Subversion Repositories Kolibri OS

Rev

Rev 5056 | Rev 6082 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * lib/bitmap.c
  3.  * Helper functions for bitmap.h.
  4.  *
  5.  * This source code is licensed under the GNU General Public License,
  6.  * Version 2.  See the file COPYING for more details.
  7.  */
  8. #include <syscall.h>
  9. #include <linux/export.h>
  10. //#include <linux/thread_info.h>
  11. #include <linux/ctype.h>
  12. #include <linux/errno.h>
  13. #include <linux/bitmap.h>
  14. #include <linux/bitops.h>
  15. #include <linux/bug.h>
  16. //#include <asm/uaccess.h>
  17.  
  18. /*
  19.  * bitmaps provide an array of bits, implemented using an an
  20.  * array of unsigned longs.  The number of valid bits in a
  21.  * given bitmap does _not_ need to be an exact multiple of
  22.  * BITS_PER_LONG.
  23.  *
  24.  * The possible unused bits in the last, partially used word
  25.  * of a bitmap are 'don't care'.  The implementation makes
  26.  * no particular effort to keep them zero.  It ensures that
  27.  * their value will not affect the results of any operation.
  28.  * The bitmap operations that return Boolean (bitmap_empty,
  29.  * for example) or scalar (bitmap_weight, for example) results
  30.  * carefully filter out these unused bits from impacting their
  31.  * results.
  32.  *
  33.  * These operations actually hold to a slightly stronger rule:
  34.  * if you don't input any bitmaps to these ops that have some
  35.  * unused bits set, then they won't output any set unused bits
  36.  * in output bitmaps.
  37.  *
  38.  * The byte ordering of bitmaps is more natural on little
  39.  * endian architectures.  See the big-endian headers
  40.  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  41.  * for the best explanations of this ordering.
  42.  */
  43.  
  44. int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
  45. {
  46.         unsigned int k, lim = bits/BITS_PER_LONG;
  47.         for (k = 0; k < lim; ++k)
  48.                 if (bitmap[k])
  49.                         return 0;
  50.  
  51.         if (bits % BITS_PER_LONG)
  52.                 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  53.                         return 0;
  54.  
  55.         return 1;
  56. }
  57. EXPORT_SYMBOL(__bitmap_empty);
  58.  
  59. int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
  60. {
  61.         unsigned int k, lim = bits/BITS_PER_LONG;
  62.         for (k = 0; k < lim; ++k)
  63.                 if (~bitmap[k])
  64.                         return 0;
  65.  
  66.         if (bits % BITS_PER_LONG)
  67.                 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  68.                         return 0;
  69.  
  70.         return 1;
  71. }
  72. EXPORT_SYMBOL(__bitmap_full);
  73.  
  74. int __bitmap_equal(const unsigned long *bitmap1,
  75.                 const unsigned long *bitmap2, unsigned int bits)
  76. {
  77.         unsigned int k, lim = bits/BITS_PER_LONG;
  78.         for (k = 0; k < lim; ++k)
  79.                 if (bitmap1[k] != bitmap2[k])
  80.                         return 0;
  81.  
  82.         if (bits % BITS_PER_LONG)
  83.                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  84.                         return 0;
  85.  
  86.         return 1;
  87. }
  88. EXPORT_SYMBOL(__bitmap_equal);
  89.  
  90. void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  91. {
  92.         unsigned int k, lim = bits/BITS_PER_LONG;
  93.         for (k = 0; k < lim; ++k)
  94.                 dst[k] = ~src[k];
  95.  
  96.         if (bits % BITS_PER_LONG)
  97.                 dst[k] = ~src[k];
  98. }
  99. EXPORT_SYMBOL(__bitmap_complement);
  100.  
  101. /**
  102.  * __bitmap_shift_right - logical right shift of the bits in a bitmap
  103.  *   @dst : destination bitmap
  104.  *   @src : source bitmap
  105.  *   @shift : shift by this many bits
  106.  *   @bits : bitmap size, in bits
  107.  *
  108.  * Shifting right (dividing) means moving bits in the MS -> LS bit
  109.  * direction.  Zeros are fed into the vacated MS positions and the
  110.  * LS bits shifted off the bottom are lost.
  111.  */
  112. void __bitmap_shift_right(unsigned long *dst,
  113.                         const unsigned long *src, int shift, int bits)
  114. {
  115.         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  116.         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  117.         unsigned long mask = (1UL << left) - 1;
  118.         for (k = 0; off + k < lim; ++k) {
  119.                 unsigned long upper, lower;
  120.  
  121.                 /*
  122.                  * If shift is not word aligned, take lower rem bits of
  123.                  * word above and make them the top rem bits of result.
  124.                  */
  125.                 if (!rem || off + k + 1 >= lim)
  126.                         upper = 0;
  127.                 else {
  128.                         upper = src[off + k + 1];
  129.                         if (off + k + 1 == lim - 1 && left)
  130.                                 upper &= mask;
  131.                 }
  132.                 lower = src[off + k];
  133.                 if (left && off + k == lim - 1)
  134.                         lower &= mask;
  135.                 dst[k] = lower >> rem;
  136.                 if (rem)
  137.                         dst[k] |= upper << (BITS_PER_LONG - rem);
  138.                 if (left && k == lim - 1)
  139.                         dst[k] &= mask;
  140.         }
  141.         if (off)
  142.                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  143. }
  144. EXPORT_SYMBOL(__bitmap_shift_right);
  145.  
  146.  
  147. /**
  148.  * __bitmap_shift_left - logical left shift of the bits in a bitmap
  149.  *   @dst : destination bitmap
  150.  *   @src : source bitmap
  151.  *   @shift : shift by this many bits
  152.  *   @bits : bitmap size, in bits
  153.  *
  154.  * Shifting left (multiplying) means moving bits in the LS -> MS
  155.  * direction.  Zeros are fed into the vacated LS bit positions
  156.  * and those MS bits shifted off the top are lost.
  157.  */
  158.  
  159. void __bitmap_shift_left(unsigned long *dst,
  160.                         const unsigned long *src, int shift, int bits)
  161. {
  162.         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  163.         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  164.         for (k = lim - off - 1; k >= 0; --k) {
  165.                 unsigned long upper, lower;
  166.  
  167.                 /*
  168.                  * If shift is not word aligned, take upper rem bits of
  169.                  * word below and make them the bottom rem bits of result.
  170.                  */
  171.                 if (rem && k > 0)
  172.                         lower = src[k - 1];
  173.                 else
  174.                         lower = 0;
  175.                 upper = src[k];
  176.                 if (left && k == lim - 1)
  177.                         upper &= (1UL << left) - 1;
  178.                 dst[k + off] = upper << rem;
  179.                 if (rem)
  180.                         dst[k + off] |= lower >> (BITS_PER_LONG - rem);
  181.                 if (left && k + off == lim - 1)
  182.                         dst[k + off] &= (1UL << left) - 1;
  183.         }
  184.         if (off)
  185.                 memset(dst, 0, off*sizeof(unsigned long));
  186. }
  187. EXPORT_SYMBOL(__bitmap_shift_left);
  188.  
  189. int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  190.                                 const unsigned long *bitmap2, unsigned int bits)
  191. {
  192.         unsigned int k;
  193.         unsigned int lim = bits/BITS_PER_LONG;
  194.         unsigned long result = 0;
  195.  
  196.         for (k = 0; k < lim; k++)
  197.                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  198.         if (bits % BITS_PER_LONG)
  199.                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
  200.                            BITMAP_LAST_WORD_MASK(bits));
  201.         return result != 0;
  202. }
  203. EXPORT_SYMBOL(__bitmap_and);
  204.  
  205. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  206.                                 const unsigned long *bitmap2, unsigned int bits)
  207. {
  208.         unsigned int k;
  209.         unsigned int nr = BITS_TO_LONGS(bits);
  210.  
  211.         for (k = 0; k < nr; k++)
  212.                 dst[k] = bitmap1[k] | bitmap2[k];
  213. }
  214. EXPORT_SYMBOL(__bitmap_or);
  215.  
  216. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  217.                                 const unsigned long *bitmap2, unsigned int bits)
  218. {
  219.         unsigned int k;
  220.         unsigned int nr = BITS_TO_LONGS(bits);
  221.  
  222.         for (k = 0; k < nr; k++)
  223.                 dst[k] = bitmap1[k] ^ bitmap2[k];
  224. }
  225. EXPORT_SYMBOL(__bitmap_xor);
  226.  
  227. int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  228.                                 const unsigned long *bitmap2, unsigned int bits)
  229. {
  230.         unsigned int k;
  231.         unsigned int lim = bits/BITS_PER_LONG;
  232.         unsigned long result = 0;
  233.  
  234.         for (k = 0; k < lim; k++)
  235.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  236.         if (bits % BITS_PER_LONG)
  237.                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
  238.                            BITMAP_LAST_WORD_MASK(bits));
  239.         return result != 0;
  240. }
  241. EXPORT_SYMBOL(__bitmap_andnot);
  242.  
  243. int __bitmap_intersects(const unsigned long *bitmap1,
  244.                         const unsigned long *bitmap2, unsigned int bits)
  245. {
  246.         unsigned int k, lim = bits/BITS_PER_LONG;
  247.         for (k = 0; k < lim; ++k)
  248.                 if (bitmap1[k] & bitmap2[k])
  249.                         return 1;
  250.  
  251.         if (bits % BITS_PER_LONG)
  252.                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  253.                         return 1;
  254.         return 0;
  255. }
  256. EXPORT_SYMBOL(__bitmap_intersects);
  257.  
  258. int __bitmap_subset(const unsigned long *bitmap1,
  259.                     const unsigned long *bitmap2, unsigned int bits)
  260. {
  261.         unsigned int k, lim = bits/BITS_PER_LONG;
  262.         for (k = 0; k < lim; ++k)
  263.                 if (bitmap1[k] & ~bitmap2[k])
  264.                         return 0;
  265.  
  266.         if (bits % BITS_PER_LONG)
  267.                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  268.                         return 0;
  269.         return 1;
  270. }
  271. EXPORT_SYMBOL(__bitmap_subset);
  272.  
  273. int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
  274. {
  275.         unsigned int k, lim = bits/BITS_PER_LONG;
  276.         int w = 0;
  277.  
  278.         for (k = 0; k < lim; k++)
  279.                 w += hweight_long(bitmap[k]);
  280.  
  281.         if (bits % BITS_PER_LONG)
  282.                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  283.  
  284.         return w;
  285. }
  286. EXPORT_SYMBOL(__bitmap_weight);
  287.  
  288. void bitmap_set(unsigned long *map, unsigned int start, int len)
  289. {
  290.         unsigned long *p = map + BIT_WORD(start);
  291.         const unsigned int size = start + len;
  292.         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  293.         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  294.  
  295.         while (len - bits_to_set >= 0) {
  296.                 *p |= mask_to_set;
  297.                 len -= bits_to_set;
  298.                 bits_to_set = BITS_PER_LONG;
  299.                 mask_to_set = ~0UL;
  300.                 p++;
  301.         }
  302.         if (len) {
  303.                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  304.                 *p |= mask_to_set;
  305.         }
  306. }
  307. EXPORT_SYMBOL(bitmap_set);
  308.  
  309. void bitmap_clear(unsigned long *map, unsigned int start, int len)
  310. {
  311.         unsigned long *p = map + BIT_WORD(start);
  312.         const unsigned int size = start + len;
  313.         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  314.         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  315.  
  316.         while (len - bits_to_clear >= 0) {
  317.                 *p &= ~mask_to_clear;
  318.                 len -= bits_to_clear;
  319.                 bits_to_clear = BITS_PER_LONG;
  320.                 mask_to_clear = ~0UL;
  321.                 p++;
  322.         }
  323.         if (len) {
  324.                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  325.                 *p &= ~mask_to_clear;
  326.         }
  327. }
  328. EXPORT_SYMBOL(bitmap_clear);
  329.  
  330. /**
  331.  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
  332.  * @map: The address to base the search on
  333.  * @size: The bitmap size in bits
  334.  * @start: The bitnumber to start searching at
  335.  * @nr: The number of zeroed bits we're looking for
  336.  * @align_mask: Alignment mask for zero area
  337.  * @align_offset: Alignment offset for zero area.
  338.  *
  339.  * The @align_mask should be one less than a power of 2; the effect is that
  340.  * the bit offset of all zero areas this function finds plus @align_offset
  341.  * is multiple of that power of 2.
  342.  */
  343. unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
  344.                                          unsigned long size,
  345.                                          unsigned long start,
  346.                                          unsigned int nr,
  347.                                              unsigned long align_mask,
  348.                                              unsigned long align_offset)
  349. {
  350.         unsigned long index, end, i;
  351. again:
  352.         index = find_next_zero_bit(map, size, start);
  353.  
  354.         /* Align allocation */
  355.         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
  356.  
  357.         end = index + nr;
  358.         if (end > size)
  359.                 return end;
  360.         i = find_next_bit(map, end, index);
  361.         if (i < end) {
  362.                 start = i + 1;
  363.                 goto again;
  364.         }
  365.         return index;
  366. }
  367. EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
  368.  
  369. /*
  370.  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
  371.  * second version by Paul Jackson, third by Joe Korty.
  372.  */
  373.  
  374. #define CHUNKSZ                         32
  375. #define nbits_to_hold_value(val)        fls(val)
  376. #define BASEDEC 10              /* fancier cpuset lists input in decimal */
  377.  
  378.  
  379.  
  380.  
  381.  
  382. /**
  383.  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
  384.  *      @buf: pointer to a bitmap
  385.  *      @pos: a bit position in @buf (0 <= @pos < @bits)
  386.  *      @bits: number of valid bit positions in @buf
  387.  *
  388.  * Map the bit at position @pos in @buf (of length @bits) to the
  389.  * ordinal of which set bit it is.  If it is not set or if @pos
  390.  * is not a valid bit position, map to -1.
  391.  *
  392.  * If for example, just bits 4 through 7 are set in @buf, then @pos
  393.  * values 4 through 7 will get mapped to 0 through 3, respectively,
  394.  * and other @pos values will get mapped to -1.  When @pos value 7
  395.  * gets mapped to (returns) @ord value 3 in this example, that means
  396.  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  397.  *
  398.  * The bit positions 0 through @bits are valid positions in @buf.
  399.  */
  400. static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  401. {
  402.         int i, ord;
  403.  
  404.         if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  405.                 return -1;
  406.  
  407.         i = find_first_bit(buf, bits);
  408.         ord = 0;
  409.         while (i < pos) {
  410.                 i = find_next_bit(buf, bits, i + 1);
  411.                 ord++;
  412.         }
  413.         BUG_ON(i != pos);
  414.  
  415.         return ord;
  416. }
  417.  
  418. /**
  419.  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
  420.  *      @buf: pointer to bitmap
  421.  *      @ord: ordinal bit position (n-th set bit, n >= 0)
  422.  *      @bits: number of valid bit positions in @buf
  423.  *
  424.  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  425.  * Value of @ord should be in range 0 <= @ord < weight(buf), else
  426.  * results are undefined.
  427.  *
  428.  * If for example, just bits 4 through 7 are set in @buf, then @ord
  429.  * values 0 through 3 will get mapped to 4 through 7, respectively,
  430.  * and all other @ord values return undefined values.  When @ord value 3
  431.  * gets mapped to (returns) @pos value 7 in this example, that means
  432.  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  433.  *
  434.  * The bit positions 0 through @bits are valid positions in @buf.
  435.  */
  436. int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  437. {
  438.         int pos = 0;
  439.  
  440.         if (ord >= 0 && ord < bits) {
  441.                 int i;
  442.  
  443.                 for (i = find_first_bit(buf, bits);
  444.                      i < bits && ord > 0;
  445.                      i = find_next_bit(buf, bits, i + 1))
  446.                         ord--;
  447.                 if (i < bits && ord == 0)
  448.                         pos = i;
  449.         }
  450.  
  451.         return pos;
  452. }
  453.  
  454. /**
  455.  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  456.  *      @dst: remapped result
  457.  *      @src: subset to be remapped
  458.  *      @old: defines domain of map
  459.  *      @new: defines range of map
  460.  *      @bits: number of bits in each of these bitmaps
  461.  *
  462.  * Let @old and @new define a mapping of bit positions, such that
  463.  * whatever position is held by the n-th set bit in @old is mapped
  464.  * to the n-th set bit in @new.  In the more general case, allowing
  465.  * for the possibility that the weight 'w' of @new is less than the
  466.  * weight of @old, map the position of the n-th set bit in @old to
  467.  * the position of the m-th set bit in @new, where m == n % w.
  468.  *
  469.  * If either of the @old and @new bitmaps are empty, or if @src and
  470.  * @dst point to the same location, then this routine copies @src
  471.  * to @dst.
  472.  *
  473.  * The positions of unset bits in @old are mapped to themselves
  474.  * (the identify map).
  475.  *
  476.  * Apply the above specified mapping to @src, placing the result in
  477.  * @dst, clearing any bits previously set in @dst.
  478.  *
  479.  * For example, lets say that @old has bits 4 through 7 set, and
  480.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  481.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  482.  * bit positions unchanged.  So if say @src comes into this routine
  483.  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  484.  * 13 and 15 set.
  485.  */
  486. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  487.                 const unsigned long *old, const unsigned long *new,
  488.                 int bits)
  489. {
  490.         int oldbit, w;
  491.  
  492.         if (dst == src)         /* following doesn't handle inplace remaps */
  493.                 return;
  494.         bitmap_zero(dst, bits);
  495.  
  496.         w = bitmap_weight(new, bits);
  497.         for_each_set_bit(oldbit, src, bits) {
  498.                 int n = bitmap_pos_to_ord(old, oldbit, bits);
  499.  
  500.                 if (n < 0 || w == 0)
  501.                         set_bit(oldbit, dst);   /* identity map */
  502.                 else
  503.                         set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  504.         }
  505. }
  506. EXPORT_SYMBOL(bitmap_remap);
  507.  
  508. /**
  509.  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  510.  *      @oldbit: bit position to be mapped
  511.  *      @old: defines domain of map
  512.  *      @new: defines range of map
  513.  *      @bits: number of bits in each of these bitmaps
  514.  *
  515.  * Let @old and @new define a mapping of bit positions, such that
  516.  * whatever position is held by the n-th set bit in @old is mapped
  517.  * to the n-th set bit in @new.  In the more general case, allowing
  518.  * for the possibility that the weight 'w' of @new is less than the
  519.  * weight of @old, map the position of the n-th set bit in @old to
  520.  * the position of the m-th set bit in @new, where m == n % w.
  521.  *
  522.  * The positions of unset bits in @old are mapped to themselves
  523.  * (the identify map).
  524.  *
  525.  * Apply the above specified mapping to bit position @oldbit, returning
  526.  * the new bit position.
  527.  *
  528.  * For example, lets say that @old has bits 4 through 7 set, and
  529.  * @new has bits 12 through 15 set.  This defines the mapping of bit
  530.  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  531.  * bit positions unchanged.  So if say @oldbit is 5, then this routine
  532.  * returns 13.
  533.  */
  534. int bitmap_bitremap(int oldbit, const unsigned long *old,
  535.                                 const unsigned long *new, int bits)
  536. {
  537.         int w = bitmap_weight(new, bits);
  538.         int n = bitmap_pos_to_ord(old, oldbit, bits);
  539.         if (n < 0 || w == 0)
  540.                 return oldbit;
  541.         else
  542.                 return bitmap_ord_to_pos(new, n % w, bits);
  543. }
  544. EXPORT_SYMBOL(bitmap_bitremap);
  545.  
  546. /**
  547.  * bitmap_onto - translate one bitmap relative to another
  548.  *      @dst: resulting translated bitmap
  549.  *      @orig: original untranslated bitmap
  550.  *      @relmap: bitmap relative to which translated
  551.  *      @bits: number of bits in each of these bitmaps
  552.  *
  553.  * Set the n-th bit of @dst iff there exists some m such that the
  554.  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  555.  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  556.  * (If you understood the previous sentence the first time your
  557.  * read it, you're overqualified for your current job.)
  558.  *
  559.  * In other words, @orig is mapped onto (surjectively) @dst,
  560.  * using the the map { <n, m> | the n-th bit of @relmap is the
  561.  * m-th set bit of @relmap }.
  562.  *
  563.  * Any set bits in @orig above bit number W, where W is the
  564.  * weight of (number of set bits in) @relmap are mapped nowhere.
  565.  * In particular, if for all bits m set in @orig, m >= W, then
  566.  * @dst will end up empty.  In situations where the possibility
  567.  * of such an empty result is not desired, one way to avoid it is
  568.  * to use the bitmap_fold() operator, below, to first fold the
  569.  * @orig bitmap over itself so that all its set bits x are in the
  570.  * range 0 <= x < W.  The bitmap_fold() operator does this by
  571.  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  572.  *
  573.  * Example [1] for bitmap_onto():
  574.  *  Let's say @relmap has bits 30-39 set, and @orig has bits
  575.  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
  576.  *  @dst will have bits 31, 33, 35, 37 and 39 set.
  577.  *
  578.  *  When bit 0 is set in @orig, it means turn on the bit in
  579.  *  @dst corresponding to whatever is the first bit (if any)
  580.  *  that is turned on in @relmap.  Since bit 0 was off in the
  581.  *  above example, we leave off that bit (bit 30) in @dst.
  582.  *
  583.  *  When bit 1 is set in @orig (as in the above example), it
  584.  *  means turn on the bit in @dst corresponding to whatever
  585.  *  is the second bit that is turned on in @relmap.  The second
  586.  *  bit in @relmap that was turned on in the above example was
  587.  *  bit 31, so we turned on bit 31 in @dst.
  588.  *
  589.  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  590.  *  because they were the 4th, 6th, 8th and 10th set bits
  591.  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
  592.  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
  593.  *
  594.  *  When bit 11 is set in @orig, it means turn on the bit in
  595.  *  @dst corresponding to whatever is the twelfth bit that is
  596.  *  turned on in @relmap.  In the above example, there were
  597.  *  only ten bits turned on in @relmap (30..39), so that bit
  598.  *  11 was set in @orig had no affect on @dst.
  599.  *
  600.  * Example [2] for bitmap_fold() + bitmap_onto():
  601.  *  Let's say @relmap has these ten bits set:
  602.  *              40 41 42 43 45 48 53 61 74 95
  603.  *  (for the curious, that's 40 plus the first ten terms of the
  604.  *  Fibonacci sequence.)
  605.  *
  606.  *  Further lets say we use the following code, invoking
  607.  *  bitmap_fold() then bitmap_onto, as suggested above to
  608.  *  avoid the possibility of an empty @dst result:
  609.  *
  610.  *      unsigned long *tmp;     // a temporary bitmap's bits
  611.  *
  612.  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  613.  *      bitmap_onto(dst, tmp, relmap, bits);
  614.  *
  615.  *  Then this table shows what various values of @dst would be, for
  616.  *  various @orig's.  I list the zero-based positions of each set bit.
  617.  *  The tmp column shows the intermediate result, as computed by
  618.  *  using bitmap_fold() to fold the @orig bitmap modulo ten
  619.  *  (the weight of @relmap).
  620.  *
  621.  *      @orig           tmp            @dst
  622.  *      0                0             40
  623.  *      1                1             41
  624.  *      9                9             95
  625.  *      10               0             40 (*)
  626.  *      1 3 5 7          1 3 5 7       41 43 48 61
  627.  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
  628.  *      0 9 18 27        0 9 8 7       40 61 74 95
  629.  *      0 10 20 30       0             40
  630.  *      0 11 22 33       0 1 2 3       40 41 42 43
  631.  *      0 12 24 36       0 2 4 6       40 42 45 53
  632.  *      78 102 211       1 2 8         41 42 74 (*)
  633.  *
  634.  * (*) For these marked lines, if we hadn't first done bitmap_fold()
  635.  *     into tmp, then the @dst result would have been empty.
  636.  *
  637.  * If either of @orig or @relmap is empty (no set bits), then @dst
  638.  * will be returned empty.
  639.  *
  640.  * If (as explained above) the only set bits in @orig are in positions
  641.  * m where m >= W, (where W is the weight of @relmap) then @dst will
  642.  * once again be returned empty.
  643.  *
  644.  * All bits in @dst not set by the above rule are cleared.
  645.  */
  646. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  647.                         const unsigned long *relmap, int bits)
  648. {
  649.         int n, m;               /* same meaning as in above comment */
  650.  
  651.         if (dst == orig)        /* following doesn't handle inplace mappings */
  652.                 return;
  653.         bitmap_zero(dst, bits);
  654.  
  655.         /*
  656.          * The following code is a more efficient, but less
  657.          * obvious, equivalent to the loop:
  658.          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  659.          *              n = bitmap_ord_to_pos(orig, m, bits);
  660.          *              if (test_bit(m, orig))
  661.          *                      set_bit(n, dst);
  662.          *      }
  663.          */
  664.  
  665.         m = 0;
  666.         for_each_set_bit(n, relmap, bits) {
  667.                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
  668.                 if (test_bit(m, orig))
  669.                         set_bit(n, dst);
  670.                 m++;
  671.         }
  672. }
  673. EXPORT_SYMBOL(bitmap_onto);
  674.  
  675. /**
  676.  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  677.  *      @dst: resulting smaller bitmap
  678.  *      @orig: original larger bitmap
  679.  *      @sz: specified size
  680.  *      @bits: number of bits in each of these bitmaps
  681.  *
  682.  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  683.  * Clear all other bits in @dst.  See further the comment and
  684.  * Example [2] for bitmap_onto() for why and how to use this.
  685.  */
  686. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  687.                         int sz, int bits)
  688. {
  689.         int oldbit;
  690.  
  691.         if (dst == orig)        /* following doesn't handle inplace mappings */
  692.                 return;
  693.         bitmap_zero(dst, bits);
  694.  
  695.         for_each_set_bit(oldbit, orig, bits)
  696.                 set_bit(oldbit % sz, dst);
  697. }
  698. EXPORT_SYMBOL(bitmap_fold);
  699.  
  700. /*
  701.  * Common code for bitmap_*_region() routines.
  702.  *      bitmap: array of unsigned longs corresponding to the bitmap
  703.  *      pos: the beginning of the region
  704.  *      order: region size (log base 2 of number of bits)
  705.  *      reg_op: operation(s) to perform on that region of bitmap
  706.  *
  707.  * Can set, verify and/or release a region of bits in a bitmap,
  708.  * depending on which combination of REG_OP_* flag bits is set.
  709.  *
  710.  * A region of a bitmap is a sequence of bits in the bitmap, of
  711.  * some size '1 << order' (a power of two), aligned to that same
  712.  * '1 << order' power of two.
  713.  *
  714.  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  715.  * Returns 0 in all other cases and reg_ops.
  716.  */
  717.  
  718. enum {
  719.         REG_OP_ISFREE,          /* true if region is all zero bits */
  720.         REG_OP_ALLOC,           /* set all bits in region */
  721.         REG_OP_RELEASE,         /* clear all bits in region */
  722. };
  723.  
  724. static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
  725. {
  726.         int nbits_reg;          /* number of bits in region */
  727.         int index;              /* index first long of region in bitmap */
  728.         int offset;             /* bit offset region in bitmap[index] */
  729.         int nlongs_reg;         /* num longs spanned by region in bitmap */
  730.         int nbitsinlong;        /* num bits of region in each spanned long */
  731.         unsigned long mask;     /* bitmask for one long of region */
  732.         int i;                  /* scans bitmap by longs */
  733.         int ret = 0;            /* return value */
  734.  
  735.         /*
  736.          * Either nlongs_reg == 1 (for small orders that fit in one long)
  737.          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  738.          */
  739.         nbits_reg = 1 << order;
  740.         index = pos / BITS_PER_LONG;
  741.         offset = pos - (index * BITS_PER_LONG);
  742.         nlongs_reg = BITS_TO_LONGS(nbits_reg);
  743.         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
  744.  
  745.         /*
  746.          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  747.          * overflows if nbitsinlong == BITS_PER_LONG.
  748.          */
  749.         mask = (1UL << (nbitsinlong - 1));
  750.         mask += mask - 1;
  751.         mask <<= offset;
  752.  
  753.         switch (reg_op) {
  754.         case REG_OP_ISFREE:
  755.                 for (i = 0; i < nlongs_reg; i++) {
  756.                         if (bitmap[index + i] & mask)
  757.                                 goto done;
  758.                 }
  759.                 ret = 1;        /* all bits in region free (zero) */
  760.                 break;
  761.  
  762.         case REG_OP_ALLOC:
  763.                 for (i = 0; i < nlongs_reg; i++)
  764.                         bitmap[index + i] |= mask;
  765.                 break;
  766.  
  767.         case REG_OP_RELEASE:
  768.                 for (i = 0; i < nlongs_reg; i++)
  769.                         bitmap[index + i] &= ~mask;
  770.                 break;
  771.         }
  772. done:
  773.         return ret;
  774. }
  775.  
  776. /**
  777.  * bitmap_find_free_region - find a contiguous aligned mem region
  778.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  779.  *      @bits: number of bits in the bitmap
  780.  *      @order: region size (log base 2 of number of bits) to find
  781.  *
  782.  * Find a region of free (zero) bits in a @bitmap of @bits bits and
  783.  * allocate them (set them to one).  Only consider regions of length
  784.  * a power (@order) of two, aligned to that power of two, which
  785.  * makes the search algorithm much faster.
  786.  *
  787.  * Return the bit offset in bitmap of the allocated region,
  788.  * or -errno on failure.
  789.  */
  790. int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
  791. {
  792.         unsigned int pos, end;          /* scans bitmap by regions of size order */
  793.  
  794.         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
  795.                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  796.                         continue;
  797.                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  798.                 return pos;
  799.         }
  800.         return -ENOMEM;
  801. }
  802. EXPORT_SYMBOL(bitmap_find_free_region);
  803.  
  804. /**
  805.  * bitmap_release_region - release allocated bitmap region
  806.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  807.  *      @pos: beginning of bit region to release
  808.  *      @order: region size (log base 2 of number of bits) to release
  809.  *
  810.  * This is the complement to __bitmap_find_free_region() and releases
  811.  * the found region (by clearing it in the bitmap).
  812.  *
  813.  * No return value.
  814.  */
  815. void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
  816. {
  817.         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  818. }
  819. EXPORT_SYMBOL(bitmap_release_region);
  820.  
  821. /**
  822.  * bitmap_allocate_region - allocate bitmap region
  823.  *      @bitmap: array of unsigned longs corresponding to the bitmap
  824.  *      @pos: beginning of bit region to allocate
  825.  *      @order: region size (log base 2 of number of bits) to allocate
  826.  *
  827.  * Allocate (set bits in) a specified region of a bitmap.
  828.  *
  829.  * Return 0 on success, or %-EBUSY if specified region wasn't
  830.  * free (not all bits were zero).
  831.  */
  832. int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
  833. {
  834.         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  835.                 return -EBUSY;
  836.         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  837. }
  838. EXPORT_SYMBOL(bitmap_allocate_region);
  839.  
  840. /**
  841.  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
  842.  * @dst:   destination buffer
  843.  * @src:   bitmap to copy
  844.  * @nbits: number of bits in the bitmap
  845.  *
  846.  * Require nbits % BITS_PER_LONG == 0.
  847.  */
  848. void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
  849. {
  850.         unsigned long *d = dst;
  851.         int i;
  852.  
  853.         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
  854.                 if (BITS_PER_LONG == 64)
  855.                         d[i] = cpu_to_le64(src[i]);
  856.                 else
  857.                         d[i] = cpu_to_le32(src[i]);
  858.         }
  859. }
  860. EXPORT_SYMBOL(bitmap_copy_le);
  861.