Subversion Repositories Kolibri OS

Rev

Rev 6082 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3.  
  4. #include <linux/math64.h>
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/time.h>
  8. //#include <linux/timex.h>
  9. //#include <asm/param.h>         /* for HZ */
  10.  
  11.  
  12. #define HZ              100
  13. #define CLOCK_TICK_RATE 1193182ul
  14.  
  15. /*
  16.  * The following defines establish the engineering parameters of the PLL
  17.  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  18.  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  19.  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  20.  * nearest power of two in order to avoid hardware multiply operations.
  21.  */
  22. #if HZ >= 12 && HZ < 24
  23. # define SHIFT_HZ       4
  24. #elif HZ >= 24 && HZ < 48
  25. # define SHIFT_HZ       5
  26. #elif HZ >= 48 && HZ < 96
  27. # define SHIFT_HZ       6
  28. #elif HZ >= 96 && HZ < 192
  29. # define SHIFT_HZ       7
  30. #elif HZ >= 192 && HZ < 384
  31. # define SHIFT_HZ       8
  32. #elif HZ >= 384 && HZ < 768
  33. # define SHIFT_HZ       9
  34. #elif HZ >= 768 && HZ < 1536
  35. # define SHIFT_HZ       10
  36. #elif HZ >= 1536 && HZ < 3072
  37. # define SHIFT_HZ       11
  38. #elif HZ >= 3072 && HZ < 6144
  39. # define SHIFT_HZ       12
  40. #elif HZ >= 6144 && HZ < 12288
  41. # define SHIFT_HZ       13
  42. #else
  43. # error Invalid value of HZ.
  44. #endif
  45.  
  46. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  47.  * improve accuracy by shifting LSH bits, hence calculating:
  48.  *     (NOM << LSH) / DEN
  49.  * This however means trouble for large NOM, because (NOM << LSH) may no
  50.  * longer fit in 32 bits. The following way of calculating this gives us
  51.  * some slack, under the following conditions:
  52.  *   - (NOM / DEN) fits in (32 - LSH) bits.
  53.  *   - (NOM % DEN) fits in (32 - LSH) bits.
  54.  */
  55. #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  56.                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  57.  
  58. /* LATCH is used in the interval timer and ftape setup. */
  59. #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  60.  
  61. extern int register_refined_jiffies(long clock_tick_rate);
  62.  
  63. /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  64. #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  65.  
  66. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  67. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  68.  
  69. /* some arch's have a small-data section that can be accessed register-relative
  70.  * but that can only take up to, say, 4-byte variables. jiffies being part of
  71.  * an 8-byte variable may not be correctly accessed unless we force the issue
  72.  */
  73. #define __jiffy_data  __attribute__((section(".data")))
  74.  
  75. /*
  76.  * The 64-bit value is not atomic - you MUST NOT read it
  77.  * without sampling the sequence number in jiffies_lock.
  78.  * get_jiffies_64() will do this for you as appropriate.
  79.  */
  80. extern u64 __jiffy_data jiffies_64;
  81. extern unsigned long volatile __jiffy_data jiffies;
  82.  
  83. #if (BITS_PER_LONG < 64)
  84. u64 get_jiffies_64(void);
  85. #else
  86. static inline u64 get_jiffies_64(void)
  87. {
  88.         return (u64)jiffies;
  89. }
  90. #endif
  91.  
  92. /*
  93.  *      These inlines deal with timer wrapping correctly. You are
  94.  *      strongly encouraged to use them
  95.  *      1. Because people otherwise forget
  96.  *      2. Because if the timer wrap changes in future you won't have to
  97.  *         alter your driver code.
  98.  *
  99.  * time_after(a,b) returns true if the time a is after time b.
  100.  *
  101.  * Do this with "<0" and ">=0" to only test the sign of the result. A
  102.  * good compiler would generate better code (and a really good compiler
  103.  * wouldn't care). Gcc is currently neither.
  104.  */
  105. #define time_after(a,b)         \
  106.         (typecheck(unsigned long, a) && \
  107.          typecheck(unsigned long, b) && \
  108.          ((long)((b) - (a)) < 0))
  109. #define time_before(a,b)        time_after(b,a)
  110.  
  111. #define time_after_eq(a,b)      \
  112.         (typecheck(unsigned long, a) && \
  113.          typecheck(unsigned long, b) && \
  114.          ((long)((a) - (b)) >= 0))
  115. #define time_before_eq(a,b)     time_after_eq(b,a)
  116.  
  117. /*
  118.  * Calculate whether a is in the range of [b, c].
  119.  */
  120. #define time_in_range(a,b,c) \
  121.         (time_after_eq(a,b) && \
  122.          time_before_eq(a,c))
  123.  
  124. /*
  125.  * Calculate whether a is in the range of [b, c).
  126.  */
  127. #define time_in_range_open(a,b,c) \
  128.         (time_after_eq(a,b) && \
  129.          time_before(a,c))
  130.  
  131. /* Same as above, but does so with platform independent 64bit types.
  132.  * These must be used when utilizing jiffies_64 (i.e. return value of
  133.  * get_jiffies_64() */
  134. #define time_after64(a,b)       \
  135.         (typecheck(__u64, a) && \
  136.          typecheck(__u64, b) && \
  137.          ((__s64)((b) - (a)) < 0))
  138. #define time_before64(a,b)      time_after64(b,a)
  139.  
  140. #define time_after_eq64(a,b)    \
  141.         (typecheck(__u64, a) && \
  142.          typecheck(__u64, b) && \
  143.          ((__s64)((a) - (b)) >= 0))
  144. #define time_before_eq64(a,b)   time_after_eq64(b,a)
  145.  
  146. #define time_in_range64(a, b, c) \
  147.         (time_after_eq64(a, b) && \
  148.          time_before_eq64(a, c))
  149.  
  150. /*
  151.  * These four macros compare jiffies and 'a' for convenience.
  152.  */
  153.  
  154. /* time_is_before_jiffies(a) return true if a is before jiffies */
  155. #define time_is_before_jiffies(a) time_after(jiffies, a)
  156.  
  157. /* time_is_after_jiffies(a) return true if a is after jiffies */
  158. #define time_is_after_jiffies(a) time_before(jiffies, a)
  159.  
  160. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  161. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  162.  
  163. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  164. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  165.  
  166. /*
  167.  * Have the 32 bit jiffies value wrap 5 minutes after boot
  168.  * so jiffies wrap bugs show up earlier.
  169.  */
  170. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  171.  
  172. /*
  173.  * Change timeval to jiffies, trying to avoid the
  174.  * most obvious overflows..
  175.  *
  176.  * And some not so obvious.
  177.  *
  178.  * Note that we don't want to return LONG_MAX, because
  179.  * for various timeout reasons we often end up having
  180.  * to wait "jiffies+1" in order to guarantee that we wait
  181.  * at _least_ "jiffies" - so "jiffies+1" had better still
  182.  * be positive.
  183.  */
  184. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  185.  
  186. extern unsigned long preset_lpj;
  187.  
  188. /*
  189.  * We want to do realistic conversions of time so we need to use the same
  190.  * values the update wall clock code uses as the jiffies size.  This value
  191.  * is: TICK_NSEC (which is defined in timex.h).  This
  192.  * is a constant and is in nanoseconds.  We will use scaled math
  193.  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
  194.  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
  195.  * constants and so are computed at compile time.  SHIFT_HZ (computed in
  196.  * timex.h) adjusts the scaling for different HZ values.
  197.  
  198.  * Scaled math???  What is that?
  199.  *
  200.  * Scaled math is a way to do integer math on values that would,
  201.  * otherwise, either overflow, underflow, or cause undesired div
  202.  * instructions to appear in the execution path.  In short, we "scale"
  203.  * up the operands so they take more bits (more precision, less
  204.  * underflow), do the desired operation and then "scale" the result back
  205.  * by the same amount.  If we do the scaling by shifting we avoid the
  206.  * costly mpy and the dastardly div instructions.
  207.  
  208.  * Suppose, for example, we want to convert from seconds to jiffies
  209.  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
  210.  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  211.  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  212.  * might calculate at compile time, however, the result will only have
  213.  * about 3-4 bits of precision (less for smaller values of HZ).
  214.  *
  215.  * So, we scale as follows:
  216.  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  217.  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  218.  * Then we make SCALE a power of two so:
  219.  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  220.  * Now we define:
  221.  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  222.  * jiff = (sec * SEC_CONV) >> SCALE;
  223.  *
  224.  * Often the math we use will expand beyond 32-bits so we tell C how to
  225.  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  226.  * which should take the result back to 32-bits.  We want this expansion
  227.  * to capture as much precision as possible.  At the same time we don't
  228.  * want to overflow so we pick the SCALE to avoid this.  In this file,
  229.  * that means using a different scale for each range of HZ values (as
  230.  * defined in timex.h).
  231.  *
  232.  * For those who want to know, gcc will give a 64-bit result from a "*"
  233.  * operator if the result is a long long AND at least one of the
  234.  * operands is cast to long long (usually just prior to the "*" so as
  235.  * not to confuse it into thinking it really has a 64-bit operand,
  236.  * which, buy the way, it can do, but it takes more code and at least 2
  237.  * mpys).
  238.  
  239.  * We also need to be aware that one second in nanoseconds is only a
  240.  * couple of bits away from overflowing a 32-bit word, so we MUST use
  241.  * 64-bits to get the full range time in nanoseconds.
  242.  
  243.  */
  244.  
  245. /*
  246.  * Here are the scales we will use.  One for seconds, nanoseconds and
  247.  * microseconds.
  248.  *
  249.  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  250.  * check if the sign bit is set.  If not, we bump the shift count by 1.
  251.  * (Gets an extra bit of precision where we can use it.)
  252.  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  253.  * Haven't tested others.
  254.  
  255.  * Limits of cpp (for #if expressions) only long (no long long), but
  256.  * then we only need the most signicant bit.
  257.  */
  258.  
  259. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  260. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  261. #undef SEC_JIFFIE_SC
  262. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  263. #endif
  264. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  265. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  266.                                 TICK_NSEC -1) / (u64)TICK_NSEC))
  267.  
  268. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  269.                                         TICK_NSEC -1) / (u64)TICK_NSEC))
  270. /*
  271.  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
  272.  * into seconds.  The 64-bit case will overflow if we are not careful,
  273.  * so use the messy SH_DIV macro to do it.  Still all constants.
  274.  */
  275. #if BITS_PER_LONG < 64
  276. # define MAX_SEC_IN_JIFFIES \
  277.         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  278. #else   /* take care of overflow on 64 bits machines */
  279. # define MAX_SEC_IN_JIFFIES \
  280.         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  281.  
  282. #endif
  283.  
  284. /*
  285.  * Convert various time units to each other:
  286.  */
  287. extern unsigned int jiffies_to_msecs(const unsigned long j);
  288. extern unsigned int jiffies_to_usecs(const unsigned long j);
  289.  
  290. static inline u64 jiffies_to_nsecs(const unsigned long j)
  291. {
  292.         return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
  293. }
  294.  
  295. extern unsigned long __msecs_to_jiffies(const unsigned int m);
  296. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  297. /*
  298.  * HZ is equal to or smaller than 1000, and 1000 is a nice round
  299.  * multiple of HZ, divide with the factor between them, but round
  300.  * upwards:
  301.  */
  302. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  303. {
  304.         return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  305. }
  306. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  307. /*
  308.  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
  309.  * simply multiply with the factor between them.
  310.  *
  311.  * But first make sure the multiplication result cannot overflow:
  312.  */
  313. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  314. {
  315.         if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  316.                 return MAX_JIFFY_OFFSET;
  317.         return m * (HZ / MSEC_PER_SEC);
  318. }
  319. #else
  320. /*
  321.  * Generic case - multiply, round and divide. But first check that if
  322.  * we are doing a net multiplication, that we wouldn't overflow:
  323.  */
  324. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  325. {
  326.         if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  327.                 return MAX_JIFFY_OFFSET;
  328.  
  329.         return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
  330. }
  331. #endif
  332. /**
  333.  * msecs_to_jiffies: - convert milliseconds to jiffies
  334.  * @m:  time in milliseconds
  335.  *
  336.  * conversion is done as follows:
  337.  *
  338.  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  339.  *
  340.  * - 'too large' values [that would result in larger than
  341.  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  342.  *
  343.  * - all other values are converted to jiffies by either multiplying
  344.  *   the input value by a factor or dividing it with a factor and
  345.  *   handling any 32-bit overflows.
  346.  *   for the details see __msecs_to_jiffies()
  347.  *
  348.  * msecs_to_jiffies() checks for the passed in value being a constant
  349.  * via __builtin_constant_p() allowing gcc to eliminate most of the
  350.  * code, __msecs_to_jiffies() is called if the value passed does not
  351.  * allow constant folding and the actual conversion must be done at
  352.  * runtime.
  353.  * the HZ range specific helpers _msecs_to_jiffies() are called both
  354.  * directly here and from __msecs_to_jiffies() in the case where
  355.  * constant folding is not possible.
  356.  */
  357. static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
  358. {
  359.         if (__builtin_constant_p(m)) {
  360.                 if ((int)m < 0)
  361.                         return MAX_JIFFY_OFFSET;
  362.                 return _msecs_to_jiffies(m);
  363.         } else {
  364.                 return __msecs_to_jiffies(m);
  365.         }
  366. }
  367.  
  368. extern unsigned long __usecs_to_jiffies(const unsigned int u);
  369. #if !(USEC_PER_SEC % HZ)
  370. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  371. {
  372.         return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  373. }
  374. #else
  375. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  376. {
  377.         return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  378.                 >> USEC_TO_HZ_SHR32;
  379. }
  380. #endif
  381.  
  382. /**
  383.  * usecs_to_jiffies: - convert microseconds to jiffies
  384.  * @u:  time in microseconds
  385.  *
  386.  * conversion is done as follows:
  387.  *
  388.  * - 'too large' values [that would result in larger than
  389.  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  390.  *
  391.  * - all other values are converted to jiffies by either multiplying
  392.  *   the input value by a factor or dividing it with a factor and
  393.  *   handling any 32-bit overflows as for msecs_to_jiffies.
  394.  *
  395.  * usecs_to_jiffies() checks for the passed in value being a constant
  396.  * via __builtin_constant_p() allowing gcc to eliminate most of the
  397.  * code, __usecs_to_jiffies() is called if the value passed does not
  398.  * allow constant folding and the actual conversion must be done at
  399.  * runtime.
  400.  * the HZ range specific helpers _usecs_to_jiffies() are called both
  401.  * directly here and from __msecs_to_jiffies() in the case where
  402.  * constant folding is not possible.
  403.  */
  404. static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
  405. {
  406.         if (__builtin_constant_p(u)) {
  407.                 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  408.                         return MAX_JIFFY_OFFSET;
  409.                 return _usecs_to_jiffies(u);
  410.         } else {
  411.                 return __usecs_to_jiffies(u);
  412.         }
  413. }
  414.  
  415. extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
  416. extern void jiffies_to_timespec64(const unsigned long jiffies,
  417.                                   struct timespec64 *value);
  418. static inline unsigned long timespec_to_jiffies(const struct timespec *value)
  419. {
  420.         struct timespec64 ts = timespec_to_timespec64(*value);
  421.  
  422.         return timespec64_to_jiffies(&ts);
  423. }
  424.  
  425. static inline void jiffies_to_timespec(const unsigned long jiffies,
  426.                                        struct timespec *value)
  427. {
  428.         struct timespec64 ts;
  429.  
  430.         jiffies_to_timespec64(jiffies, &ts);
  431.         *value = timespec64_to_timespec(ts);
  432. }
  433.  
  434. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  435. extern void jiffies_to_timeval(const unsigned long jiffies,
  436.                                struct timeval *value);
  437.  
  438. extern clock_t jiffies_to_clock_t(unsigned long x);
  439. static inline clock_t jiffies_delta_to_clock_t(long delta)
  440. {
  441.         return jiffies_to_clock_t(max(0L, delta));
  442. }
  443.  
  444. extern unsigned long clock_t_to_jiffies(unsigned long x);
  445. extern u64 jiffies_64_to_clock_t(u64 x);
  446. extern u64 nsec_to_clock_t(u64 x);
  447. extern u64 nsecs_to_jiffies64(u64 n);
  448. extern unsigned long nsecs_to_jiffies(u64 n);
  449.  
  450. #define TIMESTAMP_SIZE  30
  451.  
  452. #endif
  453.