Subversion Repositories Kolibri OS

Rev

Rev 4103 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_RCULIST_H
  2. #define _LINUX_RCULIST_H
  3.  
  4. #ifdef __KERNEL__
  5.  
  6. /*
  7.  * RCU-protected list version
  8.  */
  9. #include <linux/list.h>
  10. //#include <linux/rcupdate.h>
  11.  
  12. /*
  13.  * Why is there no list_empty_rcu()?  Because list_empty() serves this
  14.  * purpose.  The list_empty() function fetches the RCU-protected pointer
  15.  * and compares it to the address of the list head, but neither dereferences
  16.  * this pointer itself nor provides this pointer to the caller.  Therefore,
  17.  * it is not necessary to use rcu_dereference(), so that list_empty() can
  18.  * be used anywhere you would want to use a list_empty_rcu().
  19.  */
  20.  
  21. /*
  22.  * return the ->next pointer of a list_head in an rcu safe
  23.  * way, we must not access it directly
  24.  */
  25. #define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  26.  
  27. /*
  28.  * Insert a new entry between two known consecutive entries.
  29.  *
  30.  * This is only for internal list manipulation where we know
  31.  * the prev/next entries already!
  32.  */
  33. #ifndef CONFIG_DEBUG_LIST
  34. static inline void __list_add_rcu(struct list_head *new,
  35.                 struct list_head *prev, struct list_head *next)
  36. {
  37.         new->next = next;
  38.         new->prev = prev;
  39.         rcu_assign_pointer(list_next_rcu(prev), new);
  40.         next->prev = new;
  41. }
  42. #else
  43. extern void __list_add_rcu(struct list_head *new,
  44.                 struct list_head *prev, struct list_head *next);
  45. #endif
  46.  
  47. /**
  48.  * list_add_rcu - add a new entry to rcu-protected list
  49.  * @new: new entry to be added
  50.  * @head: list head to add it after
  51.  *
  52.  * Insert a new entry after the specified head.
  53.  * This is good for implementing stacks.
  54.  *
  55.  * The caller must take whatever precautions are necessary
  56.  * (such as holding appropriate locks) to avoid racing
  57.  * with another list-mutation primitive, such as list_add_rcu()
  58.  * or list_del_rcu(), running on this same list.
  59.  * However, it is perfectly legal to run concurrently with
  60.  * the _rcu list-traversal primitives, such as
  61.  * list_for_each_entry_rcu().
  62.  */
  63. static inline void list_add_rcu(struct list_head *new, struct list_head *head)
  64. {
  65.         __list_add_rcu(new, head, head->next);
  66. }
  67.  
  68. /**
  69.  * list_add_tail_rcu - add a new entry to rcu-protected list
  70.  * @new: new entry to be added
  71.  * @head: list head to add it before
  72.  *
  73.  * Insert a new entry before the specified head.
  74.  * This is useful for implementing queues.
  75.  *
  76.  * The caller must take whatever precautions are necessary
  77.  * (such as holding appropriate locks) to avoid racing
  78.  * with another list-mutation primitive, such as list_add_tail_rcu()
  79.  * or list_del_rcu(), running on this same list.
  80.  * However, it is perfectly legal to run concurrently with
  81.  * the _rcu list-traversal primitives, such as
  82.  * list_for_each_entry_rcu().
  83.  */
  84. static inline void list_add_tail_rcu(struct list_head *new,
  85.                                         struct list_head *head)
  86. {
  87.         __list_add_rcu(new, head->prev, head);
  88. }
  89.  
  90. /**
  91.  * list_del_rcu - deletes entry from list without re-initialization
  92.  * @entry: the element to delete from the list.
  93.  *
  94.  * Note: list_empty() on entry does not return true after this,
  95.  * the entry is in an undefined state. It is useful for RCU based
  96.  * lockfree traversal.
  97.  *
  98.  * In particular, it means that we can not poison the forward
  99.  * pointers that may still be used for walking the list.
  100.  *
  101.  * The caller must take whatever precautions are necessary
  102.  * (such as holding appropriate locks) to avoid racing
  103.  * with another list-mutation primitive, such as list_del_rcu()
  104.  * or list_add_rcu(), running on this same list.
  105.  * However, it is perfectly legal to run concurrently with
  106.  * the _rcu list-traversal primitives, such as
  107.  * list_for_each_entry_rcu().
  108.  *
  109.  * Note that the caller is not permitted to immediately free
  110.  * the newly deleted entry.  Instead, either synchronize_rcu()
  111.  * or call_rcu() must be used to defer freeing until an RCU
  112.  * grace period has elapsed.
  113.  */
  114. static inline void list_del_rcu(struct list_head *entry)
  115. {
  116.         __list_del_entry(entry);
  117.         entry->prev = LIST_POISON2;
  118. }
  119.  
  120. /**
  121.  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
  122.  * @n: the element to delete from the hash list.
  123.  *
  124.  * Note: list_unhashed() on the node return true after this. It is
  125.  * useful for RCU based read lockfree traversal if the writer side
  126.  * must know if the list entry is still hashed or already unhashed.
  127.  *
  128.  * In particular, it means that we can not poison the forward pointers
  129.  * that may still be used for walking the hash list and we can only
  130.  * zero the pprev pointer so list_unhashed() will return true after
  131.  * this.
  132.  *
  133.  * The caller must take whatever precautions are necessary (such as
  134.  * holding appropriate locks) to avoid racing with another
  135.  * list-mutation primitive, such as hlist_add_head_rcu() or
  136.  * hlist_del_rcu(), running on this same list.  However, it is
  137.  * perfectly legal to run concurrently with the _rcu list-traversal
  138.  * primitives, such as hlist_for_each_entry_rcu().
  139.  */
  140. static inline void hlist_del_init_rcu(struct hlist_node *n)
  141. {
  142.         if (!hlist_unhashed(n)) {
  143.                 __hlist_del(n);
  144.                 n->pprev = NULL;
  145.         }
  146. }
  147.  
  148. /**
  149.  * list_replace_rcu - replace old entry by new one
  150.  * @old : the element to be replaced
  151.  * @new : the new element to insert
  152.  *
  153.  * The @old entry will be replaced with the @new entry atomically.
  154.  * Note: @old should not be empty.
  155.  */
  156. static inline void list_replace_rcu(struct list_head *old,
  157.                                 struct list_head *new)
  158. {
  159.         new->next = old->next;
  160.         new->prev = old->prev;
  161.         rcu_assign_pointer(list_next_rcu(new->prev), new);
  162.         new->next->prev = new;
  163.         old->prev = LIST_POISON2;
  164. }
  165.  
  166. /**
  167.  * list_splice_init_rcu - splice an RCU-protected list into an existing list.
  168.  * @list:       the RCU-protected list to splice
  169.  * @head:       the place in the list to splice the first list into
  170.  * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
  171.  *
  172.  * @head can be RCU-read traversed concurrently with this function.
  173.  *
  174.  * Note that this function blocks.
  175.  *
  176.  * Important note: the caller must take whatever action is necessary to
  177.  *      prevent any other updates to @head.  In principle, it is possible
  178.  *      to modify the list as soon as sync() begins execution.
  179.  *      If this sort of thing becomes necessary, an alternative version
  180.  *      based on call_rcu() could be created.  But only if -really-
  181.  *      needed -- there is no shortage of RCU API members.
  182.  */
  183. static inline void list_splice_init_rcu(struct list_head *list,
  184.                                         struct list_head *head,
  185.                                         void (*sync)(void))
  186. {
  187.         struct list_head *first = list->next;
  188.         struct list_head *last = list->prev;
  189.         struct list_head *at = head->next;
  190.  
  191.         if (list_empty(list))
  192.                 return;
  193.  
  194.         /* "first" and "last" tracking list, so initialize it. */
  195.  
  196.         INIT_LIST_HEAD(list);
  197.  
  198.         /*
  199.          * At this point, the list body still points to the source list.
  200.          * Wait for any readers to finish using the list before splicing
  201.          * the list body into the new list.  Any new readers will see
  202.          * an empty list.
  203.          */
  204.  
  205.         sync();
  206.  
  207.         /*
  208.          * Readers are finished with the source list, so perform splice.
  209.          * The order is important if the new list is global and accessible
  210.          * to concurrent RCU readers.  Note that RCU readers are not
  211.          * permitted to traverse the prev pointers without excluding
  212.          * this function.
  213.          */
  214.  
  215.         last->next = at;
  216.         rcu_assign_pointer(list_next_rcu(head), first);
  217.         first->prev = head;
  218.         at->prev = last;
  219. }
  220.  
  221. /**
  222.  * list_entry_rcu - get the struct for this entry
  223.  * @ptr:        the &struct list_head pointer.
  224.  * @type:       the type of the struct this is embedded in.
  225.  * @member:     the name of the list_struct within the struct.
  226.  *
  227.  * This primitive may safely run concurrently with the _rcu list-mutation
  228.  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
  229.  */
  230. #define list_entry_rcu(ptr, type, member) \
  231.         ({typeof (*ptr) __rcu *__ptr = (typeof (*ptr) __rcu __force *)ptr; \
  232.          container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
  233.         })
  234.  
  235. /**
  236.  * Where are list_empty_rcu() and list_first_entry_rcu()?
  237.  *
  238.  * Implementing those functions following their counterparts list_empty() and
  239.  * list_first_entry() is not advisable because they lead to subtle race
  240.  * conditions as the following snippet shows:
  241.  *
  242.  * if (!list_empty_rcu(mylist)) {
  243.  *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
  244.  *      do_something(bar);
  245.  * }
  246.  *
  247.  * The list may not be empty when list_empty_rcu checks it, but it may be when
  248.  * list_first_entry_rcu rereads the ->next pointer.
  249.  *
  250.  * Rereading the ->next pointer is not a problem for list_empty() and
  251.  * list_first_entry() because they would be protected by a lock that blocks
  252.  * writers.
  253.  *
  254.  * See list_first_or_null_rcu for an alternative.
  255.  */
  256.  
  257. /**
  258.  * list_first_or_null_rcu - get the first element from a list
  259.  * @ptr:        the list head to take the element from.
  260.  * @type:       the type of the struct this is embedded in.
  261.  * @member:     the name of the list_struct within the struct.
  262.  *
  263.  * Note that if the list is empty, it returns NULL.
  264.  *
  265.  * This primitive may safely run concurrently with the _rcu list-mutation
  266.  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
  267.  */
  268. #define list_first_or_null_rcu(ptr, type, member) \
  269.         ({struct list_head *__ptr = (ptr); \
  270.           struct list_head __rcu *__next = list_next_rcu(__ptr); \
  271.           likely(__ptr != __next) ? container_of(__next, type, member) : NULL; \
  272.         })
  273.  
  274. /**
  275.  * list_for_each_entry_rcu      -       iterate over rcu list of given type
  276.  * @pos:        the type * to use as a loop cursor.
  277.  * @head:       the head for your list.
  278.  * @member:     the name of the list_struct within the struct.
  279.  *
  280.  * This list-traversal primitive may safely run concurrently with
  281.  * the _rcu list-mutation primitives such as list_add_rcu()
  282.  * as long as the traversal is guarded by rcu_read_lock().
  283.  */
  284. #define list_for_each_entry_rcu(pos, head, member) \
  285.         for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
  286.                 &pos->member != (head); \
  287.                 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
  288.  
  289. /**
  290.  * list_for_each_entry_continue_rcu - continue iteration over list of given type
  291.  * @pos:        the type * to use as a loop cursor.
  292.  * @head:       the head for your list.
  293.  * @member:     the name of the list_struct within the struct.
  294.  *
  295.  * Continue to iterate over list of given type, continuing after
  296.  * the current position.
  297.  */
  298. #define list_for_each_entry_continue_rcu(pos, head, member)             \
  299.         for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
  300.              &pos->member != (head);    \
  301.              pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
  302.  
  303. /**
  304.  * hlist_del_rcu - deletes entry from hash list without re-initialization
  305.  * @n: the element to delete from the hash list.
  306.  *
  307.  * Note: list_unhashed() on entry does not return true after this,
  308.  * the entry is in an undefined state. It is useful for RCU based
  309.  * lockfree traversal.
  310.  *
  311.  * In particular, it means that we can not poison the forward
  312.  * pointers that may still be used for walking the hash list.
  313.  *
  314.  * The caller must take whatever precautions are necessary
  315.  * (such as holding appropriate locks) to avoid racing
  316.  * with another list-mutation primitive, such as hlist_add_head_rcu()
  317.  * or hlist_del_rcu(), running on this same list.
  318.  * However, it is perfectly legal to run concurrently with
  319.  * the _rcu list-traversal primitives, such as
  320.  * hlist_for_each_entry().
  321.  */
  322. static inline void hlist_del_rcu(struct hlist_node *n)
  323. {
  324.         __hlist_del(n);
  325.         n->pprev = LIST_POISON2;
  326. }
  327.  
  328. /**
  329.  * hlist_replace_rcu - replace old entry by new one
  330.  * @old : the element to be replaced
  331.  * @new : the new element to insert
  332.  *
  333.  * The @old entry will be replaced with the @new entry atomically.
  334.  */
  335. static inline void hlist_replace_rcu(struct hlist_node *old,
  336.                                         struct hlist_node *new)
  337. {
  338.         struct hlist_node *next = old->next;
  339.  
  340.         new->next = next;
  341.         new->pprev = old->pprev;
  342.         rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
  343.         if (next)
  344.                 new->next->pprev = &new->next;
  345.         old->pprev = LIST_POISON2;
  346. }
  347.  
  348. /*
  349.  * return the first or the next element in an RCU protected hlist
  350.  */
  351. #define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
  352. #define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
  353. #define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
  354.  
  355. /**
  356.  * hlist_add_head_rcu
  357.  * @n: the element to add to the hash list.
  358.  * @h: the list to add to.
  359.  *
  360.  * Description:
  361.  * Adds the specified element to the specified hlist,
  362.  * while permitting racing traversals.
  363.  *
  364.  * The caller must take whatever precautions are necessary
  365.  * (such as holding appropriate locks) to avoid racing
  366.  * with another list-mutation primitive, such as hlist_add_head_rcu()
  367.  * or hlist_del_rcu(), running on this same list.
  368.  * However, it is perfectly legal to run concurrently with
  369.  * the _rcu list-traversal primitives, such as
  370.  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
  371.  * problems on Alpha CPUs.  Regardless of the type of CPU, the
  372.  * list-traversal primitive must be guarded by rcu_read_lock().
  373.  */
  374. static inline void hlist_add_head_rcu(struct hlist_node *n,
  375.                                         struct hlist_head *h)
  376. {
  377.         struct hlist_node *first = h->first;
  378.  
  379.         n->next = first;
  380.         n->pprev = &h->first;
  381.         rcu_assign_pointer(hlist_first_rcu(h), n);
  382.         if (first)
  383.                 first->pprev = &n->next;
  384. }
  385.  
  386. /**
  387.  * hlist_add_before_rcu
  388.  * @n: the new element to add to the hash list.
  389.  * @next: the existing element to add the new element before.
  390.  *
  391.  * Description:
  392.  * Adds the specified element to the specified hlist
  393.  * before the specified node while permitting racing traversals.
  394.  *
  395.  * The caller must take whatever precautions are necessary
  396.  * (such as holding appropriate locks) to avoid racing
  397.  * with another list-mutation primitive, such as hlist_add_head_rcu()
  398.  * or hlist_del_rcu(), running on this same list.
  399.  * However, it is perfectly legal to run concurrently with
  400.  * the _rcu list-traversal primitives, such as
  401.  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
  402.  * problems on Alpha CPUs.
  403.  */
  404. static inline void hlist_add_before_rcu(struct hlist_node *n,
  405.                                         struct hlist_node *next)
  406. {
  407.         n->pprev = next->pprev;
  408.         n->next = next;
  409.         rcu_assign_pointer(hlist_pprev_rcu(n), n);
  410.         next->pprev = &n->next;
  411. }
  412.  
  413. /**
  414.  * hlist_add_after_rcu
  415.  * @prev: the existing element to add the new element after.
  416.  * @n: the new element to add to the hash list.
  417.  *
  418.  * Description:
  419.  * Adds the specified element to the specified hlist
  420.  * after the specified node while permitting racing traversals.
  421.  *
  422.  * The caller must take whatever precautions are necessary
  423.  * (such as holding appropriate locks) to avoid racing
  424.  * with another list-mutation primitive, such as hlist_add_head_rcu()
  425.  * or hlist_del_rcu(), running on this same list.
  426.  * However, it is perfectly legal to run concurrently with
  427.  * the _rcu list-traversal primitives, such as
  428.  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
  429.  * problems on Alpha CPUs.
  430.  */
  431. static inline void hlist_add_after_rcu(struct hlist_node *prev,
  432.                                        struct hlist_node *n)
  433. {
  434.         n->next = prev->next;
  435.         n->pprev = &prev->next;
  436.         rcu_assign_pointer(hlist_next_rcu(prev), n);
  437.         if (n->next)
  438.                 n->next->pprev = &n->next;
  439. }
  440.  
  441. #define __hlist_for_each_rcu(pos, head)                         \
  442.         for (pos = rcu_dereference(hlist_first_rcu(head));      \
  443.              pos;                                               \
  444.              pos = rcu_dereference(hlist_next_rcu(pos)))
  445.  
  446. /**
  447.  * hlist_for_each_entry_rcu - iterate over rcu list of given type
  448.  * @pos:        the type * to use as a loop cursor.
  449.  * @head:       the head for your list.
  450.  * @member:     the name of the hlist_node within the struct.
  451.  *
  452.  * This list-traversal primitive may safely run concurrently with
  453.  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
  454.  * as long as the traversal is guarded by rcu_read_lock().
  455.  */
  456. #define hlist_for_each_entry_rcu(pos, head, member)                     \
  457.         for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
  458.                         typeof(*(pos)), member);                        \
  459.                 pos;                                                    \
  460.                 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
  461.                         &(pos)->member)), typeof(*(pos)), member))
  462.  
  463. /**
  464.  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
  465.  * @pos:        the type * to use as a loop cursor.
  466.  * @head:       the head for your list.
  467.  * @member:     the name of the hlist_node within the struct.
  468.  *
  469.  * This list-traversal primitive may safely run concurrently with
  470.  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
  471.  * as long as the traversal is guarded by rcu_read_lock().
  472.  *
  473.  * This is the same as hlist_for_each_entry_rcu() except that it does
  474.  * not do any RCU debugging or tracing.
  475.  */
  476. #define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
  477.         for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
  478.                         typeof(*(pos)), member);                        \
  479.                 pos;                                                    \
  480.                 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
  481.                         &(pos)->member)), typeof(*(pos)), member))
  482.  
  483. /**
  484.  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
  485.  * @pos:        the type * to use as a loop cursor.
  486.  * @head:       the head for your list.
  487.  * @member:     the name of the hlist_node within the struct.
  488.  *
  489.  * This list-traversal primitive may safely run concurrently with
  490.  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
  491.  * as long as the traversal is guarded by rcu_read_lock().
  492.  */
  493. #define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
  494.         for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
  495.                         typeof(*(pos)), member);                        \
  496.                 pos;                                                    \
  497.                 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
  498.                         &(pos)->member)), typeof(*(pos)), member))
  499.  
  500. /**
  501.  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
  502.  * @pos:        the type * to use as a loop cursor.
  503.  * @member:     the name of the hlist_node within the struct.
  504.  */
  505. #define hlist_for_each_entry_continue_rcu(pos, member)                  \
  506.         for (pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
  507.                         typeof(*(pos)), member);                        \
  508.              pos;                                                       \
  509.              pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
  510.                         typeof(*(pos)), member))
  511.  
  512. /**
  513.  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
  514.  * @pos:        the type * to use as a loop cursor.
  515.  * @member:     the name of the hlist_node within the struct.
  516.  */
  517. #define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
  518.         for (pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
  519.                         typeof(*(pos)), member);                        \
  520.              pos;                                                       \
  521.              pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
  522.                         typeof(*(pos)), member))
  523.  
  524.  
  525. #endif  /* __KERNEL__ */
  526. #endif
  527.