Subversion Repositories Kolibri OS

Rev

Rev 6131 | Rev 6320 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2.  */
  3. /*
  4.  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5.  * All Rights Reserved.
  6.  *
  7.  * Permission is hereby granted, free of charge, to any person obtaining a
  8.  * copy of this software and associated documentation files (the
  9.  * "Software"), to deal in the Software without restriction, including
  10.  * without limitation the rights to use, copy, modify, merge, publish,
  11.  * distribute, sub license, and/or sell copies of the Software, and to
  12.  * permit persons to whom the Software is furnished to do so, subject to
  13.  * the following conditions:
  14.  *
  15.  * The above copyright notice and this permission notice (including the
  16.  * next paragraph) shall be included in all copies or substantial portions
  17.  * of the Software.
  18.  *
  19.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20.  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21.  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22.  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23.  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24.  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25.  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26.  *
  27.  */
  28.  
  29. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30.  
  31. #include <linux/sysrq.h>
  32. #include <linux/slab.h>
  33. #include <linux/circ_buf.h>
  34. #include <drm/drmP.h>
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #include "i915_trace.h"
  38. #include "intel_drv.h"
  39.  
  40. /**
  41.  * DOC: interrupt handling
  42.  *
  43.  * These functions provide the basic support for enabling and disabling the
  44.  * interrupt handling support. There's a lot more functionality in i915_irq.c
  45.  * and related files, but that will be described in separate chapters.
  46.  */
  47.  
  48. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49.         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50. };
  51.  
  52. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53.         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54. };
  55.  
  56. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57.         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58. };
  59.  
  60. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61.         [HPD_CRT] = SDE_CRT_HOTPLUG,
  62.         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63.         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64.         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65.         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66. };
  67.  
  68. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69.         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70.         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71.         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72.         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73.         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74. };
  75.  
  76. static const u32 hpd_spt[HPD_NUM_PINS] = {
  77.         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78.         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79.         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80.         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81.         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82. };
  83.  
  84. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85.         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86.         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87.         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88.         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89.         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90.         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91. };
  92.  
  93. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94.         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95.         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96.         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97.         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98.         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99.         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  100. };
  101.  
  102. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  103.         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  104.         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  105.         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  106.         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  107.         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  108.         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  109. };
  110.  
  111. /* BXT hpd list */
  112. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  113.         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  114.         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  115.         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  116. };
  117.  
  118. /* IIR can theoretically queue up two events. Be paranoid. */
  119. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  120.         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  121.         POSTING_READ(GEN8_##type##_IMR(which)); \
  122.         I915_WRITE(GEN8_##type##_IER(which), 0); \
  123.         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  124.         POSTING_READ(GEN8_##type##_IIR(which)); \
  125.         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  126.         POSTING_READ(GEN8_##type##_IIR(which)); \
  127. } while (0)
  128.  
  129. #define GEN5_IRQ_RESET(type) do { \
  130.         I915_WRITE(type##IMR, 0xffffffff); \
  131.         POSTING_READ(type##IMR); \
  132.         I915_WRITE(type##IER, 0); \
  133.         I915_WRITE(type##IIR, 0xffffffff); \
  134.         POSTING_READ(type##IIR); \
  135.         I915_WRITE(type##IIR, 0xffffffff); \
  136.         POSTING_READ(type##IIR); \
  137. } while (0)
  138.  
  139. /*
  140.  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  141.  */
  142. static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
  143. {
  144.         u32 val = I915_READ(reg);
  145.  
  146.         if (val == 0)
  147.                 return;
  148.  
  149.         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  150.              reg, val);
  151.         I915_WRITE(reg, 0xffffffff);
  152.         POSTING_READ(reg);
  153.         I915_WRITE(reg, 0xffffffff);
  154.         POSTING_READ(reg);
  155. }
  156.  
  157. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  158.         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  159.         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  160.         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  161.         POSTING_READ(GEN8_##type##_IMR(which)); \
  162. } while (0)
  163.  
  164. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  165.         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
  166.         I915_WRITE(type##IER, (ier_val)); \
  167.         I915_WRITE(type##IMR, (imr_val)); \
  168.         POSTING_READ(type##IMR); \
  169. } while (0)
  170.  
  171. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  172.  
  173. /* For display hotplug interrupt */
  174. static inline void
  175. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  176.                                      uint32_t mask,
  177.                                      uint32_t bits)
  178. {
  179.         uint32_t val;
  180.  
  181.         assert_spin_locked(&dev_priv->irq_lock);
  182.         WARN_ON(bits & ~mask);
  183.  
  184.         val = I915_READ(PORT_HOTPLUG_EN);
  185.         val &= ~mask;
  186.         val |= bits;
  187.         I915_WRITE(PORT_HOTPLUG_EN, val);
  188. }
  189.  
  190. /**
  191.  * i915_hotplug_interrupt_update - update hotplug interrupt enable
  192.  * @dev_priv: driver private
  193.  * @mask: bits to update
  194.  * @bits: bits to enable
  195.  * NOTE: the HPD enable bits are modified both inside and outside
  196.  * of an interrupt context. To avoid that read-modify-write cycles
  197.  * interfer, these bits are protected by a spinlock. Since this
  198.  * function is usually not called from a context where the lock is
  199.  * held already, this function acquires the lock itself. A non-locking
  200.  * version is also available.
  201.  */
  202. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  203.                                    uint32_t mask,
  204.                                    uint32_t bits)
  205. {
  206.         spin_lock_irq(&dev_priv->irq_lock);
  207.         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  208.         spin_unlock_irq(&dev_priv->irq_lock);
  209. }
  210.  
  211. /**
  212.  * ilk_update_display_irq - update DEIMR
  213.  * @dev_priv: driver private
  214.  * @interrupt_mask: mask of interrupt bits to update
  215.  * @enabled_irq_mask: mask of interrupt bits to enable
  216.  */
  217. static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  218.                                    uint32_t interrupt_mask,
  219.                                    uint32_t enabled_irq_mask)
  220. {
  221.         uint32_t new_val;
  222.  
  223.         assert_spin_locked(&dev_priv->irq_lock);
  224.  
  225.         WARN_ON(enabled_irq_mask & ~interrupt_mask);
  226.  
  227.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  228.                 return;
  229.  
  230.         new_val = dev_priv->irq_mask;
  231.         new_val &= ~interrupt_mask;
  232.         new_val |= (~enabled_irq_mask & interrupt_mask);
  233.  
  234.         if (new_val != dev_priv->irq_mask) {
  235.                 dev_priv->irq_mask = new_val;
  236.                 I915_WRITE(DEIMR, dev_priv->irq_mask);
  237.                 POSTING_READ(DEIMR);
  238.         }
  239. }
  240.  
  241. void
  242. ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  243. {
  244.         ilk_update_display_irq(dev_priv, mask, mask);
  245. }
  246.  
  247. void
  248. ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  249. {
  250.         ilk_update_display_irq(dev_priv, mask, 0);
  251. }
  252.  
  253. /**
  254.  * ilk_update_gt_irq - update GTIMR
  255.  * @dev_priv: driver private
  256.  * @interrupt_mask: mask of interrupt bits to update
  257.  * @enabled_irq_mask: mask of interrupt bits to enable
  258.  */
  259. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  260.                               uint32_t interrupt_mask,
  261.                               uint32_t enabled_irq_mask)
  262. {
  263.         assert_spin_locked(&dev_priv->irq_lock);
  264.  
  265.         WARN_ON(enabled_irq_mask & ~interrupt_mask);
  266.  
  267.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  268.                 return;
  269.  
  270.         dev_priv->gt_irq_mask &= ~interrupt_mask;
  271.         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  272.         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  273.         POSTING_READ(GTIMR);
  274. }
  275.  
  276. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  277. {
  278.         ilk_update_gt_irq(dev_priv, mask, mask);
  279. }
  280.  
  281. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  282. {
  283.         ilk_update_gt_irq(dev_priv, mask, 0);
  284. }
  285.  
  286. static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
  287. {
  288.         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  289. }
  290.  
  291. static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
  292. {
  293.         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  294. }
  295.  
  296. static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
  297. {
  298.         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  299. }
  300.  
  301. /**
  302.   * snb_update_pm_irq - update GEN6_PMIMR
  303.   * @dev_priv: driver private
  304.   * @interrupt_mask: mask of interrupt bits to update
  305.   * @enabled_irq_mask: mask of interrupt bits to enable
  306.   */
  307. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  308.                               uint32_t interrupt_mask,
  309.                               uint32_t enabled_irq_mask)
  310. {
  311.         uint32_t new_val;
  312.  
  313.         WARN_ON(enabled_irq_mask & ~interrupt_mask);
  314.  
  315.         assert_spin_locked(&dev_priv->irq_lock);
  316.  
  317.         new_val = dev_priv->pm_irq_mask;
  318.         new_val &= ~interrupt_mask;
  319.         new_val |= (~enabled_irq_mask & interrupt_mask);
  320.  
  321.         if (new_val != dev_priv->pm_irq_mask) {
  322.                 dev_priv->pm_irq_mask = new_val;
  323.                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  324.                 POSTING_READ(gen6_pm_imr(dev_priv));
  325.         }
  326. }
  327.  
  328. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  329. {
  330.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  331.                 return;
  332.  
  333.         snb_update_pm_irq(dev_priv, mask, mask);
  334. }
  335.  
  336. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  337.                                   uint32_t mask)
  338. {
  339.         snb_update_pm_irq(dev_priv, mask, 0);
  340. }
  341.  
  342. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  343. {
  344.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  345.                 return;
  346.  
  347.         __gen6_disable_pm_irq(dev_priv, mask);
  348. }
  349.  
  350. void gen6_reset_rps_interrupts(struct drm_device *dev)
  351. {
  352.         struct drm_i915_private *dev_priv = dev->dev_private;
  353.         uint32_t reg = gen6_pm_iir(dev_priv);
  354.  
  355.         spin_lock_irq(&dev_priv->irq_lock);
  356.         I915_WRITE(reg, dev_priv->pm_rps_events);
  357.         I915_WRITE(reg, dev_priv->pm_rps_events);
  358.         POSTING_READ(reg);
  359.         dev_priv->rps.pm_iir = 0;
  360.         spin_unlock_irq(&dev_priv->irq_lock);
  361. }
  362.  
  363. void gen6_enable_rps_interrupts(struct drm_device *dev)
  364. {
  365.         struct drm_i915_private *dev_priv = dev->dev_private;
  366.  
  367.         spin_lock_irq(&dev_priv->irq_lock);
  368.  
  369.         WARN_ON(dev_priv->rps.pm_iir);
  370.         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  371.         dev_priv->rps.interrupts_enabled = true;
  372.         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  373.                                 dev_priv->pm_rps_events);
  374.         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  375.  
  376.         spin_unlock_irq(&dev_priv->irq_lock);
  377. }
  378.  
  379. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  380. {
  381.         /*
  382.          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  383.          * if GEN6_PM_UP_EI_EXPIRED is masked.
  384.          *
  385.          * TODO: verify if this can be reproduced on VLV,CHV.
  386.          */
  387.         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  388.                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
  389.  
  390.         if (INTEL_INFO(dev_priv)->gen >= 8)
  391.                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  392.  
  393.         return mask;
  394. }
  395.  
  396. void gen6_disable_rps_interrupts(struct drm_device *dev)
  397. {
  398.         struct drm_i915_private *dev_priv = dev->dev_private;
  399.  
  400.         spin_lock_irq(&dev_priv->irq_lock);
  401.         dev_priv->rps.interrupts_enabled = false;
  402.         spin_unlock_irq(&dev_priv->irq_lock);
  403.  
  404.         cancel_work_sync(&dev_priv->rps.work);
  405.  
  406.         spin_lock_irq(&dev_priv->irq_lock);
  407.  
  408.         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  409.  
  410.         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  411.         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  412.                                 ~dev_priv->pm_rps_events);
  413.  
  414.         spin_unlock_irq(&dev_priv->irq_lock);
  415.  
  416. }
  417.  
  418. /**
  419.   * bdw_update_port_irq - update DE port interrupt
  420.   * @dev_priv: driver private
  421.   * @interrupt_mask: mask of interrupt bits to update
  422.   * @enabled_irq_mask: mask of interrupt bits to enable
  423.   */
  424. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  425.                                 uint32_t interrupt_mask,
  426.                                 uint32_t enabled_irq_mask)
  427. {
  428.         uint32_t new_val;
  429.         uint32_t old_val;
  430.  
  431.         assert_spin_locked(&dev_priv->irq_lock);
  432.  
  433.         WARN_ON(enabled_irq_mask & ~interrupt_mask);
  434.  
  435.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  436.                 return;
  437.  
  438.         old_val = I915_READ(GEN8_DE_PORT_IMR);
  439.  
  440.         new_val = old_val;
  441.         new_val &= ~interrupt_mask;
  442.         new_val |= (~enabled_irq_mask & interrupt_mask);
  443.  
  444.         if (new_val != old_val) {
  445.                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  446.                 POSTING_READ(GEN8_DE_PORT_IMR);
  447.         }
  448. }
  449.  
  450. /**
  451.  * ibx_display_interrupt_update - update SDEIMR
  452.  * @dev_priv: driver private
  453.  * @interrupt_mask: mask of interrupt bits to update
  454.  * @enabled_irq_mask: mask of interrupt bits to enable
  455.  */
  456. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  457.                                   uint32_t interrupt_mask,
  458.                                   uint32_t enabled_irq_mask)
  459. {
  460.         uint32_t sdeimr = I915_READ(SDEIMR);
  461.         sdeimr &= ~interrupt_mask;
  462.         sdeimr |= (~enabled_irq_mask & interrupt_mask);
  463.  
  464.         WARN_ON(enabled_irq_mask & ~interrupt_mask);
  465.  
  466.         assert_spin_locked(&dev_priv->irq_lock);
  467.  
  468.         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  469.                 return;
  470.  
  471.         I915_WRITE(SDEIMR, sdeimr);
  472.         POSTING_READ(SDEIMR);
  473. }
  474.  
  475. static void
  476. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  477.                        u32 enable_mask, u32 status_mask)
  478. {
  479.         u32 reg = PIPESTAT(pipe);
  480.         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  481.  
  482.         assert_spin_locked(&dev_priv->irq_lock);
  483.         WARN_ON(!intel_irqs_enabled(dev_priv));
  484.  
  485.         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  486.                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
  487.                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  488.                       pipe_name(pipe), enable_mask, status_mask))
  489.                 return;
  490.  
  491.         if ((pipestat & enable_mask) == enable_mask)
  492.                 return;
  493.  
  494.         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  495.  
  496.         /* Enable the interrupt, clear any pending status */
  497.         pipestat |= enable_mask | status_mask;
  498.         I915_WRITE(reg, pipestat);
  499.         POSTING_READ(reg);
  500. }
  501.  
  502. static void
  503. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  504.                         u32 enable_mask, u32 status_mask)
  505. {
  506.         u32 reg = PIPESTAT(pipe);
  507.         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  508.  
  509.         assert_spin_locked(&dev_priv->irq_lock);
  510.         WARN_ON(!intel_irqs_enabled(dev_priv));
  511.  
  512.         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  513.                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
  514.                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  515.                       pipe_name(pipe), enable_mask, status_mask))
  516.                 return;
  517.  
  518.         if ((pipestat & enable_mask) == 0)
  519.                 return;
  520.  
  521.         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  522.  
  523.         pipestat &= ~enable_mask;
  524.         I915_WRITE(reg, pipestat);
  525.         POSTING_READ(reg);
  526. }
  527.  
  528. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  529. {
  530.         u32 enable_mask = status_mask << 16;
  531.  
  532.         /*
  533.          * On pipe A we don't support the PSR interrupt yet,
  534.          * on pipe B and C the same bit MBZ.
  535.          */
  536.         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  537.                 return 0;
  538.         /*
  539.          * On pipe B and C we don't support the PSR interrupt yet, on pipe
  540.          * A the same bit is for perf counters which we don't use either.
  541.          */
  542.         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  543.                 return 0;
  544.  
  545.         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  546.                          SPRITE0_FLIP_DONE_INT_EN_VLV |
  547.                          SPRITE1_FLIP_DONE_INT_EN_VLV);
  548.         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  549.                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  550.         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  551.                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  552.  
  553.         return enable_mask;
  554. }
  555.  
  556. void
  557. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  558.                      u32 status_mask)
  559. {
  560.         u32 enable_mask;
  561.  
  562.         if (IS_VALLEYVIEW(dev_priv->dev))
  563.                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  564.                                                            status_mask);
  565.         else
  566.                 enable_mask = status_mask << 16;
  567.         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  568. }
  569.  
  570. void
  571. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  572.                       u32 status_mask)
  573. {
  574.         u32 enable_mask;
  575.  
  576.         if (IS_VALLEYVIEW(dev_priv->dev))
  577.                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  578.                                                            status_mask);
  579.         else
  580.                 enable_mask = status_mask << 16;
  581.         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  582. }
  583.  
  584. /**
  585.  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  586.  * @dev: drm device
  587.  */
  588. static void i915_enable_asle_pipestat(struct drm_device *dev)
  589. {
  590.         struct drm_i915_private *dev_priv = dev->dev_private;
  591.  
  592.         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
  593.                 return;
  594.  
  595.         spin_lock_irq(&dev_priv->irq_lock);
  596.  
  597.         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  598.         if (INTEL_INFO(dev)->gen >= 4)
  599.                 i915_enable_pipestat(dev_priv, PIPE_A,
  600.                                      PIPE_LEGACY_BLC_EVENT_STATUS);
  601.  
  602.         spin_unlock_irq(&dev_priv->irq_lock);
  603. }
  604.  
  605. /*
  606.  * This timing diagram depicts the video signal in and
  607.  * around the vertical blanking period.
  608.  *
  609.  * Assumptions about the fictitious mode used in this example:
  610.  *  vblank_start >= 3
  611.  *  vsync_start = vblank_start + 1
  612.  *  vsync_end = vblank_start + 2
  613.  *  vtotal = vblank_start + 3
  614.  *
  615.  *           start of vblank:
  616.  *           latch double buffered registers
  617.  *           increment frame counter (ctg+)
  618.  *           generate start of vblank interrupt (gen4+)
  619.  *           |
  620.  *           |          frame start:
  621.  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
  622.  *           |          may be shifted forward 1-3 extra lines via PIPECONF
  623.  *           |          |
  624.  *           |          |  start of vsync:
  625.  *           |          |  generate vsync interrupt
  626.  *           |          |  |
  627.  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
  628.  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
  629.  * ----va---> <-----------------vb--------------------> <--------va-------------
  630.  *       |          |       <----vs----->                     |
  631.  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  632.  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  633.  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  634.  *       |          |                                         |
  635.  *       last visible pixel                                   first visible pixel
  636.  *                  |                                         increment frame counter (gen3/4)
  637.  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
  638.  *
  639.  * x  = horizontal active
  640.  * _  = horizontal blanking
  641.  * hs = horizontal sync
  642.  * va = vertical active
  643.  * vb = vertical blanking
  644.  * vs = vertical sync
  645.  * vbs = vblank_start (number)
  646.  *
  647.  * Summary:
  648.  * - most events happen at the start of horizontal sync
  649.  * - frame start happens at the start of horizontal blank, 1-4 lines
  650.  *   (depending on PIPECONF settings) after the start of vblank
  651.  * - gen3/4 pixel and frame counter are synchronized with the start
  652.  *   of horizontal active on the first line of vertical active
  653.  */
  654.  
  655. static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  656. {
  657.         /* Gen2 doesn't have a hardware frame counter */
  658.         return 0;
  659. }
  660.  
  661. /* Called from drm generic code, passed a 'crtc', which
  662.  * we use as a pipe index
  663.  */
  664. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  665. {
  666.         struct drm_i915_private *dev_priv = dev->dev_private;
  667.         unsigned long high_frame;
  668.         unsigned long low_frame;
  669.         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  670.         struct intel_crtc *intel_crtc =
  671.                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  672.         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  673.  
  674.         htotal = mode->crtc_htotal;
  675.         hsync_start = mode->crtc_hsync_start;
  676.         vbl_start = mode->crtc_vblank_start;
  677.         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  678.                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
  679.  
  680.         /* Convert to pixel count */
  681.         vbl_start *= htotal;
  682.  
  683.         /* Start of vblank event occurs at start of hsync */
  684.         vbl_start -= htotal - hsync_start;
  685.  
  686.         high_frame = PIPEFRAME(pipe);
  687.         low_frame = PIPEFRAMEPIXEL(pipe);
  688.  
  689.         /*
  690.          * High & low register fields aren't synchronized, so make sure
  691.          * we get a low value that's stable across two reads of the high
  692.          * register.
  693.          */
  694.         do {
  695.                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  696.                 low   = I915_READ(low_frame);
  697.                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  698.         } while (high1 != high2);
  699.  
  700.         high1 >>= PIPE_FRAME_HIGH_SHIFT;
  701.         pixel = low & PIPE_PIXEL_MASK;
  702.         low >>= PIPE_FRAME_LOW_SHIFT;
  703.  
  704.         /*
  705.          * The frame counter increments at beginning of active.
  706.          * Cook up a vblank counter by also checking the pixel
  707.          * counter against vblank start.
  708.          */
  709.         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  710. }
  711.  
  712. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  713. {
  714.         struct drm_i915_private *dev_priv = dev->dev_private;
  715.  
  716.         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  717. }
  718.  
  719. /* raw reads, only for fast reads of display block, no need for forcewake etc. */
  720. #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
  721.  
  722. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  723. {
  724.         struct drm_device *dev = crtc->base.dev;
  725.         struct drm_i915_private *dev_priv = dev->dev_private;
  726.         const struct drm_display_mode *mode = &crtc->base.hwmode;
  727.         enum pipe pipe = crtc->pipe;
  728.         int position, vtotal;
  729.  
  730.         vtotal = mode->crtc_vtotal;
  731.         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  732.                 vtotal /= 2;
  733.  
  734.         if (IS_GEN2(dev))
  735.                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  736.         else
  737.                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  738.  
  739.         /*
  740.          * On HSW, the DSL reg (0x70000) appears to return 0 if we
  741.          * read it just before the start of vblank.  So try it again
  742.          * so we don't accidentally end up spanning a vblank frame
  743.          * increment, causing the pipe_update_end() code to squak at us.
  744.          *
  745.          * The nature of this problem means we can't simply check the ISR
  746.          * bit and return the vblank start value; nor can we use the scanline
  747.          * debug register in the transcoder as it appears to have the same
  748.          * problem.  We may need to extend this to include other platforms,
  749.          * but so far testing only shows the problem on HSW.
  750.          */
  751.         if (HAS_DDI(dev) && !position) {
  752.                 int i, temp;
  753.  
  754.                 for (i = 0; i < 100; i++) {
  755.                         udelay(1);
  756.                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  757.                                 DSL_LINEMASK_GEN3;
  758.                         if (temp != position) {
  759.                                 position = temp;
  760.                                 break;
  761.                         }
  762.                 }
  763.         }
  764.  
  765.         /*
  766.          * See update_scanline_offset() for the details on the
  767.          * scanline_offset adjustment.
  768.          */
  769.         return (position + crtc->scanline_offset) % vtotal;
  770. }
  771.  
  772. static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  773.                                     unsigned int flags, int *vpos, int *hpos,
  774.                                     ktime_t *stime, ktime_t *etime,
  775.                                     const struct drm_display_mode *mode)
  776. {
  777.         struct drm_i915_private *dev_priv = dev->dev_private;
  778.         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  779.         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  780.         int position;
  781.         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  782.         bool in_vbl = true;
  783.         int ret = 0;
  784.         unsigned long irqflags;
  785.  
  786.         if (WARN_ON(!mode->crtc_clock)) {
  787.                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  788.                                  "pipe %c\n", pipe_name(pipe));
  789.                 return 0;
  790.         }
  791.  
  792.         htotal = mode->crtc_htotal;
  793.         hsync_start = mode->crtc_hsync_start;
  794.         vtotal = mode->crtc_vtotal;
  795.         vbl_start = mode->crtc_vblank_start;
  796.         vbl_end = mode->crtc_vblank_end;
  797.  
  798.         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  799.                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
  800.                 vbl_end /= 2;
  801.                 vtotal /= 2;
  802.         }
  803.  
  804.         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  805.  
  806.         /*
  807.          * Lock uncore.lock, as we will do multiple timing critical raw
  808.          * register reads, potentially with preemption disabled, so the
  809.          * following code must not block on uncore.lock.
  810.          */
  811.         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  812.  
  813.         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  814.  
  815.         /* Get optional system timestamp before query. */
  816.         if (stime)
  817.                 *stime = ktime_get();
  818.  
  819.         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  820.                 /* No obvious pixelcount register. Only query vertical
  821.                  * scanout position from Display scan line register.
  822.                  */
  823.                 position = __intel_get_crtc_scanline(intel_crtc);
  824.         } else {
  825.                 /* Have access to pixelcount since start of frame.
  826.                  * We can split this into vertical and horizontal
  827.                  * scanout position.
  828.                  */
  829.                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  830.  
  831.                 /* convert to pixel counts */
  832.                 vbl_start *= htotal;
  833.                 vbl_end *= htotal;
  834.                 vtotal *= htotal;
  835.  
  836.                 /*
  837.                  * In interlaced modes, the pixel counter counts all pixels,
  838.                  * so one field will have htotal more pixels. In order to avoid
  839.                  * the reported position from jumping backwards when the pixel
  840.                  * counter is beyond the length of the shorter field, just
  841.                  * clamp the position the length of the shorter field. This
  842.                  * matches how the scanline counter based position works since
  843.                  * the scanline counter doesn't count the two half lines.
  844.                  */
  845.                 if (position >= vtotal)
  846.                         position = vtotal - 1;
  847.  
  848.                 /*
  849.                  * Start of vblank interrupt is triggered at start of hsync,
  850.                  * just prior to the first active line of vblank. However we
  851.                  * consider lines to start at the leading edge of horizontal
  852.                  * active. So, should we get here before we've crossed into
  853.                  * the horizontal active of the first line in vblank, we would
  854.                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  855.                  * always add htotal-hsync_start to the current pixel position.
  856.                  */
  857.                 position = (position + htotal - hsync_start) % vtotal;
  858.         }
  859.  
  860.         /* Get optional system timestamp after query. */
  861.         if (etime)
  862.                 *etime = ktime_get();
  863.  
  864.         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  865.  
  866.         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  867.  
  868.         in_vbl = position >= vbl_start && position < vbl_end;
  869.  
  870.         /*
  871.          * While in vblank, position will be negative
  872.          * counting up towards 0 at vbl_end. And outside
  873.          * vblank, position will be positive counting
  874.          * up since vbl_end.
  875.          */
  876.         if (position >= vbl_start)
  877.                 position -= vbl_end;
  878.         else
  879.                 position += vtotal - vbl_end;
  880.  
  881.         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  882.                 *vpos = position;
  883.                 *hpos = 0;
  884.         } else {
  885.                 *vpos = position / htotal;
  886.                 *hpos = position - (*vpos * htotal);
  887.         }
  888.  
  889.         /* In vblank? */
  890.         if (in_vbl)
  891.                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
  892.  
  893.         return ret;
  894. }
  895.  
  896. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  897. {
  898.         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  899.         unsigned long irqflags;
  900.         int position;
  901.  
  902.         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  903.         position = __intel_get_crtc_scanline(crtc);
  904.         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  905.  
  906.         return position;
  907. }
  908.  
  909. static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
  910.                               int *max_error,
  911.                               struct timeval *vblank_time,
  912.                               unsigned flags)
  913. {
  914.         struct drm_crtc *crtc;
  915.  
  916.         if (pipe >= INTEL_INFO(dev)->num_pipes) {
  917.                 DRM_ERROR("Invalid crtc %u\n", pipe);
  918.                 return -EINVAL;
  919.         }
  920.  
  921.         /* Get drm_crtc to timestamp: */
  922.         crtc = intel_get_crtc_for_pipe(dev, pipe);
  923.         if (crtc == NULL) {
  924.                 DRM_ERROR("Invalid crtc %u\n", pipe);
  925.                 return -EINVAL;
  926.         }
  927.  
  928.         if (!crtc->hwmode.crtc_clock) {
  929.                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
  930.                 return -EBUSY;
  931.         }
  932.  
  933.         /* Helper routine in DRM core does all the work: */
  934.         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  935.                                                      vblank_time, flags,
  936.                                                      &crtc->hwmode);
  937. }
  938.  
  939. static void ironlake_rps_change_irq_handler(struct drm_device *dev)
  940. {
  941.         struct drm_i915_private *dev_priv = dev->dev_private;
  942.         u32 busy_up, busy_down, max_avg, min_avg;
  943.         u8 new_delay;
  944.  
  945.         spin_lock(&mchdev_lock);
  946.  
  947.         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  948.  
  949.         new_delay = dev_priv->ips.cur_delay;
  950.  
  951.         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  952.         busy_up = I915_READ(RCPREVBSYTUPAVG);
  953.         busy_down = I915_READ(RCPREVBSYTDNAVG);
  954.         max_avg = I915_READ(RCBMAXAVG);
  955.         min_avg = I915_READ(RCBMINAVG);
  956.  
  957.         /* Handle RCS change request from hw */
  958.         if (busy_up > max_avg) {
  959.                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  960.                         new_delay = dev_priv->ips.cur_delay - 1;
  961.                 if (new_delay < dev_priv->ips.max_delay)
  962.                         new_delay = dev_priv->ips.max_delay;
  963.         } else if (busy_down < min_avg) {
  964.                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  965.                         new_delay = dev_priv->ips.cur_delay + 1;
  966.                 if (new_delay > dev_priv->ips.min_delay)
  967.                         new_delay = dev_priv->ips.min_delay;
  968.         }
  969.  
  970.         if (ironlake_set_drps(dev, new_delay))
  971.                 dev_priv->ips.cur_delay = new_delay;
  972.  
  973.         spin_unlock(&mchdev_lock);
  974.  
  975.         return;
  976. }
  977.  
  978. static void notify_ring(struct intel_engine_cs *ring)
  979. {
  980.         if (!intel_ring_initialized(ring))
  981.                 return;
  982.  
  983.         trace_i915_gem_request_notify(ring);
  984.  
  985.         wake_up_all(&ring->irq_queue);
  986. }
  987.  
  988. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  989.                         struct intel_rps_ei *ei)
  990. {
  991.         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  992.         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  993.         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  994. }
  995.  
  996. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  997.                          const struct intel_rps_ei *old,
  998.                          const struct intel_rps_ei *now,
  999.                          int threshold)
  1000. {
  1001.         u64 time, c0;
  1002.         unsigned int mul = 100;
  1003.  
  1004.         if (old->cz_clock == 0)
  1005.                 return false;
  1006.  
  1007.         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  1008.                 mul <<= 8;
  1009.  
  1010.         time = now->cz_clock - old->cz_clock;
  1011.         time *= threshold * dev_priv->czclk_freq;
  1012.  
  1013.         /* Workload can be split between render + media, e.g. SwapBuffers
  1014.          * being blitted in X after being rendered in mesa. To account for
  1015.          * this we need to combine both engines into our activity counter.
  1016.          */
  1017.         c0 = now->render_c0 - old->render_c0;
  1018.         c0 += now->media_c0 - old->media_c0;
  1019.         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
  1020.  
  1021.         return c0 >= time;
  1022. }
  1023.  
  1024. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  1025. {
  1026.         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  1027.         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  1028. }
  1029.  
  1030. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  1031. {
  1032.         struct intel_rps_ei now;
  1033.         u32 events = 0;
  1034.  
  1035.         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  1036.                 return 0;
  1037.  
  1038.         vlv_c0_read(dev_priv, &now);
  1039.         if (now.cz_clock == 0)
  1040.                 return 0;
  1041.  
  1042.         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  1043.                 if (!vlv_c0_above(dev_priv,
  1044.                                   &dev_priv->rps.down_ei, &now,
  1045.                                   dev_priv->rps.down_threshold))
  1046.                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
  1047.                 dev_priv->rps.down_ei = now;
  1048.         }
  1049.  
  1050.         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  1051.                 if (vlv_c0_above(dev_priv,
  1052.                                  &dev_priv->rps.up_ei, &now,
  1053.                                  dev_priv->rps.up_threshold))
  1054.                         events |= GEN6_PM_RP_UP_THRESHOLD;
  1055.                 dev_priv->rps.up_ei = now;
  1056.         }
  1057.  
  1058.         return events;
  1059. }
  1060.  
  1061. static bool any_waiters(struct drm_i915_private *dev_priv)
  1062. {
  1063.         struct intel_engine_cs *ring;
  1064.         int i;
  1065.  
  1066.         for_each_ring(ring, dev_priv, i)
  1067.                 if (ring->irq_refcount)
  1068.                         return true;
  1069.  
  1070.         return false;
  1071. }
  1072.  
  1073. static void gen6_pm_rps_work(struct work_struct *work)
  1074. {
  1075.         struct drm_i915_private *dev_priv =
  1076.                 container_of(work, struct drm_i915_private, rps.work);
  1077.         bool client_boost;
  1078.         int new_delay, adj, min, max;
  1079.         u32 pm_iir;
  1080.  
  1081.         spin_lock_irq(&dev_priv->irq_lock);
  1082.         /* Speed up work cancelation during disabling rps interrupts. */
  1083.         if (!dev_priv->rps.interrupts_enabled) {
  1084.                 spin_unlock_irq(&dev_priv->irq_lock);
  1085.                 return;
  1086.         }
  1087.         pm_iir = dev_priv->rps.pm_iir;
  1088.         dev_priv->rps.pm_iir = 0;
  1089.         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  1090.         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  1091.         client_boost = dev_priv->rps.client_boost;
  1092.         dev_priv->rps.client_boost = false;
  1093.         spin_unlock_irq(&dev_priv->irq_lock);
  1094.  
  1095.         /* Make sure we didn't queue anything we're not going to process. */
  1096.         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  1097.  
  1098.         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  1099.                 return;
  1100.  
  1101.         mutex_lock(&dev_priv->rps.hw_lock);
  1102.  
  1103.         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  1104.  
  1105.         adj = dev_priv->rps.last_adj;
  1106.         new_delay = dev_priv->rps.cur_freq;
  1107.         min = dev_priv->rps.min_freq_softlimit;
  1108.         max = dev_priv->rps.max_freq_softlimit;
  1109.  
  1110.         if (client_boost) {
  1111.                 new_delay = dev_priv->rps.max_freq_softlimit;
  1112.                 adj = 0;
  1113.         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  1114.                 if (adj > 0)
  1115.                         adj *= 2;
  1116.                 else /* CHV needs even encode values */
  1117.                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  1118.                 /*
  1119.                  * For better performance, jump directly
  1120.                  * to RPe if we're below it.
  1121.                  */
  1122.                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
  1123.                         new_delay = dev_priv->rps.efficient_freq;
  1124.                         adj = 0;
  1125.                 }
  1126.         } else if (any_waiters(dev_priv)) {
  1127.                 adj = 0;
  1128.         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  1129.                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  1130.                         new_delay = dev_priv->rps.efficient_freq;
  1131.                 else
  1132.                         new_delay = dev_priv->rps.min_freq_softlimit;
  1133.                 adj = 0;
  1134.         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  1135.                 if (adj < 0)
  1136.                         adj *= 2;
  1137.                 else /* CHV needs even encode values */
  1138.                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  1139.         } else { /* unknown event */
  1140.                 adj = 0;
  1141.         }
  1142.  
  1143.         dev_priv->rps.last_adj = adj;
  1144.  
  1145.         /* sysfs frequency interfaces may have snuck in while servicing the
  1146.          * interrupt
  1147.          */
  1148.         new_delay += adj;
  1149.         new_delay = clamp_t(int, new_delay, min, max);
  1150.  
  1151.         intel_set_rps(dev_priv->dev, new_delay);
  1152.  
  1153.         mutex_unlock(&dev_priv->rps.hw_lock);
  1154. }
  1155.  
  1156.  
  1157. /**
  1158.  * ivybridge_parity_work - Workqueue called when a parity error interrupt
  1159.  * occurred.
  1160.  * @work: workqueue struct
  1161.  *
  1162.  * Doesn't actually do anything except notify userspace. As a consequence of
  1163.  * this event, userspace should try to remap the bad rows since statistically
  1164.  * it is likely the same row is more likely to go bad again.
  1165.  */
  1166. static void ivybridge_parity_work(struct work_struct *work)
  1167. {
  1168.         struct drm_i915_private *dev_priv =
  1169.                 container_of(work, struct drm_i915_private, l3_parity.error_work);
  1170.         u32 error_status, row, bank, subbank;
  1171.         char *parity_event[6];
  1172.         uint32_t misccpctl;
  1173.         uint8_t slice = 0;
  1174.  
  1175.         /* We must turn off DOP level clock gating to access the L3 registers.
  1176.          * In order to prevent a get/put style interface, acquire struct mutex
  1177.          * any time we access those registers.
  1178.          */
  1179.         mutex_lock(&dev_priv->dev->struct_mutex);
  1180.  
  1181.         /* If we've screwed up tracking, just let the interrupt fire again */
  1182.         if (WARN_ON(!dev_priv->l3_parity.which_slice))
  1183.                 goto out;
  1184.  
  1185.         misccpctl = I915_READ(GEN7_MISCCPCTL);
  1186.         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  1187.         POSTING_READ(GEN7_MISCCPCTL);
  1188.  
  1189.         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  1190.                 u32 reg;
  1191.  
  1192.                 slice--;
  1193.                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
  1194.                         break;
  1195.  
  1196.                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1197.  
  1198.                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
  1199.  
  1200.                 error_status = I915_READ(reg);
  1201.                 row = GEN7_PARITY_ERROR_ROW(error_status);
  1202.                 bank = GEN7_PARITY_ERROR_BANK(error_status);
  1203.                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1204.  
  1205.                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1206.                 POSTING_READ(reg);
  1207.  
  1208.                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1209.                           slice, row, bank, subbank);
  1210.  
  1211.         }
  1212.  
  1213.         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1214.  
  1215. out:
  1216.         WARN_ON(dev_priv->l3_parity.which_slice);
  1217.         spin_lock_irq(&dev_priv->irq_lock);
  1218.         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
  1219.         spin_unlock_irq(&dev_priv->irq_lock);
  1220.  
  1221.         mutex_unlock(&dev_priv->dev->struct_mutex);
  1222. }
  1223.  
  1224. static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
  1225. {
  1226.         struct drm_i915_private *dev_priv = dev->dev_private;
  1227.  
  1228.         if (!HAS_L3_DPF(dev))
  1229.                 return;
  1230.  
  1231.         spin_lock(&dev_priv->irq_lock);
  1232.         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
  1233.         spin_unlock(&dev_priv->irq_lock);
  1234.  
  1235.         iir &= GT_PARITY_ERROR(dev);
  1236.         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1237.                 dev_priv->l3_parity.which_slice |= 1 << 1;
  1238.  
  1239.         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1240.                 dev_priv->l3_parity.which_slice |= 1 << 0;
  1241.  
  1242.         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1243. }
  1244.  
  1245. static void ilk_gt_irq_handler(struct drm_device *dev,
  1246.                                struct drm_i915_private *dev_priv,
  1247.                                u32 gt_iir)
  1248. {
  1249.         if (gt_iir &
  1250.             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1251.                 notify_ring(&dev_priv->ring[RCS]);
  1252.         if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1253.                 notify_ring(&dev_priv->ring[VCS]);
  1254. }
  1255.  
  1256. static void snb_gt_irq_handler(struct drm_device *dev,
  1257.                                struct drm_i915_private *dev_priv,
  1258.                                u32 gt_iir)
  1259. {
  1260.  
  1261.         if (gt_iir &
  1262.             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1263.                 notify_ring(&dev_priv->ring[RCS]);
  1264.         if (gt_iir & GT_BSD_USER_INTERRUPT)
  1265.                 notify_ring(&dev_priv->ring[VCS]);
  1266.         if (gt_iir & GT_BLT_USER_INTERRUPT)
  1267.                 notify_ring(&dev_priv->ring[BCS]);
  1268.  
  1269.         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1270.                       GT_BSD_CS_ERROR_INTERRUPT |
  1271.                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1272.                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1273.  
  1274.         if (gt_iir & GT_PARITY_ERROR(dev))
  1275.                 ivybridge_parity_error_irq_handler(dev, gt_iir);
  1276. }
  1277.  
  1278. static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1279.                                        u32 master_ctl)
  1280. {
  1281.         irqreturn_t ret = IRQ_NONE;
  1282.  
  1283.         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1284.                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
  1285.                 if (tmp) {
  1286.                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
  1287.                         ret = IRQ_HANDLED;
  1288.  
  1289.                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  1290.                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
  1291.                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  1292.                                 notify_ring(&dev_priv->ring[RCS]);
  1293.  
  1294.                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1295.                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
  1296.                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1297.                                 notify_ring(&dev_priv->ring[BCS]);
  1298.                 } else
  1299.                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1300.         }
  1301.  
  1302.         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1303.                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
  1304.                 if (tmp) {
  1305.                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
  1306.                         ret = IRQ_HANDLED;
  1307.  
  1308.                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1309.                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
  1310.                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1311.                                 notify_ring(&dev_priv->ring[VCS]);
  1312.  
  1313.                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1314.                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
  1315.                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1316.                                 notify_ring(&dev_priv->ring[VCS2]);
  1317.                 } else
  1318.                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1319.         }
  1320.  
  1321.         if (master_ctl & GEN8_GT_VECS_IRQ) {
  1322.                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
  1323.                 if (tmp) {
  1324.                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
  1325.                         ret = IRQ_HANDLED;
  1326.  
  1327.                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1328.                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
  1329.                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1330.                                 notify_ring(&dev_priv->ring[VECS]);
  1331.                 } else
  1332.                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1333.         }
  1334.  
  1335.         if (master_ctl & GEN8_GT_PM_IRQ) {
  1336.                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
  1337.                 if (tmp & dev_priv->pm_rps_events) {
  1338.                         I915_WRITE_FW(GEN8_GT_IIR(2),
  1339.                                       tmp & dev_priv->pm_rps_events);
  1340.                         ret = IRQ_HANDLED;
  1341.                         gen6_rps_irq_handler(dev_priv, tmp);
  1342.                 } else
  1343.                         DRM_ERROR("The master control interrupt lied (PM)!\n");
  1344.         }
  1345.  
  1346.         return ret;
  1347. }
  1348.  
  1349. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1350. {
  1351.         switch (port) {
  1352.         case PORT_A:
  1353.                 return val & PORTA_HOTPLUG_LONG_DETECT;
  1354.         case PORT_B:
  1355.                 return val & PORTB_HOTPLUG_LONG_DETECT;
  1356.         case PORT_C:
  1357.                 return val & PORTC_HOTPLUG_LONG_DETECT;
  1358.         default:
  1359.                 return false;
  1360.         }
  1361. }
  1362.  
  1363. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1364. {
  1365.         switch (port) {
  1366.         case PORT_E:
  1367.                 return val & PORTE_HOTPLUG_LONG_DETECT;
  1368.         default:
  1369.                 return false;
  1370.         }
  1371. }
  1372.  
  1373. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1374. {
  1375.         switch (port) {
  1376.         case PORT_A:
  1377.                 return val & PORTA_HOTPLUG_LONG_DETECT;
  1378.         case PORT_B:
  1379.                 return val & PORTB_HOTPLUG_LONG_DETECT;
  1380.         case PORT_C:
  1381.                 return val & PORTC_HOTPLUG_LONG_DETECT;
  1382.         case PORT_D:
  1383.                 return val & PORTD_HOTPLUG_LONG_DETECT;
  1384.         default:
  1385.                 return false;
  1386.         }
  1387. }
  1388.  
  1389. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1390. {
  1391.         switch (port) {
  1392.         case PORT_A:
  1393.                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1394.         default:
  1395.                 return false;
  1396.         }
  1397. }
  1398.  
  1399. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1400. {
  1401.         switch (port) {
  1402.         case PORT_B:
  1403.                 return val & PORTB_HOTPLUG_LONG_DETECT;
  1404.         case PORT_C:
  1405.                 return val & PORTC_HOTPLUG_LONG_DETECT;
  1406.         case PORT_D:
  1407.                 return val & PORTD_HOTPLUG_LONG_DETECT;
  1408.         default:
  1409.                 return false;
  1410.         }
  1411. }
  1412.  
  1413. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1414. {
  1415.         switch (port) {
  1416.         case PORT_B:
  1417.                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1418.         case PORT_C:
  1419.                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1420.         case PORT_D:
  1421.                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1422.         default:
  1423.                 return false;
  1424.         }
  1425. }
  1426.  
  1427. /*
  1428.  * Get a bit mask of pins that have triggered, and which ones may be long.
  1429.  * This can be called multiple times with the same masks to accumulate
  1430.  * hotplug detection results from several registers.
  1431.  *
  1432.  * Note that the caller is expected to zero out the masks initially.
  1433.  */
  1434. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1435.                              u32 hotplug_trigger, u32 dig_hotplug_reg,
  1436.                              const u32 hpd[HPD_NUM_PINS],
  1437.                              bool long_pulse_detect(enum port port, u32 val))
  1438. {
  1439.         enum port port;
  1440.         int i;
  1441.  
  1442.         for_each_hpd_pin(i) {
  1443.                 if ((hpd[i] & hotplug_trigger) == 0)
  1444.                         continue;
  1445.  
  1446.                 *pin_mask |= BIT(i);
  1447.  
  1448.                 if (!intel_hpd_pin_to_port(i, &port))
  1449.                         continue;
  1450.  
  1451.                 if (long_pulse_detect(port, dig_hotplug_reg))
  1452.                         *long_mask |= BIT(i);
  1453.         }
  1454.  
  1455.         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1456.                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1457.  
  1458. }
  1459.  
  1460. static void gmbus_irq_handler(struct drm_device *dev)
  1461. {
  1462.         struct drm_i915_private *dev_priv = dev->dev_private;
  1463.  
  1464.         wake_up_all(&dev_priv->gmbus_wait_queue);
  1465. }
  1466.  
  1467. static void dp_aux_irq_handler(struct drm_device *dev)
  1468. {
  1469.         struct drm_i915_private *dev_priv = dev->dev_private;
  1470.  
  1471.         wake_up_all(&dev_priv->gmbus_wait_queue);
  1472. }
  1473.  
  1474. #if defined(CONFIG_DEBUG_FS)
  1475. static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1476.                                          uint32_t crc0, uint32_t crc1,
  1477.                                          uint32_t crc2, uint32_t crc3,
  1478.                                          uint32_t crc4)
  1479. {
  1480.         struct drm_i915_private *dev_priv = dev->dev_private;
  1481.         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1482.         struct intel_pipe_crc_entry *entry;
  1483.         int head, tail;
  1484.  
  1485.         spin_lock(&pipe_crc->lock);
  1486.  
  1487.         if (!pipe_crc->entries) {
  1488.                 spin_unlock(&pipe_crc->lock);
  1489.                 DRM_DEBUG_KMS("spurious interrupt\n");
  1490.                 return;
  1491.         }
  1492.  
  1493.         head = pipe_crc->head;
  1494.         tail = pipe_crc->tail;
  1495.  
  1496.         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1497.                 spin_unlock(&pipe_crc->lock);
  1498.                 DRM_ERROR("CRC buffer overflowing\n");
  1499.                 return;
  1500.         }
  1501.  
  1502.         entry = &pipe_crc->entries[head];
  1503.  
  1504.         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
  1505.         entry->crc[0] = crc0;
  1506.         entry->crc[1] = crc1;
  1507.         entry->crc[2] = crc2;
  1508.         entry->crc[3] = crc3;
  1509.         entry->crc[4] = crc4;
  1510.  
  1511.         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1512.         pipe_crc->head = head;
  1513.  
  1514.         spin_unlock(&pipe_crc->lock);
  1515.  
  1516.         wake_up_interruptible(&pipe_crc->wq);
  1517. }
  1518. #else
  1519. static inline void
  1520. display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1521.                              uint32_t crc0, uint32_t crc1,
  1522.                              uint32_t crc2, uint32_t crc3,
  1523.                              uint32_t crc4) {}
  1524. #endif
  1525.  
  1526.  
  1527. static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1528. {
  1529.         struct drm_i915_private *dev_priv = dev->dev_private;
  1530.  
  1531.         display_pipe_crc_irq_handler(dev, pipe,
  1532.                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1533.                                      0, 0, 0, 0);
  1534. }
  1535.  
  1536. static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1537. {
  1538.         struct drm_i915_private *dev_priv = dev->dev_private;
  1539.  
  1540.         display_pipe_crc_irq_handler(dev, pipe,
  1541.                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1542.                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1543.                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1544.                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1545.                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1546. }
  1547.  
  1548. static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1549. {
  1550.         struct drm_i915_private *dev_priv = dev->dev_private;
  1551.         uint32_t res1, res2;
  1552.  
  1553.         if (INTEL_INFO(dev)->gen >= 3)
  1554.                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1555.         else
  1556.                 res1 = 0;
  1557.  
  1558.         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  1559.                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1560.         else
  1561.                 res2 = 0;
  1562.  
  1563.         display_pipe_crc_irq_handler(dev, pipe,
  1564.                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
  1565.                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1566.                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1567.                                      res1, res2);
  1568. }
  1569.  
  1570. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1571.  * IMR bits until the work is done. Other interrupts can be processed without
  1572.  * the work queue. */
  1573. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1574. {
  1575.         if (pm_iir & dev_priv->pm_rps_events) {
  1576.                 spin_lock(&dev_priv->irq_lock);
  1577.                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1578.                 if (dev_priv->rps.interrupts_enabled) {
  1579.                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1580.                         queue_work(dev_priv->wq, &dev_priv->rps.work);
  1581.                 }
  1582.                 spin_unlock(&dev_priv->irq_lock);
  1583.         }
  1584.  
  1585.         if (INTEL_INFO(dev_priv)->gen >= 8)
  1586.                 return;
  1587.  
  1588.         if (HAS_VEBOX(dev_priv->dev)) {
  1589.                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1590.                         notify_ring(&dev_priv->ring[VECS]);
  1591.  
  1592.                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1593.                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1594.         }
  1595. }
  1596.  
  1597. static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
  1598. {
  1599.         if (!drm_handle_vblank(dev, pipe))
  1600.                 return false;
  1601.  
  1602.         return true;
  1603. }
  1604.  
  1605. static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
  1606. {
  1607.         struct drm_i915_private *dev_priv = dev->dev_private;
  1608.         u32 pipe_stats[I915_MAX_PIPES] = { };
  1609.         int pipe;
  1610.  
  1611.         spin_lock(&dev_priv->irq_lock);
  1612.         for_each_pipe(dev_priv, pipe) {
  1613.                 int reg;
  1614.                 u32 mask, iir_bit = 0;
  1615.  
  1616.                 /*
  1617.                  * PIPESTAT bits get signalled even when the interrupt is
  1618.                  * disabled with the mask bits, and some of the status bits do
  1619.                  * not generate interrupts at all (like the underrun bit). Hence
  1620.                  * we need to be careful that we only handle what we want to
  1621.                  * handle.
  1622.                  */
  1623.  
  1624.                 /* fifo underruns are filterered in the underrun handler. */
  1625.                 mask = PIPE_FIFO_UNDERRUN_STATUS;
  1626.  
  1627.                 switch (pipe) {
  1628.                 case PIPE_A:
  1629.                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1630.                         break;
  1631.                 case PIPE_B:
  1632.                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1633.                         break;
  1634.                 case PIPE_C:
  1635.                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1636.                         break;
  1637.                 }
  1638.                 if (iir & iir_bit)
  1639.                         mask |= dev_priv->pipestat_irq_mask[pipe];
  1640.  
  1641.                 if (!mask)
  1642.                         continue;
  1643.  
  1644.                 reg = PIPESTAT(pipe);
  1645.                 mask |= PIPESTAT_INT_ENABLE_MASK;
  1646.                 pipe_stats[pipe] = I915_READ(reg) & mask;
  1647.  
  1648.                 /*
  1649.                  * Clear the PIPE*STAT regs before the IIR
  1650.                  */
  1651.                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1652.                                         PIPESTAT_INT_STATUS_MASK))
  1653.                         I915_WRITE(reg, pipe_stats[pipe]);
  1654.         }
  1655.         spin_unlock(&dev_priv->irq_lock);
  1656.  
  1657.         for_each_pipe(dev_priv, pipe) {
  1658.                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1659.                     intel_pipe_handle_vblank(dev, pipe))
  1660.             /*intel_check_page_flip(dev, pipe)*/;
  1661.  
  1662.                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
  1663. //           intel_prepare_page_flip(dev, pipe);
  1664. //           intel_finish_page_flip(dev, pipe);
  1665.                 }
  1666.  
  1667.                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1668.                         i9xx_pipe_crc_irq_handler(dev, pipe);
  1669.  
  1670.                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1671.                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1672.         }
  1673.  
  1674.         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1675.                 gmbus_irq_handler(dev);
  1676. }
  1677.  
  1678. static void i9xx_hpd_irq_handler(struct drm_device *dev)
  1679. {
  1680.         struct drm_i915_private *dev_priv = dev->dev_private;
  1681.         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1682.         u32 pin_mask = 0, long_mask = 0;
  1683.  
  1684.         if (!hotplug_status)
  1685.                 return;
  1686.  
  1687.         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1688.         /*
  1689.          * Make sure hotplug status is cleared before we clear IIR, or else we
  1690.          * may miss hotplug events.
  1691.          */
  1692.         POSTING_READ(PORT_HOTPLUG_STAT);
  1693.  
  1694.         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  1695.                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1696.  
  1697.                 if (hotplug_trigger) {
  1698.                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1699.                                            hotplug_trigger, hpd_status_g4x,
  1700.                                            i9xx_port_hotplug_long_detect);
  1701.  
  1702.                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1703.                 }
  1704.  
  1705.                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1706.                         dp_aux_irq_handler(dev);
  1707.         } else {
  1708.                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1709.  
  1710.                 if (hotplug_trigger) {
  1711.                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1712.                                            hotplug_trigger, hpd_status_i915,
  1713.                                            i9xx_port_hotplug_long_detect);
  1714.                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1715.                 }
  1716.         }
  1717. }
  1718.  
  1719. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1720. {
  1721.         struct drm_device *dev = arg;
  1722.         struct drm_i915_private *dev_priv = dev->dev_private;
  1723.         u32 iir, gt_iir, pm_iir;
  1724.         irqreturn_t ret = IRQ_NONE;
  1725.  
  1726.         if (!intel_irqs_enabled(dev_priv))
  1727.                 return IRQ_NONE;
  1728.  
  1729.         while (true) {
  1730.                 /* Find, clear, then process each source of interrupt */
  1731.  
  1732.                 gt_iir = I915_READ(GTIIR);
  1733.                 if (gt_iir)
  1734.                         I915_WRITE(GTIIR, gt_iir);
  1735.  
  1736.                 pm_iir = I915_READ(GEN6_PMIIR);
  1737.                 if (pm_iir)
  1738.                         I915_WRITE(GEN6_PMIIR, pm_iir);
  1739.  
  1740.                 iir = I915_READ(VLV_IIR);
  1741.                 if (iir) {
  1742.                         /* Consume port before clearing IIR or we'll miss events */
  1743.                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1744.                                 i9xx_hpd_irq_handler(dev);
  1745.                         I915_WRITE(VLV_IIR, iir);
  1746.                 }
  1747.  
  1748.                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1749.                         goto out;
  1750.  
  1751.                 ret = IRQ_HANDLED;
  1752.  
  1753.                 if (gt_iir)
  1754.                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1755.                 if (pm_iir)
  1756.                         gen6_rps_irq_handler(dev_priv, pm_iir);
  1757.                 /* Call regardless, as some status bits might not be
  1758.                  * signalled in iir */
  1759.                 valleyview_pipestat_irq_handler(dev, iir);
  1760.         }
  1761.  
  1762. out:
  1763.         return ret;
  1764. }
  1765.  
  1766. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1767. {
  1768.         struct drm_device *dev = arg;
  1769.         struct drm_i915_private *dev_priv = dev->dev_private;
  1770.         u32 master_ctl, iir;
  1771.         irqreturn_t ret = IRQ_NONE;
  1772.  
  1773.         if (!intel_irqs_enabled(dev_priv))
  1774.                 return IRQ_NONE;
  1775.  
  1776.         for (;;) {
  1777.                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1778.                 iir = I915_READ(VLV_IIR);
  1779.  
  1780.                 if (master_ctl == 0 && iir == 0)
  1781.                         break;
  1782.  
  1783.                 ret = IRQ_HANDLED;
  1784.  
  1785.                 I915_WRITE(GEN8_MASTER_IRQ, 0);
  1786.  
  1787.                 /* Find, clear, then process each source of interrupt */
  1788.  
  1789.                 if (iir) {
  1790.                         /* Consume port before clearing IIR or we'll miss events */
  1791.                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1792.                                 i9xx_hpd_irq_handler(dev);
  1793.                         I915_WRITE(VLV_IIR, iir);
  1794.                 }
  1795.  
  1796.                 gen8_gt_irq_handler(dev_priv, master_ctl);
  1797.  
  1798.                 /* Call regardless, as some status bits might not be
  1799.                  * signalled in iir */
  1800.                 valleyview_pipestat_irq_handler(dev, iir);
  1801.  
  1802.                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  1803.                 POSTING_READ(GEN8_MASTER_IRQ);
  1804.         }
  1805.  
  1806.         return ret;
  1807. }
  1808.  
  1809. static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1810.                                 const u32 hpd[HPD_NUM_PINS])
  1811. {
  1812.         struct drm_i915_private *dev_priv = to_i915(dev);
  1813.         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1814.  
  1815.         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1816.         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1817.  
  1818.         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1819.                            dig_hotplug_reg, hpd,
  1820.                            pch_port_hotplug_long_detect);
  1821.  
  1822.         intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1823. }
  1824.  
  1825. static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
  1826. {
  1827.         struct drm_i915_private *dev_priv = dev->dev_private;
  1828.         int pipe;
  1829.         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1830.  
  1831.         if (hotplug_trigger)
  1832.                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
  1833.  
  1834.         if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1835.                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1836.                                SDE_AUDIO_POWER_SHIFT);
  1837.                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1838.                                  port_name(port));
  1839.         }
  1840.  
  1841.         if (pch_iir & SDE_AUX_MASK)
  1842.                 dp_aux_irq_handler(dev);
  1843.  
  1844.         if (pch_iir & SDE_GMBUS)
  1845.                 gmbus_irq_handler(dev);
  1846.  
  1847.         if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1848.                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1849.  
  1850.         if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1851.                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1852.  
  1853.         if (pch_iir & SDE_POISON)
  1854.                 DRM_ERROR("PCH poison interrupt\n");
  1855.  
  1856.         if (pch_iir & SDE_FDI_MASK)
  1857.                 for_each_pipe(dev_priv, pipe)
  1858.                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
  1859.                                          pipe_name(pipe),
  1860.                                          I915_READ(FDI_RX_IIR(pipe)));
  1861.  
  1862.         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1863.                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1864.  
  1865.         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1866.                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1867.  
  1868.         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1869.                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1870.  
  1871.         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1872.                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1873. }
  1874.  
  1875. static void ivb_err_int_handler(struct drm_device *dev)
  1876. {
  1877.         struct drm_i915_private *dev_priv = dev->dev_private;
  1878.         u32 err_int = I915_READ(GEN7_ERR_INT);
  1879.         enum pipe pipe;
  1880.  
  1881.         if (err_int & ERR_INT_POISON)
  1882.                 DRM_ERROR("Poison interrupt\n");
  1883.  
  1884.         for_each_pipe(dev_priv, pipe) {
  1885.                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1886.                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1887.  
  1888.                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1889.                         if (IS_IVYBRIDGE(dev))
  1890.                                 ivb_pipe_crc_irq_handler(dev, pipe);
  1891.                         else
  1892.                                 hsw_pipe_crc_irq_handler(dev, pipe);
  1893.                 }
  1894.         }
  1895.  
  1896.         I915_WRITE(GEN7_ERR_INT, err_int);
  1897. }
  1898.  
  1899. static void cpt_serr_int_handler(struct drm_device *dev)
  1900. {
  1901.         struct drm_i915_private *dev_priv = dev->dev_private;
  1902.         u32 serr_int = I915_READ(SERR_INT);
  1903.  
  1904.         if (serr_int & SERR_INT_POISON)
  1905.                 DRM_ERROR("PCH poison interrupt\n");
  1906.  
  1907.         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1908.                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1909.  
  1910.         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1911.                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1912.  
  1913.         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1914.                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1915.  
  1916.         I915_WRITE(SERR_INT, serr_int);
  1917. }
  1918.  
  1919. static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1920. {
  1921.         struct drm_i915_private *dev_priv = dev->dev_private;
  1922.         int pipe;
  1923.         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1924.  
  1925.         if (hotplug_trigger)
  1926.                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
  1927.  
  1928.         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1929.                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1930.                                SDE_AUDIO_POWER_SHIFT_CPT);
  1931.                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1932.                                  port_name(port));
  1933.         }
  1934.  
  1935.         if (pch_iir & SDE_AUX_MASK_CPT)
  1936.                 dp_aux_irq_handler(dev);
  1937.  
  1938.         if (pch_iir & SDE_GMBUS_CPT)
  1939.                 gmbus_irq_handler(dev);
  1940.  
  1941.         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1942.                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1943.  
  1944.         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1945.                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1946.  
  1947.         if (pch_iir & SDE_FDI_MASK_CPT)
  1948.                 for_each_pipe(dev_priv, pipe)
  1949.                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
  1950.                                          pipe_name(pipe),
  1951.                                          I915_READ(FDI_RX_IIR(pipe)));
  1952.  
  1953.         if (pch_iir & SDE_ERROR_CPT)
  1954.                 cpt_serr_int_handler(dev);
  1955. }
  1956.  
  1957. static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1958. {
  1959.         struct drm_i915_private *dev_priv = dev->dev_private;
  1960.         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1961.                 ~SDE_PORTE_HOTPLUG_SPT;
  1962.         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1963.         u32 pin_mask = 0, long_mask = 0;
  1964.  
  1965.         if (hotplug_trigger) {
  1966.                 u32 dig_hotplug_reg;
  1967.  
  1968.                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1969.                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1970.  
  1971.                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1972.                                    dig_hotplug_reg, hpd_spt,
  1973.                                    spt_port_hotplug_long_detect);
  1974.         }
  1975.  
  1976.         if (hotplug2_trigger) {
  1977.                 u32 dig_hotplug_reg;
  1978.  
  1979.                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1980.                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1981.  
  1982.                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1983.                                    dig_hotplug_reg, hpd_spt,
  1984.                                    spt_port_hotplug2_long_detect);
  1985.         }
  1986.  
  1987.         if (pin_mask)
  1988.                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1989.  
  1990.         if (pch_iir & SDE_GMBUS_CPT)
  1991.                 gmbus_irq_handler(dev);
  1992. }
  1993.  
  1994. static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1995.                                 const u32 hpd[HPD_NUM_PINS])
  1996. {
  1997.         struct drm_i915_private *dev_priv = to_i915(dev);
  1998.         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1999.  
  2000.         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2001.         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  2002.  
  2003.         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  2004.                            dig_hotplug_reg, hpd,
  2005.                            ilk_port_hotplug_long_detect);
  2006.  
  2007.         intel_hpd_irq_handler(dev, pin_mask, long_mask);
  2008. }
  2009.  
  2010. static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
  2011. {
  2012.         struct drm_i915_private *dev_priv = dev->dev_private;
  2013.         enum pipe pipe;
  2014.         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  2015.  
  2016.         if (hotplug_trigger)
  2017.                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
  2018.  
  2019.         if (de_iir & DE_AUX_CHANNEL_A)
  2020.                 dp_aux_irq_handler(dev);
  2021.  
  2022.         if (de_iir & DE_GSE)
  2023.                 intel_opregion_asle_intr(dev);
  2024.  
  2025.         if (de_iir & DE_POISON)
  2026.                 DRM_ERROR("Poison interrupt\n");
  2027.  
  2028.         for_each_pipe(dev_priv, pipe) {
  2029.                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
  2030.                     intel_pipe_handle_vblank(dev, pipe))
  2031.             /*intel_check_page_flip(dev, pipe)*/;
  2032.  
  2033.                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  2034.                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  2035.  
  2036.                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
  2037.                         i9xx_pipe_crc_irq_handler(dev, pipe);
  2038.  
  2039.                 /* plane/pipes map 1:1 on ilk+ */
  2040.                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
  2041. //                      intel_prepare_page_flip(dev, pipe);
  2042. //                      intel_finish_page_flip_plane(dev, pipe);
  2043.                 }
  2044.         }
  2045.  
  2046.         /* check event from PCH */
  2047.         if (de_iir & DE_PCH_EVENT) {
  2048.                 u32 pch_iir = I915_READ(SDEIIR);
  2049.  
  2050.                 if (HAS_PCH_CPT(dev))
  2051.                         cpt_irq_handler(dev, pch_iir);
  2052.                 else
  2053.                         ibx_irq_handler(dev, pch_iir);
  2054.  
  2055.                 /* should clear PCH hotplug event before clear CPU irq */
  2056.                 I915_WRITE(SDEIIR, pch_iir);
  2057.         }
  2058.  
  2059.         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
  2060.                 ironlake_rps_change_irq_handler(dev);
  2061. }
  2062.  
  2063. static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
  2064. {
  2065.         struct drm_i915_private *dev_priv = dev->dev_private;
  2066.         enum pipe pipe;
  2067.         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  2068.  
  2069.         if (hotplug_trigger)
  2070.                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
  2071.  
  2072.         if (de_iir & DE_ERR_INT_IVB)
  2073.                 ivb_err_int_handler(dev);
  2074.  
  2075.         if (de_iir & DE_AUX_CHANNEL_A_IVB)
  2076.                 dp_aux_irq_handler(dev);
  2077.  
  2078.         if (de_iir & DE_GSE_IVB)
  2079.                 intel_opregion_asle_intr(dev);
  2080.  
  2081.         for_each_pipe(dev_priv, pipe) {
  2082.                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  2083.                     intel_pipe_handle_vblank(dev, pipe))
  2084.             /*intel_check_page_flip(dev, pipe)*/;
  2085.  
  2086.                 /* plane/pipes map 1:1 on ilk+ */
  2087.                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
  2088. //                      intel_prepare_page_flip(dev, pipe);
  2089. //                      intel_finish_page_flip_plane(dev, pipe);
  2090.                 }
  2091.         }
  2092.  
  2093.         /* check event from PCH */
  2094.         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
  2095.                 u32 pch_iir = I915_READ(SDEIIR);
  2096.  
  2097.                 cpt_irq_handler(dev, pch_iir);
  2098.  
  2099.                 /* clear PCH hotplug event before clear CPU irq */
  2100.                 I915_WRITE(SDEIIR, pch_iir);
  2101.         }
  2102. }
  2103.  
  2104. /*
  2105.  * To handle irqs with the minimum potential races with fresh interrupts, we:
  2106.  * 1 - Disable Master Interrupt Control.
  2107.  * 2 - Find the source(s) of the interrupt.
  2108.  * 3 - Clear the Interrupt Identity bits (IIR).
  2109.  * 4 - Process the interrupt(s) that had bits set in the IIRs.
  2110.  * 5 - Re-enable Master Interrupt Control.
  2111.  */
  2112. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  2113. {
  2114.         struct drm_device *dev = arg;
  2115.         struct drm_i915_private *dev_priv = dev->dev_private;
  2116.         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  2117.         irqreturn_t ret = IRQ_NONE;
  2118.  
  2119.         if (!intel_irqs_enabled(dev_priv))
  2120.                 return IRQ_NONE;
  2121.  
  2122.         /* We get interrupts on unclaimed registers, so check for this before we
  2123.          * do any I915_{READ,WRITE}. */
  2124.         intel_uncore_check_errors(dev);
  2125.  
  2126.         /* disable master interrupt before clearing iir  */
  2127.         de_ier = I915_READ(DEIER);
  2128.         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  2129.         POSTING_READ(DEIER);
  2130.  
  2131.         /* Disable south interrupts. We'll only write to SDEIIR once, so further
  2132.          * interrupts will will be stored on its back queue, and then we'll be
  2133.          * able to process them after we restore SDEIER (as soon as we restore
  2134.          * it, we'll get an interrupt if SDEIIR still has something to process
  2135.          * due to its back queue). */
  2136.         if (!HAS_PCH_NOP(dev)) {
  2137.                 sde_ier = I915_READ(SDEIER);
  2138.                 I915_WRITE(SDEIER, 0);
  2139.                 POSTING_READ(SDEIER);
  2140.         }
  2141.  
  2142.         /* Find, clear, then process each source of interrupt */
  2143.  
  2144.         gt_iir = I915_READ(GTIIR);
  2145.         if (gt_iir) {
  2146.                 I915_WRITE(GTIIR, gt_iir);
  2147.                 ret = IRQ_HANDLED;
  2148.                 if (INTEL_INFO(dev)->gen >= 6)
  2149.                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
  2150.                 else
  2151.                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
  2152.         }
  2153.  
  2154.         de_iir = I915_READ(DEIIR);
  2155.         if (de_iir) {
  2156.                 I915_WRITE(DEIIR, de_iir);
  2157.                 ret = IRQ_HANDLED;
  2158.                 if (INTEL_INFO(dev)->gen >= 7)
  2159.                         ivb_display_irq_handler(dev, de_iir);
  2160.                 else
  2161.                         ilk_display_irq_handler(dev, de_iir);
  2162.         }
  2163.  
  2164.         if (INTEL_INFO(dev)->gen >= 6) {
  2165.                 u32 pm_iir = I915_READ(GEN6_PMIIR);
  2166.                 if (pm_iir) {
  2167.                         I915_WRITE(GEN6_PMIIR, pm_iir);
  2168.                         ret = IRQ_HANDLED;
  2169.                         gen6_rps_irq_handler(dev_priv, pm_iir);
  2170.                 }
  2171.         }
  2172.  
  2173.         I915_WRITE(DEIER, de_ier);
  2174.         POSTING_READ(DEIER);
  2175.         if (!HAS_PCH_NOP(dev)) {
  2176.                 I915_WRITE(SDEIER, sde_ier);
  2177.                 POSTING_READ(SDEIER);
  2178.         }
  2179.  
  2180.         return ret;
  2181. }
  2182.  
  2183. static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  2184.                                 const u32 hpd[HPD_NUM_PINS])
  2185. {
  2186.         struct drm_i915_private *dev_priv = to_i915(dev);
  2187.         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  2188.  
  2189.         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  2190.         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  2191.  
  2192.         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  2193.                            dig_hotplug_reg, hpd,
  2194.                            bxt_port_hotplug_long_detect);
  2195.  
  2196.         intel_hpd_irq_handler(dev, pin_mask, long_mask);
  2197. }
  2198.  
  2199. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2200. {
  2201.         struct drm_device *dev = arg;
  2202.         struct drm_i915_private *dev_priv = dev->dev_private;
  2203.         u32 master_ctl;
  2204.         irqreturn_t ret = IRQ_NONE;
  2205.         uint32_t tmp = 0;
  2206.         enum pipe pipe;
  2207.         u32 aux_mask = GEN8_AUX_CHANNEL_A;
  2208.  
  2209.         if (!intel_irqs_enabled(dev_priv))
  2210.                 return IRQ_NONE;
  2211.  
  2212.         if (INTEL_INFO(dev_priv)->gen >= 9)
  2213.                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  2214.                         GEN9_AUX_CHANNEL_D;
  2215.  
  2216.         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2217.         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2218.         if (!master_ctl)
  2219.                 return IRQ_NONE;
  2220.  
  2221.         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2222.  
  2223.         /* Find, clear, then process each source of interrupt */
  2224.  
  2225.         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
  2226.  
  2227.         if (master_ctl & GEN8_DE_MISC_IRQ) {
  2228.                 tmp = I915_READ(GEN8_DE_MISC_IIR);
  2229.                 if (tmp) {
  2230.                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
  2231.                         ret = IRQ_HANDLED;
  2232.                         if (tmp & GEN8_DE_MISC_GSE)
  2233.                                 intel_opregion_asle_intr(dev);
  2234.                         else
  2235.                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
  2236.                 }
  2237.                 else
  2238.                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  2239.         }
  2240.  
  2241.         if (master_ctl & GEN8_DE_PORT_IRQ) {
  2242.                 tmp = I915_READ(GEN8_DE_PORT_IIR);
  2243.                 if (tmp) {
  2244.                         bool found = false;
  2245.                         u32 hotplug_trigger = 0;
  2246.  
  2247.                         if (IS_BROXTON(dev_priv))
  2248.                                 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
  2249.                         else if (IS_BROADWELL(dev_priv))
  2250.                                 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
  2251.  
  2252.                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
  2253.                         ret = IRQ_HANDLED;
  2254.  
  2255.                         if (tmp & aux_mask) {
  2256.                                 dp_aux_irq_handler(dev);
  2257.                                 found = true;
  2258.                         }
  2259.  
  2260.                         if (hotplug_trigger) {
  2261.                                 if (IS_BROXTON(dev))
  2262.                                         bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
  2263.                                 else
  2264.                                         ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
  2265.                                 found = true;
  2266.                         }
  2267.  
  2268.                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
  2269.                                 gmbus_irq_handler(dev);
  2270.                                 found = true;
  2271.                         }
  2272.  
  2273.                         if (!found)
  2274.                                 DRM_ERROR("Unexpected DE Port interrupt\n");
  2275.                 }
  2276.                 else
  2277.                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  2278.         }
  2279.  
  2280.         for_each_pipe(dev_priv, pipe) {
  2281.                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
  2282.  
  2283.                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  2284.                         continue;
  2285.  
  2286.                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  2287.                 if (pipe_iir) {
  2288.                         ret = IRQ_HANDLED;
  2289.                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
  2290.  
  2291.                         if (pipe_iir & GEN8_PIPE_VBLANK &&
  2292.                             intel_pipe_handle_vblank(dev, pipe))
  2293.                         /*      intel_check_page_flip(dev, pipe)*/;
  2294.  
  2295.                         if (INTEL_INFO(dev_priv)->gen >= 9)
  2296.                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
  2297.                         else
  2298.                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
  2299.  
  2300.  
  2301.                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
  2302.                                 hsw_pipe_crc_irq_handler(dev, pipe);
  2303.  
  2304.                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
  2305.                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
  2306.                                                                     pipe);
  2307.  
  2308.  
  2309.                         if (INTEL_INFO(dev_priv)->gen >= 9)
  2310.                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2311.                         else
  2312.                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2313.  
  2314.                         if (fault_errors)
  2315.                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  2316.                                           pipe_name(pipe),
  2317.                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
  2318.                 } else
  2319.                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  2320.         }
  2321.  
  2322.         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
  2323.             master_ctl & GEN8_DE_PCH_IRQ) {
  2324.                 /*
  2325.                  * FIXME(BDW): Assume for now that the new interrupt handling
  2326.                  * scheme also closed the SDE interrupt handling race we've seen
  2327.                  * on older pch-split platforms. But this needs testing.
  2328.                  */
  2329.                 u32 pch_iir = I915_READ(SDEIIR);
  2330.                 if (pch_iir) {
  2331.                         I915_WRITE(SDEIIR, pch_iir);
  2332.                         ret = IRQ_HANDLED;
  2333.  
  2334.                         if (HAS_PCH_SPT(dev_priv))
  2335.                                 spt_irq_handler(dev, pch_iir);
  2336.                         else
  2337.                                 cpt_irq_handler(dev, pch_iir);
  2338.                 } else
  2339.                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
  2340.  
  2341.         }
  2342.  
  2343.         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2344.         POSTING_READ_FW(GEN8_MASTER_IRQ);
  2345.  
  2346.         return ret;
  2347. }
  2348.  
  2349. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  2350.                                bool reset_completed)
  2351. {
  2352.         struct intel_engine_cs *ring;
  2353.         int i;
  2354.  
  2355.         /*
  2356.          * Notify all waiters for GPU completion events that reset state has
  2357.          * been changed, and that they need to restart their wait after
  2358.          * checking for potential errors (and bail out to drop locks if there is
  2359.          * a gpu reset pending so that i915_error_work_func can acquire them).
  2360.          */
  2361.  
  2362.         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  2363.         for_each_ring(ring, dev_priv, i)
  2364.                 wake_up_all(&ring->irq_queue);
  2365.  
  2366.  
  2367.         /*
  2368.          * Signal tasks blocked in i915_gem_wait_for_error that the pending
  2369.          * reset state is cleared.
  2370.          */
  2371.         if (reset_completed)
  2372.                 wake_up_all(&dev_priv->gpu_error.reset_queue);
  2373. }
  2374.  
  2375. /**
  2376.  * i915_reset_and_wakeup - do process context error handling work
  2377.  * @dev: drm device
  2378.  *
  2379.  * Fire an error uevent so userspace can see that a hang or error
  2380.  * was detected.
  2381.  */
  2382. static void i915_reset_and_wakeup(struct drm_device *dev)
  2383. {
  2384.         struct drm_i915_private *dev_priv = to_i915(dev);
  2385.         struct i915_gpu_error *error = &dev_priv->gpu_error;
  2386.         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2387.         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2388.         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2389.         int ret;
  2390.  
  2391.         /*
  2392.          * Note that there's only one work item which does gpu resets, so we
  2393.          * need not worry about concurrent gpu resets potentially incrementing
  2394.          * error->reset_counter twice. We only need to take care of another
  2395.          * racing irq/hangcheck declaring the gpu dead for a second time. A
  2396.          * quick check for that is good enough: schedule_work ensures the
  2397.          * correct ordering between hang detection and this work item, and since
  2398.          * the reset in-progress bit is only ever set by code outside of this
  2399.          * work we don't need to worry about any other races.
  2400.          */
  2401.         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
  2402.                 DRM_DEBUG_DRIVER("resetting chip\n");
  2403.                 intel_runtime_pm_get(dev_priv);
  2404.  
  2405.                 /*
  2406.                  * All state reset _must_ be completed before we update the
  2407.                  * reset counter, for otherwise waiters might miss the reset
  2408.                  * pending state and not properly drop locks, resulting in
  2409.                  * deadlocks with the reset work.
  2410.                  */
  2411. //              ret = i915_reset(dev);
  2412.  
  2413. //              intel_finish_reset(dev);
  2414.  
  2415.                 intel_runtime_pm_put(dev_priv);
  2416.  
  2417.                 if (ret == 0) {
  2418.                         /*
  2419.                          * After all the gem state is reset, increment the reset
  2420.                          * counter and wake up everyone waiting for the reset to
  2421.                          * complete.
  2422.                          *
  2423.                          * Since unlock operations are a one-sided barrier only,
  2424.                          * we need to insert a barrier here to order any seqno
  2425.                          * updates before
  2426.                          * the counter increment.
  2427.                          */
  2428.                         smp_mb__before_atomic();
  2429.                         atomic_inc(&dev_priv->gpu_error.reset_counter);
  2430.  
  2431.                 } else {
  2432.                         atomic_or(I915_WEDGED, &error->reset_counter);
  2433.                 }
  2434.  
  2435.                 /*
  2436.                  * Note: The wake_up also serves as a memory barrier so that
  2437.                  * waiters see the update value of the reset counter atomic_t.
  2438.                  */
  2439.                 i915_error_wake_up(dev_priv, true);
  2440.         }
  2441. }
  2442.  
  2443. static void i915_report_and_clear_eir(struct drm_device *dev)
  2444. {
  2445.         struct drm_i915_private *dev_priv = dev->dev_private;
  2446.         uint32_t instdone[I915_NUM_INSTDONE_REG];
  2447.         u32 eir = I915_READ(EIR);
  2448.         int pipe, i;
  2449.  
  2450.         if (!eir)
  2451.                 return;
  2452.  
  2453.         pr_err("render error detected, EIR: 0x%08x\n", eir);
  2454.  
  2455.         i915_get_extra_instdone(dev, instdone);
  2456.  
  2457.         if (IS_G4X(dev)) {
  2458.                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  2459.                         u32 ipeir = I915_READ(IPEIR_I965);
  2460.  
  2461.                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2462.                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2463.                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2464.                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2465.                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2466.                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2467.                         I915_WRITE(IPEIR_I965, ipeir);
  2468.                         POSTING_READ(IPEIR_I965);
  2469.                 }
  2470.                 if (eir & GM45_ERROR_PAGE_TABLE) {
  2471.                         u32 pgtbl_err = I915_READ(PGTBL_ER);
  2472.                         pr_err("page table error\n");
  2473.                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
  2474.                         I915_WRITE(PGTBL_ER, pgtbl_err);
  2475.                         POSTING_READ(PGTBL_ER);
  2476.                 }
  2477.         }
  2478.  
  2479.         if (!IS_GEN2(dev)) {
  2480.                 if (eir & I915_ERROR_PAGE_TABLE) {
  2481.                         u32 pgtbl_err = I915_READ(PGTBL_ER);
  2482.                         pr_err("page table error\n");
  2483.                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
  2484.                         I915_WRITE(PGTBL_ER, pgtbl_err);
  2485.                         POSTING_READ(PGTBL_ER);
  2486.                 }
  2487.         }
  2488.  
  2489.         if (eir & I915_ERROR_MEMORY_REFRESH) {
  2490.                 pr_err("memory refresh error:\n");
  2491.                 for_each_pipe(dev_priv, pipe)
  2492.                         pr_err("pipe %c stat: 0x%08x\n",
  2493.                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  2494.                 /* pipestat has already been acked */
  2495.         }
  2496.         if (eir & I915_ERROR_INSTRUCTION) {
  2497.                 pr_err("instruction error\n");
  2498.                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
  2499.                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2500.                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2501.                 if (INTEL_INFO(dev)->gen < 4) {
  2502.                         u32 ipeir = I915_READ(IPEIR);
  2503.  
  2504.                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
  2505.                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
  2506.                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
  2507.                         I915_WRITE(IPEIR, ipeir);
  2508.                         POSTING_READ(IPEIR);
  2509.                 } else {
  2510.                         u32 ipeir = I915_READ(IPEIR_I965);
  2511.  
  2512.                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2513.                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2514.                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2515.                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2516.                         I915_WRITE(IPEIR_I965, ipeir);
  2517.                         POSTING_READ(IPEIR_I965);
  2518.                 }
  2519.         }
  2520.  
  2521.         I915_WRITE(EIR, eir);
  2522.         POSTING_READ(EIR);
  2523.         eir = I915_READ(EIR);
  2524.         if (eir) {
  2525.                 /*
  2526.                  * some errors might have become stuck,
  2527.                  * mask them.
  2528.                  */
  2529.                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  2530.                 I915_WRITE(EMR, I915_READ(EMR) | eir);
  2531.                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2532.         }
  2533. }
  2534.  
  2535. /**
  2536.  * i915_handle_error - handle a gpu error
  2537.  * @dev: drm device
  2538.  *
  2539.  * Do some basic checking of register state at error time and
  2540.  * dump it to the syslog.  Also call i915_capture_error_state() to make
  2541.  * sure we get a record and make it available in debugfs.  Fire a uevent
  2542.  * so userspace knows something bad happened (should trigger collection
  2543.  * of a ring dump etc.).
  2544.  */
  2545. void i915_handle_error(struct drm_device *dev, bool wedged,
  2546.                        const char *fmt, ...)
  2547. {
  2548.         struct drm_i915_private *dev_priv = dev->dev_private;
  2549.         va_list args;
  2550.         char error_msg[80];
  2551.  
  2552.         va_start(args, fmt);
  2553.         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2554.         va_end(args);
  2555.  
  2556. //      i915_capture_error_state(dev);
  2557.         i915_report_and_clear_eir(dev);
  2558.  
  2559.         if (wedged) {
  2560.                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
  2561.                                 &dev_priv->gpu_error.reset_counter);
  2562.  
  2563.                 /*
  2564.                  * Wakeup waiting processes so that the reset function
  2565.                  * i915_reset_and_wakeup doesn't deadlock trying to grab
  2566.                  * various locks. By bumping the reset counter first, the woken
  2567.                  * processes will see a reset in progress and back off,
  2568.                  * releasing their locks and then wait for the reset completion.
  2569.                  * We must do this for _all_ gpu waiters that might hold locks
  2570.                  * that the reset work needs to acquire.
  2571.                  *
  2572.                  * Note: The wake_up serves as the required memory barrier to
  2573.                  * ensure that the waiters see the updated value of the reset
  2574.                  * counter atomic_t.
  2575.                  */
  2576.                 i915_error_wake_up(dev_priv, false);
  2577.         }
  2578.  
  2579.         i915_reset_and_wakeup(dev);
  2580. }
  2581.  
  2582. /* Called from drm generic code, passed 'crtc' which
  2583.  * we use as a pipe index
  2584.  */
  2585. static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2586. {
  2587.         struct drm_i915_private *dev_priv = dev->dev_private;
  2588.         unsigned long irqflags;
  2589.  
  2590.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2591.         if (INTEL_INFO(dev)->gen >= 4)
  2592.                 i915_enable_pipestat(dev_priv, pipe,
  2593.                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
  2594.         else
  2595.                 i915_enable_pipestat(dev_priv, pipe,
  2596.                                      PIPE_VBLANK_INTERRUPT_STATUS);
  2597.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2598.  
  2599.         return 0;
  2600. }
  2601.  
  2602. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2603. {
  2604.         struct drm_i915_private *dev_priv = dev->dev_private;
  2605.         unsigned long irqflags;
  2606.         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2607.                                                      DE_PIPE_VBLANK(pipe);
  2608.  
  2609.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2610.         ironlake_enable_display_irq(dev_priv, bit);
  2611.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2612.  
  2613.         return 0;
  2614. }
  2615.  
  2616. static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2617. {
  2618.         struct drm_i915_private *dev_priv = dev->dev_private;
  2619.         unsigned long irqflags;
  2620.  
  2621.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2622.         i915_enable_pipestat(dev_priv, pipe,
  2623.                              PIPE_START_VBLANK_INTERRUPT_STATUS);
  2624.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2625.  
  2626.         return 0;
  2627. }
  2628.  
  2629. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2630. {
  2631.         struct drm_i915_private *dev_priv = dev->dev_private;
  2632.         unsigned long irqflags;
  2633.  
  2634.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2635.         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
  2636.         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2637.         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2638.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2639.         return 0;
  2640. }
  2641.  
  2642. /* Called from drm generic code, passed 'crtc' which
  2643.  * we use as a pipe index
  2644.  */
  2645. static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2646. {
  2647.         struct drm_i915_private *dev_priv = dev->dev_private;
  2648.         unsigned long irqflags;
  2649.  
  2650.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2651.         i915_disable_pipestat(dev_priv, pipe,
  2652.                               PIPE_VBLANK_INTERRUPT_STATUS |
  2653.                               PIPE_START_VBLANK_INTERRUPT_STATUS);
  2654.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2655. }
  2656.  
  2657. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2658. {
  2659.         struct drm_i915_private *dev_priv = dev->dev_private;
  2660.         unsigned long irqflags;
  2661.         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2662.                                                      DE_PIPE_VBLANK(pipe);
  2663.  
  2664.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2665.         ironlake_disable_display_irq(dev_priv, bit);
  2666.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2667. }
  2668.  
  2669. static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2670. {
  2671.         struct drm_i915_private *dev_priv = dev->dev_private;
  2672.         unsigned long irqflags;
  2673.  
  2674.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2675.         i915_disable_pipestat(dev_priv, pipe,
  2676.                               PIPE_START_VBLANK_INTERRUPT_STATUS);
  2677.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2678. }
  2679.  
  2680. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2681. {
  2682.         struct drm_i915_private *dev_priv = dev->dev_private;
  2683.         unsigned long irqflags;
  2684.  
  2685.         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2686.         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
  2687.         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2688.         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2689.         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2690. }
  2691.  
  2692. static bool
  2693. ring_idle(struct intel_engine_cs *ring, u32 seqno)
  2694. {
  2695.         return (list_empty(&ring->request_list) ||
  2696.                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
  2697. }
  2698.  
  2699. static bool
  2700. ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
  2701. {
  2702.         if (INTEL_INFO(dev)->gen >= 8) {
  2703.                 return (ipehr >> 23) == 0x1c;
  2704.         } else {
  2705.                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2706.                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2707.                                  MI_SEMAPHORE_REGISTER);
  2708.         }
  2709. }
  2710.  
  2711. static struct intel_engine_cs *
  2712. semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
  2713. {
  2714.         struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2715.         struct intel_engine_cs *signaller;
  2716.         int i;
  2717.  
  2718.         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
  2719.                 for_each_ring(signaller, dev_priv, i) {
  2720.                         if (ring == signaller)
  2721.                                 continue;
  2722.  
  2723.                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
  2724.                                 return signaller;
  2725.                 }
  2726.         } else {
  2727.                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2728.  
  2729.                 for_each_ring(signaller, dev_priv, i) {
  2730.                         if(ring == signaller)
  2731.                                 continue;
  2732.  
  2733.                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
  2734.                                 return signaller;
  2735.                 }
  2736.         }
  2737.  
  2738.         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2739.                   ring->id, ipehr, offset);
  2740.  
  2741.         return NULL;
  2742. }
  2743.  
  2744. static struct intel_engine_cs *
  2745. semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
  2746. {
  2747.         struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2748.         u32 cmd, ipehr, head;
  2749.         u64 offset = 0;
  2750.         int i, backwards;
  2751.  
  2752.         /*
  2753.          * This function does not support execlist mode - any attempt to
  2754.          * proceed further into this function will result in a kernel panic
  2755.          * when dereferencing ring->buffer, which is not set up in execlist
  2756.          * mode.
  2757.          *
  2758.          * The correct way of doing it would be to derive the currently
  2759.          * executing ring buffer from the current context, which is derived
  2760.          * from the currently running request. Unfortunately, to get the
  2761.          * current request we would have to grab the struct_mutex before doing
  2762.          * anything else, which would be ill-advised since some other thread
  2763.          * might have grabbed it already and managed to hang itself, causing
  2764.          * the hang checker to deadlock.
  2765.          *
  2766.          * Therefore, this function does not support execlist mode in its
  2767.          * current form. Just return NULL and move on.
  2768.          */
  2769.         if (ring->buffer == NULL)
  2770.                 return NULL;
  2771.  
  2772.         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
  2773.         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
  2774.                 return NULL;
  2775.  
  2776.         /*
  2777.          * HEAD is likely pointing to the dword after the actual command,
  2778.          * so scan backwards until we find the MBOX. But limit it to just 3
  2779.          * or 4 dwords depending on the semaphore wait command size.
  2780.          * Note that we don't care about ACTHD here since that might
  2781.          * point at at batch, and semaphores are always emitted into the
  2782.          * ringbuffer itself.
  2783.          */
  2784.         head = I915_READ_HEAD(ring) & HEAD_ADDR;
  2785.         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
  2786.  
  2787.         for (i = backwards; i; --i) {
  2788.                 /*
  2789.                  * Be paranoid and presume the hw has gone off into the wild -
  2790.                  * our ring is smaller than what the hardware (and hence
  2791.                  * HEAD_ADDR) allows. Also handles wrap-around.
  2792.                  */
  2793.                 head &= ring->buffer->size - 1;
  2794.  
  2795.                 /* This here seems to blow up */
  2796.                 cmd = ioread32(ring->buffer->virtual_start + head);
  2797.                 if (cmd == ipehr)
  2798.                         break;
  2799.  
  2800.                 head -= 4;
  2801.         }
  2802.  
  2803.         if (!i)
  2804.                 return NULL;
  2805.  
  2806.         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
  2807.         if (INTEL_INFO(ring->dev)->gen >= 8) {
  2808.                 offset = ioread32(ring->buffer->virtual_start + head + 12);
  2809.                 offset <<= 32;
  2810.                 offset = ioread32(ring->buffer->virtual_start + head + 8);
  2811.         }
  2812.         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
  2813. }
  2814.  
  2815. static int semaphore_passed(struct intel_engine_cs *ring)
  2816. {
  2817.         struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2818.         struct intel_engine_cs *signaller;
  2819.         u32 seqno;
  2820.  
  2821.         ring->hangcheck.deadlock++;
  2822.  
  2823.         signaller = semaphore_waits_for(ring, &seqno);
  2824.         if (signaller == NULL)
  2825.                 return -1;
  2826.  
  2827.         /* Prevent pathological recursion due to driver bugs */
  2828.         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
  2829.                 return -1;
  2830.  
  2831.         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
  2832.                 return 1;
  2833.  
  2834.         /* cursory check for an unkickable deadlock */
  2835.         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2836.             semaphore_passed(signaller) < 0)
  2837.                 return -1;
  2838.  
  2839.         return 0;
  2840. }
  2841.  
  2842. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2843. {
  2844.         struct intel_engine_cs *ring;
  2845.         int i;
  2846.  
  2847.         for_each_ring(ring, dev_priv, i)
  2848.                 ring->hangcheck.deadlock = 0;
  2849. }
  2850.  
  2851. static enum intel_ring_hangcheck_action
  2852. ring_stuck(struct intel_engine_cs *ring, u64 acthd)
  2853. {
  2854.         struct drm_device *dev = ring->dev;
  2855.         struct drm_i915_private *dev_priv = dev->dev_private;
  2856.         u32 tmp;
  2857.  
  2858.         if (acthd != ring->hangcheck.acthd) {
  2859.                 if (acthd > ring->hangcheck.max_acthd) {
  2860.                         ring->hangcheck.max_acthd = acthd;
  2861.                         return HANGCHECK_ACTIVE;
  2862.                 }
  2863.  
  2864.                 return HANGCHECK_ACTIVE_LOOP;
  2865.         }
  2866.  
  2867.         if (IS_GEN2(dev))
  2868.                 return HANGCHECK_HUNG;
  2869.  
  2870.         /* Is the chip hanging on a WAIT_FOR_EVENT?
  2871.          * If so we can simply poke the RB_WAIT bit
  2872.          * and break the hang. This should work on
  2873.          * all but the second generation chipsets.
  2874.          */
  2875.         tmp = I915_READ_CTL(ring);
  2876.         if (tmp & RING_WAIT) {
  2877.                 i915_handle_error(dev, false,
  2878.                                   "Kicking stuck wait on %s",
  2879.                                   ring->name);
  2880.                 I915_WRITE_CTL(ring, tmp);
  2881.                 return HANGCHECK_KICK;
  2882.         }
  2883.  
  2884.         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2885.                 switch (semaphore_passed(ring)) {
  2886.                 default:
  2887.                         return HANGCHECK_HUNG;
  2888.                 case 1:
  2889.                         i915_handle_error(dev, false,
  2890.                                           "Kicking stuck semaphore on %s",
  2891.                                           ring->name);
  2892.                         I915_WRITE_CTL(ring, tmp);
  2893.                         return HANGCHECK_KICK;
  2894.                 case 0:
  2895.                         return HANGCHECK_WAIT;
  2896.                 }
  2897.         }
  2898.  
  2899.         return HANGCHECK_HUNG;
  2900. }
  2901.  
  2902. /*
  2903.  * This is called when the chip hasn't reported back with completed
  2904.  * batchbuffers in a long time. We keep track per ring seqno progress and
  2905.  * if there are no progress, hangcheck score for that ring is increased.
  2906.  * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2907.  * we kick the ring. If we see no progress on three subsequent calls
  2908.  * we assume chip is wedged and try to fix it by resetting the chip.
  2909.  */
  2910. static void i915_hangcheck_elapsed(struct work_struct *work)
  2911. {
  2912.         struct drm_i915_private *dev_priv =
  2913.                 container_of(work, typeof(*dev_priv),
  2914.                              gpu_error.hangcheck_work.work);
  2915.         struct drm_device *dev = dev_priv->dev;
  2916.         struct intel_engine_cs *ring;
  2917.         int i;
  2918.         int busy_count = 0, rings_hung = 0;
  2919.         bool stuck[I915_NUM_RINGS] = { 0 };
  2920. #define BUSY 1
  2921. #define KICK 5
  2922. #define HUNG 20
  2923.  
  2924.         if (!i915.enable_hangcheck)
  2925.                 return;
  2926.  
  2927.         for_each_ring(ring, dev_priv, i) {
  2928.                 u64 acthd;
  2929.                 u32 seqno;
  2930.                 bool busy = true;
  2931.  
  2932.                 semaphore_clear_deadlocks(dev_priv);
  2933.  
  2934.                 seqno = ring->get_seqno(ring, false);
  2935.                 acthd = intel_ring_get_active_head(ring);
  2936.  
  2937.                 if (ring->hangcheck.seqno == seqno) {
  2938.                         if (ring_idle(ring, seqno)) {
  2939.                                 ring->hangcheck.action = HANGCHECK_IDLE;
  2940.  
  2941.                                 if (waitqueue_active(&ring->irq_queue)) {
  2942.                                         /* Issue a wake-up to catch stuck h/w. */
  2943.                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
  2944.                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
  2945.                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2946.                                                                   ring->name);
  2947.                                                 else
  2948.                                                         DRM_INFO("Fake missed irq on %s\n",
  2949.                                                                  ring->name);
  2950.                                                 wake_up_all(&ring->irq_queue);
  2951.                                         }
  2952.                                         /* Safeguard against driver failure */
  2953.                                         ring->hangcheck.score += BUSY;
  2954.                                 } else
  2955.                                         busy = false;
  2956.                         } else {
  2957.                                 /* We always increment the hangcheck score
  2958.                                  * if the ring is busy and still processing
  2959.                                  * the same request, so that no single request
  2960.                                  * can run indefinitely (such as a chain of
  2961.                                  * batches). The only time we do not increment
  2962.                                  * the hangcheck score on this ring, if this
  2963.                                  * ring is in a legitimate wait for another
  2964.                                  * ring. In that case the waiting ring is a
  2965.                                  * victim and we want to be sure we catch the
  2966.                                  * right culprit. Then every time we do kick
  2967.                                  * the ring, add a small increment to the
  2968.                                  * score so that we can catch a batch that is
  2969.                                  * being repeatedly kicked and so responsible
  2970.                                  * for stalling the machine.
  2971.                                  */
  2972.                                 ring->hangcheck.action = ring_stuck(ring,
  2973.                                                                     acthd);
  2974.  
  2975.                                 switch (ring->hangcheck.action) {
  2976.                                 case HANGCHECK_IDLE:
  2977.                                 case HANGCHECK_WAIT:
  2978.                                 case HANGCHECK_ACTIVE:
  2979.                                         break;
  2980.                                 case HANGCHECK_ACTIVE_LOOP:
  2981.                                         ring->hangcheck.score += BUSY;
  2982.                                         break;
  2983.                                 case HANGCHECK_KICK:
  2984.                                         ring->hangcheck.score += KICK;
  2985.                                         break;
  2986.                                 case HANGCHECK_HUNG:
  2987.                                         ring->hangcheck.score += HUNG;
  2988.                                         stuck[i] = true;
  2989.                                         break;
  2990.                                 }
  2991.                         }
  2992.                 } else {
  2993.                         ring->hangcheck.action = HANGCHECK_ACTIVE;
  2994.  
  2995.                         /* Gradually reduce the count so that we catch DoS
  2996.                          * attempts across multiple batches.
  2997.                          */
  2998.                         if (ring->hangcheck.score > 0)
  2999.                                 ring->hangcheck.score--;
  3000.  
  3001.                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
  3002.                 }
  3003.  
  3004.                 ring->hangcheck.seqno = seqno;
  3005.                 ring->hangcheck.acthd = acthd;
  3006.                 busy_count += busy;
  3007.         }
  3008.  
  3009.         for_each_ring(ring, dev_priv, i) {
  3010.                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  3011.                         DRM_INFO("%s on %s\n",
  3012.                                  stuck[i] ? "stuck" : "no progress",
  3013.                                  ring->name);
  3014.                         rings_hung++;
  3015.                 }
  3016.         }
  3017.  
  3018. //   if (rings_hung)
  3019. //       return i915_handle_error(dev, true);
  3020.  
  3021. }
  3022.  
  3023. static void ibx_irq_reset(struct drm_device *dev)
  3024. {
  3025.         struct drm_i915_private *dev_priv = dev->dev_private;
  3026.  
  3027.         if (HAS_PCH_NOP(dev))
  3028.                 return;
  3029.  
  3030.         GEN5_IRQ_RESET(SDE);
  3031.  
  3032.         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  3033.                 I915_WRITE(SERR_INT, 0xffffffff);
  3034. }
  3035.  
  3036. /*
  3037.  * SDEIER is also touched by the interrupt handler to work around missed PCH
  3038.  * interrupts. Hence we can't update it after the interrupt handler is enabled -
  3039.  * instead we unconditionally enable all PCH interrupt sources here, but then
  3040.  * only unmask them as needed with SDEIMR.
  3041.  *
  3042.  * This function needs to be called before interrupts are enabled.
  3043.  */
  3044. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  3045. {
  3046.         struct drm_i915_private *dev_priv = dev->dev_private;
  3047.  
  3048.         if (HAS_PCH_NOP(dev))
  3049.                 return;
  3050.  
  3051.         WARN_ON(I915_READ(SDEIER) != 0);
  3052.         I915_WRITE(SDEIER, 0xffffffff);
  3053.         POSTING_READ(SDEIER);
  3054. }
  3055.  
  3056. static void gen5_gt_irq_reset(struct drm_device *dev)
  3057. {
  3058.         struct drm_i915_private *dev_priv = dev->dev_private;
  3059.  
  3060.         GEN5_IRQ_RESET(GT);
  3061.         if (INTEL_INFO(dev)->gen >= 6)
  3062.                 GEN5_IRQ_RESET(GEN6_PM);
  3063. }
  3064.  
  3065. /* drm_dma.h hooks
  3066. */
  3067. static void ironlake_irq_reset(struct drm_device *dev)
  3068. {
  3069.         struct drm_i915_private *dev_priv = dev->dev_private;
  3070.  
  3071.         I915_WRITE(HWSTAM, 0xffffffff);
  3072.  
  3073.         GEN5_IRQ_RESET(DE);
  3074.         if (IS_GEN7(dev))
  3075.                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  3076.  
  3077.         gen5_gt_irq_reset(dev);
  3078.  
  3079.         ibx_irq_reset(dev);
  3080. }
  3081.  
  3082. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  3083. {
  3084.         enum pipe pipe;
  3085.  
  3086.         i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
  3087.         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3088.  
  3089.         for_each_pipe(dev_priv, pipe)
  3090.                 I915_WRITE(PIPESTAT(pipe), 0xffff);
  3091.  
  3092.         GEN5_IRQ_RESET(VLV_);
  3093. }
  3094.  
  3095. static void valleyview_irq_preinstall(struct drm_device *dev)
  3096. {
  3097.         struct drm_i915_private *dev_priv = dev->dev_private;
  3098.  
  3099.         /* VLV magic */
  3100.         I915_WRITE(VLV_IMR, 0);
  3101.         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
  3102.         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
  3103.         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
  3104.  
  3105.         gen5_gt_irq_reset(dev);
  3106.  
  3107.         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  3108.  
  3109.         vlv_display_irq_reset(dev_priv);
  3110. }
  3111.  
  3112. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  3113. {
  3114.         GEN8_IRQ_RESET_NDX(GT, 0);
  3115.         GEN8_IRQ_RESET_NDX(GT, 1);
  3116.         GEN8_IRQ_RESET_NDX(GT, 2);
  3117.         GEN8_IRQ_RESET_NDX(GT, 3);
  3118. }
  3119.  
  3120. static void gen8_irq_reset(struct drm_device *dev)
  3121. {
  3122.         struct drm_i915_private *dev_priv = dev->dev_private;
  3123.         int pipe;
  3124.  
  3125.         I915_WRITE(GEN8_MASTER_IRQ, 0);
  3126.         POSTING_READ(GEN8_MASTER_IRQ);
  3127.  
  3128.         gen8_gt_irq_reset(dev_priv);
  3129.  
  3130.         for_each_pipe(dev_priv, pipe)
  3131.                 if (intel_display_power_is_enabled(dev_priv,
  3132.                                                    POWER_DOMAIN_PIPE(pipe)))
  3133.                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  3134.  
  3135.         GEN5_IRQ_RESET(GEN8_DE_PORT_);
  3136.         GEN5_IRQ_RESET(GEN8_DE_MISC_);
  3137.         GEN5_IRQ_RESET(GEN8_PCU_);
  3138.  
  3139.         if (HAS_PCH_SPLIT(dev))
  3140.                 ibx_irq_reset(dev);
  3141. }
  3142.  
  3143. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  3144.                                      unsigned int pipe_mask)
  3145. {
  3146.         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  3147.  
  3148.         spin_lock_irq(&dev_priv->irq_lock);
  3149.         if (pipe_mask & 1 << PIPE_A)
  3150.                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
  3151.                                   dev_priv->de_irq_mask[PIPE_A],
  3152.                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
  3153.         if (pipe_mask & 1 << PIPE_B)
  3154.                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
  3155.                                   dev_priv->de_irq_mask[PIPE_B],
  3156.                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
  3157.         if (pipe_mask & 1 << PIPE_C)
  3158.                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
  3159.                                   dev_priv->de_irq_mask[PIPE_C],
  3160.                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
  3161.         spin_unlock_irq(&dev_priv->irq_lock);
  3162. }
  3163.  
  3164. static void cherryview_irq_preinstall(struct drm_device *dev)
  3165. {
  3166.         struct drm_i915_private *dev_priv = dev->dev_private;
  3167.  
  3168.         I915_WRITE(GEN8_MASTER_IRQ, 0);
  3169.         POSTING_READ(GEN8_MASTER_IRQ);
  3170.  
  3171.         gen8_gt_irq_reset(dev_priv);
  3172.  
  3173.         GEN5_IRQ_RESET(GEN8_PCU_);
  3174.  
  3175.         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  3176.  
  3177.         vlv_display_irq_reset(dev_priv);
  3178. }
  3179.  
  3180. static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
  3181.                                   const u32 hpd[HPD_NUM_PINS])
  3182. {
  3183.         struct drm_i915_private *dev_priv = to_i915(dev);
  3184.         struct intel_encoder *encoder;
  3185.         u32 enabled_irqs = 0;
  3186.  
  3187.         for_each_intel_encoder(dev, encoder)
  3188.                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  3189.                         enabled_irqs |= hpd[encoder->hpd_pin];
  3190.  
  3191.         return enabled_irqs;
  3192. }
  3193.  
  3194. static void ibx_hpd_irq_setup(struct drm_device *dev)
  3195. {
  3196.         struct drm_i915_private *dev_priv = dev->dev_private;
  3197.         u32 hotplug_irqs, hotplug, enabled_irqs;
  3198.  
  3199.         if (HAS_PCH_IBX(dev)) {
  3200.                 hotplug_irqs = SDE_HOTPLUG_MASK;
  3201.                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
  3202.         } else {
  3203.                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  3204.                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
  3205.         }
  3206.  
  3207.         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  3208.  
  3209.         /*
  3210.          * Enable digital hotplug on the PCH, and configure the DP short pulse
  3211.          * duration to 2ms (which is the minimum in the Display Port spec).
  3212.          * The pulse duration bits are reserved on LPT+.
  3213.          */
  3214.         hotplug = I915_READ(PCH_PORT_HOTPLUG);
  3215.         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  3216.         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  3217.         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  3218.         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  3219.         /*
  3220.          * When CPU and PCH are on the same package, port A
  3221.          * HPD must be enabled in both north and south.
  3222.          */
  3223.         if (HAS_PCH_LPT_LP(dev))
  3224.                 hotplug |= PORTA_HOTPLUG_ENABLE;
  3225.         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  3226. }
  3227.  
  3228. static void spt_hpd_irq_setup(struct drm_device *dev)
  3229. {
  3230.         struct drm_i915_private *dev_priv = dev->dev_private;
  3231.         u32 hotplug_irqs, hotplug, enabled_irqs;
  3232.  
  3233.         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  3234.         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
  3235.  
  3236.         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  3237.  
  3238.         /* Enable digital hotplug on the PCH */
  3239.         hotplug = I915_READ(PCH_PORT_HOTPLUG);
  3240.         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
  3241.                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
  3242.         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  3243.  
  3244.         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  3245.         hotplug |= PORTE_HOTPLUG_ENABLE;
  3246.         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  3247. }
  3248.  
  3249. static void ilk_hpd_irq_setup(struct drm_device *dev)
  3250. {
  3251.         struct drm_i915_private *dev_priv = dev->dev_private;
  3252.         u32 hotplug_irqs, hotplug, enabled_irqs;
  3253.  
  3254.         if (INTEL_INFO(dev)->gen >= 8) {
  3255.                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  3256.                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
  3257.  
  3258.                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  3259.         } else if (INTEL_INFO(dev)->gen >= 7) {
  3260.                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  3261.                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
  3262.  
  3263.                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  3264.         } else {
  3265.                 hotplug_irqs = DE_DP_A_HOTPLUG;
  3266.                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
  3267.  
  3268.                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  3269.         }
  3270.  
  3271.         /*
  3272.          * Enable digital hotplug on the CPU, and configure the DP short pulse
  3273.          * duration to 2ms (which is the minimum in the Display Port spec)
  3274.          * The pulse duration bits are reserved on HSW+.
  3275.          */
  3276.         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  3277.         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  3278.         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
  3279.         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  3280.  
  3281.         ibx_hpd_irq_setup(dev);
  3282. }
  3283.  
  3284. static void bxt_hpd_irq_setup(struct drm_device *dev)
  3285. {
  3286.         struct drm_i915_private *dev_priv = dev->dev_private;
  3287.         u32 hotplug_irqs, hotplug, enabled_irqs;
  3288.  
  3289.         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
  3290.         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  3291.  
  3292.         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  3293.  
  3294.         hotplug = I915_READ(PCH_PORT_HOTPLUG);
  3295.         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
  3296.                 PORTA_HOTPLUG_ENABLE;
  3297.         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  3298. }
  3299.  
  3300. static void ibx_irq_postinstall(struct drm_device *dev)
  3301. {
  3302.         struct drm_i915_private *dev_priv = dev->dev_private;
  3303.         u32 mask;
  3304.  
  3305.         if (HAS_PCH_NOP(dev))
  3306.                 return;
  3307.  
  3308.         if (HAS_PCH_IBX(dev))
  3309.                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  3310.         else
  3311.                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  3312.  
  3313.         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
  3314.         I915_WRITE(SDEIMR, ~mask);
  3315. }
  3316.  
  3317. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  3318. {
  3319.         struct drm_i915_private *dev_priv = dev->dev_private;
  3320.         u32 pm_irqs, gt_irqs;
  3321.  
  3322.         pm_irqs = gt_irqs = 0;
  3323.  
  3324.         dev_priv->gt_irq_mask = ~0;
  3325.         if (HAS_L3_DPF(dev)) {
  3326.                 /* L3 parity interrupt is always unmasked. */
  3327.                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  3328.                 gt_irqs |= GT_PARITY_ERROR(dev);
  3329.         }
  3330.  
  3331.         gt_irqs |= GT_RENDER_USER_INTERRUPT;
  3332.         if (IS_GEN5(dev)) {
  3333.                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  3334.                            ILK_BSD_USER_INTERRUPT;
  3335.         } else {
  3336.                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  3337.         }
  3338.  
  3339.         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  3340.  
  3341.         if (INTEL_INFO(dev)->gen >= 6) {
  3342.                 /*
  3343.                  * RPS interrupts will get enabled/disabled on demand when RPS
  3344.                  * itself is enabled/disabled.
  3345.                  */
  3346.                 if (HAS_VEBOX(dev))
  3347.                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  3348.  
  3349.                 dev_priv->pm_irq_mask = 0xffffffff;
  3350.                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  3351.         }
  3352. }
  3353.  
  3354. static int ironlake_irq_postinstall(struct drm_device *dev)
  3355. {
  3356.         struct drm_i915_private *dev_priv = dev->dev_private;
  3357.         u32 display_mask, extra_mask;
  3358.  
  3359.         if (INTEL_INFO(dev)->gen >= 7) {
  3360.                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  3361.                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  3362.                                 DE_PLANEB_FLIP_DONE_IVB |
  3363.                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  3364.                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  3365.                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  3366.                               DE_DP_A_HOTPLUG_IVB);
  3367.         } else {
  3368.                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  3369.                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  3370.                                 DE_AUX_CHANNEL_A |
  3371.                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  3372.                                 DE_POISON);
  3373.                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  3374.                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  3375.                               DE_DP_A_HOTPLUG);
  3376.         }
  3377.  
  3378.         dev_priv->irq_mask = ~display_mask;
  3379.  
  3380.         I915_WRITE(HWSTAM, 0xeffe);
  3381.  
  3382.         ibx_irq_pre_postinstall(dev);
  3383.  
  3384.         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  3385.  
  3386.         gen5_gt_irq_postinstall(dev);
  3387.  
  3388.         ibx_irq_postinstall(dev);
  3389.  
  3390.         if (IS_IRONLAKE_M(dev)) {
  3391.                 /* Enable PCU event interrupts
  3392.                  *
  3393.                  * spinlocking not required here for correctness since interrupt
  3394.                  * setup is guaranteed to run in single-threaded context. But we
  3395.                  * need it to make the assert_spin_locked happy. */
  3396.                 spin_lock_irq(&dev_priv->irq_lock);
  3397.                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
  3398.                 spin_unlock_irq(&dev_priv->irq_lock);
  3399.         }
  3400.  
  3401.         return 0;
  3402. }
  3403.  
  3404. static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
  3405. {
  3406.         u32 pipestat_mask;
  3407.         u32 iir_mask;
  3408.         enum pipe pipe;
  3409.  
  3410.         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  3411.                         PIPE_FIFO_UNDERRUN_STATUS;
  3412.  
  3413.         for_each_pipe(dev_priv, pipe)
  3414.                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  3415.         POSTING_READ(PIPESTAT(PIPE_A));
  3416.  
  3417.         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  3418.                         PIPE_CRC_DONE_INTERRUPT_STATUS;
  3419.  
  3420.         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3421.         for_each_pipe(dev_priv, pipe)
  3422.                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  3423.  
  3424.         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  3425.                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3426.                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  3427.         if (IS_CHERRYVIEW(dev_priv))
  3428.                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  3429.         dev_priv->irq_mask &= ~iir_mask;
  3430.  
  3431.         I915_WRITE(VLV_IIR, iir_mask);
  3432.         I915_WRITE(VLV_IIR, iir_mask);
  3433.         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  3434.         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  3435.         POSTING_READ(VLV_IMR);
  3436. }
  3437.  
  3438. static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
  3439. {
  3440.         u32 pipestat_mask;
  3441.         u32 iir_mask;
  3442.         enum pipe pipe;
  3443.  
  3444.         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  3445.                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3446.                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  3447.         if (IS_CHERRYVIEW(dev_priv))
  3448.                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  3449.  
  3450.         dev_priv->irq_mask |= iir_mask;
  3451.         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  3452.         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  3453.         I915_WRITE(VLV_IIR, iir_mask);
  3454.         I915_WRITE(VLV_IIR, iir_mask);
  3455.         POSTING_READ(VLV_IIR);
  3456.  
  3457.         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  3458.                         PIPE_CRC_DONE_INTERRUPT_STATUS;
  3459.  
  3460.         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3461.         for_each_pipe(dev_priv, pipe)
  3462.                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
  3463.  
  3464.         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  3465.                         PIPE_FIFO_UNDERRUN_STATUS;
  3466.  
  3467.         for_each_pipe(dev_priv, pipe)
  3468.                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  3469.         POSTING_READ(PIPESTAT(PIPE_A));
  3470. }
  3471.  
  3472. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  3473. {
  3474.         assert_spin_locked(&dev_priv->irq_lock);
  3475.  
  3476.         if (dev_priv->display_irqs_enabled)
  3477.                 return;
  3478.  
  3479.         dev_priv->display_irqs_enabled = true;
  3480.  
  3481.         if (intel_irqs_enabled(dev_priv))
  3482.                 valleyview_display_irqs_install(dev_priv);
  3483. }
  3484.  
  3485. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  3486. {
  3487.         assert_spin_locked(&dev_priv->irq_lock);
  3488.  
  3489.         if (!dev_priv->display_irqs_enabled)
  3490.                 return;
  3491.  
  3492.         dev_priv->display_irqs_enabled = false;
  3493.  
  3494.         if (intel_irqs_enabled(dev_priv))
  3495.                 valleyview_display_irqs_uninstall(dev_priv);
  3496. }
  3497.  
  3498. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  3499. {
  3500.         dev_priv->irq_mask = ~0;
  3501.  
  3502.         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3503.         POSTING_READ(PORT_HOTPLUG_EN);
  3504.  
  3505.         I915_WRITE(VLV_IIR, 0xffffffff);
  3506.         I915_WRITE(VLV_IIR, 0xffffffff);
  3507.         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  3508.         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  3509.         POSTING_READ(VLV_IMR);
  3510.  
  3511.         /* Interrupt setup is already guaranteed to be single-threaded, this is
  3512.          * just to make the assert_spin_locked check happy. */
  3513.         spin_lock_irq(&dev_priv->irq_lock);
  3514.         if (dev_priv->display_irqs_enabled)
  3515.                 valleyview_display_irqs_install(dev_priv);
  3516.         spin_unlock_irq(&dev_priv->irq_lock);
  3517. }
  3518.  
  3519. static int valleyview_irq_postinstall(struct drm_device *dev)
  3520. {
  3521.         struct drm_i915_private *dev_priv = dev->dev_private;
  3522.  
  3523.         vlv_display_irq_postinstall(dev_priv);
  3524.  
  3525.         gen5_gt_irq_postinstall(dev);
  3526.  
  3527.         /* ack & enable invalid PTE error interrupts */
  3528. #if 0 /* FIXME: add support to irq handler for checking these bits */
  3529.         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  3530.         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
  3531. #endif
  3532.  
  3533.         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3534.  
  3535.         return 0;
  3536. }
  3537.  
  3538. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3539. {
  3540.         /* These are interrupts we'll toggle with the ring mask register */
  3541.         uint32_t gt_interrupts[] = {
  3542.                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3543.                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3544.                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
  3545.                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3546.                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3547.                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3548.                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3549.                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3550.                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3551.                 0,
  3552.                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3553.                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3554.                 };
  3555.  
  3556.         dev_priv->pm_irq_mask = 0xffffffff;
  3557.         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3558.         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3559.         /*
  3560.          * RPS interrupts will get enabled/disabled on demand when RPS itself
  3561.          * is enabled/disabled.
  3562.          */
  3563.         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  3564.         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3565. }
  3566.  
  3567. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3568. {
  3569.         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3570.         uint32_t de_pipe_enables;
  3571.         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3572.         u32 de_port_enables;
  3573.         enum pipe pipe;
  3574.  
  3575.         if (INTEL_INFO(dev_priv)->gen >= 9) {
  3576.                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  3577.                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3578.                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3579.                                   GEN9_AUX_CHANNEL_D;
  3580.                 if (IS_BROXTON(dev_priv))
  3581.                         de_port_masked |= BXT_DE_PORT_GMBUS;
  3582.         } else {
  3583.                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  3584.                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3585.         }
  3586.  
  3587.         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3588.                                            GEN8_PIPE_FIFO_UNDERRUN;
  3589.  
  3590.         de_port_enables = de_port_masked;
  3591.         if (IS_BROXTON(dev_priv))
  3592.                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3593.         else if (IS_BROADWELL(dev_priv))
  3594.                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3595.  
  3596.         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  3597.         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  3598.         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  3599.  
  3600.         for_each_pipe(dev_priv, pipe)
  3601.                 if (intel_display_power_is_enabled(dev_priv,
  3602.                                 POWER_DOMAIN_PIPE(pipe)))
  3603.                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3604.                                           dev_priv->de_irq_mask[pipe],
  3605.                                           de_pipe_enables);
  3606.  
  3607.         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3608. }
  3609.  
  3610. static int gen8_irq_postinstall(struct drm_device *dev)
  3611. {
  3612.         struct drm_i915_private *dev_priv = dev->dev_private;
  3613.  
  3614.         if (HAS_PCH_SPLIT(dev))
  3615.                 ibx_irq_pre_postinstall(dev);
  3616.  
  3617.         gen8_gt_irq_postinstall(dev_priv);
  3618.         gen8_de_irq_postinstall(dev_priv);
  3619.  
  3620.         if (HAS_PCH_SPLIT(dev))
  3621.                 ibx_irq_postinstall(dev);
  3622.  
  3623.         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  3624.         POSTING_READ(GEN8_MASTER_IRQ);
  3625.  
  3626.         return 0;
  3627. }
  3628.  
  3629. static int cherryview_irq_postinstall(struct drm_device *dev)
  3630. {
  3631.         struct drm_i915_private *dev_priv = dev->dev_private;
  3632.  
  3633.         vlv_display_irq_postinstall(dev_priv);
  3634.  
  3635.         gen8_gt_irq_postinstall(dev_priv);
  3636.  
  3637.         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
  3638.         POSTING_READ(GEN8_MASTER_IRQ);
  3639.  
  3640.         return 0;
  3641. }
  3642.  
  3643. static void gen8_irq_uninstall(struct drm_device *dev)
  3644. {
  3645.         struct drm_i915_private *dev_priv = dev->dev_private;
  3646.  
  3647.         if (!dev_priv)
  3648.                 return;
  3649.  
  3650.         gen8_irq_reset(dev);
  3651. }
  3652.  
  3653. static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
  3654. {
  3655.         /* Interrupt setup is already guaranteed to be single-threaded, this is
  3656.          * just to make the assert_spin_locked check happy. */
  3657.         spin_lock_irq(&dev_priv->irq_lock);
  3658.         if (dev_priv->display_irqs_enabled)
  3659.                 valleyview_display_irqs_uninstall(dev_priv);
  3660.         spin_unlock_irq(&dev_priv->irq_lock);
  3661.  
  3662.         vlv_display_irq_reset(dev_priv);
  3663.  
  3664.         dev_priv->irq_mask = ~0;
  3665. }
  3666.  
  3667. static void valleyview_irq_uninstall(struct drm_device *dev)
  3668. {
  3669.         struct drm_i915_private *dev_priv = dev->dev_private;
  3670.  
  3671.         if (!dev_priv)
  3672.                 return;
  3673.  
  3674.         I915_WRITE(VLV_MASTER_IER, 0);
  3675.  
  3676.         gen5_gt_irq_reset(dev);
  3677.  
  3678.         I915_WRITE(HWSTAM, 0xffffffff);
  3679.  
  3680.         vlv_display_irq_uninstall(dev_priv);
  3681. }
  3682.  
  3683. static void cherryview_irq_uninstall(struct drm_device *dev)
  3684. {
  3685.         struct drm_i915_private *dev_priv = dev->dev_private;
  3686.  
  3687.         if (!dev_priv)
  3688.                 return;
  3689.  
  3690.         I915_WRITE(GEN8_MASTER_IRQ, 0);
  3691.         POSTING_READ(GEN8_MASTER_IRQ);
  3692.  
  3693.         gen8_gt_irq_reset(dev_priv);
  3694.  
  3695.         GEN5_IRQ_RESET(GEN8_PCU_);
  3696.  
  3697.         vlv_display_irq_uninstall(dev_priv);
  3698. }
  3699.  
  3700. static void ironlake_irq_uninstall(struct drm_device *dev)
  3701. {
  3702.         struct drm_i915_private *dev_priv = dev->dev_private;
  3703.  
  3704.         if (!dev_priv)
  3705.                 return;
  3706.  
  3707.         ironlake_irq_reset(dev);
  3708. }
  3709.  
  3710. #if 0
  3711. static void i8xx_irq_preinstall(struct drm_device * dev)
  3712. {
  3713.         struct drm_i915_private *dev_priv = dev->dev_private;
  3714.         int pipe;
  3715.  
  3716.         for_each_pipe(dev_priv, pipe)
  3717.                 I915_WRITE(PIPESTAT(pipe), 0);
  3718.         I915_WRITE16(IMR, 0xffff);
  3719.         I915_WRITE16(IER, 0x0);
  3720.         POSTING_READ16(IER);
  3721. }
  3722.  
  3723. static int i8xx_irq_postinstall(struct drm_device *dev)
  3724. {
  3725.         struct drm_i915_private *dev_priv = dev->dev_private;
  3726.  
  3727.         I915_WRITE16(EMR,
  3728.                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3729.  
  3730.         /* Unmask the interrupts that we always want on. */
  3731.         dev_priv->irq_mask =
  3732.                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3733.                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3734.                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3735.                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3736.         I915_WRITE16(IMR, dev_priv->irq_mask);
  3737.  
  3738.         I915_WRITE16(IER,
  3739.                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3740.                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3741.                      I915_USER_INTERRUPT);
  3742.         POSTING_READ16(IER);
  3743.  
  3744.         /* Interrupt setup is already guaranteed to be single-threaded, this is
  3745.          * just to make the assert_spin_locked check happy. */
  3746.         spin_lock_irq(&dev_priv->irq_lock);
  3747.         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3748.         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3749.         spin_unlock_irq(&dev_priv->irq_lock);
  3750.  
  3751.         return 0;
  3752. }
  3753.  
  3754. /*
  3755.  * Returns true when a page flip has completed.
  3756.  */
  3757. static bool i8xx_handle_vblank(struct drm_device *dev,
  3758.                                int plane, int pipe, u32 iir)
  3759. {
  3760.         struct drm_i915_private *dev_priv = dev->dev_private;
  3761.         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3762.  
  3763.         if (!intel_pipe_handle_vblank(dev, pipe))
  3764.                 return false;
  3765.  
  3766.         if ((iir & flip_pending) == 0)
  3767.                 goto check_page_flip;
  3768.  
  3769.         /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3770.          * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3771.          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3772.          * the flip is completed (no longer pending). Since this doesn't raise
  3773.          * an interrupt per se, we watch for the change at vblank.
  3774.          */
  3775.         if (I915_READ16(ISR) & flip_pending)
  3776.                 goto check_page_flip;
  3777.  
  3778. //   intel_prepare_page_flip(dev, plane);
  3779. //   intel_finish_page_flip(dev, pipe);
  3780.         return true;
  3781.  
  3782. check_page_flip:
  3783. //   intel_check_page_flip(dev, pipe);
  3784.         return false;
  3785. }
  3786.  
  3787. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3788. {
  3789.         struct drm_device *dev = arg;
  3790.         struct drm_i915_private *dev_priv = dev->dev_private;
  3791.         u16 iir, new_iir;
  3792.         u32 pipe_stats[2];
  3793.         int pipe;
  3794.         u16 flip_mask =
  3795.                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3796.                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3797.  
  3798.         if (!intel_irqs_enabled(dev_priv))
  3799.                 return IRQ_NONE;
  3800.  
  3801.         iir = I915_READ16(IIR);
  3802.         if (iir == 0)
  3803.                 return IRQ_NONE;
  3804.  
  3805.         while (iir & ~flip_mask) {
  3806.                 /* Can't rely on pipestat interrupt bit in iir as it might
  3807.                  * have been cleared after the pipestat interrupt was received.
  3808.                  * It doesn't set the bit in iir again, but it still produces
  3809.                  * interrupts (for non-MSI).
  3810.                  */
  3811.                 spin_lock(&dev_priv->irq_lock);
  3812.                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3813.                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3814.  
  3815.                 for_each_pipe(dev_priv, pipe) {
  3816.                         int reg = PIPESTAT(pipe);
  3817.                         pipe_stats[pipe] = I915_READ(reg);
  3818.  
  3819.                         /*
  3820.                          * Clear the PIPE*STAT regs before the IIR
  3821.                          */
  3822.                         if (pipe_stats[pipe] & 0x8000ffff)
  3823.                                 I915_WRITE(reg, pipe_stats[pipe]);
  3824.                 }
  3825.                 spin_unlock(&dev_priv->irq_lock);
  3826.  
  3827.                 I915_WRITE16(IIR, iir & ~flip_mask);
  3828.                 new_iir = I915_READ16(IIR); /* Flush posted writes */
  3829.  
  3830.                 if (iir & I915_USER_INTERRUPT)
  3831.                         notify_ring(&dev_priv->ring[RCS]);
  3832.  
  3833.                 for_each_pipe(dev_priv, pipe) {
  3834.                         int plane = pipe;
  3835.                         if (HAS_FBC(dev))
  3836.                                 plane = !plane;
  3837.  
  3838.                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3839.                             i8xx_handle_vblank(dev, plane, pipe, iir))
  3840.                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3841.  
  3842.                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3843.                                 i9xx_pipe_crc_irq_handler(dev, pipe);
  3844.  
  3845.                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3846.                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3847.                                                                     pipe);
  3848.                 }
  3849.  
  3850.                 iir = new_iir;
  3851.         }
  3852.  
  3853.         return IRQ_HANDLED;
  3854. }
  3855.  
  3856. static void i8xx_irq_uninstall(struct drm_device * dev)
  3857. {
  3858.         struct drm_i915_private *dev_priv = dev->dev_private;
  3859.         int pipe;
  3860.  
  3861.         for_each_pipe(dev_priv, pipe) {
  3862.                 /* Clear enable bits; then clear status bits */
  3863.                 I915_WRITE(PIPESTAT(pipe), 0);
  3864.                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3865.         }
  3866.         I915_WRITE16(IMR, 0xffff);
  3867.         I915_WRITE16(IER, 0x0);
  3868.         I915_WRITE16(IIR, I915_READ16(IIR));
  3869. }
  3870.  
  3871. #endif
  3872.  
  3873. static void i915_irq_preinstall(struct drm_device * dev)
  3874. {
  3875.         struct drm_i915_private *dev_priv = dev->dev_private;
  3876.         int pipe;
  3877.  
  3878.         if (I915_HAS_HOTPLUG(dev)) {
  3879.                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3880.                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3881.         }
  3882.  
  3883.         I915_WRITE16(HWSTAM, 0xeffe);
  3884.         for_each_pipe(dev_priv, pipe)
  3885.                 I915_WRITE(PIPESTAT(pipe), 0);
  3886.         I915_WRITE(IMR, 0xffffffff);
  3887.         I915_WRITE(IER, 0x0);
  3888.         POSTING_READ(IER);
  3889. }
  3890.  
  3891. static int i915_irq_postinstall(struct drm_device *dev)
  3892. {
  3893.         struct drm_i915_private *dev_priv = dev->dev_private;
  3894.         u32 enable_mask;
  3895.  
  3896.         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3897.  
  3898.         /* Unmask the interrupts that we always want on. */
  3899.         dev_priv->irq_mask =
  3900.                 ~(I915_ASLE_INTERRUPT |
  3901.                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3902.                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3903.                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3904.                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3905.  
  3906.         enable_mask =
  3907.                 I915_ASLE_INTERRUPT |
  3908.                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3909.                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3910.                 I915_USER_INTERRUPT;
  3911.  
  3912.         if (I915_HAS_HOTPLUG(dev)) {
  3913.                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3914.                 POSTING_READ(PORT_HOTPLUG_EN);
  3915.  
  3916.                 /* Enable in IER... */
  3917.                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3918.                 /* and unmask in IMR */
  3919.                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3920.         }
  3921.  
  3922.         I915_WRITE(IMR, dev_priv->irq_mask);
  3923.         I915_WRITE(IER, enable_mask);
  3924.         POSTING_READ(IER);
  3925.  
  3926.         i915_enable_asle_pipestat(dev);
  3927.  
  3928.         /* Interrupt setup is already guaranteed to be single-threaded, this is
  3929.          * just to make the assert_spin_locked check happy. */
  3930.         spin_lock_irq(&dev_priv->irq_lock);
  3931.         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3932.         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3933.         spin_unlock_irq(&dev_priv->irq_lock);
  3934.  
  3935.         return 0;
  3936. }
  3937.  
  3938. /*
  3939.  * Returns true when a page flip has completed.
  3940.  */
  3941. static bool i915_handle_vblank(struct drm_device *dev,
  3942.                                int plane, int pipe, u32 iir)
  3943. {
  3944.         struct drm_i915_private *dev_priv = dev->dev_private;
  3945.         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3946.  
  3947.         if (!intel_pipe_handle_vblank(dev, pipe))
  3948.                 return false;
  3949.  
  3950.         if ((iir & flip_pending) == 0)
  3951.                 goto check_page_flip;
  3952.  
  3953.         /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3954.          * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3955.          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3956.          * the flip is completed (no longer pending). Since this doesn't raise
  3957.          * an interrupt per se, we watch for the change at vblank.
  3958.          */
  3959.         if (I915_READ(ISR) & flip_pending)
  3960.                 goto check_page_flip;
  3961.  
  3962.         return true;
  3963.  
  3964. check_page_flip:
  3965.         return false;
  3966. }
  3967.  
  3968. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3969. {
  3970.         struct drm_device *dev = arg;
  3971.         struct drm_i915_private *dev_priv = dev->dev_private;
  3972.         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3973.         u32 flip_mask =
  3974.                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3975.                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3976.         int pipe, ret = IRQ_NONE;
  3977.  
  3978.         if (!intel_irqs_enabled(dev_priv))
  3979.                 return IRQ_NONE;
  3980.  
  3981.         iir = I915_READ(IIR);
  3982.         do {
  3983.                 bool irq_received = (iir & ~flip_mask) != 0;
  3984.                 bool blc_event = false;
  3985.  
  3986.                 /* Can't rely on pipestat interrupt bit in iir as it might
  3987.                  * have been cleared after the pipestat interrupt was received.
  3988.                  * It doesn't set the bit in iir again, but it still produces
  3989.                  * interrupts (for non-MSI).
  3990.                  */
  3991.                 spin_lock(&dev_priv->irq_lock);
  3992.                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3993.                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3994.  
  3995.                 for_each_pipe(dev_priv, pipe) {
  3996.                         int reg = PIPESTAT(pipe);
  3997.                         pipe_stats[pipe] = I915_READ(reg);
  3998.  
  3999.                         /* Clear the PIPE*STAT regs before the IIR */
  4000.                         if (pipe_stats[pipe] & 0x8000ffff) {
  4001.                                 I915_WRITE(reg, pipe_stats[pipe]);
  4002.                                 irq_received = true;
  4003.                         }
  4004.                 }
  4005.                 spin_unlock(&dev_priv->irq_lock);
  4006.  
  4007.                 if (!irq_received)
  4008.                         break;
  4009.  
  4010.                 /* Consume port.  Then clear IIR or we'll miss events */
  4011.                 if (I915_HAS_HOTPLUG(dev) &&
  4012.                     iir & I915_DISPLAY_PORT_INTERRUPT)
  4013.                         i9xx_hpd_irq_handler(dev);
  4014.  
  4015.                 I915_WRITE(IIR, iir & ~flip_mask);
  4016.                 new_iir = I915_READ(IIR); /* Flush posted writes */
  4017.  
  4018.                 if (iir & I915_USER_INTERRUPT)
  4019.                         notify_ring(&dev_priv->ring[RCS]);
  4020.  
  4021.                 for_each_pipe(dev_priv, pipe) {
  4022.                         int plane = pipe;
  4023.                         if (HAS_FBC(dev))
  4024.                                 plane = !plane;
  4025.  
  4026.                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  4027.                             i915_handle_vblank(dev, plane, pipe, iir))
  4028.                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  4029.  
  4030.                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  4031.                                 blc_event = true;
  4032.  
  4033.                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  4034.                                 i9xx_pipe_crc_irq_handler(dev, pipe);
  4035.  
  4036.                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  4037.                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
  4038.                                                                     pipe);
  4039.                 }
  4040.  
  4041.                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
  4042.                         intel_opregion_asle_intr(dev);
  4043.  
  4044.                 /* With MSI, interrupts are only generated when iir
  4045.                  * transitions from zero to nonzero.  If another bit got
  4046.                  * set while we were handling the existing iir bits, then
  4047.                  * we would never get another interrupt.
  4048.                  *
  4049.                  * This is fine on non-MSI as well, as if we hit this path
  4050.                  * we avoid exiting the interrupt handler only to generate
  4051.                  * another one.
  4052.                  *
  4053.                  * Note that for MSI this could cause a stray interrupt report
  4054.                  * if an interrupt landed in the time between writing IIR and
  4055.                  * the posting read.  This should be rare enough to never
  4056.                  * trigger the 99% of 100,000 interrupts test for disabling
  4057.                  * stray interrupts.
  4058.                  */
  4059.                 ret = IRQ_HANDLED;
  4060.                 iir = new_iir;
  4061.         } while (iir & ~flip_mask);
  4062.  
  4063.         return ret;
  4064. }
  4065.  
  4066. static void i915_irq_uninstall(struct drm_device * dev)
  4067. {
  4068.         struct drm_i915_private *dev_priv = dev->dev_private;
  4069.         int pipe;
  4070.  
  4071.         if (I915_HAS_HOTPLUG(dev)) {
  4072.                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  4073.                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  4074.         }
  4075.  
  4076.         I915_WRITE16(HWSTAM, 0xffff);
  4077.         for_each_pipe(dev_priv, pipe) {
  4078.                 /* Clear enable bits; then clear status bits */
  4079.                 I915_WRITE(PIPESTAT(pipe), 0);
  4080.                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  4081.         }
  4082.         I915_WRITE(IMR, 0xffffffff);
  4083.         I915_WRITE(IER, 0x0);
  4084.  
  4085.         I915_WRITE(IIR, I915_READ(IIR));
  4086. }
  4087.  
  4088. static void i965_irq_preinstall(struct drm_device * dev)
  4089. {
  4090.         struct drm_i915_private *dev_priv = dev->dev_private;
  4091.         int pipe;
  4092.  
  4093.         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  4094.         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  4095.  
  4096.         I915_WRITE(HWSTAM, 0xeffe);
  4097.         for_each_pipe(dev_priv, pipe)
  4098.                 I915_WRITE(PIPESTAT(pipe), 0);
  4099.         I915_WRITE(IMR, 0xffffffff);
  4100.         I915_WRITE(IER, 0x0);
  4101.         POSTING_READ(IER);
  4102. }
  4103.  
  4104. static int i965_irq_postinstall(struct drm_device *dev)
  4105. {
  4106.         struct drm_i915_private *dev_priv = dev->dev_private;
  4107.         u32 enable_mask;
  4108.         u32 error_mask;
  4109.  
  4110.         /* Unmask the interrupts that we always want on. */
  4111.         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  4112.                                I915_DISPLAY_PORT_INTERRUPT |
  4113.                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  4114.                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  4115.                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  4116.                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  4117.                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  4118.  
  4119.         enable_mask = ~dev_priv->irq_mask;
  4120.         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  4121.                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  4122.         enable_mask |= I915_USER_INTERRUPT;
  4123.  
  4124.         if (IS_G4X(dev))
  4125.                 enable_mask |= I915_BSD_USER_INTERRUPT;
  4126.  
  4127.         /* Interrupt setup is already guaranteed to be single-threaded, this is
  4128.          * just to make the assert_spin_locked check happy. */
  4129.         spin_lock_irq(&dev_priv->irq_lock);
  4130.         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  4131.         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  4132.         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  4133.         spin_unlock_irq(&dev_priv->irq_lock);
  4134.  
  4135.         /*
  4136.          * Enable some error detection, note the instruction error mask
  4137.          * bit is reserved, so we leave it masked.
  4138.          */
  4139.         if (IS_G4X(dev)) {
  4140.                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
  4141.                                GM45_ERROR_MEM_PRIV |
  4142.                                GM45_ERROR_CP_PRIV |
  4143.                                I915_ERROR_MEMORY_REFRESH);
  4144.         } else {
  4145.                 error_mask = ~(I915_ERROR_PAGE_TABLE |
  4146.                                I915_ERROR_MEMORY_REFRESH);
  4147.         }
  4148.         I915_WRITE(EMR, error_mask);
  4149.  
  4150.         I915_WRITE(IMR, dev_priv->irq_mask);
  4151.         I915_WRITE(IER, enable_mask);
  4152.         POSTING_READ(IER);
  4153.  
  4154.         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  4155.         POSTING_READ(PORT_HOTPLUG_EN);
  4156.  
  4157.         i915_enable_asle_pipestat(dev);
  4158.  
  4159.         return 0;
  4160. }
  4161.  
  4162. static void i915_hpd_irq_setup(struct drm_device *dev)
  4163. {
  4164.         struct drm_i915_private *dev_priv = dev->dev_private;
  4165.         u32 hotplug_en;
  4166.  
  4167.         assert_spin_locked(&dev_priv->irq_lock);
  4168.  
  4169.         /* Note HDMI and DP share hotplug bits */
  4170.         /* enable bits are the same for all generations */
  4171.         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
  4172.         /* Programming the CRT detection parameters tends
  4173.            to generate a spurious hotplug event about three
  4174.            seconds later.  So just do it once.
  4175.         */
  4176.         if (IS_G4X(dev))
  4177.                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  4178.         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  4179.  
  4180.         /* Ignore TV since it's buggy */
  4181.         i915_hotplug_interrupt_update_locked(dev_priv,
  4182.                                              HOTPLUG_INT_EN_MASK |
  4183.                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  4184.                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  4185.                                              hotplug_en);
  4186. }
  4187.  
  4188. static irqreturn_t i965_irq_handler(int irq, void *arg)
  4189. {
  4190.         struct drm_device *dev = arg;
  4191.         struct drm_i915_private *dev_priv = dev->dev_private;
  4192.         u32 iir, new_iir;
  4193.         u32 pipe_stats[I915_MAX_PIPES];
  4194.         int ret = IRQ_NONE, pipe;
  4195.         u32 flip_mask =
  4196.                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  4197.                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  4198.  
  4199.         if (!intel_irqs_enabled(dev_priv))
  4200.                 return IRQ_NONE;
  4201.  
  4202.         iir = I915_READ(IIR);
  4203.  
  4204.         for (;;) {
  4205.                 bool irq_received = (iir & ~flip_mask) != 0;
  4206.                 bool blc_event = false;
  4207.  
  4208.                 /* Can't rely on pipestat interrupt bit in iir as it might
  4209.                  * have been cleared after the pipestat interrupt was received.
  4210.                  * It doesn't set the bit in iir again, but it still produces
  4211.                  * interrupts (for non-MSI).
  4212.                  */
  4213.                 spin_lock(&dev_priv->irq_lock);
  4214.                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  4215.                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  4216.  
  4217.                 for_each_pipe(dev_priv, pipe) {
  4218.                         int reg = PIPESTAT(pipe);
  4219.                         pipe_stats[pipe] = I915_READ(reg);
  4220.  
  4221.                         /*
  4222.                          * Clear the PIPE*STAT regs before the IIR
  4223.                          */
  4224.                         if (pipe_stats[pipe] & 0x8000ffff) {
  4225.                                 I915_WRITE(reg, pipe_stats[pipe]);
  4226.                                 irq_received = true;
  4227.                         }
  4228.                 }
  4229.                 spin_unlock(&dev_priv->irq_lock);
  4230.  
  4231.                 if (!irq_received)
  4232.                         break;
  4233.  
  4234.                 ret = IRQ_HANDLED;
  4235.  
  4236.                 /* Consume port.  Then clear IIR or we'll miss events */
  4237.                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
  4238.                         i9xx_hpd_irq_handler(dev);
  4239.  
  4240.                 I915_WRITE(IIR, iir & ~flip_mask);
  4241.                 new_iir = I915_READ(IIR); /* Flush posted writes */
  4242.  
  4243.                 if (iir & I915_USER_INTERRUPT)
  4244.                         notify_ring(&dev_priv->ring[RCS]);
  4245.                 if (iir & I915_BSD_USER_INTERRUPT)
  4246.                         notify_ring(&dev_priv->ring[VCS]);
  4247.  
  4248.                 for_each_pipe(dev_priv, pipe) {
  4249.                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  4250.                             i915_handle_vblank(dev, pipe, pipe, iir))
  4251.                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  4252.  
  4253.                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  4254.                                 blc_event = true;
  4255.  
  4256.                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  4257.                                 i9xx_pipe_crc_irq_handler(dev, pipe);
  4258.  
  4259.                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  4260.                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  4261.                 }
  4262.  
  4263.                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
  4264.                         intel_opregion_asle_intr(dev);
  4265.  
  4266.                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  4267.                         gmbus_irq_handler(dev);
  4268.  
  4269.                 /* With MSI, interrupts are only generated when iir
  4270.                  * transitions from zero to nonzero.  If another bit got
  4271.                  * set while we were handling the existing iir bits, then
  4272.                  * we would never get another interrupt.
  4273.                  *
  4274.                  * This is fine on non-MSI as well, as if we hit this path
  4275.                  * we avoid exiting the interrupt handler only to generate
  4276.                  * another one.
  4277.                  *
  4278.                  * Note that for MSI this could cause a stray interrupt report
  4279.                  * if an interrupt landed in the time between writing IIR and
  4280.                  * the posting read.  This should be rare enough to never
  4281.                  * trigger the 99% of 100,000 interrupts test for disabling
  4282.                  * stray interrupts.
  4283.                  */
  4284.                 iir = new_iir;
  4285.         }
  4286.  
  4287.         return ret;
  4288. }
  4289.  
  4290. static void i965_irq_uninstall(struct drm_device * dev)
  4291. {
  4292.         struct drm_i915_private *dev_priv = dev->dev_private;
  4293.         int pipe;
  4294.  
  4295.         if (!dev_priv)
  4296.                 return;
  4297.  
  4298.         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  4299.         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  4300.  
  4301.         I915_WRITE(HWSTAM, 0xffffffff);
  4302.         for_each_pipe(dev_priv, pipe)
  4303.                 I915_WRITE(PIPESTAT(pipe), 0);
  4304.         I915_WRITE(IMR, 0xffffffff);
  4305.         I915_WRITE(IER, 0x0);
  4306.  
  4307.         for_each_pipe(dev_priv, pipe)
  4308.                 I915_WRITE(PIPESTAT(pipe),
  4309.                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  4310.         I915_WRITE(IIR, I915_READ(IIR));
  4311. }
  4312.  
  4313. /**
  4314.  * intel_irq_init - initializes irq support
  4315.  * @dev_priv: i915 device instance
  4316.  *
  4317.  * This function initializes all the irq support including work items, timers
  4318.  * and all the vtables. It does not setup the interrupt itself though.
  4319.  */
  4320. void intel_irq_init(struct drm_i915_private *dev_priv)
  4321. {
  4322.         struct drm_device *dev = dev_priv->dev;
  4323.  
  4324.         intel_hpd_init_work(dev_priv);
  4325.  
  4326.         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  4327.         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  4328.  
  4329.         /* Let's track the enabled rps events */
  4330.         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
  4331.                 /* WaGsvRC0ResidencyMethod:vlv */
  4332.                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  4333.         else
  4334.                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  4335.  
  4336.         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  4337.                           i915_hangcheck_elapsed);
  4338.  
  4339.  
  4340.         if (IS_GEN2(dev_priv)) {
  4341.                 dev->max_vblank_count = 0;
  4342.                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  4343.         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  4344.                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  4345.                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  4346.         } else {
  4347.                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
  4348.                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  4349.         }
  4350.  
  4351.         /*
  4352.          * Opt out of the vblank disable timer on everything except gen2.
  4353.          * Gen2 doesn't have a hardware frame counter and so depends on
  4354.          * vblank interrupts to produce sane vblank seuquence numbers.
  4355.          */
  4356.         if (!IS_GEN2(dev_priv))
  4357.                 dev->vblank_disable_immediate = true;
  4358.  
  4359.         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  4360.         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  4361.  
  4362.         if (IS_CHERRYVIEW(dev_priv)) {
  4363.                 dev->driver->irq_handler = cherryview_irq_handler;
  4364.                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
  4365.                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
  4366.                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
  4367.                 dev->driver->enable_vblank = valleyview_enable_vblank;
  4368.                 dev->driver->disable_vblank = valleyview_disable_vblank;
  4369.                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  4370.         } else if (IS_VALLEYVIEW(dev_priv)) {
  4371.                 dev->driver->irq_handler = valleyview_irq_handler;
  4372.                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
  4373.                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
  4374.                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
  4375.                 dev->driver->enable_vblank = valleyview_enable_vblank;
  4376.                 dev->driver->disable_vblank = valleyview_disable_vblank;
  4377.                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  4378.         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  4379.                 dev->driver->irq_handler = gen8_irq_handler;
  4380.                 dev->driver->irq_preinstall = gen8_irq_reset;
  4381.                 dev->driver->irq_postinstall = gen8_irq_postinstall;
  4382.                 dev->driver->irq_uninstall = gen8_irq_uninstall;
  4383.                 dev->driver->enable_vblank = gen8_enable_vblank;
  4384.                 dev->driver->disable_vblank = gen8_disable_vblank;
  4385.                 if (IS_BROXTON(dev))
  4386.                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  4387.                 else if (HAS_PCH_SPT(dev))
  4388.                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  4389.                 else
  4390.                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  4391.         } else if (HAS_PCH_SPLIT(dev)) {
  4392.                 dev->driver->irq_handler = ironlake_irq_handler;
  4393.                 dev->driver->irq_preinstall = ironlake_irq_reset;
  4394.                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
  4395.                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
  4396.                 dev->driver->enable_vblank = ironlake_enable_vblank;
  4397.                 dev->driver->disable_vblank = ironlake_disable_vblank;
  4398.                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  4399.         } else {
  4400.                 if (INTEL_INFO(dev_priv)->gen == 2) {
  4401.                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
  4402.                         dev->driver->irq_preinstall = i915_irq_preinstall;
  4403.                         dev->driver->irq_postinstall = i915_irq_postinstall;
  4404.                         dev->driver->irq_uninstall = i915_irq_uninstall;
  4405.                         dev->driver->irq_handler = i915_irq_handler;
  4406.                 } else {
  4407.                         dev->driver->irq_preinstall = i965_irq_preinstall;
  4408.                         dev->driver->irq_postinstall = i965_irq_postinstall;
  4409.                         dev->driver->irq_uninstall = i965_irq_uninstall;
  4410.                         dev->driver->irq_handler = i965_irq_handler;
  4411.                 }
  4412.                 if (I915_HAS_HOTPLUG(dev_priv))
  4413.                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  4414.                 dev->driver->enable_vblank = i915_enable_vblank;
  4415.                 dev->driver->disable_vblank = i915_disable_vblank;
  4416.         }
  4417. }
  4418.  
  4419. /**
  4420.  * intel_irq_install - enables the hardware interrupt
  4421.  * @dev_priv: i915 device instance
  4422.  *
  4423.  * This function enables the hardware interrupt handling, but leaves the hotplug
  4424.  * handling still disabled. It is called after intel_irq_init().
  4425.  *
  4426.  * In the driver load and resume code we need working interrupts in a few places
  4427.  * but don't want to deal with the hassle of concurrent probe and hotplug
  4428.  * workers. Hence the split into this two-stage approach.
  4429.  */
  4430. int intel_irq_install(struct drm_i915_private *dev_priv)
  4431. {
  4432.         /*
  4433.          * We enable some interrupt sources in our postinstall hooks, so mark
  4434.          * interrupts as enabled _before_ actually enabling them to avoid
  4435.          * special cases in our ordering checks.
  4436.          */
  4437.         dev_priv->pm.irqs_enabled = true;
  4438.  
  4439.         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  4440. }
  4441.  
  4442. /**
  4443.  * intel_irq_uninstall - finilizes all irq handling
  4444.  * @dev_priv: i915 device instance
  4445.  *
  4446.  * This stops interrupt and hotplug handling and unregisters and frees all
  4447.  * resources acquired in the init functions.
  4448.  */
  4449. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  4450. {
  4451. //      drm_irq_uninstall(dev_priv->dev);
  4452. //      intel_hpd_cancel_work(dev_priv);
  4453.         dev_priv->pm.irqs_enabled = false;
  4454. }
  4455.  
  4456. /**
  4457.  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  4458.  * @dev_priv: i915 device instance
  4459.  *
  4460.  * This function is used to disable interrupts at runtime, both in the runtime
  4461.  * pm and the system suspend/resume code.
  4462.  */
  4463. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  4464. {
  4465.         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  4466.         dev_priv->pm.irqs_enabled = false;
  4467. }
  4468.  
  4469. /**
  4470.  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  4471.  * @dev_priv: i915 device instance
  4472.  *
  4473.  * This function is used to enable interrupts at runtime, both in the runtime
  4474.  * pm and the system suspend/resume code.
  4475.  */
  4476. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  4477. {
  4478.         dev_priv->pm.irqs_enabled = true;
  4479.         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  4480.         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  4481. }
  4482.