Subversion Repositories Kolibri OS

Rev

Rev 2967 | Rev 3482 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3.  
  4. //#include <linux/math64.h>
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. //#include <linux/time.h>
  8. //#include <linux/timex.h>
  9. //#include <asm/param.h>         /* for HZ */
  10.  
  11.  
  12. #define HZ              100
  13. #define CLOCK_TICK_RATE 1193182ul
  14.  
  15. /*
  16.  * The following defines establish the engineering parameters of the PLL
  17.  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  18.  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  19.  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  20.  * nearest power of two in order to avoid hardware multiply operations.
  21.  */
  22. #if HZ >= 12 && HZ < 24
  23. # define SHIFT_HZ       4
  24. #elif HZ >= 24 && HZ < 48
  25. # define SHIFT_HZ       5
  26. #elif HZ >= 48 && HZ < 96
  27. # define SHIFT_HZ       6
  28. #elif HZ >= 96 && HZ < 192
  29. # define SHIFT_HZ       7
  30. #elif HZ >= 192 && HZ < 384
  31. # define SHIFT_HZ       8
  32. #elif HZ >= 384 && HZ < 768
  33. # define SHIFT_HZ       9
  34. #elif HZ >= 768 && HZ < 1536
  35. # define SHIFT_HZ       10
  36. #elif HZ >= 1536 && HZ < 3072
  37. # define SHIFT_HZ       11
  38. #elif HZ >= 3072 && HZ < 6144
  39. # define SHIFT_HZ       12
  40. #elif HZ >= 6144 && HZ < 12288
  41. # define SHIFT_HZ       13
  42. #else
  43. # error Invalid value of HZ.
  44. #endif
  45.  
  46. /* LATCH is used in the interval timer and ftape setup. */
  47. #define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
  48.  
  49. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  50.  * improve accuracy by shifting LSH bits, hence calculating:
  51.  *     (NOM << LSH) / DEN
  52.  * This however means trouble for large NOM, because (NOM << LSH) may no
  53.  * longer fit in 32 bits. The following way of calculating this gives us
  54.  * some slack, under the following conditions:
  55.  *   - (NOM / DEN) fits in (32 - LSH) bits.
  56.  *   - (NOM % DEN) fits in (32 - LSH) bits.
  57.  */
  58. #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  59.                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  60.  
  61. /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
  62. #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
  63.  
  64. /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
  65. #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
  66.  
  67. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  68. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  69.  
  70. /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and  */
  71. /* a value TUSEC for TICK_USEC (can be set bij adjtimex)                */
  72. #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
  73.  
  74. static inline u64 get_jiffies_64(void)
  75. {
  76.     return (u64)GetTimerTicks();
  77. }
  78.  
  79. /*
  80.  *      These inlines deal with timer wrapping correctly. You are
  81.  *      strongly encouraged to use them
  82.  *      1. Because people otherwise forget
  83.  *      2. Because if the timer wrap changes in future you won't have to
  84.  *         alter your driver code.
  85.  *
  86.  * time_after(a,b) returns true if the time a is after time b.
  87.  *
  88.  * Do this with "<0" and ">=0" to only test the sign of the result. A
  89.  * good compiler would generate better code (and a really good compiler
  90.  * wouldn't care). Gcc is currently neither.
  91.  */
  92. #define time_after(a,b)         \
  93.         (typecheck(unsigned long, a) && \
  94.          typecheck(unsigned long, b) && \
  95.          ((long)(b) - (long)(a) < 0))
  96. #define time_before(a,b)        time_after(b,a)
  97.  
  98. #define time_after_eq(a,b)      \
  99.         (typecheck(unsigned long, a) && \
  100.          typecheck(unsigned long, b) && \
  101.          ((long)(a) - (long)(b) >= 0))
  102. #define time_before_eq(a,b)     time_after_eq(b,a)
  103.  
  104. /*
  105.  * Calculate whether a is in the range of [b, c].
  106.  */
  107. #define time_in_range(a,b,c) \
  108.         (time_after_eq(a,b) && \
  109.          time_before_eq(a,c))
  110.  
  111. /*
  112.  * Calculate whether a is in the range of [b, c).
  113.  */
  114. #define time_in_range_open(a,b,c) \
  115.         (time_after_eq(a,b) && \
  116.          time_before(a,c))
  117.  
  118. /* Same as above, but does so with platform independent 64bit types.
  119.  * These must be used when utilizing jiffies_64 (i.e. return value of
  120.  * get_jiffies_64() */
  121. #define time_after64(a,b)       \
  122.         (typecheck(__u64, a) && \
  123.          typecheck(__u64, b) && \
  124.          ((__s64)(b) - (__s64)(a) < 0))
  125. #define time_before64(a,b)      time_after64(b,a)
  126.  
  127. #define time_after_eq64(a,b)    \
  128.         (typecheck(__u64, a) && \
  129.          typecheck(__u64, b) && \
  130.          ((__s64)(a) - (__s64)(b) >= 0))
  131. #define time_before_eq64(a,b)   time_after_eq64(b,a)
  132.  
  133. /*
  134.  * These four macros compare jiffies and 'a' for convenience.
  135.  */
  136.  
  137. /* time_is_before_jiffies(a) return true if a is before jiffies */
  138. #define time_is_before_jiffies(a) time_after(jiffies, a)
  139.  
  140. /* time_is_after_jiffies(a) return true if a is after jiffies */
  141. #define time_is_after_jiffies(a) time_before(jiffies, a)
  142.  
  143. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  144. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  145.  
  146. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  147. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  148.  
  149. /*
  150.  * Have the 32 bit jiffies value wrap 5 minutes after boot
  151.  * so jiffies wrap bugs show up earlier.
  152.  */
  153. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  154.  
  155. /*
  156.  * Change timeval to jiffies, trying to avoid the
  157.  * most obvious overflows..
  158.  *
  159.  * And some not so obvious.
  160.  *
  161.  * Note that we don't want to return LONG_MAX, because
  162.  * for various timeout reasons we often end up having
  163.  * to wait "jiffies+1" in order to guarantee that we wait
  164.  * at _least_ "jiffies" - so "jiffies+1" had better still
  165.  * be positive.
  166.  */
  167. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  168.  
  169. extern unsigned long preset_lpj;
  170.  
  171. /*
  172.  * We want to do realistic conversions of time so we need to use the same
  173.  * values the update wall clock code uses as the jiffies size.  This value
  174.  * is: TICK_NSEC (which is defined in timex.h).  This
  175.  * is a constant and is in nanoseconds.  We will use scaled math
  176.  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
  177.  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
  178.  * constants and so are computed at compile time.  SHIFT_HZ (computed in
  179.  * timex.h) adjusts the scaling for different HZ values.
  180.  
  181.  * Scaled math???  What is that?
  182.  *
  183.  * Scaled math is a way to do integer math on values that would,
  184.  * otherwise, either overflow, underflow, or cause undesired div
  185.  * instructions to appear in the execution path.  In short, we "scale"
  186.  * up the operands so they take more bits (more precision, less
  187.  * underflow), do the desired operation and then "scale" the result back
  188.  * by the same amount.  If we do the scaling by shifting we avoid the
  189.  * costly mpy and the dastardly div instructions.
  190.  
  191.  * Suppose, for example, we want to convert from seconds to jiffies
  192.  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
  193.  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  194.  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  195.  * might calculate at compile time, however, the result will only have
  196.  * about 3-4 bits of precision (less for smaller values of HZ).
  197.  *
  198.  * So, we scale as follows:
  199.  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  200.  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  201.  * Then we make SCALE a power of two so:
  202.  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  203.  * Now we define:
  204.  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  205.  * jiff = (sec * SEC_CONV) >> SCALE;
  206.  *
  207.  * Often the math we use will expand beyond 32-bits so we tell C how to
  208.  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  209.  * which should take the result back to 32-bits.  We want this expansion
  210.  * to capture as much precision as possible.  At the same time we don't
  211.  * want to overflow so we pick the SCALE to avoid this.  In this file,
  212.  * that means using a different scale for each range of HZ values (as
  213.  * defined in timex.h).
  214.  *
  215.  * For those who want to know, gcc will give a 64-bit result from a "*"
  216.  * operator if the result is a long long AND at least one of the
  217.  * operands is cast to long long (usually just prior to the "*" so as
  218.  * not to confuse it into thinking it really has a 64-bit operand,
  219.  * which, buy the way, it can do, but it takes more code and at least 2
  220.  * mpys).
  221.  
  222.  * We also need to be aware that one second in nanoseconds is only a
  223.  * couple of bits away from overflowing a 32-bit word, so we MUST use
  224.  * 64-bits to get the full range time in nanoseconds.
  225.  
  226.  */
  227.  
  228. /*
  229.  * Here are the scales we will use.  One for seconds, nanoseconds and
  230.  * microseconds.
  231.  *
  232.  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  233.  * check if the sign bit is set.  If not, we bump the shift count by 1.
  234.  * (Gets an extra bit of precision where we can use it.)
  235.  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  236.  * Haven't tested others.
  237.  
  238.  * Limits of cpp (for #if expressions) only long (no long long), but
  239.  * then we only need the most signicant bit.
  240.  */
  241.  
  242. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  243. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  244. #undef SEC_JIFFIE_SC
  245. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  246. #endif
  247. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  248. #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
  249. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  250.                                 TICK_NSEC -1) / (u64)TICK_NSEC))
  251.  
  252. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  253.                                         TICK_NSEC -1) / (u64)TICK_NSEC))
  254. #define USEC_CONVERSION  \
  255.                     ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
  256.                                         TICK_NSEC -1) / (u64)TICK_NSEC))
  257. /*
  258.  * USEC_ROUND is used in the timeval to jiffie conversion.  See there
  259.  * for more details.  It is the scaled resolution rounding value.  Note
  260.  * that it is a 64-bit value.  Since, when it is applied, we are already
  261.  * in jiffies (albit scaled), it is nothing but the bits we will shift
  262.  * off.
  263.  */
  264. #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
  265. /*
  266.  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
  267.  * into seconds.  The 64-bit case will overflow if we are not careful,
  268.  * so use the messy SH_DIV macro to do it.  Still all constants.
  269.  */
  270. #if BITS_PER_LONG < 64
  271. # define MAX_SEC_IN_JIFFIES \
  272.         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  273. #else   /* take care of overflow on 64 bits machines */
  274. # define MAX_SEC_IN_JIFFIES \
  275.         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  276.  
  277. #endif
  278.  
  279. /*
  280.  * Convert various time units to each other:
  281.  */
  282. extern unsigned int jiffies_to_msecs(const unsigned long j);
  283. extern unsigned int jiffies_to_usecs(const unsigned long j);
  284. extern unsigned long msecs_to_jiffies(const unsigned int m);
  285. extern unsigned long usecs_to_jiffies(const unsigned int u);
  286. extern unsigned long timespec_to_jiffies(const struct timespec *value);
  287. extern void jiffies_to_timespec(const unsigned long jiffies,
  288.                                 struct timespec *value);
  289. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  290. extern void jiffies_to_timeval(const unsigned long jiffies,
  291.                                struct timeval *value);
  292.  
  293. extern clock_t jiffies_to_clock_t(unsigned long x);
  294. static inline clock_t jiffies_delta_to_clock_t(long delta)
  295. {
  296.         return jiffies_to_clock_t(max(0L, delta));
  297. }
  298.  
  299. extern unsigned long clock_t_to_jiffies(unsigned long x);
  300. extern u64 jiffies_64_to_clock_t(u64 x);
  301. extern u64 nsec_to_clock_t(u64 x);
  302. extern u64 nsecs_to_jiffies64(u64 n);
  303. extern unsigned long nsecs_to_jiffies(u64 n);
  304.  
  305. #define TIMESTAMP_SIZE  30
  306.  
  307. #endif
  308.