Subversion Repositories Kolibri OS

Rev

Rev 3031 | Rev 3120 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright © 2006-2007 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *  Eric Anholt <eric@anholt.net>
  25.  */
  26.  
  27. //#include <linux/cpufreq.h>
  28. #include <linux/module.h>
  29. //#include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. //#include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include <drm/drmP.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include <drm/drm_dp_helper.h>
  41. #include <drm/drm_crtc_helper.h>
  42. //#include <linux/dma_remapping.h>
  43.  
  44. phys_addr_t get_bus_addr(void);
  45.  
  46. static inline __attribute__((const))
  47. bool is_power_of_2(unsigned long n)
  48. {
  49.     return (n != 0 && ((n & (n - 1)) == 0));
  50. }
  51.  
  52. #define MAX_ERRNO       4095
  53.  
  54. #define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
  55.  
  56. static inline long IS_ERR(const void *ptr)
  57. {
  58.     return IS_ERR_VALUE((unsigned long)ptr);
  59. }
  60.  
  61. static inline void *ERR_PTR(long error)
  62. {
  63.     return (void *) error;
  64. }
  65.  
  66.  
  67. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  68.  
  69. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  70. static void intel_increase_pllclock(struct drm_crtc *crtc);
  71. //static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  72.  
  73. typedef struct {
  74.     /* given values */
  75.     int n;
  76.     int m1, m2;
  77.     int p1, p2;
  78.     /* derived values */
  79.     int dot;
  80.     int vco;
  81.     int m;
  82.     int p;
  83. } intel_clock_t;
  84.  
  85. typedef struct {
  86.     int min, max;
  87. } intel_range_t;
  88.  
  89. typedef struct {
  90.     int dot_limit;
  91.     int p2_slow, p2_fast;
  92. } intel_p2_t;
  93.  
  94. #define INTEL_P2_NUM              2
  95. typedef struct intel_limit intel_limit_t;
  96. struct intel_limit {
  97.     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
  98.     intel_p2_t      p2;
  99.     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  100.                         int, int, intel_clock_t *, intel_clock_t *);
  101. };
  102.  
  103. /* FDI */
  104. #define IRONLAKE_FDI_FREQ       2700000 /* in kHz for mode->clock */
  105.  
  106. static bool
  107. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  108.                     int target, int refclk, intel_clock_t *match_clock,
  109.                     intel_clock_t *best_clock);
  110. static bool
  111. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  112.                         int target, int refclk, intel_clock_t *match_clock,
  113.                         intel_clock_t *best_clock);
  114.  
  115. static bool
  116. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  117.                       int target, int refclk, intel_clock_t *match_clock,
  118.                       intel_clock_t *best_clock);
  119. static bool
  120. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  121.                            int target, int refclk, intel_clock_t *match_clock,
  122.                            intel_clock_t *best_clock);
  123.  
  124. static bool
  125. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  126.                         int target, int refclk, intel_clock_t *match_clock,
  127.                         intel_clock_t *best_clock);
  128.  
  129. static inline u32 /* units of 100MHz */
  130. intel_fdi_link_freq(struct drm_device *dev)
  131. {
  132.         if (IS_GEN5(dev)) {
  133.                 struct drm_i915_private *dev_priv = dev->dev_private;
  134.                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  135.         } else
  136.                 return 27;
  137. }
  138.  
  139. static const intel_limit_t intel_limits_i8xx_dvo = {
  140.         .dot = { .min = 25000, .max = 350000 },
  141.         .vco = { .min = 930000, .max = 1400000 },
  142.         .n = { .min = 3, .max = 16 },
  143.         .m = { .min = 96, .max = 140 },
  144.         .m1 = { .min = 18, .max = 26 },
  145.         .m2 = { .min = 6, .max = 16 },
  146.         .p = { .min = 4, .max = 128 },
  147.         .p1 = { .min = 2, .max = 33 },
  148.         .p2 = { .dot_limit = 165000,
  149.                 .p2_slow = 4, .p2_fast = 2 },
  150.         .find_pll = intel_find_best_PLL,
  151. };
  152.  
  153. static const intel_limit_t intel_limits_i8xx_lvds = {
  154.         .dot = { .min = 25000, .max = 350000 },
  155.         .vco = { .min = 930000, .max = 1400000 },
  156.         .n = { .min = 3, .max = 16 },
  157.         .m = { .min = 96, .max = 140 },
  158.         .m1 = { .min = 18, .max = 26 },
  159.         .m2 = { .min = 6, .max = 16 },
  160.         .p = { .min = 4, .max = 128 },
  161.         .p1 = { .min = 1, .max = 6 },
  162.         .p2 = { .dot_limit = 165000,
  163.                 .p2_slow = 14, .p2_fast = 7 },
  164.         .find_pll = intel_find_best_PLL,
  165. };
  166.  
  167. static const intel_limit_t intel_limits_i9xx_sdvo = {
  168.         .dot = { .min = 20000, .max = 400000 },
  169.         .vco = { .min = 1400000, .max = 2800000 },
  170.         .n = { .min = 1, .max = 6 },
  171.         .m = { .min = 70, .max = 120 },
  172.         .m1 = { .min = 10, .max = 22 },
  173.         .m2 = { .min = 5, .max = 9 },
  174.         .p = { .min = 5, .max = 80 },
  175.         .p1 = { .min = 1, .max = 8 },
  176.         .p2 = { .dot_limit = 200000,
  177.                 .p2_slow = 10, .p2_fast = 5 },
  178.         .find_pll = intel_find_best_PLL,
  179. };
  180.  
  181. static const intel_limit_t intel_limits_i9xx_lvds = {
  182.         .dot = { .min = 20000, .max = 400000 },
  183.         .vco = { .min = 1400000, .max = 2800000 },
  184.         .n = { .min = 1, .max = 6 },
  185.         .m = { .min = 70, .max = 120 },
  186.         .m1 = { .min = 10, .max = 22 },
  187.         .m2 = { .min = 5, .max = 9 },
  188.         .p = { .min = 7, .max = 98 },
  189.         .p1 = { .min = 1, .max = 8 },
  190.         .p2 = { .dot_limit = 112000,
  191.                 .p2_slow = 14, .p2_fast = 7 },
  192.         .find_pll = intel_find_best_PLL,
  193. };
  194.  
  195.  
  196. static const intel_limit_t intel_limits_g4x_sdvo = {
  197.         .dot = { .min = 25000, .max = 270000 },
  198.         .vco = { .min = 1750000, .max = 3500000},
  199.         .n = { .min = 1, .max = 4 },
  200.         .m = { .min = 104, .max = 138 },
  201.         .m1 = { .min = 17, .max = 23 },
  202.         .m2 = { .min = 5, .max = 11 },
  203.         .p = { .min = 10, .max = 30 },
  204.         .p1 = { .min = 1, .max = 3},
  205.         .p2 = { .dot_limit = 270000,
  206.                 .p2_slow = 10,
  207.                 .p2_fast = 10
  208.         },
  209.         .find_pll = intel_g4x_find_best_PLL,
  210. };
  211.  
  212. static const intel_limit_t intel_limits_g4x_hdmi = {
  213.         .dot = { .min = 22000, .max = 400000 },
  214.         .vco = { .min = 1750000, .max = 3500000},
  215.         .n = { .min = 1, .max = 4 },
  216.         .m = { .min = 104, .max = 138 },
  217.         .m1 = { .min = 16, .max = 23 },
  218.         .m2 = { .min = 5, .max = 11 },
  219.         .p = { .min = 5, .max = 80 },
  220.         .p1 = { .min = 1, .max = 8},
  221.         .p2 = { .dot_limit = 165000,
  222.                 .p2_slow = 10, .p2_fast = 5 },
  223.         .find_pll = intel_g4x_find_best_PLL,
  224. };
  225.  
  226. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  227.         .dot = { .min = 20000, .max = 115000 },
  228.         .vco = { .min = 1750000, .max = 3500000 },
  229.         .n = { .min = 1, .max = 3 },
  230.         .m = { .min = 104, .max = 138 },
  231.         .m1 = { .min = 17, .max = 23 },
  232.         .m2 = { .min = 5, .max = 11 },
  233.         .p = { .min = 28, .max = 112 },
  234.         .p1 = { .min = 2, .max = 8 },
  235.         .p2 = { .dot_limit = 0,
  236.                 .p2_slow = 14, .p2_fast = 14
  237.         },
  238.         .find_pll = intel_g4x_find_best_PLL,
  239. };
  240.  
  241. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  242.         .dot = { .min = 80000, .max = 224000 },
  243.         .vco = { .min = 1750000, .max = 3500000 },
  244.         .n = { .min = 1, .max = 3 },
  245.         .m = { .min = 104, .max = 138 },
  246.         .m1 = { .min = 17, .max = 23 },
  247.         .m2 = { .min = 5, .max = 11 },
  248.         .p = { .min = 14, .max = 42 },
  249.         .p1 = { .min = 2, .max = 6 },
  250.         .p2 = { .dot_limit = 0,
  251.                 .p2_slow = 7, .p2_fast = 7
  252.         },
  253.         .find_pll = intel_g4x_find_best_PLL,
  254. };
  255.  
  256. static const intel_limit_t intel_limits_g4x_display_port = {
  257.         .dot = { .min = 161670, .max = 227000 },
  258.         .vco = { .min = 1750000, .max = 3500000},
  259.         .n = { .min = 1, .max = 2 },
  260.         .m = { .min = 97, .max = 108 },
  261.         .m1 = { .min = 0x10, .max = 0x12 },
  262.         .m2 = { .min = 0x05, .max = 0x06 },
  263.         .p = { .min = 10, .max = 20 },
  264.         .p1 = { .min = 1, .max = 2},
  265.         .p2 = { .dot_limit = 0,
  266.                 .p2_slow = 10, .p2_fast = 10 },
  267.         .find_pll = intel_find_pll_g4x_dp,
  268. };
  269.  
  270. static const intel_limit_t intel_limits_pineview_sdvo = {
  271.         .dot = { .min = 20000, .max = 400000},
  272.         .vco = { .min = 1700000, .max = 3500000 },
  273.         /* Pineview's Ncounter is a ring counter */
  274.         .n = { .min = 3, .max = 6 },
  275.         .m = { .min = 2, .max = 256 },
  276.         /* Pineview only has one combined m divider, which we treat as m2. */
  277.         .m1 = { .min = 0, .max = 0 },
  278.         .m2 = { .min = 0, .max = 254 },
  279.         .p = { .min = 5, .max = 80 },
  280.         .p1 = { .min = 1, .max = 8 },
  281.         .p2 = { .dot_limit = 200000,
  282.                 .p2_slow = 10, .p2_fast = 5 },
  283.         .find_pll = intel_find_best_PLL,
  284. };
  285.  
  286. static const intel_limit_t intel_limits_pineview_lvds = {
  287.         .dot = { .min = 20000, .max = 400000 },
  288.         .vco = { .min = 1700000, .max = 3500000 },
  289.         .n = { .min = 3, .max = 6 },
  290.         .m = { .min = 2, .max = 256 },
  291.         .m1 = { .min = 0, .max = 0 },
  292.         .m2 = { .min = 0, .max = 254 },
  293.         .p = { .min = 7, .max = 112 },
  294.         .p1 = { .min = 1, .max = 8 },
  295.         .p2 = { .dot_limit = 112000,
  296.                 .p2_slow = 14, .p2_fast = 14 },
  297.         .find_pll = intel_find_best_PLL,
  298. };
  299.  
  300. /* Ironlake / Sandybridge
  301.  *
  302.  * We calculate clock using (register_value + 2) for N/M1/M2, so here
  303.  * the range value for them is (actual_value - 2).
  304.  */
  305. static const intel_limit_t intel_limits_ironlake_dac = {
  306.         .dot = { .min = 25000, .max = 350000 },
  307.         .vco = { .min = 1760000, .max = 3510000 },
  308.         .n = { .min = 1, .max = 5 },
  309.         .m = { .min = 79, .max = 127 },
  310.         .m1 = { .min = 12, .max = 22 },
  311.         .m2 = { .min = 5, .max = 9 },
  312.         .p = { .min = 5, .max = 80 },
  313.         .p1 = { .min = 1, .max = 8 },
  314.         .p2 = { .dot_limit = 225000,
  315.                 .p2_slow = 10, .p2_fast = 5 },
  316.         .find_pll = intel_g4x_find_best_PLL,
  317. };
  318.  
  319. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  320.         .dot = { .min = 25000, .max = 350000 },
  321.         .vco = { .min = 1760000, .max = 3510000 },
  322.         .n = { .min = 1, .max = 3 },
  323.         .m = { .min = 79, .max = 118 },
  324.         .m1 = { .min = 12, .max = 22 },
  325.         .m2 = { .min = 5, .max = 9 },
  326.         .p = { .min = 28, .max = 112 },
  327.         .p1 = { .min = 2, .max = 8 },
  328.         .p2 = { .dot_limit = 225000,
  329.                 .p2_slow = 14, .p2_fast = 14 },
  330.         .find_pll = intel_g4x_find_best_PLL,
  331. };
  332.  
  333. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  334.         .dot = { .min = 25000, .max = 350000 },
  335.         .vco = { .min = 1760000, .max = 3510000 },
  336.         .n = { .min = 1, .max = 3 },
  337.         .m = { .min = 79, .max = 127 },
  338.         .m1 = { .min = 12, .max = 22 },
  339.         .m2 = { .min = 5, .max = 9 },
  340.         .p = { .min = 14, .max = 56 },
  341.         .p1 = { .min = 2, .max = 8 },
  342.         .p2 = { .dot_limit = 225000,
  343.                 .p2_slow = 7, .p2_fast = 7 },
  344.         .find_pll = intel_g4x_find_best_PLL,
  345. };
  346.  
  347. /* LVDS 100mhz refclk limits. */
  348. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  349.         .dot = { .min = 25000, .max = 350000 },
  350.         .vco = { .min = 1760000, .max = 3510000 },
  351.         .n = { .min = 1, .max = 2 },
  352.         .m = { .min = 79, .max = 126 },
  353.         .m1 = { .min = 12, .max = 22 },
  354.         .m2 = { .min = 5, .max = 9 },
  355.         .p = { .min = 28, .max = 112 },
  356.         .p1 = { .min = 2, .max = 8 },
  357.         .p2 = { .dot_limit = 225000,
  358.                 .p2_slow = 14, .p2_fast = 14 },
  359.         .find_pll = intel_g4x_find_best_PLL,
  360. };
  361.  
  362. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  363.         .dot = { .min = 25000, .max = 350000 },
  364.         .vco = { .min = 1760000, .max = 3510000 },
  365.         .n = { .min = 1, .max = 3 },
  366.         .m = { .min = 79, .max = 126 },
  367.         .m1 = { .min = 12, .max = 22 },
  368.         .m2 = { .min = 5, .max = 9 },
  369.         .p = { .min = 14, .max = 42 },
  370.         .p1 = { .min = 2, .max = 6 },
  371.         .p2 = { .dot_limit = 225000,
  372.                 .p2_slow = 7, .p2_fast = 7 },
  373.         .find_pll = intel_g4x_find_best_PLL,
  374. };
  375.  
  376. static const intel_limit_t intel_limits_ironlake_display_port = {
  377.         .dot = { .min = 25000, .max = 350000 },
  378.         .vco = { .min = 1760000, .max = 3510000},
  379.         .n = { .min = 1, .max = 2 },
  380.         .m = { .min = 81, .max = 90 },
  381.         .m1 = { .min = 12, .max = 22 },
  382.         .m2 = { .min = 5, .max = 9 },
  383.         .p = { .min = 10, .max = 20 },
  384.         .p1 = { .min = 1, .max = 2},
  385.         .p2 = { .dot_limit = 0,
  386.                 .p2_slow = 10, .p2_fast = 10 },
  387.         .find_pll = intel_find_pll_ironlake_dp,
  388. };
  389.  
  390. static const intel_limit_t intel_limits_vlv_dac = {
  391.         .dot = { .min = 25000, .max = 270000 },
  392.         .vco = { .min = 4000000, .max = 6000000 },
  393.         .n = { .min = 1, .max = 7 },
  394.         .m = { .min = 22, .max = 450 }, /* guess */
  395.         .m1 = { .min = 2, .max = 3 },
  396.         .m2 = { .min = 11, .max = 156 },
  397.         .p = { .min = 10, .max = 30 },
  398.         .p1 = { .min = 2, .max = 3 },
  399.         .p2 = { .dot_limit = 270000,
  400.                 .p2_slow = 2, .p2_fast = 20 },
  401.         .find_pll = intel_vlv_find_best_pll,
  402. };
  403.  
  404. static const intel_limit_t intel_limits_vlv_hdmi = {
  405.         .dot = { .min = 20000, .max = 165000 },
  406.         .vco = { .min = 5994000, .max = 4000000 },
  407.         .n = { .min = 1, .max = 7 },
  408.         .m = { .min = 60, .max = 300 }, /* guess */
  409.         .m1 = { .min = 2, .max = 3 },
  410.         .m2 = { .min = 11, .max = 156 },
  411.         .p = { .min = 10, .max = 30 },
  412.         .p1 = { .min = 2, .max = 3 },
  413.         .p2 = { .dot_limit = 270000,
  414.                 .p2_slow = 2, .p2_fast = 20 },
  415.         .find_pll = intel_vlv_find_best_pll,
  416. };
  417.  
  418. static const intel_limit_t intel_limits_vlv_dp = {
  419.         .dot = { .min = 162000, .max = 270000 },
  420.         .vco = { .min = 5994000, .max = 4000000 },
  421.         .n = { .min = 1, .max = 7 },
  422.         .m = { .min = 60, .max = 300 }, /* guess */
  423.         .m1 = { .min = 2, .max = 3 },
  424.         .m2 = { .min = 11, .max = 156 },
  425.         .p = { .min = 10, .max = 30 },
  426.         .p1 = { .min = 2, .max = 3 },
  427.         .p2 = { .dot_limit = 270000,
  428.                 .p2_slow = 2, .p2_fast = 20 },
  429.         .find_pll = intel_vlv_find_best_pll,
  430. };
  431.  
  432. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  433. {
  434.         unsigned long flags;
  435.         u32 val = 0;
  436.  
  437.         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  438.         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  439.                 DRM_ERROR("DPIO idle wait timed out\n");
  440.                 goto out_unlock;
  441.         }
  442.  
  443.         I915_WRITE(DPIO_REG, reg);
  444.         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  445.                    DPIO_BYTE);
  446.         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  447.                 DRM_ERROR("DPIO read wait timed out\n");
  448.                 goto out_unlock;
  449.         }
  450.         val = I915_READ(DPIO_DATA);
  451.  
  452. out_unlock:
  453.         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  454.         return val;
  455. }
  456.  
  457. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  458.                              u32 val)
  459. {
  460.         unsigned long flags;
  461.  
  462.         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  463.         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  464.                 DRM_ERROR("DPIO idle wait timed out\n");
  465.                 goto out_unlock;
  466.         }
  467.  
  468.         I915_WRITE(DPIO_DATA, val);
  469.         I915_WRITE(DPIO_REG, reg);
  470.         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  471.                    DPIO_BYTE);
  472.         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  473.                 DRM_ERROR("DPIO write wait timed out\n");
  474.  
  475. out_unlock:
  476.        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  477. }
  478.  
  479. static void vlv_init_dpio(struct drm_device *dev)
  480. {
  481.         struct drm_i915_private *dev_priv = dev->dev_private;
  482.  
  483.         /* Reset the DPIO config */
  484.         I915_WRITE(DPIO_CTL, 0);
  485.         POSTING_READ(DPIO_CTL);
  486.         I915_WRITE(DPIO_CTL, 1);
  487.         POSTING_READ(DPIO_CTL);
  488. }
  489.  
  490. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  491. {
  492.         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  493.         return 1;
  494. }
  495.  
  496. static const struct dmi_system_id intel_dual_link_lvds[] = {
  497.         {
  498.                 .callback = intel_dual_link_lvds_callback,
  499.                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  500.                 .matches = {
  501.                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  502.                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  503.                 },
  504.         },
  505.         { }     /* terminating entry */
  506. };
  507.  
  508. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  509.                               unsigned int reg)
  510. {
  511.         unsigned int val;
  512.  
  513.         /* use the module option value if specified */
  514.         if (i915_lvds_channel_mode > 0)
  515.                 return i915_lvds_channel_mode == 2;
  516.  
  517. //   if (dmi_check_system(intel_dual_link_lvds))
  518. //       return true;
  519.  
  520.         if (dev_priv->lvds_val)
  521.                 val = dev_priv->lvds_val;
  522.         else {
  523.                 /* BIOS should set the proper LVDS register value at boot, but
  524.                  * in reality, it doesn't set the value when the lid is closed;
  525.                  * we need to check "the value to be set" in VBT when LVDS
  526.                  * register is uninitialized.
  527.                  */
  528.                 val = I915_READ(reg);
  529.                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  530.                         val = dev_priv->bios_lvds_val;
  531.                 dev_priv->lvds_val = val;
  532.         }
  533.         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  534. }
  535.  
  536. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  537.                                                 int refclk)
  538. {
  539.         struct drm_device *dev = crtc->dev;
  540.         struct drm_i915_private *dev_priv = dev->dev_private;
  541.         const intel_limit_t *limit;
  542.  
  543.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  544.                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  545.                         /* LVDS dual channel */
  546.                         if (refclk == 100000)
  547.                                 limit = &intel_limits_ironlake_dual_lvds_100m;
  548.                         else
  549.                                 limit = &intel_limits_ironlake_dual_lvds;
  550.                 } else {
  551.                         if (refclk == 100000)
  552.                                 limit = &intel_limits_ironlake_single_lvds_100m;
  553.                         else
  554.                                 limit = &intel_limits_ironlake_single_lvds;
  555.                 }
  556.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  557.                         HAS_eDP)
  558.                 limit = &intel_limits_ironlake_display_port;
  559.         else
  560.                 limit = &intel_limits_ironlake_dac;
  561.  
  562.         return limit;
  563. }
  564.  
  565. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  566. {
  567.         struct drm_device *dev = crtc->dev;
  568.         struct drm_i915_private *dev_priv = dev->dev_private;
  569.         const intel_limit_t *limit;
  570.  
  571.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  572.                 if (is_dual_link_lvds(dev_priv, LVDS))
  573.                         /* LVDS with dual channel */
  574.                         limit = &intel_limits_g4x_dual_channel_lvds;
  575.                 else
  576.                         /* LVDS with dual channel */
  577.                         limit = &intel_limits_g4x_single_channel_lvds;
  578.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  579.                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  580.                 limit = &intel_limits_g4x_hdmi;
  581.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  582.                 limit = &intel_limits_g4x_sdvo;
  583.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  584.                 limit = &intel_limits_g4x_display_port;
  585.         } else /* The option is for other outputs */
  586.                 limit = &intel_limits_i9xx_sdvo;
  587.  
  588.         return limit;
  589. }
  590.  
  591. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  592. {
  593.         struct drm_device *dev = crtc->dev;
  594.         const intel_limit_t *limit;
  595.  
  596.         if (HAS_PCH_SPLIT(dev))
  597.                 limit = intel_ironlake_limit(crtc, refclk);
  598.         else if (IS_G4X(dev)) {
  599.                 limit = intel_g4x_limit(crtc);
  600.         } else if (IS_PINEVIEW(dev)) {
  601.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  602.                         limit = &intel_limits_pineview_lvds;
  603.                 else
  604.                         limit = &intel_limits_pineview_sdvo;
  605.         } else if (IS_VALLEYVIEW(dev)) {
  606.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  607.                         limit = &intel_limits_vlv_dac;
  608.                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  609.                         limit = &intel_limits_vlv_hdmi;
  610.                 else
  611.                         limit = &intel_limits_vlv_dp;
  612.         } else if (!IS_GEN2(dev)) {
  613.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  614.                         limit = &intel_limits_i9xx_lvds;
  615.                 else
  616.                         limit = &intel_limits_i9xx_sdvo;
  617.         } else {
  618.                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  619.                         limit = &intel_limits_i8xx_lvds;
  620.                 else
  621.                         limit = &intel_limits_i8xx_dvo;
  622.         }
  623.         return limit;
  624. }
  625.  
  626. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  627. static void pineview_clock(int refclk, intel_clock_t *clock)
  628. {
  629.         clock->m = clock->m2 + 2;
  630.         clock->p = clock->p1 * clock->p2;
  631.         clock->vco = refclk * clock->m / clock->n;
  632.         clock->dot = clock->vco / clock->p;
  633. }
  634.  
  635. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  636. {
  637.         if (IS_PINEVIEW(dev)) {
  638.                 pineview_clock(refclk, clock);
  639.                 return;
  640.         }
  641.         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  642.         clock->p = clock->p1 * clock->p2;
  643.         clock->vco = refclk * clock->m / (clock->n + 2);
  644.         clock->dot = clock->vco / clock->p;
  645. }
  646.  
  647. /**
  648.  * Returns whether any output on the specified pipe is of the specified type
  649.  */
  650. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  651. {
  652.         struct drm_device *dev = crtc->dev;
  653.         struct intel_encoder *encoder;
  654.  
  655.         for_each_encoder_on_crtc(dev, crtc, encoder)
  656.                 if (encoder->type == type)
  657.                         return true;
  658.  
  659.         return false;
  660. }
  661.  
  662. #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  663. /**
  664.  * Returns whether the given set of divisors are valid for a given refclk with
  665.  * the given connectors.
  666.  */
  667.  
  668. static bool intel_PLL_is_valid(struct drm_device *dev,
  669.                                const intel_limit_t *limit,
  670.                                const intel_clock_t *clock)
  671. {
  672.         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  673.                 INTELPllInvalid("p1 out of range\n");
  674.         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
  675.                 INTELPllInvalid("p out of range\n");
  676.         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  677.                 INTELPllInvalid("m2 out of range\n");
  678.         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  679.                 INTELPllInvalid("m1 out of range\n");
  680.         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  681.                 INTELPllInvalid("m1 <= m2\n");
  682.         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
  683.                 INTELPllInvalid("m out of range\n");
  684.         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  685.                 INTELPllInvalid("n out of range\n");
  686.         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  687.                 INTELPllInvalid("vco out of range\n");
  688.         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  689.          * connector, etc., rather than just a single range.
  690.          */
  691.         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  692.                 INTELPllInvalid("dot out of range\n");
  693.  
  694.         return true;
  695. }
  696.  
  697. static bool
  698. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  699.                     int target, int refclk, intel_clock_t *match_clock,
  700.                     intel_clock_t *best_clock)
  701.  
  702. {
  703.         struct drm_device *dev = crtc->dev;
  704.         struct drm_i915_private *dev_priv = dev->dev_private;
  705.         intel_clock_t clock;
  706.         int err = target;
  707.  
  708.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  709.             (I915_READ(LVDS)) != 0) {
  710.                 /*
  711.                  * For LVDS, if the panel is on, just rely on its current
  712.                  * settings for dual-channel.  We haven't figured out how to
  713.                  * reliably set up different single/dual channel state, if we
  714.                  * even can.
  715.                  */
  716.                 if (is_dual_link_lvds(dev_priv, LVDS))
  717.                         clock.p2 = limit->p2.p2_fast;
  718.                 else
  719.                         clock.p2 = limit->p2.p2_slow;
  720.         } else {
  721.                 if (target < limit->p2.dot_limit)
  722.                         clock.p2 = limit->p2.p2_slow;
  723.                 else
  724.                         clock.p2 = limit->p2.p2_fast;
  725.         }
  726.  
  727.         memset(best_clock, 0, sizeof(*best_clock));
  728.  
  729.         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  730.              clock.m1++) {
  731.                 for (clock.m2 = limit->m2.min;
  732.                      clock.m2 <= limit->m2.max; clock.m2++) {
  733.                         /* m1 is always 0 in Pineview */
  734.                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  735.                                 break;
  736.                         for (clock.n = limit->n.min;
  737.                              clock.n <= limit->n.max; clock.n++) {
  738.                                 for (clock.p1 = limit->p1.min;
  739.                                         clock.p1 <= limit->p1.max; clock.p1++) {
  740.                                         int this_err;
  741.  
  742.                                         intel_clock(dev, refclk, &clock);
  743.                                         if (!intel_PLL_is_valid(dev, limit,
  744.                                                                 &clock))
  745.                                                 continue;
  746.                                         if (match_clock &&
  747.                                             clock.p != match_clock->p)
  748.                                                 continue;
  749.  
  750.                                         this_err = abs(clock.dot - target);
  751.                                         if (this_err < err) {
  752.                                                 *best_clock = clock;
  753.                                                 err = this_err;
  754.                                         }
  755.                                 }
  756.                         }
  757.                 }
  758.         }
  759.  
  760.         return (err != target);
  761. }
  762.  
  763. static bool
  764. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  765.                         int target, int refclk, intel_clock_t *match_clock,
  766.                         intel_clock_t *best_clock)
  767. {
  768.         struct drm_device *dev = crtc->dev;
  769.         struct drm_i915_private *dev_priv = dev->dev_private;
  770.         intel_clock_t clock;
  771.         int max_n;
  772.         bool found;
  773.         /* approximately equals target * 0.00585 */
  774.         int err_most = (target >> 8) + (target >> 9);
  775.         found = false;
  776.  
  777.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  778.                 int lvds_reg;
  779.  
  780.                 if (HAS_PCH_SPLIT(dev))
  781.                         lvds_reg = PCH_LVDS;
  782.                 else
  783.                         lvds_reg = LVDS;
  784.                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  785.                     LVDS_CLKB_POWER_UP)
  786.                         clock.p2 = limit->p2.p2_fast;
  787.                 else
  788.                         clock.p2 = limit->p2.p2_slow;
  789.         } else {
  790.                 if (target < limit->p2.dot_limit)
  791.                         clock.p2 = limit->p2.p2_slow;
  792.                 else
  793.                         clock.p2 = limit->p2.p2_fast;
  794.         }
  795.  
  796.         memset(best_clock, 0, sizeof(*best_clock));
  797.         max_n = limit->n.max;
  798.         /* based on hardware requirement, prefer smaller n to precision */
  799.         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  800.                 /* based on hardware requirement, prefere larger m1,m2 */
  801.                 for (clock.m1 = limit->m1.max;
  802.                      clock.m1 >= limit->m1.min; clock.m1--) {
  803.                         for (clock.m2 = limit->m2.max;
  804.                              clock.m2 >= limit->m2.min; clock.m2--) {
  805.                                 for (clock.p1 = limit->p1.max;
  806.                                      clock.p1 >= limit->p1.min; clock.p1--) {
  807.                                         int this_err;
  808.  
  809.                                         intel_clock(dev, refclk, &clock);
  810.                                         if (!intel_PLL_is_valid(dev, limit,
  811.                                                                 &clock))
  812.                                                 continue;
  813.                                         if (match_clock &&
  814.                                             clock.p != match_clock->p)
  815.                                                 continue;
  816.  
  817.                                         this_err = abs(clock.dot - target);
  818.                                         if (this_err < err_most) {
  819.                                                 *best_clock = clock;
  820.                                                 err_most = this_err;
  821.                                                 max_n = clock.n;
  822.                                                 found = true;
  823.                                         }
  824.                                 }
  825.                         }
  826.                 }
  827.         }
  828.         return found;
  829. }
  830.  
  831. static bool
  832. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  833.                            int target, int refclk, intel_clock_t *match_clock,
  834.                            intel_clock_t *best_clock)
  835. {
  836.         struct drm_device *dev = crtc->dev;
  837.         intel_clock_t clock;
  838.  
  839.         if (target < 200000) {
  840.                 clock.n = 1;
  841.                 clock.p1 = 2;
  842.                 clock.p2 = 10;
  843.                 clock.m1 = 12;
  844.                 clock.m2 = 9;
  845.         } else {
  846.                 clock.n = 2;
  847.                 clock.p1 = 1;
  848.                 clock.p2 = 10;
  849.                 clock.m1 = 14;
  850.                 clock.m2 = 8;
  851.         }
  852.         intel_clock(dev, refclk, &clock);
  853.         memcpy(best_clock, &clock, sizeof(intel_clock_t));
  854.         return true;
  855. }
  856.  
  857. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  858. static bool
  859. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  860.                       int target, int refclk, intel_clock_t *match_clock,
  861.                       intel_clock_t *best_clock)
  862. {
  863.         intel_clock_t clock;
  864.         if (target < 200000) {
  865.                 clock.p1 = 2;
  866.                 clock.p2 = 10;
  867.                 clock.n = 2;
  868.                 clock.m1 = 23;
  869.                 clock.m2 = 8;
  870.         } else {
  871.                 clock.p1 = 1;
  872.                 clock.p2 = 10;
  873.                 clock.n = 1;
  874.                 clock.m1 = 14;
  875.                 clock.m2 = 2;
  876.         }
  877.         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  878.         clock.p = (clock.p1 * clock.p2);
  879.         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  880.         clock.vco = 0;
  881.         memcpy(best_clock, &clock, sizeof(intel_clock_t));
  882.         return true;
  883. }
  884. static bool
  885. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  886.                         int target, int refclk, intel_clock_t *match_clock,
  887.                         intel_clock_t *best_clock)
  888. {
  889.         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  890.         u32 m, n, fastclk;
  891.         u32 updrate, minupdate, fracbits, p;
  892.         unsigned long bestppm, ppm, absppm;
  893.         int dotclk, flag;
  894.  
  895.         flag = 0;
  896.         dotclk = target * 1000;
  897.         bestppm = 1000000;
  898.         ppm = absppm = 0;
  899.         fastclk = dotclk / (2*100);
  900.         updrate = 0;
  901.         minupdate = 19200;
  902.         fracbits = 1;
  903.         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  904.         bestm1 = bestm2 = bestp1 = bestp2 = 0;
  905.  
  906.         /* based on hardware requirement, prefer smaller n to precision */
  907.         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  908.                 updrate = refclk / n;
  909.                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  910.                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  911.                                 if (p2 > 10)
  912.                                         p2 = p2 - 1;
  913.                                 p = p1 * p2;
  914.                                 /* based on hardware requirement, prefer bigger m1,m2 values */
  915.                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  916.                                         m2 = (((2*(fastclk * p * n / m1 )) +
  917.                                                refclk) / (2*refclk));
  918.                                         m = m1 * m2;
  919.                                         vco = updrate * m;
  920.                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
  921.                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  922.                                                 absppm = (ppm > 0) ? ppm : (-ppm);
  923.                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  924.                                                         bestppm = 0;
  925.                                                         flag = 1;
  926.                                                 }
  927.                                                 if (absppm < bestppm - 10) {
  928.                                                         bestppm = absppm;
  929.                                                         flag = 1;
  930.                                                 }
  931.                                                 if (flag) {
  932.                                                         bestn = n;
  933.                                                         bestm1 = m1;
  934.                                                         bestm2 = m2;
  935.                                                         bestp1 = p1;
  936.                                                         bestp2 = p2;
  937.                                                         flag = 0;
  938.                                                 }
  939.                                         }
  940.                                 }
  941.                         }
  942.                 }
  943.         }
  944.         best_clock->n = bestn;
  945.         best_clock->m1 = bestm1;
  946.         best_clock->m2 = bestm2;
  947.         best_clock->p1 = bestp1;
  948.         best_clock->p2 = bestp2;
  949.  
  950.         return true;
  951. }
  952.  
  953. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  954. {
  955.         struct drm_i915_private *dev_priv = dev->dev_private;
  956.         u32 frame, frame_reg = PIPEFRAME(pipe);
  957.  
  958.         frame = I915_READ(frame_reg);
  959.  
  960.         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  961.                 DRM_DEBUG_KMS("vblank wait timed out\n");
  962. }
  963.  
  964. /**
  965.  * intel_wait_for_vblank - wait for vblank on a given pipe
  966.  * @dev: drm device
  967.  * @pipe: pipe to wait for
  968.  *
  969.  * Wait for vblank to occur on a given pipe.  Needed for various bits of
  970.  * mode setting code.
  971.  */
  972. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  973. {
  974.         struct drm_i915_private *dev_priv = dev->dev_private;
  975.         int pipestat_reg = PIPESTAT(pipe);
  976.  
  977.         if (INTEL_INFO(dev)->gen >= 5) {
  978.                 ironlake_wait_for_vblank(dev, pipe);
  979.                 return;
  980.         }
  981.  
  982.         /* Clear existing vblank status. Note this will clear any other
  983.          * sticky status fields as well.
  984.          *
  985.          * This races with i915_driver_irq_handler() with the result
  986.          * that either function could miss a vblank event.  Here it is not
  987.          * fatal, as we will either wait upon the next vblank interrupt or
  988.          * timeout.  Generally speaking intel_wait_for_vblank() is only
  989.          * called during modeset at which time the GPU should be idle and
  990.          * should *not* be performing page flips and thus not waiting on
  991.          * vblanks...
  992.          * Currently, the result of us stealing a vblank from the irq
  993.          * handler is that a single frame will be skipped during swapbuffers.
  994.          */
  995.         I915_WRITE(pipestat_reg,
  996.                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  997.  
  998.         /* Wait for vblank interrupt bit to set */
  999.         if (wait_for(I915_READ(pipestat_reg) &
  1000.                      PIPE_VBLANK_INTERRUPT_STATUS,
  1001.                      50))
  1002.                 DRM_DEBUG_KMS("vblank wait timed out\n");
  1003. }
  1004.  
  1005. /*
  1006.  * intel_wait_for_pipe_off - wait for pipe to turn off
  1007.  * @dev: drm device
  1008.  * @pipe: pipe to wait for
  1009.  *
  1010.  * After disabling a pipe, we can't wait for vblank in the usual way,
  1011.  * spinning on the vblank interrupt status bit, since we won't actually
  1012.  * see an interrupt when the pipe is disabled.
  1013.  *
  1014.  * On Gen4 and above:
  1015.  *   wait for the pipe register state bit to turn off
  1016.  *
  1017.  * Otherwise:
  1018.  *   wait for the display line value to settle (it usually
  1019.  *   ends up stopping at the start of the next frame).
  1020.  *
  1021.  */
  1022. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  1023. {
  1024.         struct drm_i915_private *dev_priv = dev->dev_private;
  1025.  
  1026.         if (INTEL_INFO(dev)->gen >= 4) {
  1027.                 int reg = PIPECONF(pipe);
  1028.  
  1029.                 /* Wait for the Pipe State to go off */
  1030.                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  1031.                              100))
  1032.                         WARN(1, "pipe_off wait timed out\n");
  1033.         } else {
  1034.                 u32 last_line, line_mask;
  1035.                 int reg = PIPEDSL(pipe);
  1036.         unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
  1037.  
  1038.                 if (IS_GEN2(dev))
  1039.                         line_mask = DSL_LINEMASK_GEN2;
  1040.                 else
  1041.                         line_mask = DSL_LINEMASK_GEN3;
  1042.  
  1043.                 /* Wait for the display line to settle */
  1044.                 do {
  1045.                         last_line = I915_READ(reg) & line_mask;
  1046.                         mdelay(5);
  1047.                 } while (((I915_READ(reg) & line_mask) != last_line) &&
  1048.                          time_after(timeout, GetTimerTicks()));
  1049.                 if (time_after(GetTimerTicks(), timeout))
  1050.                         WARN(1, "pipe_off wait timed out\n");
  1051.         }
  1052. }
  1053.  
  1054. static const char *state_string(bool enabled)
  1055. {
  1056.         return enabled ? "on" : "off";
  1057. }
  1058.  
  1059. /* Only for pre-ILK configs */
  1060. static void assert_pll(struct drm_i915_private *dev_priv,
  1061.                        enum pipe pipe, bool state)
  1062. {
  1063.         int reg;
  1064.         u32 val;
  1065.         bool cur_state;
  1066.  
  1067.         reg = DPLL(pipe);
  1068.         val = I915_READ(reg);
  1069.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1070.         WARN(cur_state != state,
  1071.              "PLL state assertion failure (expected %s, current %s)\n",
  1072.              state_string(state), state_string(cur_state));
  1073. }
  1074. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  1075. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  1076.  
  1077. /* For ILK+ */
  1078. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  1079.                            struct intel_pch_pll *pll,
  1080.                            struct intel_crtc *crtc,
  1081.                            bool state)
  1082. {
  1083.         u32 val;
  1084.         bool cur_state;
  1085.  
  1086.         if (HAS_PCH_LPT(dev_priv->dev)) {
  1087.                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  1088.                 return;
  1089.         }
  1090.  
  1091.         if (WARN (!pll,
  1092.                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
  1093.                 return;
  1094.  
  1095.         val = I915_READ(pll->pll_reg);
  1096.         cur_state = !!(val & DPLL_VCO_ENABLE);
  1097.         WARN(cur_state != state,
  1098.              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  1099.              pll->pll_reg, state_string(state), state_string(cur_state), val);
  1100.  
  1101.         /* Make sure the selected PLL is correctly attached to the transcoder */
  1102.         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  1103.                 u32 pch_dpll;
  1104.  
  1105.                 pch_dpll = I915_READ(PCH_DPLL_SEL);
  1106.                 cur_state = pll->pll_reg == _PCH_DPLL_B;
  1107.                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  1108.                           "PLL[%d] not attached to this transcoder %d: %08x\n",
  1109.                           cur_state, crtc->pipe, pch_dpll)) {
  1110.                         cur_state = !!(val >> (4*crtc->pipe + 3));
  1111.         WARN(cur_state != state,
  1112.                              "PLL[%d] not %s on this transcoder %d: %08x\n",
  1113.                              pll->pll_reg == _PCH_DPLL_B,
  1114.                              state_string(state),
  1115.                              crtc->pipe,
  1116.                              val);
  1117.                 }
  1118.         }
  1119. }
  1120. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  1121. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1122.  
  1123. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1124.                           enum pipe pipe, bool state)
  1125. {
  1126.         int reg;
  1127.         u32 val;
  1128.         bool cur_state;
  1129.  
  1130.         if (IS_HASWELL(dev_priv->dev)) {
  1131.                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1132.                 reg = DDI_FUNC_CTL(pipe);
  1133.                 val = I915_READ(reg);
  1134.                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1135.         } else {
  1136.         reg = FDI_TX_CTL(pipe);
  1137.         val = I915_READ(reg);
  1138.         cur_state = !!(val & FDI_TX_ENABLE);
  1139.         }
  1140.         WARN(cur_state != state,
  1141.              "FDI TX state assertion failure (expected %s, current %s)\n",
  1142.              state_string(state), state_string(cur_state));
  1143. }
  1144. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1145. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1146.  
  1147. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1148.                           enum pipe pipe, bool state)
  1149. {
  1150.         int reg;
  1151.         u32 val;
  1152.         bool cur_state;
  1153.  
  1154.         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1155.                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1156.                         return;
  1157.         } else {
  1158.         reg = FDI_RX_CTL(pipe);
  1159.         val = I915_READ(reg);
  1160.         cur_state = !!(val & FDI_RX_ENABLE);
  1161.         }
  1162.         WARN(cur_state != state,
  1163.              "FDI RX state assertion failure (expected %s, current %s)\n",
  1164.              state_string(state), state_string(cur_state));
  1165. }
  1166. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1167. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1168.  
  1169. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1170.                                       enum pipe pipe)
  1171. {
  1172.         int reg;
  1173.         u32 val;
  1174.  
  1175.         /* ILK FDI PLL is always enabled */
  1176.         if (dev_priv->info->gen == 5)
  1177.                 return;
  1178.  
  1179.         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1180.         if (IS_HASWELL(dev_priv->dev))
  1181.                 return;
  1182.  
  1183.         reg = FDI_TX_CTL(pipe);
  1184.         val = I915_READ(reg);
  1185.         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1186. }
  1187.  
  1188. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1189.                                       enum pipe pipe)
  1190. {
  1191.         int reg;
  1192.         u32 val;
  1193.  
  1194.         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1195.                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1196.                 return;
  1197.         }
  1198.         reg = FDI_RX_CTL(pipe);
  1199.         val = I915_READ(reg);
  1200.         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1201. }
  1202.  
  1203. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1204.                                   enum pipe pipe)
  1205. {
  1206.         int pp_reg, lvds_reg;
  1207.         u32 val;
  1208.         enum pipe panel_pipe = PIPE_A;
  1209.         bool locked = true;
  1210.  
  1211.         if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1212.                 pp_reg = PCH_PP_CONTROL;
  1213.                 lvds_reg = PCH_LVDS;
  1214.         } else {
  1215.                 pp_reg = PP_CONTROL;
  1216.                 lvds_reg = LVDS;
  1217.         }
  1218.  
  1219.         val = I915_READ(pp_reg);
  1220.         if (!(val & PANEL_POWER_ON) ||
  1221.             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1222.                 locked = false;
  1223.  
  1224.         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1225.                 panel_pipe = PIPE_B;
  1226.  
  1227.         WARN(panel_pipe == pipe && locked,
  1228.              "panel assertion failure, pipe %c regs locked\n",
  1229.              pipe_name(pipe));
  1230. }
  1231.  
  1232. void assert_pipe(struct drm_i915_private *dev_priv,
  1233.                         enum pipe pipe, bool state)
  1234. {
  1235.         int reg;
  1236.         u32 val;
  1237.         bool cur_state;
  1238.  
  1239.         /* if we need the pipe A quirk it must be always on */
  1240.         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1241.                 state = true;
  1242.  
  1243.         reg = PIPECONF(pipe);
  1244.         val = I915_READ(reg);
  1245.         cur_state = !!(val & PIPECONF_ENABLE);
  1246.         WARN(cur_state != state,
  1247.              "pipe %c assertion failure (expected %s, current %s)\n",
  1248.              pipe_name(pipe), state_string(state), state_string(cur_state));
  1249. }
  1250.  
  1251. static void assert_plane(struct drm_i915_private *dev_priv,
  1252.                          enum plane plane, bool state)
  1253. {
  1254.         int reg;
  1255.         u32 val;
  1256.         bool cur_state;
  1257.  
  1258.         reg = DSPCNTR(plane);
  1259.         val = I915_READ(reg);
  1260.         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1261.         WARN(cur_state != state,
  1262.              "plane %c assertion failure (expected %s, current %s)\n",
  1263.              plane_name(plane), state_string(state), state_string(cur_state));
  1264. }
  1265.  
  1266. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1267. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1268.  
  1269. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1270.                                    enum pipe pipe)
  1271. {
  1272.         int reg, i;
  1273.         u32 val;
  1274.         int cur_pipe;
  1275.  
  1276.         /* Planes are fixed to pipes on ILK+ */
  1277.         if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1278.                 reg = DSPCNTR(pipe);
  1279.                 val = I915_READ(reg);
  1280.                 WARN((val & DISPLAY_PLANE_ENABLE),
  1281.                      "plane %c assertion failure, should be disabled but not\n",
  1282.                      plane_name(pipe));
  1283.                 return;
  1284.         }
  1285.  
  1286.         /* Need to check both planes against the pipe */
  1287.         for (i = 0; i < 2; i++) {
  1288.                 reg = DSPCNTR(i);
  1289.                 val = I915_READ(reg);
  1290.                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1291.                         DISPPLANE_SEL_PIPE_SHIFT;
  1292.                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1293.                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1294.                      plane_name(i), pipe_name(pipe));
  1295.         }
  1296. }
  1297.  
  1298. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1299. {
  1300.         u32 val;
  1301.         bool enabled;
  1302.  
  1303.         if (HAS_PCH_LPT(dev_priv->dev)) {
  1304.                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1305.                 return;
  1306.         }
  1307.  
  1308.         val = I915_READ(PCH_DREF_CONTROL);
  1309.         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1310.                             DREF_SUPERSPREAD_SOURCE_MASK));
  1311.         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1312. }
  1313.  
  1314. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1315.                                        enum pipe pipe)
  1316. {
  1317.         int reg;
  1318.         u32 val;
  1319.         bool enabled;
  1320.  
  1321.         reg = TRANSCONF(pipe);
  1322.         val = I915_READ(reg);
  1323.         enabled = !!(val & TRANS_ENABLE);
  1324.         WARN(enabled,
  1325.              "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1326.              pipe_name(pipe));
  1327. }
  1328.  
  1329. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1330.                             enum pipe pipe, u32 port_sel, u32 val)
  1331. {
  1332.         if ((val & DP_PORT_EN) == 0)
  1333.                 return false;
  1334.  
  1335.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1336.                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1337.                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1338.                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1339.                         return false;
  1340.         } else {
  1341.                 if ((val & DP_PIPE_MASK) != (pipe << 30))
  1342.                         return false;
  1343.         }
  1344.         return true;
  1345. }
  1346.  
  1347. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1348.                               enum pipe pipe, u32 val)
  1349. {
  1350.         if ((val & PORT_ENABLE) == 0)
  1351.                 return false;
  1352.  
  1353.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1354.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1355.                         return false;
  1356.         } else {
  1357.                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1358.                         return false;
  1359.         }
  1360.         return true;
  1361. }
  1362.  
  1363. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1364.                               enum pipe pipe, u32 val)
  1365. {
  1366.         if ((val & LVDS_PORT_EN) == 0)
  1367.                 return false;
  1368.  
  1369.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1370.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1371.                         return false;
  1372.         } else {
  1373.                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1374.                         return false;
  1375.         }
  1376.         return true;
  1377. }
  1378.  
  1379. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1380.                               enum pipe pipe, u32 val)
  1381. {
  1382.         if ((val & ADPA_DAC_ENABLE) == 0)
  1383.                 return false;
  1384.         if (HAS_PCH_CPT(dev_priv->dev)) {
  1385.                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1386.                         return false;
  1387.         } else {
  1388.                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1389.                         return false;
  1390.         }
  1391.         return true;
  1392. }
  1393.  
  1394. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1395.                                    enum pipe pipe, int reg, u32 port_sel)
  1396. {
  1397.         u32 val = I915_READ(reg);
  1398.         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1399.              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1400.              reg, pipe_name(pipe));
  1401.  
  1402.         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1403.              && (val & DP_PIPEB_SELECT),
  1404.              "IBX PCH dp port still using transcoder B\n");
  1405. }
  1406.  
  1407. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1408.                                      enum pipe pipe, int reg)
  1409. {
  1410.         u32 val = I915_READ(reg);
  1411.         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1412.              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1413.              reg, pipe_name(pipe));
  1414.  
  1415.         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1416.              && (val & SDVO_PIPE_B_SELECT),
  1417.              "IBX PCH hdmi port still using transcoder B\n");
  1418. }
  1419.  
  1420. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1421.                                       enum pipe pipe)
  1422. {
  1423.         int reg;
  1424.         u32 val;
  1425.  
  1426.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1427.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1428.         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1429.  
  1430.         reg = PCH_ADPA;
  1431.         val = I915_READ(reg);
  1432.         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1433.              "PCH VGA enabled on transcoder %c, should be disabled\n",
  1434.              pipe_name(pipe));
  1435.  
  1436.         reg = PCH_LVDS;
  1437.         val = I915_READ(reg);
  1438.         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1439.              "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1440.              pipe_name(pipe));
  1441.  
  1442.         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1443.         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1444.         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1445. }
  1446.  
  1447. /**
  1448.  * intel_enable_pll - enable a PLL
  1449.  * @dev_priv: i915 private structure
  1450.  * @pipe: pipe PLL to enable
  1451.  *
  1452.  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
  1453.  * make sure the PLL reg is writable first though, since the panel write
  1454.  * protect mechanism may be enabled.
  1455.  *
  1456.  * Note!  This is for pre-ILK only.
  1457.  *
  1458.  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1459.  */
  1460. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1461. {
  1462.     int reg;
  1463.     u32 val;
  1464.  
  1465.     /* No really, not for ILK+ */
  1466.         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1467.  
  1468.     /* PLL is protected by panel, make sure we can write it */
  1469.     if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1470.         assert_panel_unlocked(dev_priv, pipe);
  1471.  
  1472.     reg = DPLL(pipe);
  1473.     val = I915_READ(reg);
  1474.     val |= DPLL_VCO_ENABLE;
  1475.  
  1476.     /* We do this three times for luck */
  1477.     I915_WRITE(reg, val);
  1478.     POSTING_READ(reg);
  1479.     udelay(150); /* wait for warmup */
  1480.     I915_WRITE(reg, val);
  1481.     POSTING_READ(reg);
  1482.     udelay(150); /* wait for warmup */
  1483.     I915_WRITE(reg, val);
  1484.     POSTING_READ(reg);
  1485.     udelay(150); /* wait for warmup */
  1486. }
  1487.  
  1488. /**
  1489.  * intel_disable_pll - disable a PLL
  1490.  * @dev_priv: i915 private structure
  1491.  * @pipe: pipe PLL to disable
  1492.  *
  1493.  * Disable the PLL for @pipe, making sure the pipe is off first.
  1494.  *
  1495.  * Note!  This is for pre-ILK only.
  1496.  */
  1497. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1498. {
  1499.         int reg;
  1500.         u32 val;
  1501.  
  1502.         /* Don't disable pipe A or pipe A PLLs if needed */
  1503.         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1504.                 return;
  1505.  
  1506.         /* Make sure the pipe isn't still relying on us */
  1507.         assert_pipe_disabled(dev_priv, pipe);
  1508.  
  1509.         reg = DPLL(pipe);
  1510.         val = I915_READ(reg);
  1511.         val &= ~DPLL_VCO_ENABLE;
  1512.         I915_WRITE(reg, val);
  1513.         POSTING_READ(reg);
  1514. }
  1515.  
  1516. /* SBI access */
  1517. static void
  1518. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1519. {
  1520.         unsigned long flags;
  1521.  
  1522.         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1523.         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1524.                                 100)) {
  1525.                 DRM_ERROR("timeout waiting for SBI to become ready\n");
  1526.                 goto out_unlock;
  1527.         }
  1528.  
  1529.         I915_WRITE(SBI_ADDR,
  1530.                         (reg << 16));
  1531.         I915_WRITE(SBI_DATA,
  1532.                         value);
  1533.         I915_WRITE(SBI_CTL_STAT,
  1534.                         SBI_BUSY |
  1535.                         SBI_CTL_OP_CRWR);
  1536.  
  1537.         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1538.                                 100)) {
  1539.                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1540.                 goto out_unlock;
  1541.         }
  1542.  
  1543. out_unlock:
  1544.         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1545. }
  1546.  
  1547. static u32
  1548. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1549. {
  1550.         unsigned long flags;
  1551.         u32 value = 0;
  1552.  
  1553.         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1554.         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1555.                                 100)) {
  1556.                 DRM_ERROR("timeout waiting for SBI to become ready\n");
  1557.                 goto out_unlock;
  1558.         }
  1559.  
  1560.         I915_WRITE(SBI_ADDR,
  1561.                         (reg << 16));
  1562.         I915_WRITE(SBI_CTL_STAT,
  1563.                         SBI_BUSY |
  1564.                         SBI_CTL_OP_CRRD);
  1565.  
  1566.         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1567.                                 100)) {
  1568.                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1569.                 goto out_unlock;
  1570.         }
  1571.  
  1572.         value = I915_READ(SBI_DATA);
  1573.  
  1574. out_unlock:
  1575.         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1576.         return value;
  1577. }
  1578.  
  1579. /**
  1580.  * intel_enable_pch_pll - enable PCH PLL
  1581.  * @dev_priv: i915 private structure
  1582.  * @pipe: pipe PLL to enable
  1583.  *
  1584.  * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1585.  * drives the transcoder clock.
  1586.  */
  1587. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1588. {
  1589.         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1590.         struct intel_pch_pll *pll;
  1591.         int reg;
  1592.         u32 val;
  1593.  
  1594.         /* PCH PLLs only available on ILK, SNB and IVB */
  1595.         BUG_ON(dev_priv->info->gen < 5);
  1596.         pll = intel_crtc->pch_pll;
  1597.         if (pll == NULL)
  1598.                 return;
  1599.  
  1600.         if (WARN_ON(pll->refcount == 0))
  1601.                 return;
  1602.  
  1603.         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1604.                       pll->pll_reg, pll->active, pll->on,
  1605.                       intel_crtc->base.base.id);
  1606.  
  1607.         /* PCH refclock must be enabled first */
  1608.         assert_pch_refclk_enabled(dev_priv);
  1609.  
  1610.         if (pll->active++ && pll->on) {
  1611.                 assert_pch_pll_enabled(dev_priv, pll, NULL);
  1612.                 return;
  1613.         }
  1614.  
  1615.         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1616.  
  1617.         reg = pll->pll_reg;
  1618.         val = I915_READ(reg);
  1619.         val |= DPLL_VCO_ENABLE;
  1620.         I915_WRITE(reg, val);
  1621.         POSTING_READ(reg);
  1622.         udelay(200);
  1623.  
  1624.         pll->on = true;
  1625. }
  1626.  
  1627. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1628. {
  1629.         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1630.         struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1631.         int reg;
  1632.         u32 val;
  1633.  
  1634.         /* PCH only available on ILK+ */
  1635.         BUG_ON(dev_priv->info->gen < 5);
  1636.         if (pll == NULL)
  1637.                return;
  1638.  
  1639.         if (WARN_ON(pll->refcount == 0))
  1640.                 return;
  1641.  
  1642.         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1643.                       pll->pll_reg, pll->active, pll->on,
  1644.                       intel_crtc->base.base.id);
  1645.  
  1646.         if (WARN_ON(pll->active == 0)) {
  1647.                 assert_pch_pll_disabled(dev_priv, pll, NULL);
  1648.                 return;
  1649.         }
  1650.  
  1651.         if (--pll->active) {
  1652.                 assert_pch_pll_enabled(dev_priv, pll, NULL);
  1653.                 return;
  1654.         }
  1655.  
  1656.         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1657.  
  1658.         /* Make sure transcoder isn't still depending on us */
  1659.         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1660.  
  1661.         reg = pll->pll_reg;
  1662.         val = I915_READ(reg);
  1663.         val &= ~DPLL_VCO_ENABLE;
  1664.         I915_WRITE(reg, val);
  1665.         POSTING_READ(reg);
  1666.         udelay(200);
  1667.  
  1668.         pll->on = false;
  1669. }
  1670.  
  1671. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1672.                                     enum pipe pipe)
  1673. {
  1674.         int reg;
  1675.         u32 val, pipeconf_val;
  1676.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1677.  
  1678.         /* PCH only available on ILK+ */
  1679.         BUG_ON(dev_priv->info->gen < 5);
  1680.  
  1681.         /* Make sure PCH DPLL is enabled */
  1682.         assert_pch_pll_enabled(dev_priv,
  1683.                                to_intel_crtc(crtc)->pch_pll,
  1684.                                to_intel_crtc(crtc));
  1685.  
  1686.         /* FDI must be feeding us bits for PCH ports */
  1687.         assert_fdi_tx_enabled(dev_priv, pipe);
  1688.         assert_fdi_rx_enabled(dev_priv, pipe);
  1689.  
  1690.         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1691.                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1692.                 return;
  1693.         }
  1694.         reg = TRANSCONF(pipe);
  1695.         val = I915_READ(reg);
  1696.         pipeconf_val = I915_READ(PIPECONF(pipe));
  1697.  
  1698.         if (HAS_PCH_IBX(dev_priv->dev)) {
  1699.                 /*
  1700.                  * make the BPC in transcoder be consistent with
  1701.                  * that in pipeconf reg.
  1702.                  */
  1703.                 val &= ~PIPE_BPC_MASK;
  1704.                 val |= pipeconf_val & PIPE_BPC_MASK;
  1705.         }
  1706.  
  1707.         val &= ~TRANS_INTERLACE_MASK;
  1708.         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1709.                 if (HAS_PCH_IBX(dev_priv->dev) &&
  1710.                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1711.                         val |= TRANS_LEGACY_INTERLACED_ILK;
  1712.                 else
  1713.                         val |= TRANS_INTERLACED;
  1714.         else
  1715.                 val |= TRANS_PROGRESSIVE;
  1716.  
  1717.         I915_WRITE(reg, val | TRANS_ENABLE);
  1718.         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1719.                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1720. }
  1721.  
  1722. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1723.                                      enum pipe pipe)
  1724. {
  1725.         int reg;
  1726.         u32 val;
  1727.  
  1728.         /* FDI relies on the transcoder */
  1729.         assert_fdi_tx_disabled(dev_priv, pipe);
  1730.         assert_fdi_rx_disabled(dev_priv, pipe);
  1731.  
  1732.         /* Ports must be off as well */
  1733.         assert_pch_ports_disabled(dev_priv, pipe);
  1734.  
  1735.         reg = TRANSCONF(pipe);
  1736.         val = I915_READ(reg);
  1737.         val &= ~TRANS_ENABLE;
  1738.         I915_WRITE(reg, val);
  1739.         /* wait for PCH transcoder off, transcoder state */
  1740.         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1741.                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1742. }
  1743.  
  1744. /**
  1745.  * intel_enable_pipe - enable a pipe, asserting requirements
  1746.  * @dev_priv: i915 private structure
  1747.  * @pipe: pipe to enable
  1748.  * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1749.  *
  1750.  * Enable @pipe, making sure that various hardware specific requirements
  1751.  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1752.  *
  1753.  * @pipe should be %PIPE_A or %PIPE_B.
  1754.  *
  1755.  * Will wait until the pipe is actually running (i.e. first vblank) before
  1756.  * returning.
  1757.  */
  1758. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1759.                               bool pch_port)
  1760. {
  1761.         int reg;
  1762.         u32 val;
  1763.  
  1764.         /*
  1765.          * A pipe without a PLL won't actually be able to drive bits from
  1766.          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
  1767.          * need the check.
  1768.          */
  1769.         if (!HAS_PCH_SPLIT(dev_priv->dev))
  1770.                 assert_pll_enabled(dev_priv, pipe);
  1771.         else {
  1772.                 if (pch_port) {
  1773.                         /* if driving the PCH, we need FDI enabled */
  1774.                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1775.                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1776.                 }
  1777.                 /* FIXME: assert CPU port conditions for SNB+ */
  1778.         }
  1779.  
  1780.         reg = PIPECONF(pipe);
  1781.         val = I915_READ(reg);
  1782.         if (val & PIPECONF_ENABLE)
  1783.                 return;
  1784.  
  1785.         I915_WRITE(reg, val | PIPECONF_ENABLE);
  1786.         intel_wait_for_vblank(dev_priv->dev, pipe);
  1787. }
  1788.  
  1789. /**
  1790.  * intel_disable_pipe - disable a pipe, asserting requirements
  1791.  * @dev_priv: i915 private structure
  1792.  * @pipe: pipe to disable
  1793.  *
  1794.  * Disable @pipe, making sure that various hardware specific requirements
  1795.  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1796.  *
  1797.  * @pipe should be %PIPE_A or %PIPE_B.
  1798.  *
  1799.  * Will wait until the pipe has shut down before returning.
  1800.  */
  1801. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1802.                                enum pipe pipe)
  1803. {
  1804.         int reg;
  1805.         u32 val;
  1806.  
  1807.     /*
  1808.          * Make sure planes won't keep trying to pump pixels to us,
  1809.          * or we might hang the display.
  1810.          */
  1811.         assert_planes_disabled(dev_priv, pipe);
  1812.  
  1813.         /* Don't disable pipe A or pipe A PLLs if needed */
  1814.         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1815.                 return;
  1816.  
  1817.         reg = PIPECONF(pipe);
  1818.         val = I915_READ(reg);
  1819.         if ((val & PIPECONF_ENABLE) == 0)
  1820.                 return;
  1821.  
  1822.         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1823.         intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1824. }
  1825.  
  1826. /*
  1827.  * Plane regs are double buffered, going from enabled->disabled needs a
  1828.  * trigger in order to latch.  The display address reg provides this.
  1829.  */
  1830. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1831.                                       enum plane plane)
  1832. {
  1833.         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1834.         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1835. }
  1836.  
  1837. /**
  1838.  * intel_enable_plane - enable a display plane on a given pipe
  1839.  * @dev_priv: i915 private structure
  1840.  * @plane: plane to enable
  1841.  * @pipe: pipe being fed
  1842.  *
  1843.  * Enable @plane on @pipe, making sure that @pipe is running first.
  1844.  */
  1845. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1846.                                enum plane plane, enum pipe pipe)
  1847. {
  1848.         int reg;
  1849.         u32 val;
  1850.  
  1851.         /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1852.         assert_pipe_enabled(dev_priv, pipe);
  1853.  
  1854.         reg = DSPCNTR(plane);
  1855.         val = I915_READ(reg);
  1856.         if (val & DISPLAY_PLANE_ENABLE)
  1857.                 return;
  1858.  
  1859.         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1860.         intel_flush_display_plane(dev_priv, plane);
  1861.         intel_wait_for_vblank(dev_priv->dev, pipe);
  1862. }
  1863.  
  1864. /**
  1865.  * intel_disable_plane - disable a display plane
  1866.  * @dev_priv: i915 private structure
  1867.  * @plane: plane to disable
  1868.  * @pipe: pipe consuming the data
  1869.  *
  1870.  * Disable @plane; should be an independent operation.
  1871.  */
  1872. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1873.                                 enum plane plane, enum pipe pipe)
  1874. {
  1875.         int reg;
  1876.         u32 val;
  1877.  
  1878.         reg = DSPCNTR(plane);
  1879.         val = I915_READ(reg);
  1880.         if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1881.                 return;
  1882.  
  1883.         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1884.         intel_flush_display_plane(dev_priv, plane);
  1885.     intel_wait_for_vblank(dev_priv->dev, pipe);
  1886. }
  1887.  
  1888. int
  1889. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1890.                            struct drm_i915_gem_object *obj,
  1891.                            struct intel_ring_buffer *pipelined)
  1892. {
  1893.         struct drm_i915_private *dev_priv = dev->dev_private;
  1894.         u32 alignment;
  1895.         int ret;
  1896.  
  1897.         switch (obj->tiling_mode) {
  1898.         case I915_TILING_NONE:
  1899.                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1900.                         alignment = 128 * 1024;
  1901.                 else if (INTEL_INFO(dev)->gen >= 4)
  1902.                         alignment = 4 * 1024;
  1903.                 else
  1904.                         alignment = 64 * 1024;
  1905.                 break;
  1906.         case I915_TILING_X:
  1907.                 /* pin() will align the object as required by fence */
  1908.                 alignment = 0;
  1909.                 break;
  1910.         case I915_TILING_Y:
  1911.                 /* FIXME: Is this true? */
  1912.                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1913.                 return -EINVAL;
  1914.         default:
  1915.                 BUG();
  1916.         }
  1917.  
  1918.         dev_priv->mm.interruptible = false;
  1919.         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1920.         if (ret)
  1921.                 goto err_interruptible;
  1922.  
  1923.         /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1924.          * fence, whereas 965+ only requires a fence if using
  1925.          * framebuffer compression.  For simplicity, we always install
  1926.          * a fence as the cost is not that onerous.
  1927.          */
  1928. //      if (obj->tiling_mode != I915_TILING_NONE) {
  1929. //              ret = i915_gem_object_get_fence(obj, pipelined);
  1930. //              if (ret)
  1931. //                      goto err_unpin;
  1932. //      }
  1933.  
  1934.         dev_priv->mm.interruptible = true;
  1935.         return 0;
  1936.  
  1937. err_unpin:
  1938.         i915_gem_object_unpin(obj);
  1939. err_interruptible:
  1940.         dev_priv->mm.interruptible = true;
  1941.         return ret;
  1942. }
  1943.  
  1944. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1945. {
  1946. //      i915_gem_object_unpin_fence(obj);
  1947. //      i915_gem_object_unpin(obj);
  1948. }
  1949.  
  1950. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1951.  * is assumed to be a power-of-two. */
  1952. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1953.                                                         unsigned int bpp,
  1954.                                                         unsigned int pitch)
  1955. {
  1956.         int tile_rows, tiles;
  1957.  
  1958.         tile_rows = *y / 8;
  1959.         *y %= 8;
  1960.         tiles = *x / (512/bpp);
  1961.         *x %= 512/bpp;
  1962.  
  1963.         return tile_rows * pitch * 8 + tiles * 4096;
  1964. }
  1965.  
  1966. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1967.                  int x, int y)
  1968. {
  1969.     struct drm_device *dev = crtc->dev;
  1970.     struct drm_i915_private *dev_priv = dev->dev_private;
  1971.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1972.     struct intel_framebuffer *intel_fb;
  1973.     struct drm_i915_gem_object *obj;
  1974.     int plane = intel_crtc->plane;
  1975.         unsigned long linear_offset;
  1976.     u32 dspcntr;
  1977.     u32 reg;
  1978.  
  1979.     switch (plane) {
  1980.     case 0:
  1981.     case 1:
  1982.         break;
  1983.     default:
  1984.         DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1985.         return -EINVAL;
  1986.     }
  1987.  
  1988.     intel_fb = to_intel_framebuffer(fb);
  1989.     obj = intel_fb->obj;
  1990.  
  1991.     reg = DSPCNTR(plane);
  1992.     dspcntr = I915_READ(reg);
  1993.     /* Mask out pixel format bits in case we change it */
  1994.     dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1995.     switch (fb->bits_per_pixel) {
  1996.     case 8:
  1997.         dspcntr |= DISPPLANE_8BPP;
  1998.         break;
  1999.     case 16:
  2000.         if (fb->depth == 15)
  2001.             dspcntr |= DISPPLANE_15_16BPP;
  2002.         else
  2003.             dspcntr |= DISPPLANE_16BPP;
  2004.         break;
  2005.     case 24:
  2006.     case 32:
  2007.         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  2008.         break;
  2009.     default:
  2010.         DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  2011.         return -EINVAL;
  2012.     }
  2013.     if (INTEL_INFO(dev)->gen >= 4) {
  2014.         if (obj->tiling_mode != I915_TILING_NONE)
  2015.             dspcntr |= DISPPLANE_TILED;
  2016.         else
  2017.             dspcntr &= ~DISPPLANE_TILED;
  2018.     }
  2019.  
  2020.     I915_WRITE(reg, dspcntr);
  2021.  
  2022.         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2023.  
  2024.         if (INTEL_INFO(dev)->gen >= 4) {
  2025.                 intel_crtc->dspaddr_offset =
  2026.                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
  2027.                                                            fb->bits_per_pixel / 8,
  2028.                                                            fb->pitches[0]);
  2029.                 linear_offset -= intel_crtc->dspaddr_offset;
  2030.         } else {
  2031.                 intel_crtc->dspaddr_offset = linear_offset;
  2032.         }
  2033.  
  2034.         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  2035.                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  2036.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2037.     if (INTEL_INFO(dev)->gen >= 4) {
  2038.                 I915_MODIFY_DISPBASE(DSPSURF(plane),
  2039.                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
  2040.         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2041.                 I915_WRITE(DSPLINOFF(plane), linear_offset);
  2042.     } else
  2043.                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  2044.     POSTING_READ(reg);
  2045.  
  2046.     return 0;
  2047. }
  2048.  
  2049. static int ironlake_update_plane(struct drm_crtc *crtc,
  2050.                  struct drm_framebuffer *fb, int x, int y)
  2051. {
  2052.     struct drm_device *dev = crtc->dev;
  2053.     struct drm_i915_private *dev_priv = dev->dev_private;
  2054.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2055.     struct intel_framebuffer *intel_fb;
  2056.     struct drm_i915_gem_object *obj;
  2057.     int plane = intel_crtc->plane;
  2058.         unsigned long linear_offset;
  2059.     u32 dspcntr;
  2060.     u32 reg;
  2061.  
  2062.     switch (plane) {
  2063.     case 0:
  2064.     case 1:
  2065.         case 2:
  2066.         break;
  2067.     default:
  2068.         DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  2069.         return -EINVAL;
  2070.     }
  2071.  
  2072.     intel_fb = to_intel_framebuffer(fb);
  2073.     obj = intel_fb->obj;
  2074.  
  2075.     reg = DSPCNTR(plane);
  2076.     dspcntr = I915_READ(reg);
  2077.     /* Mask out pixel format bits in case we change it */
  2078.     dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  2079.     switch (fb->bits_per_pixel) {
  2080.     case 8:
  2081.         dspcntr |= DISPPLANE_8BPP;
  2082.         break;
  2083.     case 16:
  2084.         if (fb->depth != 16)
  2085.             return -EINVAL;
  2086.  
  2087.         dspcntr |= DISPPLANE_16BPP;
  2088.         break;
  2089.     case 24:
  2090.     case 32:
  2091.         if (fb->depth == 24)
  2092.             dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  2093.         else if (fb->depth == 30)
  2094.             dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  2095.         else
  2096.             return -EINVAL;
  2097.         break;
  2098.     default:
  2099.         DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  2100.         return -EINVAL;
  2101.     }
  2102.  
  2103. //    if (obj->tiling_mode != I915_TILING_NONE)
  2104. //        dspcntr |= DISPPLANE_TILED;
  2105. //    else
  2106.         dspcntr &= ~DISPPLANE_TILED;
  2107.  
  2108.     /* must disable */
  2109.     dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2110.  
  2111.     I915_WRITE(reg, dspcntr);
  2112.  
  2113.         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2114.         intel_crtc->dspaddr_offset =
  2115.                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
  2116.                                                    fb->bits_per_pixel / 8,
  2117.                                                    fb->pitches[0]);
  2118.         linear_offset -= intel_crtc->dspaddr_offset;
  2119.  
  2120.         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  2121.                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  2122.         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2123.         I915_MODIFY_DISPBASE(DSPSURF(plane),
  2124.                              obj->gtt_offset + intel_crtc->dspaddr_offset);
  2125.         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2126.         I915_WRITE(DSPLINOFF(plane), linear_offset);
  2127.         POSTING_READ(reg);
  2128.  
  2129.     return 0;
  2130. }
  2131.  
  2132. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  2133. static int
  2134. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2135.                            int x, int y, enum mode_set_atomic state)
  2136. {
  2137.         struct drm_device *dev = crtc->dev;
  2138.         struct drm_i915_private *dev_priv = dev->dev_private;
  2139.  
  2140.         if (dev_priv->display.disable_fbc)
  2141.                 dev_priv->display.disable_fbc(dev);
  2142.         intel_increase_pllclock(crtc);
  2143.  
  2144.         return dev_priv->display.update_plane(crtc, fb, x, y);
  2145. }
  2146.  
  2147. #if 0
  2148. static int
  2149. intel_finish_fb(struct drm_framebuffer *old_fb)
  2150. {
  2151.         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2152.         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2153.         bool was_interruptible = dev_priv->mm.interruptible;
  2154.         int ret;
  2155.  
  2156.         wait_event(dev_priv->pending_flip_queue,
  2157.                    atomic_read(&dev_priv->mm.wedged) ||
  2158.                    atomic_read(&obj->pending_flip) == 0);
  2159.  
  2160.         /* Big Hammer, we also need to ensure that any pending
  2161.          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2162.          * current scanout is retired before unpinning the old
  2163.          * framebuffer.
  2164.          *
  2165.          * This should only fail upon a hung GPU, in which case we
  2166.          * can safely continue.
  2167.          */
  2168.         dev_priv->mm.interruptible = false;
  2169.         ret = i915_gem_object_finish_gpu(obj);
  2170.         dev_priv->mm.interruptible = was_interruptible;
  2171.  
  2172.         return ret;
  2173. }
  2174. #endif
  2175.  
  2176. static int
  2177. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2178.                     struct drm_framebuffer *fb)
  2179. {
  2180.         struct drm_device *dev = crtc->dev;
  2181.         struct drm_i915_private *dev_priv = dev->dev_private;
  2182.         struct drm_i915_master_private *master_priv;
  2183.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2184.         struct drm_framebuffer *old_fb;
  2185.         int ret;
  2186.  
  2187.         /* no fb bound */
  2188.         if (!fb) {
  2189.                 DRM_ERROR("No FB bound\n");
  2190.                 return 0;
  2191.         }
  2192.  
  2193.         if(intel_crtc->plane > dev_priv->num_pipe) {
  2194.                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  2195.                                 intel_crtc->plane,
  2196.                                 dev_priv->num_pipe);
  2197.                 return -EINVAL;
  2198.         }
  2199.  
  2200.         mutex_lock(&dev->struct_mutex);
  2201. //   ret = intel_pin_and_fence_fb_obj(dev,
  2202. //                    to_intel_framebuffer(fb)->obj,
  2203. //                    NULL);
  2204. //   if (ret != 0) {
  2205. //       mutex_unlock(&dev->struct_mutex);
  2206. //       DRM_ERROR("pin & fence failed\n");
  2207. //       return ret;
  2208. //   }
  2209.  
  2210. //   if (crtc->fb)
  2211. //       intel_finish_fb(crtc->fb);
  2212.  
  2213.         ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2214.         if (ret) {
  2215.                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2216.                 mutex_unlock(&dev->struct_mutex);
  2217.                 DRM_ERROR("failed to update base address\n");
  2218.                 return ret;
  2219.         }
  2220.  
  2221.         old_fb = crtc->fb;
  2222.         crtc->fb = fb;
  2223.         crtc->x = x;
  2224.         crtc->y = y;
  2225.  
  2226.         if (old_fb) {
  2227.                 intel_wait_for_vblank(dev, intel_crtc->pipe);
  2228.                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2229.         }
  2230.  
  2231.         intel_update_fbc(dev);
  2232.         mutex_unlock(&dev->struct_mutex);
  2233.  
  2234.     return 0;
  2235. }
  2236.  
  2237. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2238. {
  2239.         struct drm_device *dev = crtc->dev;
  2240.         struct drm_i915_private *dev_priv = dev->dev_private;
  2241.         u32 dpa_ctl;
  2242.  
  2243.         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2244.         dpa_ctl = I915_READ(DP_A);
  2245.         dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2246.  
  2247.         if (clock < 200000) {
  2248.                 u32 temp;
  2249.                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2250.                 /* workaround for 160Mhz:
  2251.                    1) program 0x4600c bits 15:0 = 0x8124
  2252.                    2) program 0x46010 bit 0 = 1
  2253.                    3) program 0x46034 bit 24 = 1
  2254.                    4) program 0x64000 bit 14 = 1
  2255.                    */
  2256.                 temp = I915_READ(0x4600c);
  2257.                 temp &= 0xffff0000;
  2258.                 I915_WRITE(0x4600c, temp | 0x8124);
  2259.  
  2260.                 temp = I915_READ(0x46010);
  2261.                 I915_WRITE(0x46010, temp | 1);
  2262.  
  2263.                 temp = I915_READ(0x46034);
  2264.                 I915_WRITE(0x46034, temp | (1 << 24));
  2265.         } else {
  2266.                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2267.         }
  2268.         I915_WRITE(DP_A, dpa_ctl);
  2269.  
  2270.         POSTING_READ(DP_A);
  2271.         udelay(500);
  2272. }
  2273.  
  2274. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2275. {
  2276.         struct drm_device *dev = crtc->dev;
  2277.         struct drm_i915_private *dev_priv = dev->dev_private;
  2278.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2279.         int pipe = intel_crtc->pipe;
  2280.         u32 reg, temp;
  2281.  
  2282.         /* enable normal train */
  2283.         reg = FDI_TX_CTL(pipe);
  2284.         temp = I915_READ(reg);
  2285.         if (IS_IVYBRIDGE(dev)) {
  2286.                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2287.                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2288.         } else {
  2289.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2290.                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2291.         }
  2292.         I915_WRITE(reg, temp);
  2293.  
  2294.         reg = FDI_RX_CTL(pipe);
  2295.         temp = I915_READ(reg);
  2296.         if (HAS_PCH_CPT(dev)) {
  2297.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2298.                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2299.         } else {
  2300.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2301.                 temp |= FDI_LINK_TRAIN_NONE;
  2302.         }
  2303.         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2304.  
  2305.         /* wait one idle pattern time */
  2306.         POSTING_READ(reg);
  2307.         udelay(1000);
  2308.  
  2309.         /* IVB wants error correction enabled */
  2310.         if (IS_IVYBRIDGE(dev))
  2311.                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2312.                            FDI_FE_ERRC_ENABLE);
  2313. }
  2314.  
  2315. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2316. {
  2317.         struct drm_i915_private *dev_priv = dev->dev_private;
  2318.         u32 flags = I915_READ(SOUTH_CHICKEN1);
  2319.  
  2320.         flags |= FDI_PHASE_SYNC_OVR(pipe);
  2321.         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2322.         flags |= FDI_PHASE_SYNC_EN(pipe);
  2323.         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2324.         POSTING_READ(SOUTH_CHICKEN1);
  2325. }
  2326.  
  2327. /* The FDI link training functions for ILK/Ibexpeak. */
  2328. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2329. {
  2330.     struct drm_device *dev = crtc->dev;
  2331.     struct drm_i915_private *dev_priv = dev->dev_private;
  2332.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2333.     int pipe = intel_crtc->pipe;
  2334.     int plane = intel_crtc->plane;
  2335.     u32 reg, temp, tries;
  2336.  
  2337.     /* FDI needs bits from pipe & plane first */
  2338.     assert_pipe_enabled(dev_priv, pipe);
  2339.     assert_plane_enabled(dev_priv, plane);
  2340.  
  2341.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2342.        for train result */
  2343.     reg = FDI_RX_IMR(pipe);
  2344.     temp = I915_READ(reg);
  2345.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2346.     temp &= ~FDI_RX_BIT_LOCK;
  2347.     I915_WRITE(reg, temp);
  2348.     I915_READ(reg);
  2349.     udelay(150);
  2350.  
  2351.     /* enable CPU FDI TX and PCH FDI RX */
  2352.     reg = FDI_TX_CTL(pipe);
  2353.     temp = I915_READ(reg);
  2354.     temp &= ~(7 << 19);
  2355.     temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2356.     temp &= ~FDI_LINK_TRAIN_NONE;
  2357.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2358.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2359.  
  2360.     reg = FDI_RX_CTL(pipe);
  2361.     temp = I915_READ(reg);
  2362.     temp &= ~FDI_LINK_TRAIN_NONE;
  2363.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2364.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2365.  
  2366.     POSTING_READ(reg);
  2367.     udelay(150);
  2368.  
  2369.     /* Ironlake workaround, enable clock pointer after FDI enable*/
  2370.     if (HAS_PCH_IBX(dev)) {
  2371.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2372.         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2373.                FDI_RX_PHASE_SYNC_POINTER_EN);
  2374.     }
  2375.  
  2376.     reg = FDI_RX_IIR(pipe);
  2377.     for (tries = 0; tries < 5; tries++) {
  2378.         temp = I915_READ(reg);
  2379.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2380.  
  2381.         if ((temp & FDI_RX_BIT_LOCK)) {
  2382.             DRM_DEBUG_KMS("FDI train 1 done.\n");
  2383.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2384.             break;
  2385.         }
  2386.     }
  2387.     if (tries == 5)
  2388.         DRM_ERROR("FDI train 1 fail!\n");
  2389.  
  2390.     /* Train 2 */
  2391.     reg = FDI_TX_CTL(pipe);
  2392.     temp = I915_READ(reg);
  2393.     temp &= ~FDI_LINK_TRAIN_NONE;
  2394.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2395.     I915_WRITE(reg, temp);
  2396.  
  2397.     reg = FDI_RX_CTL(pipe);
  2398.     temp = I915_READ(reg);
  2399.     temp &= ~FDI_LINK_TRAIN_NONE;
  2400.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2401.     I915_WRITE(reg, temp);
  2402.  
  2403.     POSTING_READ(reg);
  2404.     udelay(150);
  2405.  
  2406.     reg = FDI_RX_IIR(pipe);
  2407.     for (tries = 0; tries < 5; tries++) {
  2408.         temp = I915_READ(reg);
  2409.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2410.  
  2411.         if (temp & FDI_RX_SYMBOL_LOCK) {
  2412.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2413.             DRM_DEBUG_KMS("FDI train 2 done.\n");
  2414.             break;
  2415.         }
  2416.     }
  2417.     if (tries == 5)
  2418.         DRM_ERROR("FDI train 2 fail!\n");
  2419.  
  2420.     DRM_DEBUG_KMS("FDI train done\n");
  2421.  
  2422. }
  2423.  
  2424. static const int snb_b_fdi_train_param[] = {
  2425.     FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2426.     FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2427.     FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2428.     FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2429. };
  2430.  
  2431. /* The FDI link training functions for SNB/Cougarpoint. */
  2432. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2433. {
  2434.     struct drm_device *dev = crtc->dev;
  2435.     struct drm_i915_private *dev_priv = dev->dev_private;
  2436.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2437.     int pipe = intel_crtc->pipe;
  2438.         u32 reg, temp, i, retry;
  2439.  
  2440.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2441.        for train result */
  2442.     reg = FDI_RX_IMR(pipe);
  2443.     temp = I915_READ(reg);
  2444.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2445.     temp &= ~FDI_RX_BIT_LOCK;
  2446.     I915_WRITE(reg, temp);
  2447.  
  2448.     POSTING_READ(reg);
  2449.     udelay(150);
  2450.  
  2451.     /* enable CPU FDI TX and PCH FDI RX */
  2452.     reg = FDI_TX_CTL(pipe);
  2453.     temp = I915_READ(reg);
  2454.     temp &= ~(7 << 19);
  2455.     temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2456.     temp &= ~FDI_LINK_TRAIN_NONE;
  2457.     temp |= FDI_LINK_TRAIN_PATTERN_1;
  2458.     temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2459.     /* SNB-B */
  2460.     temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2461.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2462.  
  2463.     reg = FDI_RX_CTL(pipe);
  2464.     temp = I915_READ(reg);
  2465.     if (HAS_PCH_CPT(dev)) {
  2466.         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2467.         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2468.     } else {
  2469.         temp &= ~FDI_LINK_TRAIN_NONE;
  2470.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  2471.     }
  2472.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2473.  
  2474.     POSTING_READ(reg);
  2475.     udelay(150);
  2476.  
  2477.     if (HAS_PCH_CPT(dev))
  2478.         cpt_phase_pointer_enable(dev, pipe);
  2479.  
  2480.         for (i = 0; i < 4; i++) {
  2481.         reg = FDI_TX_CTL(pipe);
  2482.         temp = I915_READ(reg);
  2483.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2484.         temp |= snb_b_fdi_train_param[i];
  2485.         I915_WRITE(reg, temp);
  2486.  
  2487.         POSTING_READ(reg);
  2488.         udelay(500);
  2489.  
  2490.                 for (retry = 0; retry < 5; retry++) {
  2491.         reg = FDI_RX_IIR(pipe);
  2492.         temp = I915_READ(reg);
  2493.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2494.         if (temp & FDI_RX_BIT_LOCK) {
  2495.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2496.             DRM_DEBUG_KMS("FDI train 1 done.\n");
  2497.             break;
  2498.         }
  2499.                         udelay(50);
  2500.                 }
  2501.                 if (retry < 5)
  2502.                         break;
  2503.     }
  2504.     if (i == 4)
  2505.         DRM_ERROR("FDI train 1 fail!\n");
  2506.  
  2507.     /* Train 2 */
  2508.     reg = FDI_TX_CTL(pipe);
  2509.     temp = I915_READ(reg);
  2510.     temp &= ~FDI_LINK_TRAIN_NONE;
  2511.     temp |= FDI_LINK_TRAIN_PATTERN_2;
  2512.     if (IS_GEN6(dev)) {
  2513.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2514.         /* SNB-B */
  2515.         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2516.     }
  2517.     I915_WRITE(reg, temp);
  2518.  
  2519.     reg = FDI_RX_CTL(pipe);
  2520.     temp = I915_READ(reg);
  2521.     if (HAS_PCH_CPT(dev)) {
  2522.         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2523.         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2524.     } else {
  2525.         temp &= ~FDI_LINK_TRAIN_NONE;
  2526.         temp |= FDI_LINK_TRAIN_PATTERN_2;
  2527.     }
  2528.     I915_WRITE(reg, temp);
  2529.  
  2530.     POSTING_READ(reg);
  2531.     udelay(150);
  2532.  
  2533.         for (i = 0; i < 4; i++) {
  2534.         reg = FDI_TX_CTL(pipe);
  2535.         temp = I915_READ(reg);
  2536.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2537.         temp |= snb_b_fdi_train_param[i];
  2538.         I915_WRITE(reg, temp);
  2539.  
  2540.         POSTING_READ(reg);
  2541.         udelay(500);
  2542.  
  2543.                 for (retry = 0; retry < 5; retry++) {
  2544.         reg = FDI_RX_IIR(pipe);
  2545.         temp = I915_READ(reg);
  2546.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2547.         if (temp & FDI_RX_SYMBOL_LOCK) {
  2548.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2549.             DRM_DEBUG_KMS("FDI train 2 done.\n");
  2550.             break;
  2551.         }
  2552.                         udelay(50);
  2553.                 }
  2554.                 if (retry < 5)
  2555.                         break;
  2556.     }
  2557.     if (i == 4)
  2558.         DRM_ERROR("FDI train 2 fail!\n");
  2559.  
  2560.     DRM_DEBUG_KMS("FDI train done.\n");
  2561. }
  2562.  
  2563. /* Manual link training for Ivy Bridge A0 parts */
  2564. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2565. {
  2566.     struct drm_device *dev = crtc->dev;
  2567.     struct drm_i915_private *dev_priv = dev->dev_private;
  2568.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2569.     int pipe = intel_crtc->pipe;
  2570.     u32 reg, temp, i;
  2571.  
  2572.     /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2573.        for train result */
  2574.     reg = FDI_RX_IMR(pipe);
  2575.     temp = I915_READ(reg);
  2576.     temp &= ~FDI_RX_SYMBOL_LOCK;
  2577.     temp &= ~FDI_RX_BIT_LOCK;
  2578.     I915_WRITE(reg, temp);
  2579.  
  2580.     POSTING_READ(reg);
  2581.     udelay(150);
  2582.  
  2583.     /* enable CPU FDI TX and PCH FDI RX */
  2584.     reg = FDI_TX_CTL(pipe);
  2585.     temp = I915_READ(reg);
  2586.     temp &= ~(7 << 19);
  2587.     temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2588.     temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2589.     temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2590.     temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2591.     temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2592.         temp |= FDI_COMPOSITE_SYNC;
  2593.     I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2594.  
  2595.     reg = FDI_RX_CTL(pipe);
  2596.     temp = I915_READ(reg);
  2597.     temp &= ~FDI_LINK_TRAIN_AUTO;
  2598.     temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2599.     temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2600.         temp |= FDI_COMPOSITE_SYNC;
  2601.     I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2602.  
  2603.     POSTING_READ(reg);
  2604.     udelay(150);
  2605.  
  2606.     if (HAS_PCH_CPT(dev))
  2607.         cpt_phase_pointer_enable(dev, pipe);
  2608.  
  2609.         for (i = 0; i < 4; i++) {
  2610.         reg = FDI_TX_CTL(pipe);
  2611.         temp = I915_READ(reg);
  2612.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2613.         temp |= snb_b_fdi_train_param[i];
  2614.         I915_WRITE(reg, temp);
  2615.  
  2616.         POSTING_READ(reg);
  2617.         udelay(500);
  2618.  
  2619.         reg = FDI_RX_IIR(pipe);
  2620.         temp = I915_READ(reg);
  2621.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2622.  
  2623.         if (temp & FDI_RX_BIT_LOCK ||
  2624.             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2625.             I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2626.             DRM_DEBUG_KMS("FDI train 1 done.\n");
  2627.             break;
  2628.         }
  2629.     }
  2630.     if (i == 4)
  2631.         DRM_ERROR("FDI train 1 fail!\n");
  2632.  
  2633.     /* Train 2 */
  2634.     reg = FDI_TX_CTL(pipe);
  2635.     temp = I915_READ(reg);
  2636.     temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2637.     temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2638.     temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2639.     temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2640.     I915_WRITE(reg, temp);
  2641.  
  2642.     reg = FDI_RX_CTL(pipe);
  2643.     temp = I915_READ(reg);
  2644.     temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2645.     temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2646.     I915_WRITE(reg, temp);
  2647.  
  2648.     POSTING_READ(reg);
  2649.     udelay(150);
  2650.  
  2651.         for (i = 0; i < 4; i++) {
  2652.         reg = FDI_TX_CTL(pipe);
  2653.         temp = I915_READ(reg);
  2654.         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2655.         temp |= snb_b_fdi_train_param[i];
  2656.         I915_WRITE(reg, temp);
  2657.  
  2658.         POSTING_READ(reg);
  2659.         udelay(500);
  2660.  
  2661.         reg = FDI_RX_IIR(pipe);
  2662.         temp = I915_READ(reg);
  2663.         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2664.  
  2665.         if (temp & FDI_RX_SYMBOL_LOCK) {
  2666.             I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2667.             DRM_DEBUG_KMS("FDI train 2 done.\n");
  2668.             break;
  2669.         }
  2670.     }
  2671.     if (i == 4)
  2672.         DRM_ERROR("FDI train 2 fail!\n");
  2673.  
  2674.     DRM_DEBUG_KMS("FDI train done.\n");
  2675. }
  2676.  
  2677. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2678. {
  2679.         struct drm_device *dev = intel_crtc->base.dev;
  2680.         struct drm_i915_private *dev_priv = dev->dev_private;
  2681.         int pipe = intel_crtc->pipe;
  2682.         u32 reg, temp;
  2683.  
  2684.         /* Write the TU size bits so error detection works */
  2685.         I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2686.                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2687.  
  2688.         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2689.         reg = FDI_RX_CTL(pipe);
  2690.         temp = I915_READ(reg);
  2691.         temp &= ~((0x7 << 19) | (0x7 << 16));
  2692.         temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2693.         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2694.         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2695.  
  2696.         POSTING_READ(reg);
  2697.         udelay(200);
  2698.  
  2699.         /* Switch from Rawclk to PCDclk */
  2700.         temp = I915_READ(reg);
  2701.         I915_WRITE(reg, temp | FDI_PCDCLK);
  2702.  
  2703.         POSTING_READ(reg);
  2704.         udelay(200);
  2705.  
  2706.         /* On Haswell, the PLL configuration for ports and pipes is handled
  2707.          * separately, as part of DDI setup */
  2708.         if (!IS_HASWELL(dev)) {
  2709.         /* Enable CPU FDI TX PLL, always on for Ironlake */
  2710.         reg = FDI_TX_CTL(pipe);
  2711.         temp = I915_READ(reg);
  2712.         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2713.                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2714.  
  2715.                 POSTING_READ(reg);
  2716.                 udelay(100);
  2717.         }
  2718.         }
  2719. }
  2720.  
  2721. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2722. {
  2723.         struct drm_device *dev = intel_crtc->base.dev;
  2724.         struct drm_i915_private *dev_priv = dev->dev_private;
  2725.         int pipe = intel_crtc->pipe;
  2726.         u32 reg, temp;
  2727.  
  2728.         /* Switch from PCDclk to Rawclk */
  2729.         reg = FDI_RX_CTL(pipe);
  2730.         temp = I915_READ(reg);
  2731.         I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2732.  
  2733.         /* Disable CPU FDI TX PLL */
  2734.         reg = FDI_TX_CTL(pipe);
  2735.         temp = I915_READ(reg);
  2736.         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2737.  
  2738.         POSTING_READ(reg);
  2739.         udelay(100);
  2740.  
  2741.         reg = FDI_RX_CTL(pipe);
  2742.         temp = I915_READ(reg);
  2743.         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2744.  
  2745.         /* Wait for the clocks to turn off. */
  2746.         POSTING_READ(reg);
  2747.         udelay(100);
  2748. }
  2749.  
  2750. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2751. {
  2752.         struct drm_i915_private *dev_priv = dev->dev_private;
  2753.         u32 flags = I915_READ(SOUTH_CHICKEN1);
  2754.  
  2755.         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2756.         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2757.         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2758.         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2759.         POSTING_READ(SOUTH_CHICKEN1);
  2760. }
  2761. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2762. {
  2763.         struct drm_device *dev = crtc->dev;
  2764.         struct drm_i915_private *dev_priv = dev->dev_private;
  2765.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2766.         int pipe = intel_crtc->pipe;
  2767.         u32 reg, temp;
  2768.  
  2769.         /* disable CPU FDI tx and PCH FDI rx */
  2770.         reg = FDI_TX_CTL(pipe);
  2771.         temp = I915_READ(reg);
  2772.         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2773.         POSTING_READ(reg);
  2774.  
  2775.         reg = FDI_RX_CTL(pipe);
  2776.         temp = I915_READ(reg);
  2777.         temp &= ~(0x7 << 16);
  2778.         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2779.         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2780.  
  2781.         POSTING_READ(reg);
  2782.         udelay(100);
  2783.  
  2784.         /* Ironlake workaround, disable clock pointer after downing FDI */
  2785.         if (HAS_PCH_IBX(dev)) {
  2786.                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2787.                 I915_WRITE(FDI_RX_CHICKEN(pipe),
  2788.                            I915_READ(FDI_RX_CHICKEN(pipe) &
  2789.                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2790.         } else if (HAS_PCH_CPT(dev)) {
  2791.                 cpt_phase_pointer_disable(dev, pipe);
  2792.         }
  2793.  
  2794.         /* still set train pattern 1 */
  2795.         reg = FDI_TX_CTL(pipe);
  2796.         temp = I915_READ(reg);
  2797.         temp &= ~FDI_LINK_TRAIN_NONE;
  2798.         temp |= FDI_LINK_TRAIN_PATTERN_1;
  2799.         I915_WRITE(reg, temp);
  2800.  
  2801.         reg = FDI_RX_CTL(pipe);
  2802.         temp = I915_READ(reg);
  2803.         if (HAS_PCH_CPT(dev)) {
  2804.                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2805.                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2806.         } else {
  2807.                 temp &= ~FDI_LINK_TRAIN_NONE;
  2808.                 temp |= FDI_LINK_TRAIN_PATTERN_1;
  2809.         }
  2810.         /* BPC in FDI rx is consistent with that in PIPECONF */
  2811.         temp &= ~(0x07 << 16);
  2812.         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2813.         I915_WRITE(reg, temp);
  2814.  
  2815.         POSTING_READ(reg);
  2816.         udelay(100);
  2817. }
  2818.  
  2819. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2820. {
  2821.         struct drm_device *dev = crtc->dev;
  2822.         struct drm_i915_private *dev_priv = dev->dev_private;
  2823.         unsigned long flags;
  2824.         bool pending;
  2825.  
  2826.         if (atomic_read(&dev_priv->mm.wedged))
  2827.                 return false;
  2828.  
  2829.         spin_lock_irqsave(&dev->event_lock, flags);
  2830.         pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2831.         spin_unlock_irqrestore(&dev->event_lock, flags);
  2832.  
  2833.         return pending;
  2834. }
  2835.  
  2836. #if 0
  2837. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2838. {
  2839.         struct drm_device *dev = crtc->dev;
  2840.         struct drm_i915_private *dev_priv = dev->dev_private;
  2841.  
  2842.         if (crtc->fb == NULL)
  2843.                 return;
  2844.  
  2845.         wait_event(dev_priv->pending_flip_queue,
  2846.                    !intel_crtc_has_pending_flip(crtc));
  2847.  
  2848.         mutex_lock(&dev->struct_mutex);
  2849.         intel_finish_fb(crtc->fb);
  2850.         mutex_unlock(&dev->struct_mutex);
  2851. }
  2852. #endif
  2853.  
  2854. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2855. {
  2856.         struct drm_device *dev = crtc->dev;
  2857.         struct intel_encoder *intel_encoder;
  2858.  
  2859.         /*
  2860.          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2861.          * must be driven by its own crtc; no sharing is possible.
  2862.          */
  2863.         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2864.  
  2865.                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2866.                  * CPU handles all others */
  2867.                 if (IS_HASWELL(dev)) {
  2868.                         /* It is still unclear how this will work on PPT, so throw up a warning */
  2869.                         WARN_ON(!HAS_PCH_LPT(dev));
  2870.  
  2871.                         if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2872.                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2873.                                 return true;
  2874.                         } else {
  2875.                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2876.                                               intel_encoder->type);
  2877.                                 return false;
  2878.                         }
  2879.                 }
  2880.  
  2881.                 switch (intel_encoder->type) {
  2882.                 case INTEL_OUTPUT_EDP:
  2883.                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2884.                                 return false;
  2885.                         continue;
  2886.                 }
  2887.         }
  2888.  
  2889.         return true;
  2890. }
  2891.  
  2892. /* Program iCLKIP clock to the desired frequency */
  2893. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2894. {
  2895.         struct drm_device *dev = crtc->dev;
  2896.         struct drm_i915_private *dev_priv = dev->dev_private;
  2897.         u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2898.         u32 temp;
  2899.  
  2900.         /* It is necessary to ungate the pixclk gate prior to programming
  2901.          * the divisors, and gate it back when it is done.
  2902.          */
  2903.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2904.  
  2905.         /* Disable SSCCTL */
  2906.         intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2907.                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2908.                                         SBI_SSCCTL_DISABLE);
  2909.  
  2910.         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2911.         if (crtc->mode.clock == 20000) {
  2912.                 auxdiv = 1;
  2913.                 divsel = 0x41;
  2914.                 phaseinc = 0x20;
  2915.         } else {
  2916.                 /* The iCLK virtual clock root frequency is in MHz,
  2917.                  * but the crtc->mode.clock in in KHz. To get the divisors,
  2918.                  * it is necessary to divide one by another, so we
  2919.                  * convert the virtual clock precision to KHz here for higher
  2920.                  * precision.
  2921.                  */
  2922.                 u32 iclk_virtual_root_freq = 172800 * 1000;
  2923.                 u32 iclk_pi_range = 64;
  2924.                 u32 desired_divisor, msb_divisor_value, pi_value;
  2925.  
  2926.                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2927.                 msb_divisor_value = desired_divisor / iclk_pi_range;
  2928.                 pi_value = desired_divisor % iclk_pi_range;
  2929.  
  2930.                 auxdiv = 0;
  2931.                 divsel = msb_divisor_value - 2;
  2932.                 phaseinc = pi_value;
  2933.         }
  2934.  
  2935.         /* This should not happen with any sane values */
  2936.         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2937.                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2938.         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2939.                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2940.  
  2941.         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2942.                         crtc->mode.clock,
  2943.                         auxdiv,
  2944.                         divsel,
  2945.                         phasedir,
  2946.                         phaseinc);
  2947.  
  2948.         /* Program SSCDIVINTPHASE6 */
  2949.         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2950.         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2951.         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2952.         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2953.         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2954.         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2955.         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2956.  
  2957.         intel_sbi_write(dev_priv,
  2958.                         SBI_SSCDIVINTPHASE6,
  2959.                         temp);
  2960.  
  2961.         /* Program SSCAUXDIV */
  2962.         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2963.         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2964.         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2965.         intel_sbi_write(dev_priv,
  2966.                         SBI_SSCAUXDIV6,
  2967.                         temp);
  2968.  
  2969.  
  2970.         /* Enable modulator and associated divider */
  2971.         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2972.         temp &= ~SBI_SSCCTL_DISABLE;
  2973.         intel_sbi_write(dev_priv,
  2974.                         SBI_SSCCTL6,
  2975.                         temp);
  2976.  
  2977.         /* Wait for initialization time */
  2978.         udelay(24);
  2979.  
  2980.         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2981. }
  2982.  
  2983. /*
  2984.  * Enable PCH resources required for PCH ports:
  2985.  *   - PCH PLLs
  2986.  *   - FDI training & RX/TX
  2987.  *   - update transcoder timings
  2988.  *   - DP transcoding bits
  2989.  *   - transcoder
  2990.  */
  2991. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2992. {
  2993.         struct drm_device *dev = crtc->dev;
  2994.         struct drm_i915_private *dev_priv = dev->dev_private;
  2995.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2996.         int pipe = intel_crtc->pipe;
  2997.         u32 reg, temp;
  2998.  
  2999.         assert_transcoder_disabled(dev_priv, pipe);
  3000.  
  3001.         /* For PCH output, training FDI link */
  3002.         dev_priv->display.fdi_link_train(crtc);
  3003.  
  3004.         intel_enable_pch_pll(intel_crtc);
  3005.  
  3006.         if (HAS_PCH_LPT(dev)) {
  3007.                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  3008.                 lpt_program_iclkip(crtc);
  3009.         } else if (HAS_PCH_CPT(dev)) {
  3010.                 u32 sel;
  3011.  
  3012.                 temp = I915_READ(PCH_DPLL_SEL);
  3013.                 switch (pipe) {
  3014.                 default:
  3015.                 case 0:
  3016.                         temp |= TRANSA_DPLL_ENABLE;
  3017.                         sel = TRANSA_DPLLB_SEL;
  3018.                         break;
  3019.                 case 1:
  3020.                         temp |= TRANSB_DPLL_ENABLE;
  3021.                         sel = TRANSB_DPLLB_SEL;
  3022.                         break;
  3023.                 case 2:
  3024.                         temp |= TRANSC_DPLL_ENABLE;
  3025.                         sel = TRANSC_DPLLB_SEL;
  3026.                         break;
  3027.                 }
  3028.                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  3029.                         temp |= sel;
  3030.                 else
  3031.                         temp &= ~sel;
  3032.                 I915_WRITE(PCH_DPLL_SEL, temp);
  3033.         }
  3034.  
  3035.         /* set transcoder timing, panel must allow it */
  3036.         assert_panel_unlocked(dev_priv, pipe);
  3037.         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  3038.         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  3039.         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
  3040.  
  3041.         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  3042.         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  3043.         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
  3044.         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
  3045.  
  3046.         if (!IS_HASWELL(dev))
  3047.         intel_fdi_normal_train(crtc);
  3048.  
  3049.         /* For PCH DP, enable TRANS_DP_CTL */
  3050.         if (HAS_PCH_CPT(dev) &&
  3051.             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  3052.              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  3053.                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  3054.                 reg = TRANS_DP_CTL(pipe);
  3055.                 temp = I915_READ(reg);
  3056.                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
  3057.                           TRANS_DP_SYNC_MASK |
  3058.                           TRANS_DP_BPC_MASK);
  3059.                 temp |= (TRANS_DP_OUTPUT_ENABLE |
  3060.                          TRANS_DP_ENH_FRAMING);
  3061.                 temp |= bpc << 9; /* same format but at 11:9 */
  3062.  
  3063.                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  3064.                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  3065.                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  3066.                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  3067.  
  3068.                 switch (intel_trans_dp_port_sel(crtc)) {
  3069.                 case PCH_DP_B:
  3070.                         temp |= TRANS_DP_PORT_SEL_B;
  3071.                         break;
  3072.                 case PCH_DP_C:
  3073.                         temp |= TRANS_DP_PORT_SEL_C;
  3074.                         break;
  3075.                 case PCH_DP_D:
  3076.                         temp |= TRANS_DP_PORT_SEL_D;
  3077.                         break;
  3078.                 default:
  3079.                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  3080.                         temp |= TRANS_DP_PORT_SEL_B;
  3081.                         break;
  3082.                 }
  3083.  
  3084.                 I915_WRITE(reg, temp);
  3085.         }
  3086.  
  3087.         intel_enable_transcoder(dev_priv, pipe);
  3088. }
  3089.  
  3090. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  3091. {
  3092.         struct intel_pch_pll *pll = intel_crtc->pch_pll;
  3093.  
  3094.         if (pll == NULL)
  3095.                 return;
  3096.  
  3097.         if (pll->refcount == 0) {
  3098.                 WARN(1, "bad PCH PLL refcount\n");
  3099.                 return;
  3100.         }
  3101.  
  3102.         --pll->refcount;
  3103.         intel_crtc->pch_pll = NULL;
  3104. }
  3105.  
  3106. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  3107. {
  3108.         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  3109.         struct intel_pch_pll *pll;
  3110.         int i;
  3111.  
  3112.         pll = intel_crtc->pch_pll;
  3113.         if (pll) {
  3114.                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  3115.                               intel_crtc->base.base.id, pll->pll_reg);
  3116.                 goto prepare;
  3117.         }
  3118.  
  3119.         if (HAS_PCH_IBX(dev_priv->dev)) {
  3120.                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  3121.                 i = intel_crtc->pipe;
  3122.                 pll = &dev_priv->pch_plls[i];
  3123.  
  3124.                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  3125.                               intel_crtc->base.base.id, pll->pll_reg);
  3126.  
  3127.                 goto found;
  3128.         }
  3129.  
  3130.         for (i = 0; i < dev_priv->num_pch_pll; i++) {
  3131.                 pll = &dev_priv->pch_plls[i];
  3132.  
  3133.                 /* Only want to check enabled timings first */
  3134.                 if (pll->refcount == 0)
  3135.                         continue;
  3136.  
  3137.                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  3138.                     fp == I915_READ(pll->fp0_reg)) {
  3139.                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  3140.                                       intel_crtc->base.base.id,
  3141.                                       pll->pll_reg, pll->refcount, pll->active);
  3142.  
  3143.                         goto found;
  3144.                 }
  3145.         }
  3146.  
  3147.         /* Ok no matching timings, maybe there's a free one? */
  3148.         for (i = 0; i < dev_priv->num_pch_pll; i++) {
  3149.                 pll = &dev_priv->pch_plls[i];
  3150.                 if (pll->refcount == 0) {
  3151.                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  3152.                                       intel_crtc->base.base.id, pll->pll_reg);
  3153.                         goto found;
  3154.                 }
  3155.         }
  3156.  
  3157.         return NULL;
  3158.  
  3159. found:
  3160.         intel_crtc->pch_pll = pll;
  3161.         pll->refcount++;
  3162.         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  3163. prepare: /* separate function? */
  3164.         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  3165.  
  3166.         /* Wait for the clocks to stabilize before rewriting the regs */
  3167.         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  3168.         POSTING_READ(pll->pll_reg);
  3169.         udelay(150);
  3170.  
  3171.         I915_WRITE(pll->fp0_reg, fp);
  3172.         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  3173.         pll->on = false;
  3174.         return pll;
  3175. }
  3176.  
  3177. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  3178. {
  3179.         struct drm_i915_private *dev_priv = dev->dev_private;
  3180.         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  3181.         u32 temp;
  3182.  
  3183.         temp = I915_READ(dslreg);
  3184.         udelay(500);
  3185.         if (wait_for(I915_READ(dslreg) != temp, 5)) {
  3186.                 /* Without this, mode sets may fail silently on FDI */
  3187.                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  3188.                 udelay(250);
  3189.                 I915_WRITE(tc2reg, 0);
  3190.                 if (wait_for(I915_READ(dslreg) != temp, 5))
  3191.                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  3192.         }
  3193. }
  3194.  
  3195. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  3196. {
  3197.     struct drm_device *dev = crtc->dev;
  3198.     struct drm_i915_private *dev_priv = dev->dev_private;
  3199.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3200.         struct intel_encoder *encoder;
  3201.     int pipe = intel_crtc->pipe;
  3202.     int plane = intel_crtc->plane;
  3203.     u32 temp;
  3204.     bool is_pch_port;
  3205.  
  3206.         WARN_ON(!crtc->enabled);
  3207.  
  3208.     if (intel_crtc->active)
  3209.         return;
  3210.  
  3211.     intel_crtc->active = true;
  3212.     intel_update_watermarks(dev);
  3213.  
  3214.     if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3215.         temp = I915_READ(PCH_LVDS);
  3216.         if ((temp & LVDS_PORT_EN) == 0)
  3217.             I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  3218.     }
  3219.  
  3220.     is_pch_port = intel_crtc_driving_pch(crtc);
  3221.  
  3222.         if (is_pch_port) {
  3223.                 ironlake_fdi_pll_enable(intel_crtc);
  3224.         } else {
  3225.                 assert_fdi_tx_disabled(dev_priv, pipe);
  3226.                 assert_fdi_rx_disabled(dev_priv, pipe);
  3227.         }
  3228.  
  3229.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3230.                 if (encoder->pre_enable)
  3231.                         encoder->pre_enable(encoder);
  3232.  
  3233.     /* Enable panel fitting for LVDS */
  3234.     if (dev_priv->pch_pf_size &&
  3235.         (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  3236.         /* Force use of hard-coded filter coefficients
  3237.          * as some pre-programmed values are broken,
  3238.          * e.g. x201.
  3239.          */
  3240.         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  3241.         I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  3242.         I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  3243.     }
  3244.  
  3245.     /*
  3246.      * On ILK+ LUT must be loaded before the pipe is running but with
  3247.      * clocks enabled
  3248.      */
  3249.     intel_crtc_load_lut(crtc);
  3250.  
  3251.     intel_enable_pipe(dev_priv, pipe, is_pch_port);
  3252.     intel_enable_plane(dev_priv, plane, pipe);
  3253.  
  3254.     if (is_pch_port)
  3255.         ironlake_pch_enable(crtc);
  3256.  
  3257.     mutex_lock(&dev->struct_mutex);
  3258.     intel_update_fbc(dev);
  3259.     mutex_unlock(&dev->struct_mutex);
  3260.  
  3261. //    intel_crtc_update_cursor(crtc, true);
  3262.  
  3263.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3264.                 encoder->enable(encoder);
  3265.  
  3266.         if (HAS_PCH_CPT(dev))
  3267.                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  3268.  
  3269.         /*
  3270.          * There seems to be a race in PCH platform hw (at least on some
  3271.          * outputs) where an enabled pipe still completes any pageflip right
  3272.          * away (as if the pipe is off) instead of waiting for vblank. As soon
  3273.          * as the first vblank happend, everything works as expected. Hence just
  3274.          * wait for one vblank before returning to avoid strange things
  3275.          * happening.
  3276.          */
  3277.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  3278. }
  3279.  
  3280. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3281. {
  3282.     struct drm_device *dev = crtc->dev;
  3283.     struct drm_i915_private *dev_priv = dev->dev_private;
  3284.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3285.         struct intel_encoder *encoder;
  3286.     int pipe = intel_crtc->pipe;
  3287.     int plane = intel_crtc->plane;
  3288.     u32 reg, temp;
  3289.  
  3290.  
  3291.     if (!intel_crtc->active)
  3292.         return;
  3293.  
  3294.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3295.                 encoder->disable(encoder);
  3296.  
  3297. //    intel_crtc_wait_for_pending_flips(crtc);
  3298. //    drm_vblank_off(dev, pipe);
  3299. //    intel_crtc_update_cursor(crtc, false);
  3300.  
  3301.     intel_disable_plane(dev_priv, plane, pipe);
  3302.  
  3303.     if (dev_priv->cfb_plane == plane)
  3304.         intel_disable_fbc(dev);
  3305.  
  3306.     intel_disable_pipe(dev_priv, pipe);
  3307.  
  3308.     /* Disable PF */
  3309.     I915_WRITE(PF_CTL(pipe), 0);
  3310.     I915_WRITE(PF_WIN_SZ(pipe), 0);
  3311.  
  3312.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3313.                 if (encoder->post_disable)
  3314.                         encoder->post_disable(encoder);
  3315.  
  3316.     ironlake_fdi_disable(crtc);
  3317.  
  3318.     intel_disable_transcoder(dev_priv, pipe);
  3319.  
  3320.     if (HAS_PCH_CPT(dev)) {
  3321.         /* disable TRANS_DP_CTL */
  3322.         reg = TRANS_DP_CTL(pipe);
  3323.         temp = I915_READ(reg);
  3324.         temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3325.         temp |= TRANS_DP_PORT_SEL_NONE;
  3326.         I915_WRITE(reg, temp);
  3327.  
  3328.         /* disable DPLL_SEL */
  3329.         temp = I915_READ(PCH_DPLL_SEL);
  3330.         switch (pipe) {
  3331.         case 0:
  3332.                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3333.             break;
  3334.         case 1:
  3335.             temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3336.             break;
  3337.         case 2:
  3338.                         /* C shares PLL A or B */
  3339.             temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3340.             break;
  3341.         default:
  3342.             BUG(); /* wtf */
  3343.         }
  3344.         I915_WRITE(PCH_DPLL_SEL, temp);
  3345.     }
  3346.  
  3347.     /* disable PCH DPLL */
  3348.         intel_disable_pch_pll(intel_crtc);
  3349.  
  3350.         ironlake_fdi_pll_disable(intel_crtc);
  3351.  
  3352.     intel_crtc->active = false;
  3353.     intel_update_watermarks(dev);
  3354.  
  3355.     mutex_lock(&dev->struct_mutex);
  3356.     intel_update_fbc(dev);
  3357.     mutex_unlock(&dev->struct_mutex);
  3358. }
  3359.  
  3360. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3361. {
  3362.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3363.         intel_put_pch_pll(intel_crtc);
  3364. }
  3365.  
  3366. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3367. {
  3368.         if (!enable && intel_crtc->overlay) {
  3369.                 struct drm_device *dev = intel_crtc->base.dev;
  3370.                 struct drm_i915_private *dev_priv = dev->dev_private;
  3371.  
  3372.                 mutex_lock(&dev->struct_mutex);
  3373.                 dev_priv->mm.interruptible = false;
  3374. //       (void) intel_overlay_switch_off(intel_crtc->overlay);
  3375.                 dev_priv->mm.interruptible = true;
  3376.                 mutex_unlock(&dev->struct_mutex);
  3377.         }
  3378.  
  3379.         /* Let userspace switch the overlay on again. In most cases userspace
  3380.          * has to recompute where to put it anyway.
  3381.          */
  3382. }
  3383.  
  3384. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3385. {
  3386.     struct drm_device *dev = crtc->dev;
  3387.     struct drm_i915_private *dev_priv = dev->dev_private;
  3388.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3389.         struct intel_encoder *encoder;
  3390.     int pipe = intel_crtc->pipe;
  3391.     int plane = intel_crtc->plane;
  3392.  
  3393.         WARN_ON(!crtc->enabled);
  3394.  
  3395.     if (intel_crtc->active)
  3396.         return;
  3397.  
  3398.     intel_crtc->active = true;
  3399.     intel_update_watermarks(dev);
  3400.  
  3401.     intel_enable_pll(dev_priv, pipe);
  3402.     intel_enable_pipe(dev_priv, pipe, false);
  3403.     intel_enable_plane(dev_priv, plane, pipe);
  3404.  
  3405.     intel_crtc_load_lut(crtc);
  3406.     intel_update_fbc(dev);
  3407.  
  3408.     /* Give the overlay scaler a chance to enable if it's on this pipe */
  3409.     intel_crtc_dpms_overlay(intel_crtc, true);
  3410. //    intel_crtc_update_cursor(crtc, true);
  3411.  
  3412.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3413.                 encoder->enable(encoder);
  3414. }
  3415.  
  3416. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3417. {
  3418.     struct drm_device *dev = crtc->dev;
  3419.     struct drm_i915_private *dev_priv = dev->dev_private;
  3420.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3421.         struct intel_encoder *encoder;
  3422.     int pipe = intel_crtc->pipe;
  3423.     int plane = intel_crtc->plane;
  3424.  
  3425.  
  3426.     if (!intel_crtc->active)
  3427.         return;
  3428.  
  3429.         for_each_encoder_on_crtc(dev, crtc, encoder)
  3430.                 encoder->disable(encoder);
  3431.  
  3432.     /* Give the overlay scaler a chance to disable if it's on this pipe */
  3433. //    intel_crtc_wait_for_pending_flips(crtc);
  3434. //    drm_vblank_off(dev, pipe);
  3435.     intel_crtc_dpms_overlay(intel_crtc, false);
  3436. //    intel_crtc_update_cursor(crtc, false);
  3437.  
  3438.     if (dev_priv->cfb_plane == plane)
  3439.         intel_disable_fbc(dev);
  3440.  
  3441.     intel_disable_plane(dev_priv, plane, pipe);
  3442.     intel_disable_pipe(dev_priv, pipe);
  3443.     intel_disable_pll(dev_priv, pipe);
  3444.  
  3445.     intel_crtc->active = false;
  3446.     intel_update_fbc(dev);
  3447.     intel_update_watermarks(dev);
  3448. }
  3449.  
  3450. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3451. {
  3452. }
  3453.  
  3454. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3455.                                     bool enabled)
  3456. {
  3457.         struct drm_device *dev = crtc->dev;
  3458.         struct drm_i915_master_private *master_priv;
  3459.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3460.         int pipe = intel_crtc->pipe;
  3461.  
  3462.  
  3463. #if 0
  3464.         if (!dev->primary->master)
  3465.                 return;
  3466.  
  3467.         master_priv = dev->primary->master->driver_priv;
  3468.         if (!master_priv->sarea_priv)
  3469.                 return;
  3470.  
  3471.         switch (pipe) {
  3472.         case 0:
  3473.                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3474.                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3475.                 break;
  3476.         case 1:
  3477.                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3478.                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3479.                 break;
  3480.         default:
  3481.                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3482.                 break;
  3483.         }
  3484. #endif
  3485.  
  3486. }
  3487.  
  3488. /**
  3489.  * Sets the power management mode of the pipe and plane.
  3490.  */
  3491. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3492. {
  3493.         struct drm_device *dev = crtc->dev;
  3494.         struct drm_i915_private *dev_priv = dev->dev_private;
  3495.         struct intel_encoder *intel_encoder;
  3496.         bool enable = false;
  3497.  
  3498.         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3499.                 enable |= intel_encoder->connectors_active;
  3500.  
  3501.         if (enable)
  3502.                 dev_priv->display.crtc_enable(crtc);
  3503.         else
  3504.                 dev_priv->display.crtc_disable(crtc);
  3505.  
  3506.         intel_crtc_update_sarea(crtc, enable);
  3507. }
  3508.  
  3509. static void intel_crtc_noop(struct drm_crtc *crtc)
  3510. {
  3511. }
  3512.  
  3513. static void intel_crtc_disable(struct drm_crtc *crtc)
  3514. {
  3515.         struct drm_device *dev = crtc->dev;
  3516.         struct drm_connector *connector;
  3517.         struct drm_i915_private *dev_priv = dev->dev_private;
  3518.  
  3519.         /* crtc should still be enabled when we disable it. */
  3520.         WARN_ON(!crtc->enabled);
  3521.  
  3522.         dev_priv->display.crtc_disable(crtc);
  3523.         intel_crtc_update_sarea(crtc, false);
  3524.         dev_priv->display.off(crtc);
  3525.  
  3526.         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3527.         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3528.  
  3529. //      if (crtc->fb) {
  3530. //              mutex_lock(&dev->struct_mutex);
  3531. //              intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3532. //              mutex_unlock(&dev->struct_mutex);
  3533. //              crtc->fb = NULL;
  3534. //      }
  3535.  
  3536.         /* Update computed state. */
  3537.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3538.                 if (!connector->encoder || !connector->encoder->crtc)
  3539.                         continue;
  3540.  
  3541.                 if (connector->encoder->crtc != crtc)
  3542.                         continue;
  3543.  
  3544.                 connector->dpms = DRM_MODE_DPMS_OFF;
  3545.                 to_intel_encoder(connector->encoder)->connectors_active = false;
  3546.         }
  3547. }
  3548.  
  3549. void intel_modeset_disable(struct drm_device *dev)
  3550. {
  3551.         struct drm_crtc *crtc;
  3552.  
  3553.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3554.                 if (crtc->enabled)
  3555.                         intel_crtc_disable(crtc);
  3556.         }
  3557. }
  3558.  
  3559. void intel_encoder_noop(struct drm_encoder *encoder)
  3560. {
  3561. }
  3562.  
  3563. void intel_encoder_destroy(struct drm_encoder *encoder)
  3564. {
  3565.         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3566.  
  3567.         drm_encoder_cleanup(encoder);
  3568.         kfree(intel_encoder);
  3569. }
  3570.  
  3571. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3572.  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3573.  * state of the entire output pipe. */
  3574. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3575. {
  3576.         if (mode == DRM_MODE_DPMS_ON) {
  3577.                 encoder->connectors_active = true;
  3578.  
  3579.                 intel_crtc_update_dpms(encoder->base.crtc);
  3580.         } else {
  3581.                 encoder->connectors_active = false;
  3582.  
  3583.                 intel_crtc_update_dpms(encoder->base.crtc);
  3584.         }
  3585. }
  3586.  
  3587. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3588.  * internal consistency). */
  3589. static void intel_connector_check_state(struct intel_connector *connector)
  3590. {
  3591.         if (connector->get_hw_state(connector)) {
  3592.                 struct intel_encoder *encoder = connector->encoder;
  3593.                 struct drm_crtc *crtc;
  3594.                 bool encoder_enabled;
  3595.                 enum pipe pipe;
  3596.  
  3597.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3598.                               connector->base.base.id,
  3599.                               drm_get_connector_name(&connector->base));
  3600.  
  3601.                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3602.                      "wrong connector dpms state\n");
  3603.                 WARN(connector->base.encoder != &encoder->base,
  3604.                      "active connector not linked to encoder\n");
  3605.                 WARN(!encoder->connectors_active,
  3606.                      "encoder->connectors_active not set\n");
  3607.  
  3608.                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3609.                 WARN(!encoder_enabled, "encoder not enabled\n");
  3610.                 if (WARN_ON(!encoder->base.crtc))
  3611.                         return;
  3612.  
  3613.                 crtc = encoder->base.crtc;
  3614.  
  3615.                 WARN(!crtc->enabled, "crtc not enabled\n");
  3616.                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3617.                 WARN(pipe != to_intel_crtc(crtc)->pipe,
  3618.                      "encoder active on the wrong pipe\n");
  3619.         }
  3620. }
  3621.  
  3622. /* Even simpler default implementation, if there's really no special case to
  3623.  * consider. */
  3624. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3625. {
  3626.         struct intel_encoder *encoder = intel_attached_encoder(connector);
  3627.  
  3628.         /* All the simple cases only support two dpms states. */
  3629.         if (mode != DRM_MODE_DPMS_ON)
  3630.                 mode = DRM_MODE_DPMS_OFF;
  3631.  
  3632.         if (mode == connector->dpms)
  3633.                 return;
  3634.  
  3635.         connector->dpms = mode;
  3636.  
  3637.         /* Only need to change hw state when actually enabled */
  3638.         if (encoder->base.crtc)
  3639.                 intel_encoder_dpms(encoder, mode);
  3640.         else
  3641.                 WARN_ON(encoder->connectors_active != false);
  3642.  
  3643.         intel_modeset_check_state(connector->dev);
  3644. }
  3645.  
  3646. /* Simple connector->get_hw_state implementation for encoders that support only
  3647.  * one connector and no cloning and hence the encoder state determines the state
  3648.  * of the connector. */
  3649. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3650. {
  3651.         enum pipe pipe = 0;
  3652.         struct intel_encoder *encoder = connector->encoder;
  3653.  
  3654.         return encoder->get_hw_state(encoder, &pipe);
  3655. }
  3656.  
  3657. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3658.                                   const struct drm_display_mode *mode,
  3659.                                   struct drm_display_mode *adjusted_mode)
  3660. {
  3661.         struct drm_device *dev = crtc->dev;
  3662.  
  3663.         if (HAS_PCH_SPLIT(dev)) {
  3664.                 /* FDI link clock is fixed at 2.7G */
  3665.                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3666.                         return false;
  3667.         }
  3668.  
  3669.         /* All interlaced capable intel hw wants timings in frames. Note though
  3670.          * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3671.          * timings, so we need to be careful not to clobber these.*/
  3672.         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3673.                 drm_mode_set_crtcinfo(adjusted_mode, 0);
  3674.  
  3675.         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3676.          * with a hsync front porch of 0.
  3677.          */
  3678.         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3679.                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3680.                 return false;
  3681.  
  3682.         return true;
  3683. }
  3684.  
  3685. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3686. {
  3687.         return 400000; /* FIXME */
  3688. }
  3689.  
  3690. static int i945_get_display_clock_speed(struct drm_device *dev)
  3691. {
  3692.         return 400000;
  3693. }
  3694.  
  3695. static int i915_get_display_clock_speed(struct drm_device *dev)
  3696. {
  3697.         return 333000;
  3698. }
  3699.  
  3700. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3701. {
  3702.         return 200000;
  3703. }
  3704.  
  3705. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3706. {
  3707.         u16 gcfgc = 0;
  3708.  
  3709.         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3710.  
  3711.         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3712.                 return 133000;
  3713.         else {
  3714.                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3715.                 case GC_DISPLAY_CLOCK_333_MHZ:
  3716.                         return 333000;
  3717.                 default:
  3718.                 case GC_DISPLAY_CLOCK_190_200_MHZ:
  3719.                         return 190000;
  3720.                 }
  3721.         }
  3722. }
  3723.  
  3724. static int i865_get_display_clock_speed(struct drm_device *dev)
  3725. {
  3726.         return 266000;
  3727. }
  3728.  
  3729. static int i855_get_display_clock_speed(struct drm_device *dev)
  3730. {
  3731.         u16 hpllcc = 0;
  3732.         /* Assume that the hardware is in the high speed state.  This
  3733.          * should be the default.
  3734.          */
  3735.         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3736.         case GC_CLOCK_133_200:
  3737.         case GC_CLOCK_100_200:
  3738.                 return 200000;
  3739.         case GC_CLOCK_166_250:
  3740.                 return 250000;
  3741.         case GC_CLOCK_100_133:
  3742.                 return 133000;
  3743.         }
  3744.  
  3745.         /* Shouldn't happen */
  3746.         return 0;
  3747. }
  3748.  
  3749. static int i830_get_display_clock_speed(struct drm_device *dev)
  3750. {
  3751.         return 133000;
  3752. }
  3753.  
  3754. struct fdi_m_n {
  3755.     u32        tu;
  3756.     u32        gmch_m;
  3757.     u32        gmch_n;
  3758.     u32        link_m;
  3759.     u32        link_n;
  3760. };
  3761.  
  3762. static void
  3763. fdi_reduce_ratio(u32 *num, u32 *den)
  3764. {
  3765.         while (*num > 0xffffff || *den > 0xffffff) {
  3766.                 *num >>= 1;
  3767.                 *den >>= 1;
  3768.         }
  3769. }
  3770.  
  3771. static void
  3772. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3773.                      int link_clock, struct fdi_m_n *m_n)
  3774. {
  3775.         m_n->tu = 64; /* default size */
  3776.  
  3777.         /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3778.         m_n->gmch_m = bits_per_pixel * pixel_clock;
  3779.         m_n->gmch_n = link_clock * nlanes * 8;
  3780.         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3781.  
  3782.         m_n->link_m = pixel_clock;
  3783.         m_n->link_n = link_clock;
  3784.         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3785. }
  3786.  
  3787. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3788. {
  3789.         if (i915_panel_use_ssc >= 0)
  3790.                 return i915_panel_use_ssc != 0;
  3791.         return dev_priv->lvds_use_ssc
  3792.                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3793. }
  3794.  
  3795. /**
  3796.  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3797.  * @crtc: CRTC structure
  3798.  * @mode: requested mode
  3799.  *
  3800.  * A pipe may be connected to one or more outputs.  Based on the depth of the
  3801.  * attached framebuffer, choose a good color depth to use on the pipe.
  3802.  *
  3803.  * If possible, match the pipe depth to the fb depth.  In some cases, this
  3804.  * isn't ideal, because the connected output supports a lesser or restricted
  3805.  * set of depths.  Resolve that here:
  3806.  *    LVDS typically supports only 6bpc, so clamp down in that case
  3807.  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3808.  *    Displays may support a restricted set as well, check EDID and clamp as
  3809.  *      appropriate.
  3810.  *    DP may want to dither down to 6bpc to fit larger modes
  3811.  *
  3812.  * RETURNS:
  3813.  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3814.  * true if they don't match).
  3815.  */
  3816. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3817.                                          struct drm_framebuffer *fb,
  3818.                                          unsigned int *pipe_bpp,
  3819.                                          struct drm_display_mode *mode)
  3820. {
  3821.         struct drm_device *dev = crtc->dev;
  3822.         struct drm_i915_private *dev_priv = dev->dev_private;
  3823.         struct drm_connector *connector;
  3824.         struct intel_encoder *intel_encoder;
  3825.         unsigned int display_bpc = UINT_MAX, bpc;
  3826.  
  3827.         /* Walk the encoders & connectors on this crtc, get min bpc */
  3828.         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3829.  
  3830.                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3831.                         unsigned int lvds_bpc;
  3832.  
  3833.                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3834.                             LVDS_A3_POWER_UP)
  3835.                                 lvds_bpc = 8;
  3836.                         else
  3837.                                 lvds_bpc = 6;
  3838.  
  3839.                         if (lvds_bpc < display_bpc) {
  3840.                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3841.                                 display_bpc = lvds_bpc;
  3842.                         }
  3843.                         continue;
  3844.                 }
  3845.  
  3846.                 /* Not one of the known troublemakers, check the EDID */
  3847.                 list_for_each_entry(connector, &dev->mode_config.connector_list,
  3848.                                     head) {
  3849.                         if (connector->encoder != &intel_encoder->base)
  3850.                                 continue;
  3851.  
  3852.                         /* Don't use an invalid EDID bpc value */
  3853.                         if (connector->display_info.bpc &&
  3854.                             connector->display_info.bpc < display_bpc) {
  3855.                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3856.                                 display_bpc = connector->display_info.bpc;
  3857.         }
  3858.     }
  3859.  
  3860.                 /*
  3861.                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3862.                  * through, clamp it down.  (Note: >12bpc will be caught below.)
  3863.                  */
  3864.                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3865.                         if (display_bpc > 8 && display_bpc < 12) {
  3866.                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3867.                                 display_bpc = 12;
  3868.                         } else {
  3869.                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3870.                                 display_bpc = 8;
  3871.                         }
  3872.                 }
  3873.         }
  3874.  
  3875.         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3876.                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3877.                 display_bpc = 6;
  3878.         }
  3879.  
  3880.         /*
  3881.          * We could just drive the pipe at the highest bpc all the time and
  3882.          * enable dithering as needed, but that costs bandwidth.  So choose
  3883.          * the minimum value that expresses the full color range of the fb but
  3884.          * also stays within the max display bpc discovered above.
  3885.          */
  3886.  
  3887.         switch (fb->depth) {
  3888.         case 8:
  3889.                 bpc = 8; /* since we go through a colormap */
  3890.                 break;
  3891.         case 15:
  3892.         case 16:
  3893.                 bpc = 6; /* min is 18bpp */
  3894.                 break;
  3895.         case 24:
  3896.                 bpc = 8;
  3897.                 break;
  3898.         case 30:
  3899.                 bpc = 10;
  3900.                 break;
  3901.         case 48:
  3902.                 bpc = 12;
  3903.                 break;
  3904.         default:
  3905.                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3906.                 bpc = min((unsigned int)8, display_bpc);
  3907.                 break;
  3908.         }
  3909.  
  3910.         display_bpc = min(display_bpc, bpc);
  3911.  
  3912.         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3913.                       bpc, display_bpc);
  3914.  
  3915.         *pipe_bpp = display_bpc * 3;
  3916.  
  3917.         return display_bpc != bpc;
  3918. }
  3919.  
  3920. static int vlv_get_refclk(struct drm_crtc *crtc)
  3921. {
  3922.         struct drm_device *dev = crtc->dev;
  3923.         struct drm_i915_private *dev_priv = dev->dev_private;
  3924.         int refclk = 27000; /* for DP & HDMI */
  3925.  
  3926.         return 100000; /* only one validated so far */
  3927.  
  3928.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3929.                 refclk = 96000;
  3930.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3931.                 if (intel_panel_use_ssc(dev_priv))
  3932.                         refclk = 100000;
  3933.                 else
  3934.                         refclk = 96000;
  3935.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3936.                 refclk = 100000;
  3937.         }
  3938.  
  3939.         return refclk;
  3940. }
  3941.  
  3942. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3943. {
  3944.         struct drm_device *dev = crtc->dev;
  3945.         struct drm_i915_private *dev_priv = dev->dev_private;
  3946.         int refclk;
  3947.  
  3948.         if (IS_VALLEYVIEW(dev)) {
  3949.                 refclk = vlv_get_refclk(crtc);
  3950.         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3951.             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3952.                 refclk = dev_priv->lvds_ssc_freq * 1000;
  3953.                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3954.                               refclk / 1000);
  3955.         } else if (!IS_GEN2(dev)) {
  3956.                 refclk = 96000;
  3957.         } else {
  3958.                 refclk = 48000;
  3959.         }
  3960.  
  3961.         return refclk;
  3962. }
  3963.  
  3964. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3965.                                       intel_clock_t *clock)
  3966. {
  3967.         /* SDVO TV has fixed PLL values depend on its clock range,
  3968.            this mirrors vbios setting. */
  3969.         if (adjusted_mode->clock >= 100000
  3970.             && adjusted_mode->clock < 140500) {
  3971.                 clock->p1 = 2;
  3972.                 clock->p2 = 10;
  3973.                 clock->n = 3;
  3974.                 clock->m1 = 16;
  3975.                 clock->m2 = 8;
  3976.         } else if (adjusted_mode->clock >= 140500
  3977.                    && adjusted_mode->clock <= 200000) {
  3978.                 clock->p1 = 1;
  3979.                 clock->p2 = 10;
  3980.                 clock->n = 6;
  3981.                 clock->m1 = 12;
  3982.                 clock->m2 = 8;
  3983.         }
  3984. }
  3985.  
  3986. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3987.                                      intel_clock_t *clock,
  3988.                                      intel_clock_t *reduced_clock)
  3989. {
  3990.         struct drm_device *dev = crtc->dev;
  3991.         struct drm_i915_private *dev_priv = dev->dev_private;
  3992.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3993.         int pipe = intel_crtc->pipe;
  3994.         u32 fp, fp2 = 0;
  3995.  
  3996.         if (IS_PINEVIEW(dev)) {
  3997.                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3998.                 if (reduced_clock)
  3999.                         fp2 = (1 << reduced_clock->n) << 16 |
  4000.                                 reduced_clock->m1 << 8 | reduced_clock->m2;
  4001.         } else {
  4002.                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4003.                 if (reduced_clock)
  4004.                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4005.                                 reduced_clock->m2;
  4006.         }
  4007.  
  4008.         I915_WRITE(FP0(pipe), fp);
  4009.  
  4010.         intel_crtc->lowfreq_avail = false;
  4011.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4012.             reduced_clock && i915_powersave) {
  4013.                 I915_WRITE(FP1(pipe), fp2);
  4014.                 intel_crtc->lowfreq_avail = true;
  4015.         } else {
  4016.                 I915_WRITE(FP1(pipe), fp);
  4017.         }
  4018. }
  4019.  
  4020. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  4021.                               struct drm_display_mode *adjusted_mode)
  4022. {
  4023.         struct drm_device *dev = crtc->dev;
  4024.         struct drm_i915_private *dev_priv = dev->dev_private;
  4025.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4026.         int pipe = intel_crtc->pipe;
  4027.         u32 temp;
  4028.  
  4029.         temp = I915_READ(LVDS);
  4030.         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4031.         if (pipe == 1) {
  4032.                 temp |= LVDS_PIPEB_SELECT;
  4033.         } else {
  4034.                 temp &= ~LVDS_PIPEB_SELECT;
  4035.         }
  4036.         /* set the corresponsding LVDS_BORDER bit */
  4037.         temp |= dev_priv->lvds_border_bits;
  4038.         /* Set the B0-B3 data pairs corresponding to whether we're going to
  4039.          * set the DPLLs for dual-channel mode or not.
  4040.          */
  4041.         if (clock->p2 == 7)
  4042.                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4043.         else
  4044.                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4045.  
  4046.         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4047.          * appropriately here, but we need to look more thoroughly into how
  4048.          * panels behave in the two modes.
  4049.          */
  4050.         /* set the dithering flag on LVDS as needed */
  4051.         if (INTEL_INFO(dev)->gen >= 4) {
  4052.                 if (dev_priv->lvds_dither)
  4053.                         temp |= LVDS_ENABLE_DITHER;
  4054.                 else
  4055.                         temp &= ~LVDS_ENABLE_DITHER;
  4056.         }
  4057.         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4058.         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4059.                 temp |= LVDS_HSYNC_POLARITY;
  4060.         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4061.                 temp |= LVDS_VSYNC_POLARITY;
  4062.         I915_WRITE(LVDS, temp);
  4063. }
  4064.  
  4065. static void vlv_update_pll(struct drm_crtc *crtc,
  4066.                            struct drm_display_mode *mode,
  4067.                            struct drm_display_mode *adjusted_mode,
  4068.                            intel_clock_t *clock, intel_clock_t *reduced_clock,
  4069.                            int refclk, int num_connectors)
  4070. {
  4071.         struct drm_device *dev = crtc->dev;
  4072.         struct drm_i915_private *dev_priv = dev->dev_private;
  4073.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4074.         int pipe = intel_crtc->pipe;
  4075.         u32 dpll, mdiv, pdiv;
  4076.         u32 bestn, bestm1, bestm2, bestp1, bestp2;
  4077.         bool is_hdmi;
  4078.  
  4079.         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  4080.  
  4081.         bestn = clock->n;
  4082.         bestm1 = clock->m1;
  4083.         bestm2 = clock->m2;
  4084.         bestp1 = clock->p1;
  4085.         bestp2 = clock->p2;
  4086.  
  4087.         /* Enable DPIO clock input */
  4088.         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  4089.                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  4090.         I915_WRITE(DPLL(pipe), dpll);
  4091.         POSTING_READ(DPLL(pipe));
  4092.  
  4093.         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  4094.         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  4095.         mdiv |= ((bestn << DPIO_N_SHIFT));
  4096.         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  4097.         mdiv |= (1 << DPIO_K_SHIFT);
  4098.         mdiv |= DPIO_ENABLE_CALIBRATION;
  4099.         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  4100.  
  4101.         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  4102.  
  4103.         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
  4104.                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  4105.                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  4106.         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  4107.  
  4108.         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
  4109.  
  4110.         dpll |= DPLL_VCO_ENABLE;
  4111.         I915_WRITE(DPLL(pipe), dpll);
  4112.         POSTING_READ(DPLL(pipe));
  4113.         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  4114.                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
  4115.  
  4116.         if (is_hdmi) {
  4117.                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4118.  
  4119.                 if (temp > 1)
  4120.                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4121.                 else
  4122.                         temp = 0;
  4123.  
  4124.                 I915_WRITE(DPLL_MD(pipe), temp);
  4125.                 POSTING_READ(DPLL_MD(pipe));
  4126.         }
  4127.  
  4128.         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
  4129. }
  4130.  
  4131. static void i9xx_update_pll(struct drm_crtc *crtc,
  4132.                             struct drm_display_mode *mode,
  4133.                             struct drm_display_mode *adjusted_mode,
  4134.                             intel_clock_t *clock, intel_clock_t *reduced_clock,
  4135.                             int num_connectors)
  4136. {
  4137.         struct drm_device *dev = crtc->dev;
  4138.         struct drm_i915_private *dev_priv = dev->dev_private;
  4139.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4140.         int pipe = intel_crtc->pipe;
  4141.         u32 dpll;
  4142.         bool is_sdvo;
  4143.  
  4144.         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  4145.                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  4146.  
  4147.         dpll = DPLL_VGA_MODE_DIS;
  4148.  
  4149.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4150.                 dpll |= DPLLB_MODE_LVDS;
  4151.         else
  4152.                 dpll |= DPLLB_MODE_DAC_SERIAL;
  4153.         if (is_sdvo) {
  4154.                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4155.                 if (pixel_multiplier > 1) {
  4156.                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4157.                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4158.                 }
  4159.                 dpll |= DPLL_DVO_HIGH_SPEED;
  4160.         }
  4161.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4162.                 dpll |= DPLL_DVO_HIGH_SPEED;
  4163.  
  4164.         /* compute bitmask from p1 value */
  4165.         if (IS_PINEVIEW(dev))
  4166.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4167.         else {
  4168.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4169.                 if (IS_G4X(dev) && reduced_clock)
  4170.                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4171.         }
  4172.         switch (clock->p2) {
  4173.         case 5:
  4174.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4175.                 break;
  4176.         case 7:
  4177.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4178.                 break;
  4179.         case 10:
  4180.                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4181.                 break;
  4182.         case 14:
  4183.                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4184.                 break;
  4185.         }
  4186.         if (INTEL_INFO(dev)->gen >= 4)
  4187.                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4188.  
  4189.         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4190.                 dpll |= PLL_REF_INPUT_TVCLKINBC;
  4191.         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4192.                 /* XXX: just matching BIOS for now */
  4193.                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4194.                 dpll |= 3;
  4195.         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4196.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4197.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4198.         else
  4199.                 dpll |= PLL_REF_INPUT_DREFCLK;
  4200.  
  4201.         dpll |= DPLL_VCO_ENABLE;
  4202.         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4203.         POSTING_READ(DPLL(pipe));
  4204.         udelay(150);
  4205.  
  4206.         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4207.          * This is an exception to the general rule that mode_set doesn't turn
  4208.          * things on.
  4209.          */
  4210.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4211.                 intel_update_lvds(crtc, clock, adjusted_mode);
  4212.  
  4213.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4214.                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4215.  
  4216.         I915_WRITE(DPLL(pipe), dpll);
  4217.  
  4218.         /* Wait for the clocks to stabilize. */
  4219.         POSTING_READ(DPLL(pipe));
  4220.         udelay(150);
  4221.  
  4222.         if (INTEL_INFO(dev)->gen >= 4) {
  4223.                 u32 temp = 0;
  4224.                 if (is_sdvo) {
  4225.                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4226.                         if (temp > 1)
  4227.                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4228.                         else
  4229.                                 temp = 0;
  4230.         }
  4231.                 I915_WRITE(DPLL_MD(pipe), temp);
  4232.         } else {
  4233.                 /* The pixel multiplier can only be updated once the
  4234.                  * DPLL is enabled and the clocks are stable.
  4235.                  *
  4236.                  * So write it again.
  4237.                  */
  4238.                 I915_WRITE(DPLL(pipe), dpll);
  4239.         }
  4240. }
  4241.  
  4242. static void i8xx_update_pll(struct drm_crtc *crtc,
  4243.                             struct drm_display_mode *adjusted_mode,
  4244.                             intel_clock_t *clock,
  4245.                             int num_connectors)
  4246. {
  4247.         struct drm_device *dev = crtc->dev;
  4248.         struct drm_i915_private *dev_priv = dev->dev_private;
  4249.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4250.         int pipe = intel_crtc->pipe;
  4251.         u32 dpll;
  4252.  
  4253.         dpll = DPLL_VGA_MODE_DIS;
  4254.  
  4255.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  4256.                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4257.         } else {
  4258.                 if (clock->p1 == 2)
  4259.                         dpll |= PLL_P1_DIVIDE_BY_TWO;
  4260.                 else
  4261.                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4262.                 if (clock->p2 == 4)
  4263.                         dpll |= PLL_P2_DIVIDE_BY_4;
  4264.         }
  4265.  
  4266.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4267.                 /* XXX: just matching BIOS for now */
  4268.                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4269.                 dpll |= 3;
  4270.         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4271.                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4272.                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4273.         else
  4274.                 dpll |= PLL_REF_INPUT_DREFCLK;
  4275.  
  4276.         dpll |= DPLL_VCO_ENABLE;
  4277.         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4278.         POSTING_READ(DPLL(pipe));
  4279.         udelay(150);
  4280.  
  4281.         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4282.          * This is an exception to the general rule that mode_set doesn't turn
  4283.          * things on.
  4284.          */
  4285.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4286.                 intel_update_lvds(crtc, clock, adjusted_mode);
  4287.  
  4288.         I915_WRITE(DPLL(pipe), dpll);
  4289.  
  4290.         /* Wait for the clocks to stabilize. */
  4291.         POSTING_READ(DPLL(pipe));
  4292.         udelay(150);
  4293.  
  4294.         /* The pixel multiplier can only be updated once the
  4295.          * DPLL is enabled and the clocks are stable.
  4296.          *
  4297.          * So write it again.
  4298.          */
  4299.         I915_WRITE(DPLL(pipe), dpll);
  4300. }
  4301.  
  4302. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4303.                               struct drm_display_mode *mode,
  4304.                               struct drm_display_mode *adjusted_mode,
  4305.                               int x, int y,
  4306.                               struct drm_framebuffer *fb)
  4307. {
  4308.         struct drm_device *dev = crtc->dev;
  4309.         struct drm_i915_private *dev_priv = dev->dev_private;
  4310.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4311.         int pipe = intel_crtc->pipe;
  4312.         int plane = intel_crtc->plane;
  4313.         int refclk, num_connectors = 0;
  4314.         intel_clock_t clock, reduced_clock;
  4315.         u32 dspcntr, pipeconf, vsyncshift;
  4316.         bool ok, has_reduced_clock = false, is_sdvo = false;
  4317.         bool is_lvds = false, is_tv = false, is_dp = false;
  4318.         struct intel_encoder *encoder;
  4319.         const intel_limit_t *limit;
  4320.         int ret;
  4321.  
  4322.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4323.                 switch (encoder->type) {
  4324.                 case INTEL_OUTPUT_LVDS:
  4325.                         is_lvds = true;
  4326.                         break;
  4327.                 case INTEL_OUTPUT_SDVO:
  4328.                 case INTEL_OUTPUT_HDMI:
  4329.                         is_sdvo = true;
  4330.                         if (encoder->needs_tv_clock)
  4331.                                 is_tv = true;
  4332.                         break;
  4333.                 case INTEL_OUTPUT_TVOUT:
  4334.                         is_tv = true;
  4335.                         break;
  4336.                 case INTEL_OUTPUT_DISPLAYPORT:
  4337.                         is_dp = true;
  4338.                         break;
  4339.                 }
  4340.  
  4341.                 num_connectors++;
  4342.         }
  4343.  
  4344.         refclk = i9xx_get_refclk(crtc, num_connectors);
  4345.  
  4346.         /*
  4347.          * Returns a set of divisors for the desired target clock with the given
  4348.          * refclk, or FALSE.  The returned values represent the clock equation:
  4349.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4350.          */
  4351.         limit = intel_limit(crtc, refclk);
  4352.         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4353.                              &clock);
  4354.         if (!ok) {
  4355.                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4356.                 return -EINVAL;
  4357.         }
  4358.  
  4359.         /* Ensure that the cursor is valid for the new mode before changing... */
  4360. //   intel_crtc_update_cursor(crtc, true);
  4361.  
  4362.         if (is_lvds && dev_priv->lvds_downclock_avail) {
  4363.                 /*
  4364.                  * Ensure we match the reduced clock's P to the target clock.
  4365.                  * If the clocks don't match, we can't switch the display clock
  4366.                  * by using the FP0/FP1. In such case we will disable the LVDS
  4367.                  * downclock feature.
  4368.                 */
  4369.                 has_reduced_clock = limit->find_pll(limit, crtc,
  4370.                                                     dev_priv->lvds_downclock,
  4371.                                                     refclk,
  4372.                                                     &clock,
  4373.                                                     &reduced_clock);
  4374.         }
  4375.  
  4376.         if (is_sdvo && is_tv)
  4377.                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4378.  
  4379.         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4380.                                  &reduced_clock : NULL);
  4381.  
  4382.         if (IS_GEN2(dev))
  4383.                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  4384.         else if (IS_VALLEYVIEW(dev))
  4385.                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
  4386.                                refclk, num_connectors);
  4387.         else
  4388.                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4389.                                 has_reduced_clock ? &reduced_clock : NULL,
  4390.                                 num_connectors);
  4391.  
  4392.         /* setup pipeconf */
  4393.         pipeconf = I915_READ(PIPECONF(pipe));
  4394.  
  4395.         /* Set up the display plane register */
  4396.         dspcntr = DISPPLANE_GAMMA_ENABLE;
  4397.  
  4398.         if (pipe == 0)
  4399.                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4400.         else
  4401.                 dspcntr |= DISPPLANE_SEL_PIPE_B;
  4402.  
  4403.         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4404.                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4405.                  * core speed.
  4406.                  *
  4407.                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4408.                  * pipe == 0 check?
  4409.                  */
  4410.                 if (mode->clock >
  4411.                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4412.                         pipeconf |= PIPECONF_DOUBLE_WIDE;
  4413.                 else
  4414.                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4415.                 }
  4416.  
  4417.         /* default to 8bpc */
  4418.         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4419.         if (is_dp) {
  4420.                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4421.                         pipeconf |= PIPECONF_BPP_6 |
  4422.                                     PIPECONF_DITHER_EN |
  4423.                                     PIPECONF_DITHER_TYPE_SP;
  4424.                         }
  4425.                 }
  4426.  
  4427.         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4428.         drm_mode_debug_printmodeline(mode);
  4429.  
  4430.         if (HAS_PIPE_CXSR(dev)) {
  4431.                 if (intel_crtc->lowfreq_avail) {
  4432.                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4433.                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4434.                 } else {
  4435.                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4436.                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4437.                         }
  4438.                 }
  4439.  
  4440.         pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4441.         if (!IS_GEN2(dev) &&
  4442.             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4443.                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4444.                 /* the chip adds 2 halflines automatically */
  4445.                 adjusted_mode->crtc_vtotal -= 1;
  4446.                 adjusted_mode->crtc_vblank_end -= 1;
  4447.                 vsyncshift = adjusted_mode->crtc_hsync_start
  4448.                              - adjusted_mode->crtc_htotal/2;
  4449.                         } else {
  4450.                 pipeconf |= PIPECONF_PROGRESSIVE;
  4451.                 vsyncshift = 0;
  4452.         }
  4453.  
  4454.         if (!IS_GEN3(dev))
  4455.                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4456.  
  4457.         I915_WRITE(HTOTAL(pipe),
  4458.                    (adjusted_mode->crtc_hdisplay - 1) |
  4459.                    ((adjusted_mode->crtc_htotal - 1) << 16));
  4460.         I915_WRITE(HBLANK(pipe),
  4461.                    (adjusted_mode->crtc_hblank_start - 1) |
  4462.                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4463.         I915_WRITE(HSYNC(pipe),
  4464.                    (adjusted_mode->crtc_hsync_start - 1) |
  4465.                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4466.  
  4467.         I915_WRITE(VTOTAL(pipe),
  4468.                    (adjusted_mode->crtc_vdisplay - 1) |
  4469.                    ((adjusted_mode->crtc_vtotal - 1) << 16));
  4470.         I915_WRITE(VBLANK(pipe),
  4471.                    (adjusted_mode->crtc_vblank_start - 1) |
  4472.                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4473.         I915_WRITE(VSYNC(pipe),
  4474.                    (adjusted_mode->crtc_vsync_start - 1) |
  4475.                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4476.  
  4477.         /* pipesrc and dspsize control the size that is scaled from,
  4478.          * which should always be the user's requested size.
  4479.          */
  4480.         I915_WRITE(DSPSIZE(plane),
  4481.                    ((mode->vdisplay - 1) << 16) |
  4482.                    (mode->hdisplay - 1));
  4483.         I915_WRITE(DSPPOS(plane), 0);
  4484.         I915_WRITE(PIPESRC(pipe),
  4485.                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4486.  
  4487.         I915_WRITE(PIPECONF(pipe), pipeconf);
  4488.         POSTING_READ(PIPECONF(pipe));
  4489.         intel_enable_pipe(dev_priv, pipe, false);
  4490.  
  4491.         intel_wait_for_vblank(dev, pipe);
  4492.  
  4493.         I915_WRITE(DSPCNTR(plane), dspcntr);
  4494.         POSTING_READ(DSPCNTR(plane));
  4495.  
  4496.         ret = intel_pipe_set_base(crtc, x, y, fb);
  4497.  
  4498.         intel_update_watermarks(dev);
  4499.  
  4500.     return ret;
  4501. }
  4502.  
  4503. /*
  4504.  * Initialize reference clocks when the driver loads
  4505.  */
  4506. void ironlake_init_pch_refclk(struct drm_device *dev)
  4507. {
  4508.         struct drm_i915_private *dev_priv = dev->dev_private;
  4509.         struct drm_mode_config *mode_config = &dev->mode_config;
  4510.         struct intel_encoder *encoder;
  4511.         u32 temp;
  4512.         bool has_lvds = false;
  4513.         bool has_cpu_edp = false;
  4514.         bool has_pch_edp = false;
  4515.         bool has_panel = false;
  4516.         bool has_ck505 = false;
  4517.         bool can_ssc = false;
  4518.  
  4519.         /* We need to take the global config into account */
  4520.                 list_for_each_entry(encoder, &mode_config->encoder_list,
  4521.                                     base.head) {
  4522.                         switch (encoder->type) {
  4523.                         case INTEL_OUTPUT_LVDS:
  4524.                         has_panel = true;
  4525.                                 has_lvds = true;
  4526.                         break;
  4527.                         case INTEL_OUTPUT_EDP:
  4528.                         has_panel = true;
  4529.                         if (intel_encoder_is_pch_edp(&encoder->base))
  4530.                                 has_pch_edp = true;
  4531.                         else
  4532.                                 has_cpu_edp = true;
  4533.                                 break;
  4534.                         }
  4535.                 }
  4536.  
  4537.         if (HAS_PCH_IBX(dev)) {
  4538.                 has_ck505 = dev_priv->display_clock_mode;
  4539.                 can_ssc = has_ck505;
  4540.         } else {
  4541.                 has_ck505 = false;
  4542.                 can_ssc = true;
  4543.         }
  4544.  
  4545.         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4546.                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4547.                       has_ck505);
  4548.  
  4549.         /* Ironlake: try to setup display ref clock before DPLL
  4550.          * enabling. This is only under driver's control after
  4551.          * PCH B stepping, previous chipset stepping should be
  4552.          * ignoring this setting.
  4553.          */
  4554.         temp = I915_READ(PCH_DREF_CONTROL);
  4555.         /* Always enable nonspread source */
  4556.         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4557.  
  4558.         if (has_ck505)
  4559.                 temp |= DREF_NONSPREAD_CK505_ENABLE;
  4560.         else
  4561.         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4562.  
  4563.         if (has_panel) {
  4564.         temp &= ~DREF_SSC_SOURCE_MASK;
  4565.         temp |= DREF_SSC_SOURCE_ENABLE;
  4566.  
  4567.                 /* SSC must be turned on before enabling the CPU output  */
  4568.                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4569.                         DRM_DEBUG_KMS("Using SSC on panel\n");
  4570.                         temp |= DREF_SSC1_ENABLE;
  4571.                 } else
  4572.                         temp &= ~DREF_SSC1_ENABLE;
  4573.  
  4574.                 /* Get SSC going before enabling the outputs */
  4575.                         I915_WRITE(PCH_DREF_CONTROL, temp);
  4576.                         POSTING_READ(PCH_DREF_CONTROL);
  4577.                         udelay(200);
  4578.  
  4579.                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4580.  
  4581.                 /* Enable CPU source on CPU attached eDP */
  4582.                 if (has_cpu_edp) {
  4583.                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4584.                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
  4585.                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4586.                         }
  4587.                         else
  4588.                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4589.                 } else
  4590.                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4591.  
  4592.                 I915_WRITE(PCH_DREF_CONTROL, temp);
  4593.                 POSTING_READ(PCH_DREF_CONTROL);
  4594.                 udelay(200);
  4595.                 } else {
  4596.                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4597.  
  4598.                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4599.  
  4600.                 /* Turn off CPU output */
  4601.                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4602.  
  4603.                 I915_WRITE(PCH_DREF_CONTROL, temp);
  4604.                 POSTING_READ(PCH_DREF_CONTROL);
  4605.                 udelay(200);
  4606.  
  4607.                 /* Turn off the SSC source */
  4608.                 temp &= ~DREF_SSC_SOURCE_MASK;
  4609.                 temp |= DREF_SSC_SOURCE_DISABLE;
  4610.  
  4611.                 /* Turn off SSC1 */
  4612.                 temp &= ~ DREF_SSC1_ENABLE;
  4613.  
  4614.                 I915_WRITE(PCH_DREF_CONTROL, temp);
  4615.                 POSTING_READ(PCH_DREF_CONTROL);
  4616.                 udelay(200);
  4617.         }
  4618. }
  4619.  
  4620. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4621. {
  4622.         struct drm_device *dev = crtc->dev;
  4623.         struct drm_i915_private *dev_priv = dev->dev_private;
  4624.         struct intel_encoder *encoder;
  4625.         struct intel_encoder *edp_encoder = NULL;
  4626.         int num_connectors = 0;
  4627.         bool is_lvds = false;
  4628.  
  4629.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4630.                 switch (encoder->type) {
  4631.                 case INTEL_OUTPUT_LVDS:
  4632.                         is_lvds = true;
  4633.                         break;
  4634.                 case INTEL_OUTPUT_EDP:
  4635.                         edp_encoder = encoder;
  4636.                         break;
  4637.                 }
  4638.                 num_connectors++;
  4639.         }
  4640.  
  4641.         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4642.                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4643.                               dev_priv->lvds_ssc_freq);
  4644.                 return dev_priv->lvds_ssc_freq * 1000;
  4645.         }
  4646.  
  4647.         return 120000;
  4648. }
  4649.  
  4650. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4651.                                   struct drm_display_mode *adjusted_mode,
  4652.                                   bool dither)
  4653. {
  4654.         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4655.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4656.         int pipe = intel_crtc->pipe;
  4657.         uint32_t val;
  4658.  
  4659.         val = I915_READ(PIPECONF(pipe));
  4660.  
  4661.         val &= ~PIPE_BPC_MASK;
  4662.         switch (intel_crtc->bpp) {
  4663.         case 18:
  4664.                 val |= PIPE_6BPC;
  4665.                 break;
  4666.         case 24:
  4667.                 val |= PIPE_8BPC;
  4668.                 break;
  4669.         case 30:
  4670.                 val |= PIPE_10BPC;
  4671.                 break;
  4672.         case 36:
  4673.                 val |= PIPE_12BPC;
  4674.                 break;
  4675.         default:
  4676.                 val |= PIPE_8BPC;
  4677.                 break;
  4678.         }
  4679.  
  4680.         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4681.         if (dither)
  4682.                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4683.  
  4684.         val &= ~PIPECONF_INTERLACE_MASK;
  4685.         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4686.                 val |= PIPECONF_INTERLACED_ILK;
  4687.         else
  4688.                 val |= PIPECONF_PROGRESSIVE;
  4689.  
  4690.         I915_WRITE(PIPECONF(pipe), val);
  4691.         POSTING_READ(PIPECONF(pipe));
  4692. }
  4693.  
  4694. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4695.                                     struct drm_display_mode *adjusted_mode,
  4696.                                     intel_clock_t *clock,
  4697.                                     bool *has_reduced_clock,
  4698.                                     intel_clock_t *reduced_clock)
  4699. {
  4700.         struct drm_device *dev = crtc->dev;
  4701.         struct drm_i915_private *dev_priv = dev->dev_private;
  4702.         struct intel_encoder *intel_encoder;
  4703.         int refclk;
  4704.         const intel_limit_t *limit;
  4705.         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4706.  
  4707.         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4708.                 switch (intel_encoder->type) {
  4709.                 case INTEL_OUTPUT_LVDS:
  4710.                         is_lvds = true;
  4711.                         break;
  4712.                 case INTEL_OUTPUT_SDVO:
  4713.                 case INTEL_OUTPUT_HDMI:
  4714.                         is_sdvo = true;
  4715.                         if (intel_encoder->needs_tv_clock)
  4716.                                 is_tv = true;
  4717.                         break;
  4718.                 case INTEL_OUTPUT_TVOUT:
  4719.                         is_tv = true;
  4720.                         break;
  4721.                 }
  4722.         }
  4723.  
  4724.         refclk = ironlake_get_refclk(crtc);
  4725.  
  4726.         /*
  4727.          * Returns a set of divisors for the desired target clock with the given
  4728.          * refclk, or FALSE.  The returned values represent the clock equation:
  4729.          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4730.          */
  4731.         limit = intel_limit(crtc, refclk);
  4732.         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4733.                               clock);
  4734.         if (!ret)
  4735.                 return false;
  4736.  
  4737.         if (is_lvds && dev_priv->lvds_downclock_avail) {
  4738.                 /*
  4739.                  * Ensure we match the reduced clock's P to the target clock.
  4740.                  * If the clocks don't match, we can't switch the display clock
  4741.                  * by using the FP0/FP1. In such case we will disable the LVDS
  4742.                  * downclock feature.
  4743.                 */
  4744.                 *has_reduced_clock = limit->find_pll(limit, crtc,
  4745.                                                      dev_priv->lvds_downclock,
  4746.                                                      refclk,
  4747.                                                      clock,
  4748.                                                      reduced_clock);
  4749.         }
  4750.  
  4751.         if (is_sdvo && is_tv)
  4752.                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4753.  
  4754.         return true;
  4755. }
  4756.  
  4757. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4758.                   struct drm_display_mode *mode,
  4759.                   struct drm_display_mode *adjusted_mode,
  4760.                   int x, int y,
  4761.                                   struct drm_framebuffer *fb)
  4762. {
  4763.     struct drm_device *dev = crtc->dev;
  4764.     struct drm_i915_private *dev_priv = dev->dev_private;
  4765.     struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4766.     int pipe = intel_crtc->pipe;
  4767.     int plane = intel_crtc->plane;
  4768.         int num_connectors = 0;
  4769.     intel_clock_t clock, reduced_clock;
  4770.         u32 dpll, fp = 0, fp2 = 0;
  4771.     bool ok, has_reduced_clock = false, is_sdvo = false;
  4772.     bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4773.         struct intel_encoder *encoder, *edp_encoder = NULL;
  4774.     int ret;
  4775.     struct fdi_m_n m_n = {0};
  4776.     u32 temp;
  4777.     int target_clock, pixel_multiplier, lane, link_bw, factor;
  4778.     unsigned int pipe_bpp;
  4779.     bool dither;
  4780.         bool is_cpu_edp = false, is_pch_edp = false;
  4781.  
  4782.         for_each_encoder_on_crtc(dev, crtc, encoder) {
  4783.         switch (encoder->type) {
  4784.         case INTEL_OUTPUT_LVDS:
  4785.             is_lvds = true;
  4786.             break;
  4787.         case INTEL_OUTPUT_SDVO:
  4788.         case INTEL_OUTPUT_HDMI:
  4789.             is_sdvo = true;
  4790.             if (encoder->needs_tv_clock)
  4791.                 is_tv = true;
  4792.             break;
  4793.         case INTEL_OUTPUT_TVOUT:
  4794.             is_tv = true;
  4795.             break;
  4796.         case INTEL_OUTPUT_ANALOG:
  4797.             is_crt = true;
  4798.             break;
  4799.         case INTEL_OUTPUT_DISPLAYPORT:
  4800.             is_dp = true;
  4801.             break;
  4802.         case INTEL_OUTPUT_EDP:
  4803.                         is_dp = true;
  4804.                         if (intel_encoder_is_pch_edp(&encoder->base))
  4805.                                 is_pch_edp = true;
  4806.                         else
  4807.                                 is_cpu_edp = true;
  4808.                         edp_encoder = encoder;
  4809.             break;
  4810.         }
  4811.  
  4812.         num_connectors++;
  4813.     }
  4814.  
  4815.         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4816.                                      &has_reduced_clock, &reduced_clock);
  4817.     if (!ok) {
  4818.         DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4819.         return -EINVAL;
  4820.     }
  4821.  
  4822.     /* Ensure that the cursor is valid for the new mode before changing... */
  4823. //    intel_crtc_update_cursor(crtc, true);
  4824.  
  4825.     /* FDI link */
  4826.     pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4827.     lane = 0;
  4828.     /* CPU eDP doesn't require FDI link, so just set DP M/N
  4829.        according to current link config */
  4830.         if (is_cpu_edp) {
  4831.                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4832.     } else {
  4833.         /* FDI is a binary signal running at ~2.7GHz, encoding
  4834.          * each output octet as 10 bits. The actual frequency
  4835.          * is stored as a divider into a 100MHz clock, and the
  4836.          * mode pixel clock is stored in units of 1KHz.
  4837.          * Hence the bw of each lane in terms of the mode signal
  4838.          * is:
  4839.          */
  4840.         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4841.     }
  4842.  
  4843.         /* [e]DP over FDI requires target mode clock instead of link clock. */
  4844.         if (edp_encoder)
  4845.                 target_clock = intel_edp_target_clock(edp_encoder, mode);
  4846.         else if (is_dp)
  4847.                 target_clock = mode->clock;
  4848.         else
  4849.                 target_clock = adjusted_mode->clock;
  4850.  
  4851.     /* determine panel color depth */
  4852.         dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp,
  4853.                                               adjusted_mode);
  4854.         if (is_lvds && dev_priv->lvds_dither)
  4855.                 dither = true;
  4856.  
  4857.         if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
  4858.             pipe_bpp != 36) {
  4859.         WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4860.             pipe_bpp);
  4861.         pipe_bpp = 24;
  4862.     }
  4863.     intel_crtc->bpp = pipe_bpp;
  4864.  
  4865.     if (!lane) {
  4866.         /*
  4867.          * Account for spread spectrum to avoid
  4868.          * oversubscribing the link. Max center spread
  4869.          * is 2.5%; use 5% for safety's sake.
  4870.          */
  4871.         u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4872.         lane = bps / (link_bw * 8) + 1;
  4873.     }
  4874.  
  4875.     intel_crtc->fdi_lanes = lane;
  4876.  
  4877.     if (pixel_multiplier > 1)
  4878.         link_bw *= pixel_multiplier;
  4879.     ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4880.                  &m_n);
  4881.  
  4882.     fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4883.     if (has_reduced_clock)
  4884.         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4885.             reduced_clock.m2;
  4886.  
  4887.     /* Enable autotuning of the PLL clock (if permissible) */
  4888.     factor = 21;
  4889.     if (is_lvds) {
  4890.         if ((intel_panel_use_ssc(dev_priv) &&
  4891.              dev_priv->lvds_ssc_freq == 100) ||
  4892.             (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4893.             factor = 25;
  4894.     } else if (is_sdvo && is_tv)
  4895.         factor = 20;
  4896.  
  4897.     if (clock.m < factor * clock.n)
  4898.         fp |= FP_CB_TUNE;
  4899.  
  4900.     dpll = 0;
  4901.  
  4902.     if (is_lvds)
  4903.         dpll |= DPLLB_MODE_LVDS;
  4904.     else
  4905.         dpll |= DPLLB_MODE_DAC_SERIAL;
  4906.     if (is_sdvo) {
  4907.         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4908.         if (pixel_multiplier > 1) {
  4909.             dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4910.         }
  4911.         dpll |= DPLL_DVO_HIGH_SPEED;
  4912.     }
  4913.         if (is_dp && !is_cpu_edp)
  4914.         dpll |= DPLL_DVO_HIGH_SPEED;
  4915.  
  4916.     /* compute bitmask from p1 value */
  4917.     dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4918.     /* also FPA1 */
  4919.     dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4920.  
  4921.     switch (clock.p2) {
  4922.     case 5:
  4923.         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4924.         break;
  4925.     case 7:
  4926.         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4927.         break;
  4928.     case 10:
  4929.         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4930.         break;
  4931.     case 14:
  4932.         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4933.         break;
  4934.     }
  4935.  
  4936.     if (is_sdvo && is_tv)
  4937.         dpll |= PLL_REF_INPUT_TVCLKINBC;
  4938.     else if (is_tv)
  4939.         /* XXX: just matching BIOS for now */
  4940.         /*  dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4941.         dpll |= 3;
  4942.     else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4943.         dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4944.     else
  4945.         dpll |= PLL_REF_INPUT_DREFCLK;
  4946.  
  4947.         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4948.     drm_mode_debug_printmodeline(mode);
  4949.  
  4950.         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
  4951.          * pre-Haswell/LPT generation */
  4952.         if (HAS_PCH_LPT(dev)) {
  4953.                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
  4954.                                 pipe);
  4955.         } else if (!is_cpu_edp) {
  4956.                 struct intel_pch_pll *pll;
  4957.  
  4958.                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4959.                 if (pll == NULL) {
  4960.                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4961.                                          pipe);
  4962.                         return -EINVAL;
  4963.         }
  4964.         } else
  4965.                 intel_put_pch_pll(intel_crtc);
  4966.  
  4967.     /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4968.      * This is an exception to the general rule that mode_set doesn't turn
  4969.      * things on.
  4970.      */
  4971.     if (is_lvds) {
  4972.         temp = I915_READ(PCH_LVDS);
  4973.         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4974.                 if (HAS_PCH_CPT(dev)) {
  4975.                         temp &= ~PORT_TRANS_SEL_MASK;
  4976.                         temp |= PORT_TRANS_SEL_CPT(pipe);
  4977.                 } else {
  4978.                         if (pipe == 1)
  4979.                 temp |= LVDS_PIPEB_SELECT;
  4980.             else
  4981.                 temp &= ~LVDS_PIPEB_SELECT;
  4982.         }
  4983.  
  4984.         /* set the corresponsding LVDS_BORDER bit */
  4985.         temp |= dev_priv->lvds_border_bits;
  4986.         /* Set the B0-B3 data pairs corresponding to whether we're going to
  4987.          * set the DPLLs for dual-channel mode or not.
  4988.          */
  4989.         if (clock.p2 == 7)
  4990.             temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4991.         else
  4992.             temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4993.  
  4994.         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4995.          * appropriately here, but we need to look more thoroughly into how
  4996.          * panels behave in the two modes.
  4997.          */
  4998.                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4999.         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5000.                         temp |= LVDS_HSYNC_POLARITY;
  5001.         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5002.                         temp |= LVDS_VSYNC_POLARITY;
  5003.         I915_WRITE(PCH_LVDS, temp);
  5004.     }
  5005.  
  5006.         if (is_dp && !is_cpu_edp) {
  5007.         intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5008.     } else {
  5009.         /* For non-DP output, clear any trans DP clock recovery setting.*/
  5010.         I915_WRITE(TRANSDATA_M1(pipe), 0);
  5011.         I915_WRITE(TRANSDATA_N1(pipe), 0);
  5012.         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5013.         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5014.     }
  5015.  
  5016.         if (intel_crtc->pch_pll) {
  5017.                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  5018.  
  5019.         /* Wait for the clocks to stabilize. */
  5020.                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
  5021.         udelay(150);
  5022.  
  5023.         /* The pixel multiplier can only be updated once the
  5024.          * DPLL is enabled and the clocks are stable.
  5025.          *
  5026.          * So write it again.
  5027.          */
  5028.                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  5029.     }
  5030.  
  5031.     intel_crtc->lowfreq_avail = false;
  5032.         if (intel_crtc->pch_pll) {
  5033.     if (is_lvds && has_reduced_clock && i915_powersave) {
  5034.                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  5035.         intel_crtc->lowfreq_avail = true;
  5036.     } else {
  5037.                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  5038.     }
  5039.         }
  5040.  
  5041.     if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5042.         /* the chip adds 2 halflines automatically */
  5043.         adjusted_mode->crtc_vtotal -= 1;
  5044.         adjusted_mode->crtc_vblank_end -= 1;
  5045.                 I915_WRITE(VSYNCSHIFT(pipe),
  5046.                            adjusted_mode->crtc_hsync_start
  5047.                            - adjusted_mode->crtc_htotal/2);
  5048.         } else {
  5049.                 I915_WRITE(VSYNCSHIFT(pipe), 0);
  5050.         }
  5051.  
  5052.     I915_WRITE(HTOTAL(pipe),
  5053.            (adjusted_mode->crtc_hdisplay - 1) |
  5054.            ((adjusted_mode->crtc_htotal - 1) << 16));
  5055.     I915_WRITE(HBLANK(pipe),
  5056.            (adjusted_mode->crtc_hblank_start - 1) |
  5057.            ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5058.     I915_WRITE(HSYNC(pipe),
  5059.            (adjusted_mode->crtc_hsync_start - 1) |
  5060.            ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5061.  
  5062.     I915_WRITE(VTOTAL(pipe),
  5063.            (adjusted_mode->crtc_vdisplay - 1) |
  5064.            ((adjusted_mode->crtc_vtotal - 1) << 16));
  5065.     I915_WRITE(VBLANK(pipe),
  5066.            (adjusted_mode->crtc_vblank_start - 1) |
  5067.            ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5068.     I915_WRITE(VSYNC(pipe),
  5069.            (adjusted_mode->crtc_vsync_start - 1) |
  5070.            ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5071.  
  5072.     /* pipesrc controls the size that is scaled from, which should
  5073.      * always be the user's requested size.
  5074.      */
  5075.     I915_WRITE(PIPESRC(pipe),
  5076.            ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5077.  
  5078.     I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5079.     I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5080.     I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5081.     I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5082.  
  5083.         if (is_cpu_edp)
  5084.         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5085.  
  5086.         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  5087.  
  5088.     intel_wait_for_vblank(dev, pipe);
  5089.  
  5090.         /* Set up the display plane register */
  5091.         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5092.     POSTING_READ(DSPCNTR(plane));
  5093.  
  5094.         ret = intel_pipe_set_base(crtc, x, y, fb);
  5095.  
  5096.     intel_update_watermarks(dev);
  5097.  
  5098.         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  5099.  
  5100.     return ret;
  5101. }
  5102.  
  5103. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5104.                                struct drm_display_mode *mode,
  5105.                                struct drm_display_mode *adjusted_mode,
  5106.                                int x, int y,
  5107.                                struct drm_framebuffer *fb)
  5108. {
  5109.         struct drm_device *dev = crtc->dev;
  5110.         struct drm_i915_private *dev_priv = dev->dev_private;
  5111.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5112.         int pipe = intel_crtc->pipe;
  5113.         int ret;
  5114.  
  5115.         drm_vblank_pre_modeset(dev, pipe);
  5116.  
  5117.         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5118.                                               x, y, fb);
  5119.         drm_vblank_post_modeset(dev, pipe);
  5120.  
  5121.         return ret;
  5122. }
  5123.  
  5124. static bool intel_eld_uptodate(struct drm_connector *connector,
  5125.                                int reg_eldv, uint32_t bits_eldv,
  5126.                                int reg_elda, uint32_t bits_elda,
  5127.                                int reg_edid)
  5128. {
  5129.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5130.         uint8_t *eld = connector->eld;
  5131.         uint32_t i;
  5132.  
  5133.         i = I915_READ(reg_eldv);
  5134.         i &= bits_eldv;
  5135.  
  5136.         if (!eld[0])
  5137.                 return !i;
  5138.  
  5139.         if (!i)
  5140.                 return false;
  5141.  
  5142.         i = I915_READ(reg_elda);
  5143.         i &= ~bits_elda;
  5144.         I915_WRITE(reg_elda, i);
  5145.  
  5146.         for (i = 0; i < eld[2]; i++)
  5147.                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5148.                         return false;
  5149.  
  5150.         return true;
  5151. }
  5152.  
  5153. static void g4x_write_eld(struct drm_connector *connector,
  5154.                           struct drm_crtc *crtc)
  5155. {
  5156.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5157.         uint8_t *eld = connector->eld;
  5158.         uint32_t eldv;
  5159.         uint32_t len;
  5160.         uint32_t i;
  5161.  
  5162.         i = I915_READ(G4X_AUD_VID_DID);
  5163.  
  5164.         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5165.                 eldv = G4X_ELDV_DEVCL_DEVBLC;
  5166.         else
  5167.                 eldv = G4X_ELDV_DEVCTG;
  5168.  
  5169.         if (intel_eld_uptodate(connector,
  5170.                                G4X_AUD_CNTL_ST, eldv,
  5171.                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5172.                                G4X_HDMIW_HDMIEDID))
  5173.                 return;
  5174.  
  5175.         i = I915_READ(G4X_AUD_CNTL_ST);
  5176.         i &= ~(eldv | G4X_ELD_ADDR);
  5177.         len = (i >> 9) & 0x1f;          /* ELD buffer size */
  5178.         I915_WRITE(G4X_AUD_CNTL_ST, i);
  5179.  
  5180.         if (!eld[0])
  5181.                 return;
  5182.  
  5183.         len = min_t(uint8_t, eld[2], len);
  5184.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5185.         for (i = 0; i < len; i++)
  5186.                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5187.  
  5188.         i = I915_READ(G4X_AUD_CNTL_ST);
  5189.         i |= eldv;
  5190.         I915_WRITE(G4X_AUD_CNTL_ST, i);
  5191. }
  5192.  
  5193. static void haswell_write_eld(struct drm_connector *connector,
  5194.                                      struct drm_crtc *crtc)
  5195. {
  5196.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5197.         uint8_t *eld = connector->eld;
  5198.         struct drm_device *dev = crtc->dev;
  5199.         uint32_t eldv;
  5200.         uint32_t i;
  5201.         int len;
  5202.         int pipe = to_intel_crtc(crtc)->pipe;
  5203.         int tmp;
  5204.  
  5205.         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5206.         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5207.         int aud_config = HSW_AUD_CFG(pipe);
  5208.         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5209.  
  5210.  
  5211.         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5212.  
  5213.         /* Audio output enable */
  5214.         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5215.         tmp = I915_READ(aud_cntrl_st2);
  5216.         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5217.         I915_WRITE(aud_cntrl_st2, tmp);
  5218.  
  5219.         /* Wait for 1 vertical blank */
  5220.         intel_wait_for_vblank(dev, pipe);
  5221.  
  5222.         /* Set ELD valid state */
  5223.         tmp = I915_READ(aud_cntrl_st2);
  5224.         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5225.         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5226.         I915_WRITE(aud_cntrl_st2, tmp);
  5227.         tmp = I915_READ(aud_cntrl_st2);
  5228.         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5229.  
  5230.         /* Enable HDMI mode */
  5231.         tmp = I915_READ(aud_config);
  5232.         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5233.         /* clear N_programing_enable and N_value_index */
  5234.         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5235.         I915_WRITE(aud_config, tmp);
  5236.  
  5237.         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5238.  
  5239.         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5240.  
  5241.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5242.                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5243.                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
  5244.                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5245.         } else
  5246.                 I915_WRITE(aud_config, 0);
  5247.  
  5248.         if (intel_eld_uptodate(connector,
  5249.                                aud_cntrl_st2, eldv,
  5250.                                aud_cntl_st, IBX_ELD_ADDRESS,
  5251.                                hdmiw_hdmiedid))
  5252.                 return;
  5253.  
  5254.         i = I915_READ(aud_cntrl_st2);
  5255.         i &= ~eldv;
  5256.         I915_WRITE(aud_cntrl_st2, i);
  5257.  
  5258.         if (!eld[0])
  5259.                 return;
  5260.  
  5261.         i = I915_READ(aud_cntl_st);
  5262.         i &= ~IBX_ELD_ADDRESS;
  5263.         I915_WRITE(aud_cntl_st, i);
  5264.         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
  5265.         DRM_DEBUG_DRIVER("port num:%d\n", i);
  5266.  
  5267.         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
  5268.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5269.         for (i = 0; i < len; i++)
  5270.                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5271.  
  5272.         i = I915_READ(aud_cntrl_st2);
  5273.         i |= eldv;
  5274.         I915_WRITE(aud_cntrl_st2, i);
  5275.  
  5276. }
  5277.  
  5278. static void ironlake_write_eld(struct drm_connector *connector,
  5279.                                      struct drm_crtc *crtc)
  5280. {
  5281.         struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5282.         uint8_t *eld = connector->eld;
  5283.         uint32_t eldv;
  5284.         uint32_t i;
  5285.         int len;
  5286.         int hdmiw_hdmiedid;
  5287.         int aud_config;
  5288.         int aud_cntl_st;
  5289.         int aud_cntrl_st2;
  5290.         int pipe = to_intel_crtc(crtc)->pipe;
  5291.  
  5292.         if (HAS_PCH_IBX(connector->dev)) {
  5293.                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5294.                 aud_config = IBX_AUD_CFG(pipe);
  5295.                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5296.                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5297.         } else {
  5298.                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5299.                 aud_config = CPT_AUD_CFG(pipe);
  5300.                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5301.                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5302.         }
  5303.  
  5304.         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5305.  
  5306.         i = I915_READ(aud_cntl_st);
  5307.         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
  5308.         if (!i) {
  5309.                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5310.                 /* operate blindly on all ports */
  5311.                 eldv = IBX_ELD_VALIDB;
  5312.                 eldv |= IBX_ELD_VALIDB << 4;
  5313.                 eldv |= IBX_ELD_VALIDB << 8;
  5314.         } else {
  5315.                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5316.                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5317.         }
  5318.  
  5319.         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5320.                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5321.                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
  5322.                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5323.         } else
  5324.                 I915_WRITE(aud_config, 0);
  5325.  
  5326.         if (intel_eld_uptodate(connector,
  5327.                                aud_cntrl_st2, eldv,
  5328.                                aud_cntl_st, IBX_ELD_ADDRESS,
  5329.                                hdmiw_hdmiedid))
  5330.                 return;
  5331.  
  5332.         i = I915_READ(aud_cntrl_st2);
  5333.         i &= ~eldv;
  5334.         I915_WRITE(aud_cntrl_st2, i);
  5335.  
  5336.         if (!eld[0])
  5337.                 return;
  5338.  
  5339.         i = I915_READ(aud_cntl_st);
  5340.         i &= ~IBX_ELD_ADDRESS;
  5341.         I915_WRITE(aud_cntl_st, i);
  5342.  
  5343.         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
  5344.         DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5345.         for (i = 0; i < len; i++)
  5346.                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5347.  
  5348.         i = I915_READ(aud_cntrl_st2);
  5349.         i |= eldv;
  5350.         I915_WRITE(aud_cntrl_st2, i);
  5351. }
  5352.  
  5353. void intel_write_eld(struct drm_encoder *encoder,
  5354.                      struct drm_display_mode *mode)
  5355. {
  5356.         struct drm_crtc *crtc = encoder->crtc;
  5357.         struct drm_connector *connector;
  5358.         struct drm_device *dev = encoder->dev;
  5359.         struct drm_i915_private *dev_priv = dev->dev_private;
  5360.  
  5361.         connector = drm_select_eld(encoder, mode);
  5362.         if (!connector)
  5363.                 return;
  5364.  
  5365.         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5366.                          connector->base.id,
  5367.                          drm_get_connector_name(connector),
  5368.                          connector->encoder->base.id,
  5369.                          drm_get_encoder_name(connector->encoder));
  5370.  
  5371.         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5372.  
  5373.         if (dev_priv->display.write_eld)
  5374.                 dev_priv->display.write_eld(connector, crtc);
  5375. }
  5376.  
  5377. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5378. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5379. {
  5380.         struct drm_device *dev = crtc->dev;
  5381.         struct drm_i915_private *dev_priv = dev->dev_private;
  5382.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5383.         int palreg = PALETTE(intel_crtc->pipe);
  5384.         int i;
  5385.  
  5386.         /* The clocks have to be on to load the palette. */
  5387.         if (!crtc->enabled || !intel_crtc->active)
  5388.                 return;
  5389.  
  5390.         /* use legacy palette for Ironlake */
  5391.         if (HAS_PCH_SPLIT(dev))
  5392.                 palreg = LGC_PALETTE(intel_crtc->pipe);
  5393.  
  5394.         for (i = 0; i < 256; i++) {
  5395.                 I915_WRITE(palreg + 4 * i,
  5396.                            (intel_crtc->lut_r[i] << 16) |
  5397.                            (intel_crtc->lut_g[i] << 8) |
  5398.                            intel_crtc->lut_b[i]);
  5399.         }
  5400. }
  5401.  
  5402. #if 0
  5403. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5404. {
  5405.         struct drm_device *dev = crtc->dev;
  5406.         struct drm_i915_private *dev_priv = dev->dev_private;
  5407.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5408.         bool visible = base != 0;
  5409.         u32 cntl;
  5410.  
  5411.         if (intel_crtc->cursor_visible == visible)
  5412.                 return;
  5413.  
  5414.         cntl = I915_READ(_CURACNTR);
  5415.         if (visible) {
  5416.                 /* On these chipsets we can only modify the base whilst
  5417.                  * the cursor is disabled.
  5418.                  */
  5419.                 I915_WRITE(_CURABASE, base);
  5420.  
  5421.                 cntl &= ~(CURSOR_FORMAT_MASK);
  5422.                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5423.                 cntl |= CURSOR_ENABLE |
  5424.                         CURSOR_GAMMA_ENABLE |
  5425.                         CURSOR_FORMAT_ARGB;
  5426.         } else
  5427.                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5428.         I915_WRITE(_CURACNTR, cntl);
  5429.  
  5430.         intel_crtc->cursor_visible = visible;
  5431. }
  5432.  
  5433. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5434. {
  5435.         struct drm_device *dev = crtc->dev;
  5436.         struct drm_i915_private *dev_priv = dev->dev_private;
  5437.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5438.         int pipe = intel_crtc->pipe;
  5439.         bool visible = base != 0;
  5440.  
  5441.         if (intel_crtc->cursor_visible != visible) {
  5442.                 uint32_t cntl = I915_READ(CURCNTR(pipe));
  5443.                 if (base) {
  5444.                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5445.                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5446.                         cntl |= pipe << 28; /* Connect to correct pipe */
  5447.                 } else {
  5448.                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5449.                         cntl |= CURSOR_MODE_DISABLE;
  5450.                 }
  5451.                 I915_WRITE(CURCNTR(pipe), cntl);
  5452.  
  5453.                 intel_crtc->cursor_visible = visible;
  5454.         }
  5455.         /* and commit changes on next vblank */
  5456.         I915_WRITE(CURBASE(pipe), base);
  5457. }
  5458.  
  5459. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5460. {
  5461.         struct drm_device *dev = crtc->dev;
  5462.         struct drm_i915_private *dev_priv = dev->dev_private;
  5463.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5464.         int pipe = intel_crtc->pipe;
  5465.         bool visible = base != 0;
  5466.  
  5467.         if (intel_crtc->cursor_visible != visible) {
  5468.                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5469.                 if (base) {
  5470.                         cntl &= ~CURSOR_MODE;
  5471.                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5472.                 } else {
  5473.                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5474.                         cntl |= CURSOR_MODE_DISABLE;
  5475.                 }
  5476.                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5477.  
  5478.                 intel_crtc->cursor_visible = visible;
  5479.         }
  5480.         /* and commit changes on next vblank */
  5481.         I915_WRITE(CURBASE_IVB(pipe), base);
  5482. }
  5483.  
  5484. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5485. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5486.                                      bool on)
  5487. {
  5488.         struct drm_device *dev = crtc->dev;
  5489.         struct drm_i915_private *dev_priv = dev->dev_private;
  5490.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5491.         int pipe = intel_crtc->pipe;
  5492.         int x = intel_crtc->cursor_x;
  5493.         int y = intel_crtc->cursor_y;
  5494.         u32 base, pos;
  5495.         bool visible;
  5496.  
  5497.         pos = 0;
  5498.  
  5499.         if (on && crtc->enabled && crtc->fb) {
  5500.                 base = intel_crtc->cursor_addr;
  5501.                 if (x > (int) crtc->fb->width)
  5502.                         base = 0;
  5503.  
  5504.                 if (y > (int) crtc->fb->height)
  5505.                         base = 0;
  5506.         } else
  5507.                 base = 0;
  5508.  
  5509.         if (x < 0) {
  5510.                 if (x + intel_crtc->cursor_width < 0)
  5511.                         base = 0;
  5512.  
  5513.                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5514.                 x = -x;
  5515.         }
  5516.         pos |= x << CURSOR_X_SHIFT;
  5517.  
  5518.         if (y < 0) {
  5519.                 if (y + intel_crtc->cursor_height < 0)
  5520.                         base = 0;
  5521.  
  5522.                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5523.                 y = -y;
  5524.         }
  5525.         pos |= y << CURSOR_Y_SHIFT;
  5526.  
  5527.         visible = base != 0;
  5528.         if (!visible && !intel_crtc->cursor_visible)
  5529.                 return;
  5530.  
  5531.         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5532.                 I915_WRITE(CURPOS_IVB(pipe), pos);
  5533.                 ivb_update_cursor(crtc, base);
  5534.         } else {
  5535.                 I915_WRITE(CURPOS(pipe), pos);
  5536.                 if (IS_845G(dev) || IS_I865G(dev))
  5537.                         i845_update_cursor(crtc, base);
  5538.                 else
  5539.                         i9xx_update_cursor(crtc, base);
  5540.         }
  5541. }
  5542.  
  5543. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5544.                                  struct drm_file *file,
  5545.                                  uint32_t handle,
  5546.                                  uint32_t width, uint32_t height)
  5547. {
  5548.         struct drm_device *dev = crtc->dev;
  5549.         struct drm_i915_private *dev_priv = dev->dev_private;
  5550.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5551.         struct drm_i915_gem_object *obj;
  5552.         uint32_t addr;
  5553.         int ret;
  5554.  
  5555.         /* if we want to turn off the cursor ignore width and height */
  5556.         if (!handle) {
  5557.                 DRM_DEBUG_KMS("cursor off\n");
  5558.                 addr = 0;
  5559.                 obj = NULL;
  5560.                 mutex_lock(&dev->struct_mutex);
  5561.                 goto finish;
  5562.         }
  5563.  
  5564.         /* Currently we only support 64x64 cursors */
  5565.         if (width != 64 || height != 64) {
  5566.                 DRM_ERROR("we currently only support 64x64 cursors\n");
  5567.                 return -EINVAL;
  5568.         }
  5569.  
  5570.         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5571.         if (&obj->base == NULL)
  5572.                 return -ENOENT;
  5573.  
  5574.         if (obj->base.size < width * height * 4) {
  5575.                 DRM_ERROR("buffer is to small\n");
  5576.                 ret = -ENOMEM;
  5577.                 goto fail;
  5578.         }
  5579.  
  5580.         /* we only need to pin inside GTT if cursor is non-phy */
  5581.         mutex_lock(&dev->struct_mutex);
  5582.         if (!dev_priv->info->cursor_needs_physical) {
  5583.                 if (obj->tiling_mode) {
  5584.                         DRM_ERROR("cursor cannot be tiled\n");
  5585.                         ret = -EINVAL;
  5586.                         goto fail_locked;
  5587.                 }
  5588.  
  5589.                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5590.                 if (ret) {
  5591.                         DRM_ERROR("failed to move cursor bo into the GTT\n");
  5592.                         goto fail_locked;
  5593.                 }
  5594.  
  5595.                 ret = i915_gem_object_put_fence(obj);
  5596.                 if (ret) {
  5597.                         DRM_ERROR("failed to release fence for cursor");
  5598.                         goto fail_unpin;
  5599.                 }
  5600.  
  5601.                 addr = obj->gtt_offset;
  5602.         } else {
  5603.                 int align = IS_I830(dev) ? 16 * 1024 : 256;
  5604.                 ret = i915_gem_attach_phys_object(dev, obj,
  5605.                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5606.                                                   align);
  5607.                 if (ret) {
  5608.                         DRM_ERROR("failed to attach phys object\n");
  5609.                         goto fail_locked;
  5610.                 }
  5611.                 addr = obj->phys_obj->handle->busaddr;
  5612.         }
  5613.  
  5614.         if (IS_GEN2(dev))
  5615.                 I915_WRITE(CURSIZE, (height << 12) | width);
  5616.  
  5617.  finish:
  5618.         if (intel_crtc->cursor_bo) {
  5619.                 if (dev_priv->info->cursor_needs_physical) {
  5620.                         if (intel_crtc->cursor_bo != obj)
  5621.                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5622.                 } else
  5623.                         i915_gem_object_unpin(intel_crtc->cursor_bo);
  5624.                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5625.         }
  5626.  
  5627.         mutex_unlock(&dev->struct_mutex);
  5628.  
  5629.         intel_crtc->cursor_addr = addr;
  5630.         intel_crtc->cursor_bo = obj;
  5631.         intel_crtc->cursor_width = width;
  5632.         intel_crtc->cursor_height = height;
  5633.  
  5634. //   intel_crtc_update_cursor(crtc, true);
  5635.  
  5636.         return 0;
  5637. fail_unpin:
  5638.         i915_gem_object_unpin(obj);
  5639. fail_locked:
  5640.         mutex_unlock(&dev->struct_mutex);
  5641. fail:
  5642.         drm_gem_object_unreference_unlocked(&obj->base);
  5643.         return ret;
  5644. }
  5645.  
  5646. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5647. {
  5648.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5649.  
  5650.         intel_crtc->cursor_x = x;
  5651.         intel_crtc->cursor_y = y;
  5652.  
  5653. //   intel_crtc_update_cursor(crtc, true);
  5654.  
  5655.         return 0;
  5656. }
  5657. #endif
  5658.  
  5659. /** Sets the color ramps on behalf of RandR */
  5660. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5661.                                  u16 blue, int regno)
  5662. {
  5663.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5664.  
  5665.         intel_crtc->lut_r[regno] = red >> 8;
  5666.         intel_crtc->lut_g[regno] = green >> 8;
  5667.         intel_crtc->lut_b[regno] = blue >> 8;
  5668. }
  5669.  
  5670. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5671.                              u16 *blue, int regno)
  5672. {
  5673.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5674.  
  5675.         *red = intel_crtc->lut_r[regno] << 8;
  5676.         *green = intel_crtc->lut_g[regno] << 8;
  5677.         *blue = intel_crtc->lut_b[regno] << 8;
  5678. }
  5679.  
  5680. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5681.                                  u16 *blue, uint32_t start, uint32_t size)
  5682. {
  5683.         int end = (start + size > 256) ? 256 : start + size, i;
  5684.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5685.  
  5686.         for (i = start; i < end; i++) {
  5687.                 intel_crtc->lut_r[i] = red[i] >> 8;
  5688.                 intel_crtc->lut_g[i] = green[i] >> 8;
  5689.                 intel_crtc->lut_b[i] = blue[i] >> 8;
  5690.         }
  5691.  
  5692.         intel_crtc_load_lut(crtc);
  5693. }
  5694.  
  5695. /**
  5696.  * Get a pipe with a simple mode set on it for doing load-based monitor
  5697.  * detection.
  5698.  *
  5699.  * It will be up to the load-detect code to adjust the pipe as appropriate for
  5700.  * its requirements.  The pipe will be connected to no other encoders.
  5701.  *
  5702.  * Currently this code will only succeed if there is a pipe with no encoders
  5703.  * configured for it.  In the future, it could choose to temporarily disable
  5704.  * some outputs to free up a pipe for its use.
  5705.  *
  5706.  * \return crtc, or NULL if no pipes are available.
  5707.  */
  5708.  
  5709. /* VESA 640x480x72Hz mode to set on the pipe */
  5710. static struct drm_display_mode load_detect_mode = {
  5711.         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5712.                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5713. };
  5714.  
  5715. static struct drm_framebuffer *
  5716. intel_framebuffer_create(struct drm_device *dev,
  5717.                          struct drm_mode_fb_cmd2 *mode_cmd,
  5718.                          struct drm_i915_gem_object *obj)
  5719. {
  5720.         struct intel_framebuffer *intel_fb;
  5721.         int ret;
  5722.  
  5723.         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5724.         if (!intel_fb) {
  5725.                 drm_gem_object_unreference_unlocked(&obj->base);
  5726.                 return ERR_PTR(-ENOMEM);
  5727.         }
  5728.  
  5729.         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5730.         if (ret) {
  5731.                 drm_gem_object_unreference_unlocked(&obj->base);
  5732.                 kfree(intel_fb);
  5733.                 return ERR_PTR(ret);
  5734.         }
  5735.  
  5736.         return &intel_fb->base;
  5737. }
  5738.  
  5739. static u32
  5740. intel_framebuffer_pitch_for_width(int width, int bpp)
  5741. {
  5742.         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5743.         return ALIGN(pitch, 64);
  5744. }
  5745.  
  5746. static u32
  5747. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5748. {
  5749.         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5750.         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5751. }
  5752.  
  5753. static struct drm_framebuffer *
  5754. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5755.                                   struct drm_display_mode *mode,
  5756.                                   int depth, int bpp)
  5757. {
  5758.         struct drm_i915_gem_object *obj;
  5759.         struct drm_mode_fb_cmd2 mode_cmd;
  5760.  
  5761. //      obj = i915_gem_alloc_object(dev,
  5762. //                                  intel_framebuffer_size_for_mode(mode, bpp));
  5763. //      if (obj == NULL)
  5764.                 return ERR_PTR(-ENOMEM);
  5765.  
  5766. //      mode_cmd.width = mode->hdisplay;
  5767. //      mode_cmd.height = mode->vdisplay;
  5768. //      mode_cmd.depth = depth;
  5769. //      mode_cmd.bpp = bpp;
  5770. //      mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
  5771.  
  5772. //      return intel_framebuffer_create(dev, &mode_cmd, obj);
  5773. }
  5774.  
  5775. static struct drm_framebuffer *
  5776. mode_fits_in_fbdev(struct drm_device *dev,
  5777.                    struct drm_display_mode *mode)
  5778. {
  5779.         struct drm_i915_private *dev_priv = dev->dev_private;
  5780.         struct drm_i915_gem_object *obj;
  5781.         struct drm_framebuffer *fb;
  5782.  
  5783. //      if (dev_priv->fbdev == NULL)
  5784. //              return NULL;
  5785.  
  5786. //      obj = dev_priv->fbdev->ifb.obj;
  5787. //      if (obj == NULL)
  5788.                 return NULL;
  5789.  
  5790. //      if (obj->base.size < mode->vdisplay * fb->pitch)
  5791.         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5792.                                                                fb->bits_per_pixel))
  5793. //              return NULL;
  5794.  
  5795.         if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5796.                 return NULL;
  5797.  
  5798. //      return fb;
  5799. }
  5800.  
  5801. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5802.                                 struct drm_display_mode *mode,
  5803.                                 struct intel_load_detect_pipe *old)
  5804. {
  5805.         struct intel_crtc *intel_crtc;
  5806.         struct intel_encoder *intel_encoder =
  5807.                 intel_attached_encoder(connector);
  5808.         struct drm_crtc *possible_crtc;
  5809.         struct drm_encoder *encoder = &intel_encoder->base;
  5810.         struct drm_crtc *crtc = NULL;
  5811.         struct drm_device *dev = encoder->dev;
  5812.         struct drm_framebuffer *fb;
  5813.         int i = -1;
  5814.  
  5815.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5816.                       connector->base.id, drm_get_connector_name(connector),
  5817.                       encoder->base.id, drm_get_encoder_name(encoder));
  5818.  
  5819.         /*
  5820.          * Algorithm gets a little messy:
  5821.          *
  5822.          *   - if the connector already has an assigned crtc, use it (but make
  5823.          *     sure it's on first)
  5824.          *
  5825.          *   - try to find the first unused crtc that can drive this connector,
  5826.          *     and use that if we find one
  5827.          */
  5828.  
  5829.         /* See if we already have a CRTC for this connector */
  5830.         if (encoder->crtc) {
  5831.                 crtc = encoder->crtc;
  5832.  
  5833.                 old->dpms_mode = connector->dpms;
  5834.                 old->load_detect_temp = false;
  5835.  
  5836.                 /* Make sure the crtc and connector are running */
  5837.                 if (connector->dpms != DRM_MODE_DPMS_ON)
  5838.                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5839.  
  5840.                 return true;
  5841.         }
  5842.  
  5843.         /* Find an unused one (if possible) */
  5844.         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5845.                 i++;
  5846.                 if (!(encoder->possible_crtcs & (1 << i)))
  5847.                         continue;
  5848.                 if (!possible_crtc->enabled) {
  5849.                         crtc = possible_crtc;
  5850.                         break;
  5851.                 }
  5852.         }
  5853.  
  5854.         /*
  5855.          * If we didn't find an unused CRTC, don't use any.
  5856.          */
  5857.         if (!crtc) {
  5858.                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5859.                 return false;
  5860.         }
  5861.  
  5862.         intel_encoder->new_crtc = to_intel_crtc(crtc);
  5863.         to_intel_connector(connector)->new_encoder = intel_encoder;
  5864.  
  5865.         intel_crtc = to_intel_crtc(crtc);
  5866.         old->dpms_mode = connector->dpms;
  5867.         old->load_detect_temp = true;
  5868.         old->release_fb = NULL;
  5869.  
  5870.         if (!mode)
  5871.                 mode = &load_detect_mode;
  5872.  
  5873.         /* We need a framebuffer large enough to accommodate all accesses
  5874.          * that the plane may generate whilst we perform load detection.
  5875.          * We can not rely on the fbcon either being present (we get called
  5876.          * during its initialisation to detect all boot displays, or it may
  5877.          * not even exist) or that it is large enough to satisfy the
  5878.          * requested mode.
  5879.          */
  5880.         fb = mode_fits_in_fbdev(dev, mode);
  5881.         if (fb == NULL) {
  5882.                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5883.                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5884.                 old->release_fb = fb;
  5885.         } else
  5886.                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5887.         if (IS_ERR(fb)) {
  5888.                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5889.                 goto fail;
  5890.         }
  5891.  
  5892.         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5893.                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5894.                 if (old->release_fb)
  5895.                         old->release_fb->funcs->destroy(old->release_fb);
  5896.                 goto fail;
  5897.         }
  5898.  
  5899.         /* let the connector get through one full cycle before testing */
  5900.         intel_wait_for_vblank(dev, intel_crtc->pipe);
  5901.  
  5902.         return true;
  5903. fail:
  5904.         connector->encoder = NULL;
  5905.         encoder->crtc = NULL;
  5906.         return false;
  5907. }
  5908.  
  5909. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5910.                                     struct intel_load_detect_pipe *old)
  5911. {
  5912.         struct intel_encoder *intel_encoder =
  5913.                 intel_attached_encoder(connector);
  5914.         struct drm_encoder *encoder = &intel_encoder->base;
  5915.  
  5916.         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5917.                       connector->base.id, drm_get_connector_name(connector),
  5918.                       encoder->base.id, drm_get_encoder_name(encoder));
  5919.  
  5920.         if (old->load_detect_temp) {
  5921.                 struct drm_crtc *crtc = encoder->crtc;
  5922.  
  5923.                 to_intel_connector(connector)->new_encoder = NULL;
  5924.                 intel_encoder->new_crtc = NULL;
  5925.                 intel_set_mode(crtc, NULL, 0, 0, NULL);
  5926.  
  5927.                 if (old->release_fb)
  5928.                         old->release_fb->funcs->destroy(old->release_fb);
  5929.  
  5930.                 return;
  5931.         }
  5932.  
  5933.         /* Switch crtc and encoder back off if necessary */
  5934.         if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5935.                 connector->funcs->dpms(connector, old->dpms_mode);
  5936. }
  5937.  
  5938. /* Returns the clock of the currently programmed mode of the given pipe. */
  5939. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5940. {
  5941.         struct drm_i915_private *dev_priv = dev->dev_private;
  5942.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5943.         int pipe = intel_crtc->pipe;
  5944.         u32 dpll = I915_READ(DPLL(pipe));
  5945.         u32 fp;
  5946.         intel_clock_t clock;
  5947.  
  5948.         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5949.                 fp = I915_READ(FP0(pipe));
  5950.         else
  5951.                 fp = I915_READ(FP1(pipe));
  5952.  
  5953.         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5954.         if (IS_PINEVIEW(dev)) {
  5955.                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5956.                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5957.         } else {
  5958.                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5959.                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5960.         }
  5961.  
  5962.         if (!IS_GEN2(dev)) {
  5963.                 if (IS_PINEVIEW(dev))
  5964.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5965.                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5966.                 else
  5967.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5968.                                DPLL_FPA01_P1_POST_DIV_SHIFT);
  5969.  
  5970.                 switch (dpll & DPLL_MODE_MASK) {
  5971.                 case DPLLB_MODE_DAC_SERIAL:
  5972.                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5973.                                 5 : 10;
  5974.                         break;
  5975.                 case DPLLB_MODE_LVDS:
  5976.                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5977.                                 7 : 14;
  5978.                         break;
  5979.                 default:
  5980.                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5981.                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5982.                         return 0;
  5983.                 }
  5984.  
  5985.                 /* XXX: Handle the 100Mhz refclk */
  5986.                 intel_clock(dev, 96000, &clock);
  5987.         } else {
  5988.                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5989.  
  5990.                 if (is_lvds) {
  5991.                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5992.                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
  5993.                         clock.p2 = 14;
  5994.  
  5995.                         if ((dpll & PLL_REF_INPUT_MASK) ==
  5996.                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5997.                                 /* XXX: might not be 66MHz */
  5998.                                 intel_clock(dev, 66000, &clock);
  5999.                         } else
  6000.                                 intel_clock(dev, 48000, &clock);
  6001.                 } else {
  6002.                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6003.                                 clock.p1 = 2;
  6004.                         else {
  6005.                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6006.                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6007.                         }
  6008.                         if (dpll & PLL_P2_DIVIDE_BY_4)
  6009.                                 clock.p2 = 4;
  6010.                         else
  6011.                                 clock.p2 = 2;
  6012.  
  6013.                         intel_clock(dev, 48000, &clock);
  6014.                 }
  6015.         }
  6016.  
  6017.         /* XXX: It would be nice to validate the clocks, but we can't reuse
  6018.          * i830PllIsValid() because it relies on the xf86_config connector
  6019.          * configuration being accurate, which it isn't necessarily.
  6020.          */
  6021.  
  6022.         return clock.dot;
  6023. }
  6024.  
  6025. /** Returns the currently programmed mode of the given pipe. */
  6026. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6027.                                              struct drm_crtc *crtc)
  6028. {
  6029.         struct drm_i915_private *dev_priv = dev->dev_private;
  6030.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6031.         int pipe = intel_crtc->pipe;
  6032.         struct drm_display_mode *mode;
  6033.         int htot = I915_READ(HTOTAL(pipe));
  6034.         int hsync = I915_READ(HSYNC(pipe));
  6035.         int vtot = I915_READ(VTOTAL(pipe));
  6036.         int vsync = I915_READ(VSYNC(pipe));
  6037.  
  6038.         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6039.         if (!mode)
  6040.                 return NULL;
  6041.  
  6042.         mode->clock = intel_crtc_clock_get(dev, crtc);
  6043.         mode->hdisplay = (htot & 0xffff) + 1;
  6044.         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6045.         mode->hsync_start = (hsync & 0xffff) + 1;
  6046.         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6047.         mode->vdisplay = (vtot & 0xffff) + 1;
  6048.         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6049.         mode->vsync_start = (vsync & 0xffff) + 1;
  6050.         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6051.  
  6052.         drm_mode_set_name(mode);
  6053.  
  6054.         return mode;
  6055. }
  6056.  
  6057. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6058. {
  6059.         struct drm_device *dev = crtc->dev;
  6060.         drm_i915_private_t *dev_priv = dev->dev_private;
  6061.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6062.         int pipe = intel_crtc->pipe;
  6063.         int dpll_reg = DPLL(pipe);
  6064.         int dpll;
  6065.  
  6066.         if (HAS_PCH_SPLIT(dev))
  6067.                 return;
  6068.  
  6069.         if (!dev_priv->lvds_downclock_avail)
  6070.                 return;
  6071.  
  6072.         dpll = I915_READ(dpll_reg);
  6073.         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6074.                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6075.  
  6076.                 assert_panel_unlocked(dev_priv, pipe);
  6077.  
  6078.                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6079.                 I915_WRITE(dpll_reg, dpll);
  6080.                 intel_wait_for_vblank(dev, pipe);
  6081.  
  6082.                 dpll = I915_READ(dpll_reg);
  6083.                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6084.                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6085.         }
  6086. }
  6087.  
  6088. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6089. {
  6090.         struct drm_device *dev = crtc->dev;
  6091.         drm_i915_private_t *dev_priv = dev->dev_private;
  6092.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6093.  
  6094.         if (HAS_PCH_SPLIT(dev))
  6095.                 return;
  6096.  
  6097.         if (!dev_priv->lvds_downclock_avail)
  6098.                 return;
  6099.  
  6100.         /*
  6101.          * Since this is called by a timer, we should never get here in
  6102.          * the manual case.
  6103.          */
  6104.         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6105.                 int pipe = intel_crtc->pipe;
  6106.                 int dpll_reg = DPLL(pipe);
  6107.                 int dpll;
  6108.  
  6109.                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6110.  
  6111.                 assert_panel_unlocked(dev_priv, pipe);
  6112.  
  6113.                 dpll = I915_READ(dpll_reg);
  6114.                 dpll |= DISPLAY_RATE_SELECT_FPA1;
  6115.                 I915_WRITE(dpll_reg, dpll);
  6116.                 intel_wait_for_vblank(dev, pipe);
  6117.                 dpll = I915_READ(dpll_reg);
  6118.                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6119.                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6120.         }
  6121.  
  6122. }
  6123.  
  6124. void intel_mark_busy(struct drm_device *dev)
  6125. {
  6126.         i915_update_gfx_val(dev->dev_private);
  6127. }
  6128.  
  6129. void intel_mark_idle(struct drm_device *dev)
  6130. {
  6131. }
  6132.  
  6133. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  6134. {
  6135.         struct drm_device *dev = obj->base.dev;
  6136.         struct drm_crtc *crtc;
  6137.  
  6138.         if (!i915_powersave)
  6139.                 return;
  6140.  
  6141.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6142.                 if (!crtc->fb)
  6143.                         continue;
  6144.  
  6145.                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
  6146.                         intel_increase_pllclock(crtc);
  6147.         }
  6148. }
  6149.  
  6150. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  6151. {
  6152.         struct drm_device *dev = obj->base.dev;
  6153.         struct drm_crtc *crtc;
  6154.  
  6155.         if (!i915_powersave)
  6156.                 return;
  6157.  
  6158.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6159.                 if (!crtc->fb)
  6160.                         continue;
  6161.  
  6162.                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
  6163.                         intel_decrease_pllclock(crtc);
  6164.         }
  6165. }
  6166.  
  6167. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6168. {
  6169.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6170.         struct drm_device *dev = crtc->dev;
  6171.         struct intel_unpin_work *work;
  6172.         unsigned long flags;
  6173.  
  6174.         spin_lock_irqsave(&dev->event_lock, flags);
  6175.         work = intel_crtc->unpin_work;
  6176.         intel_crtc->unpin_work = NULL;
  6177.         spin_unlock_irqrestore(&dev->event_lock, flags);
  6178.  
  6179.         if (work) {
  6180. //              cancel_work_sync(&work->work);
  6181.                 kfree(work);
  6182.         }
  6183.  
  6184.         drm_crtc_cleanup(crtc);
  6185.  
  6186.         kfree(intel_crtc);
  6187. }
  6188.  
  6189. #if 0
  6190. static void intel_unpin_work_fn(struct work_struct *__work)
  6191. {
  6192.         struct intel_unpin_work *work =
  6193.                 container_of(__work, struct intel_unpin_work, work);
  6194.  
  6195.         mutex_lock(&work->dev->struct_mutex);
  6196.         intel_unpin_fb_obj(work->old_fb_obj);
  6197.         drm_gem_object_unreference(&work->pending_flip_obj->base);
  6198.         drm_gem_object_unreference(&work->old_fb_obj->base);
  6199.  
  6200.         intel_update_fbc(work->dev);
  6201.         mutex_unlock(&work->dev->struct_mutex);
  6202.         kfree(work);
  6203. }
  6204.  
  6205. static void do_intel_finish_page_flip(struct drm_device *dev,
  6206.                                       struct drm_crtc *crtc)
  6207. {
  6208.         drm_i915_private_t *dev_priv = dev->dev_private;
  6209.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6210.         struct intel_unpin_work *work;
  6211.         struct drm_i915_gem_object *obj;
  6212.         struct drm_pending_vblank_event *e;
  6213.         struct timeval tvbl;
  6214.         unsigned long flags;
  6215.  
  6216.         /* Ignore early vblank irqs */
  6217.         if (intel_crtc == NULL)
  6218.                 return;
  6219.  
  6220.         spin_lock_irqsave(&dev->event_lock, flags);
  6221.         work = intel_crtc->unpin_work;
  6222.         if (work == NULL || !work->pending) {
  6223.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  6224.                 return;
  6225.         }
  6226.  
  6227.         intel_crtc->unpin_work = NULL;
  6228.  
  6229.         if (work->event) {
  6230.                 e = work->event;
  6231.                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6232.  
  6233.                 e->event.tv_sec = tvbl.tv_sec;
  6234.                 e->event.tv_usec = tvbl.tv_usec;
  6235.  
  6236.                 list_add_tail(&e->base.link,
  6237.                               &e->base.file_priv->event_list);
  6238.                 wake_up_interruptible(&e->base.file_priv->event_wait);
  6239.         }
  6240.  
  6241.         drm_vblank_put(dev, intel_crtc->pipe);
  6242.  
  6243.         spin_unlock_irqrestore(&dev->event_lock, flags);
  6244.  
  6245.         obj = work->old_fb_obj;
  6246.  
  6247.         atomic_clear_mask(1 << intel_crtc->plane,
  6248.                           &obj->pending_flip.counter);
  6249.  
  6250.         wake_up(&dev_priv->pending_flip_queue);
  6251.         schedule_work(&work->work);
  6252.  
  6253.         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6254. }
  6255.  
  6256. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6257. {
  6258.         drm_i915_private_t *dev_priv = dev->dev_private;
  6259.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6260.  
  6261.         do_intel_finish_page_flip(dev, crtc);
  6262. }
  6263.  
  6264. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6265. {
  6266.         drm_i915_private_t *dev_priv = dev->dev_private;
  6267.         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6268.  
  6269.         do_intel_finish_page_flip(dev, crtc);
  6270. }
  6271.  
  6272. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6273. {
  6274.         drm_i915_private_t *dev_priv = dev->dev_private;
  6275.         struct intel_crtc *intel_crtc =
  6276.                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6277.         unsigned long flags;
  6278.  
  6279.         spin_lock_irqsave(&dev->event_lock, flags);
  6280.         if (intel_crtc->unpin_work) {
  6281.                 if ((++intel_crtc->unpin_work->pending) > 1)
  6282.                         DRM_ERROR("Prepared flip multiple times\n");
  6283.         } else {
  6284.                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6285.         }
  6286.         spin_unlock_irqrestore(&dev->event_lock, flags);
  6287. }
  6288.  
  6289. static int intel_gen2_queue_flip(struct drm_device *dev,
  6290.                                  struct drm_crtc *crtc,
  6291.                                  struct drm_framebuffer *fb,
  6292.                                  struct drm_i915_gem_object *obj)
  6293. {
  6294.         struct drm_i915_private *dev_priv = dev->dev_private;
  6295.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6296.         u32 flip_mask;
  6297.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6298.         int ret;
  6299.  
  6300.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6301.         if (ret)
  6302.                 goto err;
  6303.  
  6304.         ret = intel_ring_begin(ring, 6);
  6305.         if (ret)
  6306.                 goto err_unpin;
  6307.  
  6308.         /* Can't queue multiple flips, so wait for the previous
  6309.          * one to finish before executing the next.
  6310.          */
  6311.         if (intel_crtc->plane)
  6312.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6313.         else
  6314.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6315.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6316.         intel_ring_emit(ring, MI_NOOP);
  6317.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6318.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6319.         intel_ring_emit(ring, fb->pitches[0]);
  6320.         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6321.         intel_ring_emit(ring, 0); /* aux display base address, unused */
  6322.         intel_ring_advance(ring);
  6323.         return 0;
  6324.  
  6325. err_unpin:
  6326.         intel_unpin_fb_obj(obj);
  6327. err:
  6328.         return ret;
  6329. }
  6330.  
  6331. static int intel_gen3_queue_flip(struct drm_device *dev,
  6332.                                  struct drm_crtc *crtc,
  6333.                                  struct drm_framebuffer *fb,
  6334.                                  struct drm_i915_gem_object *obj)
  6335. {
  6336.         struct drm_i915_private *dev_priv = dev->dev_private;
  6337.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6338.         u32 flip_mask;
  6339.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6340.         int ret;
  6341.  
  6342.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6343.         if (ret)
  6344.                 goto err;
  6345.  
  6346.         ret = intel_ring_begin(ring, 6);
  6347.         if (ret)
  6348.                 goto err_unpin;
  6349.  
  6350.         if (intel_crtc->plane)
  6351.                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6352.         else
  6353.                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6354.         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6355.         intel_ring_emit(ring, MI_NOOP);
  6356.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6357.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6358.         intel_ring_emit(ring, fb->pitches[0]);
  6359.         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6360.         intel_ring_emit(ring, MI_NOOP);
  6361.  
  6362.         intel_ring_advance(ring);
  6363.         return 0;
  6364.  
  6365. err_unpin:
  6366.         intel_unpin_fb_obj(obj);
  6367. err:
  6368.         return ret;
  6369. }
  6370.  
  6371. static int intel_gen4_queue_flip(struct drm_device *dev,
  6372.                                  struct drm_crtc *crtc,
  6373.                                  struct drm_framebuffer *fb,
  6374.                                  struct drm_i915_gem_object *obj)
  6375. {
  6376.         struct drm_i915_private *dev_priv = dev->dev_private;
  6377.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6378.         uint32_t pf, pipesrc;
  6379.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6380.         int ret;
  6381.  
  6382.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6383.         if (ret)
  6384.                 goto err;
  6385.  
  6386.         ret = intel_ring_begin(ring, 4);
  6387.         if (ret)
  6388.                 goto err_unpin;
  6389.  
  6390.         /* i965+ uses the linear or tiled offsets from the
  6391.          * Display Registers (which do not change across a page-flip)
  6392.          * so we need only reprogram the base address.
  6393.          */
  6394.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6395.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6396.         intel_ring_emit(ring, fb->pitches[0]);
  6397.         intel_ring_emit(ring,
  6398.                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6399.                         obj->tiling_mode);
  6400.  
  6401.         /* XXX Enabling the panel-fitter across page-flip is so far
  6402.          * untested on non-native modes, so ignore it for now.
  6403.          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6404.          */
  6405.         pf = 0;
  6406.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6407.         intel_ring_emit(ring, pf | pipesrc);
  6408.         intel_ring_advance(ring);
  6409.         return 0;
  6410.  
  6411. err_unpin:
  6412.         intel_unpin_fb_obj(obj);
  6413. err:
  6414.         return ret;
  6415. }
  6416.  
  6417. static int intel_gen6_queue_flip(struct drm_device *dev,
  6418.                                  struct drm_crtc *crtc,
  6419.                                  struct drm_framebuffer *fb,
  6420.                                  struct drm_i915_gem_object *obj)
  6421. {
  6422.         struct drm_i915_private *dev_priv = dev->dev_private;
  6423.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6424.         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6425.         uint32_t pf, pipesrc;
  6426.         int ret;
  6427.  
  6428.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6429.         if (ret)
  6430.                 goto err;
  6431.  
  6432.         ret = intel_ring_begin(ring, 4);
  6433.         if (ret)
  6434.                 goto err_unpin;
  6435.  
  6436.         intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6437.                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6438.         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6439.         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6440.  
  6441.         /* Contrary to the suggestions in the documentation,
  6442.          * "Enable Panel Fitter" does not seem to be required when page
  6443.          * flipping with a non-native mode, and worse causes a normal
  6444.          * modeset to fail.
  6445.          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6446.          */
  6447.         pf = 0;
  6448.         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6449.         intel_ring_emit(ring, pf | pipesrc);
  6450.         intel_ring_advance(ring);
  6451.         return 0;
  6452.  
  6453. err_unpin:
  6454.         intel_unpin_fb_obj(obj);
  6455. err:
  6456.         return ret;
  6457. }
  6458.  
  6459. /*
  6460.  * On gen7 we currently use the blit ring because (in early silicon at least)
  6461.  * the render ring doesn't give us interrpts for page flip completion, which
  6462.  * means clients will hang after the first flip is queued.  Fortunately the
  6463.  * blit ring generates interrupts properly, so use it instead.
  6464.  */
  6465. static int intel_gen7_queue_flip(struct drm_device *dev,
  6466.                                  struct drm_crtc *crtc,
  6467.                                  struct drm_framebuffer *fb,
  6468.                                  struct drm_i915_gem_object *obj)
  6469. {
  6470.         struct drm_i915_private *dev_priv = dev->dev_private;
  6471.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6472.         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6473.         uint32_t plane_bit = 0;
  6474.         int ret;
  6475.  
  6476.         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6477.         if (ret)
  6478.                 goto err;
  6479.  
  6480.         switch(intel_crtc->plane) {
  6481.         case PLANE_A:
  6482.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6483.                 break;
  6484.         case PLANE_B:
  6485.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6486.                 break;
  6487.         case PLANE_C:
  6488.                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6489.                 break;
  6490.         default:
  6491.                 WARN_ONCE(1, "unknown plane in flip command\n");
  6492.                 ret = -ENODEV;
  6493.                 goto err_unpin;
  6494.         }
  6495.  
  6496.         ret = intel_ring_begin(ring, 4);
  6497.         if (ret)
  6498.                 goto err_unpin;
  6499.  
  6500.         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6501.         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6502.         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6503.         intel_ring_emit(ring, (MI_NOOP));
  6504.         intel_ring_advance(ring);
  6505.         return 0;
  6506.  
  6507. err_unpin:
  6508.         intel_unpin_fb_obj(obj);
  6509. err:
  6510.         return ret;
  6511. }
  6512.  
  6513. static int intel_default_queue_flip(struct drm_device *dev,
  6514.                                     struct drm_crtc *crtc,
  6515.                                     struct drm_framebuffer *fb,
  6516.                                     struct drm_i915_gem_object *obj)
  6517. {
  6518.         return -ENODEV;
  6519. }
  6520.  
  6521. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6522.                                 struct drm_framebuffer *fb,
  6523.                                 struct drm_pending_vblank_event *event)
  6524. {
  6525.         struct drm_device *dev = crtc->dev;
  6526.         struct drm_i915_private *dev_priv = dev->dev_private;
  6527.         struct intel_framebuffer *intel_fb;
  6528.         struct drm_i915_gem_object *obj;
  6529.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6530.         struct intel_unpin_work *work;
  6531.         unsigned long flags;
  6532.         int ret;
  6533.  
  6534.         /* Can't change pixel format via MI display flips. */
  6535.         if (fb->pixel_format != crtc->fb->pixel_format)
  6536.                 return -EINVAL;
  6537.  
  6538.         /*
  6539.          * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6540.          * Note that pitch changes could also affect these register.
  6541.          */
  6542.         if (INTEL_INFO(dev)->gen > 3 &&
  6543.             (fb->offsets[0] != crtc->fb->offsets[0] ||
  6544.              fb->pitches[0] != crtc->fb->pitches[0]))
  6545.                 return -EINVAL;
  6546.  
  6547.         work = kzalloc(sizeof *work, GFP_KERNEL);
  6548.         if (work == NULL)
  6549.                 return -ENOMEM;
  6550.  
  6551.         work->event = event;
  6552.         work->dev = crtc->dev;
  6553.         intel_fb = to_intel_framebuffer(crtc->fb);
  6554.         work->old_fb_obj = intel_fb->obj;
  6555.         INIT_WORK(&work->work, intel_unpin_work_fn);
  6556.  
  6557.         ret = drm_vblank_get(dev, intel_crtc->pipe);
  6558.         if (ret)
  6559.                 goto free_work;
  6560.  
  6561.         /* We borrow the event spin lock for protecting unpin_work */
  6562.         spin_lock_irqsave(&dev->event_lock, flags);
  6563.         if (intel_crtc->unpin_work) {
  6564.                 spin_unlock_irqrestore(&dev->event_lock, flags);
  6565.                 kfree(work);
  6566.                 drm_vblank_put(dev, intel_crtc->pipe);
  6567.  
  6568.                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6569.                 return -EBUSY;
  6570.         }
  6571.         intel_crtc->unpin_work = work;
  6572.         spin_unlock_irqrestore(&dev->event_lock, flags);
  6573.  
  6574.         intel_fb = to_intel_framebuffer(fb);
  6575.         obj = intel_fb->obj;
  6576.  
  6577.         ret = i915_mutex_lock_interruptible(dev);
  6578.         if (ret)
  6579.                 goto cleanup;
  6580.  
  6581.         /* Reference the objects for the scheduled work. */
  6582.         drm_gem_object_reference(&work->old_fb_obj->base);
  6583.         drm_gem_object_reference(&obj->base);
  6584.  
  6585.         crtc->fb = fb;
  6586.  
  6587.         work->pending_flip_obj = obj;
  6588.  
  6589.         work->enable_stall_check = true;
  6590.  
  6591.         /* Block clients from rendering to the new back buffer until
  6592.          * the flip occurs and the object is no longer visible.
  6593.          */
  6594.         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6595.  
  6596.         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6597.         if (ret)
  6598.                 goto cleanup_pending;
  6599.  
  6600.         intel_disable_fbc(dev);
  6601.         intel_mark_fb_busy(obj);
  6602.         mutex_unlock(&dev->struct_mutex);
  6603.  
  6604.         trace_i915_flip_request(intel_crtc->plane, obj);
  6605.  
  6606.         return 0;
  6607.  
  6608. cleanup_pending:
  6609.         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6610.         drm_gem_object_unreference(&work->old_fb_obj->base);
  6611.         drm_gem_object_unreference(&obj->base);
  6612.         mutex_unlock(&dev->struct_mutex);
  6613.  
  6614. cleanup:
  6615.         spin_lock_irqsave(&dev->event_lock, flags);
  6616.         intel_crtc->unpin_work = NULL;
  6617.         spin_unlock_irqrestore(&dev->event_lock, flags);
  6618.  
  6619.         drm_vblank_put(dev, intel_crtc->pipe);
  6620. free_work:
  6621.         kfree(work);
  6622.  
  6623.         return ret;
  6624. }
  6625.  
  6626. #endif
  6627.  
  6628. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6629.         .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6630.         .load_lut = intel_crtc_load_lut,
  6631.         .disable = intel_crtc_noop,
  6632. };
  6633.  
  6634. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6635. {
  6636.         struct intel_encoder *other_encoder;
  6637.         struct drm_crtc *crtc = &encoder->new_crtc->base;
  6638.  
  6639.         if (WARN_ON(!crtc))
  6640.                 return false;
  6641.  
  6642.         list_for_each_entry(other_encoder,
  6643.                             &crtc->dev->mode_config.encoder_list,
  6644.                             base.head) {
  6645.  
  6646.                 if (&other_encoder->new_crtc->base != crtc ||
  6647.                     encoder == other_encoder)
  6648.                         continue;
  6649.                 else
  6650.                         return true;
  6651.         }
  6652.  
  6653.         return false;
  6654. }
  6655.  
  6656. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6657.                                   struct drm_crtc *crtc)
  6658. {
  6659.         struct drm_device *dev;
  6660.         struct drm_crtc *tmp;
  6661.         int crtc_mask = 1;
  6662.  
  6663.         WARN(!crtc, "checking null crtc?\n");
  6664.  
  6665.         dev = crtc->dev;
  6666.  
  6667.         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6668.                 if (tmp == crtc)
  6669.                         break;
  6670.                 crtc_mask <<= 1;
  6671.         }
  6672.  
  6673.         if (encoder->possible_crtcs & crtc_mask)
  6674.                 return true;
  6675.         return false;
  6676. }
  6677.  
  6678. /**
  6679.  * intel_modeset_update_staged_output_state
  6680.  *
  6681.  * Updates the staged output configuration state, e.g. after we've read out the
  6682.  * current hw state.
  6683.  */
  6684. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6685. {
  6686.         struct intel_encoder *encoder;
  6687.         struct intel_connector *connector;
  6688.  
  6689.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  6690.                             base.head) {
  6691.                 connector->new_encoder =
  6692.                         to_intel_encoder(connector->base.encoder);
  6693.         }
  6694.  
  6695.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6696.                             base.head) {
  6697.                 encoder->new_crtc =
  6698.                         to_intel_crtc(encoder->base.crtc);
  6699.         }
  6700. }
  6701.  
  6702. /**
  6703.  * intel_modeset_commit_output_state
  6704.  *
  6705.  * This function copies the stage display pipe configuration to the real one.
  6706.  */
  6707. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6708. {
  6709.         struct intel_encoder *encoder;
  6710.         struct intel_connector *connector;
  6711.  
  6712.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  6713.                             base.head) {
  6714.                 connector->base.encoder = &connector->new_encoder->base;
  6715.         }
  6716.  
  6717.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6718.                             base.head) {
  6719.                 encoder->base.crtc = &encoder->new_crtc->base;
  6720.         }
  6721. }
  6722.  
  6723. static struct drm_display_mode *
  6724. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6725.                             struct drm_display_mode *mode)
  6726. {
  6727.         struct drm_device *dev = crtc->dev;
  6728.         struct drm_display_mode *adjusted_mode;
  6729.         struct drm_encoder_helper_funcs *encoder_funcs;
  6730.         struct intel_encoder *encoder;
  6731.  
  6732.         adjusted_mode = drm_mode_duplicate(dev, mode);
  6733.         if (!adjusted_mode)
  6734.                 return ERR_PTR(-ENOMEM);
  6735.  
  6736.         /* Pass our mode to the connectors and the CRTC to give them a chance to
  6737.          * adjust it according to limitations or connector properties, and also
  6738.          * a chance to reject the mode entirely.
  6739.          */
  6740.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6741.                             base.head) {
  6742.  
  6743.                 if (&encoder->new_crtc->base != crtc)
  6744.                         continue;
  6745.                 encoder_funcs = encoder->base.helper_private;
  6746.                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6747.                                                 adjusted_mode))) {
  6748.                         DRM_DEBUG_KMS("Encoder fixup failed\n");
  6749.                         goto fail;
  6750.                 }
  6751.         }
  6752.  
  6753.         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6754.                 DRM_DEBUG_KMS("CRTC fixup failed\n");
  6755.                 goto fail;
  6756.         }
  6757.         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6758.  
  6759.         return adjusted_mode;
  6760. fail:
  6761.         drm_mode_destroy(dev, adjusted_mode);
  6762.         return ERR_PTR(-EINVAL);
  6763. }
  6764.  
  6765. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6766.  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6767. static void
  6768. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6769.                              unsigned *prepare_pipes, unsigned *disable_pipes)
  6770. {
  6771.         struct intel_crtc *intel_crtc;
  6772.         struct drm_device *dev = crtc->dev;
  6773.         struct intel_encoder *encoder;
  6774.         struct intel_connector *connector;
  6775.         struct drm_crtc *tmp_crtc;
  6776.  
  6777.         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6778.  
  6779.         /* Check which crtcs have changed outputs connected to them, these need
  6780.          * to be part of the prepare_pipes mask. We don't (yet) support global
  6781.          * modeset across multiple crtcs, so modeset_pipes will only have one
  6782.          * bit set at most. */
  6783.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  6784.                             base.head) {
  6785.                 if (connector->base.encoder == &connector->new_encoder->base)
  6786.                         continue;
  6787.  
  6788.                 if (connector->base.encoder) {
  6789.                         tmp_crtc = connector->base.encoder->crtc;
  6790.  
  6791.                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6792.                 }
  6793.  
  6794.                 if (connector->new_encoder)
  6795.                         *prepare_pipes |=
  6796.                                 1 << connector->new_encoder->new_crtc->pipe;
  6797.         }
  6798.  
  6799.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6800.                             base.head) {
  6801.                 if (encoder->base.crtc == &encoder->new_crtc->base)
  6802.                         continue;
  6803.  
  6804.                 if (encoder->base.crtc) {
  6805.                         tmp_crtc = encoder->base.crtc;
  6806.  
  6807.                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6808.                 }
  6809.  
  6810.                 if (encoder->new_crtc)
  6811.                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6812.         }
  6813.  
  6814.         /* Check for any pipes that will be fully disabled ... */
  6815.         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6816.                             base.head) {
  6817.                 bool used = false;
  6818.  
  6819.                 /* Don't try to disable disabled crtcs. */
  6820.                 if (!intel_crtc->base.enabled)
  6821.                         continue;
  6822.  
  6823.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6824.                                     base.head) {
  6825.                         if (encoder->new_crtc == intel_crtc)
  6826.                                 used = true;
  6827.                 }
  6828.  
  6829.                 if (!used)
  6830.                         *disable_pipes |= 1 << intel_crtc->pipe;
  6831.         }
  6832.  
  6833.  
  6834.         /* set_mode is also used to update properties on life display pipes. */
  6835.         intel_crtc = to_intel_crtc(crtc);
  6836.         if (crtc->enabled)
  6837.                 *prepare_pipes |= 1 << intel_crtc->pipe;
  6838.  
  6839.         /* We only support modeset on one single crtc, hence we need to do that
  6840.          * only for the passed in crtc iff we change anything else than just
  6841.          * disable crtcs.
  6842.          *
  6843.          * This is actually not true, to be fully compatible with the old crtc
  6844.          * helper we automatically disable _any_ output (i.e. doesn't need to be
  6845.          * connected to the crtc we're modesetting on) if it's disconnected.
  6846.          * Which is a rather nutty api (since changed the output configuration
  6847.          * without userspace's explicit request can lead to confusion), but
  6848.          * alas. Hence we currently need to modeset on all pipes we prepare. */
  6849.         if (*prepare_pipes)
  6850.                 *modeset_pipes = *prepare_pipes;
  6851.  
  6852.         /* ... and mask these out. */
  6853.         *modeset_pipes &= ~(*disable_pipes);
  6854.         *prepare_pipes &= ~(*disable_pipes);
  6855. }
  6856.  
  6857. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6858. {
  6859.         struct drm_encoder *encoder;
  6860.         struct drm_device *dev = crtc->dev;
  6861.  
  6862.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6863.                 if (encoder->crtc == crtc)
  6864.                         return true;
  6865.  
  6866.         return false;
  6867. }
  6868.  
  6869. static void
  6870. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6871. {
  6872.         struct intel_encoder *intel_encoder;
  6873.         struct intel_crtc *intel_crtc;
  6874.         struct drm_connector *connector;
  6875.  
  6876.         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6877.                             base.head) {
  6878.                 if (!intel_encoder->base.crtc)
  6879.                         continue;
  6880.  
  6881.                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6882.  
  6883.                 if (prepare_pipes & (1 << intel_crtc->pipe))
  6884.                         intel_encoder->connectors_active = false;
  6885.         }
  6886.  
  6887.         intel_modeset_commit_output_state(dev);
  6888.  
  6889.         /* Update computed state. */
  6890.         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6891.                             base.head) {
  6892.                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6893.         }
  6894.  
  6895.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6896.                 if (!connector->encoder || !connector->encoder->crtc)
  6897.                         continue;
  6898.  
  6899.                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6900.  
  6901.                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6902.                         struct drm_property *dpms_property =
  6903.                                 dev->mode_config.dpms_property;
  6904.  
  6905.                         connector->dpms = DRM_MODE_DPMS_ON;
  6906.                         drm_connector_property_set_value(connector,
  6907.                                                          dpms_property,
  6908.                                                          DRM_MODE_DPMS_ON);
  6909.  
  6910.                         intel_encoder = to_intel_encoder(connector->encoder);
  6911.                         intel_encoder->connectors_active = true;
  6912.                 }
  6913.         }
  6914.  
  6915. }
  6916.  
  6917. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6918.         list_for_each_entry((intel_crtc), \
  6919.                             &(dev)->mode_config.crtc_list, \
  6920.                             base.head) \
  6921.                 if (mask & (1 <<(intel_crtc)->pipe)) \
  6922.  
  6923. void
  6924. intel_modeset_check_state(struct drm_device *dev)
  6925. {
  6926.         struct intel_crtc *crtc;
  6927.         struct intel_encoder *encoder;
  6928.         struct intel_connector *connector;
  6929.  
  6930.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  6931.                             base.head) {
  6932.                 /* This also checks the encoder/connector hw state with the
  6933.                  * ->get_hw_state callbacks. */
  6934.                 intel_connector_check_state(connector);
  6935.  
  6936.                 WARN(&connector->new_encoder->base != connector->base.encoder,
  6937.                      "connector's staged encoder doesn't match current encoder\n");
  6938.         }
  6939.  
  6940.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6941.                             base.head) {
  6942.                 bool enabled = false;
  6943.                 bool active = false;
  6944.                 enum pipe pipe, tracked_pipe;
  6945.  
  6946.                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6947.                               encoder->base.base.id,
  6948.                               drm_get_encoder_name(&encoder->base));
  6949.  
  6950.                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6951.                      "encoder's stage crtc doesn't match current crtc\n");
  6952.                 WARN(encoder->connectors_active && !encoder->base.crtc,
  6953.                      "encoder's active_connectors set, but no crtc\n");
  6954.  
  6955.                 list_for_each_entry(connector, &dev->mode_config.connector_list,
  6956.                                     base.head) {
  6957.                         if (connector->base.encoder != &encoder->base)
  6958.                                 continue;
  6959.                         enabled = true;
  6960.                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6961.                                 active = true;
  6962.                 }
  6963.                 WARN(!!encoder->base.crtc != enabled,
  6964.                      "encoder's enabled state mismatch "
  6965.                      "(expected %i, found %i)\n",
  6966.                      !!encoder->base.crtc, enabled);
  6967.                 WARN(active && !encoder->base.crtc,
  6968.                      "active encoder with no crtc\n");
  6969.  
  6970.                 WARN(encoder->connectors_active != active,
  6971.                      "encoder's computed active state doesn't match tracked active state "
  6972.                      "(expected %i, found %i)\n", active, encoder->connectors_active);
  6973.  
  6974.                 active = encoder->get_hw_state(encoder, &pipe);
  6975.                 WARN(active != encoder->connectors_active,
  6976.                      "encoder's hw state doesn't match sw tracking "
  6977.                      "(expected %i, found %i)\n",
  6978.                      encoder->connectors_active, active);
  6979.  
  6980.                 if (!encoder->base.crtc)
  6981.                         continue;
  6982.  
  6983.                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6984.                 WARN(active && pipe != tracked_pipe,
  6985.                      "active encoder's pipe doesn't match"
  6986.                      "(expected %i, found %i)\n",
  6987.                      tracked_pipe, pipe);
  6988.  
  6989.         }
  6990.  
  6991.         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6992.                             base.head) {
  6993.                 bool enabled = false;
  6994.                 bool active = false;
  6995.  
  6996.                 DRM_DEBUG_KMS("[CRTC:%d]\n",
  6997.                               crtc->base.base.id);
  6998.  
  6999.                 WARN(crtc->active && !crtc->base.enabled,
  7000.                      "active crtc, but not enabled in sw tracking\n");
  7001.  
  7002.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7003.                                     base.head) {
  7004.                         if (encoder->base.crtc != &crtc->base)
  7005.                                 continue;
  7006.                         enabled = true;
  7007.                         if (encoder->connectors_active)
  7008.                                 active = true;
  7009.                 }
  7010.                 WARN(active != crtc->active,
  7011.                      "crtc's computed active state doesn't match tracked active state "
  7012.                      "(expected %i, found %i)\n", active, crtc->active);
  7013.                 WARN(enabled != crtc->base.enabled,
  7014.                      "crtc's computed enabled state doesn't match tracked enabled state "
  7015.                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7016.  
  7017.                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  7018.         }
  7019. }
  7020.  
  7021. bool intel_set_mode(struct drm_crtc *crtc,
  7022.                     struct drm_display_mode *mode,
  7023.                     int x, int y, struct drm_framebuffer *fb)
  7024. {
  7025.         struct drm_device *dev = crtc->dev;
  7026.         drm_i915_private_t *dev_priv = dev->dev_private;
  7027.         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  7028.         struct drm_encoder_helper_funcs *encoder_funcs;
  7029.         struct drm_encoder *encoder;
  7030.         struct intel_crtc *intel_crtc;
  7031.         unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7032.         bool ret = true;
  7033.  
  7034.         intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7035.                                      &prepare_pipes, &disable_pipes);
  7036.  
  7037.         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7038.                       modeset_pipes, prepare_pipes, disable_pipes);
  7039.  
  7040.         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7041.                 intel_crtc_disable(&intel_crtc->base);
  7042.  
  7043.         saved_hwmode = crtc->hwmode;
  7044.         saved_mode = crtc->mode;
  7045.  
  7046.         /* Hack: Because we don't (yet) support global modeset on multiple
  7047.          * crtcs, we don't keep track of the new mode for more than one crtc.
  7048.          * Hence simply check whether any bit is set in modeset_pipes in all the
  7049.          * pieces of code that are not yet converted to deal with mutliple crtcs
  7050.          * changing their mode at the same time. */
  7051.         adjusted_mode = NULL;
  7052.         if (modeset_pipes) {
  7053.                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  7054.                 if (IS_ERR(adjusted_mode)) {
  7055.                         return false;
  7056.                 }
  7057.         }
  7058.  
  7059.         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7060.                 if (intel_crtc->base.enabled)
  7061.                         dev_priv->display.crtc_disable(&intel_crtc->base);
  7062.         }
  7063.  
  7064.         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7065.          * to set it here already despite that we pass it down the callchain.
  7066.          */
  7067.         if (modeset_pipes)
  7068.                 crtc->mode = *mode;
  7069.  
  7070.         /* Only after disabling all output pipelines that will be changed can we
  7071.          * update the the output configuration. */
  7072.         intel_modeset_update_state(dev, prepare_pipes);
  7073.  
  7074.         /* Set up the DPLL and any encoders state that needs to adjust or depend
  7075.          * on the DPLL.
  7076.          */
  7077.         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7078.                 ret = !intel_crtc_mode_set(&intel_crtc->base,
  7079.                                            mode, adjusted_mode,
  7080.                                            x, y, fb);
  7081.                 if (!ret)
  7082.                     goto done;
  7083.  
  7084.                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7085.  
  7086.                         if (encoder->crtc != &intel_crtc->base)
  7087.                                 continue;
  7088.  
  7089.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  7090.                                 encoder->base.id, drm_get_encoder_name(encoder),
  7091.                                 mode->base.id, mode->name);
  7092.                         encoder_funcs = encoder->helper_private;
  7093.                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
  7094.                 }
  7095.         }
  7096.  
  7097.         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7098.         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7099.                 dev_priv->display.crtc_enable(&intel_crtc->base);
  7100.  
  7101.         if (modeset_pipes) {
  7102.                 /* Store real post-adjustment hardware mode. */
  7103.                 crtc->hwmode = *adjusted_mode;
  7104.  
  7105.                 /* Calculate and store various constants which
  7106.                  * are later needed by vblank and swap-completion
  7107.                  * timestamping. They are derived from true hwmode.
  7108.                  */
  7109.                 drm_calc_timestamping_constants(crtc);
  7110.         }
  7111.  
  7112.         /* FIXME: add subpixel order */
  7113. done:
  7114.         drm_mode_destroy(dev, adjusted_mode);
  7115.         if (!ret && crtc->enabled) {
  7116.                 crtc->hwmode = saved_hwmode;
  7117.                 crtc->mode = saved_mode;
  7118.         } else {
  7119.                 intel_modeset_check_state(dev);
  7120.         }
  7121.  
  7122.         return ret;
  7123. }
  7124.  
  7125. #undef for_each_intel_crtc_masked
  7126.  
  7127. static void intel_set_config_free(struct intel_set_config *config)
  7128. {
  7129.         if (!config)
  7130.                 return;
  7131.  
  7132.         kfree(config->save_connector_encoders);
  7133.         kfree(config->save_encoder_crtcs);
  7134.         kfree(config);
  7135. }
  7136.  
  7137. static int intel_set_config_save_state(struct drm_device *dev,
  7138.                                        struct intel_set_config *config)
  7139. {
  7140.         struct drm_encoder *encoder;
  7141.         struct drm_connector *connector;
  7142.         int count;
  7143.  
  7144.         config->save_encoder_crtcs =
  7145.                 kcalloc(dev->mode_config.num_encoder,
  7146.                         sizeof(struct drm_crtc *), GFP_KERNEL);
  7147.         if (!config->save_encoder_crtcs)
  7148.                 return -ENOMEM;
  7149.  
  7150.         config->save_connector_encoders =
  7151.                 kcalloc(dev->mode_config.num_connector,
  7152.                         sizeof(struct drm_encoder *), GFP_KERNEL);
  7153.         if (!config->save_connector_encoders)
  7154.                 return -ENOMEM;
  7155.  
  7156.         /* Copy data. Note that driver private data is not affected.
  7157.          * Should anything bad happen only the expected state is
  7158.          * restored, not the drivers personal bookkeeping.
  7159.          */
  7160.         count = 0;
  7161.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7162.                 config->save_encoder_crtcs[count++] = encoder->crtc;
  7163.         }
  7164.  
  7165.         count = 0;
  7166.         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7167.                 config->save_connector_encoders[count++] = connector->encoder;
  7168.         }
  7169.  
  7170.         return 0;
  7171. }
  7172.  
  7173. static void intel_set_config_restore_state(struct drm_device *dev,
  7174.                                            struct intel_set_config *config)
  7175. {
  7176.         struct intel_encoder *encoder;
  7177.         struct intel_connector *connector;
  7178.         int count;
  7179.  
  7180.         count = 0;
  7181.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7182.                 encoder->new_crtc =
  7183.                         to_intel_crtc(config->save_encoder_crtcs[count++]);
  7184.         }
  7185.  
  7186.         count = 0;
  7187.         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7188.                 connector->new_encoder =
  7189.                         to_intel_encoder(config->save_connector_encoders[count++]);
  7190.         }
  7191. }
  7192.  
  7193. static void
  7194. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7195.                                       struct intel_set_config *config)
  7196. {
  7197.  
  7198.         /* We should be able to check here if the fb has the same properties
  7199.          * and then just flip_or_move it */
  7200.         if (set->crtc->fb != set->fb) {
  7201.                 /* If we have no fb then treat it as a full mode set */
  7202.                 if (set->crtc->fb == NULL) {
  7203.                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7204.                         config->mode_changed = true;
  7205.                 } else if (set->fb == NULL) {
  7206.                         config->mode_changed = true;
  7207.                 } else if (set->fb->depth != set->crtc->fb->depth) {
  7208.                         config->mode_changed = true;
  7209.                 } else if (set->fb->bits_per_pixel !=
  7210.                            set->crtc->fb->bits_per_pixel) {
  7211.                         config->mode_changed = true;
  7212.                 } else
  7213.                         config->fb_changed = true;
  7214.         }
  7215.  
  7216.         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7217.                 config->fb_changed = true;
  7218.  
  7219.         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7220.                 DRM_DEBUG_KMS("modes are different, full mode set\n");
  7221.                 drm_mode_debug_printmodeline(&set->crtc->mode);
  7222.                 drm_mode_debug_printmodeline(set->mode);
  7223.                 config->mode_changed = true;
  7224.         }
  7225. }
  7226.  
  7227. static int
  7228. intel_modeset_stage_output_state(struct drm_device *dev,
  7229.                                  struct drm_mode_set *set,
  7230.                                  struct intel_set_config *config)
  7231. {
  7232.         struct drm_crtc *new_crtc;
  7233.         struct intel_connector *connector;
  7234.         struct intel_encoder *encoder;
  7235.         int count, ro;
  7236.  
  7237.         /* The upper layers ensure that we either disabl a crtc or have a list
  7238.          * of connectors. For paranoia, double-check this. */
  7239.         WARN_ON(!set->fb && (set->num_connectors != 0));
  7240.         WARN_ON(set->fb && (set->num_connectors == 0));
  7241.  
  7242.         count = 0;
  7243.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  7244.                             base.head) {
  7245.                 /* Otherwise traverse passed in connector list and get encoders
  7246.                  * for them. */
  7247.                 for (ro = 0; ro < set->num_connectors; ro++) {
  7248.                         if (set->connectors[ro] == &connector->base) {
  7249.                                 connector->new_encoder = connector->encoder;
  7250.                                 break;
  7251.                         }
  7252.                 }
  7253.  
  7254.                 /* If we disable the crtc, disable all its connectors. Also, if
  7255.                  * the connector is on the changing crtc but not on the new
  7256.                  * connector list, disable it. */
  7257.                 if ((!set->fb || ro == set->num_connectors) &&
  7258.                     connector->base.encoder &&
  7259.                     connector->base.encoder->crtc == set->crtc) {
  7260.                         connector->new_encoder = NULL;
  7261.  
  7262.                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7263.                                 connector->base.base.id,
  7264.                                 drm_get_connector_name(&connector->base));
  7265.                 }
  7266.  
  7267.  
  7268.                 if (&connector->new_encoder->base != connector->base.encoder) {
  7269.                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7270.                         config->mode_changed = true;
  7271.                 }
  7272.  
  7273.                 /* Disable all disconnected encoders. */
  7274.                 if (connector->base.status == connector_status_disconnected)
  7275.                         connector->new_encoder = NULL;
  7276.         }
  7277.         /* connector->new_encoder is now updated for all connectors. */
  7278.  
  7279.         /* Update crtc of enabled connectors. */
  7280.         count = 0;
  7281.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  7282.                             base.head) {
  7283.                 if (!connector->new_encoder)
  7284.                         continue;
  7285.  
  7286.                 new_crtc = connector->new_encoder->base.crtc;
  7287.  
  7288.                 for (ro = 0; ro < set->num_connectors; ro++) {
  7289.                         if (set->connectors[ro] == &connector->base)
  7290.                                 new_crtc = set->crtc;
  7291.                 }
  7292.  
  7293.                 /* Make sure the new CRTC will work with the encoder */
  7294.                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7295.                                            new_crtc)) {
  7296.                         return -EINVAL;
  7297.                 }
  7298.                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7299.  
  7300.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7301.                         connector->base.base.id,
  7302.                         drm_get_connector_name(&connector->base),
  7303.                         new_crtc->base.id);
  7304.         }
  7305.  
  7306.         /* Check for any encoders that needs to be disabled. */
  7307.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7308.                             base.head) {
  7309.                 list_for_each_entry(connector,
  7310.                                     &dev->mode_config.connector_list,
  7311.                                     base.head) {
  7312.                         if (connector->new_encoder == encoder) {
  7313.                                 WARN_ON(!connector->new_encoder->new_crtc);
  7314.  
  7315.                                 goto next_encoder;
  7316.                         }
  7317.                 }
  7318.                 encoder->new_crtc = NULL;
  7319. next_encoder:
  7320.                 /* Only now check for crtc changes so we don't miss encoders
  7321.                  * that will be disabled. */
  7322.                 if (&encoder->new_crtc->base != encoder->base.crtc) {
  7323.                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7324.                         config->mode_changed = true;
  7325.                 }
  7326.         }
  7327.         /* Now we've also updated encoder->new_crtc for all encoders. */
  7328.  
  7329.         return 0;
  7330. }
  7331.  
  7332. static int intel_crtc_set_config(struct drm_mode_set *set)
  7333. {
  7334.         struct drm_device *dev;
  7335.         struct drm_mode_set save_set;
  7336.         struct intel_set_config *config;
  7337.         int ret;
  7338.  
  7339.         BUG_ON(!set);
  7340.         BUG_ON(!set->crtc);
  7341.         BUG_ON(!set->crtc->helper_private);
  7342.  
  7343.         if (!set->mode)
  7344.                 set->fb = NULL;
  7345.  
  7346.         /* The fb helper likes to play gross jokes with ->mode_set_config.
  7347.          * Unfortunately the crtc helper doesn't do much at all for this case,
  7348.          * so we have to cope with this madness until the fb helper is fixed up. */
  7349.         if (set->fb && set->num_connectors == 0)
  7350.                 return 0;
  7351.  
  7352.         if (set->fb) {
  7353.                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7354.                                 set->crtc->base.id, set->fb->base.id,
  7355.                                 (int)set->num_connectors, set->x, set->y);
  7356.         } else {
  7357.                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7358.         }
  7359.  
  7360.         dev = set->crtc->dev;
  7361.  
  7362.         ret = -ENOMEM;
  7363.         config = kzalloc(sizeof(*config), GFP_KERNEL);
  7364.         if (!config)
  7365.                 goto out_config;
  7366.  
  7367.         ret = intel_set_config_save_state(dev, config);
  7368.         if (ret)
  7369.                 goto out_config;
  7370.  
  7371.         save_set.crtc = set->crtc;
  7372.         save_set.mode = &set->crtc->mode;
  7373.         save_set.x = set->crtc->x;
  7374.         save_set.y = set->crtc->y;
  7375.         save_set.fb = set->crtc->fb;
  7376.  
  7377.         /* Compute whether we need a full modeset, only an fb base update or no
  7378.          * change at all. In the future we might also check whether only the
  7379.          * mode changed, e.g. for LVDS where we only change the panel fitter in
  7380.          * such cases. */
  7381.         intel_set_config_compute_mode_changes(set, config);
  7382.  
  7383.         ret = intel_modeset_stage_output_state(dev, set, config);
  7384.         if (ret)
  7385.                 goto fail;
  7386.  
  7387.         if (config->mode_changed) {
  7388.                 if (set->mode) {
  7389.                         DRM_DEBUG_KMS("attempting to set mode from"
  7390.                                         " userspace\n");
  7391.                         drm_mode_debug_printmodeline(set->mode);
  7392.                 }
  7393.  
  7394.                 if (!intel_set_mode(set->crtc, set->mode,
  7395.                                     set->x, set->y, set->fb)) {
  7396.                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  7397.                                   set->crtc->base.id);
  7398.                         ret = -EINVAL;
  7399.                         goto fail;
  7400.                 }
  7401.         } else if (config->fb_changed) {
  7402.                 ret = intel_pipe_set_base(set->crtc,
  7403.                                           set->x, set->y, set->fb);
  7404.         }
  7405.  
  7406.         intel_set_config_free(config);
  7407.  
  7408.         return 0;
  7409.  
  7410. fail:
  7411.         intel_set_config_restore_state(dev, config);
  7412.  
  7413.         /* Try to restore the config */
  7414.         if (config->mode_changed &&
  7415.             !intel_set_mode(save_set.crtc, save_set.mode,
  7416.                             save_set.x, save_set.y, save_set.fb))
  7417.                 DRM_ERROR("failed to restore config after modeset failure\n");
  7418.  
  7419. out_config:
  7420.         intel_set_config_free(config);
  7421.         return ret;
  7422. }
  7423.  
  7424. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7425. //      .cursor_set = intel_crtc_cursor_set,
  7426. //      .cursor_move = intel_crtc_cursor_move,
  7427.         .gamma_set = intel_crtc_gamma_set,
  7428.         .set_config = intel_crtc_set_config,
  7429.         .destroy = intel_crtc_destroy,
  7430. //      .page_flip = intel_crtc_page_flip,
  7431. };
  7432.  
  7433. static void intel_pch_pll_init(struct drm_device *dev)
  7434. {
  7435.         drm_i915_private_t *dev_priv = dev->dev_private;
  7436.         int i;
  7437.  
  7438.         if (dev_priv->num_pch_pll == 0) {
  7439.                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7440.                 return;
  7441.         }
  7442.  
  7443.         for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7444.                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7445.                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7446.                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7447.         }
  7448. }
  7449.  
  7450. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7451. {
  7452.         drm_i915_private_t *dev_priv = dev->dev_private;
  7453.         struct intel_crtc *intel_crtc;
  7454.         int i;
  7455.  
  7456.         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7457.         if (intel_crtc == NULL)
  7458.                 return;
  7459.  
  7460.         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7461.  
  7462.         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7463.         for (i = 0; i < 256; i++) {
  7464.                 intel_crtc->lut_r[i] = i;
  7465.                 intel_crtc->lut_g[i] = i;
  7466.                 intel_crtc->lut_b[i] = i;
  7467.         }
  7468.  
  7469.         /* Swap pipes & planes for FBC on pre-965 */
  7470.         intel_crtc->pipe = pipe;
  7471.         intel_crtc->plane = pipe;
  7472.         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7473.                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7474.                 intel_crtc->plane = !pipe;
  7475.         }
  7476.  
  7477.         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7478.                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7479.         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7480.         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7481.  
  7482.         intel_crtc->bpp = 24; /* default for pre-Ironlake */
  7483.  
  7484.         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7485.  
  7486.     DRM_DEBUG_KMS("CRTC %d mode %x FB %x enable %d\n",
  7487.             intel_crtc->base.base.id, intel_crtc->base.mode,
  7488.             intel_crtc->base.fb, intel_crtc->base.enabled);
  7489.  
  7490. }
  7491.  
  7492. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7493.                                 struct drm_file *file)
  7494. {
  7495.         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7496.         struct drm_mode_object *drmmode_obj;
  7497.         struct intel_crtc *crtc;
  7498.  
  7499.         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7500.                         DRM_MODE_OBJECT_CRTC);
  7501.  
  7502.         if (!drmmode_obj) {
  7503.                 DRM_ERROR("no such CRTC id\n");
  7504.                 return -EINVAL;
  7505.         }
  7506.  
  7507.         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7508.         pipe_from_crtc_id->pipe = crtc->pipe;
  7509.  
  7510.         return 0;
  7511. }
  7512.  
  7513. static int intel_encoder_clones(struct intel_encoder *encoder)
  7514. {
  7515.         struct drm_device *dev = encoder->base.dev;
  7516.         struct intel_encoder *source_encoder;
  7517.         int index_mask = 0;
  7518.         int entry = 0;
  7519.  
  7520.         list_for_each_entry(source_encoder,
  7521.                             &dev->mode_config.encoder_list, base.head) {
  7522.  
  7523.                 if (encoder == source_encoder)
  7524.                         index_mask |= (1 << entry);
  7525.  
  7526.                 /* Intel hw has only one MUX where enocoders could be cloned. */
  7527.                 if (encoder->cloneable && source_encoder->cloneable)
  7528.                         index_mask |= (1 << entry);
  7529.  
  7530.                 entry++;
  7531.         }
  7532.  
  7533.         return index_mask;
  7534. }
  7535.  
  7536. static bool has_edp_a(struct drm_device *dev)
  7537. {
  7538.         struct drm_i915_private *dev_priv = dev->dev_private;
  7539.  
  7540.         if (!IS_MOBILE(dev))
  7541.                 return false;
  7542.  
  7543.         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7544.                 return false;
  7545.  
  7546.         if (IS_GEN5(dev) &&
  7547.             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7548.                 return false;
  7549.  
  7550.         return true;
  7551. }
  7552.  
  7553. static void intel_setup_outputs(struct drm_device *dev)
  7554. {
  7555.         struct drm_i915_private *dev_priv = dev->dev_private;
  7556.         struct intel_encoder *encoder;
  7557.         bool dpd_is_edp = false;
  7558.         bool has_lvds;
  7559.  
  7560.                 has_lvds = intel_lvds_init(dev);
  7561.         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7562.                 /* disable the panel fitter on everything but LVDS */
  7563.                 I915_WRITE(PFIT_CONTROL, 0);
  7564.         }
  7565.  
  7566.         if (HAS_PCH_SPLIT(dev)) {
  7567.                 dpd_is_edp = intel_dpd_is_edp(dev);
  7568.  
  7569.                 if (has_edp_a(dev))
  7570.                         intel_dp_init(dev, DP_A, PORT_A);
  7571.  
  7572.                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  7573.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  7574.         }
  7575.  
  7576.         intel_crt_init(dev);
  7577.  
  7578.         if (IS_HASWELL(dev)) {
  7579.                 int found;
  7580.  
  7581.                 /* Haswell uses DDI functions to detect digital outputs */
  7582.                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7583.                 /* DDI A only supports eDP */
  7584.                 if (found)
  7585.                         intel_ddi_init(dev, PORT_A);
  7586.  
  7587.                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7588.                  * register */
  7589.                 found = I915_READ(SFUSE_STRAP);
  7590.  
  7591.                 if (found & SFUSE_STRAP_DDIB_DETECTED)
  7592.                         intel_ddi_init(dev, PORT_B);
  7593.                 if (found & SFUSE_STRAP_DDIC_DETECTED)
  7594.                         intel_ddi_init(dev, PORT_C);
  7595.                 if (found & SFUSE_STRAP_DDID_DETECTED)
  7596.                         intel_ddi_init(dev, PORT_D);
  7597.         } else if (HAS_PCH_SPLIT(dev)) {
  7598.                 int found;
  7599.  
  7600.                 if (I915_READ(HDMIB) & PORT_DETECTED) {
  7601.                         /* PCH SDVOB multiplex with HDMIB */
  7602.                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7603.                         if (!found)
  7604.                                 intel_hdmi_init(dev, HDMIB, PORT_B);
  7605.                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7606.                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
  7607.                 }
  7608.  
  7609.                 if (I915_READ(HDMIC) & PORT_DETECTED)
  7610.                         intel_hdmi_init(dev, HDMIC, PORT_C);
  7611.  
  7612.                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  7613.                         intel_hdmi_init(dev, HDMID, PORT_D);
  7614.  
  7615.                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7616.                         intel_dp_init(dev, PCH_DP_C, PORT_C);
  7617.  
  7618.                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  7619.                         intel_dp_init(dev, PCH_DP_D, PORT_D);
  7620.         } else if (IS_VALLEYVIEW(dev)) {
  7621.                 int found;
  7622.  
  7623.                 if (I915_READ(SDVOB) & PORT_DETECTED) {
  7624.                         /* SDVOB multiplex with HDMIB */
  7625.                         found = intel_sdvo_init(dev, SDVOB, true);
  7626.                         if (!found)
  7627.                                 intel_hdmi_init(dev, SDVOB, PORT_B);
  7628.                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
  7629.                                 intel_dp_init(dev, DP_B, PORT_B);
  7630.                 }
  7631.  
  7632.                 if (I915_READ(SDVOC) & PORT_DETECTED)
  7633.                         intel_hdmi_init(dev, SDVOC, PORT_C);
  7634.  
  7635.                 /* Shares lanes with HDMI on SDVOC */
  7636.                 if (I915_READ(DP_C) & DP_DETECTED)
  7637.                         intel_dp_init(dev, DP_C, PORT_C);
  7638.         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7639.                 bool found = false;
  7640.  
  7641.                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7642.                         DRM_DEBUG_KMS("probing SDVOB\n");
  7643.                         found = intel_sdvo_init(dev, SDVOB, true);
  7644.                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7645.                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7646.                                 intel_hdmi_init(dev, SDVOB, PORT_B);
  7647.                         }
  7648.  
  7649.                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7650.                                 DRM_DEBUG_KMS("probing DP_B\n");
  7651.                                 intel_dp_init(dev, DP_B, PORT_B);
  7652.                         }
  7653.                 }
  7654.  
  7655.                 /* Before G4X SDVOC doesn't have its own detect register */
  7656.  
  7657.                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7658.                         DRM_DEBUG_KMS("probing SDVOC\n");
  7659.                         found = intel_sdvo_init(dev, SDVOC, false);
  7660.                 }
  7661.  
  7662.                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7663.  
  7664.                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7665.                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7666.                                 intel_hdmi_init(dev, SDVOC, PORT_C);
  7667.                         }
  7668.                         if (SUPPORTS_INTEGRATED_DP(dev)) {
  7669.                                 DRM_DEBUG_KMS("probing DP_C\n");
  7670.                                 intel_dp_init(dev, DP_C, PORT_C);
  7671.                         }
  7672.                 }
  7673.  
  7674.                 if (SUPPORTS_INTEGRATED_DP(dev) &&
  7675.                     (I915_READ(DP_D) & DP_DETECTED)) {
  7676.                         DRM_DEBUG_KMS("probing DP_D\n");
  7677.                         intel_dp_init(dev, DP_D, PORT_D);
  7678.                 }
  7679.         } else if (IS_GEN2(dev))
  7680.                 intel_dvo_init(dev);
  7681.  
  7682. //   if (SUPPORTS_TV(dev))
  7683. //       intel_tv_init(dev);
  7684.  
  7685.         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7686.                 encoder->base.possible_crtcs = encoder->crtc_mask;
  7687.                 encoder->base.possible_clones =
  7688.                         intel_encoder_clones(encoder);
  7689.         }
  7690.  
  7691.         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7692.                 ironlake_init_pch_refclk(dev);
  7693. }
  7694.  
  7695.  
  7696.  
  7697. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7698. //      .destroy = intel_user_framebuffer_destroy,
  7699. //      .create_handle = intel_user_framebuffer_create_handle,
  7700. };
  7701.  
  7702. int intel_framebuffer_init(struct drm_device *dev,
  7703.                            struct intel_framebuffer *intel_fb,
  7704.                            struct drm_mode_fb_cmd2 *mode_cmd,
  7705.                            struct drm_i915_gem_object *obj)
  7706. {
  7707.         int ret;
  7708.  
  7709.         if (obj->tiling_mode == I915_TILING_Y)
  7710.                 return -EINVAL;
  7711.  
  7712.         if (mode_cmd->pitches[0] & 63)
  7713.                         return -EINVAL;
  7714.  
  7715.         switch (mode_cmd->pixel_format) {
  7716.         case DRM_FORMAT_RGB332:
  7717.         case DRM_FORMAT_RGB565:
  7718.         case DRM_FORMAT_XRGB8888:
  7719.         case DRM_FORMAT_XBGR8888:
  7720.         case DRM_FORMAT_ARGB8888:
  7721.         case DRM_FORMAT_XRGB2101010:
  7722.         case DRM_FORMAT_ARGB2101010:
  7723.                 /* RGB formats are common across chipsets */
  7724.                 break;
  7725.         case DRM_FORMAT_YUYV:
  7726.         case DRM_FORMAT_UYVY:
  7727.         case DRM_FORMAT_YVYU:
  7728.         case DRM_FORMAT_VYUY:
  7729.                 break;
  7730.         default:
  7731.                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
  7732.                                 mode_cmd->pixel_format);
  7733.                 return -EINVAL;
  7734.         }
  7735.  
  7736.         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7737.         if (ret) {
  7738.                 DRM_ERROR("framebuffer init failed %d\n", ret);
  7739.                 return ret;
  7740.         }
  7741.  
  7742.         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7743.         intel_fb->obj = obj;
  7744.         return 0;
  7745. }
  7746.  
  7747.  
  7748. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7749.         .fb_create = NULL /*intel_user_framebuffer_create*/,
  7750.         .output_poll_changed = NULL /*intel_fb_output_poll_changed*/,
  7751. };
  7752.  
  7753. /* Set up chip specific display functions */
  7754. static void intel_init_display(struct drm_device *dev)
  7755. {
  7756.         struct drm_i915_private *dev_priv = dev->dev_private;
  7757.  
  7758.         /* We always want a DPMS function */
  7759.         if (HAS_PCH_SPLIT(dev)) {
  7760.                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7761.                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7762.                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7763.                 dev_priv->display.off = ironlake_crtc_off;
  7764.                 dev_priv->display.update_plane = ironlake_update_plane;
  7765.         } else {
  7766.                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7767.                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7768.                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7769.                 dev_priv->display.off = i9xx_crtc_off;
  7770.                 dev_priv->display.update_plane = i9xx_update_plane;
  7771.         }
  7772.  
  7773.         /* Returns the core display clock speed */
  7774.         if (IS_VALLEYVIEW(dev))
  7775.                 dev_priv->display.get_display_clock_speed =
  7776.                         valleyview_get_display_clock_speed;
  7777.         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7778.                 dev_priv->display.get_display_clock_speed =
  7779.                         i945_get_display_clock_speed;
  7780.         else if (IS_I915G(dev))
  7781.                 dev_priv->display.get_display_clock_speed =
  7782.                         i915_get_display_clock_speed;
  7783.         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7784.                 dev_priv->display.get_display_clock_speed =
  7785.                         i9xx_misc_get_display_clock_speed;
  7786.         else if (IS_I915GM(dev))
  7787.                 dev_priv->display.get_display_clock_speed =
  7788.                         i915gm_get_display_clock_speed;
  7789.         else if (IS_I865G(dev))
  7790.                 dev_priv->display.get_display_clock_speed =
  7791.                         i865_get_display_clock_speed;
  7792.         else if (IS_I85X(dev))
  7793.                 dev_priv->display.get_display_clock_speed =
  7794.                         i855_get_display_clock_speed;
  7795.         else /* 852, 830 */
  7796.                 dev_priv->display.get_display_clock_speed =
  7797.                         i830_get_display_clock_speed;
  7798.  
  7799.         if (HAS_PCH_SPLIT(dev)) {
  7800.                 if (IS_GEN5(dev)) {
  7801.                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7802.                         dev_priv->display.write_eld = ironlake_write_eld;
  7803.                 } else if (IS_GEN6(dev)) {
  7804.                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7805.                         dev_priv->display.write_eld = ironlake_write_eld;
  7806.                 } else if (IS_IVYBRIDGE(dev)) {
  7807.                         /* FIXME: detect B0+ stepping and use auto training */
  7808.                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7809.                         dev_priv->display.write_eld = ironlake_write_eld;
  7810.                 } else if (IS_HASWELL(dev)) {
  7811.                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7812.                         dev_priv->display.write_eld = haswell_write_eld;
  7813.                 } else
  7814.                         dev_priv->display.update_wm = NULL;
  7815.         } else if (IS_G4X(dev)) {
  7816.                 dev_priv->display.write_eld = g4x_write_eld;
  7817.         }
  7818.  
  7819.         /* Default just returns -ENODEV to indicate unsupported */
  7820. //      dev_priv->display.queue_flip = intel_default_queue_flip;
  7821.  
  7822.  
  7823.  
  7824.  
  7825. }
  7826.  
  7827. /*
  7828.  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7829.  * resume, or other times.  This quirk makes sure that's the case for
  7830.  * affected systems.
  7831.  */
  7832. static void quirk_pipea_force(struct drm_device *dev)
  7833. {
  7834.         struct drm_i915_private *dev_priv = dev->dev_private;
  7835.  
  7836.         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7837.         DRM_INFO("applying pipe a force quirk\n");
  7838. }
  7839.  
  7840. /*
  7841.  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7842.  */
  7843. static void quirk_ssc_force_disable(struct drm_device *dev)
  7844. {
  7845.         struct drm_i915_private *dev_priv = dev->dev_private;
  7846.         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7847.         DRM_INFO("applying lvds SSC disable quirk\n");
  7848. }
  7849.  
  7850. /*
  7851.  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7852.  * brightness value
  7853.  */
  7854. static void quirk_invert_brightness(struct drm_device *dev)
  7855. {
  7856.         struct drm_i915_private *dev_priv = dev->dev_private;
  7857.         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7858.         DRM_INFO("applying inverted panel brightness quirk\n");
  7859. }
  7860.  
  7861. struct intel_quirk {
  7862.         int device;
  7863.         int subsystem_vendor;
  7864.         int subsystem_device;
  7865.         void (*hook)(struct drm_device *dev);
  7866. };
  7867.  
  7868. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7869. struct intel_dmi_quirk {
  7870.         void (*hook)(struct drm_device *dev);
  7871.         const struct dmi_system_id (*dmi_id_list)[];
  7872. };
  7873.  
  7874. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7875. {
  7876.         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7877.         return 1;
  7878. }
  7879.  
  7880. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7881.         {
  7882.                 .dmi_id_list = &(const struct dmi_system_id[]) {
  7883.                         {
  7884.                                 .callback = intel_dmi_reverse_brightness,
  7885.                                 .ident = "NCR Corporation",
  7886.                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7887.                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7888.                                 },
  7889.                         },
  7890.                         { }  /* terminating entry */
  7891.                 },
  7892.                 .hook = quirk_invert_brightness,
  7893.         },
  7894. };
  7895.  
  7896. static struct intel_quirk intel_quirks[] = {
  7897.         /* HP Mini needs pipe A force quirk (LP: #322104) */
  7898.         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7899.  
  7900.         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7901.         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7902.  
  7903.         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7904.         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7905.  
  7906.         /* 830/845 need to leave pipe A & dpll A up */
  7907.         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7908.         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7909.  
  7910.         /* Lenovo U160 cannot use SSC on LVDS */
  7911.         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7912.  
  7913.         /* Sony Vaio Y cannot use SSC on LVDS */
  7914.         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7915.  
  7916.         /* Acer Aspire 5734Z must invert backlight brightness */
  7917.         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7918. };
  7919.  
  7920. static void intel_init_quirks(struct drm_device *dev)
  7921. {
  7922.         struct pci_dev *d = dev->pdev;
  7923.         int i;
  7924.  
  7925.         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7926.                 struct intel_quirk *q = &intel_quirks[i];
  7927.  
  7928.                 if (d->device == q->device &&
  7929.                     (d->subsystem_vendor == q->subsystem_vendor ||
  7930.                      q->subsystem_vendor == PCI_ANY_ID) &&
  7931.                     (d->subsystem_device == q->subsystem_device ||
  7932.                      q->subsystem_device == PCI_ANY_ID))
  7933.                         q->hook(dev);
  7934.         }
  7935. //      for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7936. //              if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7937. //                      intel_dmi_quirks[i].hook(dev);
  7938. //      }
  7939. }
  7940.  
  7941. /* Disable the VGA plane that we never use */
  7942. static void i915_disable_vga(struct drm_device *dev)
  7943. {
  7944.         struct drm_i915_private *dev_priv = dev->dev_private;
  7945.         u8 sr1;
  7946.         u32 vga_reg;
  7947.  
  7948.         if (HAS_PCH_SPLIT(dev))
  7949.                 vga_reg = CPU_VGACNTRL;
  7950.         else
  7951.                 vga_reg = VGACNTRL;
  7952.  
  7953. //   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7954.     out8(SR01, VGA_SR_INDEX);
  7955.     sr1 = in8(VGA_SR_DATA);
  7956.     out8(sr1 | 1<<5, VGA_SR_DATA);
  7957. //   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7958.         udelay(300);
  7959.  
  7960.         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7961.         POSTING_READ(vga_reg);
  7962. }
  7963.  
  7964. void intel_modeset_init_hw(struct drm_device *dev)
  7965. {
  7966.         /* We attempt to init the necessary power wells early in the initialization
  7967.          * time, so the subsystems that expect power to be enabled can work.
  7968.          */
  7969.         intel_init_power_wells(dev);
  7970.  
  7971.         intel_prepare_ddi(dev);
  7972.  
  7973.         intel_init_clock_gating(dev);
  7974.  
  7975. //   mutex_lock(&dev->struct_mutex);
  7976. //   intel_enable_gt_powersave(dev);
  7977. //   mutex_unlock(&dev->struct_mutex);
  7978. }
  7979.  
  7980. void intel_modeset_init(struct drm_device *dev)
  7981. {
  7982.         struct drm_i915_private *dev_priv = dev->dev_private;
  7983.         int i, ret;
  7984.  
  7985.         drm_mode_config_init(dev);
  7986.  
  7987.         dev->mode_config.min_width = 0;
  7988.         dev->mode_config.min_height = 0;
  7989.  
  7990.         dev->mode_config.preferred_depth = 24;
  7991.         dev->mode_config.prefer_shadow = 1;
  7992.  
  7993.         dev->mode_config.funcs = &intel_mode_funcs;
  7994.  
  7995.         intel_init_quirks(dev);
  7996.  
  7997.         intel_init_pm(dev);
  7998.  
  7999.         intel_init_display(dev);
  8000.  
  8001.         if (IS_GEN2(dev)) {
  8002.                 dev->mode_config.max_width = 2048;
  8003.                 dev->mode_config.max_height = 2048;
  8004.         } else if (IS_GEN3(dev)) {
  8005.                 dev->mode_config.max_width = 4096;
  8006.                 dev->mode_config.max_height = 4096;
  8007.         } else {
  8008.                 dev->mode_config.max_width = 8192;
  8009.                 dev->mode_config.max_height = 8192;
  8010.         }
  8011.         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  8012.  
  8013.         DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8014.                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  8015.  
  8016.         for (i = 0; i < dev_priv->num_pipe; i++) {
  8017.                 intel_crtc_init(dev, i);
  8018.                 ret = intel_plane_init(dev, i);
  8019.                 if (ret)
  8020.                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  8021.         }
  8022.  
  8023.         intel_pch_pll_init(dev);
  8024.  
  8025.         /* Just disable it once at startup */
  8026.         i915_disable_vga(dev);
  8027.         intel_setup_outputs(dev);
  8028. }
  8029.  
  8030. static void
  8031. intel_connector_break_all_links(struct intel_connector *connector)
  8032. {
  8033.         connector->base.dpms = DRM_MODE_DPMS_OFF;
  8034.         connector->base.encoder = NULL;
  8035.         connector->encoder->connectors_active = false;
  8036.         connector->encoder->base.crtc = NULL;
  8037. }
  8038.  
  8039. static void intel_enable_pipe_a(struct drm_device *dev)
  8040. {
  8041.         struct intel_connector *connector;
  8042.         struct drm_connector *crt = NULL;
  8043.         struct intel_load_detect_pipe load_detect_temp;
  8044.  
  8045.         /* We can't just switch on the pipe A, we need to set things up with a
  8046.          * proper mode and output configuration. As a gross hack, enable pipe A
  8047.          * by enabling the load detect pipe once. */
  8048.         list_for_each_entry(connector,
  8049.                             &dev->mode_config.connector_list,
  8050.                             base.head) {
  8051.                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8052.                         crt = &connector->base;
  8053.                         break;
  8054.                 }
  8055.         }
  8056.  
  8057.         if (!crt)
  8058.                 return;
  8059.  
  8060.         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8061.                 intel_release_load_detect_pipe(crt, &load_detect_temp);
  8062.  
  8063.  
  8064. }
  8065.  
  8066. static bool
  8067. intel_check_plane_mapping(struct intel_crtc *crtc)
  8068. {
  8069.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  8070.         u32 reg, val;
  8071.  
  8072.         if (dev_priv->num_pipe == 1)
  8073.                 return true;
  8074.  
  8075.         reg = DSPCNTR(!crtc->plane);
  8076.         val = I915_READ(reg);
  8077.  
  8078.         if ((val & DISPLAY_PLANE_ENABLE) &&
  8079.             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8080.                 return false;
  8081.  
  8082.         return true;
  8083. }
  8084.  
  8085. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8086. {
  8087.         struct drm_device *dev = crtc->base.dev;
  8088.         struct drm_i915_private *dev_priv = dev->dev_private;
  8089.         u32 reg;
  8090.  
  8091.         /* Clear any frame start delays used for debugging left by the BIOS */
  8092.         reg = PIPECONF(crtc->pipe);
  8093.         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8094.  
  8095.         /* We need to sanitize the plane -> pipe mapping first because this will
  8096.          * disable the crtc (and hence change the state) if it is wrong. Note
  8097.          * that gen4+ has a fixed plane -> pipe mapping.  */
  8098.         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8099.                 struct intel_connector *connector;
  8100.                 bool plane;
  8101.  
  8102.                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8103.                               crtc->base.base.id);
  8104.  
  8105.                 /* Pipe has the wrong plane attached and the plane is active.
  8106.                  * Temporarily change the plane mapping and disable everything
  8107.                  * ...  */
  8108.                 plane = crtc->plane;
  8109.                 crtc->plane = !plane;
  8110.                 dev_priv->display.crtc_disable(&crtc->base);
  8111.                 crtc->plane = plane;
  8112.  
  8113.                 /* ... and break all links. */
  8114.                 list_for_each_entry(connector, &dev->mode_config.connector_list,
  8115.                                     base.head) {
  8116.                         if (connector->encoder->base.crtc != &crtc->base)
  8117.                                 continue;
  8118.  
  8119.                         intel_connector_break_all_links(connector);
  8120.                 }
  8121.  
  8122.                 WARN_ON(crtc->active);
  8123.                 crtc->base.enabled = false;
  8124.         }
  8125.  
  8126.         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8127.             crtc->pipe == PIPE_A && !crtc->active) {
  8128.                 /* BIOS forgot to enable pipe A, this mostly happens after
  8129.                  * resume. Force-enable the pipe to fix this, the update_dpms
  8130.                  * call below we restore the pipe to the right state, but leave
  8131.                  * the required bits on. */
  8132.                 intel_enable_pipe_a(dev);
  8133.         }
  8134.  
  8135.         /* Adjust the state of the output pipe according to whether we
  8136.          * have active connectors/encoders. */
  8137.         intel_crtc_update_dpms(&crtc->base);
  8138.  
  8139.         if (crtc->active != crtc->base.enabled) {
  8140.                 struct intel_encoder *encoder;
  8141.  
  8142.                 /* This can happen either due to bugs in the get_hw_state
  8143.                  * functions or because the pipe is force-enabled due to the
  8144.                  * pipe A quirk. */
  8145.                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8146.                               crtc->base.base.id,
  8147.                               crtc->base.enabled ? "enabled" : "disabled",
  8148.                               crtc->active ? "enabled" : "disabled");
  8149.  
  8150.                 crtc->base.enabled = crtc->active;
  8151.  
  8152.                 /* Because we only establish the connector -> encoder ->
  8153.                  * crtc links if something is active, this means the
  8154.                  * crtc is now deactivated. Break the links. connector
  8155.                  * -> encoder links are only establish when things are
  8156.                  *  actually up, hence no need to break them. */
  8157.                 WARN_ON(crtc->active);
  8158.  
  8159.                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8160.                         WARN_ON(encoder->connectors_active);
  8161.                         encoder->base.crtc = NULL;
  8162.                 }
  8163.         }
  8164. }
  8165.  
  8166. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8167. {
  8168.         struct intel_connector *connector;
  8169.         struct drm_device *dev = encoder->base.dev;
  8170.  
  8171.         /* We need to check both for a crtc link (meaning that the
  8172.          * encoder is active and trying to read from a pipe) and the
  8173.          * pipe itself being active. */
  8174.         bool has_active_crtc = encoder->base.crtc &&
  8175.                 to_intel_crtc(encoder->base.crtc)->active;
  8176.  
  8177.         if (encoder->connectors_active && !has_active_crtc) {
  8178.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8179.                               encoder->base.base.id,
  8180.                               drm_get_encoder_name(&encoder->base));
  8181.  
  8182.                 /* Connector is active, but has no active pipe. This is
  8183.                  * fallout from our resume register restoring. Disable
  8184.                  * the encoder manually again. */
  8185.                 if (encoder->base.crtc) {
  8186.                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8187.                                       encoder->base.base.id,
  8188.                                       drm_get_encoder_name(&encoder->base));
  8189.                         encoder->disable(encoder);
  8190.                 }
  8191.  
  8192.                 /* Inconsistent output/port/pipe state happens presumably due to
  8193.                  * a bug in one of the get_hw_state functions. Or someplace else
  8194.                  * in our code, like the register restore mess on resume. Clamp
  8195.                  * things to off as a safer default. */
  8196.                 list_for_each_entry(connector,
  8197.                                     &dev->mode_config.connector_list,
  8198.                                     base.head) {
  8199.                         if (connector->encoder != encoder)
  8200.                                 continue;
  8201.  
  8202.                         intel_connector_break_all_links(connector);
  8203.                 }
  8204.         }
  8205.         /* Enabled encoders without active connectors will be fixed in
  8206.          * the crtc fixup. */
  8207. }
  8208.  
  8209. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8210.  * and i915 state tracking structures. */
  8211. void intel_modeset_setup_hw_state(struct drm_device *dev)
  8212. {
  8213.         struct drm_i915_private *dev_priv = dev->dev_private;
  8214.         enum pipe pipe;
  8215.         u32 tmp;
  8216.         struct intel_crtc *crtc;
  8217.         struct intel_encoder *encoder;
  8218.         struct intel_connector *connector;
  8219.  
  8220.         for_each_pipe(pipe) {
  8221.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8222.  
  8223.                 tmp = I915_READ(PIPECONF(pipe));
  8224.                 if (tmp & PIPECONF_ENABLE)
  8225.                         crtc->active = true;
  8226.                 else
  8227.                         crtc->active = false;
  8228.  
  8229.                 crtc->base.enabled = crtc->active;
  8230.  
  8231.                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8232.                               crtc->base.base.id,
  8233.                               crtc->active ? "enabled" : "disabled");
  8234.         }
  8235.  
  8236.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8237.                             base.head) {
  8238.                 pipe = 0;
  8239.  
  8240.                 if (encoder->get_hw_state(encoder, &pipe)) {
  8241.                         encoder->base.crtc =
  8242.                                 dev_priv->pipe_to_crtc_mapping[pipe];
  8243.                 } else {
  8244.                         encoder->base.crtc = NULL;
  8245.                 }
  8246.  
  8247.                 encoder->connectors_active = false;
  8248.                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8249.                               encoder->base.base.id,
  8250.                               drm_get_encoder_name(&encoder->base),
  8251.                               encoder->base.crtc ? "enabled" : "disabled",
  8252.                               pipe);
  8253.         }
  8254.  
  8255.         list_for_each_entry(connector, &dev->mode_config.connector_list,
  8256.                             base.head) {
  8257.                 if (connector->get_hw_state(connector)) {
  8258.                         connector->base.dpms = DRM_MODE_DPMS_ON;
  8259.                         connector->encoder->connectors_active = true;
  8260.                         connector->base.encoder = &connector->encoder->base;
  8261.                 } else {
  8262.                         connector->base.dpms = DRM_MODE_DPMS_OFF;
  8263.                         connector->base.encoder = NULL;
  8264.                 }
  8265.                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8266.                               connector->base.base.id,
  8267.                               drm_get_connector_name(&connector->base),
  8268.                               connector->base.encoder ? "enabled" : "disabled");
  8269.         }
  8270.  
  8271.         /* HW state is read out, now we need to sanitize this mess. */
  8272.         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8273.                             base.head) {
  8274.                 intel_sanitize_encoder(encoder);
  8275.         }
  8276.  
  8277.         for_each_pipe(pipe) {
  8278.                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8279.                 intel_sanitize_crtc(crtc);
  8280.         }
  8281.  
  8282.         intel_modeset_update_staged_output_state(dev);
  8283.  
  8284.         intel_modeset_check_state(dev);
  8285. }
  8286.  
  8287. void intel_modeset_gem_init(struct drm_device *dev)
  8288. {
  8289.         intel_modeset_init_hw(dev);
  8290.  
  8291. //   intel_setup_overlay(dev);
  8292.  
  8293.         intel_modeset_setup_hw_state(dev);
  8294. }
  8295.  
  8296. void intel_modeset_cleanup(struct drm_device *dev)
  8297. {
  8298. #if 0
  8299.         struct drm_i915_private *dev_priv = dev->dev_private;
  8300.         struct drm_crtc *crtc;
  8301.         struct intel_crtc *intel_crtc;
  8302.  
  8303. //   drm_kms_helper_poll_fini(dev);
  8304.         mutex_lock(&dev->struct_mutex);
  8305.  
  8306. //   intel_unregister_dsm_handler();
  8307.  
  8308.  
  8309.         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8310.                 /* Skip inactive CRTCs */
  8311.                 if (!crtc->fb)
  8312.                         continue;
  8313.  
  8314.                 intel_crtc = to_intel_crtc(crtc);
  8315.                 intel_increase_pllclock(crtc);
  8316.         }
  8317.  
  8318.         intel_disable_fbc(dev);
  8319.  
  8320.         intel_disable_gt_powersave(dev);
  8321.  
  8322.         ironlake_teardown_rc6(dev);
  8323.  
  8324.         if (IS_VALLEYVIEW(dev))
  8325.                 vlv_init_dpio(dev);
  8326.  
  8327.         mutex_unlock(&dev->struct_mutex);
  8328.  
  8329.         /* Disable the irq before mode object teardown, for the irq might
  8330.          * enqueue unpin/hotplug work. */
  8331. //   drm_irq_uninstall(dev);
  8332. //   cancel_work_sync(&dev_priv->hotplug_work);
  8333. //   cancel_work_sync(&dev_priv->rps.work);
  8334.  
  8335.         /* flush any delayed tasks or pending work */
  8336. //   flush_scheduled_work();
  8337.  
  8338.         drm_mode_config_cleanup(dev);
  8339. #endif
  8340. }
  8341.  
  8342. /*
  8343.  * Return which encoder is currently attached for connector.
  8344.  */
  8345. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8346. {
  8347.         return &intel_attached_encoder(connector)->base;
  8348. }
  8349.  
  8350. void intel_connector_attach_encoder(struct intel_connector *connector,
  8351.                                     struct intel_encoder *encoder)
  8352. {
  8353.         connector->encoder = encoder;
  8354.         drm_mode_connector_attach_encoder(&connector->base,
  8355.                                           &encoder->base);
  8356. }
  8357.  
  8358. /*
  8359.  * set vga decode state - true == enable VGA decode
  8360.  */
  8361. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8362. {
  8363.         struct drm_i915_private *dev_priv = dev->dev_private;
  8364.         u16 gmch_ctrl;
  8365.  
  8366.         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8367.         if (state)
  8368.                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8369.         else
  8370.                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8371.         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8372.         return 0;
  8373. }
  8374.  
  8375. #ifdef CONFIG_DEBUG_FS
  8376. #include <linux/seq_file.h>
  8377.  
  8378. struct intel_display_error_state {
  8379.         struct intel_cursor_error_state {
  8380.                 u32 control;
  8381.                 u32 position;
  8382.                 u32 base;
  8383.                 u32 size;
  8384.         } cursor[I915_MAX_PIPES];
  8385.  
  8386.         struct intel_pipe_error_state {
  8387.                 u32 conf;
  8388.                 u32 source;
  8389.  
  8390.                 u32 htotal;
  8391.                 u32 hblank;
  8392.                 u32 hsync;
  8393.                 u32 vtotal;
  8394.                 u32 vblank;
  8395.                 u32 vsync;
  8396.         } pipe[I915_MAX_PIPES];
  8397.  
  8398.         struct intel_plane_error_state {
  8399.                 u32 control;
  8400.                 u32 stride;
  8401.                 u32 size;
  8402.                 u32 pos;
  8403.                 u32 addr;
  8404.                 u32 surface;
  8405.                 u32 tile_offset;
  8406.         } plane[I915_MAX_PIPES];
  8407. };
  8408.  
  8409. struct intel_display_error_state *
  8410. intel_display_capture_error_state(struct drm_device *dev)
  8411. {
  8412.         drm_i915_private_t *dev_priv = dev->dev_private;
  8413.         struct intel_display_error_state *error;
  8414.         int i;
  8415.  
  8416.         error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8417.         if (error == NULL)
  8418.                 return NULL;
  8419.  
  8420.         for_each_pipe(i) {
  8421.                 error->cursor[i].control = I915_READ(CURCNTR(i));
  8422.                 error->cursor[i].position = I915_READ(CURPOS(i));
  8423.                 error->cursor[i].base = I915_READ(CURBASE(i));
  8424.  
  8425.                 error->plane[i].control = I915_READ(DSPCNTR(i));
  8426.                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8427.                 error->plane[i].size = I915_READ(DSPSIZE(i));
  8428.                 error->plane[i].pos = I915_READ(DSPPOS(i));
  8429.                 error->plane[i].addr = I915_READ(DSPADDR(i));
  8430.                 if (INTEL_INFO(dev)->gen >= 4) {
  8431.                         error->plane[i].surface = I915_READ(DSPSURF(i));
  8432.                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8433.                 }
  8434.  
  8435.                 error->pipe[i].conf = I915_READ(PIPECONF(i));
  8436.                 error->pipe[i].source = I915_READ(PIPESRC(i));
  8437.                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8438.                 error->pipe[i].hblank = I915_READ(HBLANK(i));
  8439.                 error->pipe[i].hsync = I915_READ(HSYNC(i));
  8440.                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8441.                 error->pipe[i].vblank = I915_READ(VBLANK(i));
  8442.                 error->pipe[i].vsync = I915_READ(VSYNC(i));
  8443.         }
  8444.  
  8445.         return error;
  8446. }
  8447.  
  8448. void
  8449. intel_display_print_error_state(struct seq_file *m,
  8450.                                 struct drm_device *dev,
  8451.                                 struct intel_display_error_state *error)
  8452. {
  8453.         drm_i915_private_t *dev_priv = dev->dev_private;
  8454.         int i;
  8455.  
  8456.         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  8457.         for_each_pipe(i) {
  8458.                 seq_printf(m, "Pipe [%d]:\n", i);
  8459.                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
  8460.                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
  8461.                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
  8462.                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
  8463.                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
  8464.                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
  8465.                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
  8466.                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
  8467.  
  8468.                 seq_printf(m, "Plane [%d]:\n", i);
  8469.                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
  8470.                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
  8471.                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
  8472.                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
  8473.                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
  8474.                 if (INTEL_INFO(dev)->gen >= 4) {
  8475.                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
  8476.                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
  8477.                 }
  8478.  
  8479.                 seq_printf(m, "Cursor [%d]:\n", i);
  8480.                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
  8481.                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
  8482.                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
  8483.         }
  8484. }
  8485. #endif
  8486.