Subversion Repositories Kolibri OS

Rev

Rev 5270 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * lib/bitmap.c
  3.  * Helper functions for bitmap.h.
  4.  *
  5.  * This source code is licensed under the GNU General Public License,
  6.  * Version 2.  See the file COPYING for more details.
  7.  */
  8. #include <syscall.h>
  9. #include <linux/export.h>
  10. //#include <linux/thread_info.h>
  11. #include <linux/ctype.h>
  12. #include <linux/errno.h>
  13. #include <linux/bitmap.h>
  14. #include <linux/bitops.h>
  15. #include <linux/bug.h>
  16. //#include <asm/uaccess.h>
  17.  
  18. /*
  19.  * bitmaps provide an array of bits, implemented using an an
  20.  * array of unsigned longs.  The number of valid bits in a
  21.  * given bitmap does _not_ need to be an exact multiple of
  22.  * BITS_PER_LONG.
  23.  *
  24.  * The possible unused bits in the last, partially used word
  25.  * of a bitmap are 'don't care'.  The implementation makes
  26.  * no particular effort to keep them zero.  It ensures that
  27.  * their value will not affect the results of any operation.
  28.  * The bitmap operations that return Boolean (bitmap_empty,
  29.  * for example) or scalar (bitmap_weight, for example) results
  30.  * carefully filter out these unused bits from impacting their
  31.  * results.
  32.  *
  33.  * These operations actually hold to a slightly stronger rule:
  34.  * if you don't input any bitmaps to these ops that have some
  35.  * unused bits set, then they won't output any set unused bits
  36.  * in output bitmaps.
  37.  *
  38.  * The byte ordering of bitmaps is more natural on little
  39.  * endian architectures.  See the big-endian headers
  40.  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  41.  * for the best explanations of this ordering.
  42.  */
  43.  
  44. int __bitmap_equal(const unsigned long *bitmap1,
  45.                 const unsigned long *bitmap2, unsigned int bits)
  46. {
  47.         unsigned int k, lim = bits/BITS_PER_LONG;
  48.         for (k = 0; k < lim; ++k)
  49.                 if (bitmap1[k] != bitmap2[k])
  50.                         return 0;
  51.  
  52.         if (bits % BITS_PER_LONG)
  53.                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  54.                         return 0;
  55.  
  56.         return 1;
  57. }
  58. EXPORT_SYMBOL(__bitmap_equal);
  59.  
  60. void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  61. {
  62.         unsigned int k, lim = bits/BITS_PER_LONG;
  63.         for (k = 0; k < lim; ++k)
  64.                 dst[k] = ~src[k];
  65.  
  66.         if (bits % BITS_PER_LONG)
  67.                 dst[k] = ~src[k];
  68. }
  69. EXPORT_SYMBOL(__bitmap_complement);
  70.  
  71. /**
  72.  * __bitmap_shift_right - logical right shift of the bits in a bitmap
  73.  *   @dst : destination bitmap
  74.  *   @src : source bitmap
  75.  *   @shift : shift by this many bits
  76.  *   @nbits : bitmap size, in bits
  77.  *
  78.  * Shifting right (dividing) means moving bits in the MS -> LS bit
  79.  * direction.  Zeros are fed into the vacated MS positions and the
  80.  * LS bits shifted off the bottom are lost.
  81.  */
  82. void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  83.                         unsigned shift, unsigned nbits)
  84. {
  85.         unsigned k, lim = BITS_TO_LONGS(nbits);
  86.         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  87.         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  88.         for (k = 0; off + k < lim; ++k) {
  89.                 unsigned long upper, lower;
  90.  
  91.                 /*
  92.                  * If shift is not word aligned, take lower rem bits of
  93.                  * word above and make them the top rem bits of result.
  94.                  */
  95.                 if (!rem || off + k + 1 >= lim)
  96.                         upper = 0;
  97.                 else {
  98.                         upper = src[off + k + 1];
  99.                         if (off + k + 1 == lim - 1)
  100.                                 upper &= mask;
  101.                         upper <<= (BITS_PER_LONG - rem);
  102.                 }
  103.                 lower = src[off + k];
  104.                 if (off + k == lim - 1)
  105.                         lower &= mask;
  106.                 lower >>= rem;
  107.                 dst[k] = lower | upper;
  108.         }
  109.         if (off)
  110.                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  111. }
  112. EXPORT_SYMBOL(__bitmap_shift_right);
  113.  
  114.  
  115. /**
  116.  * __bitmap_shift_left - logical left shift of the bits in a bitmap
  117.  *   @dst : destination bitmap
  118.  *   @src : source bitmap
  119.  *   @shift : shift by this many bits
  120.  *   @nbits : bitmap size, in bits
  121.  *
  122.  * Shifting left (multiplying) means moving bits in the LS -> MS
  123.  * direction.  Zeros are fed into the vacated LS bit positions
  124.  * and those MS bits shifted off the top are lost.
  125.  */
  126.  
  127. void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
  128.                         unsigned int shift, unsigned int nbits)
  129. {
  130.         int k;
  131.         unsigned int lim = BITS_TO_LONGS(nbits);
  132.         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  133.         for (k = lim - off - 1; k >= 0; --k) {
  134.                 unsigned long upper, lower;
  135.  
  136.                 /*
  137.                  * If shift is not word aligned, take upper rem bits of
  138.                  * word below and make them the bottom rem bits of result.
  139.                  */
  140.                 if (rem && k > 0)
  141.                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
  142.                 else
  143.                         lower = 0;
  144.                 upper = src[k] << rem;
  145.                 dst[k + off] = lower | upper;
  146.         }
  147.         if (off)
  148.                 memset(dst, 0, off*sizeof(unsigned long));
  149. }
  150. EXPORT_SYMBOL(__bitmap_shift_left);
  151.  
  152. int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  153.                                 const unsigned long *bitmap2, unsigned int bits)
  154. {
  155.         unsigned int k;
  156.         unsigned int lim = bits/BITS_PER_LONG;
  157.         unsigned long result = 0;
  158.  
  159.         for (k = 0; k < lim; k++)
  160.                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  161.         if (bits % BITS_PER_LONG)
  162.                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
  163.                            BITMAP_LAST_WORD_MASK(bits));
  164.         return result != 0;
  165. }
  166. EXPORT_SYMBOL(__bitmap_and);
  167.  
  168. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  169.                                 const unsigned long *bitmap2, unsigned int bits)
  170. {
  171.         unsigned int k;
  172.         unsigned int nr = BITS_TO_LONGS(bits);
  173.  
  174.         for (k = 0; k < nr; k++)
  175.                 dst[k] = bitmap1[k] | bitmap2[k];
  176. }
  177. EXPORT_SYMBOL(__bitmap_or);
  178.  
  179. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  180.                                 const unsigned long *bitmap2, unsigned int bits)
  181. {
  182.         unsigned int k;
  183.         unsigned int nr = BITS_TO_LONGS(bits);
  184.  
  185.         for (k = 0; k < nr; k++)
  186.                 dst[k] = bitmap1[k] ^ bitmap2[k];
  187. }
  188. EXPORT_SYMBOL(__bitmap_xor);
  189.  
  190. int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  191.                                 const unsigned long *bitmap2, unsigned int bits)
  192. {
  193.         unsigned int k;
  194.         unsigned int lim = bits/BITS_PER_LONG;
  195.         unsigned long result = 0;
  196.  
  197.         for (k = 0; k < lim; k++)
  198.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  199.         if (bits % BITS_PER_LONG)
  200.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
  201.                            BITMAP_LAST_WORD_MASK(bits));
  202.         return result != 0;
  203. }
  204. EXPORT_SYMBOL(__bitmap_andnot);
  205.  
  206. int __bitmap_intersects(const unsigned long *bitmap1,
  207.                         const unsigned long *bitmap2, unsigned int bits)
  208. {
  209.         unsigned int k, lim = bits/BITS_PER_LONG;
  210.         for (k = 0; k < lim; ++k)
  211.                 if (bitmap1[k] & bitmap2[k])
  212.                         return 1;
  213.  
  214.         if (bits % BITS_PER_LONG)
  215.                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  216.                         return 1;
  217.         return 0;
  218. }
  219. EXPORT_SYMBOL(__bitmap_intersects);
  220.  
  221. int __bitmap_subset(const unsigned long *bitmap1,
  222.                     const unsigned long *bitmap2, unsigned int bits)
  223. {
  224.         unsigned int k, lim = bits/BITS_PER_LONG;
  225.         for (k = 0; k < lim; ++k)
  226.                 if (bitmap1[k] & ~bitmap2[k])
  227.                         return 0;
  228.  
  229.         if (bits % BITS_PER_LONG)
  230.                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  231.                         return 0;
  232.         return 1;
  233. }
  234. EXPORT_SYMBOL(__bitmap_subset);
  235.  
  236. int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
  237. {
  238.         unsigned int k, lim = bits/BITS_PER_LONG;
  239.         int w = 0;
  240.  
  241.         for (k = 0; k < lim; k++)
  242.                 w += hweight_long(bitmap[k]);
  243.  
  244.         if (bits % BITS_PER_LONG)
  245.                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  246.  
  247.         return w;
  248. }
  249. EXPORT_SYMBOL(__bitmap_weight);
  250.  
  251. void bitmap_set(unsigned long *map, unsigned int start, int len)
  252. {
  253.         unsigned long *p = map + BIT_WORD(start);
  254.         const unsigned int size = start + len;
  255.         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  256.         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  257.  
  258.         while (len - bits_to_set >= 0) {
  259.                 *p |= mask_to_set;
  260.                 len -= bits_to_set;
  261.                 bits_to_set = BITS_PER_LONG;
  262.                 mask_to_set = ~0UL;
  263.                 p++;
  264.         }
  265.         if (len) {
  266.                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  267.                 *p |= mask_to_set;
  268.         }
  269. }
  270. EXPORT_SYMBOL(bitmap_set);
  271.  
  272. void bitmap_clear(unsigned long *map, unsigned int start, int len)
  273. {
  274.         unsigned long *p = map + BIT_WORD(start);
  275.         const unsigned int size = start + len;
  276.         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  277.         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  278.  
  279.         while (len - bits_to_clear >= 0) {
  280.                 *p &= ~mask_to_clear;
  281.                 len -= bits_to_clear;
  282.                 bits_to_clear = BITS_PER_LONG;
  283.                 mask_to_clear = ~0UL;
  284.                 p++;
  285.         }
  286.         if (len) {
  287.                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  288.                 *p &= ~mask_to_clear;
  289.         }
  290. }
  291. EXPORT_SYMBOL(bitmap_clear);
  292.  
  293. /**
  294.  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
  295.  * @map: The address to base the search on
  296.  * @size: The bitmap size in bits
  297.  * @start: The bitnumber to start searching at
  298.  * @nr: The number of zeroed bits we're looking for
  299.  * @align_mask: Alignment mask for zero area
  300.  * @align_offset: Alignment offset for zero area.
  301.  *
  302.  * The @align_mask should be one less than a power of 2; the effect is that
  303.  * the bit offset of all zero areas this function finds plus @align_offset
  304.  * is multiple of that power of 2.
  305.  */
  306. unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
  307.                                          unsigned long size,
  308.                                          unsigned long start,
  309.                                          unsigned int nr,
  310.                                              unsigned long align_mask,
  311.                                              unsigned long align_offset)
  312. {
  313.         unsigned long index, end, i;
  314. again:
  315.         index = find_next_zero_bit(map, size, start);
  316.  
  317.         /* Align allocation */
  318.         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
  319.  
  320.         end = index + nr;
  321.         if (end > size)
  322.                 return end;
  323.         i = find_next_bit(map, end, index);
  324.         if (i < end) {
  325.                 start = i + 1;
  326.                 goto again;
  327.         }
  328.         return index;
  329. }
  330. EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
  331.  
  332. /*
  333.  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
  334.  * second version by Paul Jackson, third by Joe Korty.
  335.  */
  336.  
  337. #define CHUNKSZ                         32
  338. #define nbits_to_hold_value(val)        fls(val)
  339. #define BASEDEC 10              /* fancier cpuset lists input in decimal */
  340.  
  341.  
  342.  
  343.  
  344.  
  345. /**
  346.  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
  347.  *      @buf: pointer to a bitmap
  348.  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
  349.  *      @nbits: number of valid bit positions in @buf
  350.  *
  351.  * Map the bit at position @pos in @buf (of length @nbits) to the
  352.  * ordinal of which set bit it is.  If it is not set or if @pos
  353.  * is not a valid bit position, map to -1.
  354.  *
  355.  * If for example, just bits 4 through 7 are set in @buf, then @pos
  356.  * values 4 through 7 will get mapped to 0 through 3, respectively,
  357.  * and other @pos values will get mapped to -1.  When @pos value 7
  358.  * gets mapped to (returns) @ord value 3 in this example, that means
  359.  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  360.  *
  361.  * The bit positions 0 through @bits are valid positions in @buf.
  362.  */
  363. static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
  364. {
  365.         if (pos >= nbits || !test_bit(pos, buf))
  366.                 return -1;
  367.  
  368.         return __bitmap_weight(buf, pos);
  369. }
  370.  
  371. /**
  372.  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
  373.  *      @buf: pointer to bitmap
  374.  *      @ord: ordinal bit position (n-th set bit, n >= 0)
  375.  *      @nbits: number of valid bit positions in @buf
  376.  *
  377.  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  378.  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
  379.  * >= weight(buf), returns @nbits.
  380.  *
  381.  * If for example, just bits 4 through 7 are set in @buf, then @ord
  382.  * values 0 through 3 will get mapped to 4 through 7, respectively,
  383.  * and all other @ord values returns @nbits.  When @ord value 3
  384.  * gets mapped to (returns) @pos value 7 in this example, that means
  385.  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  386.  *
  387.  * The bit positions 0 through @nbits-1 are valid positions in @buf.
  388.  */
  389. unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
  390. {
  391.         unsigned int pos;
  392.  
  393.         for (pos = find_first_bit(buf, nbits);
  394.              pos < nbits && ord;
  395.              pos = find_next_bit(buf, nbits, pos + 1))
  396.                         ord--;
  397.  
  398.         return pos;
  399. }
  400.  
  401. /**
  402.  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  403.  *      @dst: remapped result
  404.  *      @src: subset to be remapped
  405.  *      @old: defines domain of map
  406.  *      @new: defines range of map
  407.  *      @nbits: number of bits in each of these bitmaps
  408.  *
  409.  * Let @old and @new define a mapping of bit positions, such that
  410.  * whatever position is held by the n-th set bit in @old is mapped
  411.  * to the n-th set bit in @new.  In the more general case, allowing
  412.  * for the possibility that the weight 'w' of @new is less than the
  413.  * weight of @old, map the position of the n-th set bit in @old to
  414.  * the position of the m-th set bit in @new, where m == n % w.
  415.  *
  416.  * If either of the @old and @new bitmaps are empty, or if @src and
  417.  * @dst point to the same location, then this routine copies @src
  418.  * to @dst.
  419.  *
  420.  * The positions of unset bits in @old are mapped to themselves
  421.  * (the identify map).
  422.  *
  423.  * Apply the above specified mapping to @src, placing the result in
  424.  * @dst, clearing any bits previously set in @dst.
  425.  *
  426.  * For example, lets say that @old has bits 4 through 7 set, and
  427.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  428.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  429.  * bit positions unchanged.  So if say @src comes into this routine
  430.  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  431.  * 13 and 15 set.
  432.  */
  433. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  434.                 const unsigned long *old, const unsigned long *new,
  435.                 unsigned int nbits)
  436. {
  437.         unsigned int oldbit, w;
  438.  
  439.         if (dst == src)         /* following doesn't handle inplace remaps */
  440.                 return;
  441.         bitmap_zero(dst, nbits);
  442.  
  443.         w = bitmap_weight(new, nbits);
  444.         for_each_set_bit(oldbit, src, nbits) {
  445.                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
  446.  
  447.                 if (n < 0 || w == 0)
  448.                         set_bit(oldbit, dst);   /* identity map */
  449.                 else
  450.                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
  451.         }
  452. }
  453. EXPORT_SYMBOL(bitmap_remap);
  454.  
  455. /**
  456.  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  457.  *      @oldbit: bit position to be mapped
  458.  *      @old: defines domain of map
  459.  *      @new: defines range of map
  460.  *      @bits: number of bits in each of these bitmaps
  461.  *
  462.  * Let @old and @new define a mapping of bit positions, such that
  463.  * whatever position is held by the n-th set bit in @old is mapped
  464.  * to the n-th set bit in @new.  In the more general case, allowing
  465.  * for the possibility that the weight 'w' of @new is less than the
  466.  * weight of @old, map the position of the n-th set bit in @old to
  467.  * the position of the m-th set bit in @new, where m == n % w.
  468.  *
  469.  * The positions of unset bits in @old are mapped to themselves
  470.  * (the identify map).
  471.  *
  472.  * Apply the above specified mapping to bit position @oldbit, returning
  473.  * the new bit position.
  474.  *
  475.  * For example, lets say that @old has bits 4 through 7 set, and
  476.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  477.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  478.  * bit positions unchanged.  So if say @oldbit is 5, then this routine
  479.  * returns 13.
  480.  */
  481. int bitmap_bitremap(int oldbit, const unsigned long *old,
  482.                                 const unsigned long *new, int bits)
  483. {
  484.         int w = bitmap_weight(new, bits);
  485.         int n = bitmap_pos_to_ord(old, oldbit, bits);
  486.         if (n < 0 || w == 0)
  487.                 return oldbit;
  488.         else
  489.                 return bitmap_ord_to_pos(new, n % w, bits);
  490. }
  491. EXPORT_SYMBOL(bitmap_bitremap);
  492.  
  493. /**
  494.  * bitmap_onto - translate one bitmap relative to another
  495.  *      @dst: resulting translated bitmap
  496.  *      @orig: original untranslated bitmap
  497.  *      @relmap: bitmap relative to which translated
  498.  *      @bits: number of bits in each of these bitmaps
  499.  *
  500.  * Set the n-th bit of @dst iff there exists some m such that the
  501.  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  502.  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  503.  * (If you understood the previous sentence the first time your
  504.  * read it, you're overqualified for your current job.)
  505.  *
  506.  * In other words, @orig is mapped onto (surjectively) @dst,
  507.  * using the map { <n, m> | the n-th bit of @relmap is the
  508.  * m-th set bit of @relmap }.
  509.  *
  510.  * Any set bits in @orig above bit number W, where W is the
  511.  * weight of (number of set bits in) @relmap are mapped nowhere.
  512.  * In particular, if for all bits m set in @orig, m >= W, then
  513.  * @dst will end up empty.  In situations where the possibility
  514.  * of such an empty result is not desired, one way to avoid it is
  515.  * to use the bitmap_fold() operator, below, to first fold the
  516.  * @orig bitmap over itself so that all its set bits x are in the
  517.  * range 0 <= x < W.  The bitmap_fold() operator does this by
  518.  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  519.  *
  520.  * Example [1] for bitmap_onto():
  521.  *  Let's say @relmap has bits 30-39 set, and @orig has bits
  522.  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
  523.  *  @dst will have bits 31, 33, 35, 37 and 39 set.
  524.  *
  525.  *  When bit 0 is set in @orig, it means turn on the bit in
  526.  *  @dst corresponding to whatever is the first bit (if any)
  527.  *  that is turned on in @relmap.  Since bit 0 was off in the
  528.  *  above example, we leave off that bit (bit 30) in @dst.
  529.  *
  530.  *  When bit 1 is set in @orig (as in the above example), it
  531.  *  means turn on the bit in @dst corresponding to whatever
  532.  *  is the second bit that is turned on in @relmap.  The second
  533.  *  bit in @relmap that was turned on in the above example was
  534.  *  bit 31, so we turned on bit 31 in @dst.
  535.  *
  536.  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  537.  *  because they were the 4th, 6th, 8th and 10th set bits
  538.  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
  539.  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
  540.  *
  541.  *  When bit 11 is set in @orig, it means turn on the bit in
  542.  *  @dst corresponding to whatever is the twelfth bit that is
  543.  *  turned on in @relmap.  In the above example, there were
  544.  *  only ten bits turned on in @relmap (30..39), so that bit
  545.  *  11 was set in @orig had no affect on @dst.
  546.  *
  547.  * Example [2] for bitmap_fold() + bitmap_onto():
  548.  *  Let's say @relmap has these ten bits set:
  549.  *              40 41 42 43 45 48 53 61 74 95
  550.  *  (for the curious, that's 40 plus the first ten terms of the
  551.  *  Fibonacci sequence.)
  552.  *
  553.  *  Further lets say we use the following code, invoking
  554.  *  bitmap_fold() then bitmap_onto, as suggested above to
  555.  *  avoid the possibility of an empty @dst result:
  556.  *
  557.  *      unsigned long *tmp;     // a temporary bitmap's bits
  558.  *
  559.  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  560.  *      bitmap_onto(dst, tmp, relmap, bits);
  561.  *
  562.  *  Then this table shows what various values of @dst would be, for
  563.  *  various @orig's.  I list the zero-based positions of each set bit.
  564.  *  The tmp column shows the intermediate result, as computed by
  565.  *  using bitmap_fold() to fold the @orig bitmap modulo ten
  566.  *  (the weight of @relmap).
  567.  *
  568.  *      @orig           tmp            @dst
  569.  *      0                0             40
  570.  *      1                1             41
  571.  *      9                9             95
  572.  *      10               0             40 (*)
  573.  *      1 3 5 7          1 3 5 7       41 43 48 61
  574.  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
  575.  *      0 9 18 27        0 9 8 7       40 61 74 95
  576.  *      0 10 20 30       0             40
  577.  *      0 11 22 33       0 1 2 3       40 41 42 43
  578.  *      0 12 24 36       0 2 4 6       40 42 45 53
  579.  *      78 102 211       1 2 8         41 42 74 (*)
  580.  *
  581.  * (*) For these marked lines, if we hadn't first done bitmap_fold()
  582.  *     into tmp, then the @dst result would have been empty.
  583.  *
  584.  * If either of @orig or @relmap is empty (no set bits), then @dst
  585.  * will be returned empty.
  586.  *
  587.  * If (as explained above) the only set bits in @orig are in positions
  588.  * m where m >= W, (where W is the weight of @relmap) then @dst will
  589.  * once again be returned empty.
  590.  *
  591.  * All bits in @dst not set by the above rule are cleared.
  592.  */
  593. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  594.                         const unsigned long *relmap, unsigned int bits)
  595. {
  596.         unsigned int n, m;      /* same meaning as in above comment */
  597.  
  598.         if (dst == orig)        /* following doesn't handle inplace mappings */
  599.                 return;
  600.         bitmap_zero(dst, bits);
  601.  
  602.         /*
  603.          * The following code is a more efficient, but less
  604.          * obvious, equivalent to the loop:
  605.          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  606.          *              n = bitmap_ord_to_pos(orig, m, bits);
  607.          *              if (test_bit(m, orig))
  608.          *                      set_bit(n, dst);
  609.          *      }
  610.          */
  611.  
  612.         m = 0;
  613.         for_each_set_bit(n, relmap, bits) {
  614.                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
  615.                 if (test_bit(m, orig))
  616.                         set_bit(n, dst);
  617.                 m++;
  618.         }
  619. }
  620. EXPORT_SYMBOL(bitmap_onto);
  621.  
  622. /**
  623.  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  624.  *      @dst: resulting smaller bitmap
  625.  *      @orig: original larger bitmap
  626.  *      @sz: specified size
  627.  *      @nbits: number of bits in each of these bitmaps
  628.  *
  629.  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  630.  * Clear all other bits in @dst.  See further the comment and
  631.  * Example [2] for bitmap_onto() for why and how to use this.
  632.  */
  633. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  634.                         unsigned int sz, unsigned int nbits)
  635. {
  636.         unsigned int oldbit;
  637.  
  638.         if (dst == orig)        /* following doesn't handle inplace mappings */
  639.                 return;
  640.         bitmap_zero(dst, nbits);
  641.  
  642.         for_each_set_bit(oldbit, orig, nbits)
  643.                 set_bit(oldbit % sz, dst);
  644. }
  645. EXPORT_SYMBOL(bitmap_fold);
  646.  
  647. /*
  648.  * Common code for bitmap_*_region() routines.
  649.  *      bitmap: array of unsigned longs corresponding to the bitmap
  650.  *      pos: the beginning of the region
  651.  *      order: region size (log base 2 of number of bits)
  652.  *      reg_op: operation(s) to perform on that region of bitmap
  653.  *
  654.  * Can set, verify and/or release a region of bits in a bitmap,
  655.  * depending on which combination of REG_OP_* flag bits is set.
  656.  *
  657.  * A region of a bitmap is a sequence of bits in the bitmap, of
  658.  * some size '1 << order' (a power of two), aligned to that same
  659.  * '1 << order' power of two.
  660.  *
  661.  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  662.  * Returns 0 in all other cases and reg_ops.
  663.  */
  664.  
  665. enum {
  666.         REG_OP_ISFREE,          /* true if region is all zero bits */
  667.         REG_OP_ALLOC,           /* set all bits in region */
  668.         REG_OP_RELEASE,         /* clear all bits in region */
  669. };
  670.  
  671. static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
  672. {
  673.         int nbits_reg;          /* number of bits in region */
  674.         int index;              /* index first long of region in bitmap */
  675.         int offset;             /* bit offset region in bitmap[index] */
  676.         int nlongs_reg;         /* num longs spanned by region in bitmap */
  677.         int nbitsinlong;        /* num bits of region in each spanned long */
  678.         unsigned long mask;     /* bitmask for one long of region */
  679.         int i;                  /* scans bitmap by longs */
  680.         int ret = 0;            /* return value */
  681.  
  682.         /*
  683.          * Either nlongs_reg == 1 (for small orders that fit in one long)
  684.          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  685.          */
  686.         nbits_reg = 1 << order;
  687.         index = pos / BITS_PER_LONG;
  688.         offset = pos - (index * BITS_PER_LONG);
  689.         nlongs_reg = BITS_TO_LONGS(nbits_reg);
  690.         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
  691.  
  692.         /*
  693.          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  694.          * overflows if nbitsinlong == BITS_PER_LONG.
  695.          */
  696.         mask = (1UL << (nbitsinlong - 1));
  697.         mask += mask - 1;
  698.         mask <<= offset;
  699.  
  700.         switch (reg_op) {
  701.         case REG_OP_ISFREE:
  702.                 for (i = 0; i < nlongs_reg; i++) {
  703.                         if (bitmap[index + i] & mask)
  704.                                 goto done;
  705.                 }
  706.                 ret = 1;        /* all bits in region free (zero) */
  707.                 break;
  708.  
  709.         case REG_OP_ALLOC:
  710.                 for (i = 0; i < nlongs_reg; i++)
  711.                         bitmap[index + i] |= mask;
  712.                 break;
  713.  
  714.         case REG_OP_RELEASE:
  715.                 for (i = 0; i < nlongs_reg; i++)
  716.                         bitmap[index + i] &= ~mask;
  717.                 break;
  718.         }
  719. done:
  720.         return ret;
  721. }
  722.  
  723. /**
  724.  * bitmap_find_free_region - find a contiguous aligned mem region
  725.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  726.  *      @bits: number of bits in the bitmap
  727.  *      @order: region size (log base 2 of number of bits) to find
  728.  *
  729.  * Find a region of free (zero) bits in a @bitmap of @bits bits and
  730.  * allocate them (set them to one).  Only consider regions of length
  731.  * a power (@order) of two, aligned to that power of two, which
  732.  * makes the search algorithm much faster.
  733.  *
  734.  * Return the bit offset in bitmap of the allocated region,
  735.  * or -errno on failure.
  736.  */
  737. int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
  738. {
  739.         unsigned int pos, end;          /* scans bitmap by regions of size order */
  740.  
  741.         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
  742.                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  743.                         continue;
  744.                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  745.                 return pos;
  746.         }
  747.         return -ENOMEM;
  748. }
  749. EXPORT_SYMBOL(bitmap_find_free_region);
  750.  
  751. /**
  752.  * bitmap_release_region - release allocated bitmap region
  753.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  754.  *      @pos: beginning of bit region to release
  755.  *      @order: region size (log base 2 of number of bits) to release
  756.  *
  757.  * This is the complement to __bitmap_find_free_region() and releases
  758.  * the found region (by clearing it in the bitmap).
  759.  *
  760.  * No return value.
  761.  */
  762. void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
  763. {
  764.         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  765. }
  766. EXPORT_SYMBOL(bitmap_release_region);
  767.  
  768. /**
  769.  * bitmap_allocate_region - allocate bitmap region
  770.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  771.  *      @pos: beginning of bit region to allocate
  772.  *      @order: region size (log base 2 of number of bits) to allocate
  773.  *
  774.  * Allocate (set bits in) a specified region of a bitmap.
  775.  *
  776.  * Return 0 on success, or %-EBUSY if specified region wasn't
  777.  * free (not all bits were zero).
  778.  */
  779. int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
  780. {
  781.         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  782.                 return -EBUSY;
  783.         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  784. }
  785. EXPORT_SYMBOL(bitmap_allocate_region);
  786.  
  787. /**
  788.  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
  789.  * @dst:   destination buffer
  790.  * @src:   bitmap to copy
  791.  * @nbits: number of bits in the bitmap
  792.  *
  793.  * Require nbits % BITS_PER_LONG == 0.
  794.  */
  795. #ifdef __BIG_ENDIAN
  796. void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
  797. {
  798.         unsigned int i;
  799.  
  800.         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
  801.                 if (BITS_PER_LONG == 64)
  802.                         dst[i] = cpu_to_le64(src[i]);
  803.                 else
  804.                         dst[i] = cpu_to_le32(src[i]);
  805.         }
  806. }
  807. EXPORT_SYMBOL(bitmap_copy_le);
  808. #endif
  809.