Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /* Copyright (C) 2007-2015 Free Software Foundation, Inc.
  2.  
  3. This file is part of GCC.
  4.  
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9.  
  10. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  11. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13. for more details.
  14.  
  15. Under Section 7 of GPL version 3, you are granted additional
  16. permissions described in the GCC Runtime Library Exception, version
  17. 3.1, as published by the Free Software Foundation.
  18.  
  19. You should have received a copy of the GNU General Public License and
  20. a copy of the GCC Runtime Library Exception along with this program;
  21. see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  22. <http://www.gnu.org/licenses/>.  */
  23.  
  24. #include <ctype.h>
  25. #include "bid_internal.h"
  26. #include "bid128_2_str.h"
  27. #include "bid128_2_str_macros.h"
  28.  
  29. #define MAX_FORMAT_DIGITS     16
  30. #define DECIMAL_EXPONENT_BIAS 398
  31. #define MAX_DECIMAL_EXPONENT  767
  32.  
  33. #if DECIMAL_CALL_BY_REFERENCE
  34.  
  35. void
  36. bid64_to_string (char *ps, UINT64 * px
  37.                  _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  38.   UINT64 x;
  39. #else
  40.  
  41. void
  42. bid64_to_string (char *ps, UINT64 x
  43.                  _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  44. #endif
  45. // the destination string (pointed to by ps) must be pre-allocated
  46.   UINT64 sign_x, coefficient_x, D, ER10;
  47.   int istart, exponent_x, j, digits_x, bin_expon_cx;
  48.   int_float tempx;
  49.   UINT32 MiDi[12], *ptr;
  50.   UINT64 HI_18Dig, LO_18Dig, Tmp;
  51.   char *c_ptr_start, *c_ptr;
  52.   int midi_ind, k_lcv, len;
  53.   unsigned int save_fpsf;
  54.  
  55. #if DECIMAL_CALL_BY_REFERENCE
  56.   x = *px;
  57. #endif
  58.  
  59.   save_fpsf = *pfpsf; // place holder only
  60.   // unpack arguments, check for NaN or Infinity
  61.   if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
  62.     // x is Inf. or NaN or 0
  63.  
  64.     // Inf or NaN?
  65.     if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
  66.       if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
  67.     ps[0] = (sign_x) ? '-' : '+';
  68.     ps[1] = ((x & MASK_SNAN) == MASK_SNAN)? 'S':'Q';
  69.         ps[2] = 'N';
  70.         ps[3] = 'a';
  71.         ps[4] = 'N';
  72.         ps[5] = 0;
  73.         return;
  74.       }
  75.       // x is Inf
  76.       ps[0] = (sign_x) ? '-' : '+';
  77.       ps[1] = 'I';
  78.       ps[2] = 'n';
  79.       ps[3] = 'f';
  80.       ps[4] = 0;
  81.       return;
  82.     }
  83.     // 0
  84.     istart = 0;
  85.     if (sign_x) {
  86.       ps[istart++] = '-';
  87.     }
  88.  
  89.     ps[istart++] = '0';
  90.     ps[istart++] = 'E';
  91.  
  92.     exponent_x -= 398;
  93.     if (exponent_x < 0) {
  94.       ps[istart++] = '-';
  95.       exponent_x = -exponent_x;
  96.     } else
  97.       ps[istart++] = '+';
  98.  
  99.     if (exponent_x) {
  100.       // get decimal digits in coefficient_x
  101.       tempx.d = (float) exponent_x;
  102.       bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  103.       digits_x = estimate_decimal_digits[bin_expon_cx];
  104.       if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
  105.         digits_x++;
  106.  
  107.       j = istart + digits_x - 1;
  108.       istart = j + 1;
  109.  
  110.       // 2^32/10
  111.       ER10 = 0x1999999a;
  112.  
  113.       while (exponent_x > 9) {
  114.         D = (UINT64) exponent_x *ER10;
  115.         D >>= 32;
  116.         exponent_x = exponent_x - (D << 1) - (D << 3);
  117.  
  118.         ps[j--] = '0' + (char) exponent_x;
  119.         exponent_x = D;
  120.       }
  121.       ps[j] = '0' + (char) exponent_x;
  122.     } else {
  123.       ps[istart++] = '0';
  124.     }
  125.  
  126.     ps[istart] = 0;
  127.  
  128.     return;
  129.   }
  130.   // convert expon, coeff to ASCII
  131.   exponent_x -= DECIMAL_EXPONENT_BIAS;
  132.  
  133.   ER10 = 0x1999999a;
  134.  
  135.   istart = 0;
  136.   if (sign_x) {
  137.     ps[0] = '-';
  138.     istart = 1;
  139.   }
  140.   // if zero or non-canonical, set coefficient to '0'
  141.   if ((coefficient_x > 9999999999999999ull) ||  // non-canonical
  142.       ((coefficient_x == 0))    // significand is zero
  143.     ) {
  144.     ps[istart++] = '0';
  145.   } else {
  146.     /* ****************************************************
  147.        This takes a bid coefficient in C1.w[1],C1.w[0]
  148.        and put the converted character sequence at location
  149.        starting at &(str[k]). The function returns the number
  150.        of MiDi returned. Note that the character sequence
  151.        does not have leading zeros EXCEPT when the input is of
  152.        zero value. It will then output 1 character '0'
  153.        The algorithm essentailly tries first to get a sequence of
  154.        Millenial Digits "MiDi" and then uses table lookup to get the
  155.        character strings of these MiDis.
  156.        **************************************************** */
  157.     /* Algorithm first decompose possibly 34 digits in hi and lo
  158.        18 digits. (The high can have at most 16 digits). It then
  159.        uses macro that handle 18 digit portions.
  160.        The first step is to get hi and lo such that
  161.        2^(64) C1.w[1] + C1.w[0] = hi * 10^18  + lo,   0 <= lo < 10^18.
  162.        We use a table lookup method to obtain the hi and lo 18 digits.
  163.        [C1.w[1],C1.w[0]] = c_8 2^(107) + c_7 2^(101) + ... + c_0 2^(59) + d
  164.        where 0 <= d < 2^59 and each c_j has 6 bits. Because d fits in
  165.        18 digits,  we set hi = 0, and lo = d to begin with.
  166.        We then retrieve from a table, for j = 0, 1, ..., 8
  167.        that gives us A and B where c_j 2^(59+6j) = A * 10^18 + B.
  168.        hi += A ; lo += B; After each accumulation into lo, we normalize
  169.        immediately. So at the end, we have the decomposition as we need. */
  170.  
  171.     Tmp = coefficient_x >> 59;
  172.     LO_18Dig = (coefficient_x << 5) >> 5;
  173.     HI_18Dig = 0;
  174.     k_lcv = 0;
  175.  
  176.     while (Tmp) {
  177.       midi_ind = (int) (Tmp & 0x000000000000003FLL);
  178.       midi_ind <<= 1;
  179.       Tmp >>= 6;
  180.       HI_18Dig += mod10_18_tbl[k_lcv][midi_ind++];
  181.       LO_18Dig += mod10_18_tbl[k_lcv++][midi_ind];
  182.       __L0_Normalize_10to18 (HI_18Dig, LO_18Dig);
  183.     }
  184.  
  185.     ptr = MiDi;
  186.     __L1_Split_MiDi_6_Lead (LO_18Dig, ptr);
  187.     len = ptr - MiDi;
  188.     c_ptr_start = &(ps[istart]);
  189.     c_ptr = c_ptr_start;
  190.  
  191.     /* now convert the MiDi into character strings */
  192.     __L0_MiDi2Str_Lead (MiDi[0], c_ptr);
  193.     for (k_lcv = 1; k_lcv < len; k_lcv++) {
  194.       __L0_MiDi2Str (MiDi[k_lcv], c_ptr);
  195.     }
  196.     istart = istart + (c_ptr - c_ptr_start);
  197.   }
  198.  
  199.   ps[istart++] = 'E';
  200.  
  201.   if (exponent_x < 0) {
  202.     ps[istart++] = '-';
  203.     exponent_x = -exponent_x;
  204.   } else
  205.     ps[istart++] = '+';
  206.  
  207.   if (exponent_x) {
  208.     // get decimal digits in coefficient_x
  209.     tempx.d = (float) exponent_x;
  210.     bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  211.     digits_x = estimate_decimal_digits[bin_expon_cx];
  212.     if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
  213.       digits_x++;
  214.  
  215.     j = istart + digits_x - 1;
  216.     istart = j + 1;
  217.  
  218.     // 2^32/10
  219.     ER10 = 0x1999999a;
  220.  
  221.     while (exponent_x > 9) {
  222.       D = (UINT64) exponent_x *ER10;
  223.       D >>= 32;
  224.       exponent_x = exponent_x - (D << 1) - (D << 3);
  225.  
  226.       ps[j--] = '0' + (char) exponent_x;
  227.       exponent_x = D;
  228.     }
  229.     ps[j] = '0' + (char) exponent_x;
  230.   } else {
  231.     ps[istart++] = '0';
  232.   }
  233.  
  234.   ps[istart] = 0;
  235.  
  236.   return;
  237.  
  238. }
  239.  
  240.  
  241. #if DECIMAL_CALL_BY_REFERENCE
  242. void
  243. bid64_from_string (UINT64 * pres, char *ps
  244.                    _RND_MODE_PARAM _EXC_FLAGS_PARAM
  245.                    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  246. #else
  247. UINT64
  248. bid64_from_string (char *ps
  249.                    _RND_MODE_PARAM _EXC_FLAGS_PARAM
  250.                    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  251. #endif
  252.   UINT64 sign_x, coefficient_x = 0, rounded = 0, res;
  253.   int expon_x = 0, sgn_expon, ndigits, add_expon = 0, midpoint =
  254.     0, rounded_up = 0;
  255.   int dec_expon_scale = 0, right_radix_leading_zeros = 0, rdx_pt_enc =
  256.     0;
  257.   unsigned fpsc;
  258.   char c;
  259.   unsigned int save_fpsf;
  260.  
  261. #if DECIMAL_CALL_BY_REFERENCE
  262. #if !DECIMAL_GLOBAL_ROUNDING
  263.   _IDEC_round rnd_mode = *prnd_mode;
  264. #endif
  265. #endif
  266.  
  267.   save_fpsf = *pfpsf; // place holder only
  268.   // eliminate leading whitespace
  269.   while (((*ps == ' ') || (*ps == '\t')) && (*ps))
  270.     ps++;
  271.  
  272.   // get first non-whitespace character
  273.   c = *ps;
  274.  
  275.   // detect special cases (INF or NaN)
  276.   if (!c || (c != '.' && c != '-' && c != '+' && (c < '0' || c > '9'))) {
  277.     // Infinity?
  278.     if ((tolower_macro (ps[0]) == 'i' && tolower_macro (ps[1]) == 'n' &&
  279.         tolower_macro (ps[2]) == 'f') && (!ps[3] ||
  280.         (tolower_macro (ps[3]) == 'i' &&
  281.         tolower_macro (ps[4]) == 'n' && tolower_macro (ps[5]) == 'i' &&
  282.         tolower_macro (ps[6]) == 't' && tolower_macro (ps[7]) == 'y' &&
  283.         !ps[8]))) {
  284.       res = 0x7800000000000000ull;
  285.       BID_RETURN (res);
  286.     }
  287.     // return sNaN
  288.     if (tolower_macro (ps[0]) == 's' && tolower_macro (ps[1]) == 'n' &&
  289.         tolower_macro (ps[2]) == 'a' && tolower_macro (ps[3]) == 'n') {
  290.         // case insensitive check for snan
  291.       res = 0x7e00000000000000ull;
  292.       BID_RETURN (res);
  293.     } else {
  294.       // return qNaN
  295.       res = 0x7c00000000000000ull;
  296.       BID_RETURN (res);
  297.     }
  298.   }
  299.   // detect +INF or -INF
  300.   if ((tolower_macro (ps[1]) == 'i' && tolower_macro (ps[2]) == 'n' &&
  301.       tolower_macro (ps[3]) == 'f') && (!ps[4] ||
  302.       (tolower_macro (ps[4]) == 'i' && tolower_macro (ps[5]) == 'n' &&
  303.       tolower_macro (ps[6]) == 'i' && tolower_macro (ps[7]) == 't' &&
  304.       tolower_macro (ps[8]) == 'y' && !ps[9]))) {
  305.     if (c == '+')
  306.       res = 0x7800000000000000ull;
  307.     else if (c == '-')
  308.       res = 0xf800000000000000ull;
  309.     else
  310.       res = 0x7c00000000000000ull;
  311.     BID_RETURN (res);
  312.   }
  313.   // if +sNaN, +SNaN, -sNaN, or -SNaN
  314.   if (tolower_macro (ps[1]) == 's' && tolower_macro (ps[2]) == 'n'
  315.       && tolower_macro (ps[3]) == 'a' && tolower_macro (ps[4]) == 'n') {
  316.     if (c == '-')
  317.       res = 0xfe00000000000000ull;
  318.     else
  319.       res = 0x7e00000000000000ull;
  320.     BID_RETURN (res);
  321.   }
  322.   // determine sign
  323.   if (c == '-')
  324.     sign_x = 0x8000000000000000ull;
  325.   else
  326.     sign_x = 0;
  327.  
  328.   // get next character if leading +/- sign
  329.   if (c == '-' || c == '+') {
  330.     ps++;
  331.     c = *ps;
  332.   }
  333.   // if c isn't a decimal point or a decimal digit, return NaN
  334.   if (c != '.' && (c < '0' || c > '9')) {
  335.     // return NaN
  336.     res = 0x7c00000000000000ull | sign_x;
  337.     BID_RETURN (res);
  338.   }
  339.  
  340.   rdx_pt_enc = 0;
  341.  
  342.   // detect zero (and eliminate/ignore leading zeros)
  343.   if (*(ps) == '0' || *(ps) == '.') {
  344.  
  345.     if (*(ps) == '.') {
  346.       rdx_pt_enc = 1;
  347.       ps++;
  348.     }
  349.     // if all numbers are zeros (with possibly 1 radix point, the number is zero
  350.     // should catch cases such as: 000.0
  351.     while (*ps == '0') {
  352.       ps++;
  353.       // for numbers such as 0.0000000000000000000000000000000000001001,
  354.       // we want to count the leading zeros
  355.       if (rdx_pt_enc) {
  356.         right_radix_leading_zeros++;
  357.       }
  358.       // if this character is a radix point, make sure we haven't already
  359.       // encountered one
  360.       if (*(ps) == '.') {
  361.         if (rdx_pt_enc == 0) {
  362.           rdx_pt_enc = 1;
  363.           // if this is the first radix point, and the next character is NULL,
  364.           // we have a zero
  365.           if (!*(ps + 1)) {
  366.             res =
  367.               ((UINT64) (398 - right_radix_leading_zeros) << 53) |
  368.               sign_x;
  369.             BID_RETURN (res);
  370.           }
  371.           ps = ps + 1;
  372.         } else {
  373.           // if 2 radix points, return NaN
  374.           res = 0x7c00000000000000ull | sign_x;
  375.           BID_RETURN (res);
  376.         }
  377.       } else if (!*(ps)) {
  378.         //pres->w[1] = 0x3040000000000000ull | sign_x;
  379.         res =
  380.           ((UINT64) (398 - right_radix_leading_zeros) << 53) | sign_x;
  381.         BID_RETURN (res);
  382.       }
  383.     }
  384.   }
  385.  
  386.   c = *ps;
  387.  
  388.   ndigits = 0;
  389.   while ((c >= '0' && c <= '9') || c == '.') {
  390.     if (c == '.') {
  391.       if (rdx_pt_enc) {
  392.         // return NaN
  393.         res = 0x7c00000000000000ull | sign_x;
  394.         BID_RETURN (res);
  395.       }
  396.       rdx_pt_enc = 1;
  397.       ps++;
  398.       c = *ps;
  399.       continue;
  400.     }
  401.     dec_expon_scale += rdx_pt_enc;
  402.  
  403.     ndigits++;
  404.     if (ndigits <= 16) {
  405.       coefficient_x = (coefficient_x << 1) + (coefficient_x << 3);
  406.       coefficient_x += (UINT64) (c - '0');
  407.     } else if (ndigits == 17) {
  408.       // coefficient rounding
  409.                 switch(rnd_mode){
  410.         case ROUNDING_TO_NEAREST:
  411.       midpoint = (c == '5' && !(coefficient_x & 1)) ? 1 : 0;
  412.           // if coefficient is even and c is 5, prepare to round up if
  413.           // subsequent digit is nonzero
  414.       // if str[MAXDIG+1] > 5, we MUST round up
  415.       // if str[MAXDIG+1] == 5 and coefficient is ODD, ROUND UP!
  416.       if (c > '5' || (c == '5' && (coefficient_x & 1))) {
  417.         coefficient_x++;
  418.         rounded_up = 1;
  419.         break;
  420.  
  421.         case ROUNDING_DOWN:
  422.                 if(sign_x) { coefficient_x++; rounded_up=1; }
  423.                 break;
  424.         case ROUNDING_UP:
  425.                 if(!sign_x) { coefficient_x++; rounded_up=1; }
  426.                 break;
  427.         case ROUNDING_TIES_AWAY:
  428.                 if(c>='5') { coefficient_x++; rounded_up=1; }
  429.                 break;
  430.           }
  431.         if (coefficient_x == 10000000000000000ull) {
  432.           coefficient_x = 1000000000000000ull;
  433.           add_expon = 1;
  434.         }
  435.       }
  436.       if (c > '0')
  437.         rounded = 1;
  438.       add_expon += 1;
  439.     } else { // ndigits > 17
  440.       add_expon++;
  441.       if (midpoint && c > '0') {
  442.         coefficient_x++;
  443.         midpoint = 0;
  444.         rounded_up = 1;
  445.       }
  446.       if (c > '0')
  447.         rounded = 1;
  448.     }
  449.     ps++;
  450.     c = *ps;
  451.   }
  452.  
  453.   add_expon -= (dec_expon_scale + right_radix_leading_zeros);
  454.  
  455.   if (!c) {
  456.     res =
  457.       fast_get_BID64_check_OF (sign_x,
  458.                                add_expon + DECIMAL_EXPONENT_BIAS,
  459.                                coefficient_x, 0, &fpsc);
  460.     BID_RETURN (res);
  461.   }
  462.  
  463.   if (c != 'E' && c != 'e') {
  464.     // return NaN
  465.     res = 0x7c00000000000000ull | sign_x;
  466.     BID_RETURN (res);
  467.   }
  468.   ps++;
  469.   c = *ps;
  470.   sgn_expon = (c == '-') ? 1 : 0;
  471.   if (c == '-' || c == '+') {
  472.     ps++;
  473.     c = *ps;
  474.   }
  475.   if (!c || c < '0' || c > '9') {
  476.     // return NaN
  477.     res = 0x7c00000000000000ull | sign_x;
  478.     BID_RETURN (res);
  479.   }
  480.  
  481.   while (c >= '0' && c <= '9') {
  482.     expon_x = (expon_x << 1) + (expon_x << 3);
  483.     expon_x += (int) (c - '0');
  484.  
  485.     ps++;
  486.     c = *ps;
  487.   }
  488.  
  489.   if (c) {
  490.     // return NaN
  491.     res = 0x7c00000000000000ull | sign_x;
  492.     BID_RETURN (res);
  493.   }
  494.  
  495.   if (sgn_expon)
  496.     expon_x = -expon_x;
  497.  
  498.   expon_x += add_expon + DECIMAL_EXPONENT_BIAS;
  499.  
  500.   if (expon_x < 0) {
  501.     if (rounded_up)
  502.       coefficient_x--;
  503.     rnd_mode = 0;
  504.     res =
  505.       get_BID64_UF (sign_x, expon_x, coefficient_x, rounded, rnd_mode,
  506.                     &fpsc);
  507.     BID_RETURN (res);
  508.   }
  509.   res = get_BID64 (sign_x, expon_x, coefficient_x, rnd_mode, &fpsc);
  510.   BID_RETURN (res);
  511. }
  512.