.                 I915_WRITE(DPLL_MD(crtc->pipe),
  1732.                            crtc->config->dpll_hw_state.dpll_md);
  1733.         } else {
  1734.                 /* The pixel multiplier can only be updated once the
  1735.                  * DPLL is enabled and the clocks are stable.
  1736.                  *
  1737.                  * So write it again.
  1738.                  */
  1739.                 I915_WRITE(reg, dpll);
  1740.         }
  1741.  
  1742.         /* We do this three times for luck */
  1743.         I915_WRITE(reg, dpll);
  1744.         POSTING_READ(reg);
  1745.         udelay(150); /* wait for warmup */
  1746.         I915_WRITE(reg, dpll);
  1747.         POSTING_READ(reg);
  1748.         udelay(150); /* wait for warmup */
  1749.         I915_WRITE(reg, dpll);
  1750.         POSTING_READ(reg);
  1751.         udelay(150); /* wait for warmup */
  1752. }
  1753.  
  1754. /**
  1755.  * i9xx_disable_pll - disable a PLL
  1756.  * @dev_priv: i915 private structure
  1757.  * @pipe: pipe PLL to disable
  1758.  *
  1759.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1760.  *
  1761.  * Note!  This is for pre-ILK only.
  1762.  */
  1763. static void i9xx_disable_pll(struct intel_crtc *crtc)
  1764. {
  1765.         struct drm_device *dev = crtc->base.dev;
  1766.         struct drm_i915_private *dev_priv = dev->dev_private;
  1767.         enum pipe pipe = crtc->pipe;
  1768.  
  1769.         /* Disable DVO 2x clock on both PLLs if necessary */
  1770.         if (IS_I830(dev) &&
  1771.             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
  1772.             !intel_num_dvo_pipes(dev)) {
  1773.                 I915_WRITE(DPLL(PIPE_B),
  1774.                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
  1775.                 I915_WRITE(DPLL(PIPE_A),
  1776.                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
  1777.         }
  1778.  
  1779.         /* Don't disable pipe or pipe PLLs if needed */
  1780.         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  1781.             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  1782.                 return;
  1783.  
  1784.         /* Make sure the pipe isn't still relying on us */
  1785.         assert_pipe_disabled(dev_priv, pipe);
  1786.  
  1787.         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
  1788.         POSTING_READ(DPLL(pipe));
  1789. }
  1790.  
  1791. static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1792. {
  1793.         u32 val;
  1794.  
  1795.         /* Make sure the pipe isn't still relying on us */
  1796.         assert_pipe_disabled(dev_priv, pipe);
  1797.  
  1798.         /*
  1799.          * Leave integrated clock source and reference clock enabled for pipe B.
  1800.          * The latter is needed for VGA hotplug / manual detection.
  1801.          */
  1802.         val = DPLL_VGA_MODE_DIS;
  1803.         if (pipe == PIPE_B)
  1804.                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
  1805.         I915_WRITE(DPLL(pipe), val);
  1806.         POSTING_READ(DPLL(pipe));
  1807.  
  1808. }
  1809.  
  1810. static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1811. {
  1812.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  1813.         u32 val;
  1814.  
  1815.         /* Make sure the pipe isn't still relying on us */
  1816.         assert_pipe_disabled(dev_priv, pipe);
  1817.  
  1818.         /* Set PLL en = 0 */
  1819.         val = DPLL_SSC_REF_CLK_CHV |
  1820.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
  1821.         if (pipe != PIPE_A)
  1822.                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
  1823.         I915_WRITE(DPLL(pipe), val);
  1824.         POSTING_READ(DPLL(pipe));
  1825.  
  1826.         mutex_lock(&dev_priv->sb_lock);
  1827.  
  1828.         /* Disable 10bit clock to display controller */
  1829.         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
  1830.         val &= ~DPIO_DCLKP_EN;
  1831.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
  1832.  
  1833.         mutex_unlock(&dev_priv->sb_lock);
  1834. }
  1835.  
  1836. void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
  1837.                          struct intel_digital_port *dport,
  1838.                          unsigned int expected_mask)
  1839. {
  1840.         u32 port_mask;
  1841.         int dpll_reg;
  1842.  
  1843.         switch (dport->port) {
  1844.         case PORT_B:
  1845.                 port_mask = DPLL_PORTB_READY_MASK;
  1846.                 dpll_reg = DPLL(0);
  1847.                 break;
  1848.         case PORT_C:
  1849.                 port_mask = DPLL_PORTC_READY_MASK;
  1850.                 dpll_reg = DPLL(0);
  1851.                 expected_mask <<= 4;
  1852.                 break;
  1853.         case PORT_D:
  1854.                 port_mask = DPLL_PORTD_READY_MASK;
  1855.                 dpll_reg = DPIO_PHY_STATUS;
  1856.                 break;
  1857.         default:
  1858.                 BUG();
  1859.         }
  1860.  
  1861.         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
  1862.                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
  1863.                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
  1864. }
  1865.  
  1866. static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  1867. {
  1868.         struct drm_device *dev = crtc->base.dev;
  1869.         struct drm_i915_private *dev_priv = dev->dev_private;
  1870.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1871.  
  1872.         if (WARN_ON(pll == NULL))
  1873.                 return;
  1874.  
  1875.         WARN_ON(!pll->config.crtc_mask);
  1876.         if (pll->active == 0) {
  1877.                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  1878.                 WARN_ON(pll->on);
  1879.                 assert_shared_dpll_disabled(dev_priv, pll);
  1880.  
  1881.                 pll->mode_set(dev_priv, pll);
  1882.         }
  1883. }
  1884.  
  1885. /**
  1886.  * intel_enable_shared_dpll - enable PCH PLL
  1887.  * @dev_priv: i915 private structure
  1888.  * @pipe: pipe PLL to enable
  1889.  *
  1890.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1891.  * drives the transcoder clock.
  1892.  */
  1893. static void intel_enable_shared_dpll(struct intel_crtc *crtc)
  1894. {
  1895.         struct drm_device *dev = crtc->base.dev;
  1896.         struct drm_i915_private *dev_priv = dev->dev_private;
  1897.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1898.  
  1899.         if (WARN_ON(pll == NULL))
  1900.                 return;
  1901.  
  1902.         if (WARN_ON(pll->config.crtc_mask == 0))
  1903.                 return;
  1904.  
  1905.         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
  1906.                       pll->name, pll->active, pll->on,
  1907.                       crtc->base.base.id);
  1908.  
  1909.         if (pll->active++) {
  1910.                 WARN_ON(!pll->on);
  1911.                 assert_shared_dpll_enabled(dev_priv, pll);
  1912.                 return;
  1913.         }
  1914.         WARN_ON(pll->on);
  1915.  
  1916.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  1917.  
  1918.         DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1919.         pll->enable(dev_priv, pll);
  1920.         pll->on = true;
  1921. }
  1922.  
  1923. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1924. {
  1925.         struct drm_device *dev = crtc->base.dev;
  1926.         struct drm_i915_private *dev_priv = dev->dev_private;
  1927.         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1928.  
  1929.         /* PCH only available on ILK+ */
  1930.         if (INTEL_INFO(dev)->gen < 5)
  1931.                 return;
  1932.  
  1933.         if (pll == NULL)
  1934.                 return;
  1935.  
  1936.         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
  1937.                 return;
  1938.  
  1939.         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1940.                       pll->name, pll->active, pll->on,
  1941.                       crtc->base.base.id);
  1942.  
  1943.         if (WARN_ON(pll->active == 0)) {
  1944.                 assert_shared_dpll_disabled(dev_priv, pll);
  1945.                 return;
  1946.         }
  1947.  
  1948.         assert_shared_dpll_enabled(dev_priv, pll);
  1949.         WARN_ON(!pll->on);
  1950.         if (--pll->active)
  1951.                 return;
  1952.  
  1953.         DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1954.         pll->disable(dev_priv, pll);
  1955.         pll->on = false;
  1956.  
  1957.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1958. }
  1959.  
  1960. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1961.                                            enum pipe pipe)
  1962. {
  1963.         struct drm_device *dev = dev_priv->dev;
  1964.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1965.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1966.         uint32_t reg, val, pipeconf_val;
  1967.  
  1968.         /* PCH only available on ILK+ */
  1969.         BUG_ON(!HAS_PCH_SPLIT(dev));
  1970.  
  1971.         /* Make sure PCH DPLL is enabled */
  1972.         assert_shared_dpll_enabled(dev_priv,
  1973.                                    intel_crtc_to_shared_dpll(intel_crtc));
  1974.  
  1975.         /* FDI must be feeding us bits for PCH ports */
  1976.         assert_fdi_tx_enabled(dev_priv, pipe);
  1977.         assert_fdi_rx_enabled(dev_priv, pipe);
  1978.  
  1979.         if (HAS_PCH_CPT(dev)) {
  1980.                 /* Workaround: Set the timing override bit before enabling the
  1981.                  * pch transcoder. */
  1982.                 reg = TRANS_CHICKEN2(pipe);
  1983.                 val = I915_READ(reg);
  1984.                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1985.                 I915_WRITE(reg, val);
  1986.         }
  1987.  
  1988.         reg = PCH_TRANSCONF(pipe);
  1989.         val = I915_READ(reg);
  1990.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1991.  
  1992.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1993.                 /*
  1994.                  * Make the BPC in transcoder be consistent with
  1995.                  * that in pipeconf reg. For HDMI we must use 8bpc
  1996.                  * here for both 8bpc and 12bpc.
  1997.                  */
  1998.                 val &= ~PIPECONF_BPC_MASK;
  1999.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
  2000.                         val |= PIPECONF_8BPC;
  2001.                 else
  2002.                         val |= pipeconf_val & PIPECONF_BPC_MASK;
  2003.         }
  2004.  
  2005.         val &= ~TRANS_INTERLACE_MASK;
  2006.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  2007.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  2008.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  2009.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  2010.                 else
  2011.                         val |= TRANS_INTERLACED;
  2012.         else
  2013.                 val |= TRANS_PROGRESSIVE;
  2014.  
  2015.         I915_WRITE(reg, val | TRANS_ENABLE);
  2016.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  2017.                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  2018. }
  2019.  
  2020. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  2021.                                       enum transcoder cpu_transcoder)
  2022. {
  2023.         u32 val, pipeconf_val;
  2024.  
  2025.         /* PCH only available on ILK+ */
  2026.         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
  2027.  
  2028.         /* FDI must be feeding us bits for PCH ports */
  2029.         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  2030.         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  2031.  
  2032.         /* Workaround: set timing override bit. */
  2033.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2034.         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  2035.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2036.  
  2037.         val = TRANS_ENABLE;
  2038.         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  2039.  
  2040.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  2041.             PIPECONF_INTERLACED_ILK)
  2042.                 val |= TRANS_INTERLACED;
  2043.         else
  2044.                 val |= TRANS_PROGRESSIVE;
  2045.  
  2046.         I915_WRITE(LPT_TRANSCONF, val);
  2047.         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  2048.                 DRM_ERROR("Failed to enable PCH transcoder\n");
  2049. }
  2050.  
  2051. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  2052.                                             enum pipe pipe)
  2053. {
  2054.         struct drm_device *dev = dev_priv->dev;
  2055.         uint32_t reg, val;
  2056.  
  2057.         /* FDI relies on the transcoder */
  2058.         assert_fdi_tx_disabled(dev_priv, pipe);
  2059.         assert_fdi_rx_disabled(dev_priv, pipe);
  2060.  
  2061.         /* Ports must be off as well */
  2062.         assert_pch_ports_disabled(dev_priv, pipe);
  2063.  
  2064.         reg = PCH_TRANSCONF(pipe);
  2065.         val = I915_READ(reg);
  2066.         val &= ~TRANS_ENABLE;
  2067.         I915_WRITE(reg, val);
  2068.         /* wait for PCH transcoder off, transcoder state */
  2069.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  2070.                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  2071.  
  2072.         if (!HAS_PCH_IBX(dev)) {
  2073.                 /* Workaround: Clear the timing override chicken bit again. */
  2074.                 reg = TRANS_CHICKEN2(pipe);
  2075.                 val = I915_READ(reg);
  2076.                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2077.                 I915_WRITE(reg, val);
  2078.         }
  2079. }
  2080.  
  2081. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  2082. {
  2083.         u32 val;
  2084.  
  2085.         val = I915_READ(LPT_TRANSCONF);
  2086.         val &= ~TRANS_ENABLE;
  2087.         I915_WRITE(LPT_TRANSCONF, val);
  2088.         /* wait for PCH transcoder off, transcoder state */
  2089.         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  2090.                 DRM_ERROR("Failed to disable PCH transcoder\n");
  2091.  
  2092.         /* Workaround: clear timing override bit. */
  2093.         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
  2094.         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  2095.         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
  2096. }
  2097.  
  2098. /**
  2099.  * intel_enable_pipe - enable a pipe, asserting requirements
  2100.  * @crtc: crtc responsible for the pipe
  2101.  *
  2102.  * Enable @crtc's pipe, making sure that various hardware specific requirements
  2103.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  2104.  */
  2105. static void intel_enable_pipe(struct intel_crtc *crtc)
  2106. {
  2107.         struct drm_device *dev = crtc->base.dev;
  2108.         struct drm_i915_private *dev_priv = dev->dev_private;
  2109.         enum pipe pipe = crtc->pipe;
  2110.         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  2111.                                                                       pipe);
  2112.         enum pipe pch_transcoder;
  2113.         int reg;
  2114.         u32 val;
  2115.  
  2116.         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
  2117.  
  2118.         assert_planes_disabled(dev_priv, pipe);
  2119.         assert_cursor_disabled(dev_priv, pipe);
  2120.         assert_sprites_disabled(dev_priv, pipe);
  2121.  
  2122.         if (HAS_PCH_LPT(dev_priv->dev))
  2123.                 pch_transcoder = TRANSCODER_A;
  2124.         else
  2125.                 pch_transcoder = pipe;
  2126.  
  2127.         /*
  2128.          * A pipe without a PLL won't actually be able to drive bits from
  2129.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  2130.          * need the check.
  2131.          */
  2132.         if (HAS_GMCH_DISPLAY(dev_priv->dev))
  2133.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2134.                         assert_dsi_pll_enabled(dev_priv);
  2135.                 else
  2136.                         assert_pll_enabled(dev_priv, pipe);
  2137.         else {
  2138.                 if (crtc->config->has_pch_encoder) {
  2139.                         /* if driving the PCH, we need FDI enabled */
  2140.                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  2141.                         assert_fdi_tx_pll_enabled(dev_priv,
  2142.                                                   (enum pipe) cpu_transcoder);
  2143.                 }
  2144.                 /* FIXME: assert CPU port conditions for SNB+ */
  2145.         }
  2146.  
  2147.         reg = PIPECONF(cpu_transcoder);
  2148.         val = I915_READ(reg);
  2149.         if (val & PIPECONF_ENABLE) {
  2150.                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  2151.                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
  2152.                 return;
  2153.         }
  2154.  
  2155.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  2156.         POSTING_READ(reg);
  2157. }
  2158.  
  2159. /**
  2160.  * intel_disable_pipe - disable a pipe, asserting requirements
  2161.  * @crtc: crtc whose pipes is to be disabled
  2162.  *
  2163.  * Disable the pipe of @crtc, making sure that various hardware
  2164.  * specific requirements are met, if applicable, e.g. plane
  2165.  * disabled, panel fitter off, etc.
  2166.  *
  2167.  * Will wait until the pipe has shut down before returning.
  2168.  */
  2169. static void intel_disable_pipe(struct intel_crtc *crtc)
  2170. {
  2171.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2172.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  2173.         enum pipe pipe = crtc->pipe;
  2174.         int reg;
  2175.         u32 val;
  2176.  
  2177.         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
  2178.  
  2179.         /*
  2180.          * Make sure planes won't keep trying to pump pixels to us,
  2181.          * or we might hang the display.
  2182.          */
  2183.         assert_planes_disabled(dev_priv, pipe);
  2184.         assert_cursor_disabled(dev_priv, pipe);
  2185.         assert_sprites_disabled(dev_priv, pipe);
  2186.  
  2187.         reg = PIPECONF(cpu_transcoder);
  2188.         val = I915_READ(reg);
  2189.         if ((val & PIPECONF_ENABLE) == 0)
  2190.                 return;
  2191.  
  2192.         /*
  2193.          * Double wide has implications for planes
  2194.          * so best keep it disabled when not needed.
  2195.          */
  2196.         if (crtc->config->double_wide)
  2197.                 val &= ~PIPECONF_DOUBLE_WIDE;
  2198.  
  2199.         /* Don't disable pipe or pipe PLLs if needed */
  2200.         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
  2201.             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  2202.                 val &= ~PIPECONF_ENABLE;
  2203.  
  2204.         I915_WRITE(reg, val);
  2205.         if ((val & PIPECONF_ENABLE) == 0)
  2206.                 intel_wait_for_pipe_off(crtc);
  2207. }
  2208.  
  2209. static bool need_vtd_wa(struct drm_device *dev)
  2210. {
  2211. #ifdef CONFIG_INTEL_IOMMU
  2212.         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  2213.                 return true;
  2214. #endif
  2215.         return false;
  2216. }
  2217.  
  2218. unsigned int
  2219. intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
  2220.                   uint64_t fb_format_modifier, unsigned int plane)
  2221. {
  2222.         unsigned int tile_height;
  2223.         uint32_t pixel_bytes;
  2224.  
  2225.         switch (fb_format_modifier) {
  2226.         case DRM_FORMAT_MOD_NONE:
  2227.                 tile_height = 1;
  2228.                 break;
  2229.         case I915_FORMAT_MOD_X_TILED:
  2230.                 tile_height = IS_GEN2(dev) ? 16 : 8;
  2231.                 break;
  2232.         case I915_FORMAT_MOD_Y_TILED:
  2233.                 tile_height = 32;
  2234.                 break;
  2235.         case I915_FORMAT_MOD_Yf_TILED:
  2236.                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
  2237.                 switch (pixel_bytes) {
  2238.                 default:
  2239.                 case 1:
  2240.                         tile_height = 64;
  2241.                         break;
  2242.                 case 2:
  2243.                 case 4:
  2244.                         tile_height = 32;
  2245.                         break;
  2246.                 case 8:
  2247.                         tile_height = 16;
  2248.                         break;
  2249.                 case 16:
  2250.                         WARN_ONCE(1,
  2251.                                   "128-bit pixels are not supported for display!");
  2252.                         tile_height = 16;
  2253.                         break;
  2254.                 }
  2255.                 break;
  2256.         default:
  2257.                 MISSING_CASE(fb_format_modifier);
  2258.                 tile_height = 1;
  2259.                 break;
  2260.         }
  2261.  
  2262.         return tile_height;
  2263. }
  2264.  
  2265. unsigned int
  2266. intel_fb_align_height(struct drm_device *dev, unsigned int height,
  2267.                       uint32_t pixel_format, uint64_t fb_format_modifier)
  2268. {
  2269.         return ALIGN(height, intel_tile_height(dev, pixel_format,
  2270.                                                fb_format_modifier, 0));
  2271. }
  2272.  
  2273. static int
  2274. intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
  2275.                         const struct drm_plane_state *plane_state)
  2276. {
  2277.         struct intel_rotation_info *info = &view->rotation_info;
  2278.         unsigned int tile_height, tile_pitch;
  2279.  
  2280.         *view = i915_ggtt_view_normal;
  2281.  
  2282.         if (!plane_state)
  2283.                 return 0;
  2284.  
  2285.         if (!intel_rotation_90_or_270(plane_state->rotation))
  2286.                 return 0;
  2287.  
  2288.         *view = i915_ggtt_view_rotated;
  2289.  
  2290.         info->height = fb->height;
  2291.         info->pixel_format = fb->pixel_format;
  2292.         info->pitch = fb->pitches[0];
  2293.         info->uv_offset = fb->offsets[1];
  2294.         info->fb_modifier = fb->modifier[0];
  2295.  
  2296.         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2297.                                         fb->modifier[0], 0);
  2298.         tile_pitch = PAGE_SIZE / tile_height;
  2299.         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2300.         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
  2301.         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
  2302.  
  2303.         if (info->pixel_format == DRM_FORMAT_NV12) {
  2304.                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
  2305.                                                 fb->modifier[0], 1);
  2306.                 tile_pitch = PAGE_SIZE / tile_height;
  2307.                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
  2308.                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
  2309.                                                      tile_height);
  2310.                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
  2311.                                 PAGE_SIZE;
  2312.         }
  2313.  
  2314.         return 0;
  2315. }
  2316.  
  2317. static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
  2318. {
  2319.         if (INTEL_INFO(dev_priv)->gen >= 9)
  2320.                 return 256 * 1024;
  2321.         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
  2322.                  IS_VALLEYVIEW(dev_priv))
  2323.                 return 128 * 1024;
  2324.         else if (INTEL_INFO(dev_priv)->gen >= 4)
  2325.                 return 4 * 1024;
  2326.         else
  2327.                 return 0;
  2328. }
  2329.  
  2330. int
  2331. intel_pin_and_fence_fb_obj(struct drm_plane *plane,
  2332.                            struct drm_framebuffer *fb,
  2333.                            const struct drm_plane_state *plane_state,
  2334.                            struct intel_engine_cs *pipelined,
  2335.                            struct drm_i915_gem_request **pipelined_request)
  2336. {
  2337.         struct drm_device *dev = fb->dev;
  2338.         struct drm_i915_private *dev_priv = dev->dev_private;
  2339.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2340.         struct i915_ggtt_view view;
  2341.         u32 alignment;
  2342.         int ret;
  2343.  
  2344.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2345.  
  2346.         switch (fb->modifier[0]) {
  2347.         case DRM_FORMAT_MOD_NONE:
  2348.                 alignment = intel_linear_alignment(dev_priv);
  2349.                 break;
  2350.         case I915_FORMAT_MOD_X_TILED:
  2351.                 if (INTEL_INFO(dev)->gen >= 9)
  2352.                         alignment = 256 * 1024;
  2353.                 else {
  2354.                         /* pin() will align the object as required by fence */
  2355.                         alignment = 0;
  2356.                 }
  2357.                 break;
  2358.         case I915_FORMAT_MOD_Y_TILED:
  2359.         case I915_FORMAT_MOD_Yf_TILED:
  2360.                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
  2361.                           "Y tiling bo slipped through, driver bug!\n"))
  2362.                         return -EINVAL;
  2363.                 alignment = 1 * 1024 * 1024;
  2364.                 break;
  2365.         default:
  2366.                 MISSING_CASE(fb->modifier[0]);
  2367.                 return -EINVAL;
  2368.         }
  2369.  
  2370.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2371.         if (ret)
  2372.                 return ret;
  2373.  
  2374.         /* Note that the w/a also requires 64 PTE of padding following the
  2375.          * bo. We currently fill all unused PTE with the shadow page and so
  2376.          * we should always have valid PTE following the scanout preventing
  2377.          * the VT-d warning.
  2378.          */
  2379.         if (need_vtd_wa(dev) && alignment < 256 * 1024)
  2380.                 alignment = 256 * 1024;
  2381.  
  2382.         /*
  2383.          * Global gtt pte registers are special registers which actually forward
  2384.          * writes to a chunk of system memory. Which means that there is no risk
  2385.          * that the register values disappear as soon as we call
  2386.          * intel_runtime_pm_put(), so it is correct to wrap only the
  2387.          * pin/unpin/fence and not more.
  2388.          */
  2389.         intel_runtime_pm_get(dev_priv);
  2390.  
  2391.         dev_priv->mm.interruptible = false;
  2392.         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
  2393.                                                    pipelined_request, &view);
  2394.         if (ret)
  2395.                 goto err_interruptible;
  2396.  
  2397.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  2398.          * fence, whereas 965+ only requires a fence if using
  2399.          * framebuffer compression.  For simplicity, we always install
  2400.          * a fence as the cost is not that onerous.
  2401.          */
  2402.         if (view.type == I915_GGTT_VIEW_NORMAL) {
  2403.                 ret = i915_gem_object_get_fence(obj);
  2404.                 if (ret == -EDEADLK) {
  2405.                         /*
  2406.                          * -EDEADLK means there are no free fences
  2407.                          * no pending flips.
  2408.                          *
  2409.                          * This is propagated to atomic, but it uses
  2410.                          * -EDEADLK to force a locking recovery, so
  2411.                          * change the returned error to -EBUSY.
  2412.                          */
  2413.                         ret = -EBUSY;
  2414.                         goto err_unpin;
  2415.                 } else if (ret)
  2416.                         goto err_unpin;
  2417.  
  2418.                 i915_gem_object_pin_fence(obj);
  2419.         }
  2420.  
  2421.         dev_priv->mm.interruptible = true;
  2422.         intel_runtime_pm_put(dev_priv);
  2423.         return 0;
  2424.  
  2425. err_unpin:
  2426.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2427. err_interruptible:
  2428.         dev_priv->mm.interruptible = true;
  2429.         intel_runtime_pm_put(dev_priv);
  2430.         return ret;
  2431. }
  2432.  
  2433. static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
  2434.                                const struct drm_plane_state *plane_state)
  2435. {
  2436.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  2437.         struct i915_ggtt_view view;
  2438.         int ret;
  2439.  
  2440.         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
  2441.  
  2442.         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
  2443.         WARN_ONCE(ret, "Couldn't get view from plane state!");
  2444.  
  2445.         if (view.type == I915_GGTT_VIEW_NORMAL)
  2446.                 i915_gem_object_unpin_fence(obj);
  2447.  
  2448.         i915_gem_object_unpin_from_display_plane(obj, &view);
  2449. }
  2450.  
  2451. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  2452.  * is assumed to be a power-of-two. */
  2453. unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
  2454.                                              int *x, int *y,
  2455.                                              unsigned int tiling_mode,
  2456.                                              unsigned int cpp,
  2457.                                              unsigned int pitch)
  2458. {
  2459.         if (tiling_mode != I915_TILING_NONE) {
  2460.                 unsigned int tile_rows, tiles;
  2461.  
  2462.                 tile_rows = *y / 8;
  2463.                 *y %= 8;
  2464.  
  2465.                 tiles = *x / (512/cpp);
  2466.                 *x %= 512/cpp;
  2467.  
  2468.                 return tile_rows * pitch * 8 + tiles * 4096;
  2469.         } else {
  2470.                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
  2471.                 unsigned int offset;
  2472.  
  2473.                 offset = *y * pitch + *x * cpp;
  2474.                 *y = (offset & alignment) / pitch;
  2475.                 *x = ((offset & alignment) - *y * pitch) / cpp;
  2476.                 return offset & ~alignment;
  2477.         }
  2478. }
  2479.  
  2480. static int i9xx_format_to_fourcc(int format)
  2481. {
  2482.         switch (format) {
  2483.         case DISPPLANE_8BPP:
  2484.                 return DRM_FORMAT_C8;
  2485.         case DISPPLANE_BGRX555:
  2486.                 return DRM_FORMAT_XRGB1555;
  2487.         case DISPPLANE_BGRX565:
  2488.                 return DRM_FORMAT_RGB565;
  2489.         default:
  2490.         case DISPPLANE_BGRX888:
  2491.                 return DRM_FORMAT_XRGB8888;
  2492.         case DISPPLANE_RGBX888:
  2493.                 return DRM_FORMAT_XBGR8888;
  2494.         case DISPPLANE_BGRX101010:
  2495.                 return DRM_FORMAT_XRGB2101010;
  2496.         case DISPPLANE_RGBX101010:
  2497.                 return DRM_FORMAT_XBGR2101010;
  2498.         }
  2499. }
  2500.  
  2501. static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
  2502. {
  2503.         switch (format) {
  2504.         case PLANE_CTL_FORMAT_RGB_565:
  2505.                 return DRM_FORMAT_RGB565;
  2506.         default:
  2507.         case PLANE_CTL_FORMAT_XRGB_8888:
  2508.                 if (rgb_order) {
  2509.                         if (alpha)
  2510.                                 return DRM_FORMAT_ABGR8888;
  2511.                         else
  2512.                                 return DRM_FORMAT_XBGR8888;
  2513.                 } else {
  2514.                         if (alpha)
  2515.                                 return DRM_FORMAT_ARGB8888;
  2516.                         else
  2517.                                 return DRM_FORMAT_XRGB8888;
  2518.                 }
  2519.         case PLANE_CTL_FORMAT_XRGB_2101010:
  2520.                 if (rgb_order)
  2521.                         return DRM_FORMAT_XBGR2101010;
  2522.                 else
  2523.                         return DRM_FORMAT_XRGB2101010;
  2524.         }
  2525. }
  2526.  
  2527. static bool
  2528. intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
  2529.                               struct intel_initial_plane_config *plane_config)
  2530. {
  2531.         struct drm_device *dev = crtc->base.dev;
  2532.         struct drm_i915_private *dev_priv = to_i915(dev);
  2533.         struct drm_i915_gem_object *obj = NULL;
  2534.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  2535.         struct drm_framebuffer *fb = &plane_config->fb->base;
  2536.         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
  2537.         u32 size_aligned = round_up(plane_config->base + plane_config->size,
  2538.                                     PAGE_SIZE);
  2539.  
  2540.         size_aligned -= base_aligned;
  2541.  
  2542.         if (plane_config->size == 0)
  2543.                 return false;
  2544.  
  2545.         /* If the FB is too big, just don't use it since fbdev is not very
  2546.          * important and we should probably use that space with FBC or other
  2547.          * features. */
  2548.         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
  2549.                 return false;
  2550.  
  2551.         obj = i915_gem_object_create_stolen_for_preallocated(dev,
  2552.                                                              base_aligned,
  2553.                                                              base_aligned,
  2554.                                                              size_aligned);
  2555.         if (!obj)
  2556.                 return false;
  2557.  
  2558.         obj->tiling_mode = plane_config->tiling;
  2559.         if (obj->tiling_mode == I915_TILING_X)
  2560.                 obj->stride = fb->pitches[0];
  2561.  
  2562.         mode_cmd.pixel_format = fb->pixel_format;
  2563.         mode_cmd.width = fb->width;
  2564.         mode_cmd.height = fb->height;
  2565.         mode_cmd.pitches[0] = fb->pitches[0];
  2566.         mode_cmd.modifier[0] = fb->modifier[0];
  2567.         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
  2568.  
  2569.         mutex_lock(&dev->struct_mutex);
  2570.         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
  2571.                                    &mode_cmd, obj)) {
  2572.                 DRM_DEBUG_KMS("intel fb init failed\n");
  2573.                 goto out_unref_obj;
  2574.         }
  2575.         mutex_unlock(&dev->struct_mutex);
  2576.  
  2577.         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
  2578.         return true;
  2579.  
  2580. out_unref_obj:
  2581.         drm_gem_object_unreference(&obj->base);
  2582.         mutex_unlock(&dev->struct_mutex);
  2583.         return false;
  2584. }
  2585.  
  2586. /* Update plane->state->fb to match plane->fb after driver-internal updates */
  2587. static void
  2588. update_state_fb(struct drm_plane *plane)
  2589. {
  2590.         if (plane->fb == plane->state->fb)
  2591.                 return;
  2592.  
  2593.         if (plane->state->fb)
  2594.                 drm_framebuffer_unreference(plane->state->fb);
  2595.         plane->state->fb = plane->fb;
  2596.         if (plane->state->fb)
  2597.                 drm_framebuffer_reference(plane->state->fb);
  2598. }
  2599.  
  2600. static void
  2601. intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
  2602.                              struct intel_initial_plane_config *plane_config)
  2603. {
  2604.         struct drm_device *dev = intel_crtc->base.dev;
  2605.         struct drm_i915_private *dev_priv = dev->dev_private;
  2606.         struct drm_crtc *c;
  2607.         struct intel_crtc *i;
  2608.         struct drm_i915_gem_object *obj;
  2609.         struct drm_plane *primary = intel_crtc->base.primary;
  2610.         struct drm_plane_state *plane_state = primary->state;
  2611.         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
  2612.         struct intel_plane *intel_plane = to_intel_plane(primary);
  2613.         struct drm_framebuffer *fb;
  2614.  
  2615.         if (!plane_config->fb)
  2616.                 return;
  2617.  
  2618.         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
  2619.                 fb = &plane_config->fb->base;
  2620.                 goto valid_fb;
  2621.         }
  2622.  
  2623.         kfree(plane_config->fb);
  2624.  
  2625.         /*
  2626.          * Failed to alloc the obj, check to see if we should share
  2627.          * an fb with another CRTC instead
  2628.          */
  2629.         for_each_crtc(dev, c) {
  2630.                 i = to_intel_crtc(c);
  2631.  
  2632.                 if (c == &intel_crtc->base)
  2633.                         continue;
  2634.  
  2635.                 if (!i->active)
  2636.                         continue;
  2637.  
  2638.                 fb = c->primary->fb;
  2639.                 if (!fb)
  2640.                         continue;
  2641.  
  2642.                 obj = intel_fb_obj(fb);
  2643.                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
  2644.                         drm_framebuffer_reference(fb);
  2645.                         goto valid_fb;
  2646.                 }
  2647.         }
  2648.  
  2649.         /*
  2650.          * We've failed to reconstruct the BIOS FB.  Current display state
  2651.          * indicates that the primary plane is visible, but has a NULL FB,
  2652.          * which will lead to problems later if we don't fix it up.  The
  2653.          * simplest solution is to just disable the primary plane now and
  2654.          * pretend the BIOS never had it enabled.
  2655.          */
  2656.         to_intel_plane_state(plane_state)->visible = false;
  2657.         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
  2658.         intel_pre_disable_primary(&intel_crtc->base);
  2659.         intel_plane->disable_plane(primary, &intel_crtc->base);
  2660.  
  2661.         return;
  2662.  
  2663. valid_fb:
  2664.         plane_state->src_x = 0;
  2665.         plane_state->src_y = 0;
  2666.         plane_state->src_w = fb->width << 16;
  2667.         plane_state->src_h = fb->height << 16;
  2668.  
  2669.         plane_state->crtc_x = 0;
  2670.         plane_state->crtc_y = 0;
  2671.         plane_state->crtc_w = fb->width;
  2672.         plane_state->crtc_h = fb->height;
  2673.  
  2674.         obj = intel_fb_obj(fb);
  2675.         if (obj->tiling_mode != I915_TILING_NONE)
  2676.                 dev_priv->preserve_bios_swizzle = true;
  2677.  
  2678.         drm_framebuffer_reference(fb);
  2679.         primary->fb = primary->state->fb = fb;
  2680.         primary->crtc = primary->state->crtc = &intel_crtc->base;
  2681.         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
  2682.         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
  2683. }
  2684.  
  2685. static void i9xx_update_primary_plane(struct drm_crtc *crtc,
  2686.                                       struct drm_framebuffer *fb,
  2687.                                       int x, int y)
  2688. {
  2689.         struct drm_device *dev = crtc->dev;
  2690.         struct drm_i915_private *dev_priv = dev->dev_private;
  2691.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2692.         struct drm_plane *primary = crtc->primary;
  2693.         bool visible = to_intel_plane_state(primary->state)->visible;
  2694.         struct drm_i915_gem_object *obj;
  2695.         int plane = intel_crtc->plane;
  2696.         unsigned long linear_offset;
  2697.         u32 dspcntr;
  2698.         u32 reg = DSPCNTR(plane);
  2699.         int pixel_size;
  2700.  
  2701.         if (!visible || !fb) {
  2702.                 I915_WRITE(reg, 0);
  2703.                 if (INTEL_INFO(dev)->gen >= 4)
  2704.                         I915_WRITE(DSPSURF(plane), 0);
  2705.                 else
  2706.                         I915_WRITE(DSPADDR(plane), 0);
  2707.                 POSTING_READ(reg);
  2708.                 return;
  2709.         }
  2710.  
  2711.         obj = intel_fb_obj(fb);
  2712.         if (WARN_ON(obj == NULL))
  2713.                 return;
  2714.  
  2715.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2716.  
  2717.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2718.  
  2719.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2720.  
  2721.         if (INTEL_INFO(dev)->gen < 4) {
  2722.                 if (intel_crtc->pipe == PIPE_B)
  2723.                         dspcntr |= DISPPLANE_SEL_PIPE_B;
  2724.  
  2725.                 /* pipesrc and dspsize control the size that is scaled from,
  2726.                  * which should always be the user's requested size.
  2727.                  */
  2728.                 I915_WRITE(DSPSIZE(plane),
  2729.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2730.                            (intel_crtc->config->pipe_src_w - 1));
  2731.                 I915_WRITE(DSPPOS(plane), 0);
  2732.         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
  2733.                 I915_WRITE(PRIMSIZE(plane),
  2734.                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
  2735.                            (intel_crtc->config->pipe_src_w - 1));
  2736.                 I915_WRITE(PRIMPOS(plane), 0);
  2737.                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
  2738.         }
  2739.  
  2740.         switch (fb->pixel_format) {
  2741.         case DRM_FORMAT_C8:
  2742.                 dspcntr |= DISPPLANE_8BPP;
  2743.                 break;
  2744.         case DRM_FORMAT_XRGB1555:
  2745.                 dspcntr |= DISPPLANE_BGRX555;
  2746.                 break;
  2747.         case DRM_FORMAT_RGB565:
  2748.                 dspcntr |= DISPPLANE_BGRX565;
  2749.                 break;
  2750.         case DRM_FORMAT_XRGB8888:
  2751.                 dspcntr |= DISPPLANE_BGRX888;
  2752.                 break;
  2753.         case DRM_FORMAT_XBGR8888:
  2754.                 dspcntr |= DISPPLANE_RGBX888;
  2755.                 break;
  2756.         case DRM_FORMAT_XRGB2101010:
  2757.                 dspcntr |= DISPPLANE_BGRX101010;
  2758.                 break;
  2759.         case DRM_FORMAT_XBGR2101010:
  2760.                 dspcntr |= DISPPLANE_RGBX101010;
  2761.                 break;
  2762.         default:
  2763.                 BUG();
  2764.         }
  2765.  
  2766.         if (INTEL_INFO(dev)->gen >= 4 &&
  2767.             obj->tiling_mode != I915_TILING_NONE)
  2768.                 dspcntr |= DISPPLANE_TILED;
  2769.  
  2770.         if (IS_G4X(dev))
  2771.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2772.  
  2773.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2774.  
  2775.         if (INTEL_INFO(dev)->gen >= 4) {
  2776.                 intel_crtc->dspaddr_offset =
  2777.                         intel_gen4_compute_page_offset(dev_priv,
  2778.                                                        &x, &y, obj->tiling_mode,
  2779.                                                        pixel_size,
  2780.                                                        fb->pitches[0]);
  2781.                 linear_offset -= intel_crtc->dspaddr_offset;
  2782.         } else {
  2783.                 intel_crtc->dspaddr_offset = linear_offset;
  2784.         }
  2785.  
  2786.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2787.                 dspcntr |= DISPPLANE_ROTATE_180;
  2788.  
  2789.                 x += (intel_crtc->config->pipe_src_w - 1);
  2790.                 y += (intel_crtc->config->pipe_src_h - 1);
  2791.  
  2792.                 /* Finding the last pixel of the last line of the display
  2793.                 data and adding to linear_offset*/
  2794.                 linear_offset +=
  2795.                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2796.                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2797.         }
  2798.  
  2799.         intel_crtc->adjusted_x = x;
  2800.         intel_crtc->adjusted_y = y;
  2801.  
  2802.         I915_WRITE(reg, dspcntr);
  2803.  
  2804.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2805.         if (INTEL_INFO(dev)->gen >= 4) {
  2806.                 I915_WRITE(DSPSURF(plane),
  2807.                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2808.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2809.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2810.         } else
  2811.                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  2812.         POSTING_READ(reg);
  2813. }
  2814.  
  2815. static void ironlake_update_primary_plane(struct drm_crtc *crtc,
  2816.                                           struct drm_framebuffer *fb,
  2817.                                           int x, int y)
  2818. {
  2819.         struct drm_device *dev = crtc->dev;
  2820.         struct drm_i915_private *dev_priv = dev->dev_private;
  2821.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2822.         struct drm_plane *primary = crtc->primary;
  2823.         bool visible = to_intel_plane_state(primary->state)->visible;
  2824.         struct drm_i915_gem_object *obj;
  2825.         int plane = intel_crtc->plane;
  2826.         unsigned long linear_offset;
  2827.         u32 dspcntr;
  2828.         u32 reg = DSPCNTR(plane);
  2829.         int pixel_size;
  2830.  
  2831.         if (!visible || !fb) {
  2832.                 I915_WRITE(reg, 0);
  2833.                 I915_WRITE(DSPSURF(plane), 0);
  2834.                 POSTING_READ(reg);
  2835.                 return;
  2836.         }
  2837.  
  2838.         obj = intel_fb_obj(fb);
  2839.         if (WARN_ON(obj == NULL))
  2840.                 return;
  2841.  
  2842.         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
  2843.  
  2844.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  2845.  
  2846.         dspcntr |= DISPLAY_PLANE_ENABLE;
  2847.  
  2848.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2849.                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
  2850.  
  2851.         switch (fb->pixel_format) {
  2852.         case DRM_FORMAT_C8:
  2853.                 dspcntr |= DISPPLANE_8BPP;
  2854.                 break;
  2855.         case DRM_FORMAT_RGB565:
  2856.                 dspcntr |= DISPPLANE_BGRX565;
  2857.                 break;
  2858.         case DRM_FORMAT_XRGB8888:
  2859.                 dspcntr |= DISPPLANE_BGRX888;
  2860.                 break;
  2861.         case DRM_FORMAT_XBGR8888:
  2862.                 dspcntr |= DISPPLANE_RGBX888;
  2863.                 break;
  2864.         case DRM_FORMAT_XRGB2101010:
  2865.                 dspcntr |= DISPPLANE_BGRX101010;
  2866.                 break;
  2867.         case DRM_FORMAT_XBGR2101010:
  2868.                 dspcntr |= DISPPLANE_RGBX101010;
  2869.                 break;
  2870.         default:
  2871.                 BUG();
  2872.         }
  2873.  
  2874.         if (obj->tiling_mode != I915_TILING_NONE)
  2875.                 dspcntr |= DISPPLANE_TILED;
  2876.  
  2877.         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
  2878.                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2879.  
  2880.         linear_offset = y * fb->pitches[0] + x * pixel_size;
  2881.         intel_crtc->dspaddr_offset =
  2882.                 intel_gen4_compute_page_offset(dev_priv,
  2883.                                                &x, &y, obj->tiling_mode,
  2884.                                                pixel_size,
  2885.                                                fb->pitches[0]);
  2886.         linear_offset -= intel_crtc->dspaddr_offset;
  2887.         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
  2888.                 dspcntr |= DISPPLANE_ROTATE_180;
  2889.  
  2890.                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  2891.                         x += (intel_crtc->config->pipe_src_w - 1);
  2892.                         y += (intel_crtc->config->pipe_src_h - 1);
  2893.  
  2894.                         /* Finding the last pixel of the last line of the display
  2895.                         data and adding to linear_offset*/
  2896.                         linear_offset +=
  2897.                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
  2898.                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
  2899.                 }
  2900.         }
  2901.  
  2902.         intel_crtc->adjusted_x = x;
  2903.         intel_crtc->adjusted_y = y;
  2904.  
  2905.         I915_WRITE(reg, dspcntr);
  2906.  
  2907.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2908.         I915_WRITE(DSPSURF(plane),
  2909.                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  2910.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2911.                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  2912.         } else {
  2913.                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2914.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2915.         }
  2916.         POSTING_READ(reg);
  2917. }
  2918.  
  2919. u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
  2920.                               uint32_t pixel_format)
  2921. {
  2922.         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
  2923.  
  2924.         /*
  2925.          * The stride is either expressed as a multiple of 64 bytes
  2926.          * chunks for linear buffers or in number of tiles for tiled
  2927.          * buffers.
  2928.          */
  2929.         switch (fb_modifier) {
  2930.         case DRM_FORMAT_MOD_NONE:
  2931.                 return 64;
  2932.         case I915_FORMAT_MOD_X_TILED:
  2933.                 if (INTEL_INFO(dev)->gen == 2)
  2934.                         return 128;
  2935.                 return 512;
  2936.         case I915_FORMAT_MOD_Y_TILED:
  2937.                 /* No need to check for old gens and Y tiling since this is
  2938.                  * about the display engine and those will be blocked before
  2939.                  * we get here.
  2940.                  */
  2941.                 return 128;
  2942.         case I915_FORMAT_MOD_Yf_TILED:
  2943.                 if (bits_per_pixel == 8)
  2944.                         return 64;
  2945.                 else
  2946.                         return 128;
  2947.         default:
  2948.                 MISSING_CASE(fb_modifier);
  2949.                 return 64;
  2950.         }
  2951. }
  2952.  
  2953. unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
  2954.                                      struct drm_i915_gem_object *obj,
  2955.                                      unsigned int plane)
  2956. {
  2957.         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
  2958.         struct i915_vma *vma;
  2959.         unsigned char *offset;
  2960.  
  2961.         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
  2962.                 view = &i915_ggtt_view_rotated;
  2963.  
  2964.         vma = i915_gem_obj_to_ggtt_view(obj, view);
  2965.         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
  2966.                 view->type))
  2967.                 return -1;
  2968.  
  2969.         offset = (unsigned char *)vma->node.start;
  2970.  
  2971.         if (plane == 1) {
  2972.                 offset += vma->ggtt_view.rotation_info.uv_start_page *
  2973.                           PAGE_SIZE;
  2974.         }
  2975.  
  2976.         return (unsigned long)offset;
  2977. }
  2978.  
  2979. static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
  2980. {
  2981.         struct drm_device *dev = intel_crtc->base.dev;
  2982.         struct drm_i915_private *dev_priv = dev->dev_private;
  2983.  
  2984.         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
  2985.         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
  2986.         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
  2987. }
  2988.  
  2989. /*
  2990.  * This function detaches (aka. unbinds) unused scalers in hardware
  2991.  */
  2992. static void skl_detach_scalers(struct intel_crtc *intel_crtc)
  2993. {
  2994.         struct intel_crtc_scaler_state *scaler_state;
  2995.         int i;
  2996.  
  2997.         scaler_state = &intel_crtc->config->scaler_state;
  2998.  
  2999.         /* loop through and disable scalers that aren't in use */
  3000.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  3001.                 if (!scaler_state->scalers[i].in_use)
  3002.                         skl_detach_scaler(intel_crtc, i);
  3003.         }
  3004. }
  3005.  
  3006. u32 skl_plane_ctl_format(uint32_t pixel_format)
  3007. {
  3008.         switch (pixel_format) {
  3009.         case DRM_FORMAT_C8:
  3010.                 return PLANE_CTL_FORMAT_INDEXED;
  3011.         case DRM_FORMAT_RGB565:
  3012.                 return PLANE_CTL_FORMAT_RGB_565;
  3013.         case DRM_FORMAT_XBGR8888:
  3014.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
  3015.         case DRM_FORMAT_XRGB8888:
  3016.                 return PLANE_CTL_FORMAT_XRGB_8888;
  3017.         /*
  3018.          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
  3019.          * to be already pre-multiplied. We need to add a knob (or a different
  3020.          * DRM_FORMAT) for user-space to configure that.
  3021.          */
  3022.         case DRM_FORMAT_ABGR8888:
  3023.                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
  3024.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3025.         case DRM_FORMAT_ARGB8888:
  3026.                 return PLANE_CTL_FORMAT_XRGB_8888 |
  3027.                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
  3028.         case DRM_FORMAT_XRGB2101010:
  3029.                 return PLANE_CTL_FORMAT_XRGB_2101010;
  3030.         case DRM_FORMAT_XBGR2101010:
  3031.                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
  3032.         case DRM_FORMAT_YUYV:
  3033.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
  3034.         case DRM_FORMAT_YVYU:
  3035.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
  3036.         case DRM_FORMAT_UYVY:
  3037.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
  3038.         case DRM_FORMAT_VYUY:
  3039.                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
  3040.         default:
  3041.                 MISSING_CASE(pixel_format);
  3042.         }
  3043.  
  3044.         return 0;
  3045. }
  3046.  
  3047. u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
  3048. {
  3049.         switch (fb_modifier) {
  3050.         case DRM_FORMAT_MOD_NONE:
  3051.                 break;
  3052.         case I915_FORMAT_MOD_X_TILED:
  3053.                 return PLANE_CTL_TILED_X;
  3054.         case I915_FORMAT_MOD_Y_TILED:
  3055.                 return PLANE_CTL_TILED_Y;
  3056.         case I915_FORMAT_MOD_Yf_TILED:
  3057.                 return PLANE_CTL_TILED_YF;
  3058.         default:
  3059.                 MISSING_CASE(fb_modifier);
  3060.         }
  3061.  
  3062.         return 0;
  3063. }
  3064.  
  3065. u32 skl_plane_ctl_rotation(unsigned int rotation)
  3066. {
  3067.         switch (rotation) {
  3068.         case BIT(DRM_ROTATE_0):
  3069.                 break;
  3070.         /*
  3071.          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
  3072.          * while i915 HW rotation is clockwise, thats why this swapping.
  3073.          */
  3074.         case BIT(DRM_ROTATE_90):
  3075.                 return PLANE_CTL_ROTATE_270;
  3076.         case BIT(DRM_ROTATE_180):
  3077.                 return PLANE_CTL_ROTATE_180;
  3078.         case BIT(DRM_ROTATE_270):
  3079.                 return PLANE_CTL_ROTATE_90;
  3080.         default:
  3081.                 MISSING_CASE(rotation);
  3082.         }
  3083.  
  3084.         return 0;
  3085. }
  3086.  
  3087. static void skylake_update_primary_plane(struct drm_crtc *crtc,
  3088.                                          struct drm_framebuffer *fb,
  3089.                                          int x, int y)
  3090. {
  3091.         struct drm_device *dev = crtc->dev;
  3092.         struct drm_i915_private *dev_priv = dev->dev_private;
  3093.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3094.         struct drm_plane *plane = crtc->primary;
  3095.         bool visible = to_intel_plane_state(plane->state)->visible;
  3096.         struct drm_i915_gem_object *obj;
  3097.         int pipe = intel_crtc->pipe;
  3098.         u32 plane_ctl, stride_div, stride;
  3099.         u32 tile_height, plane_offset, plane_size;
  3100.         unsigned int rotation;
  3101.         int x_offset, y_offset;
  3102.         unsigned long surf_addr;
  3103.         struct intel_crtc_state *crtc_state = intel_crtc->config;
  3104.         struct intel_plane_state *plane_state;
  3105.         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
  3106.         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
  3107.         int scaler_id = -1;
  3108.  
  3109.         plane_state = to_intel_plane_state(plane->state);
  3110.  
  3111.         if (!visible || !fb) {
  3112.                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
  3113.                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
  3114.                 POSTING_READ(PLANE_CTL(pipe, 0));
  3115.                 return;
  3116.         }
  3117.  
  3118.         plane_ctl = PLANE_CTL_ENABLE |
  3119.                     PLANE_CTL_PIPE_GAMMA_ENABLE |
  3120.                     PLANE_CTL_PIPE_CSC_ENABLE;
  3121.  
  3122.         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
  3123.         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
  3124.         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
  3125.  
  3126.         rotation = plane->state->rotation;
  3127.         plane_ctl |= skl_plane_ctl_rotation(rotation);
  3128.  
  3129.         obj = intel_fb_obj(fb);
  3130.         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
  3131.                                                fb->pixel_format);
  3132.         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
  3133.  
  3134.         WARN_ON(drm_rect_width(&plane_state->src) == 0);
  3135.  
  3136.         scaler_id = plane_state->scaler_id;
  3137.         src_x = plane_state->src.x1 >> 16;
  3138.         src_y = plane_state->src.y1 >> 16;
  3139.         src_w = drm_rect_width(&plane_state->src) >> 16;
  3140.         src_h = drm_rect_height(&plane_state->src) >> 16;
  3141.         dst_x = plane_state->dst.x1;
  3142.         dst_y = plane_state->dst.y1;
  3143.         dst_w = drm_rect_width(&plane_state->dst);
  3144.         dst_h = drm_rect_height(&plane_state->dst);
  3145.  
  3146.         WARN_ON(x != src_x || y != src_y);
  3147.  
  3148.         if (intel_rotation_90_or_270(rotation)) {
  3149.                 /* stride = Surface height in tiles */
  3150.                 tile_height = intel_tile_height(dev, fb->pixel_format,
  3151.                                                 fb->modifier[0], 0);
  3152.                 stride = DIV_ROUND_UP(fb->height, tile_height);
  3153.                 x_offset = stride * tile_height - y - src_h;
  3154.                 y_offset = x;
  3155.                 plane_size = (src_w - 1) << 16 | (src_h - 1);
  3156.         } else {
  3157.                 stride = fb->pitches[0] / stride_div;
  3158.                 x_offset = x;
  3159.                 y_offset = y;
  3160.                 plane_size = (src_h - 1) << 16 | (src_w - 1);
  3161.         }
  3162.         plane_offset = y_offset << 16 | x_offset;
  3163.  
  3164.         intel_crtc->adjusted_x = x_offset;
  3165.         intel_crtc->adjusted_y = y_offset;
  3166.  
  3167.         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
  3168.         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
  3169.         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
  3170.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  3171.  
  3172.         if (scaler_id >= 0) {
  3173.                 uint32_t ps_ctrl = 0;
  3174.  
  3175.                 WARN_ON(!dst_w || !dst_h);
  3176.                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
  3177.                         crtc_state->scaler_state.scalers[scaler_id].mode;
  3178.                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
  3179.                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
  3180.                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
  3181.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
  3182.                 I915_WRITE(PLANE_POS(pipe, 0), 0);
  3183.         } else {
  3184.                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
  3185.         }
  3186.  
  3187.         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
  3188.  
  3189.         POSTING_READ(PLANE_SURF(pipe, 0));
  3190. }
  3191.  
  3192. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  3193. static int
  3194. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  3195.                            int x, int y, enum mode_set_atomic state)
  3196. {
  3197.         struct drm_device *dev = crtc->dev;
  3198.         struct drm_i915_private *dev_priv = dev->dev_private;
  3199.  
  3200.         if (dev_priv->fbc.disable_fbc)
  3201.                 dev_priv->fbc.disable_fbc(dev_priv);
  3202.  
  3203.         dev_priv->display.update_primary_plane(crtc, fb, x, y);
  3204.  
  3205.         return 0;
  3206. }
  3207.  
  3208. static void intel_complete_page_flips(struct drm_device *dev)
  3209. {
  3210.         struct drm_crtc *crtc;
  3211.  
  3212.         for_each_crtc(dev, crtc) {
  3213.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3214.                 enum plane plane = intel_crtc->plane;
  3215.  
  3216.                 intel_prepare_page_flip(dev, plane);
  3217.                 intel_finish_page_flip_plane(dev, plane);
  3218.         }
  3219. }
  3220.  
  3221. static void intel_update_primary_planes(struct drm_device *dev)
  3222. {
  3223.         struct drm_crtc *crtc;
  3224.  
  3225.         for_each_crtc(dev, crtc) {
  3226.                 struct intel_plane *plane = to_intel_plane(crtc->primary);
  3227.                 struct intel_plane_state *plane_state;
  3228.  
  3229.                 drm_modeset_lock_crtc(crtc, &plane->base);
  3230.  
  3231.                 plane_state = to_intel_plane_state(plane->base.state);
  3232.  
  3233.                 if (plane_state->base.fb)
  3234.                         plane->commit_plane(&plane->base, plane_state);
  3235.  
  3236.                 drm_modeset_unlock_crtc(crtc);
  3237.         }
  3238. }
  3239.  
  3240. void intel_prepare_reset(struct drm_device *dev)
  3241. {
  3242.         /* no reset support for gen2 */
  3243.         if (IS_GEN2(dev))
  3244.                 return;
  3245.  
  3246.         /* reset doesn't touch the display */
  3247.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  3248.                 return;
  3249.  
  3250.         drm_modeset_lock_all(dev);
  3251.         /*
  3252.          * Disabling the crtcs gracefully seems nicer. Also the
  3253.          * g33 docs say we should at least disable all the planes.
  3254.          */
  3255.         intel_display_suspend(dev);
  3256. }
  3257.  
  3258. void intel_finish_reset(struct drm_device *dev)
  3259. {
  3260.         struct drm_i915_private *dev_priv = to_i915(dev);
  3261.  
  3262.         /*
  3263.          * Flips in the rings will be nuked by the reset,
  3264.          * so complete all pending flips so that user space
  3265.          * will get its events and not get stuck.
  3266.          */
  3267.         intel_complete_page_flips(dev);
  3268.  
  3269.         /* no reset support for gen2 */
  3270.         if (IS_GEN2(dev))
  3271.                 return;
  3272.  
  3273.         /* reset doesn't touch the display */
  3274.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
  3275.                 /*
  3276.                  * Flips in the rings have been nuked by the reset,
  3277.                  * so update the base address of all primary
  3278.                  * planes to the the last fb to make sure we're
  3279.                  * showing the correct fb after a reset.
  3280.                  *
  3281.                  * FIXME: Atomic will make this obsolete since we won't schedule
  3282.                  * CS-based flips (which might get lost in gpu resets) any more.
  3283.                  */
  3284.                 intel_update_primary_planes(dev);
  3285.                 return;
  3286.         }
  3287.  
  3288.         /*
  3289.          * The display has been reset as well,
  3290.          * so need a full re-initialization.
  3291.          */
  3292.         intel_runtime_pm_disable_interrupts(dev_priv);
  3293.         intel_runtime_pm_enable_interrupts(dev_priv);
  3294.  
  3295.         intel_modeset_init_hw(dev);
  3296.  
  3297.         spin_lock_irq(&dev_priv->irq_lock);
  3298.         if (dev_priv->display.hpd_irq_setup)
  3299.                 dev_priv->display.hpd_irq_setup(dev);
  3300.         spin_unlock_irq(&dev_priv->irq_lock);
  3301.  
  3302.         intel_display_resume(dev);
  3303.  
  3304.         intel_hpd_init(dev_priv);
  3305.  
  3306.         drm_modeset_unlock_all(dev);
  3307. }
  3308.  
  3309. static void
  3310. intel_finish_fb(struct drm_framebuffer *old_fb)
  3311. {
  3312.         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
  3313.         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  3314.         bool was_interruptible = dev_priv->mm.interruptible;
  3315.         int ret;
  3316.  
  3317.         /* Big Hammer, we also need to ensure that any pending
  3318.          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  3319.          * current scanout is retired before unpinning the old
  3320.          * framebuffer. Note that we rely on userspace rendering
  3321.          * into the buffer attached to the pipe they are waiting
  3322.          * on. If not, userspace generates a GPU hang with IPEHR
  3323.          * point to the MI_WAIT_FOR_EVENT.
  3324.          *
  3325.          * This should only fail upon a hung GPU, in which case we
  3326.          * can safely continue.
  3327.          */
  3328.         dev_priv->mm.interruptible = false;
  3329.         ret = i915_gem_object_wait_rendering(obj, true);
  3330.         dev_priv->mm.interruptible = was_interruptible;
  3331.  
  3332.         WARN_ON(ret);
  3333. }
  3334.  
  3335. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  3336. {
  3337.         struct drm_device *dev = crtc->dev;
  3338.         struct drm_i915_private *dev_priv = dev->dev_private;
  3339.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3340.         bool pending;
  3341.  
  3342.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  3343.             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  3344.                 return false;
  3345.  
  3346.         spin_lock_irq(&dev->event_lock);
  3347.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  3348.         spin_unlock_irq(&dev->event_lock);
  3349.  
  3350.         return pending;
  3351. }
  3352.  
  3353. static void intel_update_pipe_config(struct intel_crtc *crtc,
  3354.                                      struct intel_crtc_state *old_crtc_state)
  3355. {
  3356.         struct drm_device *dev = crtc->base.dev;
  3357.         struct drm_i915_private *dev_priv = dev->dev_private;
  3358.         struct intel_crtc_state *pipe_config =
  3359.                 to_intel_crtc_state(crtc->base.state);
  3360.  
  3361.         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
  3362.         crtc->base.mode = crtc->base.state->mode;
  3363.  
  3364.         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
  3365.                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
  3366.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  3367.  
  3368.         if (HAS_DDI(dev))
  3369.                 intel_set_pipe_csc(&crtc->base);
  3370.  
  3371.         /*
  3372.          * Update pipe size and adjust fitter if needed: the reason for this is
  3373.          * that in compute_mode_changes we check the native mode (not the pfit
  3374.          * mode) to see if we can flip rather than do a full mode set. In the
  3375.          * fastboot case, we'll flip, but if we don't update the pipesrc and
  3376.          * pfit state, we'll end up with a big fb scanned out into the wrong
  3377.          * sized surface.
  3378.          */
  3379.  
  3380.         I915_WRITE(PIPESRC(crtc->pipe),
  3381.                    ((pipe_config->pipe_src_w - 1) << 16) |
  3382.                    (pipe_config->pipe_src_h - 1));
  3383.  
  3384.         /* on skylake this is done by detaching scalers */
  3385.         if (INTEL_INFO(dev)->gen >= 9) {
  3386.                 skl_detach_scalers(crtc);
  3387.  
  3388.                 if (pipe_config->pch_pfit.enabled)
  3389.                         skylake_pfit_enable(crtc);
  3390.         } else if (HAS_PCH_SPLIT(dev)) {
  3391.                 if (pipe_config->pch_pfit.enabled)
  3392.                         ironlake_pfit_enable(crtc);
  3393.                 else if (old_crtc_state->pch_pfit.enabled)
  3394.                         ironlake_pfit_disable(crtc, true);
  3395.         }
  3396. }
  3397.  
  3398. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  3399. {
  3400.         struct drm_device *dev = crtc->dev;
  3401.         struct drm_i915_private *dev_priv = dev->dev_private;
  3402.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3403.         int pipe = intel_crtc->pipe;
  3404.         u32 reg, temp;
  3405.  
  3406.         /* enable normal train */
  3407.         reg = FDI_TX_CTL(pipe);
  3408.         temp = I915_READ(reg);
  3409.         if (IS_IVYBRIDGE(dev)) {
  3410.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3411.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  3412.         } else {
  3413.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3414.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  3415.         }
  3416.         I915_WRITE(reg, temp);
  3417.  
  3418.         reg = FDI_RX_CTL(pipe);
  3419.         temp = I915_READ(reg);
  3420.         if (HAS_PCH_CPT(dev)) {
  3421.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3422.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  3423.         } else {
  3424.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3425.                 temp |= FDI_LINK_TRAIN_NONE;
  3426.         }
  3427.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  3428.  
  3429.         /* wait one idle pattern time */
  3430.         POSTING_READ(reg);
  3431.         udelay(1000);
  3432.  
  3433.         /* IVB wants error correction enabled */
  3434.         if (IS_IVYBRIDGE(dev))
  3435.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  3436.                            FDI_FE_ERRC_ENABLE);
  3437. }
  3438.  
  3439. /* The FDI link training functions for ILK/Ibexpeak. */
  3440. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  3441. {
  3442.         struct drm_device *dev = crtc->dev;
  3443.         struct drm_i915_private *dev_priv = dev->dev_private;
  3444.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3445.         int pipe = intel_crtc->pipe;
  3446.         u32 reg, temp, tries;
  3447.  
  3448.         /* FDI needs bits from pipe first */
  3449.         assert_pipe_enabled(dev_priv, pipe);
  3450.  
  3451.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3452.            for train result */
  3453.         reg = FDI_RX_IMR(pipe);
  3454.         temp = I915_READ(reg);
  3455.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3456.         temp &= ~FDI_RX_BIT_LOCK;
  3457.         I915_WRITE(reg, temp);
  3458.         I915_READ(reg);
  3459.         udelay(150);
  3460.  
  3461.         /* enable CPU FDI TX and PCH FDI RX */
  3462.         reg = FDI_TX_CTL(pipe);
  3463.         temp = I915_READ(reg);
  3464.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3465.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3466.         temp &= ~FDI_LINK_TRAIN_NONE;
  3467.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3468.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3469.  
  3470.         reg = FDI_RX_CTL(pipe);
  3471.         temp = I915_READ(reg);
  3472.         temp &= ~FDI_LINK_TRAIN_NONE;
  3473.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3474.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3475.  
  3476.         POSTING_READ(reg);
  3477.         udelay(150);
  3478.  
  3479.         /* Ironlake workaround, enable clock pointer after FDI enable*/
  3480.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3481.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  3482.                    FDI_RX_PHASE_SYNC_POINTER_EN);
  3483.  
  3484.         reg = FDI_RX_IIR(pipe);
  3485.         for (tries = 0; tries < 5; tries++) {
  3486.                 temp = I915_READ(reg);
  3487.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3488.  
  3489.                 if ((temp & FDI_RX_BIT_LOCK)) {
  3490.                         DRM_DEBUG_KMS("FDI train 1 done.\n");
  3491.                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3492.                         break;
  3493.                 }
  3494.         }
  3495.         if (tries == 5)
  3496.                 DRM_ERROR("FDI train 1 fail!\n");
  3497.  
  3498.         /* Train 2 */
  3499.         reg = FDI_TX_CTL(pipe);
  3500.         temp = I915_READ(reg);
  3501.         temp &= ~FDI_LINK_TRAIN_NONE;
  3502.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3503.         I915_WRITE(reg, temp);
  3504.  
  3505.         reg = FDI_RX_CTL(pipe);
  3506.         temp = I915_READ(reg);
  3507.         temp &= ~FDI_LINK_TRAIN_NONE;
  3508.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3509.         I915_WRITE(reg, temp);
  3510.  
  3511.         POSTING_READ(reg);
  3512.         udelay(150);
  3513.  
  3514.         reg = FDI_RX_IIR(pipe);
  3515.         for (tries = 0; tries < 5; tries++) {
  3516.                 temp = I915_READ(reg);
  3517.                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3518.  
  3519.                 if (temp & FDI_RX_SYMBOL_LOCK) {
  3520.                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3521.                         DRM_DEBUG_KMS("FDI train 2 done.\n");
  3522.                         break;
  3523.                 }
  3524.         }
  3525.         if (tries == 5)
  3526.                 DRM_ERROR("FDI train 2 fail!\n");
  3527.  
  3528.         DRM_DEBUG_KMS("FDI train done\n");
  3529.  
  3530. }
  3531.  
  3532. static const int snb_b_fdi_train_param[] = {
  3533.         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  3534.         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  3535.         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  3536.         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  3537. };
  3538.  
  3539. /* The FDI link training functions for SNB/Cougarpoint. */
  3540. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  3541. {
  3542.         struct drm_device *dev = crtc->dev;
  3543.         struct drm_i915_private *dev_priv = dev->dev_private;
  3544.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3545.         int pipe = intel_crtc->pipe;
  3546.         u32 reg, temp, i, retry;
  3547.  
  3548.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3549.            for train result */
  3550.         reg = FDI_RX_IMR(pipe);
  3551.         temp = I915_READ(reg);
  3552.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3553.         temp &= ~FDI_RX_BIT_LOCK;
  3554.         I915_WRITE(reg, temp);
  3555.  
  3556.         POSTING_READ(reg);
  3557.         udelay(150);
  3558.  
  3559.         /* enable CPU FDI TX and PCH FDI RX */
  3560.         reg = FDI_TX_CTL(pipe);
  3561.         temp = I915_READ(reg);
  3562.         temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3563.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3564.         temp &= ~FDI_LINK_TRAIN_NONE;
  3565.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3566.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3567.         /* SNB-B */
  3568.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3569.         I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3570.  
  3571.         I915_WRITE(FDI_RX_MISC(pipe),
  3572.                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3573.  
  3574.         reg = FDI_RX_CTL(pipe);
  3575.         temp = I915_READ(reg);
  3576.         if (HAS_PCH_CPT(dev)) {
  3577.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3578.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3579.         } else {
  3580.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3581.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3582.         }
  3583.         I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3584.  
  3585.         POSTING_READ(reg);
  3586.         udelay(150);
  3587.  
  3588.         for (i = 0; i < 4; i++) {
  3589.                 reg = FDI_TX_CTL(pipe);
  3590.                 temp = I915_READ(reg);
  3591.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3592.                 temp |= snb_b_fdi_train_param[i];
  3593.                 I915_WRITE(reg, temp);
  3594.  
  3595.                 POSTING_READ(reg);
  3596.                 udelay(500);
  3597.  
  3598.                 for (retry = 0; retry < 5; retry++) {
  3599.                         reg = FDI_RX_IIR(pipe);
  3600.                         temp = I915_READ(reg);
  3601.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3602.                         if (temp & FDI_RX_BIT_LOCK) {
  3603.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3604.                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
  3605.                                 break;
  3606.                         }
  3607.                         udelay(50);
  3608.                 }
  3609.                 if (retry < 5)
  3610.                         break;
  3611.         }
  3612.         if (i == 4)
  3613.                 DRM_ERROR("FDI train 1 fail!\n");
  3614.  
  3615.         /* Train 2 */
  3616.         reg = FDI_TX_CTL(pipe);
  3617.         temp = I915_READ(reg);
  3618.         temp &= ~FDI_LINK_TRAIN_NONE;
  3619.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  3620.         if (IS_GEN6(dev)) {
  3621.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3622.                 /* SNB-B */
  3623.                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  3624.         }
  3625.         I915_WRITE(reg, temp);
  3626.  
  3627.         reg = FDI_RX_CTL(pipe);
  3628.         temp = I915_READ(reg);
  3629.         if (HAS_PCH_CPT(dev)) {
  3630.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3631.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3632.         } else {
  3633.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3634.                 temp |= FDI_LINK_TRAIN_PATTERN_2;
  3635.         }
  3636.         I915_WRITE(reg, temp);
  3637.  
  3638.         POSTING_READ(reg);
  3639.         udelay(150);
  3640.  
  3641.         for (i = 0; i < 4; i++) {
  3642.                 reg = FDI_TX_CTL(pipe);
  3643.                 temp = I915_READ(reg);
  3644.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3645.                 temp |= snb_b_fdi_train_param[i];
  3646.                 I915_WRITE(reg, temp);
  3647.  
  3648.                 POSTING_READ(reg);
  3649.                 udelay(500);
  3650.  
  3651.                 for (retry = 0; retry < 5; retry++) {
  3652.                         reg = FDI_RX_IIR(pipe);
  3653.                         temp = I915_READ(reg);
  3654.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3655.                         if (temp & FDI_RX_SYMBOL_LOCK) {
  3656.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3657.                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
  3658.                                 break;
  3659.                         }
  3660.                         udelay(50);
  3661.                 }
  3662.                 if (retry < 5)
  3663.                         break;
  3664.         }
  3665.         if (i == 4)
  3666.                 DRM_ERROR("FDI train 2 fail!\n");
  3667.  
  3668.         DRM_DEBUG_KMS("FDI train done.\n");
  3669. }
  3670.  
  3671. /* Manual link training for Ivy Bridge A0 parts */
  3672. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  3673. {
  3674.         struct drm_device *dev = crtc->dev;
  3675.         struct drm_i915_private *dev_priv = dev->dev_private;
  3676.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3677.         int pipe = intel_crtc->pipe;
  3678.         u32 reg, temp, i, j;
  3679.  
  3680.         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  3681.            for train result */
  3682.         reg = FDI_RX_IMR(pipe);
  3683.         temp = I915_READ(reg);
  3684.         temp &= ~FDI_RX_SYMBOL_LOCK;
  3685.         temp &= ~FDI_RX_BIT_LOCK;
  3686.         I915_WRITE(reg, temp);
  3687.  
  3688.         POSTING_READ(reg);
  3689.         udelay(150);
  3690.  
  3691.         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  3692.                       I915_READ(FDI_RX_IIR(pipe)));
  3693.  
  3694.         /* Try each vswing and preemphasis setting twice before moving on */
  3695.         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  3696.                 /* disable first in case we need to retry */
  3697.                 reg = FDI_TX_CTL(pipe);
  3698.                 temp = I915_READ(reg);
  3699.                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  3700.                 temp &= ~FDI_TX_ENABLE;
  3701.                 I915_WRITE(reg, temp);
  3702.  
  3703.                 reg = FDI_RX_CTL(pipe);
  3704.                 temp = I915_READ(reg);
  3705.                 temp &= ~FDI_LINK_TRAIN_AUTO;
  3706.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3707.                 temp &= ~FDI_RX_ENABLE;
  3708.                 I915_WRITE(reg, temp);
  3709.  
  3710.                 /* enable CPU FDI TX and PCH FDI RX */
  3711.                 reg = FDI_TX_CTL(pipe);
  3712.                 temp = I915_READ(reg);
  3713.                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
  3714.                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3715.                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  3716.                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  3717.                 temp |= snb_b_fdi_train_param[j/2];
  3718.                 temp |= FDI_COMPOSITE_SYNC;
  3719.                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
  3720.  
  3721.                 I915_WRITE(FDI_RX_MISC(pipe),
  3722.                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  3723.  
  3724.                 reg = FDI_RX_CTL(pipe);
  3725.                 temp = I915_READ(reg);
  3726.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3727.                 temp |= FDI_COMPOSITE_SYNC;
  3728.                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
  3729.  
  3730.                 POSTING_READ(reg);
  3731.                 udelay(1); /* should be 0.5us */
  3732.  
  3733.                 for (i = 0; i < 4; i++) {
  3734.                         reg = FDI_RX_IIR(pipe);
  3735.                         temp = I915_READ(reg);
  3736.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3737.  
  3738.                         if (temp & FDI_RX_BIT_LOCK ||
  3739.                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  3740.                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  3741.                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  3742.                                               i);
  3743.                                 break;
  3744.                         }
  3745.                         udelay(1); /* should be 0.5us */
  3746.                 }
  3747.                 if (i == 4) {
  3748.                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  3749.                         continue;
  3750.                 }
  3751.  
  3752.                 /* Train 2 */
  3753.                 reg = FDI_TX_CTL(pipe);
  3754.                 temp = I915_READ(reg);
  3755.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  3756.                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  3757.                 I915_WRITE(reg, temp);
  3758.  
  3759.                 reg = FDI_RX_CTL(pipe);
  3760.                 temp = I915_READ(reg);
  3761.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3762.                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  3763.                 I915_WRITE(reg, temp);
  3764.  
  3765.                 POSTING_READ(reg);
  3766.                 udelay(2); /* should be 1.5us */
  3767.  
  3768.                 for (i = 0; i < 4; i++) {
  3769.                         reg = FDI_RX_IIR(pipe);
  3770.                         temp = I915_READ(reg);
  3771.                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  3772.  
  3773.                         if (temp & FDI_RX_SYMBOL_LOCK ||
  3774.                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  3775.                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  3776.                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  3777.                                               i);
  3778.                                 goto train_done;
  3779.                         }
  3780.                         udelay(2); /* should be 1.5us */
  3781.                 }
  3782.                 if (i == 4)
  3783.                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  3784.         }
  3785.  
  3786. train_done:
  3787.         DRM_DEBUG_KMS("FDI train done.\n");
  3788. }
  3789.  
  3790. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  3791. {
  3792.         struct drm_device *dev = intel_crtc->base.dev;
  3793.         struct drm_i915_private *dev_priv = dev->dev_private;
  3794.         int pipe = intel_crtc->pipe;
  3795.         u32 reg, temp;
  3796.  
  3797.  
  3798.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  3799.         reg = FDI_RX_CTL(pipe);
  3800.         temp = I915_READ(reg);
  3801.         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  3802.         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  3803.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3804.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  3805.  
  3806.         POSTING_READ(reg);
  3807.         udelay(200);
  3808.  
  3809.         /* Switch from Rawclk to PCDclk */
  3810.         temp = I915_READ(reg);
  3811.         I915_WRITE(reg, temp | FDI_PCDCLK);
  3812.  
  3813.         POSTING_READ(reg);
  3814.         udelay(200);
  3815.  
  3816.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  3817.         reg = FDI_TX_CTL(pipe);
  3818.         temp = I915_READ(reg);
  3819.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  3820.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  3821.  
  3822.                 POSTING_READ(reg);
  3823.                 udelay(100);
  3824.         }
  3825. }
  3826.  
  3827. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  3828. {
  3829.         struct drm_device *dev = intel_crtc->base.dev;
  3830.         struct drm_i915_private *dev_priv = dev->dev_private;
  3831.         int pipe = intel_crtc->pipe;
  3832.         u32 reg, temp;
  3833.  
  3834.         /* Switch from PCDclk to Rawclk */
  3835.         reg = FDI_RX_CTL(pipe);
  3836.         temp = I915_READ(reg);
  3837.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  3838.  
  3839.         /* Disable CPU FDI TX PLL */
  3840.         reg = FDI_TX_CTL(pipe);
  3841.         temp = I915_READ(reg);
  3842.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  3843.  
  3844.         POSTING_READ(reg);
  3845.         udelay(100);
  3846.  
  3847.         reg = FDI_RX_CTL(pipe);
  3848.         temp = I915_READ(reg);
  3849.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  3850.  
  3851.         /* Wait for the clocks to turn off. */
  3852.         POSTING_READ(reg);
  3853.         udelay(100);
  3854. }
  3855.  
  3856. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  3857. {
  3858.         struct drm_device *dev = crtc->dev;
  3859.         struct drm_i915_private *dev_priv = dev->dev_private;
  3860.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3861.         int pipe = intel_crtc->pipe;
  3862.         u32 reg, temp;
  3863.  
  3864.         /* disable CPU FDI tx and PCH FDI rx */
  3865.         reg = FDI_TX_CTL(pipe);
  3866.         temp = I915_READ(reg);
  3867.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  3868.         POSTING_READ(reg);
  3869.  
  3870.         reg = FDI_RX_CTL(pipe);
  3871.         temp = I915_READ(reg);
  3872.         temp &= ~(0x7 << 16);
  3873.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3874.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  3875.  
  3876.         POSTING_READ(reg);
  3877.         udelay(100);
  3878.  
  3879.         /* Ironlake workaround, disable clock pointer after downing FDI */
  3880.         if (HAS_PCH_IBX(dev))
  3881.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  3882.  
  3883.         /* still set train pattern 1 */
  3884.         reg = FDI_TX_CTL(pipe);
  3885.         temp = I915_READ(reg);
  3886.         temp &= ~FDI_LINK_TRAIN_NONE;
  3887.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  3888.         I915_WRITE(reg, temp);
  3889.  
  3890.         reg = FDI_RX_CTL(pipe);
  3891.         temp = I915_READ(reg);
  3892.         if (HAS_PCH_CPT(dev)) {
  3893.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  3894.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  3895.         } else {
  3896.                 temp &= ~FDI_LINK_TRAIN_NONE;
  3897.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  3898.         }
  3899.         /* BPC in FDI rx is consistent with that in PIPECONF */
  3900.         temp &= ~(0x07 << 16);
  3901.         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  3902.         I915_WRITE(reg, temp);
  3903.  
  3904.         POSTING_READ(reg);
  3905.         udelay(100);
  3906. }
  3907.  
  3908. bool intel_has_pending_fb_unpin(struct drm_device *dev)
  3909. {
  3910.         struct intel_crtc *crtc;
  3911.  
  3912.         /* Note that we don't need to be called with mode_config.lock here
  3913.          * as our list of CRTC objects is static for the lifetime of the
  3914.          * device and so cannot disappear as we iterate. Similarly, we can
  3915.          * happily treat the predicates as racy, atomic checks as userspace
  3916.          * cannot claim and pin a new fb without at least acquring the
  3917.          * struct_mutex and so serialising with us.
  3918.          */
  3919.         for_each_intel_crtc(dev, crtc) {
  3920.                 if (atomic_read(&crtc->unpin_work_count) == 0)
  3921.                         continue;
  3922.  
  3923.                 if (crtc->unpin_work)
  3924.                         intel_wait_for_vblank(dev, crtc->pipe);
  3925.  
  3926.                 return true;
  3927.         }
  3928.  
  3929.         return false;
  3930. }
  3931.  
  3932. static void page_flip_completed(struct intel_crtc *intel_crtc)
  3933. {
  3934.         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
  3935.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  3936.  
  3937.         /* ensure that the unpin work is consistent wrt ->pending. */
  3938.         smp_rmb();
  3939.         intel_crtc->unpin_work = NULL;
  3940.  
  3941.         if (work->event)
  3942.                 drm_send_vblank_event(intel_crtc->base.dev,
  3943.                                       intel_crtc->pipe,
  3944.                                       work->event);
  3945.  
  3946.         drm_crtc_vblank_put(&intel_crtc->base);
  3947.  
  3948.         wake_up_all(&dev_priv->pending_flip_queue);
  3949.         queue_work(dev_priv->wq, &work->work);
  3950.  
  3951.         trace_i915_flip_complete(intel_crtc->plane,
  3952.                                  work->pending_flip_obj);
  3953. }
  3954.  
  3955. void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  3956. {
  3957.         struct drm_device *dev = crtc->dev;
  3958.         struct drm_i915_private *dev_priv = dev->dev_private;
  3959.  
  3960.         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  3961.         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
  3962.                                        !intel_crtc_has_pending_flip(crtc),
  3963.                                        60*HZ) == 0)) {
  3964.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3965.  
  3966.                 spin_lock_irq(&dev->event_lock);
  3967.                 if (intel_crtc->unpin_work) {
  3968.                         WARN_ONCE(1, "Removing stuck page flip\n");
  3969.                         page_flip_completed(intel_crtc);
  3970.                 }
  3971.                 spin_unlock_irq(&dev->event_lock);
  3972.         }
  3973.  
  3974.         if (crtc->primary->fb) {
  3975.                 mutex_lock(&dev->struct_mutex);
  3976.                 intel_finish_fb(crtc->primary->fb);
  3977.                 mutex_unlock(&dev->struct_mutex);
  3978.         }
  3979. }
  3980.  
  3981. /* Program iCLKIP clock to the desired frequency */
  3982. static void lpt_program_iclkip(struct drm_crtc *crtc)
  3983. {
  3984.         struct drm_device *dev = crtc->dev;
  3985.         struct drm_i915_private *dev_priv = dev->dev_private;
  3986.         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
  3987.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  3988.         u32 temp;
  3989.  
  3990.         mutex_lock(&dev_priv->sb_lock);
  3991.  
  3992.         /* It is necessary to ungate the pixclk gate prior to programming
  3993.          * the divisors, and gate it back when it is done.
  3994.          */
  3995.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  3996.  
  3997.         /* Disable SSCCTL */
  3998.         intel_sbi_write(dev_priv, SBI_SSCCTL6,
  3999.                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  4000.                                 SBI_SSCCTL_DISABLE,
  4001.                         SBI_ICLK);
  4002.  
  4003.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  4004.         if (clock == 20000) {
  4005.                 auxdiv = 1;
  4006.                 divsel = 0x41;
  4007.                 phaseinc = 0x20;
  4008.         } else {
  4009.                 /* The iCLK virtual clock root frequency is in MHz,
  4010.                  * but the adjusted_mode->crtc_clock in in KHz. To get the
  4011.                  * divisors, it is necessary to divide one by another, so we
  4012.                  * convert the virtual clock precision to KHz here for higher
  4013.                  * precision.
  4014.                  */
  4015.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  4016.                 u32 iclk_pi_range = 64;
  4017.                 u32 desired_divisor, msb_divisor_value, pi_value;
  4018.  
  4019.                 desired_divisor = (iclk_virtual_root_freq / clock);
  4020.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  4021.                 pi_value = desired_divisor % iclk_pi_range;
  4022.  
  4023.                 auxdiv = 0;
  4024.                 divsel = msb_divisor_value - 2;
  4025.                 phaseinc = pi_value;
  4026.         }
  4027.  
  4028.         /* This should not happen with any sane values */
  4029.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  4030.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  4031.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  4032.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  4033.  
  4034.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  4035.                         clock,
  4036.                         auxdiv,
  4037.                         divsel,
  4038.                         phasedir,
  4039.                         phaseinc);
  4040.  
  4041.         /* Program SSCDIVINTPHASE6 */
  4042.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  4043.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  4044.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  4045.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  4046.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  4047.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  4048.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  4049.         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  4050.  
  4051.         /* Program SSCAUXDIV */
  4052.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  4053.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  4054.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  4055.         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  4056.  
  4057.         /* Enable modulator and associated divider */
  4058.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  4059.         temp &= ~SBI_SSCCTL_DISABLE;
  4060.         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  4061.  
  4062.         /* Wait for initialization time */
  4063.         udelay(24);
  4064.  
  4065.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  4066.  
  4067.         mutex_unlock(&dev_priv->sb_lock);
  4068. }
  4069.  
  4070. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  4071.                                                 enum pipe pch_transcoder)
  4072. {
  4073.         struct drm_device *dev = crtc->base.dev;
  4074.         struct drm_i915_private *dev_priv = dev->dev_private;
  4075.         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
  4076.  
  4077.         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  4078.                    I915_READ(HTOTAL(cpu_transcoder)));
  4079.         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  4080.                    I915_READ(HBLANK(cpu_transcoder)));
  4081.         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  4082.                    I915_READ(HSYNC(cpu_transcoder)));
  4083.  
  4084.         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  4085.                    I915_READ(VTOTAL(cpu_transcoder)));
  4086.         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  4087.                    I915_READ(VBLANK(cpu_transcoder)));
  4088.         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  4089.                    I915_READ(VSYNC(cpu_transcoder)));
  4090.         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  4091.                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
  4092. }
  4093.  
  4094. static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
  4095. {
  4096.         struct drm_i915_private *dev_priv = dev->dev_private;
  4097.         uint32_t temp;
  4098.  
  4099.         temp = I915_READ(SOUTH_CHICKEN1);
  4100.         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
  4101.                 return;
  4102.  
  4103.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4104.         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4105.  
  4106.         temp &= ~FDI_BC_BIFURCATION_SELECT;
  4107.         if (enable)
  4108.                 temp |= FDI_BC_BIFURCATION_SELECT;
  4109.  
  4110.         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
  4111.         I915_WRITE(SOUTH_CHICKEN1, temp);
  4112.         POSTING_READ(SOUTH_CHICKEN1);
  4113. }
  4114.  
  4115. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4116. {
  4117.         struct drm_device *dev = intel_crtc->base.dev;
  4118.  
  4119.         switch (intel_crtc->pipe) {
  4120.         case PIPE_A:
  4121.                 break;
  4122.         case PIPE_B:
  4123.                 if (intel_crtc->config->fdi_lanes > 2)
  4124.                         cpt_set_fdi_bc_bifurcation(dev, false);
  4125.                 else
  4126.                         cpt_set_fdi_bc_bifurcation(dev, true);
  4127.  
  4128.                 break;
  4129.         case PIPE_C:
  4130.                 cpt_set_fdi_bc_bifurcation(dev, true);
  4131.  
  4132.                 break;
  4133.         default:
  4134.                 BUG();
  4135.         }
  4136. }
  4137.  
  4138. /*
  4139.  * Enable PCH resources required for PCH ports:
  4140.  *   - PCH PLLs
  4141.  *   - FDI training & RX/TX
  4142.  *   - update transcoder timings
  4143.  *   - DP transcoding bits
  4144.  *   - transcoder
  4145.  */
  4146. static void ironlake_pch_enable(struct drm_crtc *crtc)
  4147. {
  4148.         struct drm_device *dev = crtc->dev;
  4149.         struct drm_i915_private *dev_priv = dev->dev_private;
  4150.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4151.         int pipe = intel_crtc->pipe;
  4152.         u32 reg, temp;
  4153.  
  4154.         assert_pch_transcoder_disabled(dev_priv, pipe);
  4155.  
  4156.         if (IS_IVYBRIDGE(dev))
  4157.                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4158.  
  4159.         /* Write the TU size bits before fdi link training, so that error
  4160.          * detection works. */
  4161.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  4162.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  4163.  
  4164.         /* For PCH output, training FDI link */
  4165.         dev_priv->display.fdi_link_train(crtc);
  4166.  
  4167.         /* We need to program the right clock selection before writing the pixel
  4168.          * mutliplier into the DPLL. */
  4169.         if (HAS_PCH_CPT(dev)) {
  4170.                 u32 sel;
  4171.  
  4172.                 temp = I915_READ(PCH_DPLL_SEL);
  4173.                 temp |= TRANS_DPLL_ENABLE(pipe);
  4174.                 sel = TRANS_DPLLB_SEL(pipe);
  4175.                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
  4176.                         temp |= sel;
  4177.                 else
  4178.                         temp &= ~sel;
  4179.                 I915_WRITE(PCH_DPLL_SEL, temp);
  4180.         }
  4181.  
  4182.         /* XXX: pch pll's can be enabled any time before we enable the PCH
  4183.          * transcoder, and we actually should do this to not upset any PCH
  4184.          * transcoder that already use the clock when we share it.
  4185.          *
  4186.          * Note that enable_shared_dpll tries to do the right thing, but
  4187.          * get_shared_dpll unconditionally resets the pll - we need that to have
  4188.          * the right LVDS enable sequence. */
  4189.         intel_enable_shared_dpll(intel_crtc);
  4190.  
  4191.         /* set transcoder timing, panel must allow it */
  4192.         assert_panel_unlocked(dev_priv, pipe);
  4193.         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  4194.  
  4195.         intel_fdi_normal_train(crtc);
  4196.  
  4197.         /* For PCH DP, enable TRANS_DP_CTL */
  4198.         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
  4199.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  4200.                 reg = TRANS_DP_CTL(pipe);
  4201.                 temp = I915_READ(reg);
  4202.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  4203.                           TRANS_DP_SYNC_MASK |
  4204.                           TRANS_DP_BPC_MASK);
  4205.                 temp |= TRANS_DP_OUTPUT_ENABLE;
  4206.                 temp |= bpc << 9; /* same format but at 11:9 */
  4207.  
  4208.                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  4209.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  4210.                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  4211.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  4212.  
  4213.                 switch (intel_trans_dp_port_sel(crtc)) {
  4214.                 case PCH_DP_B:
  4215.                         temp |= TRANS_DP_PORT_SEL_B;
  4216.                         break;
  4217.                 case PCH_DP_C:
  4218.                         temp |= TRANS_DP_PORT_SEL_C;
  4219.                         break;
  4220.                 case PCH_DP_D:
  4221.                         temp |= TRANS_DP_PORT_SEL_D;
  4222.                         break;
  4223.                 default:
  4224.                         BUG();
  4225.                 }
  4226.  
  4227.                 I915_WRITE(reg, temp);
  4228.         }
  4229.  
  4230.         ironlake_enable_pch_transcoder(dev_priv, pipe);
  4231. }
  4232.  
  4233. static void lpt_pch_enable(struct drm_crtc *crtc)
  4234. {
  4235.         struct drm_device *dev = crtc->dev;
  4236.         struct drm_i915_private *dev_priv = dev->dev_private;
  4237.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4238.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  4239.  
  4240.         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  4241.  
  4242.         lpt_program_iclkip(crtc);
  4243.  
  4244.         /* Set transcoder timing. */
  4245.         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  4246.  
  4247.         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  4248. }
  4249.  
  4250. struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
  4251.                                                 struct intel_crtc_state *crtc_state)
  4252. {
  4253.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  4254.         struct intel_shared_dpll *pll;
  4255.         struct intel_shared_dpll_config *shared_dpll;
  4256.         enum intel_dpll_id i;
  4257.         int max = dev_priv->num_shared_dpll;
  4258.  
  4259.         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  4260.  
  4261.         if (HAS_PCH_IBX(dev_priv->dev)) {
  4262.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  4263.                 i = (enum intel_dpll_id) crtc->pipe;
  4264.                 pll = &dev_priv->shared_dplls[i];
  4265.  
  4266.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4267.                               crtc->base.base.id, pll->name);
  4268.  
  4269.                 WARN_ON(shared_dpll[i].crtc_mask);
  4270.  
  4271.                 goto found;
  4272.         }
  4273.  
  4274.         if (IS_BROXTON(dev_priv->dev)) {
  4275.                 /* PLL is attached to port in bxt */
  4276.                 struct intel_encoder *encoder;
  4277.                 struct intel_digital_port *intel_dig_port;
  4278.  
  4279.                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
  4280.                 if (WARN_ON(!encoder))
  4281.                         return NULL;
  4282.  
  4283.                 intel_dig_port = enc_to_dig_port(&encoder->base);
  4284.                 /* 1:1 mapping between ports and PLLs */
  4285.                 i = (enum intel_dpll_id)intel_dig_port->port;
  4286.                 pll = &dev_priv->shared_dplls[i];
  4287.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  4288.                         crtc->base.base.id, pll->name);
  4289.                 WARN_ON(shared_dpll[i].crtc_mask);
  4290.  
  4291.                 goto found;
  4292.         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
  4293.                 /* Do not consider SPLL */
  4294.                 max = 2;
  4295.  
  4296.         for (i = 0; i < max; i++) {
  4297.                 pll = &dev_priv->shared_dplls[i];
  4298.  
  4299.                 /* Only want to check enabled timings first */
  4300.                 if (shared_dpll[i].crtc_mask == 0)
  4301.                         continue;
  4302.  
  4303.                 if (memcmp(&crtc_state->dpll_hw_state,
  4304.                            &shared_dpll[i].hw_state,
  4305.                            sizeof(crtc_state->dpll_hw_state)) == 0) {
  4306.                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
  4307.                                       crtc->base.base.id, pll->name,
  4308.                                       shared_dpll[i].crtc_mask,
  4309.                                       pll->active);
  4310.                         goto found;
  4311.                 }
  4312.         }
  4313.  
  4314.         /* Ok no matching timings, maybe there's a free one? */
  4315.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4316.                 pll = &dev_priv->shared_dplls[i];
  4317.                 if (shared_dpll[i].crtc_mask == 0) {
  4318.                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  4319.                                       crtc->base.base.id, pll->name);
  4320.                         goto found;
  4321.                 }
  4322.         }
  4323.  
  4324.         return NULL;
  4325.  
  4326. found:
  4327.         if (shared_dpll[i].crtc_mask == 0)
  4328.                 shared_dpll[i].hw_state =
  4329.                         crtc_state->dpll_hw_state;
  4330.  
  4331.         crtc_state->shared_dpll = i;
  4332.         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  4333.                          pipe_name(crtc->pipe));
  4334.  
  4335.         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
  4336.  
  4337.         return pll;
  4338. }
  4339.  
  4340. static void intel_shared_dpll_commit(struct drm_atomic_state *state)
  4341. {
  4342.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  4343.         struct intel_shared_dpll_config *shared_dpll;
  4344.         struct intel_shared_dpll *pll;
  4345.         enum intel_dpll_id i;
  4346.  
  4347.         if (!to_intel_atomic_state(state)->dpll_set)
  4348.                 return;
  4349.  
  4350.         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  4351.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  4352.                 pll = &dev_priv->shared_dplls[i];
  4353.                 pll->config = shared_dpll[i];
  4354.         }
  4355. }
  4356.  
  4357. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  4358. {
  4359.         struct drm_i915_private *dev_priv = dev->dev_private;
  4360.         int dslreg = PIPEDSL(pipe);
  4361.         u32 temp;
  4362.  
  4363.         temp = I915_READ(dslreg);
  4364.         udelay(500);
  4365.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  4366.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  4367.                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  4368.         }
  4369. }
  4370.  
  4371. static int
  4372. skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
  4373.                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
  4374.                   int src_w, int src_h, int dst_w, int dst_h)
  4375. {
  4376.         struct intel_crtc_scaler_state *scaler_state =
  4377.                 &crtc_state->scaler_state;
  4378.         struct intel_crtc *intel_crtc =
  4379.                 to_intel_crtc(crtc_state->base.crtc);
  4380.         int need_scaling;
  4381.  
  4382.         need_scaling = intel_rotation_90_or_270(rotation) ?
  4383.                 (src_h != dst_w || src_w != dst_h):
  4384.                 (src_w != dst_w || src_h != dst_h);
  4385.  
  4386.         /*
  4387.          * if plane is being disabled or scaler is no more required or force detach
  4388.          *  - free scaler binded to this plane/crtc
  4389.          *  - in order to do this, update crtc->scaler_usage
  4390.          *
  4391.          * Here scaler state in crtc_state is set free so that
  4392.          * scaler can be assigned to other user. Actual register
  4393.          * update to free the scaler is done in plane/panel-fit programming.
  4394.          * For this purpose crtc/plane_state->scaler_id isn't reset here.
  4395.          */
  4396.         if (force_detach || !need_scaling) {
  4397.                 if (*scaler_id >= 0) {
  4398.                         scaler_state->scaler_users &= ~(1 << scaler_user);
  4399.                         scaler_state->scalers[*scaler_id].in_use = 0;
  4400.  
  4401.                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4402.                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
  4403.                                 intel_crtc->pipe, scaler_user, *scaler_id,
  4404.                                 scaler_state->scaler_users);
  4405.                         *scaler_id = -1;
  4406.                 }
  4407.                 return 0;
  4408.         }
  4409.  
  4410.         /* range checks */
  4411.         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
  4412.                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
  4413.  
  4414.                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
  4415.                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
  4416.                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
  4417.                         "size is out of scaler range\n",
  4418.                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
  4419.                 return -EINVAL;
  4420.         }
  4421.  
  4422.         /* mark this plane as a scaler user in crtc_state */
  4423.         scaler_state->scaler_users |= (1 << scaler_user);
  4424.         DRM_DEBUG_KMS("scaler_user index %u.%u: "
  4425.                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
  4426.                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
  4427.                 scaler_state->scaler_users);
  4428.  
  4429.         return 0;
  4430. }
  4431.  
  4432. /**
  4433.  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
  4434.  *
  4435.  * @state: crtc's scaler state
  4436.  *
  4437.  * Return
  4438.  *     0 - scaler_usage updated successfully
  4439.  *    error - requested scaling cannot be supported or other error condition
  4440.  */
  4441. int skl_update_scaler_crtc(struct intel_crtc_state *state)
  4442. {
  4443.         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
  4444.         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
  4445.  
  4446.         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
  4447.                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
  4448.  
  4449.         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
  4450.                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
  4451.                 state->pipe_src_w, state->pipe_src_h,
  4452.                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
  4453. }
  4454.  
  4455. /**
  4456.  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
  4457.  *
  4458.  * @state: crtc's scaler state
  4459.  * @plane_state: atomic plane state to update
  4460.  *
  4461.  * Return
  4462.  *     0 - scaler_usage updated successfully
  4463.  *    error - requested scaling cannot be supported or other error condition
  4464.  */
  4465. static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
  4466.                                    struct intel_plane_state *plane_state)
  4467. {
  4468.  
  4469.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  4470.         struct intel_plane *intel_plane =
  4471.                 to_intel_plane(plane_state->base.plane);
  4472.         struct drm_framebuffer *fb = plane_state->base.fb;
  4473.         int ret;
  4474.  
  4475.         bool force_detach = !fb || !plane_state->visible;
  4476.  
  4477.         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
  4478.                       intel_plane->base.base.id, intel_crtc->pipe,
  4479.                       drm_plane_index(&intel_plane->base));
  4480.  
  4481.         ret = skl_update_scaler(crtc_state, force_detach,
  4482.                                 drm_plane_index(&intel_plane->base),
  4483.                                 &plane_state->scaler_id,
  4484.                                 plane_state->base.rotation,
  4485.                                 drm_rect_width(&plane_state->src) >> 16,
  4486.                                 drm_rect_height(&plane_state->src) >> 16,
  4487.                                 drm_rect_width(&plane_state->dst),
  4488.                                 drm_rect_height(&plane_state->dst));
  4489.  
  4490.         if (ret || plane_state->scaler_id < 0)
  4491.                 return ret;
  4492.  
  4493.         /* check colorkey */
  4494.         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
  4495.                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
  4496.                               intel_plane->base.base.id);
  4497.                 return -EINVAL;
  4498.         }
  4499.  
  4500.         /* Check src format */
  4501.         switch (fb->pixel_format) {
  4502.         case DRM_FORMAT_RGB565:
  4503.         case DRM_FORMAT_XBGR8888:
  4504.         case DRM_FORMAT_XRGB8888:
  4505.         case DRM_FORMAT_ABGR8888:
  4506.         case DRM_FORMAT_ARGB8888:
  4507.         case DRM_FORMAT_XRGB2101010:
  4508.         case DRM_FORMAT_XBGR2101010:
  4509.         case DRM_FORMAT_YUYV:
  4510.         case DRM_FORMAT_YVYU:
  4511.         case DRM_FORMAT_UYVY:
  4512.         case DRM_FORMAT_VYUY:
  4513.                 break;
  4514.         default:
  4515.                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
  4516.                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
  4517.                 return -EINVAL;
  4518.         }
  4519.  
  4520.         return 0;
  4521. }
  4522.  
  4523. static void skylake_scaler_disable(struct intel_crtc *crtc)
  4524. {
  4525.         int i;
  4526.  
  4527.         for (i = 0; i < crtc->num_scalers; i++)
  4528.                 skl_detach_scaler(crtc, i);
  4529. }
  4530.  
  4531. static void skylake_pfit_enable(struct intel_crtc *crtc)
  4532. {
  4533.         struct drm_device *dev = crtc->base.dev;
  4534.         struct drm_i915_private *dev_priv = dev->dev_private;
  4535.         int pipe = crtc->pipe;
  4536.         struct intel_crtc_scaler_state *scaler_state =
  4537.                 &crtc->config->scaler_state;
  4538.  
  4539.         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
  4540.  
  4541.         if (crtc->config->pch_pfit.enabled) {
  4542.                 int id;
  4543.  
  4544.                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
  4545.                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
  4546.                         return;
  4547.                 }
  4548.  
  4549.                 id = scaler_state->scaler_id;
  4550.                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
  4551.                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
  4552.                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
  4553.                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
  4554.  
  4555.                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
  4556.         }
  4557. }
  4558.  
  4559. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  4560. {
  4561.         struct drm_device *dev = crtc->base.dev;
  4562.         struct drm_i915_private *dev_priv = dev->dev_private;
  4563.         int pipe = crtc->pipe;
  4564.  
  4565.         if (crtc->config->pch_pfit.enabled) {
  4566.                 /* Force use of hard-coded filter coefficients
  4567.                  * as some pre-programmed values are broken,
  4568.                  * e.g. x201.
  4569.                  */
  4570.                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4571.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  4572.                                                  PF_PIPE_SEL_IVB(pipe));
  4573.                 else
  4574.                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  4575.                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
  4576.                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
  4577.         }
  4578. }
  4579.  
  4580. void hsw_enable_ips(struct intel_crtc *crtc)
  4581. {
  4582.         struct drm_device *dev = crtc->base.dev;
  4583.         struct drm_i915_private *dev_priv = dev->dev_private;
  4584.  
  4585.         if (!crtc->config->ips_enabled)
  4586.                 return;
  4587.  
  4588.         /* We can only enable IPS after we enable a plane and wait for a vblank */
  4589.         intel_wait_for_vblank(dev, crtc->pipe);
  4590.  
  4591.         assert_plane_enabled(dev_priv, crtc->plane);
  4592.         if (IS_BROADWELL(dev)) {
  4593.                 mutex_lock(&dev_priv->rps.hw_lock);
  4594.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
  4595.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4596.                 /* Quoting Art Runyan: "its not safe to expect any particular
  4597.                  * value in IPS_CTL bit 31 after enabling IPS through the
  4598.                  * mailbox." Moreover, the mailbox may return a bogus state,
  4599.                  * so we need to just enable it and continue on.
  4600.                  */
  4601.         } else {
  4602.                 I915_WRITE(IPS_CTL, IPS_ENABLE);
  4603.                 /* The bit only becomes 1 in the next vblank, so this wait here
  4604.                  * is essentially intel_wait_for_vblank. If we don't have this
  4605.                  * and don't wait for vblanks until the end of crtc_enable, then
  4606.                  * the HW state readout code will complain that the expected
  4607.                  * IPS_CTL value is not the one we read. */
  4608.                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
  4609.                         DRM_ERROR("Timed out waiting for IPS enable\n");
  4610.         }
  4611. }
  4612.  
  4613. void hsw_disable_ips(struct intel_crtc *crtc)
  4614. {
  4615.         struct drm_device *dev = crtc->base.dev;
  4616.         struct drm_i915_private *dev_priv = dev->dev_private;
  4617.  
  4618.         if (!crtc->config->ips_enabled)
  4619.                 return;
  4620.  
  4621.         assert_plane_enabled(dev_priv, crtc->plane);
  4622.         if (IS_BROADWELL(dev)) {
  4623.                 mutex_lock(&dev_priv->rps.hw_lock);
  4624.                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
  4625.                 mutex_unlock(&dev_priv->rps.hw_lock);
  4626.                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
  4627.                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
  4628.                         DRM_ERROR("Timed out waiting for IPS disable\n");
  4629.         } else {
  4630.                 I915_WRITE(IPS_CTL, 0);
  4631.                 POSTING_READ(IPS_CTL);
  4632.         }
  4633.  
  4634.         /* We need to wait for a vblank before we can disable the plane. */
  4635.         intel_wait_for_vblank(dev, crtc->pipe);
  4636. }
  4637.  
  4638. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4639. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  4640. {
  4641.         struct drm_device *dev = crtc->dev;
  4642.         struct drm_i915_private *dev_priv = dev->dev_private;
  4643.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4644.         enum pipe pipe = intel_crtc->pipe;
  4645.         int i;
  4646.         bool reenable_ips = false;
  4647.  
  4648.         /* The clocks have to be on to load the palette. */
  4649.         if (!crtc->state->active)
  4650.                 return;
  4651.  
  4652.         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
  4653.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
  4654.                         assert_dsi_pll_enabled(dev_priv);
  4655.                 else
  4656.                         assert_pll_enabled(dev_priv, pipe);
  4657.         }
  4658.  
  4659.         /* Workaround : Do not read or write the pipe palette/gamma data while
  4660.          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  4661.          */
  4662.         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
  4663.             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  4664.              GAMMA_MODE_MODE_SPLIT)) {
  4665.                 hsw_disable_ips(intel_crtc);
  4666.                 reenable_ips = true;
  4667.         }
  4668.  
  4669.         for (i = 0; i < 256; i++) {
  4670.                 u32 palreg;
  4671.  
  4672.                 if (HAS_GMCH_DISPLAY(dev))
  4673.                         palreg = PALETTE(pipe, i);
  4674.                 else
  4675.                         palreg = LGC_PALETTE(pipe, i);
  4676.  
  4677.                 I915_WRITE(palreg,
  4678.                            (intel_crtc->lut_r[i] << 16) |
  4679.                            (intel_crtc->lut_g[i] << 8) |
  4680.                            intel_crtc->lut_b[i]);
  4681.         }
  4682.  
  4683.         if (reenable_ips)
  4684.                 hsw_enable_ips(intel_crtc);
  4685. }
  4686.  
  4687. static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
  4688. {
  4689.         if (intel_crtc->overlay) {
  4690.                 struct drm_device *dev = intel_crtc->base.dev;
  4691.                 struct drm_i915_private *dev_priv = dev->dev_private;
  4692.  
  4693.                 mutex_lock(&dev->struct_mutex);
  4694.                 dev_priv->mm.interruptible = false;
  4695. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  4696.                 dev_priv->mm.interruptible = true;
  4697.                 mutex_unlock(&dev->struct_mutex);
  4698.         }
  4699.  
  4700.         /* Let userspace switch the overlay on again. In most cases userspace
  4701.          * has to recompute where to put it anyway.
  4702.          */
  4703. }
  4704.  
  4705. /**
  4706.  * intel_post_enable_primary - Perform operations after enabling primary plane
  4707.  * @crtc: the CRTC whose primary plane was just enabled
  4708.  *
  4709.  * Performs potentially sleeping operations that must be done after the primary
  4710.  * plane is enabled, such as updating FBC and IPS.  Note that this may be
  4711.  * called due to an explicit primary plane update, or due to an implicit
  4712.  * re-enable that is caused when a sprite plane is updated to no longer
  4713.  * completely hide the primary plane.
  4714.  */
  4715. static void
  4716. intel_post_enable_primary(struct drm_crtc *crtc)
  4717. {
  4718.         struct drm_device *dev = crtc->dev;
  4719.         struct drm_i915_private *dev_priv = dev->dev_private;
  4720.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4721.         int pipe = intel_crtc->pipe;
  4722.  
  4723.         /*
  4724.          * BDW signals flip done immediately if the plane
  4725.          * is disabled, even if the plane enable is already
  4726.          * armed to occur at the next vblank :(
  4727.          */
  4728.         if (IS_BROADWELL(dev))
  4729.                 intel_wait_for_vblank(dev, pipe);
  4730.  
  4731.         /*
  4732.          * FIXME IPS should be fine as long as one plane is
  4733.          * enabled, but in practice it seems to have problems
  4734.          * when going from primary only to sprite only and vice
  4735.          * versa.
  4736.          */
  4737.         hsw_enable_ips(intel_crtc);
  4738.  
  4739.         /*
  4740.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4741.          * So don't enable underrun reporting before at least some planes
  4742.          * are enabled.
  4743.          * FIXME: Need to fix the logic to work when we turn off all planes
  4744.          * but leave the pipe running.
  4745.          */
  4746.         if (IS_GEN2(dev))
  4747.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4748.  
  4749.         /* Underruns don't raise interrupts, so check manually. */
  4750.         if (HAS_GMCH_DISPLAY(dev))
  4751.                 i9xx_check_fifo_underruns(dev_priv);
  4752. }
  4753.  
  4754. /**
  4755.  * intel_pre_disable_primary - Perform operations before disabling primary plane
  4756.  * @crtc: the CRTC whose primary plane is to be disabled
  4757.  *
  4758.  * Performs potentially sleeping operations that must be done before the
  4759.  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
  4760.  * be called due to an explicit primary plane update, or due to an implicit
  4761.  * disable that is caused when a sprite plane completely hides the primary
  4762.  * plane.
  4763.  */
  4764. static void
  4765. intel_pre_disable_primary(struct drm_crtc *crtc)
  4766. {
  4767.         struct drm_device *dev = crtc->dev;
  4768.         struct drm_i915_private *dev_priv = dev->dev_private;
  4769.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4770.         int pipe = intel_crtc->pipe;
  4771.  
  4772.         /*
  4773.          * Gen2 reports pipe underruns whenever all planes are disabled.
  4774.          * So diasble underrun reporting before all the planes get disabled.
  4775.          * FIXME: Need to fix the logic to work when we turn off all planes
  4776.          * but leave the pipe running.
  4777.          */
  4778.         if (IS_GEN2(dev))
  4779.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  4780.  
  4781.         /*
  4782.          * Vblank time updates from the shadow to live plane control register
  4783.          * are blocked if the memory self-refresh mode is active at that
  4784.          * moment. So to make sure the plane gets truly disabled, disable
  4785.          * first the self-refresh mode. The self-refresh enable bit in turn
  4786.          * will be checked/applied by the HW only at the next frame start
  4787.          * event which is after the vblank start event, so we need to have a
  4788.          * wait-for-vblank between disabling the plane and the pipe.
  4789.          */
  4790.         if (HAS_GMCH_DISPLAY(dev)) {
  4791.                 intel_set_memory_cxsr(dev_priv, false);
  4792.                 dev_priv->wm.vlv.cxsr = false;
  4793.                 intel_wait_for_vblank(dev, pipe);
  4794.         }
  4795.  
  4796.         /*
  4797.          * FIXME IPS should be fine as long as one plane is
  4798.          * enabled, but in practice it seems to have problems
  4799.          * when going from primary only to sprite only and vice
  4800.          * versa.
  4801.          */
  4802.         hsw_disable_ips(intel_crtc);
  4803. }
  4804.  
  4805. static void intel_post_plane_update(struct intel_crtc *crtc)
  4806. {
  4807.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4808.         struct drm_device *dev = crtc->base.dev;
  4809.         struct drm_i915_private *dev_priv = dev->dev_private;
  4810.         struct drm_plane *plane;
  4811.  
  4812.         if (atomic->wait_vblank)
  4813.                 intel_wait_for_vblank(dev, crtc->pipe);
  4814.  
  4815.         intel_frontbuffer_flip(dev, atomic->fb_bits);
  4816.  
  4817.         if (atomic->disable_cxsr)
  4818.                 crtc->wm.cxsr_allowed = true;
  4819.  
  4820.         if (crtc->atomic.update_wm_post)
  4821.                 intel_update_watermarks(&crtc->base);
  4822.  
  4823.         if (atomic->update_fbc)
  4824.                 intel_fbc_update(dev_priv);
  4825.  
  4826.         if (atomic->post_enable_primary)
  4827.                 intel_post_enable_primary(&crtc->base);
  4828.  
  4829.         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
  4830.                 intel_update_sprite_watermarks(plane, &crtc->base,
  4831.                                                0, 0, 0, false, false);
  4832.  
  4833.         memset(atomic, 0, sizeof(*atomic));
  4834. }
  4835.  
  4836. static void intel_pre_plane_update(struct intel_crtc *crtc)
  4837. {
  4838.         struct drm_device *dev = crtc->base.dev;
  4839.         struct drm_i915_private *dev_priv = dev->dev_private;
  4840.         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
  4841.         struct drm_plane *p;
  4842.  
  4843.         /* Track fb's for any planes being disabled */
  4844.         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
  4845.                 struct intel_plane *plane = to_intel_plane(p);
  4846.  
  4847.                 mutex_lock(&dev->struct_mutex);
  4848.                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
  4849.                                   plane->frontbuffer_bit);
  4850.                 mutex_unlock(&dev->struct_mutex);
  4851.         }
  4852.  
  4853.         if (atomic->wait_for_flips)
  4854.                 intel_crtc_wait_for_pending_flips(&crtc->base);
  4855.  
  4856.         if (atomic->disable_fbc)
  4857.                 intel_fbc_disable_crtc(crtc);
  4858.  
  4859.         if (crtc->atomic.disable_ips)
  4860.                 hsw_disable_ips(crtc);
  4861.  
  4862.         if (atomic->pre_disable_primary)
  4863.                 intel_pre_disable_primary(&crtc->base);
  4864.  
  4865.         if (atomic->disable_cxsr) {
  4866.                 crtc->wm.cxsr_allowed = false;
  4867.                 intel_set_memory_cxsr(dev_priv, false);
  4868.         }
  4869. }
  4870.  
  4871. static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
  4872. {
  4873.         struct drm_device *dev = crtc->dev;
  4874.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4875.         struct drm_plane *p;
  4876.         int pipe = intel_crtc->pipe;
  4877.  
  4878.         intel_crtc_dpms_overlay_disable(intel_crtc);
  4879.  
  4880.         drm_for_each_plane_mask(p, dev, plane_mask)
  4881.                 to_intel_plane(p)->disable_plane(p, crtc);
  4882.  
  4883.         /*
  4884.          * FIXME: Once we grow proper nuclear flip support out of this we need
  4885.          * to compute the mask of flip planes precisely. For the time being
  4886.          * consider this a flip to a NULL plane.
  4887.          */
  4888.         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
  4889. }
  4890.  
  4891. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  4892. {
  4893.         struct drm_device *dev = crtc->dev;
  4894.         struct drm_i915_private *dev_priv = dev->dev_private;
  4895.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4896.         struct intel_encoder *encoder;
  4897.         int pipe = intel_crtc->pipe;
  4898.  
  4899.         if (WARN_ON(intel_crtc->active))
  4900.                 return;
  4901.  
  4902.         if (intel_crtc->config->has_pch_encoder)
  4903.                 intel_prepare_shared_dpll(intel_crtc);
  4904.  
  4905.         if (intel_crtc->config->has_dp_encoder)
  4906.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4907.  
  4908.         intel_set_pipe_timings(intel_crtc);
  4909.  
  4910.         if (intel_crtc->config->has_pch_encoder) {
  4911.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4912.                                      &intel_crtc->config->fdi_m_n, NULL);
  4913.         }
  4914.  
  4915.         ironlake_set_pipeconf(crtc);
  4916.  
  4917.         intel_crtc->active = true;
  4918.  
  4919.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  4920.         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
  4921.  
  4922.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4923.                 if (encoder->pre_enable)
  4924.                         encoder->pre_enable(encoder);
  4925.  
  4926.         if (intel_crtc->config->has_pch_encoder) {
  4927.                 /* Note: FDI PLL enabling _must_ be done before we enable the
  4928.                  * cpu pipes, hence this is separate from all the other fdi/pch
  4929.                  * enabling. */
  4930.                 ironlake_fdi_pll_enable(intel_crtc);
  4931.         } else {
  4932.                 assert_fdi_tx_disabled(dev_priv, pipe);
  4933.                 assert_fdi_rx_disabled(dev_priv, pipe);
  4934.         }
  4935.  
  4936.         ironlake_pfit_enable(intel_crtc);
  4937.  
  4938.         /*
  4939.          * On ILK+ LUT must be loaded before the pipe is running but with
  4940.          * clocks enabled
  4941.          */
  4942.         intel_crtc_load_lut(crtc);
  4943.  
  4944.         intel_update_watermarks(crtc);
  4945.         intel_enable_pipe(intel_crtc);
  4946.  
  4947.         if (intel_crtc->config->has_pch_encoder)
  4948.                 ironlake_pch_enable(crtc);
  4949.  
  4950.         assert_vblank_disabled(crtc);
  4951.         drm_crtc_vblank_on(crtc);
  4952.  
  4953.         for_each_encoder_on_crtc(dev, crtc, encoder)
  4954.                 encoder->enable(encoder);
  4955.  
  4956.         if (HAS_PCH_CPT(dev))
  4957.                 cpt_verify_modeset(dev, intel_crtc->pipe);
  4958. }
  4959.  
  4960. /* IPS only exists on ULT machines and is tied to pipe A. */
  4961. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  4962. {
  4963.         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  4964. }
  4965.  
  4966. static void haswell_crtc_enable(struct drm_crtc *crtc)
  4967. {
  4968.         struct drm_device *dev = crtc->dev;
  4969.         struct drm_i915_private *dev_priv = dev->dev_private;
  4970.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4971.         struct intel_encoder *encoder;
  4972.         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
  4973.         struct intel_crtc_state *pipe_config =
  4974.                 to_intel_crtc_state(crtc->state);
  4975.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  4976.  
  4977.         if (WARN_ON(intel_crtc->active))
  4978.                 return;
  4979.  
  4980.         if (intel_crtc_to_shared_dpll(intel_crtc))
  4981.                 intel_enable_shared_dpll(intel_crtc);
  4982.  
  4983.         if (intel_crtc->config->has_dp_encoder)
  4984.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  4985.  
  4986.         intel_set_pipe_timings(intel_crtc);
  4987.  
  4988.         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
  4989.                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
  4990.                            intel_crtc->config->pixel_multiplier - 1);
  4991.         }
  4992.  
  4993.         if (intel_crtc->config->has_pch_encoder) {
  4994.                 intel_cpu_transcoder_set_m_n(intel_crtc,
  4995.                                      &intel_crtc->config->fdi_m_n, NULL);
  4996.         }
  4997.  
  4998.         haswell_set_pipeconf(crtc);
  4999.  
  5000.         intel_set_pipe_csc(crtc);
  5001.  
  5002.         intel_crtc->active = true;
  5003.  
  5004.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  5005.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5006.                 if (encoder->pre_pll_enable)
  5007.                         encoder->pre_pll_enable(encoder);
  5008.                 if (encoder->pre_enable)
  5009.                         encoder->pre_enable(encoder);
  5010.         }
  5011.  
  5012.         if (intel_crtc->config->has_pch_encoder) {
  5013.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5014.                                                       true);
  5015.                 dev_priv->display.fdi_link_train(crtc);
  5016.         }
  5017.  
  5018.         if (!is_dsi)
  5019.                 intel_ddi_enable_pipe_clock(intel_crtc);
  5020.  
  5021.         if (INTEL_INFO(dev)->gen >= 9)
  5022.                 skylake_pfit_enable(intel_crtc);
  5023.         else
  5024.                 ironlake_pfit_enable(intel_crtc);
  5025.  
  5026.         /*
  5027.          * On ILK+ LUT must be loaded before the pipe is running but with
  5028.          * clocks enabled
  5029.          */
  5030.         intel_crtc_load_lut(crtc);
  5031.  
  5032.         intel_ddi_set_pipe_settings(crtc);
  5033.         if (!is_dsi)
  5034.                 intel_ddi_enable_transcoder_func(crtc);
  5035.  
  5036.         intel_update_watermarks(crtc);
  5037.         intel_enable_pipe(intel_crtc);
  5038.  
  5039.         if (intel_crtc->config->has_pch_encoder)
  5040.                 lpt_pch_enable(crtc);
  5041.  
  5042.         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
  5043.                 intel_ddi_set_vc_payload_alloc(crtc, true);
  5044.  
  5045.         assert_vblank_disabled(crtc);
  5046.         drm_crtc_vblank_on(crtc);
  5047.  
  5048.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5049.                 encoder->enable(encoder);
  5050.                 intel_opregion_notify_encoder(encoder, true);
  5051.         }
  5052.  
  5053.         /* If we change the relative order between pipe/planes enabling, we need
  5054.          * to change the workaround. */
  5055.         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
  5056.         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
  5057.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5058.                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
  5059.         }
  5060. }
  5061.  
  5062. static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
  5063. {
  5064.         struct drm_device *dev = crtc->base.dev;
  5065.         struct drm_i915_private *dev_priv = dev->dev_private;
  5066.         int pipe = crtc->pipe;
  5067.  
  5068.         /* To avoid upsetting the power well on haswell only disable the pfit if
  5069.          * it's in use. The hw state code will make sure we get this right. */
  5070.         if (force || crtc->config->pch_pfit.enabled) {
  5071.                 I915_WRITE(PF_CTL(pipe), 0);
  5072.                 I915_WRITE(PF_WIN_POS(pipe), 0);
  5073.                 I915_WRITE(PF_WIN_SZ(pipe), 0);
  5074.         }
  5075. }
  5076.  
  5077. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  5078. {
  5079.         struct drm_device *dev = crtc->dev;
  5080.         struct drm_i915_private *dev_priv = dev->dev_private;
  5081.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5082.         struct intel_encoder *encoder;
  5083.         int pipe = intel_crtc->pipe;
  5084.         u32 reg, temp;
  5085.  
  5086.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5087.                 encoder->disable(encoder);
  5088.  
  5089.         drm_crtc_vblank_off(crtc);
  5090.         assert_vblank_disabled(crtc);
  5091.  
  5092.         if (intel_crtc->config->has_pch_encoder)
  5093.                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
  5094.  
  5095.         intel_disable_pipe(intel_crtc);
  5096.  
  5097.         ironlake_pfit_disable(intel_crtc, false);
  5098.  
  5099.         if (intel_crtc->config->has_pch_encoder)
  5100.                 ironlake_fdi_disable(crtc);
  5101.  
  5102.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5103.                 if (encoder->post_disable)
  5104.                         encoder->post_disable(encoder);
  5105.  
  5106.         if (intel_crtc->config->has_pch_encoder) {
  5107.                 ironlake_disable_pch_transcoder(dev_priv, pipe);
  5108.  
  5109.                 if (HAS_PCH_CPT(dev)) {
  5110.                         /* disable TRANS_DP_CTL */
  5111.                         reg = TRANS_DP_CTL(pipe);
  5112.                         temp = I915_READ(reg);
  5113.                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  5114.                                   TRANS_DP_PORT_SEL_MASK);
  5115.                         temp |= TRANS_DP_PORT_SEL_NONE;
  5116.                         I915_WRITE(reg, temp);
  5117.  
  5118.                         /* disable DPLL_SEL */
  5119.                         temp = I915_READ(PCH_DPLL_SEL);
  5120.                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  5121.                         I915_WRITE(PCH_DPLL_SEL, temp);
  5122.                 }
  5123.  
  5124.                 ironlake_fdi_pll_disable(intel_crtc);
  5125.         }
  5126. }
  5127.  
  5128. static void haswell_crtc_disable(struct drm_crtc *crtc)
  5129. {
  5130.         struct drm_device *dev = crtc->dev;
  5131.         struct drm_i915_private *dev_priv = dev->dev_private;
  5132.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5133.         struct intel_encoder *encoder;
  5134.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  5135.         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  5136.  
  5137.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  5138.                 intel_opregion_notify_encoder(encoder, false);
  5139.                 encoder->disable(encoder);
  5140.         }
  5141.  
  5142.         drm_crtc_vblank_off(crtc);
  5143.         assert_vblank_disabled(crtc);
  5144.  
  5145.         if (intel_crtc->config->has_pch_encoder)
  5146.                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
  5147.                                                       false);
  5148.         intel_disable_pipe(intel_crtc);
  5149.  
  5150.         if (intel_crtc->config->dp_encoder_is_mst)
  5151.                 intel_ddi_set_vc_payload_alloc(crtc, false);
  5152.  
  5153.         if (!is_dsi)
  5154.                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  5155.  
  5156.         if (INTEL_INFO(dev)->gen >= 9)
  5157.                 skylake_scaler_disable(intel_crtc);
  5158.         else
  5159.                 ironlake_pfit_disable(intel_crtc, false);
  5160.  
  5161.         if (!is_dsi)
  5162.                 intel_ddi_disable_pipe_clock(intel_crtc);
  5163.  
  5164.         if (intel_crtc->config->has_pch_encoder) {
  5165.                 lpt_disable_pch_transcoder(dev_priv);
  5166.                 intel_ddi_fdi_disable(crtc);
  5167.         }
  5168.  
  5169.         for_each_encoder_on_crtc(dev, crtc, encoder)
  5170.                 if (encoder->post_disable)
  5171.                         encoder->post_disable(encoder);
  5172. }
  5173.  
  5174. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  5175. {
  5176.         struct drm_device *dev = crtc->base.dev;
  5177.         struct drm_i915_private *dev_priv = dev->dev_private;
  5178.         struct intel_crtc_state *pipe_config = crtc->config;
  5179.  
  5180.         if (!pipe_config->gmch_pfit.control)
  5181.                 return;
  5182.  
  5183.         /*
  5184.          * The panel fitter should only be adjusted whilst the pipe is disabled,
  5185.          * according to register description and PRM.
  5186.          */
  5187.         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  5188.         assert_pipe_disabled(dev_priv, crtc->pipe);
  5189.  
  5190.         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  5191.         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  5192.  
  5193.         /* Border color in case we don't scale up to the full screen. Black by
  5194.          * default, change to something else for debugging. */
  5195.         I915_WRITE(BCLRPAT(crtc->pipe), 0);
  5196. }
  5197.  
  5198. static enum intel_display_power_domain port_to_power_domain(enum port port)
  5199. {
  5200.         switch (port) {
  5201.         case PORT_A:
  5202.                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
  5203.         case PORT_B:
  5204.                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
  5205.         case PORT_C:
  5206.                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
  5207.         case PORT_D:
  5208.                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
  5209.         case PORT_E:
  5210.                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
  5211.         default:
  5212.                 MISSING_CASE(port);
  5213.                 return POWER_DOMAIN_PORT_OTHER;
  5214.         }
  5215. }
  5216.  
  5217. static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
  5218. {
  5219.         switch (port) {
  5220.         case PORT_A:
  5221.                 return POWER_DOMAIN_AUX_A;
  5222.         case PORT_B:
  5223.                 return POWER_DOMAIN_AUX_B;
  5224.         case PORT_C:
  5225.                 return POWER_DOMAIN_AUX_C;
  5226.         case PORT_D:
  5227.                 return POWER_DOMAIN_AUX_D;
  5228.         case PORT_E:
  5229.                 /* FIXME: Check VBT for actual wiring of PORT E */
  5230.                 return POWER_DOMAIN_AUX_D;
  5231.         default:
  5232.                 MISSING_CASE(port);
  5233.                 return POWER_DOMAIN_AUX_A;
  5234.         }
  5235. }
  5236.  
  5237. #define for_each_power_domain(domain, mask)                             \
  5238.         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
  5239.                 if ((1 << (domain)) & (mask))
  5240.  
  5241. enum intel_display_power_domain
  5242. intel_display_port_power_domain(struct intel_encoder *intel_encoder)
  5243. {
  5244.         struct drm_device *dev = intel_encoder->base.dev;
  5245.         struct intel_digital_port *intel_dig_port;
  5246.  
  5247.         switch (intel_encoder->type) {
  5248.         case INTEL_OUTPUT_UNKNOWN:
  5249.                 /* Only DDI platforms should ever use this output type */
  5250.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5251.         case INTEL_OUTPUT_DISPLAYPORT:
  5252.         case INTEL_OUTPUT_HDMI:
  5253.         case INTEL_OUTPUT_EDP:
  5254.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5255.                 return port_to_power_domain(intel_dig_port->port);
  5256.         case INTEL_OUTPUT_DP_MST:
  5257.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5258.                 return port_to_power_domain(intel_dig_port->port);
  5259.         case INTEL_OUTPUT_ANALOG:
  5260.                 return POWER_DOMAIN_PORT_CRT;
  5261.         case INTEL_OUTPUT_DSI:
  5262.                 return POWER_DOMAIN_PORT_DSI;
  5263.         default:
  5264.                 return POWER_DOMAIN_PORT_OTHER;
  5265.         }
  5266. }
  5267.  
  5268. enum intel_display_power_domain
  5269. intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
  5270. {
  5271.         struct drm_device *dev = intel_encoder->base.dev;
  5272.         struct intel_digital_port *intel_dig_port;
  5273.  
  5274.         switch (intel_encoder->type) {
  5275.         case INTEL_OUTPUT_UNKNOWN:
  5276.         case INTEL_OUTPUT_HDMI:
  5277.                 /*
  5278.                  * Only DDI platforms should ever use these output types.
  5279.                  * We can get here after the HDMI detect code has already set
  5280.                  * the type of the shared encoder. Since we can't be sure
  5281.                  * what's the status of the given connectors, play safe and
  5282.                  * run the DP detection too.
  5283.                  */
  5284.                 WARN_ON_ONCE(!HAS_DDI(dev));
  5285.         case INTEL_OUTPUT_DISPLAYPORT:
  5286.         case INTEL_OUTPUT_EDP:
  5287.                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  5288.                 return port_to_aux_power_domain(intel_dig_port->port);
  5289.         case INTEL_OUTPUT_DP_MST:
  5290.                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
  5291.                 return port_to_aux_power_domain(intel_dig_port->port);
  5292.         default:
  5293.                 MISSING_CASE(intel_encoder->type);
  5294.                 return POWER_DOMAIN_AUX_A;
  5295.         }
  5296. }
  5297.  
  5298. static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
  5299. {
  5300.         struct drm_device *dev = crtc->dev;
  5301.         struct intel_encoder *intel_encoder;
  5302.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5303.         enum pipe pipe = intel_crtc->pipe;
  5304.         unsigned long mask;
  5305.         enum transcoder transcoder;
  5306.  
  5307.         if (!crtc->state->active)
  5308.                 return 0;
  5309.  
  5310.         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
  5311.  
  5312.         mask = BIT(POWER_DOMAIN_PIPE(pipe));
  5313.         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
  5314.         if (intel_crtc->config->pch_pfit.enabled ||
  5315.             intel_crtc->config->pch_pfit.force_thru)
  5316.                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
  5317.  
  5318.         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  5319.                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
  5320.  
  5321.         return mask;
  5322. }
  5323.  
  5324. static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
  5325. {
  5326.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  5327.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5328.         enum intel_display_power_domain domain;
  5329.         unsigned long domains, new_domains, old_domains;
  5330.  
  5331.         old_domains = intel_crtc->enabled_power_domains;
  5332.         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
  5333.  
  5334.         domains = new_domains & ~old_domains;
  5335.  
  5336.         for_each_power_domain(domain, domains)
  5337.                 intel_display_power_get(dev_priv, domain);
  5338.  
  5339.         return old_domains & ~new_domains;
  5340. }
  5341.  
  5342. static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
  5343.                                       unsigned long domains)
  5344. {
  5345.         enum intel_display_power_domain domain;
  5346.  
  5347.         for_each_power_domain(domain, domains)
  5348.                 intel_display_power_put(dev_priv, domain);
  5349. }
  5350.  
  5351. static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
  5352. {
  5353.         struct drm_device *dev = state->dev;
  5354.         struct drm_i915_private *dev_priv = dev->dev_private;
  5355.         unsigned long put_domains[I915_MAX_PIPES] = {};
  5356.         struct drm_crtc_state *crtc_state;
  5357.         struct drm_crtc *crtc;
  5358.         int i;
  5359.  
  5360.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  5361.                 if (needs_modeset(crtc->state))
  5362.                         put_domains[to_intel_crtc(crtc)->pipe] =
  5363.                                 modeset_get_crtc_power_domains(crtc);
  5364.         }
  5365.  
  5366.         if (dev_priv->display.modeset_commit_cdclk) {
  5367.                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
  5368.  
  5369.                 if (cdclk != dev_priv->cdclk_freq &&
  5370.                     !WARN_ON(!state->allow_modeset))
  5371.                         dev_priv->display.modeset_commit_cdclk(state);
  5372.         }
  5373.  
  5374.         for (i = 0; i < I915_MAX_PIPES; i++)
  5375.                 if (put_domains[i])
  5376.                         modeset_put_power_domains(dev_priv, put_domains[i]);
  5377. }
  5378.  
  5379. static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
  5380. {
  5381.         int max_cdclk_freq = dev_priv->max_cdclk_freq;
  5382.  
  5383.         if (INTEL_INFO(dev_priv)->gen >= 9 ||
  5384.             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5385.                 return max_cdclk_freq;
  5386.         else if (IS_CHERRYVIEW(dev_priv))
  5387.                 return max_cdclk_freq*95/100;
  5388.         else if (INTEL_INFO(dev_priv)->gen < 4)
  5389.                 return 2*max_cdclk_freq*90/100;
  5390.         else
  5391.                 return max_cdclk_freq*90/100;
  5392. }
  5393.  
  5394. static void intel_update_max_cdclk(struct drm_device *dev)
  5395. {
  5396.         struct drm_i915_private *dev_priv = dev->dev_private;
  5397.  
  5398.         if (IS_SKYLAKE(dev)) {
  5399.                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
  5400.  
  5401.                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
  5402.                         dev_priv->max_cdclk_freq = 675000;
  5403.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
  5404.                         dev_priv->max_cdclk_freq = 540000;
  5405.                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
  5406.                         dev_priv->max_cdclk_freq = 450000;
  5407.                 else
  5408.                         dev_priv->max_cdclk_freq = 337500;
  5409.         } else if (IS_BROADWELL(dev))  {
  5410.                 /*
  5411.                  * FIXME with extra cooling we can allow
  5412.                  * 540 MHz for ULX and 675 Mhz for ULT.
  5413.                  * How can we know if extra cooling is
  5414.                  * available? PCI ID, VTB, something else?
  5415.                  */
  5416.                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  5417.                         dev_priv->max_cdclk_freq = 450000;
  5418.                 else if (IS_BDW_ULX(dev))
  5419.                         dev_priv->max_cdclk_freq = 450000;
  5420.                 else if (IS_BDW_ULT(dev))
  5421.                         dev_priv->max_cdclk_freq = 540000;
  5422.                 else
  5423.                         dev_priv->max_cdclk_freq = 675000;
  5424.         } else if (IS_CHERRYVIEW(dev)) {
  5425.                 dev_priv->max_cdclk_freq = 320000;
  5426.         } else if (IS_VALLEYVIEW(dev)) {
  5427.                 dev_priv->max_cdclk_freq = 400000;
  5428.         } else {
  5429.                 /* otherwise assume cdclk is fixed */
  5430.                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
  5431.         }
  5432.  
  5433.         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
  5434.  
  5435.         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
  5436.                          dev_priv->max_cdclk_freq);
  5437.  
  5438.         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
  5439.                          dev_priv->max_dotclk_freq);
  5440. }
  5441.  
  5442. static void intel_update_cdclk(struct drm_device *dev)
  5443. {
  5444.         struct drm_i915_private *dev_priv = dev->dev_private;
  5445.  
  5446.         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  5447.         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
  5448.                          dev_priv->cdclk_freq);
  5449.  
  5450.         /*
  5451.          * Program the gmbus_freq based on the cdclk frequency.
  5452.          * BSpec erroneously claims we should aim for 4MHz, but
  5453.          * in fact 1MHz is the correct frequency.
  5454.          */
  5455.         if (IS_VALLEYVIEW(dev)) {
  5456.                 /*
  5457.                  * Program the gmbus_freq based on the cdclk frequency.
  5458.                  * BSpec erroneously claims we should aim for 4MHz, but
  5459.                  * in fact 1MHz is the correct frequency.
  5460.                  */
  5461.                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
  5462.         }
  5463.  
  5464.         if (dev_priv->max_cdclk_freq == 0)
  5465.                 intel_update_max_cdclk(dev);
  5466. }
  5467.  
  5468. static void broxton_set_cdclk(struct drm_device *dev, int frequency)
  5469. {
  5470.         struct drm_i915_private *dev_priv = dev->dev_private;
  5471.         uint32_t divider;
  5472.         uint32_t ratio;
  5473.         uint32_t current_freq;
  5474.         int ret;
  5475.  
  5476.         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
  5477.         switch (frequency) {
  5478.         case 144000:
  5479.                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
  5480.                 ratio = BXT_DE_PLL_RATIO(60);
  5481.                 break;
  5482.         case 288000:
  5483.                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
  5484.                 ratio = BXT_DE_PLL_RATIO(60);
  5485.                 break;
  5486.         case 384000:
  5487.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
  5488.                 ratio = BXT_DE_PLL_RATIO(60);
  5489.                 break;
  5490.         case 576000:
  5491.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5492.                 ratio = BXT_DE_PLL_RATIO(60);
  5493.                 break;
  5494.         case 624000:
  5495.                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
  5496.                 ratio = BXT_DE_PLL_RATIO(65);
  5497.                 break;
  5498.         case 19200:
  5499.                 /*
  5500.                  * Bypass frequency with DE PLL disabled. Init ratio, divider
  5501.                  * to suppress GCC warning.
  5502.                  */
  5503.                 ratio = 0;
  5504.                 divider = 0;
  5505.                 break;
  5506.         default:
  5507.                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
  5508.  
  5509.                 return;
  5510.         }
  5511.  
  5512.         mutex_lock(&dev_priv->rps.hw_lock);
  5513.         /* Inform power controller of upcoming frequency change */
  5514.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5515.                                       0x80000000);
  5516.         mutex_unlock(&dev_priv->rps.hw_lock);
  5517.  
  5518.         if (ret) {
  5519.                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
  5520.                           ret, frequency);
  5521.                 return;
  5522.         }
  5523.  
  5524.         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
  5525.         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
  5526.         current_freq = current_freq * 500 + 1000;
  5527.  
  5528.         /*
  5529.          * DE PLL has to be disabled when
  5530.          * - setting to 19.2MHz (bypass, PLL isn't used)
  5531.          * - before setting to 624MHz (PLL needs toggling)
  5532.          * - before setting to any frequency from 624MHz (PLL needs toggling)
  5533.          */
  5534.         if (frequency == 19200 || frequency == 624000 ||
  5535.             current_freq == 624000) {
  5536.                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
  5537.                 /* Timeout 200us */
  5538.                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
  5539.                              1))
  5540.                         DRM_ERROR("timout waiting for DE PLL unlock\n");
  5541.         }
  5542.  
  5543.         if (frequency != 19200) {
  5544.                 uint32_t val;
  5545.  
  5546.                 val = I915_READ(BXT_DE_PLL_CTL);
  5547.                 val &= ~BXT_DE_PLL_RATIO_MASK;
  5548.                 val |= ratio;
  5549.                 I915_WRITE(BXT_DE_PLL_CTL, val);
  5550.  
  5551.                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
  5552.                 /* Timeout 200us */
  5553.                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
  5554.                         DRM_ERROR("timeout waiting for DE PLL lock\n");
  5555.  
  5556.                 val = I915_READ(CDCLK_CTL);
  5557.                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
  5558.                 val |= divider;
  5559.                 /*
  5560.                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
  5561.                  * enable otherwise.
  5562.                  */
  5563.                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5564.                 if (frequency >= 500000)
  5565.                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
  5566.  
  5567.                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
  5568.                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
  5569.                 val |= (frequency - 1000) / 500;
  5570.                 I915_WRITE(CDCLK_CTL, val);
  5571.         }
  5572.  
  5573.         mutex_lock(&dev_priv->rps.hw_lock);
  5574.         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
  5575.                                       DIV_ROUND_UP(frequency, 25000));
  5576.         mutex_unlock(&dev_priv->rps.hw_lock);
  5577.  
  5578.         if (ret) {
  5579.                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
  5580.                           ret, frequency);
  5581.                 return;
  5582.         }
  5583.  
  5584.         intel_update_cdclk(dev);
  5585. }
  5586.  
  5587. void broxton_init_cdclk(struct drm_device *dev)
  5588. {
  5589.         struct drm_i915_private *dev_priv = dev->dev_private;
  5590.         uint32_t val;
  5591.  
  5592.         /*
  5593.          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
  5594.          * or else the reset will hang because there is no PCH to respond.
  5595.          * Move the handshake programming to initialization sequence.
  5596.          * Previously was left up to BIOS.
  5597.          */
  5598.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5599.         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
  5600.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
  5601.  
  5602.         /* Enable PG1 for cdclk */
  5603.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5604.  
  5605.         /* check if cd clock is enabled */
  5606.         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
  5607.                 DRM_DEBUG_KMS("Display already initialized\n");
  5608.                 return;
  5609.         }
  5610.  
  5611.         /*
  5612.          * FIXME:
  5613.          * - The initial CDCLK needs to be read from VBT.
  5614.          *   Need to make this change after VBT has changes for BXT.
  5615.          * - check if setting the max (or any) cdclk freq is really necessary
  5616.          *   here, it belongs to modeset time
  5617.          */
  5618.         broxton_set_cdclk(dev, 624000);
  5619.  
  5620.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5621.         POSTING_READ(DBUF_CTL);
  5622.  
  5623.         udelay(10);
  5624.  
  5625.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5626.                 DRM_ERROR("DBuf power enable timeout!\n");
  5627. }
  5628.  
  5629. void broxton_uninit_cdclk(struct drm_device *dev)
  5630. {
  5631.         struct drm_i915_private *dev_priv = dev->dev_private;
  5632.  
  5633.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5634.         POSTING_READ(DBUF_CTL);
  5635.  
  5636.         udelay(10);
  5637.  
  5638.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5639.                 DRM_ERROR("DBuf power disable timeout!\n");
  5640.  
  5641.         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
  5642.         broxton_set_cdclk(dev, 19200);
  5643.  
  5644.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5645. }
  5646.  
  5647. static const struct skl_cdclk_entry {
  5648.         unsigned int freq;
  5649.         unsigned int vco;
  5650. } skl_cdclk_frequencies[] = {
  5651.         { .freq = 308570, .vco = 8640 },
  5652.         { .freq = 337500, .vco = 8100 },
  5653.         { .freq = 432000, .vco = 8640 },
  5654.         { .freq = 450000, .vco = 8100 },
  5655.         { .freq = 540000, .vco = 8100 },
  5656.         { .freq = 617140, .vco = 8640 },
  5657.         { .freq = 675000, .vco = 8100 },
  5658. };
  5659.  
  5660. static unsigned int skl_cdclk_decimal(unsigned int freq)
  5661. {
  5662.         return (freq - 1000) / 500;
  5663. }
  5664.  
  5665. static unsigned int skl_cdclk_get_vco(unsigned int freq)
  5666. {
  5667.         unsigned int i;
  5668.  
  5669.         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
  5670.                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
  5671.  
  5672.                 if (e->freq == freq)
  5673.                         return e->vco;
  5674.         }
  5675.  
  5676.         return 8100;
  5677. }
  5678.  
  5679. static void
  5680. skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
  5681. {
  5682.         unsigned int min_freq;
  5683.         u32 val;
  5684.  
  5685.         /* select the minimum CDCLK before enabling DPLL 0 */
  5686.         val = I915_READ(CDCLK_CTL);
  5687.         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
  5688.         val |= CDCLK_FREQ_337_308;
  5689.  
  5690.         if (required_vco == 8640)
  5691.                 min_freq = 308570;
  5692.         else
  5693.                 min_freq = 337500;
  5694.  
  5695.         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
  5696.  
  5697.         I915_WRITE(CDCLK_CTL, val);
  5698.         POSTING_READ(CDCLK_CTL);
  5699.  
  5700.         /*
  5701.          * We always enable DPLL0 with the lowest link rate possible, but still
  5702.          * taking into account the VCO required to operate the eDP panel at the
  5703.          * desired frequency. The usual DP link rates operate with a VCO of
  5704.          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
  5705.          * The modeset code is responsible for the selection of the exact link
  5706.          * rate later on, with the constraint of choosing a frequency that
  5707.          * works with required_vco.
  5708.          */
  5709.         val = I915_READ(DPLL_CTRL1);
  5710.  
  5711.         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
  5712.                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
  5713.         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
  5714.         if (required_vco == 8640)
  5715.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
  5716.                                             SKL_DPLL0);
  5717.         else
  5718.                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
  5719.                                             SKL_DPLL0);
  5720.  
  5721.         I915_WRITE(DPLL_CTRL1, val);
  5722.         POSTING_READ(DPLL_CTRL1);
  5723.  
  5724.         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
  5725.  
  5726.         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
  5727.                 DRM_ERROR("DPLL0 not locked\n");
  5728. }
  5729.  
  5730. static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
  5731. {
  5732.         int ret;
  5733.         u32 val;
  5734.  
  5735.         /* inform PCU we want to change CDCLK */
  5736.         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
  5737.         mutex_lock(&dev_priv->rps.hw_lock);
  5738.         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
  5739.         mutex_unlock(&dev_priv->rps.hw_lock);
  5740.  
  5741.         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
  5742. }
  5743.  
  5744. static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
  5745. {
  5746.         unsigned int i;
  5747.  
  5748.         for (i = 0; i < 15; i++) {
  5749.                 if (skl_cdclk_pcu_ready(dev_priv))
  5750.                         return true;
  5751.                 udelay(10);
  5752.         }
  5753.  
  5754.         return false;
  5755. }
  5756.  
  5757. static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
  5758. {
  5759.         struct drm_device *dev = dev_priv->dev;
  5760.         u32 freq_select, pcu_ack;
  5761.  
  5762.         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
  5763.  
  5764.         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
  5765.                 DRM_ERROR("failed to inform PCU about cdclk change\n");
  5766.                 return;
  5767.         }
  5768.  
  5769.         /* set CDCLK_CTL */
  5770.         switch(freq) {
  5771.         case 450000:
  5772.         case 432000:
  5773.                 freq_select = CDCLK_FREQ_450_432;
  5774.                 pcu_ack = 1;
  5775.                 break;
  5776.         case 540000:
  5777.                 freq_select = CDCLK_FREQ_540;
  5778.                 pcu_ack = 2;
  5779.                 break;
  5780.         case 308570:
  5781.         case 337500:
  5782.         default:
  5783.                 freq_select = CDCLK_FREQ_337_308;
  5784.                 pcu_ack = 0;
  5785.                 break;
  5786.         case 617140:
  5787.         case 675000:
  5788.                 freq_select = CDCLK_FREQ_675_617;
  5789.                 pcu_ack = 3;
  5790.                 break;
  5791.         }
  5792.  
  5793.         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
  5794.         POSTING_READ(CDCLK_CTL);
  5795.  
  5796.         /* inform PCU of the change */
  5797.         mutex_lock(&dev_priv->rps.hw_lock);
  5798.         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
  5799.         mutex_unlock(&dev_priv->rps.hw_lock);
  5800.  
  5801.         intel_update_cdclk(dev);
  5802. }
  5803.  
  5804. void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
  5805. {
  5806.         /* disable DBUF power */
  5807.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
  5808.         POSTING_READ(DBUF_CTL);
  5809.  
  5810.         udelay(10);
  5811.  
  5812.         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
  5813.                 DRM_ERROR("DBuf power disable timeout\n");
  5814.  
  5815.         /*
  5816.          * DMC assumes ownership of LCPLL and will get confused if we touch it.
  5817.          */
  5818.         if (dev_priv->csr.dmc_payload) {
  5819.                 /* disable DPLL0 */
  5820.                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
  5821.                                         ~LCPLL_PLL_ENABLE);
  5822.                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
  5823.                         DRM_ERROR("Couldn't disable DPLL0\n");
  5824.         }
  5825.  
  5826.         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  5827. }
  5828.  
  5829. void skl_init_cdclk(struct drm_i915_private *dev_priv)
  5830. {
  5831.         u32 val;
  5832.         unsigned int required_vco;
  5833.  
  5834.         /* enable PCH reset handshake */
  5835.         val = I915_READ(HSW_NDE_RSTWRN_OPT);
  5836.         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
  5837.  
  5838.         /* enable PG1 and Misc I/O */
  5839.         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  5840.  
  5841.         /* DPLL0 not enabled (happens on early BIOS versions) */
  5842.         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
  5843.                 /* enable DPLL0 */
  5844.                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
  5845.                 skl_dpll0_enable(dev_priv, required_vco);
  5846.         }
  5847.  
  5848.         /* set CDCLK to the frequency the BIOS chose */
  5849.         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
  5850.  
  5851.         /* enable DBUF power */
  5852.         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
  5853.         POSTING_READ(DBUF_CTL);
  5854.  
  5855.         udelay(10);
  5856.  
  5857.         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
  5858.                 DRM_ERROR("DBuf power enable timeout\n");
  5859. }
  5860.  
  5861. /* Adjust CDclk dividers to allow high res or save power if possible */
  5862. static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
  5863. {
  5864.         struct drm_i915_private *dev_priv = dev->dev_private;
  5865.         u32 val, cmd;
  5866.  
  5867.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5868.                                         != dev_priv->cdclk_freq);
  5869.  
  5870.         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
  5871.                 cmd = 2;
  5872.         else if (cdclk == 266667)
  5873.                 cmd = 1;
  5874.         else
  5875.                 cmd = 0;
  5876.  
  5877.         mutex_lock(&dev_priv->rps.hw_lock);
  5878.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5879.         val &= ~DSPFREQGUAR_MASK;
  5880.         val |= (cmd << DSPFREQGUAR_SHIFT);
  5881.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5882.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5883.                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
  5884.                      50)) {
  5885.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5886.         }
  5887.         mutex_unlock(&dev_priv->rps.hw_lock);
  5888.  
  5889.         mutex_lock(&dev_priv->sb_lock);
  5890.  
  5891.         if (cdclk == 400000) {
  5892.                 u32 divider;
  5893.  
  5894.                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5895.  
  5896.                 /* adjust cdclk divider */
  5897.                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
  5898.                 val &= ~CCK_FREQUENCY_VALUES;
  5899.                 val |= divider;
  5900.                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
  5901.  
  5902.                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
  5903.                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
  5904.                              50))
  5905.                         DRM_ERROR("timed out waiting for CDclk change\n");
  5906.         }
  5907.  
  5908.         /* adjust self-refresh exit latency value */
  5909.         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
  5910.         val &= ~0x7f;
  5911.  
  5912.         /*
  5913.          * For high bandwidth configs, we set a higher latency in the bunit
  5914.          * so that the core display fetch happens in time to avoid underruns.
  5915.          */
  5916.         if (cdclk == 400000)
  5917.                 val |= 4500 / 250; /* 4.5 usec */
  5918.         else
  5919.                 val |= 3000 / 250; /* 3.0 usec */
  5920.         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
  5921.  
  5922.         mutex_unlock(&dev_priv->sb_lock);
  5923.  
  5924.         intel_update_cdclk(dev);
  5925. }
  5926.  
  5927. static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
  5928. {
  5929.         struct drm_i915_private *dev_priv = dev->dev_private;
  5930.         u32 val, cmd;
  5931.  
  5932.         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
  5933.                                                 != dev_priv->cdclk_freq);
  5934.  
  5935.         switch (cdclk) {
  5936.         case 333333:
  5937.         case 320000:
  5938.         case 266667:
  5939.         case 200000:
  5940.                 break;
  5941.         default:
  5942.                 MISSING_CASE(cdclk);
  5943.                 return;
  5944.         }
  5945.  
  5946.         /*
  5947.          * Specs are full of misinformation, but testing on actual
  5948.          * hardware has shown that we just need to write the desired
  5949.          * CCK divider into the Punit register.
  5950.          */
  5951.         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
  5952.  
  5953.         mutex_lock(&dev_priv->rps.hw_lock);
  5954.         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5955.         val &= ~DSPFREQGUAR_MASK_CHV;
  5956.         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
  5957.         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  5958.         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
  5959.                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
  5960.                      50)) {
  5961.                 DRM_ERROR("timed out waiting for CDclk change\n");
  5962.         }
  5963.         mutex_unlock(&dev_priv->rps.hw_lock);
  5964.  
  5965.         intel_update_cdclk(dev);
  5966. }
  5967.  
  5968. static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
  5969.                                  int max_pixclk)
  5970. {
  5971.         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
  5972.         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
  5973.  
  5974.         /*
  5975.          * Really only a few cases to deal with, as only 4 CDclks are supported:
  5976.          *   200MHz
  5977.          *   267MHz
  5978.          *   320/333MHz (depends on HPLL freq)
  5979.          *   400MHz (VLV only)
  5980.          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
  5981.          * of the lower bin and adjust if needed.
  5982.          *
  5983.          * We seem to get an unstable or solid color picture at 200MHz.
  5984.          * Not sure what's wrong. For now use 200MHz only when all pipes
  5985.          * are off.
  5986.          */
  5987.         if (!IS_CHERRYVIEW(dev_priv) &&
  5988.             max_pixclk > freq_320*limit/100)
  5989.                 return 400000;
  5990.         else if (max_pixclk > 266667*limit/100)
  5991.                 return freq_320;
  5992.         else if (max_pixclk > 0)
  5993.                 return 266667;
  5994.         else
  5995.                 return 200000;
  5996. }
  5997.  
  5998. static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
  5999.                               int max_pixclk)
  6000. {
  6001.         /*
  6002.          * FIXME:
  6003.          * - remove the guardband, it's not needed on BXT
  6004.          * - set 19.2MHz bypass frequency if there are no active pipes
  6005.          */
  6006.         if (max_pixclk > 576000*9/10)
  6007.                 return 624000;
  6008.         else if (max_pixclk > 384000*9/10)
  6009.                 return 576000;
  6010.         else if (max_pixclk > 288000*9/10)
  6011.                 return 384000;
  6012.         else if (max_pixclk > 144000*9/10)
  6013.                 return 288000;
  6014.         else
  6015.                 return 144000;
  6016. }
  6017.  
  6018. /* Compute the max pixel clock for new configuration. Uses atomic state if
  6019.  * that's non-NULL, look at current state otherwise. */
  6020. static int intel_mode_max_pixclk(struct drm_device *dev,
  6021.                                  struct drm_atomic_state *state)
  6022. {
  6023.         struct intel_crtc *intel_crtc;
  6024.         struct intel_crtc_state *crtc_state;
  6025.         int max_pixclk = 0;
  6026.  
  6027.         for_each_intel_crtc(dev, intel_crtc) {
  6028.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  6029.                 if (IS_ERR(crtc_state))
  6030.                         return PTR_ERR(crtc_state);
  6031.  
  6032.                 if (!crtc_state->base.enable)
  6033.                         continue;
  6034.  
  6035.                 max_pixclk = max(max_pixclk,
  6036.                                  crtc_state->base.adjusted_mode.crtc_clock);
  6037.         }
  6038.  
  6039.         return max_pixclk;
  6040. }
  6041.  
  6042. static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
  6043. {
  6044.         struct drm_device *dev = state->dev;
  6045.         struct drm_i915_private *dev_priv = dev->dev_private;
  6046.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6047.  
  6048.         if (max_pixclk < 0)
  6049.                 return max_pixclk;
  6050.  
  6051.         to_intel_atomic_state(state)->cdclk =
  6052.                 valleyview_calc_cdclk(dev_priv, max_pixclk);
  6053.  
  6054.         return 0;
  6055. }
  6056.  
  6057. static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
  6058. {
  6059.         struct drm_device *dev = state->dev;
  6060.         struct drm_i915_private *dev_priv = dev->dev_private;
  6061.         int max_pixclk = intel_mode_max_pixclk(dev, state);
  6062.  
  6063.         if (max_pixclk < 0)
  6064.                 return max_pixclk;
  6065.  
  6066.         to_intel_atomic_state(state)->cdclk =
  6067.                 broxton_calc_cdclk(dev_priv, max_pixclk);
  6068.  
  6069.         return 0;
  6070. }
  6071.  
  6072. static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
  6073. {
  6074.         unsigned int credits, default_credits;
  6075.  
  6076.         if (IS_CHERRYVIEW(dev_priv))
  6077.                 default_credits = PFI_CREDIT(12);
  6078.         else
  6079.                 default_credits = PFI_CREDIT(8);
  6080.  
  6081.         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
  6082.                 /* CHV suggested value is 31 or 63 */
  6083.                 if (IS_CHERRYVIEW(dev_priv))
  6084.                         credits = PFI_CREDIT_63;
  6085.                 else
  6086.                         credits = PFI_CREDIT(15);
  6087.         } else {
  6088.                 credits = default_credits;
  6089.         }
  6090.  
  6091.         /*
  6092.          * WA - write default credits before re-programming
  6093.          * FIXME: should we also set the resend bit here?
  6094.          */
  6095.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6096.                    default_credits);
  6097.  
  6098.         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
  6099.                    credits | PFI_CREDIT_RESEND);
  6100.  
  6101.         /*
  6102.          * FIXME is this guaranteed to clear
  6103.          * immediately or should we poll for it?
  6104.          */
  6105.         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
  6106. }
  6107.  
  6108. static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  6109. {
  6110.         struct drm_device *dev = old_state->dev;
  6111.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  6112.         struct drm_i915_private *dev_priv = dev->dev_private;
  6113.  
  6114.         /*
  6115.          * FIXME: We can end up here with all power domains off, yet
  6116.          * with a CDCLK frequency other than the minimum. To account
  6117.          * for this take the PIPE-A power domain, which covers the HW
  6118.          * blocks needed for the following programming. This can be
  6119.          * removed once it's guaranteed that we get here either with
  6120.          * the minimum CDCLK set, or the required power domains
  6121.          * enabled.
  6122.          */
  6123.         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
  6124.  
  6125.         if (IS_CHERRYVIEW(dev))
  6126.                 cherryview_set_cdclk(dev, req_cdclk);
  6127.         else
  6128.                 valleyview_set_cdclk(dev, req_cdclk);
  6129.  
  6130.         vlv_program_pfi_credits(dev_priv);
  6131.  
  6132.         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
  6133. }
  6134.  
  6135. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  6136. {
  6137.         struct drm_device *dev = crtc->dev;
  6138.         struct drm_i915_private *dev_priv = to_i915(dev);
  6139.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6140.         struct intel_encoder *encoder;
  6141.         int pipe = intel_crtc->pipe;
  6142.         bool is_dsi;
  6143.  
  6144.         if (WARN_ON(intel_crtc->active))
  6145.                 return;
  6146.  
  6147.         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
  6148.  
  6149.         if (intel_crtc->config->has_dp_encoder)
  6150.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6151.  
  6152.         intel_set_pipe_timings(intel_crtc);
  6153.  
  6154.         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
  6155.                 struct drm_i915_private *dev_priv = dev->dev_private;
  6156.  
  6157.                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
  6158.                 I915_WRITE(CHV_CANVAS(pipe), 0);
  6159.         }
  6160.  
  6161.         i9xx_set_pipeconf(intel_crtc);
  6162.  
  6163.         intel_crtc->active = true;
  6164.  
  6165.         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6166.  
  6167.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6168.                 if (encoder->pre_pll_enable)
  6169.                         encoder->pre_pll_enable(encoder);
  6170.  
  6171.         if (!is_dsi) {
  6172.                 if (IS_CHERRYVIEW(dev)) {
  6173.                         chv_prepare_pll(intel_crtc, intel_crtc->config);
  6174.                         chv_enable_pll(intel_crtc, intel_crtc->config);
  6175.                 } else {
  6176.                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
  6177.                         vlv_enable_pll(intel_crtc, intel_crtc->config);
  6178.                 }
  6179.         }
  6180.  
  6181.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6182.                 if (encoder->pre_enable)
  6183.                         encoder->pre_enable(encoder);
  6184.  
  6185.         i9xx_pfit_enable(intel_crtc);
  6186.  
  6187.         intel_crtc_load_lut(crtc);
  6188.  
  6189.         intel_enable_pipe(intel_crtc);
  6190.  
  6191.         assert_vblank_disabled(crtc);
  6192.         drm_crtc_vblank_on(crtc);
  6193.  
  6194.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6195.                 encoder->enable(encoder);
  6196. }
  6197.  
  6198. static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
  6199. {
  6200.         struct drm_device *dev = crtc->base.dev;
  6201.         struct drm_i915_private *dev_priv = dev->dev_private;
  6202.  
  6203.         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
  6204.         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
  6205. }
  6206.  
  6207. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  6208. {
  6209.         struct drm_device *dev = crtc->dev;
  6210.         struct drm_i915_private *dev_priv = to_i915(dev);
  6211.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6212.         struct intel_encoder *encoder;
  6213.         int pipe = intel_crtc->pipe;
  6214.  
  6215.         if (WARN_ON(intel_crtc->active))
  6216.                 return;
  6217.  
  6218.         i9xx_set_pll_dividers(intel_crtc);
  6219.  
  6220.         if (intel_crtc->config->has_dp_encoder)
  6221.                 intel_dp_set_m_n(intel_crtc, M1_N1);
  6222.  
  6223.         intel_set_pipe_timings(intel_crtc);
  6224.  
  6225.         i9xx_set_pipeconf(intel_crtc);
  6226.  
  6227.         intel_crtc->active = true;
  6228.  
  6229.         if (!IS_GEN2(dev))
  6230.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  6231.  
  6232.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6233.                 if (encoder->pre_enable)
  6234.                         encoder->pre_enable(encoder);
  6235.  
  6236.         i9xx_enable_pll(intel_crtc);
  6237.  
  6238.         i9xx_pfit_enable(intel_crtc);
  6239.  
  6240.         intel_crtc_load_lut(crtc);
  6241.  
  6242.         intel_update_watermarks(crtc);
  6243.         intel_enable_pipe(intel_crtc);
  6244.  
  6245.         assert_vblank_disabled(crtc);
  6246.         drm_crtc_vblank_on(crtc);
  6247.  
  6248.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6249.                 encoder->enable(encoder);
  6250. }
  6251.  
  6252. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  6253. {
  6254.         struct drm_device *dev = crtc->base.dev;
  6255.         struct drm_i915_private *dev_priv = dev->dev_private;
  6256.  
  6257.         if (!crtc->config->gmch_pfit.control)
  6258.                 return;
  6259.  
  6260.         assert_pipe_disabled(dev_priv, crtc->pipe);
  6261.  
  6262.         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  6263.                          I915_READ(PFIT_CONTROL));
  6264.         I915_WRITE(PFIT_CONTROL, 0);
  6265. }
  6266.  
  6267. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  6268. {
  6269.         struct drm_device *dev = crtc->dev;
  6270.         struct drm_i915_private *dev_priv = dev->dev_private;
  6271.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6272.         struct intel_encoder *encoder;
  6273.         int pipe = intel_crtc->pipe;
  6274.  
  6275.         /*
  6276.          * On gen2 planes are double buffered but the pipe isn't, so we must
  6277.          * wait for planes to fully turn off before disabling the pipe.
  6278.          * We also need to wait on all gmch platforms because of the
  6279.          * self-refresh mode constraint explained above.
  6280.          */
  6281.         intel_wait_for_vblank(dev, pipe);
  6282.  
  6283.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6284.                 encoder->disable(encoder);
  6285.  
  6286.         drm_crtc_vblank_off(crtc);
  6287.         assert_vblank_disabled(crtc);
  6288.  
  6289.         intel_disable_pipe(intel_crtc);
  6290.  
  6291.         i9xx_pfit_disable(intel_crtc);
  6292.  
  6293.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6294.                 if (encoder->post_disable)
  6295.                         encoder->post_disable(encoder);
  6296.  
  6297.         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
  6298.                 if (IS_CHERRYVIEW(dev))
  6299.                         chv_disable_pll(dev_priv, pipe);
  6300.                 else if (IS_VALLEYVIEW(dev))
  6301.                         vlv_disable_pll(dev_priv, pipe);
  6302.                 else
  6303.                         i9xx_disable_pll(intel_crtc);
  6304.         }
  6305.  
  6306.         for_each_encoder_on_crtc(dev, crtc, encoder)
  6307.                 if (encoder->post_pll_disable)
  6308.                         encoder->post_pll_disable(encoder);
  6309.  
  6310.         if (!IS_GEN2(dev))
  6311.                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
  6312. }
  6313.  
  6314. static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
  6315. {
  6316.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6317.         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  6318.         enum intel_display_power_domain domain;
  6319.         unsigned long domains;
  6320.  
  6321.         if (!intel_crtc->active)
  6322.                 return;
  6323.  
  6324.         if (to_intel_plane_state(crtc->primary->state)->visible) {
  6325.                 intel_crtc_wait_for_pending_flips(crtc);
  6326.                 intel_pre_disable_primary(crtc);
  6327.  
  6328.                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
  6329.                 to_intel_plane_state(crtc->primary->state)->visible = false;
  6330.         }
  6331.  
  6332.         dev_priv->display.crtc_disable(crtc);
  6333.         intel_crtc->active = false;
  6334.         intel_update_watermarks(crtc);
  6335.         intel_disable_shared_dpll(intel_crtc);
  6336.  
  6337.         domains = intel_crtc->enabled_power_domains;
  6338.         for_each_power_domain(domain, domains)
  6339.                 intel_display_power_put(dev_priv, domain);
  6340.         intel_crtc->enabled_power_domains = 0;
  6341. }
  6342.  
  6343. /*
  6344.  * turn all crtc's off, but do not adjust state
  6345.  * This has to be paired with a call to intel_modeset_setup_hw_state.
  6346.  */
  6347. int intel_display_suspend(struct drm_device *dev)
  6348. {
  6349.         struct drm_mode_config *config = &dev->mode_config;
  6350.         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
  6351.         struct drm_atomic_state *state;
  6352.         struct drm_crtc *crtc;
  6353.         unsigned crtc_mask = 0;
  6354.         int ret = 0;
  6355.  
  6356.         if (WARN_ON(!ctx))
  6357.                 return 0;
  6358.  
  6359.         lockdep_assert_held(&ctx->ww_ctx);
  6360.         state = drm_atomic_state_alloc(dev);
  6361.         if (WARN_ON(!state))
  6362.                 return -ENOMEM;
  6363.  
  6364.         state->acquire_ctx = ctx;
  6365.         state->allow_modeset = true;
  6366.  
  6367.         for_each_crtc(dev, crtc) {
  6368.                 struct drm_crtc_state *crtc_state =
  6369.                         drm_atomic_get_crtc_state(state, crtc);
  6370.  
  6371.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  6372.                 if (ret)
  6373.                         goto free;
  6374.  
  6375.                 if (!crtc_state->active)
  6376.                         continue;
  6377.  
  6378.                 crtc_state->active = false;
  6379.                 crtc_mask |= 1 << drm_crtc_index(crtc);
  6380.         }
  6381.  
  6382.         if (crtc_mask) {
  6383.                 ret = drm_atomic_commit(state);
  6384.  
  6385.                 if (!ret) {
  6386.                         for_each_crtc(dev, crtc)
  6387.                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
  6388.                                         crtc->state->active = true;
  6389.  
  6390.                         return ret;
  6391.                 }
  6392.         }
  6393.  
  6394. free:
  6395.         if (ret)
  6396.                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
  6397.         drm_atomic_state_free(state);
  6398.         return ret;
  6399. }
  6400.  
  6401. void intel_encoder_destroy(struct drm_encoder *encoder)
  6402. {
  6403.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  6404.  
  6405.         drm_encoder_cleanup(encoder);
  6406.         kfree(intel_encoder);
  6407. }
  6408.  
  6409. /* Cross check the actual hw state with our own modeset state tracking (and it's
  6410.  * internal consistency). */
  6411. static void intel_connector_check_state(struct intel_connector *connector)
  6412. {
  6413.         struct drm_crtc *crtc = connector->base.state->crtc;
  6414.  
  6415.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  6416.                       connector->base.base.id,
  6417.                       connector->base.name);
  6418.  
  6419.         if (connector->get_hw_state(connector)) {
  6420.                 struct intel_encoder *encoder = connector->encoder;
  6421.                 struct drm_connector_state *conn_state = connector->base.state;
  6422.  
  6423.                 I915_STATE_WARN(!crtc,
  6424.                          "connector enabled without attached crtc\n");
  6425.  
  6426.                 if (!crtc)
  6427.                         return;
  6428.  
  6429.                 I915_STATE_WARN(!crtc->state->active,
  6430.                       "connector is active, but attached crtc isn't\n");
  6431.  
  6432.                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
  6433.                         return;
  6434.  
  6435.                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
  6436.                         "atomic encoder doesn't match attached encoder\n");
  6437.  
  6438.                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
  6439.                         "attached encoder crtc differs from connector crtc\n");
  6440.         } else {
  6441.                 I915_STATE_WARN(crtc && crtc->state->active,
  6442.                         "attached crtc is active, but connector isn't\n");
  6443.                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
  6444.                         "best encoder set without crtc!\n");
  6445.         }
  6446. }
  6447.  
  6448. int intel_connector_init(struct intel_connector *connector)
  6449. {
  6450.         struct drm_connector_state *connector_state;
  6451.  
  6452.         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
  6453.         if (!connector_state)
  6454.                 return -ENOMEM;
  6455.  
  6456.         connector->base.state = connector_state;
  6457.         return 0;
  6458. }
  6459.  
  6460. struct intel_connector *intel_connector_alloc(void)
  6461. {
  6462.         struct intel_connector *connector;
  6463.  
  6464.         connector = kzalloc(sizeof *connector, GFP_KERNEL);
  6465.         if (!connector)
  6466.                 return NULL;
  6467.  
  6468.         if (intel_connector_init(connector) < 0) {
  6469.                 kfree(connector);
  6470.                 return NULL;
  6471.         }
  6472.  
  6473.         return connector;
  6474. }
  6475.  
  6476. /* Simple connector->get_hw_state implementation for encoders that support only
  6477.  * one connector and no cloning and hence the encoder state determines the state
  6478.  * of the connector. */
  6479. bool intel_connector_get_hw_state(struct intel_connector *connector)
  6480. {
  6481.         enum pipe pipe = 0;
  6482.         struct intel_encoder *encoder = connector->encoder;
  6483.  
  6484.         return encoder->get_hw_state(encoder, &pipe);
  6485. }
  6486.  
  6487. static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
  6488. {
  6489.         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
  6490.                 return crtc_state->fdi_lanes;
  6491.  
  6492.         return 0;
  6493. }
  6494.  
  6495. static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  6496.                                      struct intel_crtc_state *pipe_config)
  6497. {
  6498.         struct drm_atomic_state *state = pipe_config->base.state;
  6499.         struct intel_crtc *other_crtc;
  6500.         struct intel_crtc_state *other_crtc_state;
  6501.  
  6502.         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  6503.                       pipe_name(pipe), pipe_config->fdi_lanes);
  6504.         if (pipe_config->fdi_lanes > 4) {
  6505.                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  6506.                               pipe_name(pipe), pipe_config->fdi_lanes);
  6507.                 return -EINVAL;
  6508.         }
  6509.  
  6510.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  6511.                 if (pipe_config->fdi_lanes > 2) {
  6512.                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  6513.                                       pipe_config->fdi_lanes);
  6514.                         return -EINVAL;
  6515.                 } else {
  6516.                         return 0;
  6517.                 }
  6518.         }
  6519.  
  6520.         if (INTEL_INFO(dev)->num_pipes == 2)
  6521.                 return 0;
  6522.  
  6523.         /* Ivybridge 3 pipe is really complicated */
  6524.         switch (pipe) {
  6525.         case PIPE_A:
  6526.                 return 0;
  6527.         case PIPE_B:
  6528.                 if (pipe_config->fdi_lanes <= 2)
  6529.                         return 0;
  6530.  
  6531.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
  6532.                 other_crtc_state =
  6533.                         intel_atomic_get_crtc_state(state, other_crtc);
  6534.                 if (IS_ERR(other_crtc_state))
  6535.                         return PTR_ERR(other_crtc_state);
  6536.  
  6537.                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
  6538.                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  6539.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6540.                         return -EINVAL;
  6541.                 }
  6542.                 return 0;
  6543.         case PIPE_C:
  6544.                 if (pipe_config->fdi_lanes > 2) {
  6545.                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
  6546.                                       pipe_name(pipe), pipe_config->fdi_lanes);
  6547.                         return -EINVAL;
  6548.                 }
  6549.  
  6550.                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
  6551.                 other_crtc_state =
  6552.                         intel_atomic_get_crtc_state(state, other_crtc);
  6553.                 if (IS_ERR(other_crtc_state))
  6554.                         return PTR_ERR(other_crtc_state);
  6555.  
  6556.                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
  6557.                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  6558.                         return -EINVAL;
  6559.                 }
  6560.                 return 0;
  6561.         default:
  6562.                 BUG();
  6563.         }
  6564. }
  6565.  
  6566. #define RETRY 1
  6567. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  6568.                                        struct intel_crtc_state *pipe_config)
  6569. {
  6570.         struct drm_device *dev = intel_crtc->base.dev;
  6571.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6572.         int lane, link_bw, fdi_dotclock, ret;
  6573.         bool needs_recompute = false;
  6574.  
  6575. retry:
  6576.         /* FDI is a binary signal running at ~2.7GHz, encoding
  6577.          * each output octet as 10 bits. The actual frequency
  6578.          * is stored as a divider into a 100MHz clock, and the
  6579.          * mode pixel clock is stored in units of 1KHz.
  6580.          * Hence the bw of each lane in terms of the mode signal
  6581.          * is:
  6582.          */
  6583.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  6584.  
  6585.         fdi_dotclock = adjusted_mode->crtc_clock;
  6586.  
  6587.         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  6588.                                            pipe_config->pipe_bpp);
  6589.  
  6590.         pipe_config->fdi_lanes = lane;
  6591.  
  6592.         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  6593.                                link_bw, &pipe_config->fdi_m_n);
  6594.  
  6595.         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  6596.                                        intel_crtc->pipe, pipe_config);
  6597.         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
  6598.                 pipe_config->pipe_bpp -= 2*3;
  6599.                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  6600.                               pipe_config->pipe_bpp);
  6601.                 needs_recompute = true;
  6602.                 pipe_config->bw_constrained = true;
  6603.  
  6604.                 goto retry;
  6605.         }
  6606.  
  6607.         if (needs_recompute)
  6608.                 return RETRY;
  6609.  
  6610.         return ret;
  6611. }
  6612.  
  6613. static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
  6614.                                      struct intel_crtc_state *pipe_config)
  6615. {
  6616.         if (pipe_config->pipe_bpp > 24)
  6617.                 return false;
  6618.  
  6619.         /* HSW can handle pixel rate up to cdclk? */
  6620.         if (IS_HASWELL(dev_priv->dev))
  6621.                 return true;
  6622.  
  6623.         /*
  6624.          * We compare against max which means we must take
  6625.          * the increased cdclk requirement into account when
  6626.          * calculating the new cdclk.
  6627.          *
  6628.          * Should measure whether using a lower cdclk w/o IPS
  6629.          */
  6630.         return ilk_pipe_pixel_rate(pipe_config) <=
  6631.                 dev_priv->max_cdclk_freq * 95 / 100;
  6632. }
  6633.  
  6634. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  6635.                                    struct intel_crtc_state *pipe_config)
  6636. {
  6637.         struct drm_device *dev = crtc->base.dev;
  6638.         struct drm_i915_private *dev_priv = dev->dev_private;
  6639.  
  6640.         pipe_config->ips_enabled = i915.enable_ips &&
  6641.                 hsw_crtc_supports_ips(crtc) &&
  6642.                 pipe_config_supports_ips(dev_priv, pipe_config);
  6643. }
  6644.  
  6645. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  6646.                                      struct intel_crtc_state *pipe_config)
  6647. {
  6648.         struct drm_device *dev = crtc->base.dev;
  6649.         struct drm_i915_private *dev_priv = dev->dev_private;
  6650.         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  6651.  
  6652.         /* FIXME should check pixel clock limits on all platforms */
  6653.         if (INTEL_INFO(dev)->gen < 4) {
  6654.                 int clock_limit = dev_priv->max_cdclk_freq;
  6655.  
  6656.                 /*
  6657.                  * Enable pixel doubling when the dot clock
  6658.                  * is > 90% of the (display) core speed.
  6659.                  *
  6660.                  * GDG double wide on either pipe,
  6661.                  * otherwise pipe A only.
  6662.                  */
  6663.                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  6664.                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
  6665.                         clock_limit *= 2;
  6666.                         pipe_config->double_wide = true;
  6667.                 }
  6668.  
  6669.                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
  6670.                         return -EINVAL;
  6671.         }
  6672.  
  6673.         /*
  6674.          * Pipe horizontal size must be even in:
  6675.          * - DVO ganged mode
  6676.          * - LVDS dual channel mode
  6677.          * - Double wide pipe
  6678.          */
  6679.         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
  6680.              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  6681.                 pipe_config->pipe_src_w &= ~1;
  6682.  
  6683.         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  6684.          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  6685.          */
  6686.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  6687.                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
  6688.                 return -EINVAL;
  6689.  
  6690.         if (HAS_IPS(dev))
  6691.                 hsw_compute_ips_config(crtc, pipe_config);
  6692.  
  6693.         if (pipe_config->has_pch_encoder)
  6694.                 return ironlake_fdi_compute_config(crtc, pipe_config);
  6695.  
  6696.         return 0;
  6697. }
  6698.  
  6699. static int skylake_get_display_clock_speed(struct drm_device *dev)
  6700. {
  6701.         struct drm_i915_private *dev_priv = to_i915(dev);
  6702.         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  6703.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6704.         uint32_t linkrate;
  6705.  
  6706.         if (!(lcpll1 & LCPLL_PLL_ENABLE))
  6707.                 return 24000; /* 24MHz is the cd freq with NSSC ref */
  6708.  
  6709.         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  6710.                 return 540000;
  6711.  
  6712.         linkrate = (I915_READ(DPLL_CTRL1) &
  6713.                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  6714.  
  6715.         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
  6716.             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
  6717.                 /* vco 8640 */
  6718.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6719.                 case CDCLK_FREQ_450_432:
  6720.                         return 432000;
  6721.                 case CDCLK_FREQ_337_308:
  6722.                         return 308570;
  6723.                 case CDCLK_FREQ_675_617:
  6724.                         return 617140;
  6725.                 default:
  6726.                         WARN(1, "Unknown cd freq selection\n");
  6727.                 }
  6728.         } else {
  6729.                 /* vco 8100 */
  6730.                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  6731.                 case CDCLK_FREQ_450_432:
  6732.                         return 450000;
  6733.                 case CDCLK_FREQ_337_308:
  6734.                         return 337500;
  6735.                 case CDCLK_FREQ_675_617:
  6736.                         return 675000;
  6737.                 default:
  6738.                         WARN(1, "Unknown cd freq selection\n");
  6739.                 }
  6740.         }
  6741.  
  6742.         /* error case, do as if DPLL0 isn't enabled */
  6743.         return 24000;
  6744. }
  6745.  
  6746. static int broxton_get_display_clock_speed(struct drm_device *dev)
  6747. {
  6748.         struct drm_i915_private *dev_priv = to_i915(dev);
  6749.         uint32_t cdctl = I915_READ(CDCLK_CTL);
  6750.         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
  6751.         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
  6752.         int cdclk;
  6753.  
  6754.         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
  6755.                 return 19200;
  6756.  
  6757.         cdclk = 19200 * pll_ratio / 2;
  6758.  
  6759.         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
  6760.         case BXT_CDCLK_CD2X_DIV_SEL_1:
  6761.                 return cdclk;  /* 576MHz or 624MHz */
  6762.         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
  6763.                 return cdclk * 2 / 3; /* 384MHz */
  6764.         case BXT_CDCLK_CD2X_DIV_SEL_2:
  6765.                 return cdclk / 2; /* 288MHz */
  6766.         case BXT_CDCLK_CD2X_DIV_SEL_4:
  6767.                 return cdclk / 4; /* 144MHz */
  6768.         }
  6769.  
  6770.         /* error case, do as if DE PLL isn't enabled */
  6771.         return 19200;
  6772. }
  6773.  
  6774. static int broadwell_get_display_clock_speed(struct drm_device *dev)
  6775. {
  6776.         struct drm_i915_private *dev_priv = dev->dev_private;
  6777.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6778.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6779.  
  6780.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6781.                 return 800000;
  6782.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6783.                 return 450000;
  6784.         else if (freq == LCPLL_CLK_FREQ_450)
  6785.                 return 450000;
  6786.         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  6787.                 return 540000;
  6788.         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  6789.                 return 337500;
  6790.         else
  6791.                 return 675000;
  6792. }
  6793.  
  6794. static int haswell_get_display_clock_speed(struct drm_device *dev)
  6795. {
  6796.         struct drm_i915_private *dev_priv = dev->dev_private;
  6797.         uint32_t lcpll = I915_READ(LCPLL_CTL);
  6798.         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  6799.  
  6800.         if (lcpll & LCPLL_CD_SOURCE_FCLK)
  6801.                 return 800000;
  6802.         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  6803.                 return 450000;
  6804.         else if (freq == LCPLL_CLK_FREQ_450)
  6805.                 return 450000;
  6806.         else if (IS_HSW_ULT(dev))
  6807.                 return 337500;
  6808.         else
  6809.                 return 540000;
  6810. }
  6811.  
  6812. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  6813. {
  6814.         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
  6815.                                       CCK_DISPLAY_CLOCK_CONTROL);
  6816. }
  6817.  
  6818. static int ilk_get_display_clock_speed(struct drm_device *dev)
  6819. {
  6820.         return 450000;
  6821. }
  6822.  
  6823. static int i945_get_display_clock_speed(struct drm_device *dev)
  6824. {
  6825.         return 400000;
  6826. }
  6827.  
  6828. static int i915_get_display_clock_speed(struct drm_device *dev)
  6829. {
  6830.         return 333333;
  6831. }
  6832.  
  6833. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  6834. {
  6835.         return 200000;
  6836. }
  6837.  
  6838. static int pnv_get_display_clock_speed(struct drm_device *dev)
  6839. {
  6840.         u16 gcfgc = 0;
  6841.  
  6842.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6843.  
  6844.         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6845.         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  6846.                 return 266667;
  6847.         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  6848.                 return 333333;
  6849.         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  6850.                 return 444444;
  6851.         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  6852.                 return 200000;
  6853.         default:
  6854.                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  6855.         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  6856.                 return 133333;
  6857.         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  6858.                 return 166667;
  6859.         }
  6860. }
  6861.  
  6862. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  6863. {
  6864.         u16 gcfgc = 0;
  6865.  
  6866.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  6867.  
  6868.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  6869.                 return 133333;
  6870.         else {
  6871.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  6872.                 case GC_DISPLAY_CLOCK_333_MHZ:
  6873.                         return 333333;
  6874.                 default:
  6875.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  6876.                         return 190000;
  6877.                 }
  6878.         }
  6879. }
  6880.  
  6881. static int i865_get_display_clock_speed(struct drm_device *dev)
  6882. {
  6883.         return 266667;
  6884. }
  6885.  
  6886. static int i85x_get_display_clock_speed(struct drm_device *dev)
  6887. {
  6888.         u16 hpllcc = 0;
  6889.  
  6890.         /*
  6891.          * 852GM/852GMV only supports 133 MHz and the HPLLCC
  6892.          * encoding is different :(
  6893.          * FIXME is this the right way to detect 852GM/852GMV?
  6894.          */
  6895.         if (dev->pdev->revision == 0x1)
  6896.                 return 133333;
  6897.  
  6898. //   pci_bus_read_config_word(dev->pdev->bus,
  6899. //                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
  6900.  
  6901.         /* Assume that the hardware is in the high speed state.  This
  6902.          * should be the default.
  6903.          */
  6904.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  6905.         case GC_CLOCK_133_200:
  6906.         case GC_CLOCK_133_200_2:
  6907.         case GC_CLOCK_100_200:
  6908.                 return 200000;
  6909.         case GC_CLOCK_166_250:
  6910.                 return 250000;
  6911.         case GC_CLOCK_100_133:
  6912.                 return 133333;
  6913.         case GC_CLOCK_133_266:
  6914.         case GC_CLOCK_133_266_2:
  6915.         case GC_CLOCK_166_266:
  6916.                 return 266667;
  6917.         }
  6918.  
  6919.         /* Shouldn't happen */
  6920.         return 0;
  6921. }
  6922.  
  6923. static int i830_get_display_clock_speed(struct drm_device *dev)
  6924. {
  6925.         return 133333;
  6926. }
  6927.  
  6928. static unsigned int intel_hpll_vco(struct drm_device *dev)
  6929. {
  6930.         struct drm_i915_private *dev_priv = dev->dev_private;
  6931.         static const unsigned int blb_vco[8] = {
  6932.                 [0] = 3200000,
  6933.                 [1] = 4000000,
  6934.                 [2] = 5333333,
  6935.                 [3] = 4800000,
  6936.                 [4] = 6400000,
  6937.         };
  6938.         static const unsigned int pnv_vco[8] = {
  6939.                 [0] = 3200000,
  6940.                 [1] = 4000000,
  6941.                 [2] = 5333333,
  6942.                 [3] = 4800000,
  6943.                 [4] = 2666667,
  6944.         };
  6945.         static const unsigned int cl_vco[8] = {
  6946.                 [0] = 3200000,
  6947.                 [1] = 4000000,
  6948.                 [2] = 5333333,
  6949.                 [3] = 6400000,
  6950.                 [4] = 3333333,
  6951.                 [5] = 3566667,
  6952.                 [6] = 4266667,
  6953.         };
  6954.         static const unsigned int elk_vco[8] = {
  6955.                 [0] = 3200000,
  6956.                 [1] = 4000000,
  6957.                 [2] = 5333333,
  6958.                 [3] = 4800000,
  6959.         };
  6960.         static const unsigned int ctg_vco[8] = {
  6961.                 [0] = 3200000,
  6962.                 [1] = 4000000,
  6963.                 [2] = 5333333,
  6964.                 [3] = 6400000,
  6965.                 [4] = 2666667,
  6966.                 [5] = 4266667,
  6967.         };
  6968.         const unsigned int *vco_table;
  6969.         unsigned int vco;
  6970.         uint8_t tmp = 0;
  6971.  
  6972.         /* FIXME other chipsets? */
  6973.         if (IS_GM45(dev))
  6974.                 vco_table = ctg_vco;
  6975.         else if (IS_G4X(dev))
  6976.                 vco_table = elk_vco;
  6977.         else if (IS_CRESTLINE(dev))
  6978.                 vco_table = cl_vco;
  6979.         else if (IS_PINEVIEW(dev))
  6980.                 vco_table = pnv_vco;
  6981.         else if (IS_G33(dev))
  6982.                 vco_table = blb_vco;
  6983.         else
  6984.                 return 0;
  6985.  
  6986.         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
  6987.  
  6988.         vco = vco_table[tmp & 0x7];
  6989.         if (vco == 0)
  6990.                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
  6991.         else
  6992.                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
  6993.  
  6994.         return vco;
  6995. }
  6996.  
  6997. static int gm45_get_display_clock_speed(struct drm_device *dev)
  6998. {
  6999.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7000.         uint16_t tmp = 0;
  7001.  
  7002.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7003.  
  7004.         cdclk_sel = (tmp >> 12) & 0x1;
  7005.  
  7006.         switch (vco) {
  7007.         case 2666667:
  7008.         case 4000000:
  7009.         case 5333333:
  7010.                 return cdclk_sel ? 333333 : 222222;
  7011.         case 3200000:
  7012.                 return cdclk_sel ? 320000 : 228571;
  7013.         default:
  7014.                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
  7015.                 return 222222;
  7016.         }
  7017. }
  7018.  
  7019. static int i965gm_get_display_clock_speed(struct drm_device *dev)
  7020. {
  7021.         static const uint8_t div_3200[] = { 16, 10,  8 };
  7022.         static const uint8_t div_4000[] = { 20, 12, 10 };
  7023.         static const uint8_t div_5333[] = { 24, 16, 14 };
  7024.         const uint8_t *div_table;
  7025.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7026.         uint16_t tmp = 0;
  7027.  
  7028.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7029.  
  7030.         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
  7031.  
  7032.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7033.                 goto fail;
  7034.  
  7035.         switch (vco) {
  7036.         case 3200000:
  7037.                 div_table = div_3200;
  7038.                 break;
  7039.         case 4000000:
  7040.                 div_table = div_4000;
  7041.                 break;
  7042.         case 5333333:
  7043.                 div_table = div_5333;
  7044.                 break;
  7045.         default:
  7046.                 goto fail;
  7047.         }
  7048.  
  7049.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7050.  
  7051. fail:
  7052.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
  7053.         return 200000;
  7054. }
  7055.  
  7056. static int g33_get_display_clock_speed(struct drm_device *dev)
  7057. {
  7058.         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
  7059.         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
  7060.         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
  7061.         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
  7062.         const uint8_t *div_table;
  7063.         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
  7064.         uint16_t tmp = 0;
  7065.  
  7066.         pci_read_config_word(dev->pdev, GCFGC, &tmp);
  7067.  
  7068.         cdclk_sel = (tmp >> 4) & 0x7;
  7069.  
  7070.         if (cdclk_sel >= ARRAY_SIZE(div_3200))
  7071.                 goto fail;
  7072.  
  7073.         switch (vco) {
  7074.         case 3200000:
  7075.                 div_table = div_3200;
  7076.                 break;
  7077.         case 4000000:
  7078.                 div_table = div_4000;
  7079.                 break;
  7080.         case 4800000:
  7081.                 div_table = div_4800;
  7082.                 break;
  7083.         case 5333333:
  7084.                 div_table = div_5333;
  7085.                 break;
  7086.         default:
  7087.                 goto fail;
  7088.         }
  7089.  
  7090.         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
  7091.  
  7092. fail:
  7093.         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
  7094.         return 190476;
  7095. }
  7096.  
  7097. static void
  7098. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  7099. {
  7100.         while (*num > DATA_LINK_M_N_MASK ||
  7101.                *den > DATA_LINK_M_N_MASK) {
  7102.                 *num >>= 1;
  7103.                 *den >>= 1;
  7104.         }
  7105. }
  7106.  
  7107. static void compute_m_n(unsigned int m, unsigned int n,
  7108.                         uint32_t *ret_m, uint32_t *ret_n)
  7109. {
  7110.         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  7111.         *ret_m = div_u64((uint64_t) m * *ret_n, n);
  7112.         intel_reduce_m_n_ratio(ret_m, ret_n);
  7113. }
  7114.  
  7115. void
  7116. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  7117.                        int pixel_clock, int link_clock,
  7118.                        struct intel_link_m_n *m_n)
  7119. {
  7120.         m_n->tu = 64;
  7121.  
  7122.         compute_m_n(bits_per_pixel * pixel_clock,
  7123.                     link_clock * nlanes * 8,
  7124.                     &m_n->gmch_m, &m_n->gmch_n);
  7125.  
  7126.         compute_m_n(pixel_clock, link_clock,
  7127.                     &m_n->link_m, &m_n->link_n);
  7128. }
  7129.  
  7130. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  7131. {
  7132.         if (i915.panel_use_ssc >= 0)
  7133.                 return i915.panel_use_ssc != 0;
  7134.         return dev_priv->vbt.lvds_use_ssc
  7135.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  7136. }
  7137.  
  7138. static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
  7139.                            int num_connectors)
  7140. {
  7141.         struct drm_device *dev = crtc_state->base.crtc->dev;
  7142.         struct drm_i915_private *dev_priv = dev->dev_private;
  7143.         int refclk;
  7144.  
  7145.         WARN_ON(!crtc_state->base.state);
  7146.  
  7147.         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
  7148.                 refclk = 100000;
  7149.         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7150.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  7151.                 refclk = dev_priv->vbt.lvds_ssc_freq;
  7152.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
  7153.         } else if (!IS_GEN2(dev)) {
  7154.                 refclk = 96000;
  7155.         } else {
  7156.                 refclk = 48000;
  7157.         }
  7158.  
  7159.         return refclk;
  7160. }
  7161.  
  7162. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  7163. {
  7164.         return (1 << dpll->n) << 16 | dpll->m2;
  7165. }
  7166.  
  7167. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  7168. {
  7169.         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  7170. }
  7171.  
  7172. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  7173.                                      struct intel_crtc_state *crtc_state,
  7174.                                      intel_clock_t *reduced_clock)
  7175. {
  7176.         struct drm_device *dev = crtc->base.dev;
  7177.         u32 fp, fp2 = 0;
  7178.  
  7179.         if (IS_PINEVIEW(dev)) {
  7180.                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
  7181.                 if (reduced_clock)
  7182.                         fp2 = pnv_dpll_compute_fp(reduced_clock);
  7183.         } else {
  7184.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  7185.                 if (reduced_clock)
  7186.                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
  7187.         }
  7188.  
  7189.         crtc_state->dpll_hw_state.fp0 = fp;
  7190.  
  7191.         crtc->lowfreq_avail = false;
  7192.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7193.             reduced_clock) {
  7194.                 crtc_state->dpll_hw_state.fp1 = fp2;
  7195.                 crtc->lowfreq_avail = true;
  7196.         } else {
  7197.                 crtc_state->dpll_hw_state.fp1 = fp;
  7198.         }
  7199. }
  7200.  
  7201. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  7202.                 pipe)
  7203. {
  7204.         u32 reg_val;
  7205.  
  7206.         /*
  7207.          * PLLB opamp always calibrates to max value of 0x3f, force enable it
  7208.          * and set it to a reasonable value instead.
  7209.          */
  7210.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7211.         reg_val &= 0xffffff00;
  7212.         reg_val |= 0x00000030;
  7213.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7214.  
  7215.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7216.         reg_val &= 0x8cffffff;
  7217.         reg_val = 0x8c000000;
  7218.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7219.  
  7220.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
  7221.         reg_val &= 0xffffff00;
  7222.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
  7223.  
  7224.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
  7225.         reg_val &= 0x00ffffff;
  7226.         reg_val |= 0xb0000000;
  7227.         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
  7228. }
  7229.  
  7230. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  7231.                                          struct intel_link_m_n *m_n)
  7232. {
  7233.         struct drm_device *dev = crtc->base.dev;
  7234.         struct drm_i915_private *dev_priv = dev->dev_private;
  7235.         int pipe = crtc->pipe;
  7236.  
  7237.         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7238.         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  7239.         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  7240.         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  7241. }
  7242.  
  7243. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  7244.                                          struct intel_link_m_n *m_n,
  7245.                                          struct intel_link_m_n *m2_n2)
  7246. {
  7247.         struct drm_device *dev = crtc->base.dev;
  7248.         struct drm_i915_private *dev_priv = dev->dev_private;
  7249.         int pipe = crtc->pipe;
  7250.         enum transcoder transcoder = crtc->config->cpu_transcoder;
  7251.  
  7252.         if (INTEL_INFO(dev)->gen >= 5) {
  7253.                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7254.                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  7255.                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  7256.                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  7257.                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
  7258.                  * for gen < 8) and if DRRS is supported (to make sure the
  7259.                  * registers are not unnecessarily accessed).
  7260.                  */
  7261.                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
  7262.                         crtc->config->has_drrs) {
  7263.                         I915_WRITE(PIPE_DATA_M2(transcoder),
  7264.                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
  7265.                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
  7266.                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
  7267.                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
  7268.                 }
  7269.         } else {
  7270.                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  7271.                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  7272.                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  7273.                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  7274.         }
  7275. }
  7276.  
  7277. void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
  7278. {
  7279.         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
  7280.  
  7281.         if (m_n == M1_N1) {
  7282.                 dp_m_n = &crtc->config->dp_m_n;
  7283.                 dp_m2_n2 = &crtc->config->dp_m2_n2;
  7284.         } else if (m_n == M2_N2) {
  7285.  
  7286.                 /*
  7287.                  * M2_N2 registers are not supported. Hence m2_n2 divider value
  7288.                  * needs to be programmed into M1_N1.
  7289.                  */
  7290.                 dp_m_n = &crtc->config->dp_m2_n2;
  7291.         } else {
  7292.                 DRM_ERROR("Unsupported divider value\n");
  7293.                 return;
  7294.         }
  7295.  
  7296.         if (crtc->config->has_pch_encoder)
  7297.                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
  7298.         else
  7299.                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
  7300. }
  7301.  
  7302. static void vlv_compute_dpll(struct intel_crtc *crtc,
  7303.                              struct intel_crtc_state *pipe_config)
  7304. {
  7305.         u32 dpll, dpll_md;
  7306.  
  7307.         /*
  7308.          * Enable DPIO clock input. We should never disable the reference
  7309.          * clock for pipe B, since VGA hotplug / manual detection depends
  7310.          * on it.
  7311.          */
  7312.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
  7313.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
  7314.         /* We should never disable this, set it here for state tracking */
  7315.         if (crtc->pipe == PIPE_B)
  7316.                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7317.         dpll |= DPLL_VCO_ENABLE;
  7318.         pipe_config->dpll_hw_state.dpll = dpll;
  7319.  
  7320.         dpll_md = (pipe_config->pixel_multiplier - 1)
  7321.                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7322.         pipe_config->dpll_hw_state.dpll_md = dpll_md;
  7323. }
  7324.  
  7325. static void vlv_prepare_pll(struct intel_crtc *crtc,
  7326.                             const struct intel_crtc_state *pipe_config)
  7327. {
  7328.         struct drm_device *dev = crtc->base.dev;
  7329.         struct drm_i915_private *dev_priv = dev->dev_private;
  7330.         int pipe = crtc->pipe;
  7331.         u32 mdiv;
  7332.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  7333.         u32 coreclk, reg_val;
  7334.  
  7335.         mutex_lock(&dev_priv->sb_lock);
  7336.  
  7337.         bestn = pipe_config->dpll.n;
  7338.         bestm1 = pipe_config->dpll.m1;
  7339.         bestm2 = pipe_config->dpll.m2;
  7340.         bestp1 = pipe_config->dpll.p1;
  7341.         bestp2 = pipe_config->dpll.p2;
  7342.  
  7343.         /* See eDP HDMI DPIO driver vbios notes doc */
  7344.  
  7345.         /* PLL B needs special handling */
  7346.         if (pipe == PIPE_B)
  7347.                 vlv_pllb_recal_opamp(dev_priv, pipe);
  7348.  
  7349.         /* Set up Tx target for periodic Rcomp update */
  7350.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
  7351.  
  7352.         /* Disable target IRef on PLL */
  7353.         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
  7354.         reg_val &= 0x00ffffff;
  7355.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
  7356.  
  7357.         /* Disable fast lock */
  7358.         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
  7359.  
  7360.         /* Set idtafcrecal before PLL is enabled */
  7361.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  7362.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  7363.         mdiv |= ((bestn << DPIO_N_SHIFT));
  7364.         mdiv |= (1 << DPIO_K_SHIFT);
  7365.  
  7366.         /*
  7367.          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  7368.          * but we don't support that).
  7369.          * Note: don't use the DAC post divider as it seems unstable.
  7370.          */
  7371.         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  7372.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7373.  
  7374.         mdiv |= DPIO_ENABLE_CALIBRATION;
  7375.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
  7376.  
  7377.         /* Set HBR and RBR LPF coefficients */
  7378.         if (pipe_config->port_clock == 162000 ||
  7379.             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
  7380.             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  7381.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7382.                                  0x009f0003);
  7383.         else
  7384.                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
  7385.                                  0x00d0000f);
  7386.  
  7387.         if (pipe_config->has_dp_encoder) {
  7388.                 /* Use SSC source */
  7389.                 if (pipe == PIPE_A)
  7390.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7391.                                          0x0df40000);
  7392.                 else
  7393.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7394.                                          0x0df70000);
  7395.         } else { /* HDMI or VGA */
  7396.                 /* Use bend source */
  7397.                 if (pipe == PIPE_A)
  7398.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7399.                                          0x0df70000);
  7400.                 else
  7401.                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
  7402.                                          0x0df40000);
  7403.         }
  7404.  
  7405.         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
  7406.         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  7407.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  7408.             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  7409.                 coreclk |= 0x01000000;
  7410.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
  7411.  
  7412.         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
  7413.         mutex_unlock(&dev_priv->sb_lock);
  7414. }
  7415.  
  7416. static void chv_compute_dpll(struct intel_crtc *crtc,
  7417.                              struct intel_crtc_state *pipe_config)
  7418. {
  7419.         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
  7420.                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
  7421.                 DPLL_VCO_ENABLE;
  7422.         if (crtc->pipe != PIPE_A)
  7423.                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  7424.  
  7425.         pipe_config->dpll_hw_state.dpll_md =
  7426.                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7427. }
  7428.  
  7429. static void chv_prepare_pll(struct intel_crtc *crtc,
  7430.                             const struct intel_crtc_state *pipe_config)
  7431. {
  7432.         struct drm_device *dev = crtc->base.dev;
  7433.         struct drm_i915_private *dev_priv = dev->dev_private;
  7434.         int pipe = crtc->pipe;
  7435.         int dpll_reg = DPLL(crtc->pipe);
  7436.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  7437.         u32 loopfilter, tribuf_calcntr;
  7438.         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
  7439.         u32 dpio_val;
  7440.         int vco;
  7441.  
  7442.         bestn = pipe_config->dpll.n;
  7443.         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
  7444.         bestm1 = pipe_config->dpll.m1;
  7445.         bestm2 = pipe_config->dpll.m2 >> 22;
  7446.         bestp1 = pipe_config->dpll.p1;
  7447.         bestp2 = pipe_config->dpll.p2;
  7448.         vco = pipe_config->dpll.vco;
  7449.         dpio_val = 0;
  7450.         loopfilter = 0;
  7451.  
  7452.         /*
  7453.          * Enable Refclk and SSC
  7454.          */
  7455.         I915_WRITE(dpll_reg,
  7456.                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
  7457.  
  7458.         mutex_lock(&dev_priv->sb_lock);
  7459.  
  7460.         /* p1 and p2 divider */
  7461.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
  7462.                         5 << DPIO_CHV_S1_DIV_SHIFT |
  7463.                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
  7464.                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
  7465.                         1 << DPIO_CHV_K_DIV_SHIFT);
  7466.  
  7467.         /* Feedback post-divider - m2 */
  7468.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
  7469.  
  7470.         /* Feedback refclk divider - n and m1 */
  7471.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
  7472.                         DPIO_CHV_M1_DIV_BY_2 |
  7473.                         1 << DPIO_CHV_N_DIV_SHIFT);
  7474.  
  7475.         /* M2 fraction division */
  7476.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
  7477.  
  7478.         /* M2 fraction division enable */
  7479.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  7480.         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
  7481.         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
  7482.         if (bestm2_frac)
  7483.                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
  7484.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
  7485.  
  7486.         /* Program digital lock detect threshold */
  7487.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
  7488.         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
  7489.                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
  7490.         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
  7491.         if (!bestm2_frac)
  7492.                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
  7493.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
  7494.  
  7495.         /* Loop filter */
  7496.         if (vco == 5400000) {
  7497.                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
  7498.                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
  7499.                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7500.                 tribuf_calcntr = 0x9;
  7501.         } else if (vco <= 6200000) {
  7502.                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
  7503.                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
  7504.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7505.                 tribuf_calcntr = 0x9;
  7506.         } else if (vco <= 6480000) {
  7507.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7508.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7509.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7510.                 tribuf_calcntr = 0x8;
  7511.         } else {
  7512.                 /* Not supported. Apply the same limits as in the max case */
  7513.                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
  7514.                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
  7515.                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
  7516.                 tribuf_calcntr = 0;
  7517.         }
  7518.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
  7519.  
  7520.         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
  7521.         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
  7522.         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
  7523.         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
  7524.  
  7525.         /* AFC Recal */
  7526.         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
  7527.                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
  7528.                         DPIO_AFC_RECAL);
  7529.  
  7530.         mutex_unlock(&dev_priv->sb_lock);
  7531. }
  7532.  
  7533. /**
  7534.  * vlv_force_pll_on - forcibly enable just the PLL
  7535.  * @dev_priv: i915 private structure
  7536.  * @pipe: pipe PLL to enable
  7537.  * @dpll: PLL configuration
  7538.  *
  7539.  * Enable the PLL for @pipe using the supplied @dpll config. To be used
  7540.  * in cases where we need the PLL enabled even when @pipe is not going to
  7541.  * be enabled.
  7542.  */
  7543. void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
  7544.                       const struct dpll *dpll)
  7545. {
  7546.         struct intel_crtc *crtc =
  7547.                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  7548.         struct intel_crtc_state pipe_config = {
  7549.                 .base.crtc = &crtc->base,
  7550.                 .pixel_multiplier = 1,
  7551.                 .dpll = *dpll,
  7552.         };
  7553.  
  7554.         if (IS_CHERRYVIEW(dev)) {
  7555.                 chv_compute_dpll(crtc, &pipe_config);
  7556.                 chv_prepare_pll(crtc, &pipe_config);
  7557.                 chv_enable_pll(crtc, &pipe_config);
  7558.         } else {
  7559.                 vlv_compute_dpll(crtc, &pipe_config);
  7560.                 vlv_prepare_pll(crtc, &pipe_config);
  7561.                 vlv_enable_pll(crtc, &pipe_config);
  7562.         }
  7563. }
  7564.  
  7565. /**
  7566.  * vlv_force_pll_off - forcibly disable just the PLL
  7567.  * @dev_priv: i915 private structure
  7568.  * @pipe: pipe PLL to disable
  7569.  *
  7570.  * Disable the PLL for @pipe. To be used in cases where we need
  7571.  * the PLL enabled even when @pipe is not going to be enabled.
  7572.  */
  7573. void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
  7574. {
  7575.         if (IS_CHERRYVIEW(dev))
  7576.                 chv_disable_pll(to_i915(dev), pipe);
  7577.         else
  7578.                 vlv_disable_pll(to_i915(dev), pipe);
  7579. }
  7580.  
  7581. static void i9xx_compute_dpll(struct intel_crtc *crtc,
  7582.                               struct intel_crtc_state *crtc_state,
  7583.                               intel_clock_t *reduced_clock,
  7584.                               int num_connectors)
  7585. {
  7586.         struct drm_device *dev = crtc->base.dev;
  7587.         struct drm_i915_private *dev_priv = dev->dev_private;
  7588.         u32 dpll;
  7589.         bool is_sdvo;
  7590.         struct dpll *clock = &crtc_state->dpll;
  7591.  
  7592.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7593.  
  7594.         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
  7595.                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
  7596.  
  7597.         dpll = DPLL_VGA_MODE_DIS;
  7598.  
  7599.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
  7600.                 dpll |= DPLLB_MODE_LVDS;
  7601.         else
  7602.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  7603.  
  7604.         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  7605.                 dpll |= (crtc_state->pixel_multiplier - 1)
  7606.                         << SDVO_MULTIPLIER_SHIFT_HIRES;
  7607.         }
  7608.  
  7609.         if (is_sdvo)
  7610.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7611.  
  7612.         if (crtc_state->has_dp_encoder)
  7613.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  7614.  
  7615.         /* compute bitmask from p1 value */
  7616.         if (IS_PINEVIEW(dev))
  7617.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  7618.         else {
  7619.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7620.                 if (IS_G4X(dev) && reduced_clock)
  7621.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  7622.         }
  7623.         switch (clock->p2) {
  7624.         case 5:
  7625.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  7626.                 break;
  7627.         case 7:
  7628.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  7629.                 break;
  7630.         case 10:
  7631.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  7632.                 break;
  7633.         case 14:
  7634.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  7635.                 break;
  7636.         }
  7637.         if (INTEL_INFO(dev)->gen >= 4)
  7638.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  7639.  
  7640.         if (crtc_state->sdvo_tv_clock)
  7641.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  7642.         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7643.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7644.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7645.         else
  7646.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7647.  
  7648.         dpll |= DPLL_VCO_ENABLE;
  7649.         crtc_state->dpll_hw_state.dpll = dpll;
  7650.  
  7651.         if (INTEL_INFO(dev)->gen >= 4) {
  7652.                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
  7653.                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  7654.                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
  7655.         }
  7656. }
  7657.  
  7658. static void i8xx_compute_dpll(struct intel_crtc *crtc,
  7659.                               struct intel_crtc_state *crtc_state,
  7660.                               intel_clock_t *reduced_clock,
  7661.                               int num_connectors)
  7662. {
  7663.         struct drm_device *dev = crtc->base.dev;
  7664.         struct drm_i915_private *dev_priv = dev->dev_private;
  7665.         u32 dpll;
  7666.         struct dpll *clock = &crtc_state->dpll;
  7667.  
  7668.         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
  7669.  
  7670.         dpll = DPLL_VGA_MODE_DIS;
  7671.  
  7672.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  7673.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7674.         } else {
  7675.                 if (clock->p1 == 2)
  7676.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  7677.                 else
  7678.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  7679.                 if (clock->p2 == 4)
  7680.                         dpll |= PLL_P2_DIVIDE_BY_4;
  7681.         }
  7682.  
  7683.         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
  7684.                 dpll |= DPLL_DVO_2X_MODE;
  7685.  
  7686.         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
  7687.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  7688.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  7689.         else
  7690.                 dpll |= PLL_REF_INPUT_DREFCLK;
  7691.  
  7692.         dpll |= DPLL_VCO_ENABLE;
  7693.         crtc_state->dpll_hw_state.dpll = dpll;
  7694. }
  7695.  
  7696. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  7697. {
  7698.         struct drm_device *dev = intel_crtc->base.dev;
  7699.         struct drm_i915_private *dev_priv = dev->dev_private;
  7700.         enum pipe pipe = intel_crtc->pipe;
  7701.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  7702.         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  7703.         uint32_t crtc_vtotal, crtc_vblank_end;
  7704.         int vsyncshift = 0;
  7705.  
  7706.         /* We need to be careful not to changed the adjusted mode, for otherwise
  7707.          * the hw state checker will get angry at the mismatch. */
  7708.         crtc_vtotal = adjusted_mode->crtc_vtotal;
  7709.         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  7710.  
  7711.         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  7712.                 /* the chip adds 2 halflines automatically */
  7713.                 crtc_vtotal -= 1;
  7714.                 crtc_vblank_end -= 1;
  7715.  
  7716.                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7717.                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
  7718.                 else
  7719.                         vsyncshift = adjusted_mode->crtc_hsync_start -
  7720.                                 adjusted_mode->crtc_htotal / 2;
  7721.                 if (vsyncshift < 0)
  7722.                         vsyncshift += adjusted_mode->crtc_htotal;
  7723.         }
  7724.  
  7725.         if (INTEL_INFO(dev)->gen > 3)
  7726.                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  7727.  
  7728.         I915_WRITE(HTOTAL(cpu_transcoder),
  7729.                    (adjusted_mode->crtc_hdisplay - 1) |
  7730.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  7731.         I915_WRITE(HBLANK(cpu_transcoder),
  7732.                    (adjusted_mode->crtc_hblank_start - 1) |
  7733.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  7734.         I915_WRITE(HSYNC(cpu_transcoder),
  7735.                    (adjusted_mode->crtc_hsync_start - 1) |
  7736.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  7737.  
  7738.         I915_WRITE(VTOTAL(cpu_transcoder),
  7739.                    (adjusted_mode->crtc_vdisplay - 1) |
  7740.                    ((crtc_vtotal - 1) << 16));
  7741.         I915_WRITE(VBLANK(cpu_transcoder),
  7742.                    (adjusted_mode->crtc_vblank_start - 1) |
  7743.                    ((crtc_vblank_end - 1) << 16));
  7744.         I915_WRITE(VSYNC(cpu_transcoder),
  7745.                    (adjusted_mode->crtc_vsync_start - 1) |
  7746.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  7747.  
  7748.         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  7749.          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  7750.          * documented on the DDI_FUNC_CTL register description, EDP Input Select
  7751.          * bits. */
  7752.         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  7753.             (pipe == PIPE_B || pipe == PIPE_C))
  7754.                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  7755.  
  7756.         /* pipesrc controls the size that is scaled from, which should
  7757.          * always be the user's requested size.
  7758.          */
  7759.         I915_WRITE(PIPESRC(pipe),
  7760.                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
  7761.                    (intel_crtc->config->pipe_src_h - 1));
  7762. }
  7763.  
  7764. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  7765.                                    struct intel_crtc_state *pipe_config)
  7766. {
  7767.         struct drm_device *dev = crtc->base.dev;
  7768.         struct drm_i915_private *dev_priv = dev->dev_private;
  7769.         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  7770.         uint32_t tmp;
  7771.  
  7772.         tmp = I915_READ(HTOTAL(cpu_transcoder));
  7773.         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  7774.         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  7775.         tmp = I915_READ(HBLANK(cpu_transcoder));
  7776.         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  7777.         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  7778.         tmp = I915_READ(HSYNC(cpu_transcoder));
  7779.         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  7780.         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  7781.  
  7782.         tmp = I915_READ(VTOTAL(cpu_transcoder));
  7783.         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  7784.         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  7785.         tmp = I915_READ(VBLANK(cpu_transcoder));
  7786.         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  7787.         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  7788.         tmp = I915_READ(VSYNC(cpu_transcoder));
  7789.         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  7790.         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  7791.  
  7792.         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  7793.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  7794.                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
  7795.                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
  7796.         }
  7797.  
  7798.         tmp = I915_READ(PIPESRC(crtc->pipe));
  7799.         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  7800.         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  7801.  
  7802.         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
  7803.         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
  7804. }
  7805.  
  7806. void intel_mode_from_pipe_config(struct drm_display_mode *mode,
  7807.                                  struct intel_crtc_state *pipe_config)
  7808. {
  7809.         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
  7810.         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
  7811.         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
  7812.         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
  7813.  
  7814.         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
  7815.         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
  7816.         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
  7817.         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
  7818.  
  7819.         mode->flags = pipe_config->base.adjusted_mode.flags;
  7820.         mode->type = DRM_MODE_TYPE_DRIVER;
  7821.  
  7822.         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
  7823.         mode->flags |= pipe_config->base.adjusted_mode.flags;
  7824.  
  7825.         mode->hsync = drm_mode_hsync(mode);
  7826.         mode->vrefresh = drm_mode_vrefresh(mode);
  7827.         drm_mode_set_name(mode);
  7828. }
  7829.  
  7830. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  7831. {
  7832.         struct drm_device *dev = intel_crtc->base.dev;
  7833.         struct drm_i915_private *dev_priv = dev->dev_private;
  7834.         uint32_t pipeconf;
  7835.  
  7836.         pipeconf = 0;
  7837.  
  7838.         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  7839.             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  7840.                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
  7841.  
  7842.         if (intel_crtc->config->double_wide)
  7843.                 pipeconf |= PIPECONF_DOUBLE_WIDE;
  7844.  
  7845.         /* only g4x and later have fancy bpc/dither controls */
  7846.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  7847.                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
  7848.                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
  7849.                         pipeconf |= PIPECONF_DITHER_EN |
  7850.                                     PIPECONF_DITHER_TYPE_SP;
  7851.  
  7852.                 switch (intel_crtc->config->pipe_bpp) {
  7853.                 case 18:
  7854.                         pipeconf |= PIPECONF_6BPC;
  7855.                         break;
  7856.                 case 24:
  7857.                         pipeconf |= PIPECONF_8BPC;
  7858.                         break;
  7859.                 case 30:
  7860.                         pipeconf |= PIPECONF_10BPC;
  7861.                         break;
  7862.                 default:
  7863.                         /* Case prevented by intel_choose_pipe_bpp_dither. */
  7864.                         BUG();
  7865.                 }
  7866.         }
  7867.  
  7868.         if (HAS_PIPE_CXSR(dev)) {
  7869.                 if (intel_crtc->lowfreq_avail) {
  7870.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  7871.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  7872.                 } else {
  7873.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  7874.                 }
  7875.         }
  7876.  
  7877.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  7878.                 if (INTEL_INFO(dev)->gen < 4 ||
  7879.                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
  7880.                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  7881.                 else
  7882.                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
  7883.         } else
  7884.                 pipeconf |= PIPECONF_PROGRESSIVE;
  7885.  
  7886.         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
  7887.                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  7888.  
  7889.         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  7890.         POSTING_READ(PIPECONF(intel_crtc->pipe));
  7891. }
  7892.  
  7893. static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
  7894.                                    struct intel_crtc_state *crtc_state)
  7895. {
  7896.         struct drm_device *dev = crtc->base.dev;
  7897.         struct drm_i915_private *dev_priv = dev->dev_private;
  7898.         int refclk, num_connectors = 0;
  7899.         intel_clock_t clock;
  7900.         bool ok;
  7901.         bool is_dsi = false;
  7902.         struct intel_encoder *encoder;
  7903.         const intel_limit_t *limit;
  7904.         struct drm_atomic_state *state = crtc_state->base.state;
  7905.         struct drm_connector *connector;
  7906.         struct drm_connector_state *connector_state;
  7907.         int i;
  7908.  
  7909.         memset(&crtc_state->dpll_hw_state, 0,
  7910.                sizeof(crtc_state->dpll_hw_state));
  7911.  
  7912.         for_each_connector_in_state(state, connector, connector_state, i) {
  7913.                 if (connector_state->crtc != &crtc->base)
  7914.                         continue;
  7915.  
  7916.                 encoder = to_intel_encoder(connector_state->best_encoder);
  7917.  
  7918.                 switch (encoder->type) {
  7919.                 case INTEL_OUTPUT_DSI:
  7920.                         is_dsi = true;
  7921.                         break;
  7922.                 default:
  7923.                         break;
  7924.                 }
  7925.  
  7926.                 num_connectors++;
  7927.         }
  7928.  
  7929.         if (is_dsi)
  7930.                 return 0;
  7931.  
  7932.         if (!crtc_state->clock_set) {
  7933.                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
  7934.  
  7935.                 /*
  7936.                  * Returns a set of divisors for the desired target clock with
  7937.                  * the given refclk, or FALSE.  The returned values represent
  7938.                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  7939.                  * 2) / p1 / p2.
  7940.                  */
  7941.                 limit = intel_limit(crtc_state, refclk);
  7942.                 ok = dev_priv->display.find_dpll(limit, crtc_state,
  7943.                                                  crtc_state->port_clock,
  7944.                                                  refclk, NULL, &clock);
  7945.                 if (!ok) {
  7946.                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
  7947.                         return -EINVAL;
  7948.                 }
  7949.  
  7950.                 /* Compat-code for transition, will disappear. */
  7951.                 crtc_state->dpll.n = clock.n;
  7952.                 crtc_state->dpll.m1 = clock.m1;
  7953.                 crtc_state->dpll.m2 = clock.m2;
  7954.                 crtc_state->dpll.p1 = clock.p1;
  7955.                 crtc_state->dpll.p2 = clock.p2;
  7956.         }
  7957.  
  7958.         if (IS_GEN2(dev)) {
  7959.                 i8xx_compute_dpll(crtc, crtc_state, NULL,
  7960.                                   num_connectors);
  7961.         } else if (IS_CHERRYVIEW(dev)) {
  7962.                 chv_compute_dpll(crtc, crtc_state);
  7963.         } else if (IS_VALLEYVIEW(dev)) {
  7964.                 vlv_compute_dpll(crtc, crtc_state);
  7965.         } else {
  7966.                 i9xx_compute_dpll(crtc, crtc_state, NULL,
  7967.                                   num_connectors);
  7968.         }
  7969.  
  7970.         return 0;
  7971. }
  7972.  
  7973. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  7974.                                  struct intel_crtc_state *pipe_config)
  7975. {
  7976.         struct drm_device *dev = crtc->base.dev;
  7977.         struct drm_i915_private *dev_priv = dev->dev_private;
  7978.         uint32_t tmp;
  7979.  
  7980.         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
  7981.                 return;
  7982.  
  7983.         tmp = I915_READ(PFIT_CONTROL);
  7984.         if (!(tmp & PFIT_ENABLE))
  7985.                 return;
  7986.  
  7987.         /* Check whether the pfit is attached to our pipe. */
  7988.         if (INTEL_INFO(dev)->gen < 4) {
  7989.                 if (crtc->pipe != PIPE_B)
  7990.                         return;
  7991.         } else {
  7992.                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  7993.                         return;
  7994.         }
  7995.  
  7996.         pipe_config->gmch_pfit.control = tmp;
  7997.         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  7998.         if (INTEL_INFO(dev)->gen < 5)
  7999.                 pipe_config->gmch_pfit.lvds_border_bits =
  8000.                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  8001. }
  8002.  
  8003. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  8004.                                struct intel_crtc_state *pipe_config)
  8005. {
  8006.         struct drm_device *dev = crtc->base.dev;
  8007.         struct drm_i915_private *dev_priv = dev->dev_private;
  8008.         int pipe = pipe_config->cpu_transcoder;
  8009.         intel_clock_t clock;
  8010.         u32 mdiv;
  8011.         int refclk = 100000;
  8012.  
  8013.         /* In case of MIPI DPLL will not even be used */
  8014.         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
  8015.                 return;
  8016.  
  8017.         mutex_lock(&dev_priv->sb_lock);
  8018.         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
  8019.         mutex_unlock(&dev_priv->sb_lock);
  8020.  
  8021.         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  8022.         clock.m2 = mdiv & DPIO_M2DIV_MASK;
  8023.         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  8024.         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  8025.         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  8026.  
  8027.         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
  8028. }
  8029.  
  8030. static void
  8031. i9xx_get_initial_plane_config(struct intel_crtc *crtc,
  8032.                               struct intel_initial_plane_config *plane_config)
  8033. {
  8034.         struct drm_device *dev = crtc->base.dev;
  8035.         struct drm_i915_private *dev_priv = dev->dev_private;
  8036.         u32 val, base, offset;
  8037.         int pipe = crtc->pipe, plane = crtc->plane;
  8038.         int fourcc, pixel_format;
  8039.         unsigned int aligned_height;
  8040.         struct drm_framebuffer *fb;
  8041.         struct intel_framebuffer *intel_fb;
  8042.  
  8043.         val = I915_READ(DSPCNTR(plane));
  8044.         if (!(val & DISPLAY_PLANE_ENABLE))
  8045.                 return;
  8046.  
  8047.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  8048.         if (!intel_fb) {
  8049.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  8050.                 return;
  8051.         }
  8052.  
  8053.         fb = &intel_fb->base;
  8054.  
  8055.         if (INTEL_INFO(dev)->gen >= 4) {
  8056.                 if (val & DISPPLANE_TILED) {
  8057.                         plane_config->tiling = I915_TILING_X;
  8058.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  8059.                 }
  8060.         }
  8061.  
  8062.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  8063.         fourcc = i9xx_format_to_fourcc(pixel_format);
  8064.         fb->pixel_format = fourcc;
  8065.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  8066.  
  8067.         if (INTEL_INFO(dev)->gen >= 4) {
  8068.                 if (plane_config->tiling)
  8069.                         offset = I915_READ(DSPTILEOFF(plane));
  8070.                 else
  8071.                         offset = I915_READ(DSPLINOFF(plane));
  8072.                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
  8073.         } else {
  8074.                 base = I915_READ(DSPADDR(plane));
  8075.         }
  8076.         plane_config->base = base;
  8077.  
  8078.         val = I915_READ(PIPESRC(pipe));
  8079.         fb->width = ((val >> 16) & 0xfff) + 1;
  8080.         fb->height = ((val >> 0) & 0xfff) + 1;
  8081.  
  8082.         val = I915_READ(DSPSTRIDE(pipe));
  8083.         fb->pitches[0] = val & 0xffffffc0;
  8084.  
  8085.         aligned_height = intel_fb_align_height(dev, fb->height,
  8086.                                                fb->pixel_format,
  8087.                                                fb->modifier[0]);
  8088.  
  8089.         plane_config->size = fb->pitches[0] * aligned_height;
  8090.  
  8091.         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  8092.                       pipe_name(pipe), plane, fb->width, fb->height,
  8093.                       fb->bits_per_pixel, base, fb->pitches[0],
  8094.                       plane_config->size);
  8095.  
  8096.         plane_config->fb = intel_fb;
  8097. }
  8098.  
  8099. static void chv_crtc_clock_get(struct intel_crtc *crtc,
  8100.                                struct intel_crtc_state *pipe_config)
  8101. {
  8102.         struct drm_device *dev = crtc->base.dev;
  8103.         struct drm_i915_private *dev_priv = dev->dev_private;
  8104.         int pipe = pipe_config->cpu_transcoder;
  8105.         enum dpio_channel port = vlv_pipe_to_channel(pipe);
  8106.         intel_clock_t clock;
  8107.         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
  8108.         int refclk = 100000;
  8109.  
  8110.         mutex_lock(&dev_priv->sb_lock);
  8111.         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
  8112.         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
  8113.         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
  8114.         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
  8115.         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
  8116.         mutex_unlock(&dev_priv->sb_lock);
  8117.  
  8118.         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
  8119.         clock.m2 = (pll_dw0 & 0xff) << 22;
  8120.         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
  8121.                 clock.m2 |= pll_dw2 & 0x3fffff;
  8122.         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
  8123.         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
  8124.         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
  8125.  
  8126.         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
  8127. }
  8128.  
  8129. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  8130.                                  struct intel_crtc_state *pipe_config)
  8131. {
  8132.         struct drm_device *dev = crtc->base.dev;
  8133.         struct drm_i915_private *dev_priv = dev->dev_private;
  8134.         uint32_t tmp;
  8135.  
  8136.         if (!intel_display_power_is_enabled(dev_priv,
  8137.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  8138.                 return false;
  8139.  
  8140.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  8141.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  8142.  
  8143.         tmp = I915_READ(PIPECONF(crtc->pipe));
  8144.         if (!(tmp & PIPECONF_ENABLE))
  8145.                 return false;
  8146.  
  8147.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  8148.                 switch (tmp & PIPECONF_BPC_MASK) {
  8149.                 case PIPECONF_6BPC:
  8150.                         pipe_config->pipe_bpp = 18;
  8151.                         break;
  8152.                 case PIPECONF_8BPC:
  8153.                         pipe_config->pipe_bpp = 24;
  8154.                         break;
  8155.                 case PIPECONF_10BPC:
  8156.                         pipe_config->pipe_bpp = 30;
  8157.                         break;
  8158.                 default:
  8159.                         break;
  8160.                 }
  8161.         }
  8162.  
  8163.         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
  8164.                 pipe_config->limited_color_range = true;
  8165.  
  8166.         if (INTEL_INFO(dev)->gen < 4)
  8167.                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  8168.  
  8169.         intel_get_pipe_timings(crtc, pipe_config);
  8170.  
  8171.         i9xx_get_pfit_config(crtc, pipe_config);
  8172.  
  8173.         if (INTEL_INFO(dev)->gen >= 4) {
  8174.                 tmp = I915_READ(DPLL_MD(crtc->pipe));
  8175.                 pipe_config->pixel_multiplier =
  8176.                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  8177.                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  8178.                 pipe_config->dpll_hw_state.dpll_md = tmp;
  8179.         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  8180.                 tmp = I915_READ(DPLL(crtc->pipe));
  8181.                 pipe_config->pixel_multiplier =
  8182.                         ((tmp & SDVO_MULTIPLIER_MASK)
  8183.                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  8184.         } else {
  8185.                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
  8186.                  * port and will be fixed up in the encoder->get_config
  8187.                  * function. */
  8188.                 pipe_config->pixel_multiplier = 1;
  8189.         }
  8190.         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  8191.         if (!IS_VALLEYVIEW(dev)) {
  8192.                 /*
  8193.                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
  8194.                  * on 830. Filter it out here so that we don't
  8195.                  * report errors due to that.
  8196.                  */
  8197.                 if (IS_I830(dev))
  8198.                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
  8199.  
  8200.                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  8201.                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  8202.         } else {
  8203.                 /* Mask out read-only status bits. */
  8204.                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  8205.                                                      DPLL_PORTC_READY_MASK |
  8206.                                                      DPLL_PORTB_READY_MASK);
  8207.         }
  8208.  
  8209.         if (IS_CHERRYVIEW(dev))
  8210.                 chv_crtc_clock_get(crtc, pipe_config);
  8211.         else if (IS_VALLEYVIEW(dev))
  8212.                 vlv_crtc_clock_get(crtc, pipe_config);
  8213.         else
  8214.                 i9xx_crtc_clock_get(crtc, pipe_config);
  8215.  
  8216.         /*
  8217.          * Normally the dotclock is filled in by the encoder .get_config()
  8218.          * but in case the pipe is enabled w/o any ports we need a sane
  8219.          * default.
  8220.          */
  8221.         pipe_config->base.adjusted_mode.crtc_clock =
  8222.                 pipe_config->port_clock / pipe_config->pixel_multiplier;
  8223.  
  8224.         return true;
  8225. }
  8226.  
  8227. static void ironlake_init_pch_refclk(struct drm_device *dev)
  8228. {
  8229.         struct drm_i915_private *dev_priv = dev->dev_private;
  8230.         struct intel_encoder *encoder;
  8231.         u32 val, final;
  8232.         bool has_lvds = false;
  8233.         bool has_cpu_edp = false;
  8234.         bool has_panel = false;
  8235.         bool has_ck505 = false;
  8236.         bool can_ssc = false;
  8237.  
  8238.         /* We need to take the global config into account */
  8239.         for_each_intel_encoder(dev, encoder) {
  8240.                 switch (encoder->type) {
  8241.                 case INTEL_OUTPUT_LVDS:
  8242.                         has_panel = true;
  8243.                         has_lvds = true;
  8244.                         break;
  8245.                 case INTEL_OUTPUT_EDP:
  8246.                         has_panel = true;
  8247.                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  8248.                                 has_cpu_edp = true;
  8249.                         break;
  8250.                 default:
  8251.                         break;
  8252.                 }
  8253.         }
  8254.  
  8255.         if (HAS_PCH_IBX(dev)) {
  8256.                 has_ck505 = dev_priv->vbt.display_clock_mode;
  8257.                 can_ssc = has_ck505;
  8258.         } else {
  8259.                 has_ck505 = false;
  8260.                 can_ssc = true;
  8261.         }
  8262.  
  8263.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  8264.                       has_panel, has_lvds, has_ck505);
  8265.  
  8266.         /* Ironlake: try to setup display ref clock before DPLL
  8267.          * enabling. This is only under driver's control after
  8268.          * PCH B stepping, previous chipset stepping should be
  8269.          * ignoring this setting.
  8270.          */
  8271.         val = I915_READ(PCH_DREF_CONTROL);
  8272.  
  8273.         /* As we must carefully and slowly disable/enable each source in turn,
  8274.          * compute the final state we want first and check if we need to
  8275.          * make any changes at all.
  8276.          */
  8277.         final = val;
  8278.         final &= ~DREF_NONSPREAD_SOURCE_MASK;
  8279.         if (has_ck505)
  8280.                 final |= DREF_NONSPREAD_CK505_ENABLE;
  8281.         else
  8282.                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
  8283.  
  8284.         final &= ~DREF_SSC_SOURCE_MASK;
  8285.         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8286.         final &= ~DREF_SSC1_ENABLE;
  8287.  
  8288.         if (has_panel) {
  8289.                 final |= DREF_SSC_SOURCE_ENABLE;
  8290.  
  8291.                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8292.                         final |= DREF_SSC1_ENABLE;
  8293.  
  8294.                 if (has_cpu_edp) {
  8295.                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
  8296.                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8297.                         else
  8298.                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8299.                 } else
  8300.                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8301.         } else {
  8302.                 final |= DREF_SSC_SOURCE_DISABLE;
  8303.                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8304.         }
  8305.  
  8306.         if (final == val)
  8307.                 return;
  8308.  
  8309.         /* Always enable nonspread source */
  8310.         val &= ~DREF_NONSPREAD_SOURCE_MASK;
  8311.  
  8312.         if (has_ck505)
  8313.                 val |= DREF_NONSPREAD_CK505_ENABLE;
  8314.         else
  8315.                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
  8316.  
  8317.         if (has_panel) {
  8318.                 val &= ~DREF_SSC_SOURCE_MASK;
  8319.                 val |= DREF_SSC_SOURCE_ENABLE;
  8320.  
  8321.                 /* SSC must be turned on before enabling the CPU output  */
  8322.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8323.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  8324.                         val |= DREF_SSC1_ENABLE;
  8325.                 } else
  8326.                         val &= ~DREF_SSC1_ENABLE;
  8327.  
  8328.                 /* Get SSC going before enabling the outputs */
  8329.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8330.                 POSTING_READ(PCH_DREF_CONTROL);
  8331.                 udelay(200);
  8332.  
  8333.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8334.  
  8335.                 /* Enable CPU source on CPU attached eDP */
  8336.                 if (has_cpu_edp) {
  8337.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  8338.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  8339.                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  8340.                         } else
  8341.                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  8342.                 } else
  8343.                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8344.  
  8345.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8346.                 POSTING_READ(PCH_DREF_CONTROL);
  8347.                 udelay(200);
  8348.         } else {
  8349.                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
  8350.  
  8351.                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  8352.  
  8353.                 /* Turn off CPU output */
  8354.                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  8355.  
  8356.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8357.                 POSTING_READ(PCH_DREF_CONTROL);
  8358.                 udelay(200);
  8359.  
  8360.                 /* Turn off the SSC source */
  8361.                 val &= ~DREF_SSC_SOURCE_MASK;
  8362.                 val |= DREF_SSC_SOURCE_DISABLE;
  8363.  
  8364.                 /* Turn off SSC1 */
  8365.                 val &= ~DREF_SSC1_ENABLE;
  8366.  
  8367.                 I915_WRITE(PCH_DREF_CONTROL, val);
  8368.                 POSTING_READ(PCH_DREF_CONTROL);
  8369.                 udelay(200);
  8370.         }
  8371.  
  8372.         BUG_ON(val != final);
  8373. }
  8374.  
  8375. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  8376. {
  8377.         uint32_t tmp;
  8378.  
  8379.         tmp = I915_READ(SOUTH_CHICKEN2);
  8380.         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  8381.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8382.  
  8383.         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  8384.                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  8385.                 DRM_ERROR("FDI mPHY reset assert timeout\n");
  8386.  
  8387.         tmp = I915_READ(SOUTH_CHICKEN2);
  8388.         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  8389.         I915_WRITE(SOUTH_CHICKEN2, tmp);
  8390.  
  8391.         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  8392.                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  8393.                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  8394. }
  8395.  
  8396. /* WaMPhyProgramming:hsw */
  8397. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  8398. {
  8399.         uint32_t tmp;
  8400.  
  8401.         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  8402.         tmp &= ~(0xFF << 24);
  8403.         tmp |= (0x12 << 24);
  8404.         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  8405.  
  8406.         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  8407.         tmp |= (1 << 11);
  8408.         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  8409.  
  8410.         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  8411.         tmp |= (1 << 11);
  8412.         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  8413.  
  8414.         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  8415.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8416.         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  8417.  
  8418.         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  8419.         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  8420.         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  8421.  
  8422.         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  8423.         tmp &= ~(7 << 13);
  8424.         tmp |= (5 << 13);
  8425.         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  8426.  
  8427.         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  8428.         tmp &= ~(7 << 13);
  8429.         tmp |= (5 << 13);
  8430.         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  8431.  
  8432.         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  8433.         tmp &= ~0xFF;
  8434.         tmp |= 0x1C;
  8435.         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  8436.  
  8437.         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  8438.         tmp &= ~0xFF;
  8439.         tmp |= 0x1C;
  8440.         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  8441.  
  8442.         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  8443.         tmp &= ~(0xFF << 16);
  8444.         tmp |= (0x1C << 16);
  8445.         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  8446.  
  8447.         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  8448.         tmp &= ~(0xFF << 16);
  8449.         tmp |= (0x1C << 16);
  8450.         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  8451.  
  8452.         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  8453.         tmp |= (1 << 27);
  8454.         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  8455.  
  8456.         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  8457.         tmp |= (1 << 27);
  8458.         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  8459.  
  8460.         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  8461.         tmp &= ~(0xF << 28);
  8462.         tmp |= (4 << 28);
  8463.         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  8464.  
  8465.         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  8466.         tmp &= ~(0xF << 28);
  8467.         tmp |= (4 << 28);
  8468.         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  8469. }
  8470.  
  8471. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  8472.  * Programming" based on the parameters passed:
  8473.  * - Sequence to enable CLKOUT_DP
  8474.  * - Sequence to enable CLKOUT_DP without spread
  8475.  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  8476.  */
  8477. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  8478.                                  bool with_fdi)
  8479. {
  8480.         struct drm_i915_private *dev_priv = dev->dev_private;
  8481.         uint32_t reg, tmp;
  8482.  
  8483.         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  8484.                 with_spread = true;
  8485.         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
  8486.                 with_fdi = false;
  8487.  
  8488.         mutex_lock(&dev_priv->sb_lock);
  8489.  
  8490.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8491.         tmp &= ~SBI_SSCCTL_DISABLE;
  8492.         tmp |= SBI_SSCCTL_PATHALT;
  8493.         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8494.  
  8495.         udelay(24);
  8496.  
  8497.         if (with_spread) {
  8498.                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8499.                 tmp &= ~SBI_SSCCTL_PATHALT;
  8500.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8501.  
  8502.                 if (with_fdi) {
  8503.                         lpt_reset_fdi_mphy(dev_priv);
  8504.                         lpt_program_fdi_mphy(dev_priv);
  8505.                 }
  8506.         }
  8507.  
  8508.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8509.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8510.         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8511.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8512.  
  8513.         mutex_unlock(&dev_priv->sb_lock);
  8514. }
  8515.  
  8516. /* Sequence to disable CLKOUT_DP */
  8517. static void lpt_disable_clkout_dp(struct drm_device *dev)
  8518. {
  8519.         struct drm_i915_private *dev_priv = dev->dev_private;
  8520.         uint32_t reg, tmp;
  8521.  
  8522.         mutex_lock(&dev_priv->sb_lock);
  8523.  
  8524.         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
  8525.         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  8526.         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  8527.         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  8528.  
  8529.         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  8530.         if (!(tmp & SBI_SSCCTL_DISABLE)) {
  8531.                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
  8532.                         tmp |= SBI_SSCCTL_PATHALT;
  8533.                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8534.                         udelay(32);
  8535.                 }
  8536.                 tmp |= SBI_SSCCTL_DISABLE;
  8537.                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  8538.         }
  8539.  
  8540.         mutex_unlock(&dev_priv->sb_lock);
  8541. }
  8542.  
  8543. static void lpt_init_pch_refclk(struct drm_device *dev)
  8544. {
  8545.         struct intel_encoder *encoder;
  8546.         bool has_vga = false;
  8547.  
  8548.         for_each_intel_encoder(dev, encoder) {
  8549.                 switch (encoder->type) {
  8550.                 case INTEL_OUTPUT_ANALOG:
  8551.                         has_vga = true;
  8552.                         break;
  8553.                 default:
  8554.                         break;
  8555.                 }
  8556.         }
  8557.  
  8558.         if (has_vga)
  8559.                 lpt_enable_clkout_dp(dev, true, true);
  8560.         else
  8561.                 lpt_disable_clkout_dp(dev);
  8562. }
  8563.  
  8564. /*
  8565.  * Initialize reference clocks when the driver loads
  8566.  */
  8567. void intel_init_pch_refclk(struct drm_device *dev)
  8568. {
  8569.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8570.                 ironlake_init_pch_refclk(dev);
  8571.         else if (HAS_PCH_LPT(dev))
  8572.                 lpt_init_pch_refclk(dev);
  8573. }
  8574.  
  8575. static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
  8576. {
  8577.         struct drm_device *dev = crtc_state->base.crtc->dev;
  8578.         struct drm_i915_private *dev_priv = dev->dev_private;
  8579.         struct drm_atomic_state *state = crtc_state->base.state;
  8580.         struct drm_connector *connector;
  8581.         struct drm_connector_state *connector_state;
  8582.         struct intel_encoder *encoder;
  8583.         int num_connectors = 0, i;
  8584.         bool is_lvds = false;
  8585.  
  8586.         for_each_connector_in_state(state, connector, connector_state, i) {
  8587.                 if (connector_state->crtc != crtc_state->base.crtc)
  8588.                         continue;
  8589.  
  8590.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8591.  
  8592.                 switch (encoder->type) {
  8593.                 case INTEL_OUTPUT_LVDS:
  8594.                         is_lvds = true;
  8595.                         break;
  8596.                 default:
  8597.                         break;
  8598.                 }
  8599.                 num_connectors++;
  8600.         }
  8601.  
  8602.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  8603.                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
  8604.                               dev_priv->vbt.lvds_ssc_freq);
  8605.                 return dev_priv->vbt.lvds_ssc_freq;
  8606.         }
  8607.  
  8608.         return 120000;
  8609. }
  8610.  
  8611. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  8612. {
  8613.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  8614.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8615.         int pipe = intel_crtc->pipe;
  8616.         uint32_t val;
  8617.  
  8618.         val = 0;
  8619.  
  8620.         switch (intel_crtc->config->pipe_bpp) {
  8621.         case 18:
  8622.                 val |= PIPECONF_6BPC;
  8623.                 break;
  8624.         case 24:
  8625.                 val |= PIPECONF_8BPC;
  8626.                 break;
  8627.         case 30:
  8628.                 val |= PIPECONF_10BPC;
  8629.                 break;
  8630.         case 36:
  8631.                 val |= PIPECONF_12BPC;
  8632.                 break;
  8633.         default:
  8634.                 /* Case prevented by intel_choose_pipe_bpp_dither. */
  8635.                 BUG();
  8636.         }
  8637.  
  8638.         if (intel_crtc->config->dither)
  8639.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8640.  
  8641.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8642.                 val |= PIPECONF_INTERLACED_ILK;
  8643.         else
  8644.                 val |= PIPECONF_PROGRESSIVE;
  8645.  
  8646.         if (intel_crtc->config->limited_color_range)
  8647.                 val |= PIPECONF_COLOR_RANGE_SELECT;
  8648.  
  8649.         I915_WRITE(PIPECONF(pipe), val);
  8650.         POSTING_READ(PIPECONF(pipe));
  8651. }
  8652.  
  8653. /*
  8654.  * Set up the pipe CSC unit.
  8655.  *
  8656.  * Currently only full range RGB to limited range RGB conversion
  8657.  * is supported, but eventually this should handle various
  8658.  * RGB<->YCbCr scenarios as well.
  8659.  */
  8660. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  8661. {
  8662.         struct drm_device *dev = crtc->dev;
  8663.         struct drm_i915_private *dev_priv = dev->dev_private;
  8664.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8665.         int pipe = intel_crtc->pipe;
  8666.         uint16_t coeff = 0x7800; /* 1.0 */
  8667.  
  8668.         /*
  8669.          * TODO: Check what kind of values actually come out of the pipe
  8670.          * with these coeff/postoff values and adjust to get the best
  8671.          * accuracy. Perhaps we even need to take the bpc value into
  8672.          * consideration.
  8673.          */
  8674.  
  8675.         if (intel_crtc->config->limited_color_range)
  8676.                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  8677.  
  8678.         /*
  8679.          * GY/GU and RY/RU should be the other way around according
  8680.          * to BSpec, but reality doesn't agree. Just set them up in
  8681.          * a way that results in the correct picture.
  8682.          */
  8683.         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  8684.         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  8685.  
  8686.         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  8687.         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  8688.  
  8689.         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  8690.         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  8691.  
  8692.         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  8693.         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  8694.         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  8695.  
  8696.         if (INTEL_INFO(dev)->gen > 6) {
  8697.                 uint16_t postoff = 0;
  8698.  
  8699.                 if (intel_crtc->config->limited_color_range)
  8700.                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
  8701.  
  8702.                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  8703.                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  8704.                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  8705.  
  8706.                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  8707.         } else {
  8708.                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
  8709.  
  8710.                 if (intel_crtc->config->limited_color_range)
  8711.                         mode |= CSC_BLACK_SCREEN_OFFSET;
  8712.  
  8713.                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  8714.         }
  8715. }
  8716.  
  8717. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  8718. {
  8719.         struct drm_device *dev = crtc->dev;
  8720.         struct drm_i915_private *dev_priv = dev->dev_private;
  8721.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  8722.         enum pipe pipe = intel_crtc->pipe;
  8723.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  8724.         uint32_t val;
  8725.  
  8726.         val = 0;
  8727.  
  8728.         if (IS_HASWELL(dev) && intel_crtc->config->dither)
  8729.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  8730.  
  8731.         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  8732.                 val |= PIPECONF_INTERLACED_ILK;
  8733.         else
  8734.                 val |= PIPECONF_PROGRESSIVE;
  8735.  
  8736.         I915_WRITE(PIPECONF(cpu_transcoder), val);
  8737.         POSTING_READ(PIPECONF(cpu_transcoder));
  8738.  
  8739.         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  8740.         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  8741.  
  8742.         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
  8743.                 val = 0;
  8744.  
  8745.                 switch (intel_crtc->config->pipe_bpp) {
  8746.                 case 18:
  8747.                         val |= PIPEMISC_DITHER_6_BPC;
  8748.                         break;
  8749.                 case 24:
  8750.                         val |= PIPEMISC_DITHER_8_BPC;
  8751.                         break;
  8752.                 case 30:
  8753.                         val |= PIPEMISC_DITHER_10_BPC;
  8754.                         break;
  8755.                 case 36:
  8756.                         val |= PIPEMISC_DITHER_12_BPC;
  8757.                         break;
  8758.                 default:
  8759.                         /* Case prevented by pipe_config_set_bpp. */
  8760.                         BUG();
  8761.                 }
  8762.  
  8763.                 if (intel_crtc->config->dither)
  8764.                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
  8765.  
  8766.                 I915_WRITE(PIPEMISC(pipe), val);
  8767.         }
  8768. }
  8769.  
  8770. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  8771.                                     struct intel_crtc_state *crtc_state,
  8772.                                     intel_clock_t *clock,
  8773.                                     bool *has_reduced_clock,
  8774.                                     intel_clock_t *reduced_clock)
  8775. {
  8776.         struct drm_device *dev = crtc->dev;
  8777.         struct drm_i915_private *dev_priv = dev->dev_private;
  8778.         int refclk;
  8779.         const intel_limit_t *limit;
  8780.         bool ret;
  8781.  
  8782.         refclk = ironlake_get_refclk(crtc_state);
  8783.  
  8784.         /*
  8785.          * Returns a set of divisors for the desired target clock with the given
  8786.          * refclk, or FALSE.  The returned values represent the clock equation:
  8787.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  8788.          */
  8789.         limit = intel_limit(crtc_state, refclk);
  8790.         ret = dev_priv->display.find_dpll(limit, crtc_state,
  8791.                                           crtc_state->port_clock,
  8792.                                           refclk, NULL, clock);
  8793.         if (!ret)
  8794.                 return false;
  8795.  
  8796.         return true;
  8797. }
  8798.  
  8799. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  8800. {
  8801.         /*
  8802.          * Account for spread spectrum to avoid
  8803.          * oversubscribing the link. Max center spread
  8804.          * is 2.5%; use 5% for safety's sake.
  8805.          */
  8806.         u32 bps = target_clock * bpp * 21 / 20;
  8807.         return DIV_ROUND_UP(bps, link_bw * 8);
  8808. }
  8809.  
  8810. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  8811. {
  8812.         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  8813. }
  8814.  
  8815. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  8816.                                       struct intel_crtc_state *crtc_state,
  8817.                                       u32 *fp,
  8818.                                       intel_clock_t *reduced_clock, u32 *fp2)
  8819. {
  8820.         struct drm_crtc *crtc = &intel_crtc->base;
  8821.         struct drm_device *dev = crtc->dev;
  8822.         struct drm_i915_private *dev_priv = dev->dev_private;
  8823.         struct drm_atomic_state *state = crtc_state->base.state;
  8824.         struct drm_connector *connector;
  8825.         struct drm_connector_state *connector_state;
  8826.         struct intel_encoder *encoder;
  8827.         uint32_t dpll;
  8828.         int factor, num_connectors = 0, i;
  8829.         bool is_lvds = false, is_sdvo = false;
  8830.  
  8831.         for_each_connector_in_state(state, connector, connector_state, i) {
  8832.                 if (connector_state->crtc != crtc_state->base.crtc)
  8833.                         continue;
  8834.  
  8835.                 encoder = to_intel_encoder(connector_state->best_encoder);
  8836.  
  8837.                 switch (encoder->type) {
  8838.                 case INTEL_OUTPUT_LVDS:
  8839.                         is_lvds = true;
  8840.                         break;
  8841.                 case INTEL_OUTPUT_SDVO:
  8842.                 case INTEL_OUTPUT_HDMI:
  8843.                         is_sdvo = true;
  8844.                         break;
  8845.                 default:
  8846.                         break;
  8847.                 }
  8848.  
  8849.                 num_connectors++;
  8850.         }
  8851.  
  8852.         /* Enable autotuning of the PLL clock (if permissible) */
  8853.         factor = 21;
  8854.         if (is_lvds) {
  8855.                 if ((intel_panel_use_ssc(dev_priv) &&
  8856.                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
  8857.                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  8858.                         factor = 25;
  8859.         } else if (crtc_state->sdvo_tv_clock)
  8860.                 factor = 20;
  8861.  
  8862.         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
  8863.                 *fp |= FP_CB_TUNE;
  8864.  
  8865.         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  8866.                 *fp2 |= FP_CB_TUNE;
  8867.  
  8868.         dpll = 0;
  8869.  
  8870.         if (is_lvds)
  8871.                 dpll |= DPLLB_MODE_LVDS;
  8872.         else
  8873.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  8874.  
  8875.         dpll |= (crtc_state->pixel_multiplier - 1)
  8876.                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  8877.  
  8878.         if (is_sdvo)
  8879.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8880.         if (crtc_state->has_dp_encoder)
  8881.                 dpll |= DPLL_SDVO_HIGH_SPEED;
  8882.  
  8883.         /* compute bitmask from p1 value */
  8884.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  8885.         /* also FPA1 */
  8886.         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  8887.  
  8888.         switch (crtc_state->dpll.p2) {
  8889.         case 5:
  8890.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  8891.                 break;
  8892.         case 7:
  8893.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  8894.                 break;
  8895.         case 10:
  8896.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  8897.                 break;
  8898.         case 14:
  8899.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  8900.                 break;
  8901.         }
  8902.  
  8903.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  8904.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  8905.         else
  8906.                 dpll |= PLL_REF_INPUT_DREFCLK;
  8907.  
  8908.         return dpll | DPLL_VCO_ENABLE;
  8909. }
  8910.  
  8911. static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
  8912.                                        struct intel_crtc_state *crtc_state)
  8913. {
  8914.         struct drm_device *dev = crtc->base.dev;
  8915.         intel_clock_t clock, reduced_clock;
  8916.         u32 dpll = 0, fp = 0, fp2 = 0;
  8917.         bool ok, has_reduced_clock = false;
  8918.         bool is_lvds = false;
  8919.         struct intel_shared_dpll *pll;
  8920.  
  8921.         memset(&crtc_state->dpll_hw_state, 0,
  8922.                sizeof(crtc_state->dpll_hw_state));
  8923.  
  8924.         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
  8925.  
  8926.         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  8927.              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  8928.  
  8929.         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
  8930.                                      &has_reduced_clock, &reduced_clock);
  8931.         if (!ok && !crtc_state->clock_set) {
  8932.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  8933.                 return -EINVAL;
  8934.         }
  8935.         /* Compat-code for transition, will disappear. */
  8936.         if (!crtc_state->clock_set) {
  8937.                 crtc_state->dpll.n = clock.n;
  8938.                 crtc_state->dpll.m1 = clock.m1;
  8939.                 crtc_state->dpll.m2 = clock.m2;
  8940.                 crtc_state->dpll.p1 = clock.p1;
  8941.                 crtc_state->dpll.p2 = clock.p2;
  8942.         }
  8943.  
  8944.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  8945.         if (crtc_state->has_pch_encoder) {
  8946.                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
  8947.                 if (has_reduced_clock)
  8948.                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  8949.  
  8950.                 dpll = ironlake_compute_dpll(crtc, crtc_state,
  8951.                                              &fp, &reduced_clock,
  8952.                                              has_reduced_clock ? &fp2 : NULL);
  8953.  
  8954.                 crtc_state->dpll_hw_state.dpll = dpll;
  8955.                 crtc_state->dpll_hw_state.fp0 = fp;
  8956.                 if (has_reduced_clock)
  8957.                         crtc_state->dpll_hw_state.fp1 = fp2;
  8958.                 else
  8959.                         crtc_state->dpll_hw_state.fp1 = fp;
  8960.  
  8961.                 pll = intel_get_shared_dpll(crtc, crtc_state);
  8962.                 if (pll == NULL) {
  8963.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  8964.                                          pipe_name(crtc->pipe));
  8965.                         return -EINVAL;
  8966.                 }
  8967.         }
  8968.  
  8969.         if (is_lvds && has_reduced_clock)
  8970.                 crtc->lowfreq_avail = true;
  8971.         else
  8972.                 crtc->lowfreq_avail = false;
  8973.  
  8974.         return 0;
  8975. }
  8976.  
  8977. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  8978.                                          struct intel_link_m_n *m_n)
  8979. {
  8980.         struct drm_device *dev = crtc->base.dev;
  8981.         struct drm_i915_private *dev_priv = dev->dev_private;
  8982.         enum pipe pipe = crtc->pipe;
  8983.  
  8984.         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  8985.         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  8986.         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  8987.                 & ~TU_SIZE_MASK;
  8988.         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  8989.         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  8990.                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  8991. }
  8992.  
  8993. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  8994.                                          enum transcoder transcoder,
  8995.                                          struct intel_link_m_n *m_n,
  8996.                                          struct intel_link_m_n *m2_n2)
  8997. {
  8998.         struct drm_device *dev = crtc->base.dev;
  8999.         struct drm_i915_private *dev_priv = dev->dev_private;
  9000.         enum pipe pipe = crtc->pipe;
  9001.  
  9002.         if (INTEL_INFO(dev)->gen >= 5) {
  9003.                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  9004.                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  9005.                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  9006.                         & ~TU_SIZE_MASK;
  9007.                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  9008.                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  9009.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9010.                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
  9011.                  * gen < 8) and if DRRS is supported (to make sure the
  9012.                  * registers are not unnecessarily read).
  9013.                  */
  9014.                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
  9015.                         crtc->config->has_drrs) {
  9016.                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
  9017.                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
  9018.                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
  9019.                                         & ~TU_SIZE_MASK;
  9020.                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
  9021.                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
  9022.                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9023.                 }
  9024.         } else {
  9025.                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  9026.                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  9027.                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  9028.                         & ~TU_SIZE_MASK;
  9029.                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  9030.                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  9031.                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  9032.         }
  9033. }
  9034.  
  9035. void intel_dp_get_m_n(struct intel_crtc *crtc,
  9036.                       struct intel_crtc_state *pipe_config)
  9037. {
  9038.         if (pipe_config->has_pch_encoder)
  9039.                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  9040.         else
  9041.                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9042.                                              &pipe_config->dp_m_n,
  9043.                                              &pipe_config->dp_m2_n2);
  9044. }
  9045.  
  9046. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  9047.                                         struct intel_crtc_state *pipe_config)
  9048. {
  9049.         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  9050.                                      &pipe_config->fdi_m_n, NULL);
  9051. }
  9052.  
  9053. static void skylake_get_pfit_config(struct intel_crtc *crtc,
  9054.                                     struct intel_crtc_state *pipe_config)
  9055. {
  9056.         struct drm_device *dev = crtc->base.dev;
  9057.         struct drm_i915_private *dev_priv = dev->dev_private;
  9058.         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
  9059.         uint32_t ps_ctrl = 0;
  9060.         int id = -1;
  9061.         int i;
  9062.  
  9063.         /* find scaler attached to this pipe */
  9064.         for (i = 0; i < crtc->num_scalers; i++) {
  9065.                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
  9066.                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
  9067.                         id = i;
  9068.                         pipe_config->pch_pfit.enabled = true;
  9069.                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
  9070.                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
  9071.                         break;
  9072.                 }
  9073.         }
  9074.  
  9075.         scaler_state->scaler_id = id;
  9076.         if (id >= 0) {
  9077.                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
  9078.         } else {
  9079.                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9080.         }
  9081. }
  9082.  
  9083. static void
  9084. skylake_get_initial_plane_config(struct intel_crtc *crtc,
  9085.                                  struct intel_initial_plane_config *plane_config)
  9086. {
  9087.         struct drm_device *dev = crtc->base.dev;
  9088.         struct drm_i915_private *dev_priv = dev->dev_private;
  9089.         u32 val, base, offset, stride_mult, tiling;
  9090.         int pipe = crtc->pipe;
  9091.         int fourcc, pixel_format;
  9092.         unsigned int aligned_height;
  9093.         struct drm_framebuffer *fb;
  9094.         struct intel_framebuffer *intel_fb;
  9095.  
  9096.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9097.         if (!intel_fb) {
  9098.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9099.                 return;
  9100.         }
  9101.  
  9102.         fb = &intel_fb->base;
  9103.  
  9104.         val = I915_READ(PLANE_CTL(pipe, 0));
  9105.         if (!(val & PLANE_CTL_ENABLE))
  9106.                 goto error;
  9107.  
  9108.         pixel_format = val & PLANE_CTL_FORMAT_MASK;
  9109.         fourcc = skl_format_to_fourcc(pixel_format,
  9110.                                       val & PLANE_CTL_ORDER_RGBX,
  9111.                                       val & PLANE_CTL_ALPHA_MASK);
  9112.         fb->pixel_format = fourcc;
  9113.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9114.  
  9115.         tiling = val & PLANE_CTL_TILED_MASK;
  9116.         switch (tiling) {
  9117.         case PLANE_CTL_TILED_LINEAR:
  9118.                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
  9119.                 break;
  9120.         case PLANE_CTL_TILED_X:
  9121.                 plane_config->tiling = I915_TILING_X;
  9122.                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9123.                 break;
  9124.         case PLANE_CTL_TILED_Y:
  9125.                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
  9126.                 break;
  9127.         case PLANE_CTL_TILED_YF:
  9128.                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
  9129.                 break;
  9130.         default:
  9131.                 MISSING_CASE(tiling);
  9132.                 goto error;
  9133.         }
  9134.  
  9135.         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
  9136.         plane_config->base = base;
  9137.  
  9138.         offset = I915_READ(PLANE_OFFSET(pipe, 0));
  9139.  
  9140.         val = I915_READ(PLANE_SIZE(pipe, 0));
  9141.         fb->height = ((val >> 16) & 0xfff) + 1;
  9142.         fb->width = ((val >> 0) & 0x1fff) + 1;
  9143.  
  9144.         val = I915_READ(PLANE_STRIDE(pipe, 0));
  9145.         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
  9146.                                                 fb->pixel_format);
  9147.         fb->pitches[0] = (val & 0x3ff) * stride_mult;
  9148.  
  9149.         aligned_height = intel_fb_align_height(dev, fb->height,
  9150.                                                fb->pixel_format,
  9151.                                                fb->modifier[0]);
  9152.  
  9153.         plane_config->size = fb->pitches[0] * aligned_height;
  9154.  
  9155.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9156.                       pipe_name(pipe), fb->width, fb->height,
  9157.                       fb->bits_per_pixel, base, fb->pitches[0],
  9158.                       plane_config->size);
  9159.  
  9160.         plane_config->fb = intel_fb;
  9161.         return;
  9162.  
  9163. error:
  9164.         kfree(fb);
  9165. }
  9166.  
  9167. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  9168.                                      struct intel_crtc_state *pipe_config)
  9169. {
  9170.         struct drm_device *dev = crtc->base.dev;
  9171.         struct drm_i915_private *dev_priv = dev->dev_private;
  9172.         uint32_t tmp;
  9173.  
  9174.         tmp = I915_READ(PF_CTL(crtc->pipe));
  9175.  
  9176.         if (tmp & PF_ENABLE) {
  9177.                 pipe_config->pch_pfit.enabled = true;
  9178.                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  9179.                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  9180.  
  9181.                 /* We currently do not free assignements of panel fitters on
  9182.                  * ivb/hsw (since we don't use the higher upscaling modes which
  9183.                  * differentiates them) so just WARN about this case for now. */
  9184.                 if (IS_GEN7(dev)) {
  9185.                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  9186.                                 PF_PIPE_SEL_IVB(crtc->pipe));
  9187.                 }
  9188.         }
  9189. }
  9190.  
  9191. static void
  9192. ironlake_get_initial_plane_config(struct intel_crtc *crtc,
  9193.                                   struct intel_initial_plane_config *plane_config)
  9194. {
  9195.         struct drm_device *dev = crtc->base.dev;
  9196.         struct drm_i915_private *dev_priv = dev->dev_private;
  9197.         u32 val, base, offset;
  9198.         int pipe = crtc->pipe;
  9199.         int fourcc, pixel_format;
  9200.         unsigned int aligned_height;
  9201.         struct drm_framebuffer *fb;
  9202.         struct intel_framebuffer *intel_fb;
  9203.  
  9204.         val = I915_READ(DSPCNTR(pipe));
  9205.         if (!(val & DISPLAY_PLANE_ENABLE))
  9206.                 return;
  9207.  
  9208.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  9209.         if (!intel_fb) {
  9210.                 DRM_DEBUG_KMS("failed to alloc fb\n");
  9211.                 return;
  9212.         }
  9213.  
  9214.         fb = &intel_fb->base;
  9215.  
  9216.         if (INTEL_INFO(dev)->gen >= 4) {
  9217.                 if (val & DISPPLANE_TILED) {
  9218.                         plane_config->tiling = I915_TILING_X;
  9219.                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
  9220.                 }
  9221.         }
  9222.  
  9223.         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
  9224.         fourcc = i9xx_format_to_fourcc(pixel_format);
  9225.         fb->pixel_format = fourcc;
  9226.         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
  9227.  
  9228.         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
  9229.         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  9230.                 offset = I915_READ(DSPOFFSET(pipe));
  9231.         } else {
  9232.                 if (plane_config->tiling)
  9233.                         offset = I915_READ(DSPTILEOFF(pipe));
  9234.                 else
  9235.                         offset = I915_READ(DSPLINOFF(pipe));
  9236.         }
  9237.         plane_config->base = base;
  9238.  
  9239.         val = I915_READ(PIPESRC(pipe));
  9240.         fb->width = ((val >> 16) & 0xfff) + 1;
  9241.         fb->height = ((val >> 0) & 0xfff) + 1;
  9242.  
  9243.         val = I915_READ(DSPSTRIDE(pipe));
  9244.         fb->pitches[0] = val & 0xffffffc0;
  9245.  
  9246.         aligned_height = intel_fb_align_height(dev, fb->height,
  9247.                                                fb->pixel_format,
  9248.                                                fb->modifier[0]);
  9249.  
  9250.         plane_config->size = fb->pitches[0] * aligned_height;
  9251.  
  9252.         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
  9253.                       pipe_name(pipe), fb->width, fb->height,
  9254.                       fb->bits_per_pixel, base, fb->pitches[0],
  9255.                       plane_config->size);
  9256.  
  9257.         plane_config->fb = intel_fb;
  9258. }
  9259.  
  9260. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  9261.                                      struct intel_crtc_state *pipe_config)
  9262. {
  9263.         struct drm_device *dev = crtc->base.dev;
  9264.         struct drm_i915_private *dev_priv = dev->dev_private;
  9265.         uint32_t tmp;
  9266.  
  9267.         if (!intel_display_power_is_enabled(dev_priv,
  9268.                                             POWER_DOMAIN_PIPE(crtc->pipe)))
  9269.                 return false;
  9270.  
  9271.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9272.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9273.  
  9274.         tmp = I915_READ(PIPECONF(crtc->pipe));
  9275.         if (!(tmp & PIPECONF_ENABLE))
  9276.                 return false;
  9277.  
  9278.         switch (tmp & PIPECONF_BPC_MASK) {
  9279.         case PIPECONF_6BPC:
  9280.                 pipe_config->pipe_bpp = 18;
  9281.                 break;
  9282.         case PIPECONF_8BPC:
  9283.                 pipe_config->pipe_bpp = 24;
  9284.                 break;
  9285.         case PIPECONF_10BPC:
  9286.                 pipe_config->pipe_bpp = 30;
  9287.                 break;
  9288.         case PIPECONF_12BPC:
  9289.                 pipe_config->pipe_bpp = 36;
  9290.                 break;
  9291.         default:
  9292.                 break;
  9293.         }
  9294.  
  9295.         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
  9296.                 pipe_config->limited_color_range = true;
  9297.  
  9298.         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  9299.                 struct intel_shared_dpll *pll;
  9300.  
  9301.                 pipe_config->has_pch_encoder = true;
  9302.  
  9303.                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  9304.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9305.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9306.  
  9307.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9308.  
  9309.                 if (HAS_PCH_IBX(dev_priv->dev)) {
  9310.                         pipe_config->shared_dpll =
  9311.                                 (enum intel_dpll_id) crtc->pipe;
  9312.                 } else {
  9313.                         tmp = I915_READ(PCH_DPLL_SEL);
  9314.                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  9315.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  9316.                         else
  9317.                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  9318.                 }
  9319.  
  9320.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9321.  
  9322.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9323.                                            &pipe_config->dpll_hw_state));
  9324.  
  9325.                 tmp = pipe_config->dpll_hw_state.dpll;
  9326.                 pipe_config->pixel_multiplier =
  9327.                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  9328.                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  9329.  
  9330.                 ironlake_pch_clock_get(crtc, pipe_config);
  9331.         } else {
  9332.                 pipe_config->pixel_multiplier = 1;
  9333.         }
  9334.  
  9335.         intel_get_pipe_timings(crtc, pipe_config);
  9336.  
  9337.         ironlake_get_pfit_config(crtc, pipe_config);
  9338.  
  9339.         return true;
  9340. }
  9341.  
  9342. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  9343. {
  9344.         struct drm_device *dev = dev_priv->dev;
  9345.         struct intel_crtc *crtc;
  9346.  
  9347.         for_each_intel_crtc(dev, crtc)
  9348.                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
  9349.                      pipe_name(crtc->pipe));
  9350.  
  9351.         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  9352.         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
  9353.         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
  9354.         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
  9355.         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  9356.         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  9357.              "CPU PWM1 enabled\n");
  9358.         if (IS_HASWELL(dev))
  9359.                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  9360.                      "CPU PWM2 enabled\n");
  9361.         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  9362.              "PCH PWM1 enabled\n");
  9363.         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  9364.              "Utility pin enabled\n");
  9365.         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  9366.  
  9367.         /*
  9368.          * In theory we can still leave IRQs enabled, as long as only the HPD
  9369.          * interrupts remain enabled. We used to check for that, but since it's
  9370.          * gen-specific and since we only disable LCPLL after we fully disable
  9371.          * the interrupts, the check below should be enough.
  9372.          */
  9373.         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
  9374. }
  9375.  
  9376. static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
  9377. {
  9378.         struct drm_device *dev = dev_priv->dev;
  9379.  
  9380.         if (IS_HASWELL(dev))
  9381.                 return I915_READ(D_COMP_HSW);
  9382.         else
  9383.                 return I915_READ(D_COMP_BDW);
  9384. }
  9385.  
  9386. static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
  9387. {
  9388.         struct drm_device *dev = dev_priv->dev;
  9389.  
  9390.         if (IS_HASWELL(dev)) {
  9391.                 mutex_lock(&dev_priv->rps.hw_lock);
  9392.                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
  9393.                                             val))
  9394.                         DRM_ERROR("Failed to write to D_COMP\n");
  9395.                 mutex_unlock(&dev_priv->rps.hw_lock);
  9396.         } else {
  9397.                 I915_WRITE(D_COMP_BDW, val);
  9398.                 POSTING_READ(D_COMP_BDW);
  9399.         }
  9400. }
  9401.  
  9402. /*
  9403.  * This function implements pieces of two sequences from BSpec:
  9404.  * - Sequence for display software to disable LCPLL
  9405.  * - Sequence for display software to allow package C8+
  9406.  * The steps implemented here are just the steps that actually touch the LCPLL
  9407.  * register. Callers should take care of disabling all the display engine
  9408.  * functions, doing the mode unset, fixing interrupts, etc.
  9409.  */
  9410. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  9411.                               bool switch_to_fclk, bool allow_power_down)
  9412. {
  9413.         uint32_t val;
  9414.  
  9415.         assert_can_disable_lcpll(dev_priv);
  9416.  
  9417.         val = I915_READ(LCPLL_CTL);
  9418.  
  9419.         if (switch_to_fclk) {
  9420.                 val |= LCPLL_CD_SOURCE_FCLK;
  9421.                 I915_WRITE(LCPLL_CTL, val);
  9422.  
  9423.                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9424.                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9425.                         DRM_ERROR("Switching to FCLK failed\n");
  9426.  
  9427.                 val = I915_READ(LCPLL_CTL);
  9428.         }
  9429.  
  9430.         val |= LCPLL_PLL_DISABLE;
  9431.         I915_WRITE(LCPLL_CTL, val);
  9432.         POSTING_READ(LCPLL_CTL);
  9433.  
  9434.         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  9435.                 DRM_ERROR("LCPLL still locked\n");
  9436.  
  9437.         val = hsw_read_dcomp(dev_priv);
  9438.         val |= D_COMP_COMP_DISABLE;
  9439.         hsw_write_dcomp(dev_priv, val);
  9440.         ndelay(100);
  9441.  
  9442.         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
  9443.                      1))
  9444.                 DRM_ERROR("D_COMP RCOMP still in progress\n");
  9445.  
  9446.         if (allow_power_down) {
  9447.                 val = I915_READ(LCPLL_CTL);
  9448.                 val |= LCPLL_POWER_DOWN_ALLOW;
  9449.                 I915_WRITE(LCPLL_CTL, val);
  9450.                 POSTING_READ(LCPLL_CTL);
  9451.         }
  9452. }
  9453.  
  9454. /*
  9455.  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  9456.  * source.
  9457.  */
  9458. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  9459. {
  9460.         uint32_t val;
  9461.  
  9462.         val = I915_READ(LCPLL_CTL);
  9463.  
  9464.         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  9465.                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  9466.                 return;
  9467.  
  9468.         /*
  9469.          * Make sure we're not on PC8 state before disabling PC8, otherwise
  9470.          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
  9471.          */
  9472.         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  9473.  
  9474.         if (val & LCPLL_POWER_DOWN_ALLOW) {
  9475.                 val &= ~LCPLL_POWER_DOWN_ALLOW;
  9476.                 I915_WRITE(LCPLL_CTL, val);
  9477.                 POSTING_READ(LCPLL_CTL);
  9478.         }
  9479.  
  9480.         val = hsw_read_dcomp(dev_priv);
  9481.         val |= D_COMP_COMP_FORCE;
  9482.         val &= ~D_COMP_COMP_DISABLE;
  9483.         hsw_write_dcomp(dev_priv, val);
  9484.  
  9485.         val = I915_READ(LCPLL_CTL);
  9486.         val &= ~LCPLL_PLL_DISABLE;
  9487.         I915_WRITE(LCPLL_CTL, val);
  9488.  
  9489.         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  9490.                 DRM_ERROR("LCPLL not locked yet\n");
  9491.  
  9492.         if (val & LCPLL_CD_SOURCE_FCLK) {
  9493.                 val = I915_READ(LCPLL_CTL);
  9494.                 val &= ~LCPLL_CD_SOURCE_FCLK;
  9495.                 I915_WRITE(LCPLL_CTL, val);
  9496.  
  9497.                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9498.                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9499.                         DRM_ERROR("Switching back to LCPLL failed\n");
  9500.         }
  9501.  
  9502.         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  9503.         intel_update_cdclk(dev_priv->dev);
  9504. }
  9505.  
  9506. /*
  9507.  * Package states C8 and deeper are really deep PC states that can only be
  9508.  * reached when all the devices on the system allow it, so even if the graphics
  9509.  * device allows PC8+, it doesn't mean the system will actually get to these
  9510.  * states. Our driver only allows PC8+ when going into runtime PM.
  9511.  *
  9512.  * The requirements for PC8+ are that all the outputs are disabled, the power
  9513.  * well is disabled and most interrupts are disabled, and these are also
  9514.  * requirements for runtime PM. When these conditions are met, we manually do
  9515.  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
  9516.  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
  9517.  * hang the machine.
  9518.  *
  9519.  * When we really reach PC8 or deeper states (not just when we allow it) we lose
  9520.  * the state of some registers, so when we come back from PC8+ we need to
  9521.  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
  9522.  * need to take care of the registers kept by RC6. Notice that this happens even
  9523.  * if we don't put the device in PCI D3 state (which is what currently happens
  9524.  * because of the runtime PM support).
  9525.  *
  9526.  * For more, read "Display Sequences for Package C8" on the hardware
  9527.  * documentation.
  9528.  */
  9529. void hsw_enable_pc8(struct drm_i915_private *dev_priv)
  9530. {
  9531.         struct drm_device *dev = dev_priv->dev;
  9532.         uint32_t val;
  9533.  
  9534.         DRM_DEBUG_KMS("Enabling package C8+\n");
  9535.  
  9536.         if (HAS_PCH_LPT_LP(dev)) {
  9537.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9538.                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  9539.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9540.         }
  9541.  
  9542.         lpt_disable_clkout_dp(dev);
  9543.         hsw_disable_lcpll(dev_priv, true, true);
  9544. }
  9545.  
  9546. void hsw_disable_pc8(struct drm_i915_private *dev_priv)
  9547. {
  9548.         struct drm_device *dev = dev_priv->dev;
  9549.         uint32_t val;
  9550.  
  9551.         DRM_DEBUG_KMS("Disabling package C8+\n");
  9552.  
  9553.         hsw_restore_lcpll(dev_priv);
  9554.         lpt_init_pch_refclk(dev);
  9555.  
  9556.         if (HAS_PCH_LPT_LP(dev)) {
  9557.                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
  9558.                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  9559.                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  9560.         }
  9561.  
  9562.         intel_prepare_ddi(dev);
  9563. }
  9564.  
  9565. static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9566. {
  9567.         struct drm_device *dev = old_state->dev;
  9568.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9569.  
  9570.         broxton_set_cdclk(dev, req_cdclk);
  9571. }
  9572.  
  9573. /* compute the max rate for new configuration */
  9574. static int ilk_max_pixel_rate(struct drm_atomic_state *state)
  9575. {
  9576.         struct intel_crtc *intel_crtc;
  9577.         struct intel_crtc_state *crtc_state;
  9578.         int max_pixel_rate = 0;
  9579.  
  9580.         for_each_intel_crtc(state->dev, intel_crtc) {
  9581.                 int pixel_rate;
  9582.  
  9583.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  9584.                 if (IS_ERR(crtc_state))
  9585.                         return PTR_ERR(crtc_state);
  9586.  
  9587.                 if (!crtc_state->base.enable)
  9588.                         continue;
  9589.  
  9590.                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
  9591.  
  9592.                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
  9593.                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
  9594.                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
  9595.  
  9596.                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
  9597.         }
  9598.  
  9599.         return max_pixel_rate;
  9600. }
  9601.  
  9602. static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
  9603. {
  9604.         struct drm_i915_private *dev_priv = dev->dev_private;
  9605.         uint32_t val, data;
  9606.         int ret;
  9607.  
  9608.         if (WARN((I915_READ(LCPLL_CTL) &
  9609.                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
  9610.                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
  9611.                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
  9612.                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
  9613.                  "trying to change cdclk frequency with cdclk not enabled\n"))
  9614.                 return;
  9615.  
  9616.         mutex_lock(&dev_priv->rps.hw_lock);
  9617.         ret = sandybridge_pcode_write(dev_priv,
  9618.                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
  9619.         mutex_unlock(&dev_priv->rps.hw_lock);
  9620.         if (ret) {
  9621.                 DRM_ERROR("failed to inform pcode about cdclk change\n");
  9622.                 return;
  9623.         }
  9624.  
  9625.         val = I915_READ(LCPLL_CTL);
  9626.         val |= LCPLL_CD_SOURCE_FCLK;
  9627.         I915_WRITE(LCPLL_CTL, val);
  9628.  
  9629.         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  9630.                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
  9631.                 DRM_ERROR("Switching to FCLK failed\n");
  9632.  
  9633.         val = I915_READ(LCPLL_CTL);
  9634.         val &= ~LCPLL_CLK_FREQ_MASK;
  9635.  
  9636.         switch (cdclk) {
  9637.         case 450000:
  9638.                 val |= LCPLL_CLK_FREQ_450;
  9639.                 data = 0;
  9640.                 break;
  9641.         case 540000:
  9642.                 val |= LCPLL_CLK_FREQ_54O_BDW;
  9643.                 data = 1;
  9644.                 break;
  9645.         case 337500:
  9646.                 val |= LCPLL_CLK_FREQ_337_5_BDW;
  9647.                 data = 2;
  9648.                 break;
  9649.         case 675000:
  9650.                 val |= LCPLL_CLK_FREQ_675_BDW;
  9651.                 data = 3;
  9652.                 break;
  9653.         default:
  9654.                 WARN(1, "invalid cdclk frequency\n");
  9655.                 return;
  9656.         }
  9657.  
  9658.         I915_WRITE(LCPLL_CTL, val);
  9659.  
  9660.         val = I915_READ(LCPLL_CTL);
  9661.         val &= ~LCPLL_CD_SOURCE_FCLK;
  9662.         I915_WRITE(LCPLL_CTL, val);
  9663.  
  9664.         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  9665.                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  9666.                 DRM_ERROR("Switching back to LCPLL failed\n");
  9667.  
  9668.         mutex_lock(&dev_priv->rps.hw_lock);
  9669.         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
  9670.         mutex_unlock(&dev_priv->rps.hw_lock);
  9671.  
  9672.         intel_update_cdclk(dev);
  9673.  
  9674.         WARN(cdclk != dev_priv->cdclk_freq,
  9675.              "cdclk requested %d kHz but got %d kHz\n",
  9676.              cdclk, dev_priv->cdclk_freq);
  9677. }
  9678.  
  9679. static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
  9680. {
  9681.         struct drm_i915_private *dev_priv = to_i915(state->dev);
  9682.         int max_pixclk = ilk_max_pixel_rate(state);
  9683.         int cdclk;
  9684.  
  9685.         /*
  9686.          * FIXME should also account for plane ratio
  9687.          * once 64bpp pixel formats are supported.
  9688.          */
  9689.         if (max_pixclk > 540000)
  9690.                 cdclk = 675000;
  9691.         else if (max_pixclk > 450000)
  9692.                 cdclk = 540000;
  9693.         else if (max_pixclk > 337500)
  9694.                 cdclk = 450000;
  9695.         else
  9696.                 cdclk = 337500;
  9697.  
  9698.         /*
  9699.          * FIXME move the cdclk caclulation to
  9700.          * compute_config() so we can fail gracegully.
  9701.          */
  9702.         if (cdclk > dev_priv->max_cdclk_freq) {
  9703.                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
  9704.                           cdclk, dev_priv->max_cdclk_freq);
  9705.                 cdclk = dev_priv->max_cdclk_freq;
  9706.         }
  9707.  
  9708.         to_intel_atomic_state(state)->cdclk = cdclk;
  9709.  
  9710.         return 0;
  9711. }
  9712.  
  9713. static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
  9714. {
  9715.         struct drm_device *dev = old_state->dev;
  9716.         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
  9717.  
  9718.         broadwell_set_cdclk(dev, req_cdclk);
  9719. }
  9720.  
  9721. static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
  9722.                                       struct intel_crtc_state *crtc_state)
  9723. {
  9724.         if (!intel_ddi_pll_select(crtc, crtc_state))
  9725.                 return -EINVAL;
  9726.  
  9727.         crtc->lowfreq_avail = false;
  9728.  
  9729.         return 0;
  9730. }
  9731.  
  9732. static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
  9733.                                 enum port port,
  9734.                                 struct intel_crtc_state *pipe_config)
  9735. {
  9736.         switch (port) {
  9737.         case PORT_A:
  9738.                 pipe_config->ddi_pll_sel = SKL_DPLL0;
  9739.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9740.                 break;
  9741.         case PORT_B:
  9742.                 pipe_config->ddi_pll_sel = SKL_DPLL1;
  9743.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9744.                 break;
  9745.         case PORT_C:
  9746.                 pipe_config->ddi_pll_sel = SKL_DPLL2;
  9747.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9748.                 break;
  9749.         default:
  9750.                 DRM_ERROR("Incorrect port type\n");
  9751.         }
  9752. }
  9753.  
  9754. static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
  9755.                                 enum port port,
  9756.                                 struct intel_crtc_state *pipe_config)
  9757. {
  9758.         u32 temp, dpll_ctl1;
  9759.  
  9760.         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
  9761.         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
  9762.  
  9763.         switch (pipe_config->ddi_pll_sel) {
  9764.         case SKL_DPLL0:
  9765.                 /*
  9766.                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
  9767.                  * of the shared DPLL framework and thus needs to be read out
  9768.                  * separately
  9769.                  */
  9770.                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
  9771.                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
  9772.                 break;
  9773.         case SKL_DPLL1:
  9774.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
  9775.                 break;
  9776.         case SKL_DPLL2:
  9777.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
  9778.                 break;
  9779.         case SKL_DPLL3:
  9780.                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
  9781.                 break;
  9782.         }
  9783. }
  9784.  
  9785. static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
  9786.                                 enum port port,
  9787.                                 struct intel_crtc_state *pipe_config)
  9788. {
  9789.         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
  9790.  
  9791.         switch (pipe_config->ddi_pll_sel) {
  9792.         case PORT_CLK_SEL_WRPLL1:
  9793.                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
  9794.                 break;
  9795.         case PORT_CLK_SEL_WRPLL2:
  9796.                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
  9797.                 break;
  9798.         case PORT_CLK_SEL_SPLL:
  9799.                 pipe_config->shared_dpll = DPLL_ID_SPLL;
  9800.         }
  9801. }
  9802.  
  9803. static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
  9804.                                        struct intel_crtc_state *pipe_config)
  9805. {
  9806.         struct drm_device *dev = crtc->base.dev;
  9807.         struct drm_i915_private *dev_priv = dev->dev_private;
  9808.         struct intel_shared_dpll *pll;
  9809.         enum port port;
  9810.         uint32_t tmp;
  9811.  
  9812.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  9813.  
  9814.         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
  9815.  
  9816.         if (IS_SKYLAKE(dev))
  9817.                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
  9818.         else if (IS_BROXTON(dev))
  9819.                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
  9820.         else
  9821.                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
  9822.  
  9823.         if (pipe_config->shared_dpll >= 0) {
  9824.                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  9825.  
  9826.                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
  9827.                                            &pipe_config->dpll_hw_state));
  9828.         }
  9829.  
  9830.         /*
  9831.          * Haswell has only FDI/PCH transcoder A. It is which is connected to
  9832.          * DDI E. So just check whether this pipe is wired to DDI E and whether
  9833.          * the PCH transcoder is on.
  9834.          */
  9835.         if (INTEL_INFO(dev)->gen < 9 &&
  9836.             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  9837.                 pipe_config->has_pch_encoder = true;
  9838.  
  9839.                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  9840.                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  9841.                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
  9842.  
  9843.                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
  9844.         }
  9845. }
  9846.  
  9847. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  9848.                                     struct intel_crtc_state *pipe_config)
  9849. {
  9850.         struct drm_device *dev = crtc->base.dev;
  9851.         struct drm_i915_private *dev_priv = dev->dev_private;
  9852.         enum intel_display_power_domain pfit_domain;
  9853.         uint32_t tmp;
  9854.  
  9855.         if (!intel_display_power_is_enabled(dev_priv,
  9856.                                          POWER_DOMAIN_PIPE(crtc->pipe)))
  9857.                 return false;
  9858.  
  9859.         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  9860.         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  9861.  
  9862.         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  9863.         if (tmp & TRANS_DDI_FUNC_ENABLE) {
  9864.                 enum pipe trans_edp_pipe;
  9865.                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  9866.                 default:
  9867.                         WARN(1, "unknown pipe linked to edp transcoder\n");
  9868.                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
  9869.                 case TRANS_DDI_EDP_INPUT_A_ON:
  9870.                         trans_edp_pipe = PIPE_A;
  9871.                         break;
  9872.                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
  9873.                         trans_edp_pipe = PIPE_B;
  9874.                         break;
  9875.                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
  9876.                         trans_edp_pipe = PIPE_C;
  9877.                         break;
  9878.                 }
  9879.  
  9880.                 if (trans_edp_pipe == crtc->pipe)
  9881.                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
  9882.         }
  9883.  
  9884.         if (!intel_display_power_is_enabled(dev_priv,
  9885.                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  9886.                 return false;
  9887.  
  9888.         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  9889.         if (!(tmp & PIPECONF_ENABLE))
  9890.                 return false;
  9891.  
  9892.         haswell_get_ddi_port_state(crtc, pipe_config);
  9893.  
  9894.         intel_get_pipe_timings(crtc, pipe_config);
  9895.  
  9896.         if (INTEL_INFO(dev)->gen >= 9) {
  9897.                 skl_init_scalers(dev, crtc, pipe_config);
  9898.         }
  9899.  
  9900.         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  9901.  
  9902.         if (INTEL_INFO(dev)->gen >= 9) {
  9903.                 pipe_config->scaler_state.scaler_id = -1;
  9904.                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
  9905.         }
  9906.  
  9907.         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
  9908.                 if (INTEL_INFO(dev)->gen >= 9)
  9909.                         skylake_get_pfit_config(crtc, pipe_config);
  9910.                 else
  9911.                         ironlake_get_pfit_config(crtc, pipe_config);
  9912.         }
  9913.  
  9914.         if (IS_HASWELL(dev))
  9915.                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  9916.                         (I915_READ(IPS_CTL) & IPS_ENABLE);
  9917.  
  9918.         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
  9919.                 pipe_config->pixel_multiplier =
  9920.                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
  9921.         } else {
  9922.                 pipe_config->pixel_multiplier = 1;
  9923.         }
  9924.  
  9925.         return true;
  9926. }
  9927.  
  9928. static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  9929. {
  9930.         struct drm_device *dev = crtc->dev;
  9931.         struct drm_i915_private *dev_priv = dev->dev_private;
  9932.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  9933.         uint32_t cntl = 0, size = 0;
  9934.  
  9935.         if (on) {
  9936.                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
  9937.                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
  9938.                 unsigned int stride = roundup_pow_of_two(width) * 4;
  9939.  
  9940.                 switch (stride) {
  9941.                 default:
  9942.                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
  9943.                                   width, stride);
  9944.                         stride = 256;
  9945.                         /* fallthrough */
  9946.                 case 256:
  9947.                 case 512:
  9948.                 case 1024:
  9949.                 case 2048:
  9950.                         break;
  9951.                 }
  9952.  
  9953.                 cntl |= CURSOR_ENABLE |
  9954.                         CURSOR_GAMMA_ENABLE |
  9955.                         CURSOR_FORMAT_ARGB |
  9956.                         CURSOR_STRIDE(stride);
  9957.  
  9958.                 size = (height << 12) | width;
  9959.         }
  9960.  
  9961.         if (intel_crtc->cursor_cntl != 0 &&
  9962.             (intel_crtc->cursor_base != base ||
  9963.              intel_crtc->cursor_size != size ||
  9964.              intel_crtc->cursor_cntl != cntl)) {
  9965.                 /* On these chipsets we can only modify the base/size/stride
  9966.                  * whilst the cursor is disabled.
  9967.                  */
  9968.                 I915_WRITE(CURCNTR(PIPE_A), 0);
  9969.                 POSTING_READ(CURCNTR(PIPE_A));
  9970.                 intel_crtc->cursor_cntl = 0;
  9971.         }
  9972.  
  9973.         if (intel_crtc->cursor_base != base) {
  9974.                 I915_WRITE(CURBASE(PIPE_A), base);
  9975.                 intel_crtc->cursor_base = base;
  9976.         }
  9977.  
  9978.         if (intel_crtc->cursor_size != size) {
  9979.                 I915_WRITE(CURSIZE, size);
  9980.                 intel_crtc->cursor_size = size;
  9981.         }
  9982.  
  9983.         if (intel_crtc->cursor_cntl != cntl) {
  9984.                 I915_WRITE(CURCNTR(PIPE_A), cntl);
  9985.                 POSTING_READ(CURCNTR(PIPE_A));
  9986.                 intel_crtc->cursor_cntl = cntl;
  9987.         }
  9988. }
  9989.  
  9990. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
  9991. {
  9992.         struct drm_device *dev = crtc->dev;
  9993.         struct drm_i915_private *dev_priv = dev->dev_private;
  9994.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  9995.         int pipe = intel_crtc->pipe;
  9996.         uint32_t cntl = 0;
  9997.  
  9998.         if (on) {
  9999.                 cntl = MCURSOR_GAMMA_ENABLE;
  10000.                 switch (intel_crtc->base.cursor->state->crtc_w) {
  10001.                         case 64:
  10002.                                 cntl |= CURSOR_MODE_64_ARGB_AX;
  10003.                                 break;
  10004.                         case 128:
  10005.                                 cntl |= CURSOR_MODE_128_ARGB_AX;
  10006.                                 break;
  10007.                         case 256:
  10008.                                 cntl |= CURSOR_MODE_256_ARGB_AX;
  10009.                                 break;
  10010.                         default:
  10011.                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
  10012.                                 return;
  10013.                 }
  10014.                 cntl |= pipe << 28; /* Connect to correct pipe */
  10015.  
  10016.                 if (HAS_DDI(dev))
  10017.                         cntl |= CURSOR_PIPE_CSC_ENABLE;
  10018.         }
  10019.  
  10020.         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
  10021.                 cntl |= CURSOR_ROTATE_180;
  10022.  
  10023.         if (intel_crtc->cursor_cntl != cntl) {
  10024.                 I915_WRITE(CURCNTR(pipe), cntl);
  10025.                 POSTING_READ(CURCNTR(pipe));
  10026.                 intel_crtc->cursor_cntl = cntl;
  10027.         }
  10028.  
  10029.         /* and commit changes on next vblank */
  10030.         I915_WRITE(CURBASE(pipe), base);
  10031.         POSTING_READ(CURBASE(pipe));
  10032.  
  10033.         intel_crtc->cursor_base = base;
  10034. }
  10035.  
  10036. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  10037. void intel_crtc_update_cursor(struct drm_crtc *crtc,
  10038.                                      bool on)
  10039. {
  10040.         struct drm_device *dev = crtc->dev;
  10041.         struct drm_i915_private *dev_priv = dev->dev_private;
  10042.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10043.         int pipe = intel_crtc->pipe;
  10044.         struct drm_plane_state *cursor_state = crtc->cursor->state;
  10045.         int x = cursor_state->crtc_x;
  10046.         int y = cursor_state->crtc_y;
  10047.         u32 base = 0, pos = 0;
  10048.  
  10049.         base = intel_crtc->cursor_addr;
  10050.  
  10051.         if (x >= intel_crtc->config->pipe_src_w)
  10052.                 on = false;
  10053.  
  10054.         if (y >= intel_crtc->config->pipe_src_h)
  10055.                 on = false;
  10056.  
  10057.         if (x < 0) {
  10058.                 if (x + cursor_state->crtc_w <= 0)
  10059.                         on = false;
  10060.  
  10061.                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  10062.                 x = -x;
  10063.         }
  10064.         pos |= x << CURSOR_X_SHIFT;
  10065.  
  10066.         if (y < 0) {
  10067.                 if (y + cursor_state->crtc_h <= 0)
  10068.                         on = false;
  10069.  
  10070.                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  10071.                 y = -y;
  10072.         }
  10073.         pos |= y << CURSOR_Y_SHIFT;
  10074.  
  10075.         I915_WRITE(CURPOS(pipe), pos);
  10076.  
  10077.         /* ILK+ do this automagically */
  10078.         if (HAS_GMCH_DISPLAY(dev) &&
  10079.             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
  10080.                 base += (cursor_state->crtc_h *
  10081.                          cursor_state->crtc_w - 1) * 4;
  10082.         }
  10083.  
  10084.         if (IS_845G(dev) || IS_I865G(dev))
  10085.                 i845_update_cursor(crtc, base, on);
  10086.         else
  10087.                 i9xx_update_cursor(crtc, base, on);
  10088. }
  10089.  
  10090. static bool cursor_size_ok(struct drm_device *dev,
  10091.                            uint32_t width, uint32_t height)
  10092. {
  10093.         if (width == 0 || height == 0)
  10094.                 return false;
  10095.  
  10096.         /*
  10097.          * 845g/865g are special in that they are only limited by
  10098.          * the width of their cursors, the height is arbitrary up to
  10099.          * the precision of the register. Everything else requires
  10100.          * square cursors, limited to a few power-of-two sizes.
  10101.          */
  10102.         if (IS_845G(dev) || IS_I865G(dev)) {
  10103.                 if ((width & 63) != 0)
  10104.                         return false;
  10105.  
  10106.                 if (width > (IS_845G(dev) ? 64 : 512))
  10107.                         return false;
  10108.  
  10109.                 if (height > 1023)
  10110.                         return false;
  10111.         } else {
  10112.                 switch (width | height) {
  10113.                 case 256:
  10114.                 case 128:
  10115.                         if (IS_GEN2(dev))
  10116.                                 return false;
  10117.                 case 64:
  10118.                         break;
  10119.                 default:
  10120.                         return false;
  10121.                 }
  10122.         }
  10123.  
  10124.         return true;
  10125. }
  10126.  
  10127. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  10128.                                  u16 *blue, uint32_t start, uint32_t size)
  10129. {
  10130.         int end = (start + size > 256) ? 256 : start + size, i;
  10131.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10132.  
  10133.         for (i = start; i < end; i++) {
  10134.                 intel_crtc->lut_r[i] = red[i] >> 8;
  10135.                 intel_crtc->lut_g[i] = green[i] >> 8;
  10136.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  10137.         }
  10138.  
  10139.         intel_crtc_load_lut(crtc);
  10140. }
  10141.  
  10142. /* VESA 640x480x72Hz mode to set on the pipe */
  10143. static struct drm_display_mode load_detect_mode = {
  10144.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  10145.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  10146. };
  10147.  
  10148. struct drm_framebuffer *
  10149. __intel_framebuffer_create(struct drm_device *dev,
  10150.                            struct drm_mode_fb_cmd2 *mode_cmd,
  10151.                            struct drm_i915_gem_object *obj)
  10152. {
  10153.         struct intel_framebuffer *intel_fb;
  10154.         int ret;
  10155.  
  10156.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  10157.         if (!intel_fb) {
  10158.                 drm_gem_object_unreference(&obj->base);
  10159.                 return ERR_PTR(-ENOMEM);
  10160.         }
  10161.  
  10162.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  10163.         if (ret)
  10164.                 goto err;
  10165.  
  10166.         return &intel_fb->base;
  10167. err:
  10168.         drm_gem_object_unreference(&obj->base);
  10169.         kfree(intel_fb);
  10170.  
  10171.         return ERR_PTR(ret);
  10172. }
  10173.  
  10174. static struct drm_framebuffer *
  10175. intel_framebuffer_create(struct drm_device *dev,
  10176.                          struct drm_mode_fb_cmd2 *mode_cmd,
  10177.                          struct drm_i915_gem_object *obj)
  10178. {
  10179.         struct drm_framebuffer *fb;
  10180.         int ret;
  10181.  
  10182.         ret = i915_mutex_lock_interruptible(dev);
  10183.         if (ret)
  10184.                 return ERR_PTR(ret);
  10185.         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
  10186.         mutex_unlock(&dev->struct_mutex);
  10187.  
  10188.         return fb;
  10189. }
  10190.  
  10191. static u32
  10192. intel_framebuffer_pitch_for_width(int width, int bpp)
  10193. {
  10194.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  10195.         return ALIGN(pitch, 64);
  10196. }
  10197.  
  10198. static u32
  10199. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  10200. {
  10201.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  10202.         return PAGE_ALIGN(pitch * mode->vdisplay);
  10203. }
  10204.  
  10205. static struct drm_framebuffer *
  10206. intel_framebuffer_create_for_mode(struct drm_device *dev,
  10207.                                   struct drm_display_mode *mode,
  10208.                                   int depth, int bpp)
  10209. {
  10210.         struct drm_i915_gem_object *obj;
  10211.         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  10212.  
  10213.         obj = i915_gem_alloc_object(dev,
  10214.                                     intel_framebuffer_size_for_mode(mode, bpp));
  10215.         if (obj == NULL)
  10216.                 return ERR_PTR(-ENOMEM);
  10217.  
  10218.         mode_cmd.width = mode->hdisplay;
  10219.         mode_cmd.height = mode->vdisplay;
  10220.         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  10221.                                                                 bpp);
  10222.         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  10223.  
  10224.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  10225. }
  10226.  
  10227. static struct drm_framebuffer *
  10228. mode_fits_in_fbdev(struct drm_device *dev,
  10229.                    struct drm_display_mode *mode)
  10230. {
  10231. #ifdef CONFIG_DRM_FBDEV_EMULATION
  10232.         struct drm_i915_private *dev_priv = dev->dev_private;
  10233.         struct drm_i915_gem_object *obj;
  10234.         struct drm_framebuffer *fb;
  10235.  
  10236.         if (!dev_priv->fbdev)
  10237.                 return NULL;
  10238.  
  10239.         if (!dev_priv->fbdev->fb)
  10240.                 return NULL;
  10241.  
  10242.         obj = dev_priv->fbdev->fb->obj;
  10243.         BUG_ON(!obj);
  10244.  
  10245.         fb = &dev_priv->fbdev->fb->base;
  10246.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  10247.                                                                fb->bits_per_pixel))
  10248.                 return NULL;
  10249.  
  10250.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  10251.                 return NULL;
  10252.  
  10253.         return fb;
  10254. #else
  10255.         return NULL;
  10256. #endif
  10257. }
  10258.  
  10259. static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
  10260.                                            struct drm_crtc *crtc,
  10261.                                            struct drm_display_mode *mode,
  10262.                                            struct drm_framebuffer *fb,
  10263.                                            int x, int y)
  10264. {
  10265.         struct drm_plane_state *plane_state;
  10266.         int hdisplay, vdisplay;
  10267.         int ret;
  10268.  
  10269.         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
  10270.         if (IS_ERR(plane_state))
  10271.                 return PTR_ERR(plane_state);
  10272.  
  10273.         if (mode)
  10274.                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
  10275.         else
  10276.                 hdisplay = vdisplay = 0;
  10277.  
  10278.         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
  10279.         if (ret)
  10280.                 return ret;
  10281.         drm_atomic_set_fb_for_plane(plane_state, fb);
  10282.         plane_state->crtc_x = 0;
  10283.         plane_state->crtc_y = 0;
  10284.         plane_state->crtc_w = hdisplay;
  10285.         plane_state->crtc_h = vdisplay;
  10286.         plane_state->src_x = x << 16;
  10287.         plane_state->src_y = y << 16;
  10288.         plane_state->src_w = hdisplay << 16;
  10289.         plane_state->src_h = vdisplay << 16;
  10290.  
  10291.         return 0;
  10292. }
  10293.  
  10294. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  10295.                                 struct drm_display_mode *mode,
  10296.                                 struct intel_load_detect_pipe *old,
  10297.                                 struct drm_modeset_acquire_ctx *ctx)
  10298. {
  10299.         struct intel_crtc *intel_crtc;
  10300.         struct intel_encoder *intel_encoder =
  10301.                 intel_attached_encoder(connector);
  10302.         struct drm_crtc *possible_crtc;
  10303.         struct drm_encoder *encoder = &intel_encoder->base;
  10304.         struct drm_crtc *crtc = NULL;
  10305.         struct drm_device *dev = encoder->dev;
  10306.         struct drm_framebuffer *fb;
  10307.         struct drm_mode_config *config = &dev->mode_config;
  10308.         struct drm_atomic_state *state = NULL;
  10309.         struct drm_connector_state *connector_state;
  10310.         struct intel_crtc_state *crtc_state;
  10311.         int ret, i = -1;
  10312.  
  10313.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10314.                       connector->base.id, connector->name,
  10315.                       encoder->base.id, encoder->name);
  10316.  
  10317. retry:
  10318.         ret = drm_modeset_lock(&config->connection_mutex, ctx);
  10319.         if (ret)
  10320.                 goto fail;
  10321.  
  10322.         /*
  10323.          * Algorithm gets a little messy:
  10324.          *
  10325.          *   - if the connector already has an assigned crtc, use it (but make
  10326.          *     sure it's on first)
  10327.          *
  10328.          *   - try to find the first unused crtc that can drive this connector,
  10329.          *     and use that if we find one
  10330.          */
  10331.  
  10332.         /* See if we already have a CRTC for this connector */
  10333.         if (encoder->crtc) {
  10334.                 crtc = encoder->crtc;
  10335.  
  10336.                 ret = drm_modeset_lock(&crtc->mutex, ctx);
  10337.                 if (ret)
  10338.                         goto fail;
  10339.                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10340.                 if (ret)
  10341.                         goto fail;
  10342.  
  10343.                 old->dpms_mode = connector->dpms;
  10344.                 old->load_detect_temp = false;
  10345.  
  10346.                 /* Make sure the crtc and connector are running */
  10347.                 if (connector->dpms != DRM_MODE_DPMS_ON)
  10348.                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  10349.  
  10350.                 return true;
  10351.         }
  10352.  
  10353.         /* Find an unused one (if possible) */
  10354.         for_each_crtc(dev, possible_crtc) {
  10355.                 i++;
  10356.                 if (!(encoder->possible_crtcs & (1 << i)))
  10357.                         continue;
  10358.                 if (possible_crtc->state->enable)
  10359.                         continue;
  10360.  
  10361.                 crtc = possible_crtc;
  10362.                 break;
  10363.         }
  10364.  
  10365.         /*
  10366.          * If we didn't find an unused CRTC, don't use any.
  10367.          */
  10368.         if (!crtc) {
  10369.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  10370.                 goto fail;
  10371.         }
  10372.  
  10373.         ret = drm_modeset_lock(&crtc->mutex, ctx);
  10374.         if (ret)
  10375.                 goto fail;
  10376.         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
  10377.         if (ret)
  10378.                 goto fail;
  10379.  
  10380.         intel_crtc = to_intel_crtc(crtc);
  10381.         old->dpms_mode = connector->dpms;
  10382.         old->load_detect_temp = true;
  10383.         old->release_fb = NULL;
  10384.  
  10385.         state = drm_atomic_state_alloc(dev);
  10386.         if (!state)
  10387.                 return false;
  10388.  
  10389.         state->acquire_ctx = ctx;
  10390.  
  10391.         connector_state = drm_atomic_get_connector_state(state, connector);
  10392.         if (IS_ERR(connector_state)) {
  10393.                 ret = PTR_ERR(connector_state);
  10394.                 goto fail;
  10395.         }
  10396.  
  10397.         connector_state->crtc = crtc;
  10398.         connector_state->best_encoder = &intel_encoder->base;
  10399.  
  10400.         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10401.         if (IS_ERR(crtc_state)) {
  10402.                 ret = PTR_ERR(crtc_state);
  10403.                 goto fail;
  10404.         }
  10405.  
  10406.         crtc_state->base.active = crtc_state->base.enable = true;
  10407.  
  10408.         if (!mode)
  10409.                 mode = &load_detect_mode;
  10410.  
  10411.         /* We need a framebuffer large enough to accommodate all accesses
  10412.          * that the plane may generate whilst we perform load detection.
  10413.          * We can not rely on the fbcon either being present (we get called
  10414.          * during its initialisation to detect all boot displays, or it may
  10415.          * not even exist) or that it is large enough to satisfy the
  10416.          * requested mode.
  10417.          */
  10418.         fb = mode_fits_in_fbdev(dev, mode);
  10419.         if (fb == NULL) {
  10420.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  10421.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  10422.                 old->release_fb = fb;
  10423.         } else
  10424.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  10425.         if (IS_ERR(fb)) {
  10426.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  10427.                 goto fail;
  10428.         }
  10429.  
  10430.         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
  10431.         if (ret)
  10432.                 goto fail;
  10433.  
  10434.         drm_mode_copy(&crtc_state->base.mode, mode);
  10435.  
  10436.         if (drm_atomic_commit(state)) {
  10437.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  10438.                 if (old->release_fb)
  10439.                         old->release_fb->funcs->destroy(old->release_fb);
  10440.                 goto fail;
  10441.         }
  10442.         crtc->primary->crtc = crtc;
  10443.  
  10444.         /* let the connector get through one full cycle before testing */
  10445.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  10446.         return true;
  10447.  
  10448. fail:
  10449.         drm_atomic_state_free(state);
  10450.         state = NULL;
  10451.  
  10452.         if (ret == -EDEADLK) {
  10453.                 drm_modeset_backoff(ctx);
  10454.                 goto retry;
  10455.         }
  10456.  
  10457.         return false;
  10458. }
  10459.  
  10460. void intel_release_load_detect_pipe(struct drm_connector *connector,
  10461.                                     struct intel_load_detect_pipe *old,
  10462.                                     struct drm_modeset_acquire_ctx *ctx)
  10463. {
  10464.         struct drm_device *dev = connector->dev;
  10465.         struct intel_encoder *intel_encoder =
  10466.                 intel_attached_encoder(connector);
  10467.         struct drm_encoder *encoder = &intel_encoder->base;
  10468.         struct drm_crtc *crtc = encoder->crtc;
  10469.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10470.         struct drm_atomic_state *state;
  10471.         struct drm_connector_state *connector_state;
  10472.         struct intel_crtc_state *crtc_state;
  10473.         int ret;
  10474.  
  10475.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  10476.                       connector->base.id, connector->name,
  10477.                       encoder->base.id, encoder->name);
  10478.  
  10479.         if (old->load_detect_temp) {
  10480.                 state = drm_atomic_state_alloc(dev);
  10481.                 if (!state)
  10482.                         goto fail;
  10483.  
  10484.                 state->acquire_ctx = ctx;
  10485.  
  10486.                 connector_state = drm_atomic_get_connector_state(state, connector);
  10487.                 if (IS_ERR(connector_state))
  10488.                         goto fail;
  10489.  
  10490.                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
  10491.                 if (IS_ERR(crtc_state))
  10492.                         goto fail;
  10493.  
  10494.                 connector_state->best_encoder = NULL;
  10495.                 connector_state->crtc = NULL;
  10496.  
  10497.                 crtc_state->base.enable = crtc_state->base.active = false;
  10498.  
  10499.                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
  10500.                                                       0, 0);
  10501.                 if (ret)
  10502.                         goto fail;
  10503.  
  10504.                 ret = drm_atomic_commit(state);
  10505.                 if (ret)
  10506.                         goto fail;
  10507.  
  10508.                 if (old->release_fb) {
  10509.                         drm_framebuffer_unregister_private(old->release_fb);
  10510.                         drm_framebuffer_unreference(old->release_fb);
  10511.                 }
  10512.  
  10513.                 return;
  10514.         }
  10515.  
  10516.         /* Switch crtc and encoder back off if necessary */
  10517.         if (old->dpms_mode != DRM_MODE_DPMS_ON)
  10518.                 connector->funcs->dpms(connector, old->dpms_mode);
  10519.  
  10520.         return;
  10521. fail:
  10522.         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
  10523.         drm_atomic_state_free(state);
  10524. }
  10525.  
  10526. static int i9xx_pll_refclk(struct drm_device *dev,
  10527.                            const struct intel_crtc_state *pipe_config)
  10528. {
  10529.         struct drm_i915_private *dev_priv = dev->dev_private;
  10530.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10531.  
  10532.         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  10533.                 return dev_priv->vbt.lvds_ssc_freq;
  10534.         else if (HAS_PCH_SPLIT(dev))
  10535.                 return 120000;
  10536.         else if (!IS_GEN2(dev))
  10537.                 return 96000;
  10538.         else
  10539.                 return 48000;
  10540. }
  10541.  
  10542. /* Returns the clock of the currently programmed mode of the given pipe. */
  10543. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  10544.                                 struct intel_crtc_state *pipe_config)
  10545. {
  10546.         struct drm_device *dev = crtc->base.dev;
  10547.         struct drm_i915_private *dev_priv = dev->dev_private;
  10548.         int pipe = pipe_config->cpu_transcoder;
  10549.         u32 dpll = pipe_config->dpll_hw_state.dpll;
  10550.         u32 fp;
  10551.         intel_clock_t clock;
  10552.         int port_clock;
  10553.         int refclk = i9xx_pll_refclk(dev, pipe_config);
  10554.  
  10555.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  10556.                 fp = pipe_config->dpll_hw_state.fp0;
  10557.         else
  10558.                 fp = pipe_config->dpll_hw_state.fp1;
  10559.  
  10560.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  10561.         if (IS_PINEVIEW(dev)) {
  10562.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  10563.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10564.         } else {
  10565.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  10566.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  10567.         }
  10568.  
  10569.         if (!IS_GEN2(dev)) {
  10570.                 if (IS_PINEVIEW(dev))
  10571.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  10572.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  10573.                 else
  10574.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  10575.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  10576.  
  10577.                 switch (dpll & DPLL_MODE_MASK) {
  10578.                 case DPLLB_MODE_DAC_SERIAL:
  10579.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  10580.                                 5 : 10;
  10581.                         break;
  10582.                 case DPLLB_MODE_LVDS:
  10583.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  10584.                                 7 : 14;
  10585.                         break;
  10586.                 default:
  10587.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  10588.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  10589.                         return;
  10590.                 }
  10591.  
  10592.                 if (IS_PINEVIEW(dev))
  10593.                         port_clock = pnv_calc_dpll_params(refclk, &clock);
  10594.                 else
  10595.                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10596.         } else {
  10597.                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
  10598.                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
  10599.  
  10600.                 if (is_lvds) {
  10601.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  10602.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  10603.  
  10604.                         if (lvds & LVDS_CLKB_POWER_UP)
  10605.                                 clock.p2 = 7;
  10606.                         else
  10607.                                 clock.p2 = 14;
  10608.                 } else {
  10609.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  10610.                                 clock.p1 = 2;
  10611.                         else {
  10612.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  10613.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  10614.                         }
  10615.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  10616.                                 clock.p2 = 4;
  10617.                         else
  10618.                                 clock.p2 = 2;
  10619.                 }
  10620.  
  10621.                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
  10622.         }
  10623.  
  10624.         /*
  10625.          * This value includes pixel_multiplier. We will use
  10626.          * port_clock to compute adjusted_mode.crtc_clock in the
  10627.          * encoder's get_config() function.
  10628.          */
  10629.         pipe_config->port_clock = port_clock;
  10630. }
  10631.  
  10632. int intel_dotclock_calculate(int link_freq,
  10633.                              const struct intel_link_m_n *m_n)
  10634. {
  10635.         /*
  10636.          * The calculation for the data clock is:
  10637.          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  10638.          * But we want to avoid losing precison if possible, so:
  10639.          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  10640.          *
  10641.          * and the link clock is simpler:
  10642.          * link_clock = (m * link_clock) / n
  10643.          */
  10644.  
  10645.         if (!m_n->link_n)
  10646.                 return 0;
  10647.  
  10648.         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  10649. }
  10650.  
  10651. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  10652.                                    struct intel_crtc_state *pipe_config)
  10653. {
  10654.         struct drm_device *dev = crtc->base.dev;
  10655.  
  10656.         /* read out port_clock from the DPLL */
  10657.         i9xx_crtc_clock_get(crtc, pipe_config);
  10658.  
  10659.         /*
  10660.          * This value does not include pixel_multiplier.
  10661.          * We will check that port_clock and adjusted_mode.crtc_clock
  10662.          * agree once we know their relationship in the encoder's
  10663.          * get_config() function.
  10664.          */
  10665.         pipe_config->base.adjusted_mode.crtc_clock =
  10666.                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  10667.                                          &pipe_config->fdi_m_n);
  10668. }
  10669.  
  10670. /** Returns the currently programmed mode of the given pipe. */
  10671. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  10672.                                              struct drm_crtc *crtc)
  10673. {
  10674.         struct drm_i915_private *dev_priv = dev->dev_private;
  10675.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10676.         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  10677.         struct drm_display_mode *mode;
  10678.         struct intel_crtc_state pipe_config;
  10679.         int htot = I915_READ(HTOTAL(cpu_transcoder));
  10680.         int hsync = I915_READ(HSYNC(cpu_transcoder));
  10681.         int vtot = I915_READ(VTOTAL(cpu_transcoder));
  10682.         int vsync = I915_READ(VSYNC(cpu_transcoder));
  10683.         enum pipe pipe = intel_crtc->pipe;
  10684.  
  10685.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  10686.         if (!mode)
  10687.                 return NULL;
  10688.  
  10689.         /*
  10690.          * Construct a pipe_config sufficient for getting the clock info
  10691.          * back out of crtc_clock_get.
  10692.          *
  10693.          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  10694.          * to use a real value here instead.
  10695.          */
  10696.         pipe_config.cpu_transcoder = (enum transcoder) pipe;
  10697.         pipe_config.pixel_multiplier = 1;
  10698.         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  10699.         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  10700.         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  10701.         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  10702.  
  10703.         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  10704.         mode->hdisplay = (htot & 0xffff) + 1;
  10705.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  10706.         mode->hsync_start = (hsync & 0xffff) + 1;
  10707.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  10708.         mode->vdisplay = (vtot & 0xffff) + 1;
  10709.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  10710.         mode->vsync_start = (vsync & 0xffff) + 1;
  10711.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  10712.  
  10713.         drm_mode_set_name(mode);
  10714.  
  10715.         return mode;
  10716. }
  10717.  
  10718. void intel_mark_busy(struct drm_device *dev)
  10719. {
  10720.         struct drm_i915_private *dev_priv = dev->dev_private;
  10721.  
  10722.         if (dev_priv->mm.busy)
  10723.                 return;
  10724.  
  10725.         intel_runtime_pm_get(dev_priv);
  10726.         i915_update_gfx_val(dev_priv);
  10727.         if (INTEL_INFO(dev)->gen >= 6)
  10728.                 gen6_rps_busy(dev_priv);
  10729.         dev_priv->mm.busy = true;
  10730. }
  10731.  
  10732. void intel_mark_idle(struct drm_device *dev)
  10733. {
  10734.         struct drm_i915_private *dev_priv = dev->dev_private;
  10735.  
  10736.         if (!dev_priv->mm.busy)
  10737.                 return;
  10738.  
  10739.         dev_priv->mm.busy = false;
  10740.  
  10741.         if (INTEL_INFO(dev)->gen >= 6)
  10742.                 gen6_rps_idle(dev->dev_private);
  10743.  
  10744.         intel_runtime_pm_put(dev_priv);
  10745. }
  10746.  
  10747. static void intel_crtc_destroy(struct drm_crtc *crtc)
  10748. {
  10749.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10750.         struct drm_device *dev = crtc->dev;
  10751.         struct intel_unpin_work *work;
  10752.  
  10753.         spin_lock_irq(&dev->event_lock);
  10754.         work = intel_crtc->unpin_work;
  10755.         intel_crtc->unpin_work = NULL;
  10756.         spin_unlock_irq(&dev->event_lock);
  10757.  
  10758.         if (work) {
  10759.                 cancel_work_sync(&work->work);
  10760.                 kfree(work);
  10761.         }
  10762.  
  10763.         drm_crtc_cleanup(crtc);
  10764.  
  10765.         kfree(intel_crtc);
  10766. }
  10767.  
  10768. static void intel_unpin_work_fn(struct work_struct *__work)
  10769. {
  10770.         struct intel_unpin_work *work =
  10771.                 container_of(__work, struct intel_unpin_work, work);
  10772.         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
  10773.         struct drm_device *dev = crtc->base.dev;
  10774.         struct drm_plane *primary = crtc->base.primary;
  10775.  
  10776.         mutex_lock(&dev->struct_mutex);
  10777.         intel_unpin_fb_obj(work->old_fb, primary->state);
  10778.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  10779.  
  10780.         if (work->flip_queued_req)
  10781.                 i915_gem_request_assign(&work->flip_queued_req, NULL);
  10782.         mutex_unlock(&dev->struct_mutex);
  10783.  
  10784.         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
  10785.         drm_framebuffer_unreference(work->old_fb);
  10786.  
  10787.         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
  10788.         atomic_dec(&crtc->unpin_work_count);
  10789.  
  10790.         kfree(work);
  10791. }
  10792.  
  10793. static void do_intel_finish_page_flip(struct drm_device *dev,
  10794.                                       struct drm_crtc *crtc)
  10795. {
  10796.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10797.         struct intel_unpin_work *work;
  10798.         unsigned long flags;
  10799.  
  10800.         /* Ignore early vblank irqs */
  10801.         if (intel_crtc == NULL)
  10802.                 return;
  10803.  
  10804.         /*
  10805.          * This is called both by irq handlers and the reset code (to complete
  10806.          * lost pageflips) so needs the full irqsave spinlocks.
  10807.          */
  10808.         spin_lock_irqsave(&dev->event_lock, flags);
  10809.         work = intel_crtc->unpin_work;
  10810.  
  10811.         /* Ensure we don't miss a work->pending update ... */
  10812.         smp_rmb();
  10813.  
  10814.         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  10815.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  10816.                 return;
  10817.         }
  10818.  
  10819.         page_flip_completed(intel_crtc);
  10820.  
  10821.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10822. }
  10823.  
  10824. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  10825. {
  10826.         struct drm_i915_private *dev_priv = dev->dev_private;
  10827.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  10828.  
  10829.         do_intel_finish_page_flip(dev, crtc);
  10830. }
  10831.  
  10832. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  10833. {
  10834.         struct drm_i915_private *dev_priv = dev->dev_private;
  10835.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  10836.  
  10837.         do_intel_finish_page_flip(dev, crtc);
  10838. }
  10839.  
  10840. /* Is 'a' after or equal to 'b'? */
  10841. static bool g4x_flip_count_after_eq(u32 a, u32 b)
  10842. {
  10843.         return !((a - b) & 0x80000000);
  10844. }
  10845.  
  10846. static bool page_flip_finished(struct intel_crtc *crtc)
  10847. {
  10848.         struct drm_device *dev = crtc->base.dev;
  10849.         struct drm_i915_private *dev_priv = dev->dev_private;
  10850.  
  10851.         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  10852.             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  10853.                 return true;
  10854.  
  10855.         /*
  10856.          * The relevant registers doen't exist on pre-ctg.
  10857.          * As the flip done interrupt doesn't trigger for mmio
  10858.          * flips on gmch platforms, a flip count check isn't
  10859.          * really needed there. But since ctg has the registers,
  10860.          * include it in the check anyway.
  10861.          */
  10862.         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
  10863.                 return true;
  10864.  
  10865.         /*
  10866.          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
  10867.          * used the same base address. In that case the mmio flip might
  10868.          * have completed, but the CS hasn't even executed the flip yet.
  10869.          *
  10870.          * A flip count check isn't enough as the CS might have updated
  10871.          * the base address just after start of vblank, but before we
  10872.          * managed to process the interrupt. This means we'd complete the
  10873.          * CS flip too soon.
  10874.          *
  10875.          * Combining both checks should get us a good enough result. It may
  10876.          * still happen that the CS flip has been executed, but has not
  10877.          * yet actually completed. But in case the base address is the same
  10878.          * anyway, we don't really care.
  10879.          */
  10880.         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
  10881.                 crtc->unpin_work->gtt_offset &&
  10882.                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
  10883.                                     crtc->unpin_work->flip_count);
  10884. }
  10885.  
  10886. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  10887. {
  10888.         struct drm_i915_private *dev_priv = dev->dev_private;
  10889.         struct intel_crtc *intel_crtc =
  10890.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  10891.         unsigned long flags;
  10892.  
  10893.  
  10894.         /*
  10895.          * This is called both by irq handlers and the reset code (to complete
  10896.          * lost pageflips) so needs the full irqsave spinlocks.
  10897.          *
  10898.          * NB: An MMIO update of the plane base pointer will also
  10899.          * generate a page-flip completion irq, i.e. every modeset
  10900.          * is also accompanied by a spurious intel_prepare_page_flip().
  10901.          */
  10902.         spin_lock_irqsave(&dev->event_lock, flags);
  10903.         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
  10904.                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  10905.         spin_unlock_irqrestore(&dev->event_lock, flags);
  10906. }
  10907.  
  10908. static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
  10909. {
  10910.         /* Ensure that the work item is consistent when activating it ... */
  10911.         smp_wmb();
  10912.         atomic_set(&work->pending, INTEL_FLIP_PENDING);
  10913.         /* and that it is marked active as soon as the irq could fire. */
  10914.         smp_wmb();
  10915. }
  10916.  
  10917. static int intel_gen2_queue_flip(struct drm_device *dev,
  10918.                                  struct drm_crtc *crtc,
  10919.                                  struct drm_framebuffer *fb,
  10920.                                  struct drm_i915_gem_object *obj,
  10921.                                  struct drm_i915_gem_request *req,
  10922.                                  uint32_t flags)
  10923. {
  10924.         struct intel_engine_cs *ring = req->ring;
  10925.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10926.         u32 flip_mask;
  10927.         int ret;
  10928.  
  10929.         ret = intel_ring_begin(req, 6);
  10930.         if (ret)
  10931.                 return ret;
  10932.  
  10933.         /* Can't queue multiple flips, so wait for the previous
  10934.          * one to finish before executing the next.
  10935.          */
  10936.         if (intel_crtc->plane)
  10937.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10938.         else
  10939.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10940.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10941.         intel_ring_emit(ring, MI_NOOP);
  10942.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  10943.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  10944.         intel_ring_emit(ring, fb->pitches[0]);
  10945.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  10946.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  10947.  
  10948.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  10949.         return 0;
  10950. }
  10951.  
  10952. static int intel_gen3_queue_flip(struct drm_device *dev,
  10953.                                  struct drm_crtc *crtc,
  10954.                                  struct drm_framebuffer *fb,
  10955.                                  struct drm_i915_gem_object *obj,
  10956.                                  struct drm_i915_gem_request *req,
  10957.                                  uint32_t flags)
  10958. {
  10959.         struct intel_engine_cs *ring = req->ring;
  10960.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10961.         u32 flip_mask;
  10962.         int ret;
  10963.  
  10964.         ret = intel_ring_begin(req, 6);
  10965.         if (ret)
  10966.                 return ret;
  10967.  
  10968.         if (intel_crtc->plane)
  10969.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  10970.         else
  10971.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  10972.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  10973.         intel_ring_emit(ring, MI_NOOP);
  10974.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  10975.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  10976.         intel_ring_emit(ring, fb->pitches[0]);
  10977.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  10978.         intel_ring_emit(ring, MI_NOOP);
  10979.  
  10980.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  10981.         return 0;
  10982. }
  10983.  
  10984. static int intel_gen4_queue_flip(struct drm_device *dev,
  10985.                                  struct drm_crtc *crtc,
  10986.                                  struct drm_framebuffer *fb,
  10987.                                  struct drm_i915_gem_object *obj,
  10988.                                  struct drm_i915_gem_request *req,
  10989.                                  uint32_t flags)
  10990. {
  10991.         struct intel_engine_cs *ring = req->ring;
  10992.         struct drm_i915_private *dev_priv = dev->dev_private;
  10993.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  10994.         uint32_t pf, pipesrc;
  10995.         int ret;
  10996.  
  10997.         ret = intel_ring_begin(req, 4);
  10998.         if (ret)
  10999.                 return ret;
  11000.  
  11001.         /* i965+ uses the linear or tiled offsets from the
  11002.          * Display Registers (which do not change across a page-flip)
  11003.          * so we need only reprogram the base address.
  11004.          */
  11005.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11006.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11007.         intel_ring_emit(ring, fb->pitches[0]);
  11008.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
  11009.                         obj->tiling_mode);
  11010.  
  11011.         /* XXX Enabling the panel-fitter across page-flip is so far
  11012.          * untested on non-native modes, so ignore it for now.
  11013.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  11014.          */
  11015.         pf = 0;
  11016.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11017.         intel_ring_emit(ring, pf | pipesrc);
  11018.  
  11019.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11020.         return 0;
  11021. }
  11022.  
  11023. static int intel_gen6_queue_flip(struct drm_device *dev,
  11024.                                  struct drm_crtc *crtc,
  11025.                                  struct drm_framebuffer *fb,
  11026.                                  struct drm_i915_gem_object *obj,
  11027.                                  struct drm_i915_gem_request *req,
  11028.                                  uint32_t flags)
  11029. {
  11030.         struct intel_engine_cs *ring = req->ring;
  11031.         struct drm_i915_private *dev_priv = dev->dev_private;
  11032.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11033.         uint32_t pf, pipesrc;
  11034.         int ret;
  11035.  
  11036.         ret = intel_ring_begin(req, 4);
  11037.         if (ret)
  11038.                 return ret;
  11039.  
  11040.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  11041.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  11042.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  11043.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11044.  
  11045.         /* Contrary to the suggestions in the documentation,
  11046.          * "Enable Panel Fitter" does not seem to be required when page
  11047.          * flipping with a non-native mode, and worse causes a normal
  11048.          * modeset to fail.
  11049.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  11050.          */
  11051.         pf = 0;
  11052.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  11053.         intel_ring_emit(ring, pf | pipesrc);
  11054.  
  11055.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11056.         return 0;
  11057. }
  11058.  
  11059. static int intel_gen7_queue_flip(struct drm_device *dev,
  11060.                                  struct drm_crtc *crtc,
  11061.                                  struct drm_framebuffer *fb,
  11062.                                  struct drm_i915_gem_object *obj,
  11063.                                  struct drm_i915_gem_request *req,
  11064.                                  uint32_t flags)
  11065. {
  11066.         struct intel_engine_cs *ring = req->ring;
  11067.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11068.         uint32_t plane_bit = 0;
  11069.         int len, ret;
  11070.  
  11071.         switch (intel_crtc->plane) {
  11072.         case PLANE_A:
  11073.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  11074.                 break;
  11075.         case PLANE_B:
  11076.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  11077.                 break;
  11078.         case PLANE_C:
  11079.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  11080.                 break;
  11081.         default:
  11082.                 WARN_ONCE(1, "unknown plane in flip command\n");
  11083.                 return -ENODEV;
  11084.         }
  11085.  
  11086.         len = 4;
  11087.         if (ring->id == RCS) {
  11088.                 len += 6;
  11089.                 /*
  11090.                  * On Gen 8, SRM is now taking an extra dword to accommodate
  11091.                  * 48bits addresses, and we need a NOOP for the batch size to
  11092.                  * stay even.
  11093.                  */
  11094.                 if (IS_GEN8(dev))
  11095.                         len += 2;
  11096.         }
  11097.  
  11098.         /*
  11099.          * BSpec MI_DISPLAY_FLIP for IVB:
  11100.          * "The full packet must be contained within the same cache line."
  11101.          *
  11102.          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
  11103.          * cacheline, if we ever start emitting more commands before
  11104.          * the MI_DISPLAY_FLIP we may need to first emit everything else,
  11105.          * then do the cacheline alignment, and finally emit the
  11106.          * MI_DISPLAY_FLIP.
  11107.          */
  11108.         ret = intel_ring_cacheline_align(req);
  11109.         if (ret)
  11110.                 return ret;
  11111.  
  11112.         ret = intel_ring_begin(req, len);
  11113.         if (ret)
  11114.                 return ret;
  11115.  
  11116.         /* Unmask the flip-done completion message. Note that the bspec says that
  11117.          * we should do this for both the BCS and RCS, and that we must not unmask
  11118.          * more than one flip event at any time (or ensure that one flip message
  11119.          * can be sent by waiting for flip-done prior to queueing new flips).
  11120.          * Experimentation says that BCS works despite DERRMR masking all
  11121.          * flip-done completion events and that unmasking all planes at once
  11122.          * for the RCS also doesn't appear to drop events. Setting the DERRMR
  11123.          * to zero does lead to lockups within MI_DISPLAY_FLIP.
  11124.          */
  11125.         if (ring->id == RCS) {
  11126.                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  11127.                 intel_ring_emit(ring, DERRMR);
  11128.                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  11129.                                         DERRMR_PIPEB_PRI_FLIP_DONE |
  11130.                                         DERRMR_PIPEC_PRI_FLIP_DONE));
  11131.                 if (IS_GEN8(dev))
  11132.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
  11133.                                               MI_SRM_LRM_GLOBAL_GTT);
  11134.                 else
  11135.                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
  11136.                                               MI_SRM_LRM_GLOBAL_GTT);
  11137.                 intel_ring_emit(ring, DERRMR);
  11138.                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  11139.                 if (IS_GEN8(dev)) {
  11140.                         intel_ring_emit(ring, 0);
  11141.                         intel_ring_emit(ring, MI_NOOP);
  11142.                 }
  11143.         }
  11144.  
  11145.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  11146.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  11147.         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
  11148.         intel_ring_emit(ring, (MI_NOOP));
  11149.  
  11150.         intel_mark_page_flip_active(intel_crtc->unpin_work);
  11151.         return 0;
  11152. }
  11153.  
  11154. static bool use_mmio_flip(struct intel_engine_cs *ring,
  11155.                           struct drm_i915_gem_object *obj)
  11156. {
  11157.         /*
  11158.          * This is not being used for older platforms, because
  11159.          * non-availability of flip done interrupt forces us to use
  11160.          * CS flips. Older platforms derive flip done using some clever
  11161.          * tricks involving the flip_pending status bits and vblank irqs.
  11162.          * So using MMIO flips there would disrupt this mechanism.
  11163.          */
  11164.  
  11165.         if (ring == NULL)
  11166.                 return true;
  11167.  
  11168.         if (INTEL_INFO(ring->dev)->gen < 5)
  11169.                 return false;
  11170.  
  11171.         if (i915.use_mmio_flip < 0)
  11172.                 return false;
  11173.         else if (i915.use_mmio_flip > 0)
  11174.                 return true;
  11175.         else if (i915.enable_execlists)
  11176.                 return true;
  11177.         else
  11178.                 return ring != i915_gem_request_get_ring(obj->last_write_req);
  11179. }
  11180.  
  11181. static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
  11182.                              struct intel_unpin_work *work)
  11183. {
  11184.         struct drm_device *dev = intel_crtc->base.dev;
  11185.         struct drm_i915_private *dev_priv = dev->dev_private;
  11186.         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
  11187.         const enum pipe pipe = intel_crtc->pipe;
  11188.         u32 ctl, stride;
  11189.  
  11190.         ctl = I915_READ(PLANE_CTL(pipe, 0));
  11191.         ctl &= ~PLANE_CTL_TILED_MASK;
  11192.         switch (fb->modifier[0]) {
  11193.         case DRM_FORMAT_MOD_NONE:
  11194.                 break;
  11195.         case I915_FORMAT_MOD_X_TILED:
  11196.                 ctl |= PLANE_CTL_TILED_X;
  11197.                 break;
  11198.         case I915_FORMAT_MOD_Y_TILED:
  11199.                 ctl |= PLANE_CTL_TILED_Y;
  11200.                 break;
  11201.         case I915_FORMAT_MOD_Yf_TILED:
  11202.                 ctl |= PLANE_CTL_TILED_YF;
  11203.                 break;
  11204.         default:
  11205.                 MISSING_CASE(fb->modifier[0]);
  11206.         }
  11207.  
  11208.         /*
  11209.          * The stride is either expressed as a multiple of 64 bytes chunks for
  11210.          * linear buffers or in number of tiles for tiled buffers.
  11211.          */
  11212.         stride = fb->pitches[0] /
  11213.                  intel_fb_stride_alignment(dev, fb->modifier[0],
  11214.                                            fb->pixel_format);
  11215.  
  11216.         /*
  11217.          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
  11218.          * PLANE_SURF updates, the update is then guaranteed to be atomic.
  11219.          */
  11220.         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
  11221.         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
  11222.  
  11223.         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
  11224.         POSTING_READ(PLANE_SURF(pipe, 0));
  11225. }
  11226.  
  11227. static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
  11228.                              struct intel_unpin_work *work)
  11229. {
  11230.         struct drm_device *dev = intel_crtc->base.dev;
  11231.         struct drm_i915_private *dev_priv = dev->dev_private;
  11232.         struct intel_framebuffer *intel_fb =
  11233.                 to_intel_framebuffer(intel_crtc->base.primary->fb);
  11234.         struct drm_i915_gem_object *obj = intel_fb->obj;
  11235.         u32 dspcntr;
  11236.         u32 reg;
  11237.  
  11238.         reg = DSPCNTR(intel_crtc->plane);
  11239.         dspcntr = I915_READ(reg);
  11240.  
  11241.         if (obj->tiling_mode != I915_TILING_NONE)
  11242.                 dspcntr |= DISPPLANE_TILED;
  11243.         else
  11244.                 dspcntr &= ~DISPPLANE_TILED;
  11245.  
  11246.         I915_WRITE(reg, dspcntr);
  11247.  
  11248.         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
  11249.         POSTING_READ(DSPSURF(intel_crtc->plane));
  11250. }
  11251.  
  11252. /*
  11253.  * XXX: This is the temporary way to update the plane registers until we get
  11254.  * around to using the usual plane update functions for MMIO flips
  11255.  */
  11256. static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
  11257. {
  11258.         struct intel_crtc *crtc = mmio_flip->crtc;
  11259.         struct intel_unpin_work *work;
  11260.  
  11261.         spin_lock_irq(&crtc->base.dev->event_lock);
  11262.         work = crtc->unpin_work;
  11263.         spin_unlock_irq(&crtc->base.dev->event_lock);
  11264.         if (work == NULL)
  11265.                 return;
  11266.  
  11267.         intel_mark_page_flip_active(work);
  11268.  
  11269.         intel_pipe_update_start(crtc);
  11270.  
  11271.         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
  11272.                 skl_do_mmio_flip(crtc, work);
  11273.         else
  11274.                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
  11275.                 ilk_do_mmio_flip(crtc, work);
  11276.  
  11277.         intel_pipe_update_end(crtc);
  11278. }
  11279.  
  11280. static void intel_mmio_flip_work_func(struct work_struct *work)
  11281. {
  11282.         struct intel_mmio_flip *mmio_flip =
  11283.                 container_of(work, struct intel_mmio_flip, work);
  11284.  
  11285.         if (mmio_flip->req) {
  11286.                 WARN_ON(__i915_wait_request(mmio_flip->req,
  11287.                                             mmio_flip->crtc->reset_counter,
  11288.                                             false, NULL,
  11289.                                             &mmio_flip->i915->rps.mmioflips));
  11290.                 i915_gem_request_unreference__unlocked(mmio_flip->req);
  11291.         }
  11292.  
  11293.         intel_do_mmio_flip(mmio_flip);
  11294.         kfree(mmio_flip);
  11295. }
  11296.  
  11297. static int intel_queue_mmio_flip(struct drm_device *dev,
  11298.                                  struct drm_crtc *crtc,
  11299.                                  struct drm_framebuffer *fb,
  11300.                                  struct drm_i915_gem_object *obj,
  11301.                                  struct intel_engine_cs *ring,
  11302.                                  uint32_t flags)
  11303. {
  11304.         struct intel_mmio_flip *mmio_flip;
  11305.  
  11306.         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
  11307.         if (mmio_flip == NULL)
  11308.                 return -ENOMEM;
  11309.  
  11310.         mmio_flip->i915 = to_i915(dev);
  11311.         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
  11312.         mmio_flip->crtc = to_intel_crtc(crtc);
  11313.  
  11314.         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
  11315.         schedule_work(&mmio_flip->work);
  11316.  
  11317.         return 0;
  11318. }
  11319.  
  11320. static int intel_default_queue_flip(struct drm_device *dev,
  11321.                                     struct drm_crtc *crtc,
  11322.                                     struct drm_framebuffer *fb,
  11323.                                     struct drm_i915_gem_object *obj,
  11324.                                     struct drm_i915_gem_request *req,
  11325.                                     uint32_t flags)
  11326. {
  11327.         return -ENODEV;
  11328. }
  11329.  
  11330. static bool __intel_pageflip_stall_check(struct drm_device *dev,
  11331.                                          struct drm_crtc *crtc)
  11332. {
  11333.         struct drm_i915_private *dev_priv = dev->dev_private;
  11334.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11335.         struct intel_unpin_work *work = intel_crtc->unpin_work;
  11336.         u32 addr;
  11337.  
  11338.         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
  11339.                 return true;
  11340.  
  11341.         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
  11342.                 return false;
  11343.  
  11344.         if (!work->enable_stall_check)
  11345.                 return false;
  11346.  
  11347.         if (work->flip_ready_vblank == 0) {
  11348.                 if (work->flip_queued_req &&
  11349.                     !i915_gem_request_completed(work->flip_queued_req, true))
  11350.                         return false;
  11351.  
  11352.                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
  11353.         }
  11354.  
  11355.         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
  11356.                 return false;
  11357.  
  11358.         /* Potential stall - if we see that the flip has happened,
  11359.          * assume a missed interrupt. */
  11360.         if (INTEL_INFO(dev)->gen >= 4)
  11361.                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
  11362.         else
  11363.                 addr = I915_READ(DSPADDR(intel_crtc->plane));
  11364.  
  11365.         /* There is a potential issue here with a false positive after a flip
  11366.          * to the same address. We could address this by checking for a
  11367.          * non-incrementing frame counter.
  11368.          */
  11369.         return addr == work->gtt_offset;
  11370. }
  11371.  
  11372. void intel_check_page_flip(struct drm_device *dev, int pipe)
  11373. {
  11374.         struct drm_i915_private *dev_priv = dev->dev_private;
  11375.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  11376.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11377.         struct intel_unpin_work *work;
  11378.  
  11379.         if (crtc == NULL)
  11380.                 return;
  11381.  
  11382.         spin_lock(&dev->event_lock);
  11383.         work = intel_crtc->unpin_work;
  11384.         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
  11385.                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
  11386.                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
  11387.                 page_flip_completed(intel_crtc);
  11388.                 work = NULL;
  11389.         }
  11390.         if (work != NULL &&
  11391.             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
  11392.                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
  11393.         spin_unlock(&dev->event_lock);
  11394. }
  11395.  
  11396. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  11397.                                 struct drm_framebuffer *fb,
  11398.                                 struct drm_pending_vblank_event *event,
  11399.                                 uint32_t page_flip_flags)
  11400. {
  11401.         struct drm_device *dev = crtc->dev;
  11402.         struct drm_i915_private *dev_priv = dev->dev_private;
  11403.         struct drm_framebuffer *old_fb = crtc->primary->fb;
  11404.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  11405.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11406.         struct drm_plane *primary = crtc->primary;
  11407.         enum pipe pipe = intel_crtc->pipe;
  11408.         struct intel_unpin_work *work;
  11409.         struct intel_engine_cs *ring;
  11410.         bool mmio_flip;
  11411.         struct drm_i915_gem_request *request = NULL;
  11412.         int ret;
  11413.  
  11414.         /*
  11415.          * drm_mode_page_flip_ioctl() should already catch this, but double
  11416.          * check to be safe.  In the future we may enable pageflipping from
  11417.          * a disabled primary plane.
  11418.          */
  11419.         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
  11420.                 return -EBUSY;
  11421.  
  11422.         /* Can't change pixel format via MI display flips. */
  11423.         if (fb->pixel_format != crtc->primary->fb->pixel_format)
  11424.                 return -EINVAL;
  11425.  
  11426.         /*
  11427.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  11428.          * Note that pitch changes could also affect these register.
  11429.          */
  11430.         if (INTEL_INFO(dev)->gen > 3 &&
  11431.             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
  11432.              fb->pitches[0] != crtc->primary->fb->pitches[0]))
  11433.                 return -EINVAL;
  11434.  
  11435.         if (i915_terminally_wedged(&dev_priv->gpu_error))
  11436.                 goto out_hang;
  11437.  
  11438.         work = kzalloc(sizeof(*work), GFP_KERNEL);
  11439.         if (work == NULL)
  11440.                 return -ENOMEM;
  11441.  
  11442.         work->event = event;
  11443.         work->crtc = crtc;
  11444.         work->old_fb = old_fb;
  11445.         INIT_WORK(&work->work, intel_unpin_work_fn);
  11446.  
  11447.         ret = drm_crtc_vblank_get(crtc);
  11448.         if (ret)
  11449.                 goto free_work;
  11450.  
  11451.         /* We borrow the event spin lock for protecting unpin_work */
  11452.         spin_lock_irq(&dev->event_lock);
  11453.         if (intel_crtc->unpin_work) {
  11454.                 /* Before declaring the flip queue wedged, check if
  11455.                  * the hardware completed the operation behind our backs.
  11456.                  */
  11457.                 if (__intel_pageflip_stall_check(dev, crtc)) {
  11458.                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
  11459.                         page_flip_completed(intel_crtc);
  11460.                 } else {
  11461.                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  11462.                         spin_unlock_irq(&dev->event_lock);
  11463.  
  11464.                         drm_crtc_vblank_put(crtc);
  11465.                         kfree(work);
  11466.                         return -EBUSY;
  11467.                 }
  11468.         }
  11469.         intel_crtc->unpin_work = work;
  11470.         spin_unlock_irq(&dev->event_lock);
  11471.  
  11472. //   if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  11473. //       flush_workqueue(dev_priv->wq);
  11474.  
  11475.         /* Reference the objects for the scheduled work. */
  11476.         drm_framebuffer_reference(work->old_fb);
  11477.         drm_gem_object_reference(&obj->base);
  11478.  
  11479.         crtc->primary->fb = fb;
  11480.         update_state_fb(crtc->primary);
  11481.  
  11482.         work->pending_flip_obj = obj;
  11483.  
  11484.         ret = i915_mutex_lock_interruptible(dev);
  11485.         if (ret)
  11486.                 goto cleanup;
  11487.  
  11488.         atomic_inc(&intel_crtc->unpin_work_count);
  11489.         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  11490.  
  11491.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  11492.                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
  11493.  
  11494.         if (IS_VALLEYVIEW(dev)) {
  11495.                 ring = &dev_priv->ring[BCS];
  11496.                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
  11497.                         /* vlv: DISPLAY_FLIP fails to change tiling */
  11498.                         ring = NULL;
  11499.         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  11500.                 ring = &dev_priv->ring[BCS];
  11501.         } else if (INTEL_INFO(dev)->gen >= 7) {
  11502.                 ring = i915_gem_request_get_ring(obj->last_write_req);
  11503.                 if (ring == NULL || ring->id != RCS)
  11504.                         ring = &dev_priv->ring[BCS];
  11505.         } else {
  11506.                 ring = &dev_priv->ring[RCS];
  11507.         }
  11508.  
  11509.         mmio_flip = use_mmio_flip(ring, obj);
  11510.  
  11511.         /* When using CS flips, we want to emit semaphores between rings.
  11512.          * However, when using mmio flips we will create a task to do the
  11513.          * synchronisation, so all we want here is to pin the framebuffer
  11514.          * into the display plane and skip any waits.
  11515.          */
  11516.         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
  11517.                                          crtc->primary->state,
  11518.                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
  11519.         if (ret)
  11520.                 goto cleanup_pending;
  11521.  
  11522.         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
  11523.                                                   obj, 0);
  11524.         work->gtt_offset += intel_crtc->dspaddr_offset;
  11525.  
  11526.         if (mmio_flip) {
  11527.                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
  11528.                                             page_flip_flags);
  11529.                 if (ret)
  11530.                         goto cleanup_unpin;
  11531.  
  11532.                 i915_gem_request_assign(&work->flip_queued_req,
  11533.                                         obj->last_write_req);
  11534.         } else {
  11535.                 if (!request) {
  11536.                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
  11537.                         if (ret)
  11538.                                 goto cleanup_unpin;
  11539.                 }
  11540.  
  11541.                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
  11542.                                                    page_flip_flags);
  11543.                 if (ret)
  11544.                         goto cleanup_unpin;
  11545.  
  11546.                 i915_gem_request_assign(&work->flip_queued_req, request);
  11547.         }
  11548.  
  11549.         if (request)
  11550.                 i915_add_request_no_flush(request);
  11551.  
  11552.         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
  11553.         work->enable_stall_check = true;
  11554.  
  11555.         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
  11556.                           to_intel_plane(primary)->frontbuffer_bit);
  11557.         mutex_unlock(&dev->struct_mutex);
  11558.  
  11559.         intel_fbc_disable_crtc(intel_crtc);
  11560.         intel_frontbuffer_flip_prepare(dev,
  11561.                                        to_intel_plane(primary)->frontbuffer_bit);
  11562.  
  11563.         trace_i915_flip_request(intel_crtc->plane, obj);
  11564.  
  11565.         return 0;
  11566.  
  11567. cleanup_unpin:
  11568.         intel_unpin_fb_obj(fb, crtc->primary->state);
  11569. cleanup_pending:
  11570.         if (request)
  11571.                 i915_gem_request_cancel(request);
  11572.         atomic_dec(&intel_crtc->unpin_work_count);
  11573.         mutex_unlock(&dev->struct_mutex);
  11574. cleanup:
  11575.         crtc->primary->fb = old_fb;
  11576.         update_state_fb(crtc->primary);
  11577.  
  11578.         drm_gem_object_unreference_unlocked(&obj->base);
  11579.         drm_framebuffer_unreference(work->old_fb);
  11580.  
  11581.         spin_lock_irq(&dev->event_lock);
  11582.         intel_crtc->unpin_work = NULL;
  11583.         spin_unlock_irq(&dev->event_lock);
  11584.  
  11585.         drm_crtc_vblank_put(crtc);
  11586. free_work:
  11587.         kfree(work);
  11588.  
  11589.         if (ret == -EIO) {
  11590.                 struct drm_atomic_state *state;
  11591.                 struct drm_plane_state *plane_state;
  11592.  
  11593. out_hang:
  11594.                 state = drm_atomic_state_alloc(dev);
  11595.                 if (!state)
  11596.                         return -ENOMEM;
  11597.                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  11598.  
  11599. retry:
  11600.                 plane_state = drm_atomic_get_plane_state(state, primary);
  11601.                 ret = PTR_ERR_OR_ZERO(plane_state);
  11602.                 if (!ret) {
  11603.                         drm_atomic_set_fb_for_plane(plane_state, fb);
  11604.  
  11605.                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
  11606.                         if (!ret)
  11607.                                 ret = drm_atomic_commit(state);
  11608.                 }
  11609.  
  11610.                 if (ret == -EDEADLK) {
  11611.                         drm_modeset_backoff(state->acquire_ctx);
  11612.                         drm_atomic_state_clear(state);
  11613.                         goto retry;
  11614.                 }
  11615.  
  11616.                 if (ret)
  11617.                         drm_atomic_state_free(state);
  11618.  
  11619.                 if (ret == 0 && event) {
  11620.                         spin_lock_irq(&dev->event_lock);
  11621.                         drm_send_vblank_event(dev, pipe, event);
  11622.                         spin_unlock_irq(&dev->event_lock);
  11623.                 }
  11624.         }
  11625.         return ret;
  11626. }
  11627.  
  11628.  
  11629. /**
  11630.  * intel_wm_need_update - Check whether watermarks need updating
  11631.  * @plane: drm plane
  11632.  * @state: new plane state
  11633.  *
  11634.  * Check current plane state versus the new one to determine whether
  11635.  * watermarks need to be recalculated.
  11636.  *
  11637.  * Returns true or false.
  11638.  */
  11639. static bool intel_wm_need_update(struct drm_plane *plane,
  11640.                                  struct drm_plane_state *state)
  11641. {
  11642.         /* Update watermarks on tiling changes. */
  11643.         if (!plane->state->fb || !state->fb ||
  11644.             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
  11645.             plane->state->rotation != state->rotation)
  11646.                 return true;
  11647.  
  11648.         if (plane->state->crtc_w != state->crtc_w)
  11649.                 return true;
  11650.  
  11651.         return false;
  11652. }
  11653.  
  11654. int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
  11655.                                     struct drm_plane_state *plane_state)
  11656. {
  11657.         struct drm_crtc *crtc = crtc_state->crtc;
  11658.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11659.         struct drm_plane *plane = plane_state->plane;
  11660.         struct drm_device *dev = crtc->dev;
  11661.         struct drm_i915_private *dev_priv = dev->dev_private;
  11662.         struct intel_plane_state *old_plane_state =
  11663.                 to_intel_plane_state(plane->state);
  11664.         int idx = intel_crtc->base.base.id, ret;
  11665.         int i = drm_plane_index(plane);
  11666.         bool mode_changed = needs_modeset(crtc_state);
  11667.         bool was_crtc_enabled = crtc->state->active;
  11668.         bool is_crtc_enabled = crtc_state->active;
  11669.  
  11670.         bool turn_off, turn_on, visible, was_visible;
  11671.         struct drm_framebuffer *fb = plane_state->fb;
  11672.  
  11673.         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
  11674.             plane->type != DRM_PLANE_TYPE_CURSOR) {
  11675.                 ret = skl_update_scaler_plane(
  11676.                         to_intel_crtc_state(crtc_state),
  11677.                         to_intel_plane_state(plane_state));
  11678.                 if (ret)
  11679.                         return ret;
  11680.         }
  11681.  
  11682.         /*
  11683.          * Disabling a plane is always okay; we just need to update
  11684.          * fb tracking in a special way since cleanup_fb() won't
  11685.          * get called by the plane helpers.
  11686.          */
  11687.         if (old_plane_state->base.fb && !fb)
  11688.                 intel_crtc->atomic.disabled_planes |= 1 << i;
  11689.  
  11690.         was_visible = old_plane_state->visible;
  11691.         visible = to_intel_plane_state(plane_state)->visible;
  11692.  
  11693.         if (!was_crtc_enabled && WARN_ON(was_visible))
  11694.                 was_visible = false;
  11695.  
  11696.         if (!is_crtc_enabled && WARN_ON(visible))
  11697.                 visible = false;
  11698.  
  11699.         if (!was_visible && !visible)
  11700.                 return 0;
  11701.  
  11702.         turn_off = was_visible && (!visible || mode_changed);
  11703.         turn_on = visible && (!was_visible || mode_changed);
  11704.  
  11705.         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
  11706.                          plane->base.id, fb ? fb->base.id : -1);
  11707.  
  11708.         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
  11709.                          plane->base.id, was_visible, visible,
  11710.                          turn_off, turn_on, mode_changed);
  11711.  
  11712.         if (turn_on) {
  11713.                 intel_crtc->atomic.update_wm_pre = true;
  11714.                 /* must disable cxsr around plane enable/disable */
  11715.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11716.                         intel_crtc->atomic.disable_cxsr = true;
  11717.                         /* to potentially re-enable cxsr */
  11718.                         intel_crtc->atomic.wait_vblank = true;
  11719.                         intel_crtc->atomic.update_wm_post = true;
  11720.                 }
  11721.         } else if (turn_off) {
  11722.                 intel_crtc->atomic.update_wm_post = true;
  11723.                 /* must disable cxsr around plane enable/disable */
  11724.                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
  11725.                         if (is_crtc_enabled)
  11726.                                 intel_crtc->atomic.wait_vblank = true;
  11727.                         intel_crtc->atomic.disable_cxsr = true;
  11728.                 }
  11729.         } else if (intel_wm_need_update(plane, plane_state)) {
  11730.                 intel_crtc->atomic.update_wm_pre = true;
  11731.         }
  11732.  
  11733.         if (visible || was_visible)
  11734.                 intel_crtc->atomic.fb_bits |=
  11735.                         to_intel_plane(plane)->frontbuffer_bit;
  11736.  
  11737.         switch (plane->type) {
  11738.         case DRM_PLANE_TYPE_PRIMARY:
  11739.                 intel_crtc->atomic.wait_for_flips = true;
  11740.                 intel_crtc->atomic.pre_disable_primary = turn_off;
  11741.                 intel_crtc->atomic.post_enable_primary = turn_on;
  11742.  
  11743.                 if (turn_off) {
  11744.                         /*
  11745.                          * FIXME: Actually if we will still have any other
  11746.                          * plane enabled on the pipe we could let IPS enabled
  11747.                          * still, but for now lets consider that when we make
  11748.                          * primary invisible by setting DSPCNTR to 0 on
  11749.                          * update_primary_plane function IPS needs to be
  11750.                          * disable.
  11751.                          */
  11752.                         intel_crtc->atomic.disable_ips = true;
  11753.  
  11754.                         intel_crtc->atomic.disable_fbc = true;
  11755.                 }
  11756.  
  11757.                 /*
  11758.                  * FBC does not work on some platforms for rotated
  11759.                  * planes, so disable it when rotation is not 0 and
  11760.                  * update it when rotation is set back to 0.
  11761.                  *
  11762.                  * FIXME: This is redundant with the fbc update done in
  11763.                  * the primary plane enable function except that that
  11764.                  * one is done too late. We eventually need to unify
  11765.                  * this.
  11766.                  */
  11767.  
  11768.                 if (visible &&
  11769.                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  11770.                     dev_priv->fbc.crtc == intel_crtc &&
  11771.                     plane_state->rotation != BIT(DRM_ROTATE_0))
  11772.                         intel_crtc->atomic.disable_fbc = true;
  11773.  
  11774.                 /*
  11775.                  * BDW signals flip done immediately if the plane
  11776.                  * is disabled, even if the plane enable is already
  11777.                  * armed to occur at the next vblank :(
  11778.                  */
  11779.                 if (turn_on && IS_BROADWELL(dev))
  11780.                         intel_crtc->atomic.wait_vblank = true;
  11781.  
  11782.                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
  11783.                 break;
  11784.         case DRM_PLANE_TYPE_CURSOR:
  11785.                 break;
  11786.         case DRM_PLANE_TYPE_OVERLAY:
  11787.                 if (turn_off && !mode_changed) {
  11788.                         intel_crtc->atomic.wait_vblank = true;
  11789.                         intel_crtc->atomic.update_sprite_watermarks |=
  11790.                                 1 << i;
  11791.                 }
  11792.         }
  11793.         return 0;
  11794. }
  11795.  
  11796. static bool encoders_cloneable(const struct intel_encoder *a,
  11797.                                const struct intel_encoder *b)
  11798. {
  11799.         /* masks could be asymmetric, so check both ways */
  11800.         return a == b || (a->cloneable & (1 << b->type) &&
  11801.                           b->cloneable & (1 << a->type));
  11802. }
  11803.  
  11804. static bool check_single_encoder_cloning(struct drm_atomic_state *state,
  11805.                                          struct intel_crtc *crtc,
  11806.                                          struct intel_encoder *encoder)
  11807. {
  11808.         struct intel_encoder *source_encoder;
  11809.         struct drm_connector *connector;
  11810.         struct drm_connector_state *connector_state;
  11811.         int i;
  11812.  
  11813.         for_each_connector_in_state(state, connector, connector_state, i) {
  11814.                 if (connector_state->crtc != &crtc->base)
  11815.                         continue;
  11816.  
  11817.                 source_encoder =
  11818.                         to_intel_encoder(connector_state->best_encoder);
  11819.                 if (!encoders_cloneable(encoder, source_encoder))
  11820.                         return false;
  11821.         }
  11822.  
  11823.         return true;
  11824. }
  11825.  
  11826. static bool check_encoder_cloning(struct drm_atomic_state *state,
  11827.                                   struct intel_crtc *crtc)
  11828. {
  11829.         struct intel_encoder *encoder;
  11830.         struct drm_connector *connector;
  11831.         struct drm_connector_state *connector_state;
  11832.         int i;
  11833.  
  11834.         for_each_connector_in_state(state, connector, connector_state, i) {
  11835.                 if (connector_state->crtc != &crtc->base)
  11836.                         continue;
  11837.  
  11838.                 encoder = to_intel_encoder(connector_state->best_encoder);
  11839.                 if (!check_single_encoder_cloning(state, crtc, encoder))
  11840.                         return false;
  11841.         }
  11842.  
  11843.         return true;
  11844. }
  11845.  
  11846. static int intel_crtc_atomic_check(struct drm_crtc *crtc,
  11847.                                    struct drm_crtc_state *crtc_state)
  11848. {
  11849.         struct drm_device *dev = crtc->dev;
  11850.         struct drm_i915_private *dev_priv = dev->dev_private;
  11851.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  11852.         struct intel_crtc_state *pipe_config =
  11853.                 to_intel_crtc_state(crtc_state);
  11854.         struct drm_atomic_state *state = crtc_state->state;
  11855.         int ret;
  11856.         bool mode_changed = needs_modeset(crtc_state);
  11857.  
  11858.         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
  11859.                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  11860.                 return -EINVAL;
  11861.         }
  11862.  
  11863.         if (mode_changed && !crtc_state->active)
  11864.                 intel_crtc->atomic.update_wm_post = true;
  11865.  
  11866.         if (mode_changed && crtc_state->enable &&
  11867.             dev_priv->display.crtc_compute_clock &&
  11868.             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
  11869.                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
  11870.                                                            pipe_config);
  11871.                 if (ret)
  11872.                         return ret;
  11873.         }
  11874.  
  11875.         ret = 0;
  11876.         if (INTEL_INFO(dev)->gen >= 9) {
  11877.                 if (mode_changed)
  11878.                         ret = skl_update_scaler_crtc(pipe_config);
  11879.  
  11880.                 if (!ret)
  11881.                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
  11882.                                                          pipe_config);
  11883.         }
  11884.  
  11885.         return ret;
  11886. }
  11887.  
  11888. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  11889.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  11890.         .load_lut = intel_crtc_load_lut,
  11891.         .atomic_begin = intel_begin_crtc_commit,
  11892.         .atomic_flush = intel_finish_crtc_commit,
  11893.         .atomic_check = intel_crtc_atomic_check,
  11894. };
  11895.  
  11896. static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
  11897. {
  11898.         struct intel_connector *connector;
  11899.  
  11900.         for_each_intel_connector(dev, connector) {
  11901.                 if (connector->base.encoder) {
  11902.                         connector->base.state->best_encoder =
  11903.                                 connector->base.encoder;
  11904.                         connector->base.state->crtc =
  11905.                                 connector->base.encoder->crtc;
  11906.                 } else {
  11907.                         connector->base.state->best_encoder = NULL;
  11908.                         connector->base.state->crtc = NULL;
  11909.                 }
  11910.         }
  11911. }
  11912.  
  11913. static void
  11914. connected_sink_compute_bpp(struct intel_connector *connector,
  11915.                            struct intel_crtc_state *pipe_config)
  11916. {
  11917.         int bpp = pipe_config->pipe_bpp;
  11918.  
  11919.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  11920.                 connector->base.base.id,
  11921.                 connector->base.name);
  11922.  
  11923.         /* Don't use an invalid EDID bpc value */
  11924.         if (connector->base.display_info.bpc &&
  11925.             connector->base.display_info.bpc * 3 < bpp) {
  11926.                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  11927.                               bpp, connector->base.display_info.bpc*3);
  11928.                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  11929.         }
  11930.  
  11931.         /* Clamp bpp to default limit on screens without EDID 1.4 */
  11932.         if (connector->base.display_info.bpc == 0) {
  11933.                 int type = connector->base.connector_type;
  11934.                 int clamp_bpp = 24;
  11935.  
  11936.                 /* Fall back to 18 bpp when DP sink capability is unknown. */
  11937.                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
  11938.                     type == DRM_MODE_CONNECTOR_eDP)
  11939.                         clamp_bpp = 18;
  11940.  
  11941.                 if (bpp > clamp_bpp) {
  11942.                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
  11943.                                       bpp, clamp_bpp);
  11944.                         pipe_config->pipe_bpp = clamp_bpp;
  11945.                 }
  11946.         }
  11947. }
  11948.  
  11949. static int
  11950. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  11951.                           struct intel_crtc_state *pipe_config)
  11952. {
  11953.         struct drm_device *dev = crtc->base.dev;
  11954.         struct drm_atomic_state *state;
  11955.         struct drm_connector *connector;
  11956.         struct drm_connector_state *connector_state;
  11957.         int bpp, i;
  11958.  
  11959.         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
  11960.                 bpp = 10*3;
  11961.         else if (INTEL_INFO(dev)->gen >= 5)
  11962.                 bpp = 12*3;
  11963.         else
  11964.                 bpp = 8*3;
  11965.  
  11966.  
  11967.         pipe_config->pipe_bpp = bpp;
  11968.  
  11969.         state = pipe_config->base.state;
  11970.  
  11971.         /* Clamp display bpp to EDID value */
  11972.         for_each_connector_in_state(state, connector, connector_state, i) {
  11973.                 if (connector_state->crtc != &crtc->base)
  11974.                         continue;
  11975.  
  11976.                 connected_sink_compute_bpp(to_intel_connector(connector),
  11977.                                            pipe_config);
  11978.         }
  11979.  
  11980.         return bpp;
  11981. }
  11982.  
  11983. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  11984. {
  11985.         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  11986.                         "type: 0x%x flags: 0x%x\n",
  11987.                 mode->crtc_clock,
  11988.                 mode->crtc_hdisplay, mode->crtc_hsync_start,
  11989.                 mode->crtc_hsync_end, mode->crtc_htotal,
  11990.                 mode->crtc_vdisplay, mode->crtc_vsync_start,
  11991.                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  11992. }
  11993.  
  11994. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  11995.                                    struct intel_crtc_state *pipe_config,
  11996.                                    const char *context)
  11997. {
  11998.         struct drm_device *dev = crtc->base.dev;
  11999.         struct drm_plane *plane;
  12000.         struct intel_plane *intel_plane;
  12001.         struct intel_plane_state *state;
  12002.         struct drm_framebuffer *fb;
  12003.  
  12004.         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
  12005.                       context, pipe_config, pipe_name(crtc->pipe));
  12006.  
  12007.         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  12008.         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  12009.                       pipe_config->pipe_bpp, pipe_config->dither);
  12010.         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12011.                       pipe_config->has_pch_encoder,
  12012.                       pipe_config->fdi_lanes,
  12013.                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  12014.                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  12015.                       pipe_config->fdi_m_n.tu);
  12016.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  12017.                       pipe_config->has_dp_encoder,
  12018.                       pipe_config->lane_count,
  12019.                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  12020.                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  12021.                       pipe_config->dp_m_n.tu);
  12022.  
  12023.         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
  12024.                       pipe_config->has_dp_encoder,
  12025.                       pipe_config->lane_count,
  12026.                       pipe_config->dp_m2_n2.gmch_m,
  12027.                       pipe_config->dp_m2_n2.gmch_n,
  12028.                       pipe_config->dp_m2_n2.link_m,
  12029.                       pipe_config->dp_m2_n2.link_n,
  12030.                       pipe_config->dp_m2_n2.tu);
  12031.  
  12032.         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
  12033.                       pipe_config->has_audio,
  12034.                       pipe_config->has_infoframe);
  12035.  
  12036.         DRM_DEBUG_KMS("requested mode:\n");
  12037.         drm_mode_debug_printmodeline(&pipe_config->base.mode);
  12038.         DRM_DEBUG_KMS("adjusted mode:\n");
  12039.         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
  12040.         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
  12041.         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  12042.         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  12043.                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  12044.         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
  12045.                       crtc->num_scalers,
  12046.                       pipe_config->scaler_state.scaler_users,
  12047.                       pipe_config->scaler_state.scaler_id);
  12048.         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  12049.                       pipe_config->gmch_pfit.control,
  12050.                       pipe_config->gmch_pfit.pgm_ratios,
  12051.                       pipe_config->gmch_pfit.lvds_border_bits);
  12052.         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  12053.                       pipe_config->pch_pfit.pos,
  12054.                       pipe_config->pch_pfit.size,
  12055.                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  12056.         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  12057.         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  12058.  
  12059.         if (IS_BROXTON(dev)) {
  12060.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  12061.                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  12062.                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  12063.                               pipe_config->ddi_pll_sel,
  12064.                               pipe_config->dpll_hw_state.ebb0,
  12065.                               pipe_config->dpll_hw_state.ebb4,
  12066.                               pipe_config->dpll_hw_state.pll0,
  12067.                               pipe_config->dpll_hw_state.pll1,
  12068.                               pipe_config->dpll_hw_state.pll2,
  12069.                               pipe_config->dpll_hw_state.pll3,
  12070.                               pipe_config->dpll_hw_state.pll6,
  12071.                               pipe_config->dpll_hw_state.pll8,
  12072.                               pipe_config->dpll_hw_state.pll9,
  12073.                               pipe_config->dpll_hw_state.pll10,
  12074.                               pipe_config->dpll_hw_state.pcsdw12);
  12075.         } else if (IS_SKYLAKE(dev)) {
  12076.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
  12077.                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  12078.                               pipe_config->ddi_pll_sel,
  12079.                               pipe_config->dpll_hw_state.ctrl1,
  12080.                               pipe_config->dpll_hw_state.cfgcr1,
  12081.                               pipe_config->dpll_hw_state.cfgcr2);
  12082.         } else if (HAS_DDI(dev)) {
  12083.                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  12084.                               pipe_config->ddi_pll_sel,
  12085.                               pipe_config->dpll_hw_state.wrpll,
  12086.                               pipe_config->dpll_hw_state.spll);
  12087.         } else {
  12088.                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  12089.                               "fp0: 0x%x, fp1: 0x%x\n",
  12090.                               pipe_config->dpll_hw_state.dpll,
  12091.                               pipe_config->dpll_hw_state.dpll_md,
  12092.                               pipe_config->dpll_hw_state.fp0,
  12093.                               pipe_config->dpll_hw_state.fp1);
  12094.         }
  12095.  
  12096.         DRM_DEBUG_KMS("planes on this crtc\n");
  12097.         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  12098.                 intel_plane = to_intel_plane(plane);
  12099.                 if (intel_plane->pipe != crtc->pipe)
  12100.                         continue;
  12101.  
  12102.                 state = to_intel_plane_state(plane->state);
  12103.                 fb = state->base.fb;
  12104.                 if (!fb) {
  12105.                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
  12106.                                 "disabled, scaler_id = %d\n",
  12107.                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12108.                                 plane->base.id, intel_plane->pipe,
  12109.                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
  12110.                                 drm_plane_index(plane), state->scaler_id);
  12111.                         continue;
  12112.                 }
  12113.  
  12114.                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
  12115.                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
  12116.                         plane->base.id, intel_plane->pipe,
  12117.                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
  12118.                         drm_plane_index(plane));
  12119.                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
  12120.                         fb->base.id, fb->width, fb->height, fb->pixel_format);
  12121.                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
  12122.                         state->scaler_id,
  12123.                         state->src.x1 >> 16, state->src.y1 >> 16,
  12124.                         drm_rect_width(&state->src) >> 16,
  12125.                         drm_rect_height(&state->src) >> 16,
  12126.                         state->dst.x1, state->dst.y1,
  12127.                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
  12128.         }
  12129. }
  12130.  
  12131. static bool check_digital_port_conflicts(struct drm_atomic_state *state)
  12132. {
  12133.         struct drm_device *dev = state->dev;
  12134.         struct drm_connector *connector;
  12135.         unsigned int used_ports = 0;
  12136.  
  12137.         /*
  12138.          * Walk the connector list instead of the encoder
  12139.          * list to detect the problem on ddi platforms
  12140.          * where there's just one encoder per digital port.
  12141.          */
  12142.         drm_for_each_connector(connector, dev) {
  12143.                 struct drm_connector_state *connector_state;
  12144.                 struct intel_encoder *encoder;
  12145.  
  12146.                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
  12147.                 if (!connector_state)
  12148.                         connector_state = connector->state;
  12149.  
  12150.                 if (!connector_state->best_encoder)
  12151.                         continue;
  12152.  
  12153.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12154.  
  12155.                 WARN_ON(!connector_state->crtc);
  12156.  
  12157.                 switch (encoder->type) {
  12158.                         unsigned int port_mask;
  12159.                 case INTEL_OUTPUT_UNKNOWN:
  12160.                         if (WARN_ON(!HAS_DDI(dev)))
  12161.                                 break;
  12162.                 case INTEL_OUTPUT_DISPLAYPORT:
  12163.                 case INTEL_OUTPUT_HDMI:
  12164.                 case INTEL_OUTPUT_EDP:
  12165.                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
  12166.  
  12167.                         /* the same port mustn't appear more than once */
  12168.                         if (used_ports & port_mask)
  12169.                                 return false;
  12170.  
  12171.                         used_ports |= port_mask;
  12172.                 default:
  12173.                         break;
  12174.                 }
  12175.         }
  12176.  
  12177.         return true;
  12178. }
  12179.  
  12180. static void
  12181. clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
  12182. {
  12183.         struct drm_crtc_state tmp_state;
  12184.         struct intel_crtc_scaler_state scaler_state;
  12185.         struct intel_dpll_hw_state dpll_hw_state;
  12186.         enum intel_dpll_id shared_dpll;
  12187.         uint32_t ddi_pll_sel;
  12188.         bool force_thru;
  12189.  
  12190.         /* FIXME: before the switch to atomic started, a new pipe_config was
  12191.          * kzalloc'd. Code that depends on any field being zero should be
  12192.          * fixed, so that the crtc_state can be safely duplicated. For now,
  12193.          * only fields that are know to not cause problems are preserved. */
  12194.  
  12195.         tmp_state = crtc_state->base;
  12196.         scaler_state = crtc_state->scaler_state;
  12197.         shared_dpll = crtc_state->shared_dpll;
  12198.         dpll_hw_state = crtc_state->dpll_hw_state;
  12199.         ddi_pll_sel = crtc_state->ddi_pll_sel;
  12200.         force_thru = crtc_state->pch_pfit.force_thru;
  12201.  
  12202.         memset(crtc_state, 0, sizeof *crtc_state);
  12203.  
  12204.         crtc_state->base = tmp_state;
  12205.         crtc_state->scaler_state = scaler_state;
  12206.         crtc_state->shared_dpll = shared_dpll;
  12207.         crtc_state->dpll_hw_state = dpll_hw_state;
  12208.         crtc_state->ddi_pll_sel = ddi_pll_sel;
  12209.         crtc_state->pch_pfit.force_thru = force_thru;
  12210. }
  12211.  
  12212. static int
  12213. intel_modeset_pipe_config(struct drm_crtc *crtc,
  12214.                           struct intel_crtc_state *pipe_config)
  12215. {
  12216.         struct drm_atomic_state *state = pipe_config->base.state;
  12217.         struct intel_encoder *encoder;
  12218.         struct drm_connector *connector;
  12219.         struct drm_connector_state *connector_state;
  12220.         int base_bpp, ret = -EINVAL;
  12221.         int i;
  12222.         bool retry = true;
  12223.  
  12224.         clear_intel_crtc_state(pipe_config);
  12225.  
  12226.         pipe_config->cpu_transcoder =
  12227.                 (enum transcoder) to_intel_crtc(crtc)->pipe;
  12228.  
  12229.         /*
  12230.          * Sanitize sync polarity flags based on requested ones. If neither
  12231.          * positive or negative polarity is requested, treat this as meaning
  12232.          * negative polarity.
  12233.          */
  12234.         if (!(pipe_config->base.adjusted_mode.flags &
  12235.               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  12236.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  12237.  
  12238.         if (!(pipe_config->base.adjusted_mode.flags &
  12239.               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  12240.                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  12241.  
  12242.         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  12243.                                              pipe_config);
  12244.         if (base_bpp < 0)
  12245.                 goto fail;
  12246.  
  12247.         /*
  12248.          * Determine the real pipe dimensions. Note that stereo modes can
  12249.          * increase the actual pipe size due to the frame doubling and
  12250.          * insertion of additional space for blanks between the frame. This
  12251.          * is stored in the crtc timings. We use the requested mode to do this
  12252.          * computation to clearly distinguish it from the adjusted mode, which
  12253.          * can be changed by the connectors in the below retry loop.
  12254.          */
  12255.         drm_crtc_get_hv_timing(&pipe_config->base.mode,
  12256.                                &pipe_config->pipe_src_w,
  12257.                                &pipe_config->pipe_src_h);
  12258.  
  12259. encoder_retry:
  12260.         /* Ensure the port clock defaults are reset when retrying. */
  12261.         pipe_config->port_clock = 0;
  12262.         pipe_config->pixel_multiplier = 1;
  12263.  
  12264.         /* Fill in default crtc timings, allow encoders to overwrite them. */
  12265.         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
  12266.                               CRTC_STEREO_DOUBLE);
  12267.  
  12268.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  12269.          * adjust it according to limitations or connector properties, and also
  12270.          * a chance to reject the mode entirely.
  12271.          */
  12272.         for_each_connector_in_state(state, connector, connector_state, i) {
  12273.                 if (connector_state->crtc != crtc)
  12274.                         continue;
  12275.  
  12276.                 encoder = to_intel_encoder(connector_state->best_encoder);
  12277.  
  12278.                 if (!(encoder->compute_config(encoder, pipe_config))) {
  12279.                         DRM_DEBUG_KMS("Encoder config failure\n");
  12280.                         goto fail;
  12281.                 }
  12282.         }
  12283.  
  12284.         /* Set default port clock if not overwritten by the encoder. Needs to be
  12285.          * done afterwards in case the encoder adjusts the mode. */
  12286.         if (!pipe_config->port_clock)
  12287.                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
  12288.                         * pipe_config->pixel_multiplier;
  12289.  
  12290.         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  12291.         if (ret < 0) {
  12292.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  12293.                 goto fail;
  12294.         }
  12295.  
  12296.         if (ret == RETRY) {
  12297.                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
  12298.                         ret = -EINVAL;
  12299.                         goto fail;
  12300.                 }
  12301.  
  12302.                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  12303.                 retry = false;
  12304.                 goto encoder_retry;
  12305.         }
  12306.  
  12307.         /* Dithering seems to not pass-through bits correctly when it should, so
  12308.          * only enable it on 6bpc panels. */
  12309.         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
  12310.         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
  12311.                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  12312.  
  12313. fail:
  12314.         return ret;
  12315. }
  12316.  
  12317. static void
  12318. intel_modeset_update_crtc_state(struct drm_atomic_state *state)
  12319. {
  12320.         struct drm_crtc *crtc;
  12321.         struct drm_crtc_state *crtc_state;
  12322.         int i;
  12323.  
  12324.         /* Double check state. */
  12325.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12326.                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
  12327.  
  12328.                 /* Update hwmode for vblank functions */
  12329.                 if (crtc->state->active)
  12330.                         crtc->hwmode = crtc->state->adjusted_mode;
  12331.                 else
  12332.                         crtc->hwmode.crtc_clock = 0;
  12333.         }
  12334. }
  12335.  
  12336. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  12337. {
  12338.         int diff;
  12339.  
  12340.         if (clock1 == clock2)
  12341.                 return true;
  12342.  
  12343.         if (!clock1 || !clock2)
  12344.                 return false;
  12345.  
  12346.         diff = abs(clock1 - clock2);
  12347.  
  12348.         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  12349.                 return true;
  12350.  
  12351.         return false;
  12352. }
  12353.  
  12354. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  12355.         list_for_each_entry((intel_crtc), \
  12356.                             &(dev)->mode_config.crtc_list, \
  12357.                             base.head) \
  12358.                 if (mask & (1 <<(intel_crtc)->pipe))
  12359.  
  12360. static bool
  12361. intel_compare_m_n(unsigned int m, unsigned int n,
  12362.                   unsigned int m2, unsigned int n2,
  12363.                   bool exact)
  12364. {
  12365.         if (m == m2 && n == n2)
  12366.                 return true;
  12367.  
  12368.         if (exact || !m || !n || !m2 || !n2)
  12369.                 return false;
  12370.  
  12371.         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
  12372.  
  12373.         if (m > m2) {
  12374.                 while (m > m2) {
  12375.                         m2 <<= 1;
  12376.                         n2 <<= 1;
  12377.                 }
  12378.         } else if (m < m2) {
  12379.                 while (m < m2) {
  12380.                         m <<= 1;
  12381.                         n <<= 1;
  12382.                 }
  12383.         }
  12384.  
  12385.         return m == m2 && n == n2;
  12386. }
  12387.  
  12388. static bool
  12389. intel_compare_link_m_n(const struct intel_link_m_n *m_n,
  12390.                        struct intel_link_m_n *m2_n2,
  12391.                        bool adjust)
  12392. {
  12393.         if (m_n->tu == m2_n2->tu &&
  12394.             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
  12395.                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
  12396.             intel_compare_m_n(m_n->link_m, m_n->link_n,
  12397.                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
  12398.                 if (adjust)
  12399.                         *m2_n2 = *m_n;
  12400.  
  12401.                 return true;
  12402.         }
  12403.  
  12404.         return false;
  12405. }
  12406.  
  12407. static bool
  12408. intel_pipe_config_compare(struct drm_device *dev,
  12409.                           struct intel_crtc_state *current_config,
  12410.                           struct intel_crtc_state *pipe_config,
  12411.                           bool adjust)
  12412. {
  12413.         bool ret = true;
  12414.  
  12415. #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
  12416.         do { \
  12417.                 if (!adjust) \
  12418.                         DRM_ERROR(fmt, ##__VA_ARGS__); \
  12419.                 else \
  12420.                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
  12421.         } while (0)
  12422.  
  12423. #define PIPE_CONF_CHECK_X(name) \
  12424.         if (current_config->name != pipe_config->name) { \
  12425.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12426.                           "(expected 0x%08x, found 0x%08x)\n", \
  12427.                           current_config->name, \
  12428.                           pipe_config->name); \
  12429.                 ret = false; \
  12430.         }
  12431.  
  12432. #define PIPE_CONF_CHECK_I(name) \
  12433.         if (current_config->name != pipe_config->name) { \
  12434.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12435.                           "(expected %i, found %i)\n", \
  12436.                           current_config->name, \
  12437.                           pipe_config->name); \
  12438.                 ret = false; \
  12439.         }
  12440.  
  12441. #define PIPE_CONF_CHECK_M_N(name) \
  12442.         if (!intel_compare_link_m_n(&current_config->name, \
  12443.                                     &pipe_config->name,\
  12444.                                     adjust)) { \
  12445.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12446.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12447.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12448.                           current_config->name.tu, \
  12449.                           current_config->name.gmch_m, \
  12450.                           current_config->name.gmch_n, \
  12451.                           current_config->name.link_m, \
  12452.                           current_config->name.link_n, \
  12453.                           pipe_config->name.tu, \
  12454.                           pipe_config->name.gmch_m, \
  12455.                           pipe_config->name.gmch_n, \
  12456.                           pipe_config->name.link_m, \
  12457.                           pipe_config->name.link_n); \
  12458.                 ret = false; \
  12459.         }
  12460.  
  12461. #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
  12462.         if (!intel_compare_link_m_n(&current_config->name, \
  12463.                                     &pipe_config->name, adjust) && \
  12464.             !intel_compare_link_m_n(&current_config->alt_name, \
  12465.                                     &pipe_config->name, adjust)) { \
  12466.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12467.                           "(expected tu %i gmch %i/%i link %i/%i, " \
  12468.                           "or tu %i gmch %i/%i link %i/%i, " \
  12469.                           "found tu %i, gmch %i/%i link %i/%i)\n", \
  12470.                           current_config->name.tu, \
  12471.                           current_config->name.gmch_m, \
  12472.                           current_config->name.gmch_n, \
  12473.                           current_config->name.link_m, \
  12474.                           current_config->name.link_n, \
  12475.                           current_config->alt_name.tu, \
  12476.                           current_config->alt_name.gmch_m, \
  12477.                           current_config->alt_name.gmch_n, \
  12478.                           current_config->alt_name.link_m, \
  12479.                           current_config->alt_name.link_n, \
  12480.                           pipe_config->name.tu, \
  12481.                           pipe_config->name.gmch_m, \
  12482.                           pipe_config->name.gmch_n, \
  12483.                           pipe_config->name.link_m, \
  12484.                           pipe_config->name.link_n); \
  12485.                 ret = false; \
  12486.         }
  12487.  
  12488. /* This is required for BDW+ where there is only one set of registers for
  12489.  * switching between high and low RR.
  12490.  * This macro can be used whenever a comparison has to be made between one
  12491.  * hw state and multiple sw state variables.
  12492.  */
  12493. #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
  12494.         if ((current_config->name != pipe_config->name) && \
  12495.                 (current_config->alt_name != pipe_config->name)) { \
  12496.                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12497.                                   "(expected %i or %i, found %i)\n", \
  12498.                                   current_config->name, \
  12499.                                   current_config->alt_name, \
  12500.                                   pipe_config->name); \
  12501.                         ret = false; \
  12502.         }
  12503.  
  12504. #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
  12505.         if ((current_config->name ^ pipe_config->name) & (mask)) { \
  12506.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
  12507.                           "(expected %i, found %i)\n", \
  12508.                           current_config->name & (mask), \
  12509.                           pipe_config->name & (mask)); \
  12510.                 ret = false; \
  12511.         }
  12512.  
  12513. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  12514.         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  12515.                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
  12516.                           "(expected %i, found %i)\n", \
  12517.                           current_config->name, \
  12518.                           pipe_config->name); \
  12519.                 ret = false; \
  12520.         }
  12521.  
  12522. #define PIPE_CONF_QUIRK(quirk)  \
  12523.         ((current_config->quirks | pipe_config->quirks) & (quirk))
  12524.  
  12525.         PIPE_CONF_CHECK_I(cpu_transcoder);
  12526.  
  12527.         PIPE_CONF_CHECK_I(has_pch_encoder);
  12528.         PIPE_CONF_CHECK_I(fdi_lanes);
  12529.         PIPE_CONF_CHECK_M_N(fdi_m_n);
  12530.  
  12531.         PIPE_CONF_CHECK_I(has_dp_encoder);
  12532.         PIPE_CONF_CHECK_I(lane_count);
  12533.  
  12534.         if (INTEL_INFO(dev)->gen < 8) {
  12535.                 PIPE_CONF_CHECK_M_N(dp_m_n);
  12536.  
  12537.                 if (current_config->has_drrs)
  12538.                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
  12539.         } else
  12540.                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
  12541.  
  12542.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
  12543.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
  12544.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
  12545.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
  12546.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
  12547.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
  12548.  
  12549.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
  12550.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
  12551.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
  12552.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
  12553.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
  12554.         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
  12555.  
  12556.         PIPE_CONF_CHECK_I(pixel_multiplier);
  12557.         PIPE_CONF_CHECK_I(has_hdmi_sink);
  12558.         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
  12559.             IS_VALLEYVIEW(dev))
  12560.                 PIPE_CONF_CHECK_I(limited_color_range);
  12561.         PIPE_CONF_CHECK_I(has_infoframe);
  12562.  
  12563.         PIPE_CONF_CHECK_I(has_audio);
  12564.  
  12565.         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12566.                               DRM_MODE_FLAG_INTERLACE);
  12567.  
  12568.         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  12569.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12570.                                       DRM_MODE_FLAG_PHSYNC);
  12571.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12572.                                       DRM_MODE_FLAG_NHSYNC);
  12573.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12574.                                       DRM_MODE_FLAG_PVSYNC);
  12575.                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
  12576.                                       DRM_MODE_FLAG_NVSYNC);
  12577.         }
  12578.  
  12579.         PIPE_CONF_CHECK_X(gmch_pfit.control);
  12580.         /* pfit ratios are autocomputed by the hw on gen4+ */
  12581.         if (INTEL_INFO(dev)->gen < 4)
  12582.                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  12583.         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
  12584.  
  12585.         if (!adjust) {
  12586.                 PIPE_CONF_CHECK_I(pipe_src_w);
  12587.                 PIPE_CONF_CHECK_I(pipe_src_h);
  12588.  
  12589.                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
  12590.                 if (current_config->pch_pfit.enabled) {
  12591.                         PIPE_CONF_CHECK_X(pch_pfit.pos);
  12592.                         PIPE_CONF_CHECK_X(pch_pfit.size);
  12593.                 }
  12594.  
  12595.                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
  12596.         }
  12597.  
  12598.         /* BDW+ don't expose a synchronous way to read the state */
  12599.         if (IS_HASWELL(dev))
  12600.                 PIPE_CONF_CHECK_I(ips_enabled);
  12601.  
  12602.         PIPE_CONF_CHECK_I(double_wide);
  12603.  
  12604.         PIPE_CONF_CHECK_X(ddi_pll_sel);
  12605.  
  12606.         PIPE_CONF_CHECK_I(shared_dpll);
  12607.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  12608.         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  12609.         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  12610.         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  12611.         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
  12612.         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
  12613.         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
  12614.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
  12615.         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
  12616.  
  12617.         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  12618.                 PIPE_CONF_CHECK_I(pipe_bpp);
  12619.  
  12620.         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
  12621.         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  12622.  
  12623. #undef PIPE_CONF_CHECK_X
  12624. #undef PIPE_CONF_CHECK_I
  12625. #undef PIPE_CONF_CHECK_I_ALT
  12626. #undef PIPE_CONF_CHECK_FLAGS
  12627. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  12628. #undef PIPE_CONF_QUIRK
  12629. #undef INTEL_ERR_OR_DBG_KMS
  12630.  
  12631.         return ret;
  12632. }
  12633.  
  12634. static void check_wm_state(struct drm_device *dev)
  12635. {
  12636.         struct drm_i915_private *dev_priv = dev->dev_private;
  12637.         struct skl_ddb_allocation hw_ddb, *sw_ddb;
  12638.         struct intel_crtc *intel_crtc;
  12639.         int plane;
  12640.  
  12641.         if (INTEL_INFO(dev)->gen < 9)
  12642.                 return;
  12643.  
  12644.         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
  12645.         sw_ddb = &dev_priv->wm.skl_hw.ddb;
  12646.  
  12647.         for_each_intel_crtc(dev, intel_crtc) {
  12648.                 struct skl_ddb_entry *hw_entry, *sw_entry;
  12649.                 const enum pipe pipe = intel_crtc->pipe;
  12650.  
  12651.                 if (!intel_crtc->active)
  12652.                         continue;
  12653.  
  12654.                 /* planes */
  12655.                 for_each_plane(dev_priv, pipe, plane) {
  12656.                         hw_entry = &hw_ddb.plane[pipe][plane];
  12657.                         sw_entry = &sw_ddb->plane[pipe][plane];
  12658.  
  12659.                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12660.                                 continue;
  12661.  
  12662.                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
  12663.                                   "(expected (%u,%u), found (%u,%u))\n",
  12664.                                   pipe_name(pipe), plane + 1,
  12665.                                   sw_entry->start, sw_entry->end,
  12666.                                   hw_entry->start, hw_entry->end);
  12667.                 }
  12668.  
  12669.                 /* cursor */
  12670.                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
  12671.                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
  12672.  
  12673.                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
  12674.                         continue;
  12675.  
  12676.                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
  12677.                           "(expected (%u,%u), found (%u,%u))\n",
  12678.                           pipe_name(pipe),
  12679.                           sw_entry->start, sw_entry->end,
  12680.                           hw_entry->start, hw_entry->end);
  12681.         }
  12682. }
  12683.  
  12684. static void
  12685. check_connector_state(struct drm_device *dev,
  12686.                       struct drm_atomic_state *old_state)
  12687. {
  12688.         struct drm_connector_state *old_conn_state;
  12689.         struct drm_connector *connector;
  12690.         int i;
  12691.  
  12692.         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
  12693.                 struct drm_encoder *encoder = connector->encoder;
  12694.                 struct drm_connector_state *state = connector->state;
  12695.  
  12696.                 /* This also checks the encoder/connector hw state with the
  12697.                  * ->get_hw_state callbacks. */
  12698.                 intel_connector_check_state(to_intel_connector(connector));
  12699.  
  12700.                 I915_STATE_WARN(state->best_encoder != encoder,
  12701.                      "connector's atomic encoder doesn't match legacy encoder\n");
  12702.         }
  12703. }
  12704.  
  12705. static void
  12706. check_encoder_state(struct drm_device *dev)
  12707. {
  12708.         struct intel_encoder *encoder;
  12709.         struct intel_connector *connector;
  12710.  
  12711.         for_each_intel_encoder(dev, encoder) {
  12712.                 bool enabled = false;
  12713.                 enum pipe pipe;
  12714.  
  12715.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  12716.                               encoder->base.base.id,
  12717.                               encoder->base.name);
  12718.  
  12719.                 for_each_intel_connector(dev, connector) {
  12720.                         if (connector->base.state->best_encoder != &encoder->base)
  12721.                                 continue;
  12722.                         enabled = true;
  12723.  
  12724.                         I915_STATE_WARN(connector->base.state->crtc !=
  12725.                                         encoder->base.crtc,
  12726.                              "connector's crtc doesn't match encoder crtc\n");
  12727.                 }
  12728.  
  12729.                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
  12730.                      "encoder's enabled state mismatch "
  12731.                      "(expected %i, found %i)\n",
  12732.                      !!encoder->base.crtc, enabled);
  12733.  
  12734.                 if (!encoder->base.crtc) {
  12735.                         bool active;
  12736.  
  12737.                         active = encoder->get_hw_state(encoder, &pipe);
  12738.                         I915_STATE_WARN(active,
  12739.                              "encoder detached but still enabled on pipe %c.\n",
  12740.                              pipe_name(pipe));
  12741.                 }
  12742.         }
  12743. }
  12744.  
  12745. static void
  12746. check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
  12747. {
  12748.         struct drm_i915_private *dev_priv = dev->dev_private;
  12749.         struct intel_encoder *encoder;
  12750.         struct drm_crtc_state *old_crtc_state;
  12751.         struct drm_crtc *crtc;
  12752.         int i;
  12753.  
  12754.         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
  12755.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  12756.                 struct intel_crtc_state *pipe_config, *sw_config;
  12757.                 bool active;
  12758.  
  12759.                 if (!needs_modeset(crtc->state) &&
  12760.                     !to_intel_crtc_state(crtc->state)->update_pipe)
  12761.                         continue;
  12762.  
  12763.                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
  12764.                 pipe_config = to_intel_crtc_state(old_crtc_state);
  12765.                 memset(pipe_config, 0, sizeof(*pipe_config));
  12766.                 pipe_config->base.crtc = crtc;
  12767.                 pipe_config->base.state = old_state;
  12768.  
  12769.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  12770.                               crtc->base.id);
  12771.  
  12772.                 active = dev_priv->display.get_pipe_config(intel_crtc,
  12773.                                                            pipe_config);
  12774.  
  12775.                 /* hw state is inconsistent with the pipe quirk */
  12776.                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
  12777.                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
  12778.                         active = crtc->state->active;
  12779.  
  12780.                 I915_STATE_WARN(crtc->state->active != active,
  12781.                      "crtc active state doesn't match with hw state "
  12782.                      "(expected %i, found %i)\n", crtc->state->active, active);
  12783.  
  12784.                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
  12785.                      "transitional active state does not match atomic hw state "
  12786.                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
  12787.  
  12788.                 for_each_encoder_on_crtc(dev, crtc, encoder) {
  12789.                         enum pipe pipe;
  12790.  
  12791.                         active = encoder->get_hw_state(encoder, &pipe);
  12792.                         I915_STATE_WARN(active != crtc->state->active,
  12793.                                 "[ENCODER:%i] active %i with crtc active %i\n",
  12794.                                 encoder->base.base.id, active, crtc->state->active);
  12795.  
  12796.                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
  12797.                                         "Encoder connected to wrong pipe %c\n",
  12798.                                         pipe_name(pipe));
  12799.  
  12800.                         if (active)
  12801.                                 encoder->get_config(encoder, pipe_config);
  12802.                 }
  12803.  
  12804.                 if (!crtc->state->active)
  12805.                         continue;
  12806.  
  12807.                 sw_config = to_intel_crtc_state(crtc->state);
  12808.                 if (!intel_pipe_config_compare(dev, sw_config,
  12809.                                                pipe_config, false)) {
  12810.                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
  12811.                         intel_dump_pipe_config(intel_crtc, pipe_config,
  12812.                                                "[hw state]");
  12813.                         intel_dump_pipe_config(intel_crtc, sw_config,
  12814.                                                "[sw state]");
  12815.                 }
  12816.         }
  12817. }
  12818.  
  12819. static void
  12820. check_shared_dpll_state(struct drm_device *dev)
  12821. {
  12822.         struct drm_i915_private *dev_priv = dev->dev_private;
  12823.         struct intel_crtc *crtc;
  12824.         struct intel_dpll_hw_state dpll_hw_state;
  12825.         int i;
  12826.  
  12827.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  12828.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  12829.                 int enabled_crtcs = 0, active_crtcs = 0;
  12830.                 bool active;
  12831.  
  12832.                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  12833.  
  12834.                 DRM_DEBUG_KMS("%s\n", pll->name);
  12835.  
  12836.                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  12837.  
  12838.                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
  12839.                      "more active pll users than references: %i vs %i\n",
  12840.                      pll->active, hweight32(pll->config.crtc_mask));
  12841.                 I915_STATE_WARN(pll->active && !pll->on,
  12842.                      "pll in active use but not on in sw tracking\n");
  12843.                 I915_STATE_WARN(pll->on && !pll->active,
  12844.                      "pll in on but not on in use in sw tracking\n");
  12845.                 I915_STATE_WARN(pll->on != active,
  12846.                      "pll on state mismatch (expected %i, found %i)\n",
  12847.                      pll->on, active);
  12848.  
  12849.                 for_each_intel_crtc(dev, crtc) {
  12850.                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
  12851.                                 enabled_crtcs++;
  12852.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  12853.                                 active_crtcs++;
  12854.                 }
  12855.                 I915_STATE_WARN(pll->active != active_crtcs,
  12856.                      "pll active crtcs mismatch (expected %i, found %i)\n",
  12857.                      pll->active, active_crtcs);
  12858.                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
  12859.                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
  12860.                      hweight32(pll->config.crtc_mask), enabled_crtcs);
  12861.  
  12862.                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
  12863.                                        sizeof(dpll_hw_state)),
  12864.                      "pll hw state mismatch\n");
  12865.         }
  12866. }
  12867.  
  12868. static void
  12869. intel_modeset_check_state(struct drm_device *dev,
  12870.                           struct drm_atomic_state *old_state)
  12871. {
  12872.         check_wm_state(dev);
  12873.         check_connector_state(dev, old_state);
  12874.         check_encoder_state(dev);
  12875.         check_crtc_state(dev, old_state);
  12876.         check_shared_dpll_state(dev);
  12877. }
  12878.  
  12879. void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
  12880.                                      int dotclock)
  12881. {
  12882.         /*
  12883.          * FDI already provided one idea for the dotclock.
  12884.          * Yell if the encoder disagrees.
  12885.          */
  12886.         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
  12887.              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  12888.              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
  12889. }
  12890.  
  12891. static void update_scanline_offset(struct intel_crtc *crtc)
  12892. {
  12893.         struct drm_device *dev = crtc->base.dev;
  12894.  
  12895.         /*
  12896.          * The scanline counter increments at the leading edge of hsync.
  12897.          *
  12898.          * On most platforms it starts counting from vtotal-1 on the
  12899.          * first active line. That means the scanline counter value is
  12900.          * always one less than what we would expect. Ie. just after
  12901.          * start of vblank, which also occurs at start of hsync (on the
  12902.          * last active line), the scanline counter will read vblank_start-1.
  12903.          *
  12904.          * On gen2 the scanline counter starts counting from 1 instead
  12905.          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
  12906.          * to keep the value positive), instead of adding one.
  12907.          *
  12908.          * On HSW+ the behaviour of the scanline counter depends on the output
  12909.          * type. For DP ports it behaves like most other platforms, but on HDMI
  12910.          * there's an extra 1 line difference. So we need to add two instead of
  12911.          * one to the value.
  12912.          */
  12913.         if (IS_GEN2(dev)) {
  12914.                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  12915.                 int vtotal;
  12916.  
  12917.                 vtotal = adjusted_mode->crtc_vtotal;
  12918.                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  12919.                         vtotal /= 2;
  12920.  
  12921.                 crtc->scanline_offset = vtotal - 1;
  12922.         } else if (HAS_DDI(dev) &&
  12923.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
  12924.                 crtc->scanline_offset = 2;
  12925.         } else
  12926.                 crtc->scanline_offset = 1;
  12927. }
  12928.  
  12929. static void intel_modeset_clear_plls(struct drm_atomic_state *state)
  12930. {
  12931.         struct drm_device *dev = state->dev;
  12932.         struct drm_i915_private *dev_priv = to_i915(dev);
  12933.         struct intel_shared_dpll_config *shared_dpll = NULL;
  12934.         struct intel_crtc *intel_crtc;
  12935.         struct intel_crtc_state *intel_crtc_state;
  12936.         struct drm_crtc *crtc;
  12937.         struct drm_crtc_state *crtc_state;
  12938.         int i;
  12939.  
  12940.         if (!dev_priv->display.crtc_compute_clock)
  12941.                 return;
  12942.  
  12943.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12944.                 int dpll;
  12945.  
  12946.                 intel_crtc = to_intel_crtc(crtc);
  12947.                 intel_crtc_state = to_intel_crtc_state(crtc_state);
  12948.                 dpll = intel_crtc_state->shared_dpll;
  12949.  
  12950.                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
  12951.                         continue;
  12952.  
  12953.                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
  12954.  
  12955.                 if (!shared_dpll)
  12956.                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
  12957.  
  12958.                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
  12959.         }
  12960. }
  12961.  
  12962. /*
  12963.  * This implements the workaround described in the "notes" section of the mode
  12964.  * set sequence documentation. When going from no pipes or single pipe to
  12965.  * multiple pipes, and planes are enabled after the pipe, we need to wait at
  12966.  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
  12967.  */
  12968. static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
  12969. {
  12970.         struct drm_crtc_state *crtc_state;
  12971.         struct intel_crtc *intel_crtc;
  12972.         struct drm_crtc *crtc;
  12973.         struct intel_crtc_state *first_crtc_state = NULL;
  12974.         struct intel_crtc_state *other_crtc_state = NULL;
  12975.         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
  12976.         int i;
  12977.  
  12978.         /* look at all crtc's that are going to be enabled in during modeset */
  12979.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  12980.                 intel_crtc = to_intel_crtc(crtc);
  12981.  
  12982.                 if (!crtc_state->active || !needs_modeset(crtc_state))
  12983.                         continue;
  12984.  
  12985.                 if (first_crtc_state) {
  12986.                         other_crtc_state = to_intel_crtc_state(crtc_state);
  12987.                         break;
  12988.                 } else {
  12989.                         first_crtc_state = to_intel_crtc_state(crtc_state);
  12990.                         first_pipe = intel_crtc->pipe;
  12991.                 }
  12992.         }
  12993.  
  12994.         /* No workaround needed? */
  12995.         if (!first_crtc_state)
  12996.                 return 0;
  12997.  
  12998.         /* w/a possibly needed, check how many crtc's are already enabled. */
  12999.         for_each_intel_crtc(state->dev, intel_crtc) {
  13000.                 struct intel_crtc_state *pipe_config;
  13001.  
  13002.                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
  13003.                 if (IS_ERR(pipe_config))
  13004.                         return PTR_ERR(pipe_config);
  13005.  
  13006.                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
  13007.  
  13008.                 if (!pipe_config->base.active ||
  13009.                     needs_modeset(&pipe_config->base))
  13010.                         continue;
  13011.  
  13012.                 /* 2 or more enabled crtcs means no need for w/a */
  13013.                 if (enabled_pipe != INVALID_PIPE)
  13014.                         return 0;
  13015.  
  13016.                 enabled_pipe = intel_crtc->pipe;
  13017.         }
  13018.  
  13019.         if (enabled_pipe != INVALID_PIPE)
  13020.                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
  13021.         else if (other_crtc_state)
  13022.                 other_crtc_state->hsw_workaround_pipe = first_pipe;
  13023.  
  13024.         return 0;
  13025. }
  13026.  
  13027. static int intel_modeset_all_pipes(struct drm_atomic_state *state)
  13028. {
  13029.         struct drm_crtc *crtc;
  13030.         struct drm_crtc_state *crtc_state;
  13031.         int ret = 0;
  13032.  
  13033.         /* add all active pipes to the state */
  13034.         for_each_crtc(state->dev, crtc) {
  13035.                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13036.                 if (IS_ERR(crtc_state))
  13037.                         return PTR_ERR(crtc_state);
  13038.  
  13039.                 if (!crtc_state->active || needs_modeset(crtc_state))
  13040.                         continue;
  13041.  
  13042.                 crtc_state->mode_changed = true;
  13043.  
  13044.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13045.                 if (ret)
  13046.                         break;
  13047.  
  13048.                 ret = drm_atomic_add_affected_planes(state, crtc);
  13049.                 if (ret)
  13050.                         break;
  13051.         }
  13052.  
  13053.         return ret;
  13054. }
  13055.  
  13056. static int intel_modeset_checks(struct drm_atomic_state *state)
  13057. {
  13058.         struct drm_device *dev = state->dev;
  13059.         struct drm_i915_private *dev_priv = dev->dev_private;
  13060.         int ret;
  13061.  
  13062.         if (!check_digital_port_conflicts(state)) {
  13063.                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
  13064.                 return -EINVAL;
  13065.         }
  13066.  
  13067.         /*
  13068.          * See if the config requires any additional preparation, e.g.
  13069.          * to adjust global state with pipes off.  We need to do this
  13070.          * here so we can get the modeset_pipe updated config for the new
  13071.          * mode set on this crtc.  For other crtcs we need to use the
  13072.          * adjusted_mode bits in the crtc directly.
  13073.          */
  13074.         if (dev_priv->display.modeset_calc_cdclk) {
  13075.                 unsigned int cdclk;
  13076.  
  13077.                 ret = dev_priv->display.modeset_calc_cdclk(state);
  13078.  
  13079.                 cdclk = to_intel_atomic_state(state)->cdclk;
  13080.                 if (!ret && cdclk != dev_priv->cdclk_freq)
  13081.                         ret = intel_modeset_all_pipes(state);
  13082.  
  13083.                 if (ret < 0)
  13084.                         return ret;
  13085.         } else
  13086.                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
  13087.  
  13088.         intel_modeset_clear_plls(state);
  13089.  
  13090.         if (IS_HASWELL(dev))
  13091.                 return haswell_mode_set_planes_workaround(state);
  13092.  
  13093.         return 0;
  13094. }
  13095.  
  13096. /**
  13097.  * intel_atomic_check - validate state object
  13098.  * @dev: drm device
  13099.  * @state: state to validate
  13100.  */
  13101. static int intel_atomic_check(struct drm_device *dev,
  13102.                               struct drm_atomic_state *state)
  13103. {
  13104.         struct drm_crtc *crtc;
  13105.         struct drm_crtc_state *crtc_state;
  13106.         int ret, i;
  13107.         bool any_ms = false;
  13108.  
  13109.         ret = drm_atomic_helper_check_modeset(dev, state);
  13110.         if (ret)
  13111.                 return ret;
  13112.  
  13113.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13114.                 struct intel_crtc_state *pipe_config =
  13115.                         to_intel_crtc_state(crtc_state);
  13116.  
  13117.                 memset(&to_intel_crtc(crtc)->atomic, 0,
  13118.                        sizeof(struct intel_crtc_atomic_commit));
  13119.  
  13120.                 /* Catch I915_MODE_FLAG_INHERITED */
  13121.                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
  13122.                         crtc_state->mode_changed = true;
  13123.  
  13124.                 if (!crtc_state->enable) {
  13125.                         if (needs_modeset(crtc_state))
  13126.                                 any_ms = true;
  13127.                         continue;
  13128.                 }
  13129.  
  13130.                 if (!needs_modeset(crtc_state))
  13131.                         continue;
  13132.  
  13133.                 /* FIXME: For only active_changed we shouldn't need to do any
  13134.                  * state recomputation at all. */
  13135.  
  13136.                 ret = drm_atomic_add_affected_connectors(state, crtc);
  13137.                 if (ret)
  13138.                         return ret;
  13139.  
  13140.                 ret = intel_modeset_pipe_config(crtc, pipe_config);
  13141.                 if (ret)
  13142.                         return ret;
  13143.  
  13144.                 if (i915.fastboot &&
  13145.                     intel_pipe_config_compare(state->dev,
  13146.                                         to_intel_crtc_state(crtc->state),
  13147.                                         pipe_config, true)) {
  13148.                         crtc_state->mode_changed = false;
  13149.                         to_intel_crtc_state(crtc_state)->update_pipe = true;
  13150.                 }
  13151.  
  13152.                 if (needs_modeset(crtc_state)) {
  13153.                         any_ms = true;
  13154.  
  13155.                         ret = drm_atomic_add_affected_planes(state, crtc);
  13156.                         if (ret)
  13157.                                 return ret;
  13158.                 }
  13159.  
  13160.                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  13161.                                        needs_modeset(crtc_state) ?
  13162.                                        "[modeset]" : "[fastset]");
  13163.         }
  13164.  
  13165.         if (any_ms) {
  13166.                 ret = intel_modeset_checks(state);
  13167.  
  13168.                 if (ret)
  13169.                         return ret;
  13170.         } else
  13171.                 to_intel_atomic_state(state)->cdclk =
  13172.                         to_i915(state->dev)->cdclk_freq;
  13173.  
  13174.         return drm_atomic_helper_check_planes(state->dev, state);
  13175. }
  13176.  
  13177. /**
  13178.  * intel_atomic_commit - commit validated state object
  13179.  * @dev: DRM device
  13180.  * @state: the top-level driver state object
  13181.  * @async: asynchronous commit
  13182.  *
  13183.  * This function commits a top-level state object that has been validated
  13184.  * with drm_atomic_helper_check().
  13185.  *
  13186.  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
  13187.  * we can only handle plane-related operations and do not yet support
  13188.  * asynchronous commit.
  13189.  *
  13190.  * RETURNS
  13191.  * Zero for success or -errno.
  13192.  */
  13193. static int intel_atomic_commit(struct drm_device *dev,
  13194.                                struct drm_atomic_state *state,
  13195.                                bool async)
  13196. {
  13197.         struct drm_i915_private *dev_priv = dev->dev_private;
  13198.         struct drm_crtc *crtc;
  13199.         struct drm_crtc_state *crtc_state;
  13200.         int ret = 0;
  13201.         int i;
  13202.         bool any_ms = false;
  13203.  
  13204.         if (async) {
  13205.                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
  13206.                 return -EINVAL;
  13207.         }
  13208.  
  13209.         ret = drm_atomic_helper_prepare_planes(dev, state);
  13210.         if (ret)
  13211.                 return ret;
  13212.  
  13213.         drm_atomic_helper_swap_state(dev, state);
  13214.  
  13215.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13216.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13217.  
  13218.                 if (!needs_modeset(crtc->state))
  13219.                         continue;
  13220.  
  13221.                 any_ms = true;
  13222.                 intel_pre_plane_update(intel_crtc);
  13223.  
  13224.                 if (crtc_state->active) {
  13225.                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
  13226.                         dev_priv->display.crtc_disable(crtc);
  13227.                         intel_crtc->active = false;
  13228.                         intel_disable_shared_dpll(intel_crtc);
  13229.                 }
  13230.         }
  13231.  
  13232.         /* Only after disabling all output pipelines that will be changed can we
  13233.          * update the the output configuration. */
  13234.         intel_modeset_update_crtc_state(state);
  13235.  
  13236.         if (any_ms) {
  13237.                 intel_shared_dpll_commit(state);
  13238.  
  13239.                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
  13240.                 modeset_update_crtc_power_domains(state);
  13241.         }
  13242.  
  13243.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  13244.         for_each_crtc_in_state(state, crtc, crtc_state, i) {
  13245.                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13246.                 bool modeset = needs_modeset(crtc->state);
  13247.                 bool update_pipe = !modeset &&
  13248.                         to_intel_crtc_state(crtc->state)->update_pipe;
  13249.                 unsigned long put_domains = 0;
  13250.  
  13251.                 if (modeset && crtc->state->active) {
  13252.                         update_scanline_offset(to_intel_crtc(crtc));
  13253.                         dev_priv->display.crtc_enable(crtc);
  13254.                 }
  13255.  
  13256.                 if (update_pipe) {
  13257.                         put_domains = modeset_get_crtc_power_domains(crtc);
  13258.  
  13259.                         /* make sure intel_modeset_check_state runs */
  13260.                         any_ms = true;
  13261.                 }
  13262.  
  13263.                 if (!modeset)
  13264.                         intel_pre_plane_update(intel_crtc);
  13265.  
  13266.                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
  13267.  
  13268.                 if (put_domains)
  13269.                         modeset_put_power_domains(dev_priv, put_domains);
  13270.  
  13271.                 intel_post_plane_update(intel_crtc);
  13272.         }
  13273.  
  13274.         /* FIXME: add subpixel order */
  13275.  
  13276.         drm_atomic_helper_wait_for_vblanks(dev, state);
  13277.         drm_atomic_helper_cleanup_planes(dev, state);
  13278.  
  13279.         if (any_ms)
  13280.                 intel_modeset_check_state(dev, state);
  13281.  
  13282.         drm_atomic_state_free(state);
  13283.  
  13284.         return 0;
  13285. }
  13286.  
  13287. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  13288. {
  13289.         struct drm_device *dev = crtc->dev;
  13290.         struct drm_atomic_state *state;
  13291.         struct drm_crtc_state *crtc_state;
  13292.         int ret;
  13293.  
  13294.         state = drm_atomic_state_alloc(dev);
  13295.         if (!state) {
  13296.                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
  13297.                               crtc->base.id);
  13298.                 return;
  13299.         }
  13300.  
  13301.         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
  13302.  
  13303. retry:
  13304.         crtc_state = drm_atomic_get_crtc_state(state, crtc);
  13305.         ret = PTR_ERR_OR_ZERO(crtc_state);
  13306.         if (!ret) {
  13307.                 if (!crtc_state->active)
  13308.                         goto out;
  13309.  
  13310.                 crtc_state->mode_changed = true;
  13311.                 ret = drm_atomic_commit(state);
  13312.         }
  13313.  
  13314.         if (ret == -EDEADLK) {
  13315.                 drm_atomic_state_clear(state);
  13316.                 drm_modeset_backoff(state->acquire_ctx);
  13317.                 goto retry;
  13318.         }
  13319.  
  13320.         if (ret)
  13321. out:
  13322.                 drm_atomic_state_free(state);
  13323. }
  13324.  
  13325. #undef for_each_intel_crtc_masked
  13326.  
  13327. static const struct drm_crtc_funcs intel_crtc_funcs = {
  13328.         .gamma_set = intel_crtc_gamma_set,
  13329.         .set_config = drm_atomic_helper_set_config,
  13330.         .destroy = intel_crtc_destroy,
  13331.         .page_flip = intel_crtc_page_flip,
  13332.         .atomic_duplicate_state = intel_crtc_duplicate_state,
  13333.         .atomic_destroy_state = intel_crtc_destroy_state,
  13334. };
  13335.  
  13336. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  13337.                                       struct intel_shared_dpll *pll,
  13338.                                       struct intel_dpll_hw_state *hw_state)
  13339. {
  13340.         uint32_t val;
  13341.  
  13342.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  13343.                 return false;
  13344.  
  13345.         val = I915_READ(PCH_DPLL(pll->id));
  13346.         hw_state->dpll = val;
  13347.         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  13348.         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  13349.  
  13350.         return val & DPLL_VCO_ENABLE;
  13351. }
  13352.  
  13353. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  13354.                                   struct intel_shared_dpll *pll)
  13355. {
  13356.         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  13357.         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  13358. }
  13359.  
  13360. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  13361.                                 struct intel_shared_dpll *pll)
  13362. {
  13363.         /* PCH refclock must be enabled first */
  13364.         ibx_assert_pch_refclk_enabled(dev_priv);
  13365.  
  13366.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13367.  
  13368.         /* Wait for the clocks to stabilize. */
  13369.         POSTING_READ(PCH_DPLL(pll->id));
  13370.         udelay(150);
  13371.  
  13372.         /* The pixel multiplier can only be updated once the
  13373.          * DPLL is enabled and the clocks are stable.
  13374.          *
  13375.          * So write it again.
  13376.          */
  13377.         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  13378.         POSTING_READ(PCH_DPLL(pll->id));
  13379.         udelay(200);
  13380. }
  13381.  
  13382. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  13383.                                  struct intel_shared_dpll *pll)
  13384. {
  13385.         struct drm_device *dev = dev_priv->dev;
  13386.         struct intel_crtc *crtc;
  13387.  
  13388.         /* Make sure no transcoder isn't still depending on us. */
  13389.         for_each_intel_crtc(dev, crtc) {
  13390.                 if (intel_crtc_to_shared_dpll(crtc) == pll)
  13391.                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  13392.         }
  13393.  
  13394.         I915_WRITE(PCH_DPLL(pll->id), 0);
  13395.         POSTING_READ(PCH_DPLL(pll->id));
  13396.         udelay(200);
  13397. }
  13398.  
  13399. static char *ibx_pch_dpll_names[] = {
  13400.         "PCH DPLL A",
  13401.         "PCH DPLL B",
  13402. };
  13403.  
  13404. static void ibx_pch_dpll_init(struct drm_device *dev)
  13405. {
  13406.         struct drm_i915_private *dev_priv = dev->dev_private;
  13407.         int i;
  13408.  
  13409.         dev_priv->num_shared_dpll = 2;
  13410.  
  13411.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  13412.                 dev_priv->shared_dplls[i].id = i;
  13413.                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  13414.                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  13415.                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  13416.                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  13417.                 dev_priv->shared_dplls[i].get_hw_state =
  13418.                         ibx_pch_dpll_get_hw_state;
  13419.         }
  13420. }
  13421.  
  13422. static void intel_shared_dpll_init(struct drm_device *dev)
  13423. {
  13424.         struct drm_i915_private *dev_priv = dev->dev_private;
  13425.  
  13426.         if (HAS_DDI(dev))
  13427.                 intel_ddi_pll_init(dev);
  13428.         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  13429.                 ibx_pch_dpll_init(dev);
  13430.         else
  13431.                 dev_priv->num_shared_dpll = 0;
  13432.  
  13433.         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  13434. }
  13435.  
  13436. /**
  13437.  * intel_prepare_plane_fb - Prepare fb for usage on plane
  13438.  * @plane: drm plane to prepare for
  13439.  * @fb: framebuffer to prepare for presentation
  13440.  *
  13441.  * Prepares a framebuffer for usage on a display plane.  Generally this
  13442.  * involves pinning the underlying object and updating the frontbuffer tracking
  13443.  * bits.  Some older platforms need special physical address handling for
  13444.  * cursor planes.
  13445.  *
  13446.  * Returns 0 on success, negative error code on failure.
  13447.  */
  13448. int
  13449. intel_prepare_plane_fb(struct drm_plane *plane,
  13450.                        const struct drm_plane_state *new_state)
  13451. {
  13452.         struct drm_device *dev = plane->dev;
  13453.         struct drm_framebuffer *fb = new_state->fb;
  13454.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13455.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13456.         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
  13457.         int ret = 0;
  13458.  
  13459.         if (!obj)
  13460.                 return 0;
  13461.  
  13462.         mutex_lock(&dev->struct_mutex);
  13463.  
  13464.         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
  13465.             INTEL_INFO(dev)->cursor_needs_physical) {
  13466.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  13467.         ret = 1;
  13468.                 if (ret)
  13469.                         DRM_DEBUG_KMS("failed to attach phys object\n");
  13470.         } else {
  13471.                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
  13472.         }
  13473.  
  13474.         if (ret == 0)
  13475.                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
  13476.  
  13477.         mutex_unlock(&dev->struct_mutex);
  13478.  
  13479.         return ret;
  13480. }
  13481.  
  13482. /**
  13483.  * intel_cleanup_plane_fb - Cleans up an fb after plane use
  13484.  * @plane: drm plane to clean up for
  13485.  * @fb: old framebuffer that was on plane
  13486.  *
  13487.  * Cleans up a framebuffer that has just been removed from a plane.
  13488.  */
  13489. void
  13490. intel_cleanup_plane_fb(struct drm_plane *plane,
  13491.                        const struct drm_plane_state *old_state)
  13492. {
  13493.         struct drm_device *dev = plane->dev;
  13494.         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
  13495.  
  13496.         if (!obj)
  13497.                 return;
  13498.  
  13499.         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
  13500.             !INTEL_INFO(dev)->cursor_needs_physical) {
  13501.                 mutex_lock(&dev->struct_mutex);
  13502.                 intel_unpin_fb_obj(old_state->fb, old_state);
  13503.                 mutex_unlock(&dev->struct_mutex);
  13504.         }
  13505. }
  13506.  
  13507. int
  13508. skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
  13509. {
  13510.         int max_scale;
  13511.         struct drm_device *dev;
  13512.         struct drm_i915_private *dev_priv;
  13513.         int crtc_clock, cdclk;
  13514.  
  13515.         if (!intel_crtc || !crtc_state)
  13516.                 return DRM_PLANE_HELPER_NO_SCALING;
  13517.  
  13518.         dev = intel_crtc->base.dev;
  13519.         dev_priv = dev->dev_private;
  13520.         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
  13521.         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
  13522.  
  13523.         if (!crtc_clock || !cdclk)
  13524.                 return DRM_PLANE_HELPER_NO_SCALING;
  13525.  
  13526.         /*
  13527.          * skl max scale is lower of:
  13528.          *    close to 3 but not 3, -1 is for that purpose
  13529.          *            or
  13530.          *    cdclk/crtc_clock
  13531.          */
  13532.         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
  13533.  
  13534.         return max_scale;
  13535. }
  13536.  
  13537. static int
  13538. intel_check_primary_plane(struct drm_plane *plane,
  13539.                           struct intel_crtc_state *crtc_state,
  13540.                           struct intel_plane_state *state)
  13541. {
  13542.         struct drm_crtc *crtc = state->base.crtc;
  13543.         struct drm_framebuffer *fb = state->base.fb;
  13544.         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
  13545.         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
  13546.         bool can_position = false;
  13547.  
  13548.         if (INTEL_INFO(plane->dev)->gen >= 9) {
  13549.         /* use scaler when colorkey is not required */
  13550.                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
  13551.                 min_scale = 1;
  13552.                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
  13553.                 }
  13554.                 can_position = true;
  13555.         }
  13556.  
  13557.         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13558.                                              &state->dst, &state->clip,
  13559.                                              min_scale, max_scale,
  13560.                                              can_position, true,
  13561.                                              &state->visible);
  13562. }
  13563.  
  13564. static void
  13565. intel_commit_primary_plane(struct drm_plane *plane,
  13566.                            struct intel_plane_state *state)
  13567. {
  13568.         struct drm_crtc *crtc = state->base.crtc;
  13569.         struct drm_framebuffer *fb = state->base.fb;
  13570.         struct drm_device *dev = plane->dev;
  13571.         struct drm_i915_private *dev_priv = dev->dev_private;
  13572.         struct intel_crtc *intel_crtc;
  13573.         struct drm_rect *src = &state->src;
  13574.  
  13575.         crtc = crtc ? crtc : plane->crtc;
  13576.         intel_crtc = to_intel_crtc(crtc);
  13577.  
  13578.         plane->fb = fb;
  13579.         crtc->x = src->x1 >> 16;
  13580.         crtc->y = src->y1 >> 16;
  13581.  
  13582.         if (!crtc->state->active)
  13583.                 return;
  13584.  
  13585.         dev_priv->display.update_primary_plane(crtc, fb,
  13586.                                                state->src.x1 >> 16,
  13587.                                                state->src.y1 >> 16);
  13588. }
  13589.  
  13590. static void
  13591. intel_disable_primary_plane(struct drm_plane *plane,
  13592.                             struct drm_crtc *crtc)
  13593. {
  13594.         struct drm_device *dev = plane->dev;
  13595.         struct drm_i915_private *dev_priv = dev->dev_private;
  13596.  
  13597.         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
  13598. }
  13599.  
  13600. static void intel_begin_crtc_commit(struct drm_crtc *crtc,
  13601.                                     struct drm_crtc_state *old_crtc_state)
  13602. {
  13603.         struct drm_device *dev = crtc->dev;
  13604.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13605.         struct intel_crtc_state *old_intel_state =
  13606.                 to_intel_crtc_state(old_crtc_state);
  13607.         bool modeset = needs_modeset(crtc->state);
  13608.  
  13609.         if (intel_crtc->atomic.update_wm_pre)
  13610.                 intel_update_watermarks(crtc);
  13611.  
  13612.         /* Perform vblank evasion around commit operation */
  13613.         if (crtc->state->active)
  13614.                 intel_pipe_update_start(intel_crtc);
  13615.  
  13616.         if (modeset)
  13617.                 return;
  13618.  
  13619.         if (to_intel_crtc_state(crtc->state)->update_pipe)
  13620.                 intel_update_pipe_config(intel_crtc, old_intel_state);
  13621.         else if (INTEL_INFO(dev)->gen >= 9)
  13622.                 skl_detach_scalers(intel_crtc);
  13623. }
  13624.  
  13625. static void intel_finish_crtc_commit(struct drm_crtc *crtc,
  13626.                                      struct drm_crtc_state *old_crtc_state)
  13627. {
  13628.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  13629.  
  13630.         if (crtc->state->active)
  13631.                 intel_pipe_update_end(intel_crtc);
  13632. }
  13633.  
  13634. /**
  13635.  * intel_plane_destroy - destroy a plane
  13636.  * @plane: plane to destroy
  13637.  *
  13638.  * Common destruction function for all types of planes (primary, cursor,
  13639.  * sprite).
  13640.  */
  13641. void intel_plane_destroy(struct drm_plane *plane)
  13642. {
  13643.         struct intel_plane *intel_plane = to_intel_plane(plane);
  13644.         drm_plane_cleanup(plane);
  13645.         kfree(intel_plane);
  13646. }
  13647.  
  13648. const struct drm_plane_funcs intel_plane_funcs = {
  13649.         .update_plane = drm_atomic_helper_update_plane,
  13650.         .disable_plane = drm_atomic_helper_disable_plane,
  13651.         .destroy = intel_plane_destroy,
  13652.         .set_property = drm_atomic_helper_plane_set_property,
  13653.         .atomic_get_property = intel_plane_atomic_get_property,
  13654.         .atomic_set_property = intel_plane_atomic_set_property,
  13655.         .atomic_duplicate_state = intel_plane_duplicate_state,
  13656.         .atomic_destroy_state = intel_plane_destroy_state,
  13657.  
  13658. };
  13659.  
  13660. static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
  13661.                                                     int pipe)
  13662. {
  13663.         struct intel_plane *primary;
  13664.         struct intel_plane_state *state;
  13665.         const uint32_t *intel_primary_formats;
  13666.         unsigned int num_formats;
  13667.  
  13668.         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
  13669.         if (primary == NULL)
  13670.                 return NULL;
  13671.  
  13672.         state = intel_create_plane_state(&primary->base);
  13673.         if (!state) {
  13674.                 kfree(primary);
  13675.                 return NULL;
  13676.         }
  13677.         primary->base.state = &state->base;
  13678.  
  13679.         primary->can_scale = false;
  13680.         primary->max_downscale = 1;
  13681.         if (INTEL_INFO(dev)->gen >= 9) {
  13682.                 primary->can_scale = true;
  13683.                 state->scaler_id = -1;
  13684.         }
  13685.         primary->pipe = pipe;
  13686.         primary->plane = pipe;
  13687.         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
  13688.         primary->check_plane = intel_check_primary_plane;
  13689.         primary->commit_plane = intel_commit_primary_plane;
  13690.         primary->disable_plane = intel_disable_primary_plane;
  13691.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
  13692.                 primary->plane = !pipe;
  13693.  
  13694.         if (INTEL_INFO(dev)->gen >= 9) {
  13695.                 intel_primary_formats = skl_primary_formats;
  13696.                 num_formats = ARRAY_SIZE(skl_primary_formats);
  13697.         } else if (INTEL_INFO(dev)->gen >= 4) {
  13698.                 intel_primary_formats = i965_primary_formats;
  13699.                 num_formats = ARRAY_SIZE(i965_primary_formats);
  13700.         } else {
  13701.                 intel_primary_formats = i8xx_primary_formats;
  13702.                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
  13703.         }
  13704.  
  13705.         drm_universal_plane_init(dev, &primary->base, 0,
  13706.                                  &intel_plane_funcs,
  13707.                                  intel_primary_formats, num_formats,
  13708.                                  DRM_PLANE_TYPE_PRIMARY);
  13709.  
  13710.         if (INTEL_INFO(dev)->gen >= 4)
  13711.                 intel_create_rotation_property(dev, primary);
  13712.  
  13713.         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
  13714.  
  13715.         return &primary->base;
  13716. }
  13717.  
  13718. void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
  13719. {
  13720.         if (!dev->mode_config.rotation_property) {
  13721.                 unsigned long flags = BIT(DRM_ROTATE_0) |
  13722.                         BIT(DRM_ROTATE_180);
  13723.  
  13724.                 if (INTEL_INFO(dev)->gen >= 9)
  13725.                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
  13726.  
  13727.                 dev->mode_config.rotation_property =
  13728.                         drm_mode_create_rotation_property(dev, flags);
  13729.         }
  13730.         if (dev->mode_config.rotation_property)
  13731.                 drm_object_attach_property(&plane->base.base,
  13732.                                 dev->mode_config.rotation_property,
  13733.                                 plane->base.state->rotation);
  13734. }
  13735.  
  13736. static int
  13737. intel_check_cursor_plane(struct drm_plane *plane,
  13738.                          struct intel_crtc_state *crtc_state,
  13739.                          struct intel_plane_state *state)
  13740. {
  13741.         struct drm_crtc *crtc = crtc_state->base.crtc;
  13742.         struct drm_framebuffer *fb = state->base.fb;
  13743.         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  13744.         enum pipe pipe = to_intel_plane(plane)->pipe;
  13745.         unsigned stride;
  13746.         int ret;
  13747.  
  13748.         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
  13749.                                             &state->dst, &state->clip,
  13750.                                             DRM_PLANE_HELPER_NO_SCALING,
  13751.                                             DRM_PLANE_HELPER_NO_SCALING,
  13752.                                             true, true, &state->visible);
  13753.         if (ret)
  13754.                 return ret;
  13755.  
  13756.         /* if we want to turn off the cursor ignore width and height */
  13757.         if (!obj)
  13758.                 return 0;
  13759.  
  13760.         /* Check for which cursor types we support */
  13761.         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
  13762.                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
  13763.                           state->base.crtc_w, state->base.crtc_h);
  13764.                 return -EINVAL;
  13765.         }
  13766.  
  13767.         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
  13768.         if (obj->base.size < stride * state->base.crtc_h) {
  13769.                 DRM_DEBUG_KMS("buffer is too small\n");
  13770.                 return -ENOMEM;
  13771.         }
  13772.  
  13773.         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
  13774.                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
  13775.                 return -EINVAL;
  13776.         }
  13777.  
  13778.         /*
  13779.          * There's something wrong with the cursor on CHV pipe C.
  13780.          * If it straddles the left edge of the screen then
  13781.          * moving it away from the edge or disabling it often
  13782.          * results in a pipe underrun, and often that can lead to
  13783.          * dead pipe (constant underrun reported, and it scans
  13784.          * out just a solid color). To recover from that, the
  13785.          * display power well must be turned off and on again.
  13786.          * Refuse the put the cursor into that compromised position.
  13787.          */
  13788.         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
  13789.             state->visible && state->base.crtc_x < 0) {
  13790.                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
  13791.                 return -EINVAL;
  13792.         }
  13793.  
  13794.         return 0;
  13795. }
  13796.  
  13797. static void
  13798. intel_disable_cursor_plane(struct drm_plane *plane,
  13799.                            struct drm_crtc *crtc)
  13800. {
  13801.         intel_crtc_update_cursor(crtc, false);
  13802. }
  13803.  
  13804. static void
  13805. intel_commit_cursor_plane(struct drm_plane *plane,
  13806.                           struct intel_plane_state *state)
  13807. {
  13808.         struct drm_crtc *crtc = state->base.crtc;
  13809.         struct drm_device *dev = plane->dev;
  13810.         struct intel_crtc *intel_crtc;
  13811.         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
  13812.         uint32_t addr;
  13813.  
  13814.         crtc = crtc ? crtc : plane->crtc;
  13815.         intel_crtc = to_intel_crtc(crtc);
  13816.  
  13817.         if (!obj)
  13818.                 addr = 0;
  13819.         else if (!INTEL_INFO(dev)->cursor_needs_physical)
  13820.                 addr = i915_gem_obj_ggtt_offset(obj);
  13821.         else
  13822.                 addr = obj->phys_handle->busaddr;
  13823.  
  13824.         intel_crtc->cursor_addr = addr;
  13825.  
  13826.         if (crtc->state->active)
  13827.                 intel_crtc_update_cursor(crtc, state->visible);
  13828. }
  13829.  
  13830. static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
  13831.                                                    int pipe)
  13832. {
  13833.         struct intel_plane *cursor;
  13834.         struct intel_plane_state *state;
  13835.  
  13836.         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
  13837.         if (cursor == NULL)
  13838.                 return NULL;
  13839.  
  13840.         state = intel_create_plane_state(&cursor->base);
  13841.         if (!state) {
  13842.                 kfree(cursor);
  13843.                 return NULL;
  13844.         }
  13845.         cursor->base.state = &state->base;
  13846.  
  13847.         cursor->can_scale = false;
  13848.         cursor->max_downscale = 1;
  13849.         cursor->pipe = pipe;
  13850.         cursor->plane = pipe;
  13851.         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
  13852.         cursor->check_plane = intel_check_cursor_plane;
  13853.         cursor->commit_plane = intel_commit_cursor_plane;
  13854.         cursor->disable_plane = intel_disable_cursor_plane;
  13855.  
  13856.         drm_universal_plane_init(dev, &cursor->base, 0,
  13857.                                  &intel_plane_funcs,
  13858.                                  intel_cursor_formats,
  13859.                                  ARRAY_SIZE(intel_cursor_formats),
  13860.                                  DRM_PLANE_TYPE_CURSOR);
  13861.  
  13862.         if (INTEL_INFO(dev)->gen >= 4) {
  13863.                 if (!dev->mode_config.rotation_property)
  13864.                         dev->mode_config.rotation_property =
  13865.                                 drm_mode_create_rotation_property(dev,
  13866.                                                         BIT(DRM_ROTATE_0) |
  13867.                                                         BIT(DRM_ROTATE_180));
  13868.                 if (dev->mode_config.rotation_property)
  13869.                         drm_object_attach_property(&cursor->base.base,
  13870.                                 dev->mode_config.rotation_property,
  13871.                                 state->base.rotation);
  13872.         }
  13873.  
  13874.         if (INTEL_INFO(dev)->gen >=9)
  13875.                 state->scaler_id = -1;
  13876.  
  13877.         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
  13878.  
  13879.         return &cursor->base;
  13880. }
  13881.  
  13882. static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
  13883.         struct intel_crtc_state *crtc_state)
  13884. {
  13885.         int i;
  13886.         struct intel_scaler *intel_scaler;
  13887.         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
  13888.  
  13889.         for (i = 0; i < intel_crtc->num_scalers; i++) {
  13890.                 intel_scaler = &scaler_state->scalers[i];
  13891.                 intel_scaler->in_use = 0;
  13892.                 intel_scaler->mode = PS_SCALER_MODE_DYN;
  13893.         }
  13894.  
  13895.         scaler_state->scaler_id = -1;
  13896. }
  13897.  
  13898. static void intel_crtc_init(struct drm_device *dev, int pipe)
  13899. {
  13900.         struct drm_i915_private *dev_priv = dev->dev_private;
  13901.         struct intel_crtc *intel_crtc;
  13902.         struct intel_crtc_state *crtc_state = NULL;
  13903.         struct drm_plane *primary = NULL;
  13904.         struct drm_plane *cursor = NULL;
  13905.         int i, ret;
  13906.  
  13907.         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  13908.         if (intel_crtc == NULL)
  13909.                 return;
  13910.  
  13911.         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
  13912.         if (!crtc_state)
  13913.                 goto fail;
  13914.         intel_crtc->config = crtc_state;
  13915.         intel_crtc->base.state = &crtc_state->base;
  13916.         crtc_state->base.crtc = &intel_crtc->base;
  13917.  
  13918.         /* initialize shared scalers */
  13919.         if (INTEL_INFO(dev)->gen >= 9) {
  13920.                 if (pipe == PIPE_C)
  13921.                         intel_crtc->num_scalers = 1;
  13922.                 else
  13923.                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
  13924.  
  13925.                 skl_init_scalers(dev, intel_crtc, crtc_state);
  13926.         }
  13927.  
  13928.         primary = intel_primary_plane_create(dev, pipe);
  13929.         if (!primary)
  13930.                 goto fail;
  13931.  
  13932.         cursor = intel_cursor_plane_create(dev, pipe);
  13933.         if (!cursor)
  13934.                 goto fail;
  13935.  
  13936.         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
  13937.                                         cursor, &intel_crtc_funcs);
  13938.         if (ret)
  13939.                 goto fail;
  13940.  
  13941.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  13942.         for (i = 0; i < 256; i++) {
  13943.                 intel_crtc->lut_r[i] = i;
  13944.                 intel_crtc->lut_g[i] = i;
  13945.                 intel_crtc->lut_b[i] = i;
  13946.         }
  13947.  
  13948.         /*
  13949.          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
  13950.          * is hooked to pipe B. Hence we want plane A feeding pipe B.
  13951.          */
  13952.         intel_crtc->pipe = pipe;
  13953.         intel_crtc->plane = pipe;
  13954.         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
  13955.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  13956.                 intel_crtc->plane = !pipe;
  13957.         }
  13958.  
  13959.         intel_crtc->cursor_base = ~0;
  13960.         intel_crtc->cursor_cntl = ~0;
  13961.         intel_crtc->cursor_size = ~0;
  13962.  
  13963.         intel_crtc->wm.cxsr_allowed = true;
  13964.  
  13965.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  13966.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  13967.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  13968.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  13969.  
  13970.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  13971.  
  13972.         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
  13973.         return;
  13974.  
  13975. fail:
  13976.         if (primary)
  13977.                 drm_plane_cleanup(primary);
  13978.         if (cursor)
  13979.                 drm_plane_cleanup(cursor);
  13980.         kfree(crtc_state);
  13981.         kfree(intel_crtc);
  13982. }
  13983.  
  13984. enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
  13985. {
  13986.         struct drm_encoder *encoder = connector->base.encoder;
  13987.         struct drm_device *dev = connector->base.dev;
  13988.  
  13989.         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  13990.  
  13991.         if (!encoder || WARN_ON(!encoder->crtc))
  13992.                 return INVALID_PIPE;
  13993.  
  13994.         return to_intel_crtc(encoder->crtc)->pipe;
  13995. }
  13996.  
  13997. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  13998.                                 struct drm_file *file)
  13999. {
  14000.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  14001.         struct drm_crtc *drmmode_crtc;
  14002.         struct intel_crtc *crtc;
  14003.  
  14004.         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
  14005.  
  14006.         if (!drmmode_crtc) {
  14007.                 DRM_ERROR("no such CRTC id\n");
  14008.                 return -ENOENT;
  14009.         }
  14010.  
  14011.         crtc = to_intel_crtc(drmmode_crtc);
  14012.         pipe_from_crtc_id->pipe = crtc->pipe;
  14013.  
  14014.         return 0;
  14015. }
  14016.  
  14017. static int intel_encoder_clones(struct intel_encoder *encoder)
  14018. {
  14019.         struct drm_device *dev = encoder->base.dev;
  14020.         struct intel_encoder *source_encoder;
  14021.         int index_mask = 0;
  14022.         int entry = 0;
  14023.  
  14024.         for_each_intel_encoder(dev, source_encoder) {
  14025.                 if (encoders_cloneable(encoder, source_encoder))
  14026.                         index_mask |= (1 << entry);
  14027.  
  14028.                 entry++;
  14029.         }
  14030.  
  14031.         return index_mask;
  14032. }
  14033.  
  14034. static bool has_edp_a(struct drm_device *dev)
  14035. {
  14036.         struct drm_i915_private *dev_priv = dev->dev_private;
  14037.  
  14038.         if (!IS_MOBILE(dev))
  14039.                 return false;
  14040.  
  14041.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  14042.                 return false;
  14043.  
  14044.         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
  14045.                 return false;
  14046.  
  14047.         return true;
  14048. }
  14049.  
  14050. static bool intel_crt_present(struct drm_device *dev)
  14051. {
  14052.         struct drm_i915_private *dev_priv = dev->dev_private;
  14053.  
  14054.         if (INTEL_INFO(dev)->gen >= 9)
  14055.                 return false;
  14056.  
  14057.         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
  14058.                 return false;
  14059.  
  14060.         if (IS_CHERRYVIEW(dev))
  14061.                 return false;
  14062.  
  14063.         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
  14064.                 return false;
  14065.  
  14066.         return true;
  14067. }
  14068.  
  14069. static void intel_setup_outputs(struct drm_device *dev)
  14070. {
  14071.         struct drm_i915_private *dev_priv = dev->dev_private;
  14072.         struct intel_encoder *encoder;
  14073.         bool dpd_is_edp = false;
  14074.  
  14075.         intel_lvds_init(dev);
  14076.  
  14077.         if (intel_crt_present(dev))
  14078.                 intel_crt_init(dev);
  14079.  
  14080.         if (IS_BROXTON(dev)) {
  14081.                 /*
  14082.                  * FIXME: Broxton doesn't support port detection via the
  14083.                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
  14084.                  * detect the ports.
  14085.                  */
  14086.                 intel_ddi_init(dev, PORT_A);
  14087.                 intel_ddi_init(dev, PORT_B);
  14088.                 intel_ddi_init(dev, PORT_C);
  14089.         } else if (HAS_DDI(dev)) {
  14090.                 int found;
  14091.  
  14092.                 /*
  14093.                  * Haswell uses DDI functions to detect digital outputs.
  14094.                  * On SKL pre-D0 the strap isn't connected, so we assume
  14095.                  * it's there.
  14096.                  */
  14097.                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
  14098.                 /* WaIgnoreDDIAStrap: skl */
  14099.                 if (found || IS_SKYLAKE(dev))
  14100.                         intel_ddi_init(dev, PORT_A);
  14101.  
  14102.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  14103.                  * register */
  14104.                 found = I915_READ(SFUSE_STRAP);
  14105.  
  14106.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  14107.                         intel_ddi_init(dev, PORT_B);
  14108.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  14109.                         intel_ddi_init(dev, PORT_C);
  14110.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  14111.                         intel_ddi_init(dev, PORT_D);
  14112.                 /*
  14113.                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
  14114.                  */
  14115.                 if (IS_SKYLAKE(dev) &&
  14116.                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
  14117.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
  14118.                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
  14119.                         intel_ddi_init(dev, PORT_E);
  14120.  
  14121.         } else if (HAS_PCH_SPLIT(dev)) {
  14122.                 int found;
  14123.                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
  14124.  
  14125.                 if (has_edp_a(dev))
  14126.                         intel_dp_init(dev, DP_A, PORT_A);
  14127.  
  14128.                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  14129.                         /* PCH SDVOB multiplex with HDMIB */
  14130.                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
  14131.                         if (!found)
  14132.                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  14133.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  14134.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  14135.                 }
  14136.  
  14137.                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  14138.                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  14139.  
  14140.                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  14141.                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  14142.  
  14143.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  14144.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  14145.  
  14146.                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
  14147.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  14148.         } else if (IS_VALLEYVIEW(dev)) {
  14149.                 /*
  14150.                  * The DP_DETECTED bit is the latched state of the DDC
  14151.                  * SDA pin at boot. However since eDP doesn't require DDC
  14152.                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
  14153.                  * eDP ports may have been muxed to an alternate function.
  14154.                  * Thus we can't rely on the DP_DETECTED bit alone to detect
  14155.                  * eDP ports. Consult the VBT as well as DP_DETECTED to
  14156.                  * detect eDP ports.
  14157.                  */
  14158.                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
  14159.                     !intel_dp_is_edp(dev, PORT_B))
  14160.                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
  14161.                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
  14162.                     intel_dp_is_edp(dev, PORT_B))
  14163.                         intel_dp_init(dev, VLV_DP_B, PORT_B);
  14164.  
  14165.                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
  14166.                     !intel_dp_is_edp(dev, PORT_C))
  14167.                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
  14168.                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
  14169.                     intel_dp_is_edp(dev, PORT_C))
  14170.                         intel_dp_init(dev, VLV_DP_C, PORT_C);
  14171.  
  14172.                 if (IS_CHERRYVIEW(dev)) {
  14173.                         /* eDP not supported on port D, so don't check VBT */
  14174.                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
  14175.                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
  14176.                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
  14177.                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
  14178.                 }
  14179.  
  14180.                 intel_dsi_init(dev);
  14181.         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
  14182.                 bool found = false;
  14183.  
  14184.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14185.                         DRM_DEBUG_KMS("probing SDVOB\n");
  14186.                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  14187.                         if (!found && IS_G4X(dev)) {
  14188.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  14189.                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  14190.                         }
  14191.  
  14192.                         if (!found && IS_G4X(dev))
  14193.                                 intel_dp_init(dev, DP_B, PORT_B);
  14194.                 }
  14195.  
  14196.                 /* Before G4X SDVOC doesn't have its own detect register */
  14197.  
  14198.                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  14199.                         DRM_DEBUG_KMS("probing SDVOC\n");
  14200.                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  14201.                 }
  14202.  
  14203.                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  14204.  
  14205.                         if (IS_G4X(dev)) {
  14206.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  14207.                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  14208.                         }
  14209.                         if (IS_G4X(dev))
  14210.                                 intel_dp_init(dev, DP_C, PORT_C);
  14211.                 }
  14212.  
  14213.                 if (IS_G4X(dev) &&
  14214.                     (I915_READ(DP_D) & DP_DETECTED))
  14215.                         intel_dp_init(dev, DP_D, PORT_D);
  14216.         } else if (IS_GEN2(dev))
  14217.                 intel_dvo_init(dev);
  14218.  
  14219.         intel_psr_init(dev);
  14220.  
  14221.         for_each_intel_encoder(dev, encoder) {
  14222.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  14223.                 encoder->base.possible_clones =
  14224.                         intel_encoder_clones(encoder);
  14225.         }
  14226.  
  14227.         intel_init_pch_refclk(dev);
  14228.  
  14229.         drm_helper_move_panel_connectors_to_head(dev);
  14230. }
  14231.  
  14232. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  14233. {
  14234.         struct drm_device *dev = fb->dev;
  14235.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14236.  
  14237.         drm_framebuffer_cleanup(fb);
  14238.         mutex_lock(&dev->struct_mutex);
  14239.         WARN_ON(!intel_fb->obj->framebuffer_references--);
  14240.         drm_gem_object_unreference(&intel_fb->obj->base);
  14241.         mutex_unlock(&dev->struct_mutex);
  14242.         kfree(intel_fb);
  14243. }
  14244.  
  14245. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  14246.                                                 struct drm_file *file,
  14247.                                                 unsigned int *handle)
  14248. {
  14249.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14250.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14251.  
  14252.         if (obj->userptr.mm) {
  14253.                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
  14254.                 return -EINVAL;
  14255.         }
  14256.  
  14257.         return drm_gem_handle_create(file, &obj->base, handle);
  14258. }
  14259.  
  14260. static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
  14261.                                         struct drm_file *file,
  14262.                                         unsigned flags, unsigned color,
  14263.                                         struct drm_clip_rect *clips,
  14264.                                         unsigned num_clips)
  14265. {
  14266.         struct drm_device *dev = fb->dev;
  14267.         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  14268.         struct drm_i915_gem_object *obj = intel_fb->obj;
  14269.  
  14270.         mutex_lock(&dev->struct_mutex);
  14271.         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
  14272.         mutex_unlock(&dev->struct_mutex);
  14273.  
  14274.         return 0;
  14275. }
  14276.  
  14277. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  14278.         .destroy = intel_user_framebuffer_destroy,
  14279.         .create_handle = intel_user_framebuffer_create_handle,
  14280.         .dirty = intel_user_framebuffer_dirty,
  14281. };
  14282.  
  14283. static
  14284. u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
  14285.                          uint32_t pixel_format)
  14286. {
  14287.         u32 gen = INTEL_INFO(dev)->gen;
  14288.  
  14289.         if (gen >= 9) {
  14290.                 /* "The stride in bytes must not exceed the of the size of 8K
  14291.                  *  pixels and 32K bytes."
  14292.                  */
  14293.                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
  14294.         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
  14295.                 return 32*1024;
  14296.         } else if (gen >= 4) {
  14297.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14298.                         return 16*1024;
  14299.                 else
  14300.                         return 32*1024;
  14301.         } else if (gen >= 3) {
  14302.                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
  14303.                         return 8*1024;
  14304.                 else
  14305.                         return 16*1024;
  14306.         } else {
  14307.                 /* XXX DSPC is limited to 4k tiled */
  14308.                 return 8*1024;
  14309.         }
  14310. }
  14311.  
  14312. static int intel_framebuffer_init(struct drm_device *dev,
  14313.                                   struct intel_framebuffer *intel_fb,
  14314.                                   struct drm_mode_fb_cmd2 *mode_cmd,
  14315.                                   struct drm_i915_gem_object *obj)
  14316. {
  14317.         unsigned int aligned_height;
  14318.         int ret;
  14319.         u32 pitch_limit, stride_alignment;
  14320.  
  14321.         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  14322.  
  14323.         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
  14324.                 /* Enforce that fb modifier and tiling mode match, but only for
  14325.                  * X-tiled. This is needed for FBC. */
  14326.                 if (!!(obj->tiling_mode == I915_TILING_X) !=
  14327.                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
  14328.                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
  14329.                         return -EINVAL;
  14330.                 }
  14331.         } else {
  14332.                 if (obj->tiling_mode == I915_TILING_X)
  14333.                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
  14334.                 else if (obj->tiling_mode == I915_TILING_Y) {
  14335.                         DRM_DEBUG("No Y tiling for legacy addfb\n");
  14336.                         return -EINVAL;
  14337.                 }
  14338.         }
  14339.  
  14340.         /* Passed in modifier sanity checking. */
  14341.         switch (mode_cmd->modifier[0]) {
  14342.         case I915_FORMAT_MOD_Y_TILED:
  14343.         case I915_FORMAT_MOD_Yf_TILED:
  14344.                 if (INTEL_INFO(dev)->gen < 9) {
  14345.                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
  14346.                                   mode_cmd->modifier[0]);
  14347.                         return -EINVAL;
  14348.                 }
  14349.         case DRM_FORMAT_MOD_NONE:
  14350.         case I915_FORMAT_MOD_X_TILED:
  14351.                 break;
  14352.         default:
  14353.                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
  14354.                           mode_cmd->modifier[0]);
  14355.                 return -EINVAL;
  14356.         }
  14357.  
  14358.         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
  14359.                                                      mode_cmd->pixel_format);
  14360.         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
  14361.                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
  14362.                           mode_cmd->pitches[0], stride_alignment);
  14363.                 return -EINVAL;
  14364.         }
  14365.  
  14366.         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
  14367.                                            mode_cmd->pixel_format);
  14368.         if (mode_cmd->pitches[0] > pitch_limit) {
  14369.                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
  14370.                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
  14371.                           "tiled" : "linear",
  14372.                           mode_cmd->pitches[0], pitch_limit);
  14373.                 return -EINVAL;
  14374.         }
  14375.  
  14376.         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
  14377.             mode_cmd->pitches[0] != obj->stride) {
  14378.                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  14379.                           mode_cmd->pitches[0], obj->stride);
  14380.                 return -EINVAL;
  14381.         }
  14382.  
  14383.         /* Reject formats not supported by any plane early. */
  14384.         switch (mode_cmd->pixel_format) {
  14385.         case DRM_FORMAT_C8:
  14386.         case DRM_FORMAT_RGB565:
  14387.         case DRM_FORMAT_XRGB8888:
  14388.         case DRM_FORMAT_ARGB8888:
  14389.                 break;
  14390.         case DRM_FORMAT_XRGB1555:
  14391.                 if (INTEL_INFO(dev)->gen > 3) {
  14392.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14393.                                   drm_get_format_name(mode_cmd->pixel_format));
  14394.                         return -EINVAL;
  14395.                 }
  14396.                 break;
  14397.         case DRM_FORMAT_ABGR8888:
  14398.                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
  14399.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14400.                                   drm_get_format_name(mode_cmd->pixel_format));
  14401.                         return -EINVAL;
  14402.                 }
  14403.                 break;
  14404.         case DRM_FORMAT_XBGR8888:
  14405.         case DRM_FORMAT_XRGB2101010:
  14406.         case DRM_FORMAT_XBGR2101010:
  14407.                 if (INTEL_INFO(dev)->gen < 4) {
  14408.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14409.                                   drm_get_format_name(mode_cmd->pixel_format));
  14410.                         return -EINVAL;
  14411.                 }
  14412.                 break;
  14413.         case DRM_FORMAT_ABGR2101010:
  14414.                 if (!IS_VALLEYVIEW(dev)) {
  14415.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14416.                                   drm_get_format_name(mode_cmd->pixel_format));
  14417.                         return -EINVAL;
  14418.                 }
  14419.                 break;
  14420.         case DRM_FORMAT_YUYV:
  14421.         case DRM_FORMAT_UYVY:
  14422.         case DRM_FORMAT_YVYU:
  14423.         case DRM_FORMAT_VYUY:
  14424.                 if (INTEL_INFO(dev)->gen < 5) {
  14425.                         DRM_DEBUG("unsupported pixel format: %s\n",
  14426.                                   drm_get_format_name(mode_cmd->pixel_format));
  14427.                         return -EINVAL;
  14428.                 }
  14429.                 break;
  14430.         default:
  14431.                 DRM_DEBUG("unsupported pixel format: %s\n",
  14432.                           drm_get_format_name(mode_cmd->pixel_format));
  14433.                 return -EINVAL;
  14434.         }
  14435.  
  14436.         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  14437.         if (mode_cmd->offsets[0] != 0)
  14438.                 return -EINVAL;
  14439.  
  14440.         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
  14441.                                                mode_cmd->pixel_format,
  14442.                                                mode_cmd->modifier[0]);
  14443.         /* FIXME drm helper for size checks (especially planar formats)? */
  14444.         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
  14445.                 return -EINVAL;
  14446.  
  14447.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  14448.         intel_fb->obj = obj;
  14449.         intel_fb->obj->framebuffer_references++;
  14450.  
  14451.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  14452.         if (ret) {
  14453.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  14454.                 return ret;
  14455.         }
  14456.         kolibri_framebuffer_init(intel_fb);
  14457.         return 0;
  14458. }
  14459.  
  14460. static struct drm_framebuffer *
  14461. intel_user_framebuffer_create(struct drm_device *dev,
  14462.                               struct drm_file *filp,
  14463.                               struct drm_mode_fb_cmd2 *user_mode_cmd)
  14464. {
  14465.         struct drm_i915_gem_object *obj;
  14466.         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
  14467.  
  14468.         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  14469.                                                 mode_cmd.handles[0]));
  14470.         if (&obj->base == NULL)
  14471.                 return ERR_PTR(-ENOENT);
  14472.  
  14473.         return intel_framebuffer_create(dev, &mode_cmd, obj);
  14474. }
  14475.  
  14476. #ifndef CONFIG_DRM_FBDEV_EMULATION
  14477. static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
  14478. {
  14479. }
  14480. #endif
  14481.  
  14482. static const struct drm_mode_config_funcs intel_mode_funcs = {
  14483.         .fb_create = intel_user_framebuffer_create,
  14484.         .output_poll_changed = intel_fbdev_output_poll_changed,
  14485.         .atomic_check = intel_atomic_check,
  14486.         .atomic_commit = intel_atomic_commit,
  14487.         .atomic_state_alloc = intel_atomic_state_alloc,
  14488.         .atomic_state_clear = intel_atomic_state_clear,
  14489. };
  14490.  
  14491. /* Set up chip specific display functions */
  14492. static void intel_init_display(struct drm_device *dev)
  14493. {
  14494.         struct drm_i915_private *dev_priv = dev->dev_private;
  14495.  
  14496.         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  14497.                 dev_priv->display.find_dpll = g4x_find_best_dpll;
  14498.         else if (IS_CHERRYVIEW(dev))
  14499.                 dev_priv->display.find_dpll = chv_find_best_dpll;
  14500.         else if (IS_VALLEYVIEW(dev))
  14501.                 dev_priv->display.find_dpll = vlv_find_best_dpll;
  14502.         else if (IS_PINEVIEW(dev))
  14503.                 dev_priv->display.find_dpll = pnv_find_best_dpll;
  14504.         else
  14505.                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
  14506.  
  14507.         if (INTEL_INFO(dev)->gen >= 9) {
  14508.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14509.                 dev_priv->display.get_initial_plane_config =
  14510.                         skylake_get_initial_plane_config;
  14511.                 dev_priv->display.crtc_compute_clock =
  14512.                         haswell_crtc_compute_clock;
  14513.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14514.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14515.                 dev_priv->display.update_primary_plane =
  14516.                         skylake_update_primary_plane;
  14517.         } else if (HAS_DDI(dev)) {
  14518.                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  14519.                 dev_priv->display.get_initial_plane_config =
  14520.                         ironlake_get_initial_plane_config;
  14521.                 dev_priv->display.crtc_compute_clock =
  14522.                         haswell_crtc_compute_clock;
  14523.                 dev_priv->display.crtc_enable = haswell_crtc_enable;
  14524.                 dev_priv->display.crtc_disable = haswell_crtc_disable;
  14525.                 dev_priv->display.update_primary_plane =
  14526.                         ironlake_update_primary_plane;
  14527.         } else if (HAS_PCH_SPLIT(dev)) {
  14528.                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  14529.                 dev_priv->display.get_initial_plane_config =
  14530.                         ironlake_get_initial_plane_config;
  14531.                 dev_priv->display.crtc_compute_clock =
  14532.                         ironlake_crtc_compute_clock;
  14533.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  14534.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  14535.                 dev_priv->display.update_primary_plane =
  14536.                         ironlake_update_primary_plane;
  14537.         } else if (IS_VALLEYVIEW(dev)) {
  14538.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14539.                 dev_priv->display.get_initial_plane_config =
  14540.                         i9xx_get_initial_plane_config;
  14541.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14542.                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
  14543.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14544.                 dev_priv->display.update_primary_plane =
  14545.                         i9xx_update_primary_plane;
  14546.         } else {
  14547.                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  14548.                 dev_priv->display.get_initial_plane_config =
  14549.                         i9xx_get_initial_plane_config;
  14550.                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
  14551.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  14552.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  14553.                 dev_priv->display.update_primary_plane =
  14554.                         i9xx_update_primary_plane;
  14555.         }
  14556.  
  14557.         /* Returns the core display clock speed */
  14558.         if (IS_SKYLAKE(dev))
  14559.                 dev_priv->display.get_display_clock_speed =
  14560.                         skylake_get_display_clock_speed;
  14561.         else if (IS_BROXTON(dev))
  14562.                 dev_priv->display.get_display_clock_speed =
  14563.                         broxton_get_display_clock_speed;
  14564.         else if (IS_BROADWELL(dev))
  14565.                 dev_priv->display.get_display_clock_speed =
  14566.                         broadwell_get_display_clock_speed;
  14567.         else if (IS_HASWELL(dev))
  14568.                 dev_priv->display.get_display_clock_speed =
  14569.                         haswell_get_display_clock_speed;
  14570.         else if (IS_VALLEYVIEW(dev))
  14571.                 dev_priv->display.get_display_clock_speed =
  14572.                         valleyview_get_display_clock_speed;
  14573.         else if (IS_GEN5(dev))
  14574.                 dev_priv->display.get_display_clock_speed =
  14575.                         ilk_get_display_clock_speed;
  14576.         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
  14577.                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
  14578.                 dev_priv->display.get_display_clock_speed =
  14579.                         i945_get_display_clock_speed;
  14580.         else if (IS_GM45(dev))
  14581.                 dev_priv->display.get_display_clock_speed =
  14582.                         gm45_get_display_clock_speed;
  14583.         else if (IS_CRESTLINE(dev))
  14584.                 dev_priv->display.get_display_clock_speed =
  14585.                         i965gm_get_display_clock_speed;
  14586.         else if (IS_PINEVIEW(dev))
  14587.                 dev_priv->display.get_display_clock_speed =
  14588.                         pnv_get_display_clock_speed;
  14589.         else if (IS_G33(dev) || IS_G4X(dev))
  14590.                 dev_priv->display.get_display_clock_speed =
  14591.                         g33_get_display_clock_speed;
  14592.         else if (IS_I915G(dev))
  14593.                 dev_priv->display.get_display_clock_speed =
  14594.                         i915_get_display_clock_speed;
  14595.         else if (IS_I945GM(dev) || IS_845G(dev))
  14596.                 dev_priv->display.get_display_clock_speed =
  14597.                         i9xx_misc_get_display_clock_speed;
  14598.         else if (IS_PINEVIEW(dev))
  14599.                 dev_priv->display.get_display_clock_speed =
  14600.                         pnv_get_display_clock_speed;
  14601.         else if (IS_I915GM(dev))
  14602.                 dev_priv->display.get_display_clock_speed =
  14603.                         i915gm_get_display_clock_speed;
  14604.         else if (IS_I865G(dev))
  14605.                 dev_priv->display.get_display_clock_speed =
  14606.                         i865_get_display_clock_speed;
  14607.         else if (IS_I85X(dev))
  14608.                 dev_priv->display.get_display_clock_speed =
  14609.                         i85x_get_display_clock_speed;
  14610.         else { /* 830 */
  14611.                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
  14612.                 dev_priv->display.get_display_clock_speed =
  14613.                         i830_get_display_clock_speed;
  14614.         }
  14615.  
  14616.         if (IS_GEN5(dev)) {
  14617.                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  14618.         } else if (IS_GEN6(dev)) {
  14619.                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  14620.         } else if (IS_IVYBRIDGE(dev)) {
  14621.                 /* FIXME: detect B0+ stepping and use auto training */
  14622.                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  14623.         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  14624.                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  14625.                 if (IS_BROADWELL(dev)) {
  14626.                         dev_priv->display.modeset_commit_cdclk =
  14627.                                 broadwell_modeset_commit_cdclk;
  14628.                         dev_priv->display.modeset_calc_cdclk =
  14629.                                 broadwell_modeset_calc_cdclk;
  14630.                 }
  14631.         } else if (IS_VALLEYVIEW(dev)) {
  14632.                 dev_priv->display.modeset_commit_cdclk =
  14633.                         valleyview_modeset_commit_cdclk;
  14634.                 dev_priv->display.modeset_calc_cdclk =
  14635.                         valleyview_modeset_calc_cdclk;
  14636.         } else if (IS_BROXTON(dev)) {
  14637.                 dev_priv->display.modeset_commit_cdclk =
  14638.                         broxton_modeset_commit_cdclk;
  14639.                 dev_priv->display.modeset_calc_cdclk =
  14640.                         broxton_modeset_calc_cdclk;
  14641.         }
  14642.  
  14643.         switch (INTEL_INFO(dev)->gen) {
  14644.         case 2:
  14645.                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
  14646.                 break;
  14647.  
  14648.         case 3:
  14649.                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
  14650.                 break;
  14651.  
  14652.         case 4:
  14653.         case 5:
  14654.                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
  14655.                 break;
  14656.  
  14657.         case 6:
  14658.                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
  14659.                 break;
  14660.         case 7:
  14661.         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
  14662.                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
  14663.                 break;
  14664.         case 9:
  14665.                 /* Drop through - unsupported since execlist only. */
  14666.         default:
  14667.                 /* Default just returns -ENODEV to indicate unsupported */
  14668.                 dev_priv->display.queue_flip = intel_default_queue_flip;
  14669.         }
  14670.  
  14671.         mutex_init(&dev_priv->pps_mutex);
  14672. }
  14673.  
  14674. /*
  14675.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  14676.  * resume, or other times.  This quirk makes sure that's the case for
  14677.  * affected systems.
  14678.  */
  14679. static void quirk_pipea_force(struct drm_device *dev)
  14680. {
  14681.         struct drm_i915_private *dev_priv = dev->dev_private;
  14682.  
  14683.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  14684.         DRM_INFO("applying pipe a force quirk\n");
  14685. }
  14686.  
  14687. static void quirk_pipeb_force(struct drm_device *dev)
  14688. {
  14689.         struct drm_i915_private *dev_priv = dev->dev_private;
  14690.  
  14691.         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
  14692.         DRM_INFO("applying pipe b force quirk\n");
  14693. }
  14694.  
  14695. /*
  14696.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  14697.  */
  14698. static void quirk_ssc_force_disable(struct drm_device *dev)
  14699. {
  14700.         struct drm_i915_private *dev_priv = dev->dev_private;
  14701.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  14702.         DRM_INFO("applying lvds SSC disable quirk\n");
  14703. }
  14704.  
  14705. /*
  14706.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  14707.  * brightness value
  14708.  */
  14709. static void quirk_invert_brightness(struct drm_device *dev)
  14710. {
  14711.         struct drm_i915_private *dev_priv = dev->dev_private;
  14712.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  14713.         DRM_INFO("applying inverted panel brightness quirk\n");
  14714. }
  14715.  
  14716. /* Some VBT's incorrectly indicate no backlight is present */
  14717. static void quirk_backlight_present(struct drm_device *dev)
  14718. {
  14719.         struct drm_i915_private *dev_priv = dev->dev_private;
  14720.         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
  14721.         DRM_INFO("applying backlight present quirk\n");
  14722. }
  14723.  
  14724. struct intel_quirk {
  14725.         int device;
  14726.         int subsystem_vendor;
  14727.         int subsystem_device;
  14728.         void (*hook)(struct drm_device *dev);
  14729. };
  14730.  
  14731. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  14732. struct intel_dmi_quirk {
  14733.         void (*hook)(struct drm_device *dev);
  14734.         const struct dmi_system_id (*dmi_id_list)[];
  14735. };
  14736.  
  14737. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  14738. {
  14739.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  14740.         return 1;
  14741. }
  14742.  
  14743. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  14744.         {
  14745.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  14746.                         {
  14747.                                 .callback = intel_dmi_reverse_brightness,
  14748.                                 .ident = "NCR Corporation",
  14749.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  14750.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  14751.                                 },
  14752.                         },
  14753.                         { }  /* terminating entry */
  14754.                 },
  14755.                 .hook = quirk_invert_brightness,
  14756.         },
  14757. };
  14758.  
  14759. static struct intel_quirk intel_quirks[] = {
  14760.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  14761.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  14762.  
  14763.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  14764.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  14765.  
  14766.         /* 830 needs to leave pipe A & dpll A up */
  14767.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  14768.  
  14769.         /* 830 needs to leave pipe B & dpll B up */
  14770.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
  14771.  
  14772.         /* Lenovo U160 cannot use SSC on LVDS */
  14773.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  14774.  
  14775.         /* Sony Vaio Y cannot use SSC on LVDS */
  14776.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  14777.  
  14778.         /* Acer Aspire 5734Z must invert backlight brightness */
  14779.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  14780.  
  14781.         /* Acer/eMachines G725 */
  14782.         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  14783.  
  14784.         /* Acer/eMachines e725 */
  14785.         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  14786.  
  14787.         /* Acer/Packard Bell NCL20 */
  14788.         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  14789.  
  14790.         /* Acer Aspire 4736Z */
  14791.         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  14792.  
  14793.         /* Acer Aspire 5336 */
  14794.         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
  14795.  
  14796.         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
  14797.         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
  14798.  
  14799.         /* Acer C720 Chromebook (Core i3 4005U) */
  14800.         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
  14801.  
  14802.         /* Apple Macbook 2,1 (Core 2 T7400) */
  14803.         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
  14804.  
  14805.         /* Apple Macbook 4,1 */
  14806.         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
  14807.  
  14808.         /* Toshiba CB35 Chromebook (Celeron 2955U) */
  14809.         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
  14810.  
  14811.         /* HP Chromebook 14 (Celeron 2955U) */
  14812.         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
  14813.  
  14814.         /* Dell Chromebook 11 */
  14815.         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
  14816.  
  14817.         /* Dell Chromebook 11 (2015 version) */
  14818.         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
  14819. };
  14820.  
  14821. static void intel_init_quirks(struct drm_device *dev)
  14822. {
  14823.         struct pci_dev *d = dev->pdev;
  14824.         int i;
  14825.  
  14826.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  14827.                 struct intel_quirk *q = &intel_quirks[i];
  14828.  
  14829.                 if (d->device == q->device &&
  14830.                     (d->subsystem_vendor == q->subsystem_vendor ||
  14831.                      q->subsystem_vendor == PCI_ANY_ID) &&
  14832.                     (d->subsystem_device == q->subsystem_device ||
  14833.                      q->subsystem_device == PCI_ANY_ID))
  14834.                         q->hook(dev);
  14835.         }
  14836.         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  14837.                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  14838.                         intel_dmi_quirks[i].hook(dev);
  14839.         }
  14840. }
  14841.  
  14842. /* Disable the VGA plane that we never use */
  14843. static void i915_disable_vga(struct drm_device *dev)
  14844. {
  14845.         struct drm_i915_private *dev_priv = dev->dev_private;
  14846.         u8 sr1;
  14847.         u32 vga_reg = i915_vgacntrl_reg(dev);
  14848.  
  14849.         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
  14850. //      vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  14851.         outb(SR01, VGA_SR_INDEX);
  14852.         sr1 = inb(VGA_SR_DATA);
  14853.         outb(sr1 | 1<<5, VGA_SR_DATA);
  14854. //      vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  14855.         udelay(300);
  14856.  
  14857.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  14858.         POSTING_READ(vga_reg);
  14859. }
  14860.  
  14861. void intel_modeset_init_hw(struct drm_device *dev)
  14862. {
  14863.         intel_update_cdclk(dev);
  14864.         intel_prepare_ddi(dev);
  14865.         intel_init_clock_gating(dev);
  14866.         intel_enable_gt_powersave(dev);
  14867. }
  14868.  
  14869. void intel_modeset_init(struct drm_device *dev)
  14870. {
  14871.         struct drm_i915_private *dev_priv = dev->dev_private;
  14872.         int sprite, ret;
  14873.         enum pipe pipe;
  14874.         struct intel_crtc *crtc;
  14875.  
  14876.         drm_mode_config_init(dev);
  14877.  
  14878.         dev->mode_config.min_width = 0;
  14879.         dev->mode_config.min_height = 0;
  14880.  
  14881.         dev->mode_config.preferred_depth = 24;
  14882.         dev->mode_config.prefer_shadow = 1;
  14883.  
  14884.         dev->mode_config.allow_fb_modifiers = true;
  14885.  
  14886.         dev->mode_config.funcs = &intel_mode_funcs;
  14887.  
  14888.         intel_init_quirks(dev);
  14889.  
  14890.         intel_init_pm(dev);
  14891.  
  14892.         if (INTEL_INFO(dev)->num_pipes == 0)
  14893.                 return;
  14894.  
  14895.         /*
  14896.          * There may be no VBT; and if the BIOS enabled SSC we can
  14897.          * just keep using it to avoid unnecessary flicker.  Whereas if the
  14898.          * BIOS isn't using it, don't assume it will work even if the VBT
  14899.          * indicates as much.
  14900.          */
  14901.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  14902.                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
  14903.                                             DREF_SSC1_ENABLE);
  14904.  
  14905.                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
  14906.                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
  14907.                                      bios_lvds_use_ssc ? "en" : "dis",
  14908.                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
  14909.                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
  14910.                 }
  14911.         }
  14912.  
  14913.         intel_init_display(dev);
  14914.  
  14915.         if (IS_GEN2(dev)) {
  14916.                 dev->mode_config.max_width = 2048;
  14917.                 dev->mode_config.max_height = 2048;
  14918.         } else if (IS_GEN3(dev)) {
  14919.                 dev->mode_config.max_width = 4096;
  14920.                 dev->mode_config.max_height = 4096;
  14921.         } else {
  14922.                 dev->mode_config.max_width = 8192;
  14923.                 dev->mode_config.max_height = 8192;
  14924.         }
  14925.  
  14926.         if (IS_GEN2(dev)) {
  14927.                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
  14928.                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
  14929.         } else {
  14930.                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
  14931.                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
  14932.         }
  14933.  
  14934.         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  14935.  
  14936.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  14937.                       INTEL_INFO(dev)->num_pipes,
  14938.                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  14939.  
  14940.         for_each_pipe(dev_priv, pipe) {
  14941.                 intel_crtc_init(dev, pipe);
  14942.                 for_each_sprite(dev_priv, pipe, sprite) {
  14943.                         ret = intel_plane_init(dev, pipe, sprite);
  14944.                         if (ret)
  14945.                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  14946.                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
  14947.                 }
  14948.         }
  14949.  
  14950.         intel_update_czclk(dev_priv);
  14951.         intel_update_cdclk(dev);
  14952.  
  14953.         intel_shared_dpll_init(dev);
  14954.  
  14955.         /* Just disable it once at startup */
  14956.         i915_disable_vga(dev);
  14957.         intel_setup_outputs(dev);
  14958.  
  14959.         /* Just in case the BIOS is doing something questionable. */
  14960.         intel_fbc_disable(dev_priv);
  14961.  
  14962.         drm_modeset_lock_all(dev);
  14963.         intel_modeset_setup_hw_state(dev);
  14964.         drm_modeset_unlock_all(dev);
  14965.  
  14966.         for_each_intel_crtc(dev, crtc) {
  14967.                 struct intel_initial_plane_config plane_config = {};
  14968.  
  14969.                 if (!crtc->active)
  14970.                         continue;
  14971.  
  14972.                 /*
  14973.                  * Note that reserving the BIOS fb up front prevents us
  14974.                  * from stuffing other stolen allocations like the ring
  14975.                  * on top.  This prevents some ugliness at boot time, and
  14976.                  * can even allow for smooth boot transitions if the BIOS
  14977.                  * fb is large enough for the active pipe configuration.
  14978.                  */
  14979.                 dev_priv->display.get_initial_plane_config(crtc,
  14980.                                                            &plane_config);
  14981.  
  14982.                 /*
  14983.                  * If the fb is shared between multiple heads, we'll
  14984.                  * just get the first one.
  14985.                  */
  14986.                 intel_find_initial_plane_obj(crtc, &plane_config);
  14987.         }
  14988. }
  14989.  
  14990. static void intel_enable_pipe_a(struct drm_device *dev)
  14991. {
  14992.         struct intel_connector *connector;
  14993.         struct drm_connector *crt = NULL;
  14994.         struct intel_load_detect_pipe load_detect_temp;
  14995.         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
  14996.  
  14997.         /* We can't just switch on the pipe A, we need to set things up with a
  14998.          * proper mode and output configuration. As a gross hack, enable pipe A
  14999.          * by enabling the load detect pipe once. */
  15000.         for_each_intel_connector(dev, connector) {
  15001.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  15002.                         crt = &connector->base;
  15003.                         break;
  15004.                 }
  15005.         }
  15006.  
  15007.         if (!crt)
  15008.                 return;
  15009.  
  15010.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
  15011.                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
  15012. }
  15013.  
  15014. static bool
  15015. intel_check_plane_mapping(struct intel_crtc *crtc)
  15016. {
  15017.         struct drm_device *dev = crtc->base.dev;
  15018.         struct drm_i915_private *dev_priv = dev->dev_private;
  15019.         u32 val;
  15020.  
  15021.         if (INTEL_INFO(dev)->num_pipes == 1)
  15022.                 return true;
  15023.  
  15024.         val = I915_READ(DSPCNTR(!crtc->plane));
  15025.  
  15026.         if ((val & DISPLAY_PLANE_ENABLE) &&
  15027.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  15028.                 return false;
  15029.  
  15030.         return true;
  15031. }
  15032.  
  15033. static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
  15034. {
  15035.         struct drm_device *dev = crtc->base.dev;
  15036.         struct intel_encoder *encoder;
  15037.  
  15038.         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15039.                 return true;
  15040.  
  15041.         return false;
  15042. }
  15043.  
  15044. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  15045. {
  15046.         struct drm_device *dev = crtc->base.dev;
  15047.         struct drm_i915_private *dev_priv = dev->dev_private;
  15048.         u32 reg;
  15049.  
  15050.         /* Clear any frame start delays used for debugging left by the BIOS */
  15051.         reg = PIPECONF(crtc->config->cpu_transcoder);
  15052.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  15053.  
  15054.         /* restore vblank interrupts to correct state */
  15055.         drm_crtc_vblank_reset(&crtc->base);
  15056.         if (crtc->active) {
  15057.                 struct intel_plane *plane;
  15058.  
  15059.                 drm_crtc_vblank_on(&crtc->base);
  15060.  
  15061.                 /* Disable everything but the primary plane */
  15062.                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
  15063.                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  15064.                                 continue;
  15065.  
  15066.                         plane->disable_plane(&plane->base, &crtc->base);
  15067.                 }
  15068.         }
  15069.  
  15070.         /* We need to sanitize the plane -> pipe mapping first because this will
  15071.          * disable the crtc (and hence change the state) if it is wrong. Note
  15072.          * that gen4+ has a fixed plane -> pipe mapping.  */
  15073.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  15074.                 bool plane;
  15075.  
  15076.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  15077.                               crtc->base.base.id);
  15078.  
  15079.                 /* Pipe has the wrong plane attached and the plane is active.
  15080.                  * Temporarily change the plane mapping and disable everything
  15081.                  * ...  */
  15082.                 plane = crtc->plane;
  15083.                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
  15084.                 crtc->plane = !plane;
  15085.                 intel_crtc_disable_noatomic(&crtc->base);
  15086.                 crtc->plane = plane;
  15087.         }
  15088.  
  15089.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  15090.             crtc->pipe == PIPE_A && !crtc->active) {
  15091.                 /* BIOS forgot to enable pipe A, this mostly happens after
  15092.                  * resume. Force-enable the pipe to fix this, the update_dpms
  15093.                  * call below we restore the pipe to the right state, but leave
  15094.                  * the required bits on. */
  15095.                 intel_enable_pipe_a(dev);
  15096.         }
  15097.  
  15098.         /* Adjust the state of the output pipe according to whether we
  15099.          * have active connectors/encoders. */
  15100.         if (!intel_crtc_has_encoders(crtc))
  15101.                 intel_crtc_disable_noatomic(&crtc->base);
  15102.  
  15103.         if (crtc->active != crtc->base.state->active) {
  15104.                 struct intel_encoder *encoder;
  15105.  
  15106.                 /* This can happen either due to bugs in the get_hw_state
  15107.                  * functions or because of calls to intel_crtc_disable_noatomic,
  15108.                  * or because the pipe is force-enabled due to the
  15109.                  * pipe A quirk. */
  15110.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  15111.                               crtc->base.base.id,
  15112.                               crtc->base.state->enable ? "enabled" : "disabled",
  15113.                               crtc->active ? "enabled" : "disabled");
  15114.  
  15115.                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
  15116.                 crtc->base.state->active = crtc->active;
  15117.                 crtc->base.enabled = crtc->active;
  15118.  
  15119.                 /* Because we only establish the connector -> encoder ->
  15120.                  * crtc links if something is active, this means the
  15121.                  * crtc is now deactivated. Break the links. connector
  15122.                  * -> encoder links are only establish when things are
  15123.                  *  actually up, hence no need to break them. */
  15124.                 WARN_ON(crtc->active);
  15125.  
  15126.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  15127.                         encoder->base.crtc = NULL;
  15128.         }
  15129.  
  15130.         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
  15131.                 /*
  15132.                  * We start out with underrun reporting disabled to avoid races.
  15133.                  * For correct bookkeeping mark this on active crtcs.
  15134.                  *
  15135.                  * Also on gmch platforms we dont have any hardware bits to
  15136.                  * disable the underrun reporting. Which means we need to start
  15137.                  * out with underrun reporting disabled also on inactive pipes,
  15138.                  * since otherwise we'll complain about the garbage we read when
  15139.                  * e.g. coming up after runtime pm.
  15140.                  *
  15141.                  * No protection against concurrent access is required - at
  15142.                  * worst a fifo underrun happens which also sets this to false.
  15143.                  */
  15144.                 crtc->cpu_fifo_underrun_disabled = true;
  15145.                 crtc->pch_fifo_underrun_disabled = true;
  15146.         }
  15147. }
  15148.  
  15149. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  15150. {
  15151.         struct intel_connector *connector;
  15152.         struct drm_device *dev = encoder->base.dev;
  15153.         bool active = false;
  15154.  
  15155.         /* We need to check both for a crtc link (meaning that the
  15156.          * encoder is active and trying to read from a pipe) and the
  15157.          * pipe itself being active. */
  15158.         bool has_active_crtc = encoder->base.crtc &&
  15159.                 to_intel_crtc(encoder->base.crtc)->active;
  15160.  
  15161.         for_each_intel_connector(dev, connector) {
  15162.                 if (connector->base.encoder != &encoder->base)
  15163.                         continue;
  15164.  
  15165.                 active = true;
  15166.                 break;
  15167.         }
  15168.  
  15169.         if (active && !has_active_crtc) {
  15170.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  15171.                               encoder->base.base.id,
  15172.                               encoder->base.name);
  15173.  
  15174.                 /* Connector is active, but has no active pipe. This is
  15175.                  * fallout from our resume register restoring. Disable
  15176.                  * the encoder manually again. */
  15177.                 if (encoder->base.crtc) {
  15178.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  15179.                                       encoder->base.base.id,
  15180.                                       encoder->base.name);
  15181.                         encoder->disable(encoder);
  15182.                         if (encoder->post_disable)
  15183.                                 encoder->post_disable(encoder);
  15184.                 }
  15185.                 encoder->base.crtc = NULL;
  15186.  
  15187.                 /* Inconsistent output/port/pipe state happens presumably due to
  15188.                  * a bug in one of the get_hw_state functions. Or someplace else
  15189.                  * in our code, like the register restore mess on resume. Clamp
  15190.                  * things to off as a safer default. */
  15191.                 for_each_intel_connector(dev, connector) {
  15192.                         if (connector->encoder != encoder)
  15193.                                 continue;
  15194.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15195.                         connector->base.encoder = NULL;
  15196.                 }
  15197.         }
  15198.         /* Enabled encoders without active connectors will be fixed in
  15199.          * the crtc fixup. */
  15200. }
  15201.  
  15202. void i915_redisable_vga_power_on(struct drm_device *dev)
  15203. {
  15204.         struct drm_i915_private *dev_priv = dev->dev_private;
  15205.         u32 vga_reg = i915_vgacntrl_reg(dev);
  15206.  
  15207.         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
  15208.                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  15209.                 i915_disable_vga(dev);
  15210.         }
  15211. }
  15212.  
  15213. void i915_redisable_vga(struct drm_device *dev)
  15214. {
  15215.         struct drm_i915_private *dev_priv = dev->dev_private;
  15216.  
  15217.         /* This function can be called both from intel_modeset_setup_hw_state or
  15218.          * at a very early point in our resume sequence, where the power well
  15219.          * structures are not yet restored. Since this function is at a very
  15220.          * paranoid "someone might have enabled VGA while we were not looking"
  15221.          * level, just check if the power well is enabled instead of trying to
  15222.          * follow the "don't touch the power well if we don't need it" policy
  15223.          * the rest of the driver uses. */
  15224.         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
  15225.                 return;
  15226.  
  15227.         i915_redisable_vga_power_on(dev);
  15228. }
  15229.  
  15230. static bool primary_get_hw_state(struct intel_plane *plane)
  15231. {
  15232.         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  15233.  
  15234.         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
  15235. }
  15236.  
  15237. /* FIXME read out full plane state for all planes */
  15238. static void readout_plane_state(struct intel_crtc *crtc)
  15239. {
  15240.         struct drm_plane *primary = crtc->base.primary;
  15241.         struct intel_plane_state *plane_state =
  15242.                 to_intel_plane_state(primary->state);
  15243.  
  15244.         plane_state->visible =
  15245.                 primary_get_hw_state(to_intel_plane(primary));
  15246.  
  15247.         if (plane_state->visible)
  15248.                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
  15249. }
  15250.  
  15251. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  15252. {
  15253.         struct drm_i915_private *dev_priv = dev->dev_private;
  15254.         enum pipe pipe;
  15255.         struct intel_crtc *crtc;
  15256.         struct intel_encoder *encoder;
  15257.         struct intel_connector *connector;
  15258.         int i;
  15259.  
  15260.         for_each_intel_crtc(dev, crtc) {
  15261.                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
  15262.                 memset(crtc->config, 0, sizeof(*crtc->config));
  15263.                 crtc->config->base.crtc = &crtc->base;
  15264.  
  15265.                 crtc->active = dev_priv->display.get_pipe_config(crtc,
  15266.                                                                  crtc->config);
  15267.  
  15268.                 crtc->base.state->active = crtc->active;
  15269.                 crtc->base.enabled = crtc->active;
  15270.  
  15271.                 readout_plane_state(crtc);
  15272.  
  15273.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  15274.                               crtc->base.base.id,
  15275.                               crtc->active ? "enabled" : "disabled");
  15276.         }
  15277.  
  15278.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15279.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15280.  
  15281.                 pll->on = pll->get_hw_state(dev_priv, pll,
  15282.                                             &pll->config.hw_state);
  15283.                 pll->active = 0;
  15284.                 pll->config.crtc_mask = 0;
  15285.                 for_each_intel_crtc(dev, crtc) {
  15286.                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
  15287.                                 pll->active++;
  15288.                                 pll->config.crtc_mask |= 1 << crtc->pipe;
  15289.                         }
  15290.                 }
  15291.  
  15292.                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
  15293.                               pll->name, pll->config.crtc_mask, pll->on);
  15294.  
  15295.                 if (pll->config.crtc_mask)
  15296.                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  15297.         }
  15298.  
  15299.         for_each_intel_encoder(dev, encoder) {
  15300.                 pipe = 0;
  15301.  
  15302.                 if (encoder->get_hw_state(encoder, &pipe)) {
  15303.                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15304.                         encoder->base.crtc = &crtc->base;
  15305.                         encoder->get_config(encoder, crtc->config);
  15306.                 } else {
  15307.                         encoder->base.crtc = NULL;
  15308.                 }
  15309.  
  15310.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
  15311.                               encoder->base.base.id,
  15312.                               encoder->base.name,
  15313.                               encoder->base.crtc ? "enabled" : "disabled",
  15314.                               pipe_name(pipe));
  15315.         }
  15316.  
  15317.         for_each_intel_connector(dev, connector) {
  15318.                 if (connector->get_hw_state(connector)) {
  15319.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  15320.                         connector->base.encoder = &connector->encoder->base;
  15321.                 } else {
  15322.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  15323.                         connector->base.encoder = NULL;
  15324.                 }
  15325.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  15326.                               connector->base.base.id,
  15327.                               connector->base.name,
  15328.                               connector->base.encoder ? "enabled" : "disabled");
  15329.         }
  15330.  
  15331.         for_each_intel_crtc(dev, crtc) {
  15332.                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
  15333.  
  15334.                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
  15335.                 if (crtc->base.state->active) {
  15336.                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
  15337.                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
  15338.                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
  15339.  
  15340.                         /*
  15341.                          * The initial mode needs to be set in order to keep
  15342.                          * the atomic core happy. It wants a valid mode if the
  15343.                          * crtc's enabled, so we do the above call.
  15344.                          *
  15345.                          * At this point some state updated by the connectors
  15346.                          * in their ->detect() callback has not run yet, so
  15347.                          * no recalculation can be done yet.
  15348.                          *
  15349.                          * Even if we could do a recalculation and modeset
  15350.                          * right now it would cause a double modeset if
  15351.                          * fbdev or userspace chooses a different initial mode.
  15352.                          *
  15353.                          * If that happens, someone indicated they wanted a
  15354.                          * mode change, which means it's safe to do a full
  15355.                          * recalculation.
  15356.                          */
  15357.                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
  15358.  
  15359.                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
  15360.                         update_scanline_offset(crtc);
  15361.                 }
  15362.         }
  15363. }
  15364.  
  15365. /* Scan out the current hw modeset state,
  15366.  * and sanitizes it to the current state
  15367.  */
  15368. static void
  15369. intel_modeset_setup_hw_state(struct drm_device *dev)
  15370. {
  15371.         struct drm_i915_private *dev_priv = dev->dev_private;
  15372.         enum pipe pipe;
  15373.         struct intel_crtc *crtc;
  15374.         struct intel_encoder *encoder;
  15375.         int i;
  15376.  
  15377.         intel_modeset_readout_hw_state(dev);
  15378.  
  15379.         /* HW state is read out, now we need to sanitize this mess. */
  15380.         for_each_intel_encoder(dev, encoder) {
  15381.                 intel_sanitize_encoder(encoder);
  15382.         }
  15383.  
  15384.         for_each_pipe(dev_priv, pipe) {
  15385.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  15386.                 intel_sanitize_crtc(crtc);
  15387.                 intel_dump_pipe_config(crtc, crtc->config,
  15388.                                        "[setup_hw_state]");
  15389.         }
  15390.  
  15391.         intel_modeset_update_connector_atomic_state(dev);
  15392.  
  15393.         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  15394.                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  15395.  
  15396.                 if (!pll->on || pll->active)
  15397.                         continue;
  15398.  
  15399.                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  15400.  
  15401.                 pll->disable(dev_priv, pll);
  15402.                 pll->on = false;
  15403.         }
  15404.  
  15405.         if (IS_VALLEYVIEW(dev))
  15406.                 vlv_wm_get_hw_state(dev);
  15407.         else if (IS_GEN9(dev))
  15408.                 skl_wm_get_hw_state(dev);
  15409.         else if (HAS_PCH_SPLIT(dev))
  15410.                 ilk_wm_get_hw_state(dev);
  15411.  
  15412.         for_each_intel_crtc(dev, crtc) {
  15413.                 unsigned long put_domains;
  15414.  
  15415.                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
  15416.                 if (WARN_ON(put_domains))
  15417.                         modeset_put_power_domains(dev_priv, put_domains);
  15418.         }
  15419.         intel_display_set_init_power(dev_priv, false);
  15420. }
  15421.  
  15422. void intel_display_resume(struct drm_device *dev)
  15423. {
  15424.         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
  15425.         struct intel_connector *conn;
  15426.         struct intel_plane *plane;
  15427.         struct drm_crtc *crtc;
  15428.         int ret;
  15429.  
  15430.         if (!state)
  15431.                 return;
  15432.  
  15433.         state->acquire_ctx = dev->mode_config.acquire_ctx;
  15434.  
  15435.         /* preserve complete old state, including dpll */
  15436.         intel_atomic_get_shared_dpll_state(state);
  15437.  
  15438.         for_each_crtc(dev, crtc) {
  15439.                 struct drm_crtc_state *crtc_state =
  15440.                         drm_atomic_get_crtc_state(state, crtc);
  15441.  
  15442.                 ret = PTR_ERR_OR_ZERO(crtc_state);
  15443.                 if (ret)
  15444.                         goto err;
  15445.  
  15446.                 /* force a restore */
  15447.                 crtc_state->mode_changed = true;
  15448.         }
  15449.  
  15450.         for_each_intel_plane(dev, plane) {
  15451.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
  15452.                 if (ret)
  15453.                         goto err;
  15454.         }
  15455.  
  15456.         for_each_intel_connector(dev, conn) {
  15457.                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
  15458.                 if (ret)
  15459.                         goto err;
  15460.         }
  15461.  
  15462.         intel_modeset_setup_hw_state(dev);
  15463.  
  15464.         i915_redisable_vga(dev);
  15465.         ret = drm_atomic_commit(state);
  15466.         if (!ret)
  15467.                 return;
  15468.  
  15469. err:
  15470.         DRM_ERROR("Restoring old state failed with %i\n", ret);
  15471.         drm_atomic_state_free(state);
  15472. }
  15473.  
  15474. void intel_modeset_gem_init(struct drm_device *dev)
  15475. {
  15476.         struct drm_crtc *c;
  15477.         struct drm_i915_gem_object *obj;
  15478.         int ret;
  15479.  
  15480.         mutex_lock(&dev->struct_mutex);
  15481.         intel_init_gt_powersave(dev);
  15482.         mutex_unlock(&dev->struct_mutex);
  15483.  
  15484.         intel_modeset_init_hw(dev);
  15485.  
  15486. //   intel_setup_overlay(dev);
  15487.  
  15488.         /*
  15489.          * Make sure any fbs we allocated at startup are properly
  15490.          * pinned & fenced.  When we do the allocation it's too early
  15491.          * for this.
  15492.          */
  15493.         for_each_crtc(dev, c) {
  15494.                 obj = intel_fb_obj(c->primary->fb);
  15495.                 if (obj == NULL)
  15496.                         continue;
  15497.  
  15498.                 mutex_lock(&dev->struct_mutex);
  15499.                 ret = intel_pin_and_fence_fb_obj(c->primary,
  15500.                                                  c->primary->fb,
  15501.                                                  c->primary->state,
  15502.                                                  NULL, NULL);
  15503.                 mutex_unlock(&dev->struct_mutex);
  15504.                 if (ret) {
  15505.                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
  15506.                                   to_intel_crtc(c)->pipe);
  15507.                         drm_framebuffer_unreference(c->primary->fb);
  15508.                         c->primary->fb = NULL;
  15509.                         c->primary->crtc = c->primary->state->crtc = NULL;
  15510.                         update_state_fb(c->primary);
  15511.                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
  15512.                 }
  15513.         }
  15514.  
  15515.         intel_backlight_register(dev);
  15516. }
  15517.  
  15518. void intel_connector_unregister(struct intel_connector *intel_connector)
  15519. {
  15520.         struct drm_connector *connector = &intel_connector->base;
  15521.  
  15522.         intel_panel_destroy_backlight(connector);
  15523.         drm_connector_unregister(connector);
  15524. }
  15525.  
  15526. void intel_modeset_cleanup(struct drm_device *dev)
  15527. {
  15528. #if 0
  15529.         struct drm_i915_private *dev_priv = dev->dev_private;
  15530.         struct drm_connector *connector;
  15531.  
  15532.         intel_disable_gt_powersave(dev);
  15533.  
  15534.         intel_backlight_unregister(dev);
  15535.  
  15536.         /*
  15537.          * Interrupts and polling as the first thing to avoid creating havoc.
  15538.          * Too much stuff here (turning of connectors, ...) would
  15539.          * experience fancy races otherwise.
  15540.          */
  15541.         intel_irq_uninstall(dev_priv);
  15542.  
  15543.         /*
  15544.          * Due to the hpd irq storm handling the hotplug work can re-arm the
  15545.          * poll handlers. Hence disable polling after hpd handling is shut down.
  15546.          */
  15547.         drm_kms_helper_poll_fini(dev);
  15548.  
  15549.         intel_unregister_dsm_handler();
  15550.  
  15551.         intel_fbc_disable(dev_priv);
  15552.  
  15553.         /* flush any delayed tasks or pending work */
  15554.         flush_scheduled_work();
  15555.  
  15556.         /* destroy the backlight and sysfs files before encoders/connectors */
  15557.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  15558.                 struct intel_connector *intel_connector;
  15559.  
  15560.                 intel_connector = to_intel_connector(connector);
  15561.                 intel_connector->unregister(intel_connector);
  15562.         }
  15563.  
  15564.         drm_mode_config_cleanup(dev);
  15565.  
  15566.         intel_cleanup_overlay(dev);
  15567.  
  15568.         mutex_lock(&dev->struct_mutex);
  15569.         intel_cleanup_gt_powersave(dev);
  15570.         mutex_unlock(&dev->struct_mutex);
  15571. #endif
  15572. }
  15573.  
  15574. /*
  15575.  * Return which encoder is currently attached for connector.
  15576.  */
  15577. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  15578. {
  15579.         return &intel_attached_encoder(connector)->base;
  15580. }
  15581.  
  15582. void intel_connector_attach_encoder(struct intel_connector *connector,
  15583.                                     struct intel_encoder *encoder)
  15584. {
  15585.         connector->encoder = encoder;
  15586.         drm_mode_connector_attach_encoder(&connector->base,
  15587.                                           &encoder->base);
  15588. }
  15589.  
  15590. /*
  15591.  * set vga decode state - true == enable VGA decode
  15592.  */
  15593. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  15594. {
  15595.         struct drm_i915_private *dev_priv = dev->dev_private;
  15596.         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
  15597.         u16 gmch_ctrl;
  15598.  
  15599.         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
  15600.                 DRM_ERROR("failed to read control word\n");
  15601.                 return -EIO;
  15602.         }
  15603.  
  15604.         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
  15605.                 return 0;
  15606.  
  15607.         if (state)
  15608.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  15609.         else
  15610.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  15611.  
  15612.         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
  15613.                 DRM_ERROR("failed to write control word\n");
  15614.                 return -EIO;
  15615.         }
  15616.  
  15617.         return 0;
  15618. }
  15619.  
  15620. #ifdef CONFIG_DEBUG_FS
  15621.  
  15622. struct intel_display_error_state {
  15623.  
  15624.         u32 power_well_driver;
  15625.  
  15626.         int num_transcoders;
  15627.  
  15628.         struct intel_cursor_error_state {
  15629.                 u32 control;
  15630.                 u32 position;
  15631.                 u32 base;
  15632.                 u32 size;
  15633.         } cursor[I915_MAX_PIPES];
  15634.  
  15635.         struct intel_pipe_error_state {
  15636.                 bool power_domain_on;
  15637.                 u32 source;
  15638.                 u32 stat;
  15639.         } pipe[I915_MAX_PIPES];
  15640.  
  15641.         struct intel_plane_error_state {
  15642.                 u32 control;
  15643.                 u32 stride;
  15644.                 u32 size;
  15645.                 u32 pos;
  15646.                 u32 addr;
  15647.                 u32 surface;
  15648.                 u32 tile_offset;
  15649.         } plane[I915_MAX_PIPES];
  15650.  
  15651.         struct intel_transcoder_error_state {
  15652.                 bool power_domain_on;
  15653.                 enum transcoder cpu_transcoder;
  15654.  
  15655.                 u32 conf;
  15656.  
  15657.                 u32 htotal;
  15658.                 u32 hblank;
  15659.                 u32 hsync;
  15660.                 u32 vtotal;
  15661.                 u32 vblank;
  15662.                 u32 vsync;
  15663.         } transcoder[4];
  15664. };
  15665.  
  15666. struct intel_display_error_state *
  15667. intel_display_capture_error_state(struct drm_device *dev)
  15668. {
  15669.         struct drm_i915_private *dev_priv = dev->dev_private;
  15670.         struct intel_display_error_state *error;
  15671.         int transcoders[] = {
  15672.                 TRANSCODER_A,
  15673.                 TRANSCODER_B,
  15674.                 TRANSCODER_C,
  15675.                 TRANSCODER_EDP,
  15676.         };
  15677.         int i;
  15678.  
  15679.         if (INTEL_INFO(dev)->num_pipes == 0)
  15680.                 return NULL;
  15681.  
  15682.         error = kzalloc(sizeof(*error), GFP_ATOMIC);
  15683.         if (error == NULL)
  15684.                 return NULL;
  15685.  
  15686.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15687.                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  15688.  
  15689.         for_each_pipe(dev_priv, i) {
  15690.                 error->pipe[i].power_domain_on =
  15691.                         __intel_display_power_is_enabled(dev_priv,
  15692.                                                          POWER_DOMAIN_PIPE(i));
  15693.                 if (!error->pipe[i].power_domain_on)
  15694.                         continue;
  15695.  
  15696.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  15697.                 error->cursor[i].position = I915_READ(CURPOS(i));
  15698.                 error->cursor[i].base = I915_READ(CURBASE(i));
  15699.  
  15700.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  15701.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  15702.                 if (INTEL_INFO(dev)->gen <= 3) {
  15703.                         error->plane[i].size = I915_READ(DSPSIZE(i));
  15704.                         error->plane[i].pos = I915_READ(DSPPOS(i));
  15705.                 }
  15706.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15707.                         error->plane[i].addr = I915_READ(DSPADDR(i));
  15708.                 if (INTEL_INFO(dev)->gen >= 4) {
  15709.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  15710.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  15711.                 }
  15712.  
  15713.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  15714.  
  15715.                 if (HAS_GMCH_DISPLAY(dev))
  15716.                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
  15717.         }
  15718.  
  15719.         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  15720.         if (HAS_DDI(dev_priv->dev))
  15721.                 error->num_transcoders++; /* Account for eDP. */
  15722.  
  15723.         for (i = 0; i < error->num_transcoders; i++) {
  15724.                 enum transcoder cpu_transcoder = transcoders[i];
  15725.  
  15726.                 error->transcoder[i].power_domain_on =
  15727.                         __intel_display_power_is_enabled(dev_priv,
  15728.                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
  15729.                 if (!error->transcoder[i].power_domain_on)
  15730.                         continue;
  15731.  
  15732.                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
  15733.  
  15734.                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  15735.                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  15736.                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  15737.                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  15738.                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  15739.                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  15740.                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  15741.         }
  15742.  
  15743.         return error;
  15744. }
  15745.  
  15746. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  15747.  
  15748. void
  15749. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  15750.                                 struct drm_device *dev,
  15751.                                 struct intel_display_error_state *error)
  15752. {
  15753.         struct drm_i915_private *dev_priv = dev->dev_private;
  15754.         int i;
  15755.  
  15756.         if (!error)
  15757.                 return;
  15758.  
  15759.         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  15760.         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  15761.                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
  15762.                            error->power_well_driver);
  15763.         for_each_pipe(dev_priv, i) {
  15764.                 err_printf(m, "Pipe [%d]:\n", i);
  15765.                 err_printf(m, "  Power: %s\n",
  15766.                            error->pipe[i].power_domain_on ? "on" : "off");
  15767.                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  15768.                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
  15769.  
  15770.                 err_printf(m, "Plane [%d]:\n", i);
  15771.                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  15772.                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  15773.                 if (INTEL_INFO(dev)->gen <= 3) {
  15774.                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  15775.                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
  15776.                 }
  15777.                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  15778.                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  15779.                 if (INTEL_INFO(dev)->gen >= 4) {
  15780.                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  15781.                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  15782.                 }
  15783.  
  15784.                 err_printf(m, "Cursor [%d]:\n", i);
  15785.                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  15786.                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
  15787.                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  15788.         }
  15789.  
  15790.         for (i = 0; i < error->num_transcoders; i++) {
  15791.                 err_printf(m, "CPU transcoder: %c\n",
  15792.                            transcoder_name(error->transcoder[i].cpu_transcoder));
  15793.                 err_printf(m, "  Power: %s\n",
  15794.                            error->transcoder[i].power_domain_on ? "on" : "off");
  15795.                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
  15796.                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
  15797.                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
  15798.                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
  15799.                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
  15800.                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
  15801.                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
  15802.         }
  15803. }
  15804. #endif
  15805.  
  15806. void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
  15807. {
  15808.         struct intel_crtc *crtc;
  15809.  
  15810.         for_each_intel_crtc(dev, crtc) {
  15811.                 struct intel_unpin_work *work;
  15812.  
  15813.                 spin_lock_irq(&dev->event_lock);
  15814.  
  15815.                 work = crtc->unpin_work;
  15816.  
  15817.                 if (work && work->event &&
  15818.                     work->event->base.file_priv == file) {
  15819.                         kfree(work->event);
  15820.                         work->event = NULL;
  15821.                 }
  15822.  
  15823.                 spin_unlock_irq(&dev->event_lock);
  15824.         }
  15825. }
  15826.