Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /* Copyright (C) 2007-2015 Free Software Foundation, Inc.
  2.  
  3. This file is part of GCC.
  4.  
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9.  
  10. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  11. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13. for more details.
  14.  
  15. Under Section 7 of GPL version 3, you are granted additional
  16. permissions described in the GCC Runtime Library Exception, version
  17. 3.1, as published by the Free Software Foundation.
  18.  
  19. You should have received a copy of the GNU General Public License and
  20. a copy of the GCC Runtime Library Exception along with this program;
  21. see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  22. <http://www.gnu.org/licenses/>.  */
  23.  
  24. /*****************************************************************************
  25.  *    BID64 square root
  26.  *****************************************************************************
  27.  *
  28.  *  Algorithm description:
  29.  *
  30.  *  if(exponent_x is odd)
  31.  *     scale coefficient_x by 10, adjust exponent
  32.  *  - get lower estimate for number of digits in coefficient_x
  33.  *  - scale coefficient x to between 31 and 33 decimal digits
  34.  *  - in parallel, check for exact case and return if true
  35.  *  - get high part of result coefficient using double precision sqrt
  36.  *  - compute remainder and refine coefficient in one iteration (which
  37.  *                                 modifies it by at most 1)
  38.  *  - result exponent is easy to compute from the adjusted arg. exponent
  39.  *
  40.  ****************************************************************************/
  41.  
  42. #include "bid_internal.h"
  43. #include "bid_sqrt_macros.h"
  44. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  45. #include <fenv.h>
  46.  
  47. #define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
  48. #endif
  49.  
  50. extern double sqrt (double);
  51.  
  52. #if DECIMAL_CALL_BY_REFERENCE
  53.  
  54. void
  55. bid64_sqrt (UINT64 * pres,
  56.             UINT64 *
  57.             px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
  58.             _EXC_INFO_PARAM) {
  59.   UINT64 x;
  60. #else
  61.  
  62. UINT64
  63. bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
  64.             _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  65. #endif
  66.   UINT128 CA, CT;
  67.   UINT64 sign_x, coefficient_x;
  68.   UINT64 Q, Q2, A10, C4, R, R2, QE, res;
  69.   SINT64 D;
  70.   int_double t_scale;
  71.   int_float tempx;
  72.   double da, dq, da_h, da_l, dqe;
  73.   int exponent_x, exponent_q, bin_expon_cx;
  74.   int digits_x;
  75.   int scale;
  76. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  77.   fexcept_t binaryflags = 0;
  78. #endif
  79.  
  80. #if DECIMAL_CALL_BY_REFERENCE
  81. #if !DECIMAL_GLOBAL_ROUNDING
  82.   _IDEC_round rnd_mode = *prnd_mode;
  83. #endif
  84.   x = *px;
  85. #endif
  86.  
  87.   // unpack arguments, check for NaN or Infinity
  88.   if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
  89.     // x is Inf. or NaN or 0
  90.     if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
  91.       res = coefficient_x;
  92.       if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64)   // -Infinity
  93.       {
  94.         res = NAN_MASK64;
  95. #ifdef SET_STATUS_FLAGS
  96.         __set_status_flags (pfpsf, INVALID_EXCEPTION);
  97. #endif
  98.       }
  99. #ifdef SET_STATUS_FLAGS
  100.       if ((x & SNAN_MASK64) == SNAN_MASK64)     // sNaN
  101.         __set_status_flags (pfpsf, INVALID_EXCEPTION);
  102. #endif
  103.       BID_RETURN (res & QUIET_MASK64);
  104.     }
  105.     // x is 0
  106.     exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
  107.     res = sign_x | (((UINT64) exponent_x) << 53);
  108.     BID_RETURN (res);
  109.   }
  110.   // x<0?
  111.   if (sign_x && coefficient_x) {
  112.     res = NAN_MASK64;
  113. #ifdef SET_STATUS_FLAGS
  114.     __set_status_flags (pfpsf, INVALID_EXCEPTION);
  115. #endif
  116.     BID_RETURN (res);
  117.   }
  118. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  119.   (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
  120. #endif
  121.   //--- get number of bits in the coefficient of x ---
  122.   tempx.d = (float) coefficient_x;
  123.   bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  124.   digits_x = estimate_decimal_digits[bin_expon_cx];
  125.   // add test for range
  126.   if (coefficient_x >= power10_index_binexp[bin_expon_cx])
  127.     digits_x++;
  128.  
  129.   A10 = coefficient_x;
  130.   if (exponent_x & 1) {
  131.     A10 = (A10 << 2) + A10;
  132.     A10 += A10;
  133.   }
  134.  
  135.   dqe = sqrt ((double) A10);
  136.   QE = (UINT32) dqe;
  137.   if (QE * QE == A10) {
  138.     res =
  139.       very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
  140.                            QE);
  141. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  142.     (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
  143. #endif
  144.     BID_RETURN (res);
  145.   }
  146.   // if exponent is odd, scale coefficient by 10
  147.   scale = 31 - digits_x;
  148.   exponent_q = exponent_x - scale;
  149.   scale += (exponent_q & 1);    // exp. bias is even
  150.  
  151.   CT = power10_table_128[scale];
  152.   __mul_64x128_short (CA, coefficient_x, CT);
  153.  
  154.   // 2^64
  155.   t_scale.i = 0x43f0000000000000ull;
  156.   // convert CA to DP
  157.   da_h = CA.w[1];
  158.   da_l = CA.w[0];
  159.   da = da_h * t_scale.d + da_l;
  160.  
  161.   dq = sqrt (da);
  162.  
  163.   Q = (UINT64) dq;
  164.  
  165.   // get sign(sqrt(CA)-Q)
  166.   R = CA.w[0] - Q * Q;
  167.   R = ((SINT64) R) >> 63;
  168.   D = R + R + 1;
  169.  
  170.   exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
  171.  
  172. #ifdef SET_STATUS_FLAGS
  173.   __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  174. #endif
  175.  
  176. #ifndef IEEE_ROUND_NEAREST
  177. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  178.   if (!((rnd_mode) & 3)) {
  179. #endif
  180. #endif
  181.  
  182.     // midpoint to check
  183.     Q2 = Q + Q + D;
  184.     C4 = CA.w[0] << 2;
  185.  
  186.     // get sign(-sqrt(CA)+Midpoint)
  187.     R2 = Q2 * Q2 - C4;
  188.     R2 = ((SINT64) R2) >> 63;
  189.  
  190.     // adjust Q if R!=R2
  191.     Q += (D & (R ^ R2));
  192. #ifndef IEEE_ROUND_NEAREST
  193. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  194.   } else {
  195.     C4 = CA.w[0];
  196.     Q += D;
  197.     if ((SINT64) (Q * Q - C4) > 0)
  198.       Q--;
  199.     if (rnd_mode == ROUNDING_UP)
  200.       Q++;
  201.   }
  202. #endif
  203. #endif
  204.  
  205.   res = fast_get_BID64 (0, exponent_q, Q);
  206. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  207.   (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
  208. #endif
  209.   BID_RETURN (res);
  210. }
  211.  
  212.  
  213. TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
  214.  
  215.      UINT256 M256, C4, C8;
  216.      UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
  217.        mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
  218. UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
  219. SINT64 D;
  220. int_float fx, f64;
  221. int exponent_x, bin_expon_cx, done = 0;
  222. int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
  223. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  224. fexcept_t binaryflags = 0;
  225. #endif
  226.  
  227.         // unpack arguments, check for NaN or Infinity
  228. if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
  229.   res = CX.w[1];
  230.   // NaN ?
  231.   if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
  232. #ifdef SET_STATUS_FLAGS
  233.     if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull)      // sNaN
  234.       __set_status_flags (pfpsf, INVALID_EXCEPTION);
  235. #endif
  236.     Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
  237.     Tmp.w[0] = CX.w[0];
  238.     TP128 = reciprocals10_128[18];
  239.     __mul_128x128_full (Qh, Ql, Tmp, TP128);
  240.     amount = recip_scale[18];
  241.     __shr_128 (Tmp, Qh, amount);
  242.     res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
  243.     BID_RETURN (res);
  244.   }
  245.   // x is Infinity?
  246.   if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
  247.     if (sign_x) {
  248.       // -Inf, return NaN
  249.       res = 0x7c00000000000000ull;
  250. #ifdef SET_STATUS_FLAGS
  251.       __set_status_flags (pfpsf, INVALID_EXCEPTION);
  252. #endif
  253.     }
  254.     BID_RETURN (res);
  255.   }
  256.   // x is 0 otherwise
  257.  
  258.   exponent_x =
  259.     ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
  260.     DECIMAL_EXPONENT_BIAS;
  261.   if (exponent_x < 0)
  262.     exponent_x = 0;
  263.   if (exponent_x > DECIMAL_MAX_EXPON_64)
  264.     exponent_x = DECIMAL_MAX_EXPON_64;
  265.   //res= sign_x | (((UINT64)exponent_x)<<53);
  266.   res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
  267.   BID_RETURN (res);
  268. }
  269. if (sign_x) {
  270.   res = 0x7c00000000000000ull;
  271. #ifdef SET_STATUS_FLAGS
  272.   __set_status_flags (pfpsf, INVALID_EXCEPTION);
  273. #endif
  274.   BID_RETURN (res);
  275. }
  276. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  277. (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
  278. #endif
  279.  
  280.            // 2^64
  281. f64.i = 0x5f800000;
  282.  
  283.            // fx ~ CX
  284. fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
  285. bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
  286. digits = estimate_decimal_digits[bin_expon_cx];
  287.  
  288. A10 = CX;
  289. if (exponent_x & 1) {
  290.   A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
  291.   A10.w[0] = CX.w[0] << 3;
  292.   CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
  293.   CX2.w[0] = CX.w[0] << 1;
  294.   __add_128_128 (A10, A10, CX2);
  295. }
  296.  
  297. C256.w[1] = A10.w[1];
  298. C256.w[0] = A10.w[0];
  299. CS.w[0] = short_sqrt128 (A10);
  300. CS.w[1] = 0;
  301. mul_factor = 0;
  302.            // check for exact result  
  303. if (CS.w[0] < 10000000000000000ull) {
  304.   if (CS.w[0] * CS.w[0] == A10.w[0]) {
  305.     __sqr64_fast (S2, CS.w[0]);
  306.     if (S2.w[1] == A10.w[1])    // && S2.w[0]==A10.w[0])
  307.     {
  308.       res =
  309.         get_BID64 (0,
  310.                    ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
  311.                    DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
  312. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  313.       (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
  314. #endif
  315.       BID_RETURN (res);
  316.     }
  317.   }
  318.   if (CS.w[0] >= 1000000000000000ull) {
  319.     done = 1;
  320.     exponent_q = exponent_x;
  321.     C256.w[1] = A10.w[1];
  322.     C256.w[0] = A10.w[0];
  323.   }
  324. #ifdef SET_STATUS_FLAGS
  325.   __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  326. #endif
  327.   exact = 0;
  328. } else {
  329.   B10 = 0x3333333333333334ull;
  330.   __mul_64x64_to_128_full (CS2, CS.w[0], B10);
  331.   CS0 = CS2.w[1] >> 1;
  332.   if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
  333. #ifdef SET_STATUS_FLAGS
  334.     __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  335. #endif
  336.     exact = 0;
  337.   }
  338.   done = 1;
  339.   CS.w[0] = CS0;
  340.   exponent_q = exponent_x + 2;
  341.   mul_factor = 10;
  342.   mul_factor2 = 100;
  343.   if (CS.w[0] >= 10000000000000000ull) {
  344.     __mul_64x64_to_128_full (CS2, CS.w[0], B10);
  345.     CS0 = CS2.w[1] >> 1;
  346.     if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
  347. #ifdef SET_STATUS_FLAGS
  348.       __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  349. #endif
  350.       exact = 0;
  351.     }
  352.     exponent_q += 2;
  353.     CS.w[0] = CS0;
  354.     mul_factor = 100;
  355.     mul_factor2 = 10000;
  356.   }
  357.   if (exact) {
  358.     CS0 = CS.w[0] * mul_factor;
  359.     __sqr64_fast (CS1, CS0)
  360.       if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
  361. #ifdef SET_STATUS_FLAGS
  362.       __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  363. #endif
  364.       exact = 0;
  365.     }
  366.   }
  367. }
  368.  
  369. if (!done) {
  370.   // get number of digits in CX
  371.   D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
  372.   if (D > 0
  373.       || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
  374.     digits++;
  375.  
  376.   // if exponent is odd, scale coefficient by 10
  377.   scale = 31 - digits;
  378.   exponent_q = exponent_x - scale;
  379.   scale += (exponent_q & 1);    // exp. bias is even
  380.  
  381.   T128 = power10_table_128[scale];
  382.   __mul_128x128_low (C256, CX, T128);
  383.  
  384.  
  385.   CS.w[0] = short_sqrt128 (C256);
  386. }
  387.    //printf("CS=%016I64x\n",CS.w[0]);
  388.  
  389. exponent_q =
  390.   ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
  391.   DECIMAL_EXPONENT_BIAS;
  392. if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
  393.   extra_digits = -exponent_q;
  394.   exponent_q = 0;
  395.  
  396.   // get coeff*(2^M[extra_digits])/10^extra_digits
  397.   __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
  398.  
  399.   // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
  400.   amount = short_recip_scale[extra_digits];
  401.  
  402.   CS0 = QH.w[1] >> amount;
  403.  
  404. #ifdef SET_STATUS_FLAGS
  405.   if (exact) {
  406.     if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
  407.       exact = 0;
  408.   }
  409.   if (!exact)
  410.     __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
  411. #endif
  412.  
  413.   CS.w[0] = CS0;
  414.   if (!mul_factor)
  415.     mul_factor = 1;
  416.   mul_factor *= power10_table_128[extra_digits].w[0];
  417.   __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
  418.   if (mul_factor2_long.w[1])
  419.     mul_factor2 = 0;
  420.   else
  421.     mul_factor2 = mul_factor2_long.w[1];
  422. }
  423.            // 4*C256
  424. C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
  425. C4.w[0] = C256.w[0] << 2;
  426.  
  427. #ifndef IEEE_ROUND_NEAREST
  428. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  429. if (!((rnd_mode) & 3)) {
  430. #endif
  431. #endif
  432.   // compare to midpoints
  433.   CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
  434.   //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
  435.   if (mul_factor)
  436.     CSM.w[0] *= mul_factor;
  437.   // CSM^2
  438.   __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  439.   //__mul_128x128_to_256(M256, CSM, CSM);
  440.  
  441.   if (C4.w[1] > M256.w[1] ||
  442.       (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
  443.     // round up
  444.     CS.w[0]++;
  445.   } else {
  446.     C8.w[0] = CS.w[0] << 3;
  447.     C8.w[1] = 0;
  448.     if (mul_factor) {
  449.       if (mul_factor2) {
  450.         __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
  451.       } else {
  452.         __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
  453.       }
  454.     }
  455.     // M256 - 8*CSM
  456.     __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
  457.     M256.w[1] = M256.w[1] - C8.w[1] - Carry;
  458.  
  459.     // if CSM' > C256, round up
  460.     if (M256.w[1] > C4.w[1] ||
  461.         (M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
  462.       // round down
  463.       if (CS.w[0])
  464.         CS.w[0]--;
  465.     }
  466.   }
  467. #ifndef IEEE_ROUND_NEAREST
  468. #ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  469. } else {
  470.   CS.w[0]++;
  471.   CSM.w[0] = CS.w[0];
  472.   C8.w[0] = CSM.w[0] << 1;
  473.   if (mul_factor)
  474.     CSM.w[0] *= mul_factor;
  475.   __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  476.   C8.w[1] = 0;
  477.   if (mul_factor) {
  478.     if (mul_factor2) {
  479.       __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
  480.     } else {
  481.       __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
  482.     }
  483.   }
  484.   //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
  485.  
  486.   if (M256.w[1] > C256.w[1] ||
  487.       (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
  488.     __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
  489.     M256.w[1] = M256.w[1] - Carry - C8.w[1];
  490.     M256.w[0]++;
  491.     if (!M256.w[0]) {
  492.       M256.w[1]++;
  493.  
  494.     }
  495.  
  496.     if ((M256.w[1] > C256.w[1] ||
  497.          (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
  498.         && (CS.w[0] > 1)) {
  499.  
  500.       CS.w[0]--;
  501.  
  502.       if (CS.w[0] > 1) {
  503.         __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
  504.         M256.w[1] = M256.w[1] - Carry - C8.w[1];
  505.         M256.w[0]++;
  506.         if (!M256.w[0]) {
  507.           M256.w[1]++;
  508.         }
  509.  
  510.         if (M256.w[1] > C256.w[1] ||
  511.             (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
  512.           CS.w[0]--;
  513.       }
  514.     }
  515.   }
  516.  
  517.   else {
  518.                                 /*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
  519.                                 M256.w[1] = M256.w[1] + Carry + C8.w[1];
  520.                                 M256.w[0]++;
  521.                                 if(!M256.w[0])
  522.                                 {
  523.                                         M256.w[1]++;
  524.                                 }
  525.                                 CS.w[0]++;
  526.                         if(M256.w[1]<C256.w[1] ||
  527.                                 (M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
  528.                         {
  529.                                 CS.w[0]++;
  530.                         }*/
  531.     CS.w[0]++;
  532.   }
  533.   //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
  534.   // RU?
  535.   if (((rnd_mode) != ROUNDING_UP) || exact) {
  536.     if (CS.w[0])
  537.       CS.w[0]--;
  538.   }
  539.  
  540. }
  541. #endif
  542. #endif
  543.  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
  544.  
  545. res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
  546. #ifdef UNCHANGED_BINARY_STATUS_FLAGS
  547. (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
  548. #endif
  549. BID_RETURN (res);
  550.  
  551.  
  552. }
  553.