Subversion Repositories Kolibri OS

Rev

Rev 4065 | Rev 5056 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3.  
  4. #include <linux/math64.h>
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/time.h>
  8. //#include <linux/timex.h>
  9. //#include <asm/param.h>         /* for HZ */
  10.  
  11.  
  12. #define HZ              100
  13. #define CLOCK_TICK_RATE 1193182ul
  14.  
  15. /*
  16.  * The following defines establish the engineering parameters of the PLL
  17.  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  18.  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  19.  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  20.  * nearest power of two in order to avoid hardware multiply operations.
  21.  */
  22. #if HZ >= 12 && HZ < 24
  23. # define SHIFT_HZ       4
  24. #elif HZ >= 24 && HZ < 48
  25. # define SHIFT_HZ       5
  26. #elif HZ >= 48 && HZ < 96
  27. # define SHIFT_HZ       6
  28. #elif HZ >= 96 && HZ < 192
  29. # define SHIFT_HZ       7
  30. #elif HZ >= 192 && HZ < 384
  31. # define SHIFT_HZ       8
  32. #elif HZ >= 384 && HZ < 768
  33. # define SHIFT_HZ       9
  34. #elif HZ >= 768 && HZ < 1536
  35. # define SHIFT_HZ       10
  36. #elif HZ >= 1536 && HZ < 3072
  37. # define SHIFT_HZ       11
  38. #elif HZ >= 3072 && HZ < 6144
  39. # define SHIFT_HZ       12
  40. #elif HZ >= 6144 && HZ < 12288
  41. # define SHIFT_HZ       13
  42. #else
  43. # error Invalid value of HZ.
  44. #endif
  45.  
  46. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  47.  * improve accuracy by shifting LSH bits, hence calculating:
  48.  *     (NOM << LSH) / DEN
  49.  * This however means trouble for large NOM, because (NOM << LSH) may no
  50.  * longer fit in 32 bits. The following way of calculating this gives us
  51.  * some slack, under the following conditions:
  52.  *   - (NOM / DEN) fits in (32 - LSH) bits.
  53.  *   - (NOM % DEN) fits in (32 - LSH) bits.
  54.  */
  55. #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  56.                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  57.  
  58. /* LATCH is used in the interval timer and ftape setup. */
  59. #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  60.  
  61. extern int register_refined_jiffies(long clock_tick_rate);
  62.  
  63. /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  64. #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  65.  
  66. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  67. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  68.  
  69. /* some arch's have a small-data section that can be accessed register-relative
  70.  * but that can only take up to, say, 4-byte variables. jiffies being part of
  71.  * an 8-byte variable may not be correctly accessed unless we force the issue
  72.  */
  73. #define __jiffy_data  __attribute__((section(".data")))
  74.  
  75. /*
  76.  * The 64-bit value is not atomic - you MUST NOT read it
  77.  * without sampling the sequence number in jiffies_lock.
  78.  * get_jiffies_64() will do this for you as appropriate.
  79. static inline u64 get_jiffies_64(void)
  80. {
  81.     return (u64)GetTimerTicks();
  82. }
  83.  
  84. /*
  85.  *      These inlines deal with timer wrapping correctly. You are
  86.  *      strongly encouraged to use them
  87.  *      1. Because people otherwise forget
  88.  *      2. Because if the timer wrap changes in future you won't have to
  89.  *         alter your driver code.
  90.  *
  91.  * time_after(a,b) returns true if the time a is after time b.
  92.  *
  93.  * Do this with "<0" and ">=0" to only test the sign of the result. A
  94.  * good compiler would generate better code (and a really good compiler
  95.  * wouldn't care). Gcc is currently neither.
  96.  */
  97. #define time_after(a,b)         \
  98.         (typecheck(unsigned long, a) && \
  99.          typecheck(unsigned long, b) && \
  100.          ((long)((b) - (a)) < 0))
  101. #define time_before(a,b)        time_after(b,a)
  102.  
  103. #define time_after_eq(a,b)      \
  104.         (typecheck(unsigned long, a) && \
  105.          typecheck(unsigned long, b) && \
  106.          ((long)((a) - (b)) >= 0))
  107. #define time_before_eq(a,b)     time_after_eq(b,a)
  108.  
  109. /*
  110.  * Calculate whether a is in the range of [b, c].
  111.  */
  112. #define time_in_range(a,b,c) \
  113.         (time_after_eq(a,b) && \
  114.          time_before_eq(a,c))
  115.  
  116. /*
  117.  * Calculate whether a is in the range of [b, c).
  118.  */
  119. #define time_in_range_open(a,b,c) \
  120.         (time_after_eq(a,b) && \
  121.          time_before(a,c))
  122.  
  123. /* Same as above, but does so with platform independent 64bit types.
  124.  * These must be used when utilizing jiffies_64 (i.e. return value of
  125.  * get_jiffies_64() */
  126. #define time_after64(a,b)       \
  127.         (typecheck(__u64, a) && \
  128.          typecheck(__u64, b) && \
  129.          ((__s64)((b) - (a)) < 0))
  130. #define time_before64(a,b)      time_after64(b,a)
  131.  
  132. #define time_after_eq64(a,b)    \
  133.         (typecheck(__u64, a) && \
  134.          typecheck(__u64, b) && \
  135.          ((__s64)((a) - (b)) >= 0))
  136. #define time_before_eq64(a,b)   time_after_eq64(b,a)
  137.  
  138. #define time_in_range64(a, b, c) \
  139.         (time_after_eq64(a, b) && \
  140.          time_before_eq64(a, c))
  141.  
  142. /*
  143.  * These four macros compare jiffies and 'a' for convenience.
  144.  */
  145.  
  146. /* time_is_before_jiffies(a) return true if a is before jiffies */
  147. #define time_is_before_jiffies(a) time_after(jiffies, a)
  148.  
  149. /* time_is_after_jiffies(a) return true if a is after jiffies */
  150. #define time_is_after_jiffies(a) time_before(jiffies, a)
  151.  
  152. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  153. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  154.  
  155. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  156. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  157.  
  158. /*
  159.  * Have the 32 bit jiffies value wrap 5 minutes after boot
  160.  * so jiffies wrap bugs show up earlier.
  161.  */
  162. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  163.  
  164. /*
  165.  * Change timeval to jiffies, trying to avoid the
  166.  * most obvious overflows..
  167.  *
  168.  * And some not so obvious.
  169.  *
  170.  * Note that we don't want to return LONG_MAX, because
  171.  * for various timeout reasons we often end up having
  172.  * to wait "jiffies+1" in order to guarantee that we wait
  173.  * at _least_ "jiffies" - so "jiffies+1" had better still
  174.  * be positive.
  175.  */
  176. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  177.  
  178. extern unsigned long preset_lpj;
  179.  
  180. /*
  181.  * We want to do realistic conversions of time so we need to use the same
  182.  * values the update wall clock code uses as the jiffies size.  This value
  183.  * is: TICK_NSEC (which is defined in timex.h).  This
  184.  * is a constant and is in nanoseconds.  We will use scaled math
  185.  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
  186.  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
  187.  * constants and so are computed at compile time.  SHIFT_HZ (computed in
  188.  * timex.h) adjusts the scaling for different HZ values.
  189.  
  190.  * Scaled math???  What is that?
  191.  *
  192.  * Scaled math is a way to do integer math on values that would,
  193.  * otherwise, either overflow, underflow, or cause undesired div
  194.  * instructions to appear in the execution path.  In short, we "scale"
  195.  * up the operands so they take more bits (more precision, less
  196.  * underflow), do the desired operation and then "scale" the result back
  197.  * by the same amount.  If we do the scaling by shifting we avoid the
  198.  * costly mpy and the dastardly div instructions.
  199.  
  200.  * Suppose, for example, we want to convert from seconds to jiffies
  201.  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
  202.  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  203.  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  204.  * might calculate at compile time, however, the result will only have
  205.  * about 3-4 bits of precision (less for smaller values of HZ).
  206.  *
  207.  * So, we scale as follows:
  208.  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  209.  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  210.  * Then we make SCALE a power of two so:
  211.  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  212.  * Now we define:
  213.  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  214.  * jiff = (sec * SEC_CONV) >> SCALE;
  215.  *
  216.  * Often the math we use will expand beyond 32-bits so we tell C how to
  217.  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  218.  * which should take the result back to 32-bits.  We want this expansion
  219.  * to capture as much precision as possible.  At the same time we don't
  220.  * want to overflow so we pick the SCALE to avoid this.  In this file,
  221.  * that means using a different scale for each range of HZ values (as
  222.  * defined in timex.h).
  223.  *
  224.  * For those who want to know, gcc will give a 64-bit result from a "*"
  225.  * operator if the result is a long long AND at least one of the
  226.  * operands is cast to long long (usually just prior to the "*" so as
  227.  * not to confuse it into thinking it really has a 64-bit operand,
  228.  * which, buy the way, it can do, but it takes more code and at least 2
  229.  * mpys).
  230.  
  231.  * We also need to be aware that one second in nanoseconds is only a
  232.  * couple of bits away from overflowing a 32-bit word, so we MUST use
  233.  * 64-bits to get the full range time in nanoseconds.
  234.  
  235.  */
  236.  
  237. /*
  238.  * Here are the scales we will use.  One for seconds, nanoseconds and
  239.  * microseconds.
  240.  *
  241.  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  242.  * check if the sign bit is set.  If not, we bump the shift count by 1.
  243.  * (Gets an extra bit of precision where we can use it.)
  244.  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  245.  * Haven't tested others.
  246.  
  247.  * Limits of cpp (for #if expressions) only long (no long long), but
  248.  * then we only need the most signicant bit.
  249.  */
  250.  
  251. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  252. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  253. #undef SEC_JIFFIE_SC
  254. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  255. #endif
  256. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  257. #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
  258. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  259.                                 TICK_NSEC -1) / (u64)TICK_NSEC))
  260.  
  261. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  262.                                         TICK_NSEC -1) / (u64)TICK_NSEC))
  263. #define USEC_CONVERSION  \
  264.                     ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
  265.                                         TICK_NSEC -1) / (u64)TICK_NSEC))
  266. /*
  267.  * USEC_ROUND is used in the timeval to jiffie conversion.  See there
  268.  * for more details.  It is the scaled resolution rounding value.  Note
  269.  * that it is a 64-bit value.  Since, when it is applied, we are already
  270.  * in jiffies (albit scaled), it is nothing but the bits we will shift
  271.  * off.
  272.  */
  273. #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
  274. /*
  275.  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
  276.  * into seconds.  The 64-bit case will overflow if we are not careful,
  277.  * so use the messy SH_DIV macro to do it.  Still all constants.
  278.  */
  279. #if BITS_PER_LONG < 64
  280. # define MAX_SEC_IN_JIFFIES \
  281.         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  282. #else   /* take care of overflow on 64 bits machines */
  283. # define MAX_SEC_IN_JIFFIES \
  284.         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  285.  
  286. #endif
  287.  
  288. /*
  289.  * Convert various time units to each other:
  290.  */
  291. extern unsigned int jiffies_to_msecs(const unsigned long j);
  292. extern unsigned int jiffies_to_usecs(const unsigned long j);
  293. extern unsigned long msecs_to_jiffies(const unsigned int m);
  294. extern unsigned long usecs_to_jiffies(const unsigned int u);
  295. extern unsigned long timespec_to_jiffies(const struct timespec *value);
  296. extern void jiffies_to_timespec(const unsigned long jiffies,
  297.                                 struct timespec *value);
  298. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  299. extern void jiffies_to_timeval(const unsigned long jiffies,
  300.                                struct timeval *value);
  301.  
  302. extern clock_t jiffies_to_clock_t(unsigned long x);
  303. static inline clock_t jiffies_delta_to_clock_t(long delta)
  304. {
  305.         return jiffies_to_clock_t(max(0L, delta));
  306. }
  307.  
  308. extern unsigned long clock_t_to_jiffies(unsigned long x);
  309. extern u64 jiffies_64_to_clock_t(u64 x);
  310. extern u64 nsec_to_clock_t(u64 x);
  311. extern u64 nsecs_to_jiffies64(u64 n);
  312. extern unsigned long nsecs_to_jiffies(u64 n);
  313.  
  314.  
  315. static unsigned long round_jiffies_common(unsigned long j, bool force_up)
  316. {
  317.     int rem;
  318.     unsigned long original = j;
  319.  
  320.     rem = j % HZ;
  321.  
  322.     /*
  323.      * If the target jiffie is just after a whole second (which can happen
  324.      * due to delays of the timer irq, long irq off times etc etc) then
  325.      * we should round down to the whole second, not up. Use 1/4th second
  326.      * as cutoff for this rounding as an extreme upper bound for this.
  327.      * But never round down if @force_up is set.
  328.      */
  329.     if (rem < HZ/4 && !force_up) /* round down */
  330.             j = j - rem;
  331.     else /* round up */
  332.             j = j - rem + HZ;
  333.  
  334.     if (j <= GetTimerTicks()) /* rounding ate our timeout entirely; */
  335.             return original;
  336.     return j;
  337. }
  338.  
  339.  
  340.  
  341. unsigned long round_jiffies_up_relative(unsigned long j);
  342.  
  343. #define TIMESTAMP_SIZE  30
  344.  
  345. #endif
  346.