Subversion Repositories Kolibri OS

Rev

Rev 3391 | Rev 4103 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
  3.  *      Copyright (C) 2002 by Concurrent Computer Corporation
  4.  *      Distributed under the GNU GPL license version 2.
  5.  *
  6.  * Modified by George Anzinger to reuse immediately and to use
  7.  * find bit instructions.  Also removed _irq on spinlocks.
  8.  *
  9.  * Modified by Nadia Derbey to make it RCU safe.
  10.  *
  11.  * Small id to pointer translation service.
  12.  *
  13.  * It uses a radix tree like structure as a sparse array indexed
  14.  * by the id to obtain the pointer.  The bitmap makes allocating
  15.  * a new id quick.
  16.  *
  17.  * You call it to allocate an id (an int) an associate with that id a
  18.  * pointer or what ever, we treat it as a (void *).  You can pass this
  19.  * id to a user for him to pass back at a later time.  You then pass
  20.  * that id to this code and it returns your pointer.
  21.  
  22.  * You can release ids at any time. When all ids are released, most of
  23.  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
  24.  * don't need to go to the memory "store" during an id allocate, just
  25.  * so you don't need to be too concerned about locking and conflicts
  26.  * with the slab allocator.
  27.  */
  28.  
  29. #include <linux/kernel.h>
  30. #include <linux/export.h>
  31. #include <linux/string.h>
  32. #include <linux/bitops.h>
  33. #include <linux/idr.h>
  34. //#include <stdlib.h>
  35.  
  36. unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
  37.                                  unsigned long offset);
  38.  
  39.  
  40. #define MAX_IDR_SHIFT           (sizeof(int) * 8 - 1)
  41. #define MAX_IDR_BIT             (1U << MAX_IDR_SHIFT)
  42.  
  43. /* Leave the possibility of an incomplete final layer */
  44. #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
  45.  
  46. /* Number of id_layer structs to leave in free list */
  47. #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
  48.  
  49. static struct idr_layer *idr_preload_head;
  50. static int idr_preload_cnt;
  51.  
  52.  
  53. /* the maximum ID which can be allocated given idr->layers */
  54. static int idr_max(int layers)
  55. {
  56.         int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
  57.  
  58.         return (1 << bits) - 1;
  59. }
  60.  
  61. /*
  62.  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
  63.  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
  64.  * so on.
  65.  */
  66. static int idr_layer_prefix_mask(int layer)
  67. {
  68.         return ~idr_max(layer + 1);
  69. }
  70.  
  71. static struct idr_layer *get_from_free_list(struct idr *idp)
  72. {
  73.         struct idr_layer *p;
  74.         unsigned long flags;
  75.  
  76.         spin_lock_irqsave(&idp->lock, flags);
  77.         if ((p = idp->id_free)) {
  78.                 idp->id_free = p->ary[0];
  79.                 idp->id_free_cnt--;
  80.                 p->ary[0] = NULL;
  81.         }
  82.         spin_unlock_irqrestore(&idp->lock, flags);
  83.         return(p);
  84. }
  85.  
  86. /**
  87.  * idr_layer_alloc - allocate a new idr_layer
  88.  * @gfp_mask: allocation mask
  89.  * @layer_idr: optional idr to allocate from
  90.  *
  91.  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
  92.  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
  93.  * an idr_layer from @idr->id_free.
  94.  *
  95.  * @layer_idr is to maintain backward compatibility with the old alloc
  96.  * interface - idr_pre_get() and idr_get_new*() - and will be removed
  97.  * together with per-pool preload buffer.
  98.  */
  99. static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
  100. {
  101.         struct idr_layer *new;
  102.  
  103.         /* this is the old path, bypass to get_from_free_list() */
  104.         if (layer_idr)
  105.                 return get_from_free_list(layer_idr);
  106.  
  107.         /* try to allocate directly from kmem_cache */
  108.         new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  109.         if (new)
  110.                 return new;
  111.  
  112.  
  113.         new = idr_preload_head;
  114.         if (new) {
  115.                 idr_preload_head = new->ary[0];
  116.                 idr_preload_cnt--;
  117.                 new->ary[0] = NULL;
  118.         }
  119.         preempt_enable();
  120.         return new;
  121. }
  122.  
  123. static void idr_layer_rcu_free(struct rcu_head *head)
  124. {
  125.         struct idr_layer *layer;
  126.  
  127.     layer = container_of(head, struct idr_layer, rcu_head);
  128.     kfree(layer);
  129. }
  130.  
  131. static inline void free_layer(struct idr *idr, struct idr_layer *p)
  132. {
  133.         if (idr->hint && idr->hint == p)
  134.                 RCU_INIT_POINTER(idr->hint, NULL);
  135.     idr_layer_rcu_free(&p->rcu_head);
  136. }
  137.  
  138. /* only called when idp->lock is held */
  139. static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
  140. {
  141.         p->ary[0] = idp->id_free;
  142.         idp->id_free = p;
  143.         idp->id_free_cnt++;
  144. }
  145.  
  146. static void move_to_free_list(struct idr *idp, struct idr_layer *p)
  147. {
  148.         unsigned long flags;
  149.  
  150.         /*
  151.          * Depends on the return element being zeroed.
  152.          */
  153.         spin_lock_irqsave(&idp->lock, flags);
  154.         __move_to_free_list(idp, p);
  155.         spin_unlock_irqrestore(&idp->lock, flags);
  156. }
  157.  
  158. static void idr_mark_full(struct idr_layer **pa, int id)
  159. {
  160.         struct idr_layer *p = pa[0];
  161.         int l = 0;
  162.  
  163.         __set_bit(id & IDR_MASK, p->bitmap);
  164.         /*
  165.          * If this layer is full mark the bit in the layer above to
  166.          * show that this part of the radix tree is full.  This may
  167.          * complete the layer above and require walking up the radix
  168.          * tree.
  169.          */
  170.         while (bitmap_full(p->bitmap, IDR_SIZE)) {
  171.                 if (!(p = pa[++l]))
  172.                         break;
  173.                 id = id >> IDR_BITS;
  174.                 __set_bit((id & IDR_MASK), p->bitmap);
  175.         }
  176. }
  177.  
  178. int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
  179. {
  180.         while (idp->id_free_cnt < MAX_IDR_FREE) {
  181.        struct idr_layer *new;
  182.        new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  183.        if (new == NULL)
  184.            return (0);
  185.        move_to_free_list(idp, new);
  186.    }
  187.    return 1;
  188. }
  189. EXPORT_SYMBOL(__idr_pre_get);
  190.  
  191. /**
  192.  * sub_alloc - try to allocate an id without growing the tree depth
  193.  * @idp: idr handle
  194.  * @starting_id: id to start search at
  195.  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
  196.  * @gfp_mask: allocation mask for idr_layer_alloc()
  197.  * @layer_idr: optional idr passed to idr_layer_alloc()
  198.  *
  199.  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
  200.  * growing its depth.  Returns
  201.  *
  202.  *  the allocated id >= 0 if successful,
  203.  *  -EAGAIN if the tree needs to grow for allocation to succeed,
  204.  *  -ENOSPC if the id space is exhausted,
  205.  *  -ENOMEM if more idr_layers need to be allocated.
  206.  */
  207. static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
  208.                      gfp_t gfp_mask, struct idr *layer_idr)
  209. {
  210.         int n, m, sh;
  211.         struct idr_layer *p, *new;
  212.         int l, id, oid;
  213.  
  214.         id = *starting_id;
  215.  restart:
  216.         p = idp->top;
  217.         l = idp->layers;
  218.         pa[l--] = NULL;
  219.         while (1) {
  220.                 /*
  221.                  * We run around this while until we reach the leaf node...
  222.                  */
  223.                 n = (id >> (IDR_BITS*l)) & IDR_MASK;
  224.                 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
  225.                 if (m == IDR_SIZE) {
  226.                         /* no space available go back to previous layer. */
  227.                         l++;
  228.                         oid = id;
  229.                         id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
  230.  
  231.                         /* if already at the top layer, we need to grow */
  232.                         if (id >= 1 << (idp->layers * IDR_BITS)) {
  233.                                 *starting_id = id;
  234.                                 return -EAGAIN;
  235.                         }
  236.                         p = pa[l];
  237.                         BUG_ON(!p);
  238.  
  239.                         /* If we need to go up one layer, continue the
  240.                          * loop; otherwise, restart from the top.
  241.                          */
  242.                         sh = IDR_BITS * (l + 1);
  243.                         if (oid >> sh == id >> sh)
  244.                                 continue;
  245.                         else
  246.                                 goto restart;
  247.                 }
  248.                 if (m != n) {
  249.                         sh = IDR_BITS*l;
  250.                         id = ((id >> sh) ^ n ^ m) << sh;
  251.                 }
  252.                 if ((id >= MAX_IDR_BIT) || (id < 0))
  253.                         return -ENOSPC;
  254.                 if (l == 0)
  255.                         break;
  256.                 /*
  257.                  * Create the layer below if it is missing.
  258.                  */
  259.                 if (!p->ary[m]) {
  260.                         new = idr_layer_alloc(gfp_mask, layer_idr);
  261.                         if (!new)
  262.                                 return -ENOMEM;
  263.                         new->layer = l-1;
  264.                         new->prefix = id & idr_layer_prefix_mask(new->layer);
  265.                         rcu_assign_pointer(p->ary[m], new);
  266.                         p->count++;
  267.                 }
  268.                 pa[l--] = p;
  269.                 p = p->ary[m];
  270.         }
  271.  
  272.         pa[l] = p;
  273.         return id;
  274. }
  275.  
  276. static int idr_get_empty_slot(struct idr *idp, int starting_id,
  277.                               struct idr_layer **pa, gfp_t gfp_mask,
  278.                               struct idr *layer_idr)
  279. {
  280.         struct idr_layer *p, *new;
  281.         int layers, v, id;
  282.         unsigned long flags;
  283.  
  284.         id = starting_id;
  285. build_up:
  286.         p = idp->top;
  287.         layers = idp->layers;
  288.         if (unlikely(!p)) {
  289.                 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
  290.                         return -ENOMEM;
  291.                 p->layer = 0;
  292.                 layers = 1;
  293.         }
  294.         /*
  295.          * Add a new layer to the top of the tree if the requested
  296.          * id is larger than the currently allocated space.
  297.          */
  298.         while (id > idr_max(layers)) {
  299.                 layers++;
  300.                 if (!p->count) {
  301.                         /* special case: if the tree is currently empty,
  302.                          * then we grow the tree by moving the top node
  303.                          * upwards.
  304.                          */
  305.                         p->layer++;
  306.                         WARN_ON_ONCE(p->prefix);
  307.                         continue;
  308.                 }
  309.                 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
  310.                         /*
  311.                          * The allocation failed.  If we built part of
  312.                          * the structure tear it down.
  313.                          */
  314.                         spin_lock_irqsave(&idp->lock, flags);
  315.                         for (new = p; p && p != idp->top; new = p) {
  316.                                 p = p->ary[0];
  317.                                 new->ary[0] = NULL;
  318.                                 new->count = 0;
  319.                                 bitmap_clear(new->bitmap, 0, IDR_SIZE);
  320.                                 __move_to_free_list(idp, new);
  321.                         }
  322.                         spin_unlock_irqrestore(&idp->lock, flags);
  323.                         return -ENOMEM;
  324.                 }
  325.                 new->ary[0] = p;
  326.                 new->count = 1;
  327.                 new->layer = layers-1;
  328.                 new->prefix = id & idr_layer_prefix_mask(new->layer);
  329.                 if (bitmap_full(p->bitmap, IDR_SIZE))
  330.                         __set_bit(0, new->bitmap);
  331.                 p = new;
  332.         }
  333.         rcu_assign_pointer(idp->top, p);
  334.         idp->layers = layers;
  335.         v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
  336.         if (v == -EAGAIN)
  337.                 goto build_up;
  338.         return(v);
  339. }
  340.  
  341. /*
  342.  * @id and @pa are from a successful allocation from idr_get_empty_slot().
  343.  * Install the user pointer @ptr and mark the slot full.
  344.  */
  345. static void idr_fill_slot(struct idr *idr, void *ptr, int id,
  346.                           struct idr_layer **pa)
  347. {
  348.         /* update hint used for lookup, cleared from free_layer() */
  349.         rcu_assign_pointer(idr->hint, pa[0]);
  350.  
  351.         rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
  352.                 pa[0]->count++;
  353.                 idr_mark_full(pa, id);
  354. }
  355.  
  356. int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
  357. {
  358.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  359.         int rv;
  360.  
  361.         rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
  362.         if (rv < 0)
  363.                 return rv == -ENOMEM ? -EAGAIN : rv;
  364.  
  365.         idr_fill_slot(idp, ptr, rv, pa);
  366.         *id = rv;
  367.     return 0;
  368. }
  369. EXPORT_SYMBOL(__idr_get_new_above);
  370.  
  371. /**
  372.  * idr_preload - preload for idr_alloc()
  373.  * @gfp_mask: allocation mask to use for preloading
  374.  *
  375.  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
  376.  * process context and each idr_preload() invocation should be matched with
  377.  * idr_preload_end().  Note that preemption is disabled while preloaded.
  378.  *
  379.  * The first idr_alloc() in the preloaded section can be treated as if it
  380.  * were invoked with @gfp_mask used for preloading.  This allows using more
  381.  * permissive allocation masks for idrs protected by spinlocks.
  382.  *
  383.  * For example, if idr_alloc() below fails, the failure can be treated as
  384.  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
  385.  *
  386.  *      idr_preload(GFP_KERNEL);
  387.  *      spin_lock(lock);
  388.  *
  389.  *      id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
  390.  *
  391.  *      spin_unlock(lock);
  392.  *      idr_preload_end();
  393.  *      if (id < 0)
  394.  *              error;
  395.  */
  396. void idr_preload(gfp_t gfp_mask)
  397. {
  398.  
  399.         /*
  400.          * idr_alloc() is likely to succeed w/o full idr_layer buffer and
  401.          * return value from idr_alloc() needs to be checked for failure
  402.          * anyway.  Silently give up if allocation fails.  The caller can
  403.          * treat failures from idr_alloc() as if idr_alloc() were called
  404.          * with @gfp_mask which should be enough.
  405.          */
  406.         while (idr_preload_cnt < MAX_IDR_FREE) {
  407.                 struct idr_layer *new;
  408.  
  409.                 new = kzalloc(sizeof(struct idr_layer), gfp_mask);
  410.                 if (!new)
  411.                         break;
  412.  
  413.                 /* link the new one to per-cpu preload list */
  414.                 new->ary[0] = idr_preload_head;
  415.                 idr_preload_head = new;
  416.                 idr_preload_cnt++;
  417.         }
  418. }
  419. EXPORT_SYMBOL(idr_preload);
  420.  
  421. /**
  422.  * idr_alloc - allocate new idr entry
  423.  * @idr: the (initialized) idr
  424.  * @ptr: pointer to be associated with the new id
  425.  * @start: the minimum id (inclusive)
  426.  * @end: the maximum id (exclusive, <= 0 for max)
  427.  * @gfp_mask: memory allocation flags
  428.  *
  429.  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
  430.  * available in the specified range, returns -ENOSPC.  On memory allocation
  431.  * failure, returns -ENOMEM.
  432.  *
  433.  * Note that @end is treated as max when <= 0.  This is to always allow
  434.  * using @start + N as @end as long as N is inside integer range.
  435.  *
  436.  * The user is responsible for exclusively synchronizing all operations
  437.  * which may modify @idr.  However, read-only accesses such as idr_find()
  438.  * or iteration can be performed under RCU read lock provided the user
  439.  * destroys @ptr in RCU-safe way after removal from idr.
  440.  */
  441. int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
  442. {
  443.         int max = end > 0 ? end - 1 : INT_MAX;  /* inclusive upper limit */
  444.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  445.         int id;
  446.  
  447.         /* sanity checks */
  448.         if (WARN_ON_ONCE(start < 0))
  449.                 return -EINVAL;
  450.         if (unlikely(max < start))
  451.                 return -ENOSPC;
  452.  
  453.         /* allocate id */
  454.         id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
  455.         if (unlikely(id < 0))
  456.                 return id;
  457.         if (unlikely(id > max))
  458.                 return -ENOSPC;
  459.  
  460.         idr_fill_slot(idr, ptr, id, pa);
  461.         return id;
  462. }
  463. EXPORT_SYMBOL_GPL(idr_alloc);
  464.  
  465. static void idr_remove_warning(int id)
  466. {
  467.         WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
  468. }
  469.  
  470. static void sub_remove(struct idr *idp, int shift, int id)
  471. {
  472.         struct idr_layer *p = idp->top;
  473.         struct idr_layer **pa[MAX_IDR_LEVEL + 1];
  474.         struct idr_layer ***paa = &pa[0];
  475.         struct idr_layer *to_free;
  476.         int n;
  477.  
  478.         *paa = NULL;
  479.         *++paa = &idp->top;
  480.  
  481.         while ((shift > 0) && p) {
  482.                 n = (id >> shift) & IDR_MASK;
  483.                 __clear_bit(n, p->bitmap);
  484.                 *++paa = &p->ary[n];
  485.                 p = p->ary[n];
  486.                 shift -= IDR_BITS;
  487.         }
  488.         n = id & IDR_MASK;
  489.         if (likely(p != NULL && test_bit(n, p->bitmap))) {
  490.                 __clear_bit(n, p->bitmap);
  491.                 rcu_assign_pointer(p->ary[n], NULL);
  492.                 to_free = NULL;
  493.                 while(*paa && ! --((**paa)->count)){
  494.                         if (to_free)
  495.                                 free_layer(idp, to_free);
  496.                         to_free = **paa;
  497.                         **paa-- = NULL;
  498.                 }
  499.                 if (!*paa)
  500.                         idp->layers = 0;
  501.                 if (to_free)
  502.                         free_layer(idp, to_free);
  503.         } else
  504.                 idr_remove_warning(id);
  505. }
  506.  
  507. /**
  508.  * idr_remove - remove the given id and free its slot
  509.  * @idp: idr handle
  510.  * @id: unique key
  511.  */
  512. void idr_remove(struct idr *idp, int id)
  513. {
  514.         struct idr_layer *p;
  515.         struct idr_layer *to_free;
  516.  
  517.         if (id < 0)
  518.                 return;
  519.  
  520.         sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
  521.         if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
  522.             idp->top->ary[0]) {
  523.                 /*
  524.                  * Single child at leftmost slot: we can shrink the tree.
  525.                  * This level is not needed anymore since when layers are
  526.                  * inserted, they are inserted at the top of the existing
  527.                  * tree.
  528.                  */
  529.                 to_free = idp->top;
  530.                 p = idp->top->ary[0];
  531.                 rcu_assign_pointer(idp->top, p);
  532.                 --idp->layers;
  533.                 to_free->count = 0;
  534.                 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
  535.                 free_layer(idp, to_free);
  536.         }
  537.         while (idp->id_free_cnt >= MAX_IDR_FREE) {
  538.                 p = get_from_free_list(idp);
  539.                 /*
  540.                  * Note: we don't call the rcu callback here, since the only
  541.                  * layers that fall into the freelist are those that have been
  542.                  * preallocated.
  543.                  */
  544.         kfree(p);
  545.         }
  546.         return;
  547. }
  548. EXPORT_SYMBOL(idr_remove);
  549.  
  550. void __idr_remove_all(struct idr *idp)
  551. {
  552.         int n, id, max;
  553.         int bt_mask;
  554.         struct idr_layer *p;
  555.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  556.         struct idr_layer **paa = &pa[0];
  557.  
  558.         n = idp->layers * IDR_BITS;
  559.         p = idp->top;
  560.         rcu_assign_pointer(idp->top, NULL);
  561.         max = idr_max(idp->layers);
  562.  
  563.         id = 0;
  564.         while (id >= 0 && id <= max) {
  565.                 while (n > IDR_BITS && p) {
  566.                         n -= IDR_BITS;
  567.                         *paa++ = p;
  568.                         p = p->ary[(id >> n) & IDR_MASK];
  569.                 }
  570.  
  571.                 bt_mask = id;
  572.                 id += 1 << n;
  573.                 /* Get the highest bit that the above add changed from 0->1. */
  574.                 while (n < fls(id ^ bt_mask)) {
  575.                         if (p)
  576.                                 free_layer(idp, p);
  577.                         n += IDR_BITS;
  578.                         p = *--paa;
  579.                 }
  580.         }
  581.         idp->layers = 0;
  582. }
  583. EXPORT_SYMBOL(__idr_remove_all);
  584.  
  585. /**
  586.  * idr_destroy - release all cached layers within an idr tree
  587.  * @idp: idr handle
  588.  *
  589.  * Free all id mappings and all idp_layers.  After this function, @idp is
  590.  * completely unused and can be freed / recycled.  The caller is
  591.  * responsible for ensuring that no one else accesses @idp during or after
  592.  * idr_destroy().
  593.  *
  594.  * A typical clean-up sequence for objects stored in an idr tree will use
  595.  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
  596.  * free up the id mappings and cached idr_layers.
  597.  */
  598. void idr_destroy(struct idr *idp)
  599. {
  600.         __idr_remove_all(idp);
  601.  
  602.         while (idp->id_free_cnt) {
  603.                 struct idr_layer *p = get_from_free_list(idp);
  604.         kfree(p);
  605.         }
  606. }
  607. EXPORT_SYMBOL(idr_destroy);
  608.  
  609. void *idr_find_slowpath(struct idr *idp, int id)
  610. {
  611.         int n;
  612.         struct idr_layer *p;
  613.  
  614.         if (id < 0)
  615.                 return NULL;
  616.  
  617.         p = rcu_dereference_raw(idp->top);
  618.         if (!p)
  619.                 return NULL;
  620.         n = (p->layer+1) * IDR_BITS;
  621.  
  622.         if (id > idr_max(p->layer + 1))
  623.                 return NULL;
  624.         BUG_ON(n == 0);
  625.  
  626.         while (n > 0 && p) {
  627.                 n -= IDR_BITS;
  628.                 BUG_ON(n != p->layer*IDR_BITS);
  629.                 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  630.         }
  631.         return((void *)p);
  632. }
  633. EXPORT_SYMBOL(idr_find_slowpath);
  634.  
  635. #if 0
  636. /**
  637.  * idr_for_each - iterate through all stored pointers
  638.  * @idp: idr handle
  639.  * @fn: function to be called for each pointer
  640.  * @data: data passed back to callback function
  641.  *
  642.  * Iterate over the pointers registered with the given idr.  The
  643.  * callback function will be called for each pointer currently
  644.  * registered, passing the id, the pointer and the data pointer passed
  645.  * to this function.  It is not safe to modify the idr tree while in
  646.  * the callback, so functions such as idr_get_new and idr_remove are
  647.  * not allowed.
  648.  *
  649.  * We check the return of @fn each time. If it returns anything other
  650.  * than %0, we break out and return that value.
  651.  *
  652.  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
  653.  */
  654. int idr_for_each(struct idr *idp,
  655.                  int (*fn)(int id, void *p, void *data), void *data)
  656. {
  657.         int n, id, max, error = 0;
  658.         struct idr_layer *p;
  659.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  660.         struct idr_layer **paa = &pa[0];
  661.  
  662.         n = idp->layers * IDR_BITS;
  663.         p = rcu_dereference_raw(idp->top);
  664.         max = idr_max(idp->layers);
  665.  
  666.         id = 0;
  667.         while (id >= 0 && id <= max) {
  668.                 while (n > 0 && p) {
  669.                         n -= IDR_BITS;
  670.                         *paa++ = p;
  671.                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  672.                 }
  673.  
  674.                 if (p) {
  675.                         error = fn(id, (void *)p, data);
  676.                         if (error)
  677.                                 break;
  678.                 }
  679.  
  680.                 id += 1 << n;
  681.                 while (n < fls(id)) {
  682.                         n += IDR_BITS;
  683.                         p = *--paa;
  684.                 }
  685.         }
  686.  
  687.         return error;
  688. }
  689. EXPORT_SYMBOL(idr_for_each);
  690.  
  691. /**
  692.  * idr_get_next - lookup next object of id to given id.
  693.  * @idp: idr handle
  694.  * @nextidp:  pointer to lookup key
  695.  *
  696.  * Returns pointer to registered object with id, which is next number to
  697.  * given id. After being looked up, *@nextidp will be updated for the next
  698.  * iteration.
  699.  *
  700.  * This function can be called under rcu_read_lock(), given that the leaf
  701.  * pointers lifetimes are correctly managed.
  702.  */
  703. void *idr_get_next(struct idr *idp, int *nextidp)
  704. {
  705.         struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
  706.         struct idr_layer **paa = &pa[0];
  707.         int id = *nextidp;
  708.         int n, max;
  709.  
  710.         /* find first ent */
  711.         p = rcu_dereference_raw(idp->top);
  712.         if (!p)
  713.                 return NULL;
  714.         n = (p->layer + 1) * IDR_BITS;
  715.         max = idr_max(p->layer + 1);
  716.  
  717.         while (id >= 0 && id <= max) {
  718.                 while (n > 0 && p) {
  719.                         n -= IDR_BITS;
  720.                         *paa++ = p;
  721.                         p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
  722.                 }
  723.  
  724.                 if (p) {
  725.                         *nextidp = id;
  726.                         return p;
  727.                 }
  728.  
  729.                 /*
  730.                  * Proceed to the next layer at the current level.  Unlike
  731.                  * idr_for_each(), @id isn't guaranteed to be aligned to
  732.                  * layer boundary at this point and adding 1 << n may
  733.                  * incorrectly skip IDs.  Make sure we jump to the
  734.                  * beginning of the next layer using round_up().
  735.                  */
  736.                 id = round_up(id + 1, 1 << n);
  737.                 while (n < fls(id)) {
  738.                         n += IDR_BITS;
  739.                         p = *--paa;
  740.                 }
  741.         }
  742.         return NULL;
  743. }
  744. EXPORT_SYMBOL(idr_get_next);
  745.  
  746.  
  747. /**
  748.  * idr_replace - replace pointer for given id
  749.  * @idp: idr handle
  750.  * @ptr: pointer you want associated with the id
  751.  * @id: lookup key
  752.  *
  753.  * Replace the pointer registered with an id and return the old value.
  754.  * A %-ENOENT return indicates that @id was not found.
  755.  * A %-EINVAL return indicates that @id was not within valid constraints.
  756.  *
  757.  * The caller must serialize with writers.
  758.  */
  759. void *idr_replace(struct idr *idp, void *ptr, int id)
  760. {
  761.         int n;
  762.         struct idr_layer *p, *old_p;
  763.  
  764.         if (id < 0)
  765.                 return ERR_PTR(-EINVAL);
  766.  
  767.         p = idp->top;
  768.         if (!p)
  769.                 return ERR_PTR(-EINVAL);
  770.  
  771.         n = (p->layer+1) * IDR_BITS;
  772.  
  773.         if (id >= (1 << n))
  774.                 return ERR_PTR(-EINVAL);
  775.  
  776.         n -= IDR_BITS;
  777.         while ((n > 0) && p) {
  778.                 p = p->ary[(id >> n) & IDR_MASK];
  779.                 n -= IDR_BITS;
  780.         }
  781.  
  782.         n = id & IDR_MASK;
  783.         if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
  784.                 return ERR_PTR(-ENOENT);
  785.  
  786.         old_p = p->ary[n];
  787.         rcu_assign_pointer(p->ary[n], ptr);
  788.  
  789.         return old_p;
  790. }
  791. EXPORT_SYMBOL(idr_replace);
  792.  
  793.  
  794. #endif
  795.  
  796.  
  797. void __init idr_init_cache(void)
  798. {
  799.     //idr_layer_cache = kmem_cache_create("idr_layer_cache",
  800.     //           sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
  801. }
  802.  
  803. /**
  804.  * idr_init - initialize idr handle
  805.  * @idp:        idr handle
  806.  *
  807.  * This function is use to set up the handle (@idp) that you will pass
  808.  * to the rest of the functions.
  809.  */
  810. void idr_init(struct idr *idp)
  811. {
  812.         memset(idp, 0, sizeof(struct idr));
  813.         spin_lock_init(&idp->lock);
  814. }
  815. EXPORT_SYMBOL(idr_init);
  816.  
  817.  
  818. /**
  819.  * DOC: IDA description
  820.  * IDA - IDR based ID allocator
  821.  *
  822.  * This is id allocator without id -> pointer translation.  Memory
  823.  * usage is much lower than full blown idr because each id only
  824.  * occupies a bit.  ida uses a custom leaf node which contains
  825.  * IDA_BITMAP_BITS slots.
  826.  *
  827.  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
  828.  */
  829.  
  830. static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
  831. {
  832.         unsigned long flags;
  833.  
  834.         if (!ida->free_bitmap) {
  835.                 spin_lock_irqsave(&ida->idr.lock, flags);
  836.                 if (!ida->free_bitmap) {
  837.                         ida->free_bitmap = bitmap;
  838.                         bitmap = NULL;
  839.                 }
  840.                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  841.         }
  842.  
  843.         kfree(bitmap);
  844. }
  845.  
  846. /**
  847.  * ida_pre_get - reserve resources for ida allocation
  848.  * @ida:        ida handle
  849.  * @gfp_mask:   memory allocation flag
  850.  *
  851.  * This function should be called prior to locking and calling the
  852.  * following function.  It preallocates enough memory to satisfy the
  853.  * worst possible allocation.
  854.  *
  855.  * If the system is REALLY out of memory this function returns %0,
  856.  * otherwise %1.
  857.  */
  858. int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
  859. {
  860.         /* allocate idr_layers */
  861.         if (!idr_pre_get(&ida->idr, gfp_mask))
  862.                 return 0;
  863.  
  864.         /* allocate free_bitmap */
  865.         if (!ida->free_bitmap) {
  866.                 struct ida_bitmap *bitmap;
  867.  
  868.                 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
  869.                 if (!bitmap)
  870.                         return 0;
  871.  
  872.                 free_bitmap(ida, bitmap);
  873.         }
  874.  
  875.         return 1;
  876. }
  877. EXPORT_SYMBOL(ida_pre_get);
  878.  
  879. /**
  880.  * ida_get_new_above - allocate new ID above or equal to a start id
  881.  * @ida:        ida handle
  882.  * @starting_id: id to start search at
  883.  * @p_id:       pointer to the allocated handle
  884.  *
  885.  * Allocate new ID above or equal to @starting_id.  It should be called
  886.  * with any required locks.
  887.  *
  888.  * If memory is required, it will return %-EAGAIN, you should unlock
  889.  * and go back to the ida_pre_get() call.  If the ida is full, it will
  890.  * return %-ENOSPC.
  891.  *
  892.  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
  893.  */
  894. int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
  895. {
  896.         struct idr_layer *pa[MAX_IDR_LEVEL + 1];
  897.         struct ida_bitmap *bitmap;
  898.         unsigned long flags;
  899.         int idr_id = starting_id / IDA_BITMAP_BITS;
  900.         int offset = starting_id % IDA_BITMAP_BITS;
  901.         int t, id;
  902.  
  903.  restart:
  904.         /* get vacant slot */
  905.         t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
  906.         if (t < 0)
  907.                 return t == -ENOMEM ? -EAGAIN : t;
  908.  
  909.         if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
  910.                 return -ENOSPC;
  911.  
  912.         if (t != idr_id)
  913.                 offset = 0;
  914.         idr_id = t;
  915.  
  916.         /* if bitmap isn't there, create a new one */
  917.         bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
  918.         if (!bitmap) {
  919.                 spin_lock_irqsave(&ida->idr.lock, flags);
  920.                 bitmap = ida->free_bitmap;
  921.                 ida->free_bitmap = NULL;
  922.                 spin_unlock_irqrestore(&ida->idr.lock, flags);
  923.  
  924.                 if (!bitmap)
  925.                         return -EAGAIN;
  926.  
  927.                 memset(bitmap, 0, sizeof(struct ida_bitmap));
  928.                 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
  929.                                 (void *)bitmap);
  930.                 pa[0]->count++;
  931.         }
  932.  
  933.         /* lookup for empty slot */
  934.         t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
  935.         if (t == IDA_BITMAP_BITS) {
  936.                 /* no empty slot after offset, continue to the next chunk */
  937.                 idr_id++;
  938.                 offset = 0;
  939.                 goto restart;
  940.         }
  941.  
  942.         id = idr_id * IDA_BITMAP_BITS + t;
  943.         if (id >= MAX_IDR_BIT)
  944.                 return -ENOSPC;
  945.  
  946.         __set_bit(t, bitmap->bitmap);
  947.         if (++bitmap->nr_busy == IDA_BITMAP_BITS)
  948.                 idr_mark_full(pa, idr_id);
  949.  
  950.         *p_id = id;
  951.  
  952.         /* Each leaf node can handle nearly a thousand slots and the
  953.          * whole idea of ida is to have small memory foot print.
  954.          * Throw away extra resources one by one after each successful
  955.          * allocation.
  956.          */
  957.         if (ida->idr.id_free_cnt || ida->free_bitmap) {
  958.                 struct idr_layer *p = get_from_free_list(&ida->idr);
  959.                 if (p)
  960.                         kfree(p);
  961.         }
  962.  
  963.         return 0;
  964. }
  965. EXPORT_SYMBOL(ida_get_new_above);
  966.  
  967. /**
  968.  * ida_remove - remove the given ID
  969.  * @ida:        ida handle
  970.  * @id:         ID to free
  971.  */
  972. void ida_remove(struct ida *ida, int id)
  973. {
  974.         struct idr_layer *p = ida->idr.top;
  975.         int shift = (ida->idr.layers - 1) * IDR_BITS;
  976.         int idr_id = id / IDA_BITMAP_BITS;
  977.         int offset = id % IDA_BITMAP_BITS;
  978.         int n;
  979.         struct ida_bitmap *bitmap;
  980.  
  981.         /* clear full bits while looking up the leaf idr_layer */
  982.         while ((shift > 0) && p) {
  983.                 n = (idr_id >> shift) & IDR_MASK;
  984.                 __clear_bit(n, p->bitmap);
  985.                 p = p->ary[n];
  986.                 shift -= IDR_BITS;
  987.         }
  988.  
  989.         if (p == NULL)
  990.                 goto err;
  991.  
  992.         n = idr_id & IDR_MASK;
  993.         __clear_bit(n, p->bitmap);
  994.  
  995.         bitmap = (void *)p->ary[n];
  996.         if (!test_bit(offset, bitmap->bitmap))
  997.                 goto err;
  998.  
  999.         /* update bitmap and remove it if empty */
  1000.         __clear_bit(offset, bitmap->bitmap);
  1001.         if (--bitmap->nr_busy == 0) {
  1002.                 __set_bit(n, p->bitmap);        /* to please idr_remove() */
  1003.                 idr_remove(&ida->idr, idr_id);
  1004.                 free_bitmap(ida, bitmap);
  1005.         }
  1006.  
  1007.         return;
  1008.  
  1009.  err:
  1010.         WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
  1011. }
  1012. EXPORT_SYMBOL(ida_remove);
  1013.  
  1014. /**
  1015.  * ida_destroy - release all cached layers within an ida tree
  1016.  * @ida:                ida handle
  1017.  */
  1018. void ida_destroy(struct ida *ida)
  1019. {
  1020.         idr_destroy(&ida->idr);
  1021.         kfree(ida->free_bitmap);
  1022. }
  1023. EXPORT_SYMBOL(ida_destroy);
  1024.  
  1025. /**
  1026.  * ida_init - initialize ida handle
  1027.  * @ida:        ida handle
  1028.  *
  1029.  * This function is use to set up the handle (@ida) that you will pass
  1030.  * to the rest of the functions.
  1031.  */
  1032. void ida_init(struct ida *ida)
  1033. {
  1034.         memset(ida, 0, sizeof(struct ida));
  1035.         idr_init(&ida->idr);
  1036.  
  1037. }
  1038. EXPORT_SYMBOL(ida_init);
  1039.  
  1040.  
  1041.  
  1042. unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
  1043. {
  1044.         const unsigned long *p = addr;
  1045.         unsigned long result = 0;
  1046.         unsigned long tmp;
  1047.  
  1048.         while (size & ~(BITS_PER_LONG-1)) {
  1049.                 if ((tmp = *(p++)))
  1050.                         goto found;
  1051.                 result += BITS_PER_LONG;
  1052.                 size -= BITS_PER_LONG;
  1053.         }
  1054.         if (!size)
  1055.                 return result;
  1056.  
  1057.         tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
  1058.         if (tmp == 0UL)         /* Are any bits set? */
  1059.                 return result + size;   /* Nope. */
  1060. found:
  1061.         return result + __ffs(tmp);
  1062. }
  1063.  
  1064. unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
  1065.                             unsigned long offset)
  1066. {
  1067.         const unsigned long *p = addr + BITOP_WORD(offset);
  1068.         unsigned long result = offset & ~(BITS_PER_LONG-1);
  1069.         unsigned long tmp;
  1070.  
  1071.         if (offset >= size)
  1072.                 return size;
  1073.         size -= result;
  1074.         offset %= BITS_PER_LONG;
  1075.         if (offset) {
  1076.                 tmp = *(p++);
  1077.                 tmp &= (~0UL << offset);
  1078.                 if (size < BITS_PER_LONG)
  1079.                         goto found_first;
  1080.                 if (tmp)
  1081.                         goto found_middle;
  1082.                 size -= BITS_PER_LONG;
  1083.                 result += BITS_PER_LONG;
  1084.         }
  1085.         while (size & ~(BITS_PER_LONG-1)) {
  1086.                 if ((tmp = *(p++)))
  1087.                         goto found_middle;
  1088.                 result += BITS_PER_LONG;
  1089.                 size -= BITS_PER_LONG;
  1090.         }
  1091.         if (!size)
  1092.                 return result;
  1093.         tmp = *p;
  1094.  
  1095. found_first:
  1096.         tmp &= (~0UL >> (BITS_PER_LONG - size));
  1097.         if (tmp == 0UL)         /* Are any bits set? */
  1098.                 return result + size;   /* Nope. */
  1099. found_middle:
  1100.         return result + __ffs(tmp);
  1101. }
  1102.  
  1103. unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
  1104.                                  unsigned long offset)
  1105. {
  1106.         const unsigned long *p = addr + BITOP_WORD(offset);
  1107.         unsigned long result = offset & ~(BITS_PER_LONG-1);
  1108.         unsigned long tmp;
  1109.  
  1110.         if (offset >= size)
  1111.                 return size;
  1112.         size -= result;
  1113.         offset %= BITS_PER_LONG;
  1114.         if (offset) {
  1115.                 tmp = *(p++);
  1116.                 tmp |= ~0UL >> (BITS_PER_LONG - offset);
  1117.                 if (size < BITS_PER_LONG)
  1118.                         goto found_first;
  1119.                 if (~tmp)
  1120.                         goto found_middle;
  1121.                 size -= BITS_PER_LONG;
  1122.                 result += BITS_PER_LONG;
  1123.         }
  1124.         while (size & ~(BITS_PER_LONG-1)) {
  1125.                 if (~(tmp = *(p++)))
  1126.                         goto found_middle;
  1127.                 result += BITS_PER_LONG;
  1128.                 size -= BITS_PER_LONG;
  1129.         }
  1130.         if (!size)
  1131.                 return result;
  1132.         tmp = *p;
  1133.  
  1134. found_first:
  1135.         tmp |= ~0UL << size;
  1136.         if (tmp == ~0UL)        /* Are any bits zero? */
  1137.                 return result + size;   /* Nope. */
  1138. found_middle:
  1139.         return result + ffz(tmp);
  1140. }
  1141.  
  1142. unsigned int hweight32(unsigned int w)
  1143. {
  1144.         unsigned int res = w - ((w >> 1) & 0x55555555);
  1145.         res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
  1146.         res = (res + (res >> 4)) & 0x0F0F0F0F;
  1147.         res = res + (res >> 8);
  1148.         return (res + (res >> 16)) & 0x000000FF;
  1149. }
  1150.  
  1151.