Subversion Repositories Kolibri OS

Rev

Rev 6082 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  *  linux/kernel/time.c
  3.  *
  4.  *  Copyright (C) 1991, 1992  Linus Torvalds
  5.  *
  6.  *  This file contains the interface functions for the various
  7.  *  time related system calls: time, stime, gettimeofday, settimeofday,
  8.  *                             adjtime
  9.  */
  10. /*
  11.  * Modification history kernel/time.c
  12.  *
  13.  * 1993-09-02    Philip Gladstone
  14.  *      Created file with time related functions from sched/core.c and adjtimex()
  15.  * 1993-10-08    Torsten Duwe
  16.  *      adjtime interface update and CMOS clock write code
  17.  * 1995-08-13    Torsten Duwe
  18.  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19.  * 1999-01-16    Ulrich Windl
  20.  *      Introduced error checking for many cases in adjtimex().
  21.  *      Updated NTP code according to technical memorandum Jan '96
  22.  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
  23.  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24.  *      (Even though the technical memorandum forbids it)
  25.  * 2004-07-14    Christoph Lameter
  26.  *      Added getnstimeofday to allow the posix timer functions to return
  27.  *      with nanosecond accuracy
  28.  */
  29.  
  30. #include <linux/jiffies.h>
  31. #include <linux/errno.h>
  32. #include <linux/math64.h>
  33.  
  34.  
  35.  
  36. #define HZ_TO_MSEC_MUL32 0xA0000000
  37. #define HZ_TO_MSEC_ADJ32 0x0
  38. #define HZ_TO_MSEC_SHR32 28
  39. #define HZ_TO_MSEC_MUL64 0xA000000000000000
  40. #define HZ_TO_MSEC_ADJ64 0x0
  41. #define HZ_TO_MSEC_SHR64 60
  42. #define MSEC_TO_HZ_MUL32 0xCCCCCCCD
  43. #define MSEC_TO_HZ_ADJ32 0x733333333
  44. #define MSEC_TO_HZ_SHR32 35
  45. #define MSEC_TO_HZ_MUL64 0xCCCCCCCCCCCCCCCD
  46. #define MSEC_TO_HZ_ADJ64 0x73333333333333333
  47. #define MSEC_TO_HZ_SHR64 67
  48. #define HZ_TO_MSEC_NUM 10
  49. #define HZ_TO_MSEC_DEN 1
  50. #define MSEC_TO_HZ_NUM 1
  51. #define MSEC_TO_HZ_DEN 10
  52.  
  53. #define HZ_TO_USEC_MUL32 0x9C400000
  54. #define HZ_TO_USEC_ADJ32 0x0
  55. #define HZ_TO_USEC_SHR32 18
  56. #define HZ_TO_USEC_MUL64 0x9C40000000000000
  57. #define HZ_TO_USEC_ADJ64 0x0
  58. #define HZ_TO_USEC_SHR64 50
  59. #define USEC_TO_HZ_MUL32 0xD1B71759
  60. #define USEC_TO_HZ_ADJ32 0x1FFF2E48E8A7
  61. #define USEC_TO_HZ_SHR32 45
  62. #define USEC_TO_HZ_MUL64 0xD1B71758E219652C
  63. #define USEC_TO_HZ_ADJ64 0x1FFF2E48E8A71DE69AD4
  64. #define USEC_TO_HZ_SHR64 77
  65. #define HZ_TO_USEC_NUM 10000
  66. #define HZ_TO_USEC_DEN 1
  67. #define USEC_TO_HZ_NUM 1
  68. #define USEC_TO_HZ_DEN 10000
  69.  
  70.  
  71. #define MSEC_PER_SEC    1000L
  72. #define USEC_PER_MSEC   1000L
  73. #define NSEC_PER_USEC   1000L
  74. #define NSEC_PER_MSEC   1000000L
  75. #define USEC_PER_SEC    1000000L
  76. #define NSEC_PER_SEC    1000000000L
  77. #define FSEC_PER_SEC    1000000000000000LL
  78.  
  79. # define USER_HZ        100
  80. /*
  81.  * Convert jiffies to milliseconds and back.
  82.  *
  83.  * Avoid unnecessary multiplications/divisions in the
  84.  * two most common HZ cases:
  85.  */
  86. unsigned int jiffies_to_msecs(const unsigned long j)
  87. {
  88. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  89.         return (MSEC_PER_SEC / HZ) * j;
  90. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  91.         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  92. #else
  93. # if BITS_PER_LONG == 32
  94.         return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  95. # else
  96.         return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  97. # endif
  98. #endif
  99. }
  100. EXPORT_SYMBOL(jiffies_to_msecs);
  101.  
  102. unsigned int jiffies_to_usecs(const unsigned long j)
  103. {
  104. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  105.         return (USEC_PER_SEC / HZ) * j;
  106. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  107.         return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  108. #else
  109. # if BITS_PER_LONG == 32
  110.         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  111. # else
  112.         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  113. # endif
  114. #endif
  115. }
  116. EXPORT_SYMBOL(jiffies_to_usecs);
  117.  
  118. /**
  119.  * timespec_trunc - Truncate timespec to a granularity
  120.  * @t: Timespec
  121.  * @gran: Granularity in ns.
  122.  *
  123.  * Truncate a timespec to a granularity. Always rounds down. gran must
  124.  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
  125.  */
  126. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  127. {
  128.         /* Avoid division in the common cases 1 ns and 1 s. */
  129.         if (gran == 1) {
  130.                 /* nothing */
  131.         } else if (gran == NSEC_PER_SEC) {
  132.                 t.tv_nsec = 0;
  133.         } else if (gran > 1 && gran < NSEC_PER_SEC) {
  134.                 t.tv_nsec -= t.tv_nsec % gran;
  135.         } else {
  136.                 WARN(1, "illegal file time granularity: %u", gran);
  137.         }
  138.         return t;
  139. }
  140. EXPORT_SYMBOL(timespec_trunc);
  141.  
  142. /*
  143.  * mktime64 - Converts date to seconds.
  144.  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  145.  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  146.  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  147.  *
  148.  * [For the Julian calendar (which was used in Russia before 1917,
  149.  * Britain & colonies before 1752, anywhere else before 1582,
  150.  * and is still in use by some communities) leave out the
  151.  * -year/100+year/400 terms, and add 10.]
  152.  *
  153.  * This algorithm was first published by Gauss (I think).
  154.  */
  155. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  156.                 const unsigned int day, const unsigned int hour,
  157.                 const unsigned int min, const unsigned int sec)
  158. {
  159.         unsigned int mon = mon0, year = year0;
  160.  
  161.         /* 1..12 -> 11,12,1..10 */
  162.         if (0 >= (int) (mon -= 2)) {
  163.                 mon += 12;      /* Puts Feb last since it has leap day */
  164.                 year -= 1;
  165.         }
  166.  
  167.         return ((((time64_t)
  168.                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  169.                   year*365 - 719499
  170.             )*24 + hour /* now have hours */
  171.           )*60 + min /* now have minutes */
  172.         )*60 + sec; /* finally seconds */
  173. }
  174. EXPORT_SYMBOL(mktime64);
  175.  
  176. /**
  177.  * set_normalized_timespec - set timespec sec and nsec parts and normalize
  178.  *
  179.  * @ts:         pointer to timespec variable to be set
  180.  * @sec:        seconds to set
  181.  * @nsec:       nanoseconds to set
  182.  *
  183.  * Set seconds and nanoseconds field of a timespec variable and
  184.  * normalize to the timespec storage format
  185.  *
  186.  * Note: The tv_nsec part is always in the range of
  187.  *      0 <= tv_nsec < NSEC_PER_SEC
  188.  * For negative values only the tv_sec field is negative !
  189.  */
  190. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  191. {
  192.         while (nsec >= NSEC_PER_SEC) {
  193.                 /*
  194.                  * The following asm() prevents the compiler from
  195.                  * optimising this loop into a modulo operation. See
  196.                  * also __iter_div_u64_rem() in include/linux/time.h
  197.                  */
  198.                 asm("" : "+rm"(nsec));
  199.                 nsec -= NSEC_PER_SEC;
  200.                 ++sec;
  201.         }
  202.         while (nsec < 0) {
  203.                 asm("" : "+rm"(nsec));
  204.                 nsec += NSEC_PER_SEC;
  205.                 --sec;
  206.         }
  207.         ts->tv_sec = sec;
  208.         ts->tv_nsec = nsec;
  209. }
  210. EXPORT_SYMBOL(set_normalized_timespec);
  211.  
  212. /**
  213.  * ns_to_timespec - Convert nanoseconds to timespec
  214.  * @nsec:       the nanoseconds value to be converted
  215.  *
  216.  * Returns the timespec representation of the nsec parameter.
  217.  */
  218. struct timespec ns_to_timespec(const s64 nsec)
  219. {
  220.         struct timespec ts;
  221.         s32 rem;
  222.  
  223.         if (!nsec)
  224.                 return (struct timespec) {0, 0};
  225.  
  226.         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  227.         if (unlikely(rem < 0)) {
  228.                 ts.tv_sec--;
  229.                 rem += NSEC_PER_SEC;
  230.         }
  231.         ts.tv_nsec = rem;
  232.  
  233.         return ts;
  234. }
  235. EXPORT_SYMBOL(ns_to_timespec);
  236.  
  237. /**
  238.  * ns_to_timeval - Convert nanoseconds to timeval
  239.  * @nsec:       the nanoseconds value to be converted
  240.  *
  241.  * Returns the timeval representation of the nsec parameter.
  242.  */
  243. struct timeval ns_to_timeval(const s64 nsec)
  244. {
  245.         struct timespec ts = ns_to_timespec(nsec);
  246.         struct timeval tv;
  247.  
  248.         tv.tv_sec = ts.tv_sec;
  249.         tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  250.  
  251.         return tv;
  252. }
  253. EXPORT_SYMBOL(ns_to_timeval);
  254.  
  255. #if BITS_PER_LONG == 32
  256. /**
  257.  * set_normalized_timespec - set timespec sec and nsec parts and normalize
  258.  *
  259.  * @ts:         pointer to timespec variable to be set
  260.  * @sec:        seconds to set
  261.  * @nsec:       nanoseconds to set
  262.  *
  263.  * Set seconds and nanoseconds field of a timespec variable and
  264.  * normalize to the timespec storage format
  265.  *
  266.  * Note: The tv_nsec part is always in the range of
  267.  *      0 <= tv_nsec < NSEC_PER_SEC
  268.  * For negative values only the tv_sec field is negative !
  269.  */
  270. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  271. {
  272.         while (nsec >= NSEC_PER_SEC) {
  273.                 /*
  274.                  * The following asm() prevents the compiler from
  275.                  * optimising this loop into a modulo operation. See
  276.                  * also __iter_div_u64_rem() in include/linux/time.h
  277.                  */
  278.                 asm("" : "+rm"(nsec));
  279.                 nsec -= NSEC_PER_SEC;
  280.                 ++sec;
  281.         }
  282.         while (nsec < 0) {
  283.                 asm("" : "+rm"(nsec));
  284.                 nsec += NSEC_PER_SEC;
  285.                 --sec;
  286.         }
  287.         ts->tv_sec = sec;
  288.         ts->tv_nsec = nsec;
  289. }
  290. EXPORT_SYMBOL(set_normalized_timespec64);
  291.  
  292. /**
  293.  * ns_to_timespec64 - Convert nanoseconds to timespec64
  294.  * @nsec:       the nanoseconds value to be converted
  295.  *
  296.  * Returns the timespec64 representation of the nsec parameter.
  297.  */
  298. struct timespec64 ns_to_timespec64(const s64 nsec)
  299. {
  300.         struct timespec64 ts;
  301.         s32 rem;
  302.  
  303.         if (!nsec)
  304.                 return (struct timespec64) {0, 0};
  305.  
  306.         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  307.         if (unlikely(rem < 0)) {
  308.                 ts.tv_sec--;
  309.                 rem += NSEC_PER_SEC;
  310.         }
  311.         ts.tv_nsec = rem;
  312.  
  313.         return ts;
  314. }
  315. EXPORT_SYMBOL(ns_to_timespec64);
  316. #endif
  317. /**
  318.  * msecs_to_jiffies: - convert milliseconds to jiffies
  319.  * @m:  time in milliseconds
  320.  *
  321.  * conversion is done as follows:
  322.  *
  323.  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  324.  *
  325.  * - 'too large' values [that would result in larger than
  326.  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  327.  *
  328.  * - all other values are converted to jiffies by either multiplying
  329.  *   the input value by a factor or dividing it with a factor and
  330.  *   handling any 32-bit overflows.
  331.  *   for the details see __msecs_to_jiffies()
  332.  *
  333.  * msecs_to_jiffies() checks for the passed in value being a constant
  334.  * via __builtin_constant_p() allowing gcc to eliminate most of the
  335.  * code, __msecs_to_jiffies() is called if the value passed does not
  336.  * allow constant folding and the actual conversion must be done at
  337.  * runtime.
  338.  * the _msecs_to_jiffies helpers are the HZ dependent conversion
  339.  * routines found in include/linux/jiffies.h
  340.  */
  341. unsigned long __msecs_to_jiffies(const unsigned int m)
  342. {
  343.         /*
  344.          * Negative value, means infinite timeout:
  345.          */
  346.         if ((int)m < 0)
  347.                 return MAX_JIFFY_OFFSET;
  348.         return _msecs_to_jiffies(m);
  349. }
  350. EXPORT_SYMBOL(__msecs_to_jiffies);
  351.  
  352. unsigned long __usecs_to_jiffies(const unsigned int u)
  353. {
  354.         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  355.                 return MAX_JIFFY_OFFSET;
  356.         return _usecs_to_jiffies(u);
  357. }
  358. EXPORT_SYMBOL(__usecs_to_jiffies);
  359.  
  360. /*
  361.  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
  362.  * that a remainder subtract here would not do the right thing as the
  363.  * resolution values don't fall on second boundries.  I.e. the line:
  364.  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  365.  * Note that due to the small error in the multiplier here, this
  366.  * rounding is incorrect for sufficiently large values of tv_nsec, but
  367.  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  368.  * OK.
  369.  *
  370.  * Rather, we just shift the bits off the right.
  371.  *
  372.  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  373.  * value to a scaled second value.
  374.  */
  375. static unsigned long
  376. __timespec64_to_jiffies(u64 sec, long nsec)
  377. {
  378.         nsec = nsec + TICK_NSEC - 1;
  379.  
  380.         if (sec >= MAX_SEC_IN_JIFFIES){
  381.                 sec = MAX_SEC_IN_JIFFIES;
  382.                 nsec = 0;
  383.         }
  384.         return ((sec * SEC_CONVERSION) +
  385.                 (((u64)nsec * NSEC_CONVERSION) >>
  386.                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  387.  
  388. }
  389.  
  390. static unsigned long
  391. __timespec_to_jiffies(unsigned long sec, long nsec)
  392. {
  393.         return __timespec64_to_jiffies((u64)sec, nsec);
  394. }
  395.  
  396. unsigned long
  397. timespec64_to_jiffies(const struct timespec64 *value)
  398. {
  399.         return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  400. }
  401. EXPORT_SYMBOL(timespec64_to_jiffies);
  402.  
  403. void
  404. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  405. {
  406.         /*
  407.          * Convert jiffies to nanoseconds and separate with
  408.          * one divide.
  409.          */
  410.         u32 rem;
  411.         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  412.                                     NSEC_PER_SEC, &rem);
  413.         value->tv_nsec = rem;
  414. }
  415. EXPORT_SYMBOL(jiffies_to_timespec64);
  416.  
  417. /*
  418.  * We could use a similar algorithm to timespec_to_jiffies (with a
  419.  * different multiplier for usec instead of nsec). But this has a
  420.  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  421.  * usec value, since it's not necessarily integral.
  422.  *
  423.  * We could instead round in the intermediate scaled representation
  424.  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  425.  * perilous: the scaling introduces a small positive error, which
  426.  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  427.  * units to the intermediate before shifting) leads to accidental
  428.  * overflow and overestimates.
  429.  *
  430.  * At the cost of one additional multiplication by a constant, just
  431.  * use the timespec implementation.
  432.  */
  433. unsigned long
  434. timeval_to_jiffies(const struct timeval *value)
  435. {
  436.         return __timespec_to_jiffies(value->tv_sec,
  437.                                      value->tv_usec * NSEC_PER_USEC);
  438. }
  439. EXPORT_SYMBOL(timeval_to_jiffies);
  440.  
  441. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  442. {
  443.         /*
  444.          * Convert jiffies to nanoseconds and separate with
  445.          * one divide.
  446.          */
  447.         u32 rem;
  448.  
  449.         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  450.                                     NSEC_PER_SEC, &rem);
  451.         value->tv_usec = rem / NSEC_PER_USEC;
  452. }
  453. EXPORT_SYMBOL(jiffies_to_timeval);
  454.  
  455. /*
  456.  * Convert jiffies/jiffies_64 to clock_t and back.
  457.  */
  458. clock_t jiffies_to_clock_t(unsigned long x)
  459. {
  460. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  461. # if HZ < USER_HZ
  462.         return x * (USER_HZ / HZ);
  463. # else
  464.         return x / (HZ / USER_HZ);
  465. # endif
  466. #else
  467.         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  468. #endif
  469. }
  470. EXPORT_SYMBOL(jiffies_to_clock_t);
  471.  
  472. unsigned long clock_t_to_jiffies(unsigned long x)
  473. {
  474. #if (HZ % USER_HZ)==0
  475.         if (x >= ~0UL / (HZ / USER_HZ))
  476.                 return ~0UL;
  477.         return x * (HZ / USER_HZ);
  478. #else
  479.         /* Don't worry about loss of precision here .. */
  480.         if (x >= ~0UL / HZ * USER_HZ)
  481.                 return ~0UL;
  482.  
  483.         /* .. but do try to contain it here */
  484.         return div_u64((u64)x * HZ, USER_HZ);
  485. #endif
  486. }
  487. EXPORT_SYMBOL(clock_t_to_jiffies);
  488.  
  489. u64 jiffies_64_to_clock_t(u64 x)
  490. {
  491. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  492. # if HZ < USER_HZ
  493.         x = div_u64(x * USER_HZ, HZ);
  494. # elif HZ > USER_HZ
  495.         x = div_u64(x, HZ / USER_HZ);
  496. # else
  497.         /* Nothing to do */
  498. # endif
  499. #else
  500.         /*
  501.          * There are better ways that don't overflow early,
  502.          * but even this doesn't overflow in hundreds of years
  503.          * in 64 bits, so..
  504.          */
  505.         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  506. #endif
  507.         return x;
  508. }
  509. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  510.  
  511. u64 nsec_to_clock_t(u64 x)
  512. {
  513. #if (NSEC_PER_SEC % USER_HZ) == 0
  514.         return div_u64(x, NSEC_PER_SEC / USER_HZ);
  515. #elif (USER_HZ % 512) == 0
  516.         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  517. #else
  518.         /*
  519.          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  520.          * overflow after 64.99 years.
  521.          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  522.          */
  523.         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  524. #endif
  525. }
  526.  
  527. /**
  528.  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  529.  *
  530.  * @n:  nsecs in u64
  531.  *
  532.  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  533.  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  534.  * for scheduler, not for use in device drivers to calculate timeout value.
  535.  *
  536.  * note:
  537.  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  538.  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  539.  */
  540. u64 nsecs_to_jiffies64(u64 n)
  541. {
  542. #if (NSEC_PER_SEC % HZ) == 0
  543.         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  544.         return div_u64(n, NSEC_PER_SEC / HZ);
  545. #elif (HZ % 512) == 0
  546.         /* overflow after 292 years if HZ = 1024 */
  547.         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  548. #else
  549.         /*
  550.          * Generic case - optimized for cases where HZ is a multiple of 3.
  551.          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  552.          */
  553.         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  554. #endif
  555. }
  556. EXPORT_SYMBOL(nsecs_to_jiffies64);
  557.  
  558. /**
  559.  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  560.  *
  561.  * @n:  nsecs in u64
  562.  *
  563.  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  564.  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  565.  * for scheduler, not for use in device drivers to calculate timeout value.
  566.  *
  567.  * note:
  568.  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  569.  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  570.  */
  571. unsigned long nsecs_to_jiffies(u64 n)
  572. {
  573.         return (unsigned long)nsecs_to_jiffies64(n);
  574. }
  575. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  576.  
  577. /*
  578.  * Add two timespec values and do a safety check for overflow.
  579.  * It's assumed that both values are valid (>= 0)
  580.  */
  581. struct timespec timespec_add_safe(const struct timespec lhs,
  582.                                   const struct timespec rhs)
  583. {
  584.         struct timespec res;
  585.  
  586.         set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  587.                                 lhs.tv_nsec + rhs.tv_nsec);
  588.  
  589.         if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  590.                 res.tv_sec = TIME_T_MAX;
  591.  
  592.         return res;
  593. }
  594.  
  595.  
  596.  
  597.  
  598.