Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /* Definitions of target machine for GCC for IA-32.
  2.    Copyright (C) 1988-2015 Free Software Foundation, Inc.
  3.  
  4. This file is part of GCC.
  5.  
  6. GCC is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 3, or (at your option)
  9. any later version.
  10.  
  11. GCC is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14. GNU General Public License for more details.
  15.  
  16. Under Section 7 of GPL version 3, you are granted additional
  17. permissions described in the GCC Runtime Library Exception, version
  18. 3.1, as published by the Free Software Foundation.
  19.  
  20. You should have received a copy of the GNU General Public License and
  21. a copy of the GCC Runtime Library Exception along with this program;
  22. see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  23. <http://www.gnu.org/licenses/>.  */
  24.  
  25. /* The purpose of this file is to define the characteristics of the i386,
  26.    independent of assembler syntax or operating system.
  27.  
  28.    Three other files build on this one to describe a specific assembler syntax:
  29.    bsd386.h, att386.h, and sun386.h.
  30.  
  31.    The actual tm.h file for a particular system should include
  32.    this file, and then the file for the appropriate assembler syntax.
  33.  
  34.    Many macros that specify assembler syntax are omitted entirely from
  35.    this file because they really belong in the files for particular
  36.    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
  37.    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
  38.    that start with ASM_ or end in ASM_OP.  */
  39.  
  40. /* Redefines for option macros.  */
  41.  
  42. #define TARGET_64BIT    TARGET_ISA_64BIT
  43. #define TARGET_64BIT_P(x)       TARGET_ISA_64BIT_P(x)
  44. #define TARGET_MMX      TARGET_ISA_MMX
  45. #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
  46. #define TARGET_3DNOW    TARGET_ISA_3DNOW
  47. #define TARGET_3DNOW_P(x)       TARGET_ISA_3DNOW_P(x)
  48. #define TARGET_3DNOW_A  TARGET_ISA_3DNOW_A
  49. #define TARGET_3DNOW_A_P(x)     TARGET_ISA_3DNOW_A_P(x)
  50. #define TARGET_SSE      TARGET_ISA_SSE
  51. #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
  52. #define TARGET_SSE2     TARGET_ISA_SSE2
  53. #define TARGET_SSE2_P(x)        TARGET_ISA_SSE2_P(x)
  54. #define TARGET_SSE3     TARGET_ISA_SSE3
  55. #define TARGET_SSE3_P(x)        TARGET_ISA_SSE3_P(x)
  56. #define TARGET_SSSE3    TARGET_ISA_SSSE3
  57. #define TARGET_SSSE3_P(x)       TARGET_ISA_SSSE3_P(x)
  58. #define TARGET_SSE4_1   TARGET_ISA_SSE4_1
  59. #define TARGET_SSE4_1_P(x)      TARGET_ISA_SSE4_1_P(x)
  60. #define TARGET_SSE4_2   TARGET_ISA_SSE4_2
  61. #define TARGET_SSE4_2_P(x)      TARGET_ISA_SSE4_2_P(x)
  62. #define TARGET_AVX      TARGET_ISA_AVX
  63. #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
  64. #define TARGET_AVX2     TARGET_ISA_AVX2
  65. #define TARGET_AVX2_P(x)        TARGET_ISA_AVX2_P(x)
  66. #define TARGET_AVX512F  TARGET_ISA_AVX512F
  67. #define TARGET_AVX512F_P(x)     TARGET_ISA_AVX512F_P(x)
  68. #define TARGET_AVX512PF TARGET_ISA_AVX512PF
  69. #define TARGET_AVX512PF_P(x)    TARGET_ISA_AVX512PF_P(x)
  70. #define TARGET_AVX512ER TARGET_ISA_AVX512ER
  71. #define TARGET_AVX512ER_P(x)    TARGET_ISA_AVX512ER_P(x)
  72. #define TARGET_AVX512CD TARGET_ISA_AVX512CD
  73. #define TARGET_AVX512CD_P(x)    TARGET_ISA_AVX512CD_P(x)
  74. #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
  75. #define TARGET_AVX512DQ_P(x)    TARGET_ISA_AVX512DQ_P(x)
  76. #define TARGET_AVX512BW TARGET_ISA_AVX512BW
  77. #define TARGET_AVX512BW_P(x)    TARGET_ISA_AVX512BW_P(x)
  78. #define TARGET_AVX512VL TARGET_ISA_AVX512VL
  79. #define TARGET_AVX512VL_P(x)    TARGET_ISA_AVX512VL_P(x)
  80. #define TARGET_AVX512VBMI       TARGET_ISA_AVX512VBMI
  81. #define TARGET_AVX512VBMI_P(x)  TARGET_ISA_AVX512VBMI_P(x)
  82. #define TARGET_AVX512IFMA       TARGET_ISA_AVX512IFMA
  83. #define TARGET_AVX512IFMA_P(x)  TARGET_ISA_AVX512IFMA_P(x)
  84. #define TARGET_FMA      TARGET_ISA_FMA
  85. #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
  86. #define TARGET_SSE4A    TARGET_ISA_SSE4A
  87. #define TARGET_SSE4A_P(x)       TARGET_ISA_SSE4A_P(x)
  88. #define TARGET_FMA4     TARGET_ISA_FMA4
  89. #define TARGET_FMA4_P(x)        TARGET_ISA_FMA4_P(x)
  90. #define TARGET_XOP      TARGET_ISA_XOP
  91. #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
  92. #define TARGET_LWP      TARGET_ISA_LWP
  93. #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
  94. #define TARGET_ROUND    TARGET_ISA_ROUND
  95. #define TARGET_ABM      TARGET_ISA_ABM
  96. #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
  97. #define TARGET_BMI      TARGET_ISA_BMI
  98. #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
  99. #define TARGET_BMI2     TARGET_ISA_BMI2
  100. #define TARGET_BMI2_P(x)        TARGET_ISA_BMI2_P(x)
  101. #define TARGET_LZCNT    TARGET_ISA_LZCNT
  102. #define TARGET_LZCNT_P(x)       TARGET_ISA_LZCNT_P(x)
  103. #define TARGET_TBM      TARGET_ISA_TBM
  104. #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
  105. #define TARGET_POPCNT   TARGET_ISA_POPCNT
  106. #define TARGET_POPCNT_P(x)      TARGET_ISA_POPCNT_P(x)
  107. #define TARGET_SAHF     TARGET_ISA_SAHF
  108. #define TARGET_SAHF_P(x)        TARGET_ISA_SAHF_P(x)
  109. #define TARGET_MOVBE    TARGET_ISA_MOVBE
  110. #define TARGET_MOVBE_P(x)       TARGET_ISA_MOVBE_P(x)
  111. #define TARGET_CRC32    TARGET_ISA_CRC32
  112. #define TARGET_CRC32_P(x)       TARGET_ISA_CRC32_P(x)
  113. #define TARGET_AES      TARGET_ISA_AES
  114. #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
  115. #define TARGET_SHA      TARGET_ISA_SHA
  116. #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
  117. #define TARGET_CLFLUSHOPT       TARGET_ISA_CLFLUSHOPT
  118. #define TARGET_CLFLUSHOPT_P(x)  TARGET_ISA_CLFLUSHOPT_P(x)
  119. #define TARGET_XSAVEC   TARGET_ISA_XSAVEC
  120. #define TARGET_XSAVEC_P(x)      TARGET_ISA_XSAVEC_P(x)
  121. #define TARGET_XSAVES   TARGET_ISA_XSAVES
  122. #define TARGET_XSAVES_P(x)      TARGET_ISA_XSAVES_P(x)
  123. #define TARGET_PCLMUL   TARGET_ISA_PCLMUL
  124. #define TARGET_PCLMUL_P(x)      TARGET_ISA_PCLMUL_P(x)
  125. #define TARGET_CMPXCHG16B       TARGET_ISA_CX16
  126. #define TARGET_CMPXCHG16B_P(x)  TARGET_ISA_CX16_P(x)
  127. #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
  128. #define TARGET_FSGSBASE_P(x)    TARGET_ISA_FSGSBASE_P(x)
  129. #define TARGET_RDRND    TARGET_ISA_RDRND
  130. #define TARGET_RDRND_P(x)       TARGET_ISA_RDRND_P(x)
  131. #define TARGET_F16C     TARGET_ISA_F16C
  132. #define TARGET_F16C_P(x)        TARGET_ISA_F16C_P(x)
  133. #define TARGET_RTM      TARGET_ISA_RTM
  134. #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
  135. #define TARGET_HLE      TARGET_ISA_HLE
  136. #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
  137. #define TARGET_RDSEED   TARGET_ISA_RDSEED
  138. #define TARGET_RDSEED_P(x)      TARGET_ISA_RDSEED_P(x)
  139. #define TARGET_PRFCHW   TARGET_ISA_PRFCHW
  140. #define TARGET_PRFCHW_P(x)      TARGET_ISA_PRFCHW_P(x)
  141. #define TARGET_ADX      TARGET_ISA_ADX
  142. #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
  143. #define TARGET_FXSR     TARGET_ISA_FXSR
  144. #define TARGET_FXSR_P(x)        TARGET_ISA_FXSR_P(x)
  145. #define TARGET_XSAVE    TARGET_ISA_XSAVE
  146. #define TARGET_XSAVE_P(x)       TARGET_ISA_XSAVE_P(x)
  147. #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
  148. #define TARGET_XSAVEOPT_P(x)    TARGET_ISA_XSAVEOPT_P(x)
  149. #define TARGET_PREFETCHWT1      TARGET_ISA_PREFETCHWT1
  150. #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
  151. #define TARGET_MPX      TARGET_ISA_MPX
  152. #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
  153. #define TARGET_PCOMMIT  TARGET_ISA_PCOMMIT
  154. #define TARGET_PCOMMIT_P(x)     TARGET_ISA_PCOMMIT_P(x)
  155. #define TARGET_CLWB     TARGET_ISA_CLWB
  156. #define TARGET_CLWB_P(x)        TARGET_ISA_CLWB_P(x)
  157. #define TARGET_MWAITX   TARGET_ISA_MWAITX
  158. #define TARGET_MWAITX_P(x)      TARGET_ISA_MWAITX_P(x)
  159.  
  160. #define TARGET_LP64     TARGET_ABI_64
  161. #define TARGET_LP64_P(x)        TARGET_ABI_64_P(x)
  162. #define TARGET_X32      TARGET_ABI_X32
  163. #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
  164. #define TARGET_16BIT    TARGET_CODE16
  165. #define TARGET_16BIT_P(x)       TARGET_CODE16_P(x)
  166.  
  167. /* SSE4.1 defines round instructions */
  168. #define OPTION_MASK_ISA_ROUND   OPTION_MASK_ISA_SSE4_1
  169. #define TARGET_ISA_ROUND        ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
  170.  
  171. #include "config/vxworks-dummy.h"
  172.  
  173. #include "config/i386/i386-opts.h"
  174.  
  175. #define MAX_STRINGOP_ALGS 4
  176.  
  177. /* Specify what algorithm to use for stringops on known size.
  178.    When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
  179.    known at compile time or estimated via feedback, the SIZE array
  180.    is walked in order until MAX is greater then the estimate (or -1
  181.    means infinity).  Corresponding ALG is used then.
  182.    When NOALIGN is true the code guaranting the alignment of the memory
  183.    block is skipped.
  184.  
  185.    For example initializer:
  186.     {{256, loop}, {-1, rep_prefix_4_byte}}
  187.    will use loop for blocks smaller or equal to 256 bytes, rep prefix will
  188.    be used otherwise.  */
  189. struct stringop_algs
  190. {
  191.   const enum stringop_alg unknown_size;
  192.   const struct stringop_strategy {
  193.     const int max;
  194.     const enum stringop_alg alg;
  195.     int noalign;
  196.   } size [MAX_STRINGOP_ALGS];
  197. };
  198.  
  199. /* Define the specific costs for a given cpu */
  200.  
  201. struct processor_costs {
  202.   const int add;                /* cost of an add instruction */
  203.   const int lea;                /* cost of a lea instruction */
  204.   const int shift_var;          /* variable shift costs */
  205.   const int shift_const;        /* constant shift costs */
  206.   const int mult_init[5];       /* cost of starting a multiply
  207.                                    in QImode, HImode, SImode, DImode, TImode*/
  208.   const int mult_bit;           /* cost of multiply per each bit set */
  209.   const int divide[5];          /* cost of a divide/mod
  210.                                    in QImode, HImode, SImode, DImode, TImode*/
  211.   int movsx;                    /* The cost of movsx operation.  */
  212.   int movzx;                    /* The cost of movzx operation.  */
  213.   const int large_insn;         /* insns larger than this cost more */
  214.   const int move_ratio;         /* The threshold of number of scalar
  215.                                    memory-to-memory move insns.  */
  216.   const int movzbl_load;        /* cost of loading using movzbl */
  217.   const int int_load[3];        /* cost of loading integer registers
  218.                                    in QImode, HImode and SImode relative
  219.                                    to reg-reg move (2).  */
  220.   const int int_store[3];       /* cost of storing integer register
  221.                                    in QImode, HImode and SImode */
  222.   const int fp_move;            /* cost of reg,reg fld/fst */
  223.   const int fp_load[3];         /* cost of loading FP register
  224.                                    in SFmode, DFmode and XFmode */
  225.   const int fp_store[3];        /* cost of storing FP register
  226.                                    in SFmode, DFmode and XFmode */
  227.   const int mmx_move;           /* cost of moving MMX register.  */
  228.   const int mmx_load[2];        /* cost of loading MMX register
  229.                                    in SImode and DImode */
  230.   const int mmx_store[2];       /* cost of storing MMX register
  231.                                    in SImode and DImode */
  232.   const int sse_move;           /* cost of moving SSE register.  */
  233.   const int sse_load[3];        /* cost of loading SSE register
  234.                                    in SImode, DImode and TImode*/
  235.   const int sse_store[3];       /* cost of storing SSE register
  236.                                    in SImode, DImode and TImode*/
  237.   const int mmxsse_to_integer;  /* cost of moving mmxsse register to
  238.                                    integer and vice versa.  */
  239.   const int l1_cache_size;      /* size of l1 cache, in kilobytes.  */
  240.   const int l2_cache_size;      /* size of l2 cache, in kilobytes.  */
  241.   const int prefetch_block;     /* bytes moved to cache for prefetch.  */
  242.   const int simultaneous_prefetches; /* number of parallel prefetch
  243.                                    operations.  */
  244.   const int branch_cost;        /* Default value for BRANCH_COST.  */
  245.   const int fadd;               /* cost of FADD and FSUB instructions.  */
  246.   const int fmul;               /* cost of FMUL instruction.  */
  247.   const int fdiv;               /* cost of FDIV instruction.  */
  248.   const int fabs;               /* cost of FABS instruction.  */
  249.   const int fchs;               /* cost of FCHS instruction.  */
  250.   const int fsqrt;              /* cost of FSQRT instruction.  */
  251.                                 /* Specify what algorithm
  252.                                    to use for stringops on unknown size.  */
  253.   struct stringop_algs *memcpy, *memset;
  254.   const int scalar_stmt_cost;   /* Cost of any scalar operation, excluding
  255.                                    load and store.  */
  256.   const int scalar_load_cost;   /* Cost of scalar load.  */
  257.   const int scalar_store_cost;  /* Cost of scalar store.  */
  258.   const int vec_stmt_cost;      /* Cost of any vector operation, excluding
  259.                                    load, store, vector-to-scalar and
  260.                                    scalar-to-vector operation.  */
  261.   const int vec_to_scalar_cost;    /* Cost of vect-to-scalar operation.  */
  262.   const int scalar_to_vec_cost;    /* Cost of scalar-to-vector operation.  */
  263.   const int vec_align_load_cost;   /* Cost of aligned vector load.  */
  264.   const int vec_unalign_load_cost; /* Cost of unaligned vector load.  */
  265.   const int vec_store_cost;        /* Cost of vector store.  */
  266.   const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
  267.                                           cost model.  */
  268.   const int cond_not_taken_branch_cost;/* Cost of not taken branch for
  269.                                           vectorizer cost model.  */
  270. };
  271.  
  272. extern const struct processor_costs *ix86_cost;
  273. extern const struct processor_costs ix86_size_cost;
  274.  
  275. #define ix86_cur_cost() \
  276.   (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
  277.  
  278. /* Macros used in the machine description to test the flags.  */
  279.  
  280. /* configure can arrange to change it.  */
  281.  
  282. #ifndef TARGET_CPU_DEFAULT
  283. #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
  284. #endif
  285.  
  286. #ifndef TARGET_FPMATH_DEFAULT
  287. #define TARGET_FPMATH_DEFAULT \
  288.   (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
  289. #endif
  290.  
  291. #ifndef TARGET_FPMATH_DEFAULT_P
  292. #define TARGET_FPMATH_DEFAULT_P(x) \
  293.   (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
  294. #endif
  295.  
  296. #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
  297. #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
  298.  
  299. /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
  300.    compile-time constant.  */
  301. #ifdef IN_LIBGCC2
  302. #undef TARGET_64BIT
  303. #ifdef __x86_64__
  304. #define TARGET_64BIT 1
  305. #else
  306. #define TARGET_64BIT 0
  307. #endif
  308. #else
  309. #ifndef TARGET_BI_ARCH
  310. #undef TARGET_64BIT
  311. #undef TARGET_64BIT_P
  312. #if TARGET_64BIT_DEFAULT
  313. #define TARGET_64BIT 1
  314. #define TARGET_64BIT_P(x) 1
  315. #else
  316. #define TARGET_64BIT 0
  317. #define TARGET_64BIT_P(x) 0
  318. #endif
  319. #endif
  320. #endif
  321.  
  322. #define HAS_LONG_COND_BRANCH 1
  323. #define HAS_LONG_UNCOND_BRANCH 1
  324.  
  325. #define TARGET_386 (ix86_tune == PROCESSOR_I386)
  326. #define TARGET_486 (ix86_tune == PROCESSOR_I486)
  327. #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
  328. #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
  329. #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
  330. #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
  331. #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
  332. #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
  333. #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
  334. #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
  335. #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
  336. #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
  337. #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
  338. #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
  339. #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
  340. #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
  341. #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
  342. #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
  343. #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
  344. #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
  345. #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
  346. #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
  347. #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
  348. #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
  349. #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
  350. #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
  351. #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
  352.  
  353. /* Feature tests against the various tunings.  */
  354. enum ix86_tune_indices {
  355. #undef DEF_TUNE
  356. #define DEF_TUNE(tune, name, selector) tune,
  357. #include "x86-tune.def"
  358. #undef DEF_TUNE
  359. X86_TUNE_LAST
  360. };
  361.  
  362. extern unsigned char ix86_tune_features[X86_TUNE_LAST];
  363.  
  364. #define TARGET_USE_LEAVE        ix86_tune_features[X86_TUNE_USE_LEAVE]
  365. #define TARGET_PUSH_MEMORY      ix86_tune_features[X86_TUNE_PUSH_MEMORY]
  366. #define TARGET_ZERO_EXTEND_WITH_AND \
  367.         ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
  368. #define TARGET_UNROLL_STRLEN    ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
  369. #define TARGET_BRANCH_PREDICTION_HINTS \
  370.         ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
  371. #define TARGET_DOUBLE_WITH_ADD  ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
  372. #define TARGET_USE_SAHF         ix86_tune_features[X86_TUNE_USE_SAHF]
  373. #define TARGET_MOVX             ix86_tune_features[X86_TUNE_MOVX]
  374. #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
  375. #define TARGET_PARTIAL_FLAG_REG_STALL \
  376.         ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
  377. #define TARGET_LCP_STALL \
  378.         ix86_tune_features[X86_TUNE_LCP_STALL]
  379. #define TARGET_USE_HIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
  380. #define TARGET_USE_SIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
  381. #define TARGET_USE_MOV0         ix86_tune_features[X86_TUNE_USE_MOV0]
  382. #define TARGET_USE_CLTD         ix86_tune_features[X86_TUNE_USE_CLTD]
  383. #define TARGET_USE_XCHGB        ix86_tune_features[X86_TUNE_USE_XCHGB]
  384. #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
  385. #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
  386. #define TARGET_READ_MODIFY      ix86_tune_features[X86_TUNE_READ_MODIFY]
  387. #define TARGET_PROMOTE_QImode   ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
  388. #define TARGET_FAST_PREFIX      ix86_tune_features[X86_TUNE_FAST_PREFIX]
  389. #define TARGET_SINGLE_STRINGOP  ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
  390. #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
  391.         ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
  392. #define TARGET_QIMODE_MATH      ix86_tune_features[X86_TUNE_QIMODE_MATH]
  393. #define TARGET_HIMODE_MATH      ix86_tune_features[X86_TUNE_HIMODE_MATH]
  394. #define TARGET_PROMOTE_QI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
  395. #define TARGET_PROMOTE_HI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
  396. #define TARGET_SINGLE_POP       ix86_tune_features[X86_TUNE_SINGLE_POP]
  397. #define TARGET_DOUBLE_POP       ix86_tune_features[X86_TUNE_DOUBLE_POP]
  398. #define TARGET_SINGLE_PUSH      ix86_tune_features[X86_TUNE_SINGLE_PUSH]
  399. #define TARGET_DOUBLE_PUSH      ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
  400. #define TARGET_INTEGER_DFMODE_MOVES \
  401.         ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
  402. #define TARGET_PARTIAL_REG_DEPENDENCY \
  403.         ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
  404. #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
  405.         ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
  406. #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
  407.         ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
  408. #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
  409.         ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
  410. #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
  411.         ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
  412. #define TARGET_SSE_SPLIT_REGS   ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
  413. #define TARGET_SSE_TYPELESS_STORES \
  414.         ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
  415. #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
  416. #define TARGET_MEMORY_MISMATCH_STALL \
  417.         ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
  418. #define TARGET_PROLOGUE_USING_MOVE \
  419.         ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
  420. #define TARGET_EPILOGUE_USING_MOVE \
  421.         ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
  422. #define TARGET_SHIFT1           ix86_tune_features[X86_TUNE_SHIFT1]
  423. #define TARGET_USE_FFREEP       ix86_tune_features[X86_TUNE_USE_FFREEP]
  424. #define TARGET_INTER_UNIT_MOVES_TO_VEC \
  425.         ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
  426. #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
  427.         ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
  428. #define TARGET_INTER_UNIT_CONVERSIONS \
  429.         ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
  430. #define TARGET_FOUR_JUMP_LIMIT  ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
  431. #define TARGET_SCHEDULE         ix86_tune_features[X86_TUNE_SCHEDULE]
  432. #define TARGET_USE_BT           ix86_tune_features[X86_TUNE_USE_BT]
  433. #define TARGET_USE_INCDEC       ix86_tune_features[X86_TUNE_USE_INCDEC]
  434. #define TARGET_PAD_RETURNS      ix86_tune_features[X86_TUNE_PAD_RETURNS]
  435. #define TARGET_PAD_SHORT_FUNCTION \
  436.         ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
  437. #define TARGET_EXT_80387_CONSTANTS \
  438.         ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
  439. #define TARGET_AVOID_VECTOR_DECODE \
  440.         ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
  441. #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
  442.         ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
  443. #define TARGET_SLOW_IMUL_IMM32_MEM \
  444.         ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
  445. #define TARGET_SLOW_IMUL_IMM8   ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
  446. #define TARGET_MOVE_M1_VIA_OR   ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
  447. #define TARGET_NOT_UNPAIRABLE   ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
  448. #define TARGET_NOT_VECTORMODE   ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
  449. #define TARGET_USE_VECTOR_FP_CONVERTS \
  450.         ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
  451. #define TARGET_USE_VECTOR_CONVERTS \
  452.         ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
  453. #define TARGET_SLOW_PSHUFB \
  454.         ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
  455. #define TARGET_VECTOR_PARALLEL_EXECUTION \
  456.         ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
  457. #define TARGET_AVOID_4BYTE_PREFIXES \
  458.         ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
  459. #define TARGET_FUSE_CMP_AND_BRANCH_32 \
  460.         ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
  461. #define TARGET_FUSE_CMP_AND_BRANCH_64 \
  462.         ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
  463. #define TARGET_FUSE_CMP_AND_BRANCH \
  464.         (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
  465.          : TARGET_FUSE_CMP_AND_BRANCH_32)
  466. #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
  467.         ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
  468. #define TARGET_FUSE_ALU_AND_BRANCH \
  469.         ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
  470. #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
  471. #define TARGET_AVOID_LEA_FOR_ADDR \
  472.         ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
  473. #define TARGET_VECTORIZE_DOUBLE \
  474.         ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
  475. #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
  476.         ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
  477. #define TARGET_AVX128_OPTIMAL \
  478.         ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
  479. #define TARGET_REASSOC_INT_TO_PARALLEL \
  480.         ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
  481. #define TARGET_REASSOC_FP_TO_PARALLEL \
  482.         ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
  483. #define TARGET_GENERAL_REGS_SSE_SPILL \
  484.         ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
  485. #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
  486.         ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
  487. #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
  488.         ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
  489. #define TARGET_ADJUST_UNROLL \
  490.     ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
  491. #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
  492.         ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
  493.  
  494. /* Feature tests against the various architecture variations.  */
  495. enum ix86_arch_indices {
  496.   X86_ARCH_CMOV,
  497.   X86_ARCH_CMPXCHG,
  498.   X86_ARCH_CMPXCHG8B,
  499.   X86_ARCH_XADD,
  500.   X86_ARCH_BSWAP,
  501.  
  502.   X86_ARCH_LAST
  503. };
  504.  
  505. extern unsigned char ix86_arch_features[X86_ARCH_LAST];
  506.  
  507. #define TARGET_CMOV             ix86_arch_features[X86_ARCH_CMOV]
  508. #define TARGET_CMPXCHG          ix86_arch_features[X86_ARCH_CMPXCHG]
  509. #define TARGET_CMPXCHG8B        ix86_arch_features[X86_ARCH_CMPXCHG8B]
  510. #define TARGET_XADD             ix86_arch_features[X86_ARCH_XADD]
  511. #define TARGET_BSWAP            ix86_arch_features[X86_ARCH_BSWAP]
  512.  
  513. /* For sane SSE instruction set generation we need fcomi instruction.
  514.    It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
  515.    expands to a sequence that includes conditional move. */
  516. #define TARGET_CMOVE            (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
  517.  
  518. #define TARGET_FISTTP           (TARGET_SSE3 && TARGET_80387)
  519.  
  520. extern unsigned char x86_prefetch_sse;
  521. #define TARGET_PREFETCH_SSE     x86_prefetch_sse
  522.  
  523. #define ASSEMBLER_DIALECT       (ix86_asm_dialect)
  524.  
  525. #define TARGET_SSE_MATH         ((ix86_fpmath & FPMATH_SSE) != 0)
  526. #define TARGET_MIX_SSE_I387 \
  527.  ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
  528.  
  529. #define TARGET_GNU_TLS          (ix86_tls_dialect == TLS_DIALECT_GNU)
  530. #define TARGET_GNU2_TLS         (ix86_tls_dialect == TLS_DIALECT_GNU2)
  531. #define TARGET_ANY_GNU_TLS      (TARGET_GNU_TLS || TARGET_GNU2_TLS)
  532. #define TARGET_SUN_TLS          0
  533.  
  534. #ifndef TARGET_64BIT_DEFAULT
  535. #define TARGET_64BIT_DEFAULT 0
  536. #endif
  537. #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
  538. #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
  539. #endif
  540.  
  541. #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
  542. #define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
  543.  
  544. /* Fence to use after loop using storent.  */
  545.  
  546. extern tree x86_mfence;
  547. #define FENCE_FOLLOWING_MOVNT x86_mfence
  548.  
  549. /* Once GDB has been enhanced to deal with functions without frame
  550.    pointers, we can change this to allow for elimination of
  551.    the frame pointer in leaf functions.  */
  552. #define TARGET_DEFAULT 0
  553.  
  554. /* Extra bits to force.  */
  555. #define TARGET_SUBTARGET_DEFAULT 0
  556. #define TARGET_SUBTARGET_ISA_DEFAULT 0
  557.  
  558. /* Extra bits to force on w/ 32-bit mode.  */
  559. #define TARGET_SUBTARGET32_DEFAULT 0
  560. #define TARGET_SUBTARGET32_ISA_DEFAULT 0
  561.  
  562. /* Extra bits to force on w/ 64-bit mode.  */
  563. #define TARGET_SUBTARGET64_DEFAULT 0
  564. #define TARGET_SUBTARGET64_ISA_DEFAULT 0
  565.  
  566. /* Replace MACH-O, ifdefs by in-line tests, where possible.
  567.    (a) Macros defined in config/i386/darwin.h  */
  568. #define TARGET_MACHO 0
  569. #define TARGET_MACHO_BRANCH_ISLANDS 0
  570. #define MACHOPIC_ATT_STUB 0
  571. /* (b) Macros defined in config/darwin.h  */
  572. #define MACHO_DYNAMIC_NO_PIC_P 0
  573. #define MACHOPIC_INDIRECT 0
  574. #define MACHOPIC_PURE 0
  575.  
  576. /* For the RDOS  */
  577. #define TARGET_RDOS 0
  578.  
  579. /* For the Windows 64-bit ABI.  */
  580. #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
  581.  
  582. /* For the Windows 32-bit ABI.  */
  583. #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
  584.  
  585. /* This is re-defined by cygming.h.  */
  586. #define TARGET_SEH 0
  587.  
  588. /* This is re-defined by cygming.h.  */
  589. #define TARGET_PECOFF 0
  590.  
  591. /* The default abi used by target.  */
  592. #define DEFAULT_ABI SYSV_ABI
  593.  
  594. /* The default TLS segment register used by target.  */
  595. #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
  596.  
  597. /* Subtargets may reset this to 1 in order to enable 96-bit long double
  598.    with the rounding mode forced to 53 bits.  */
  599. #define TARGET_96_ROUND_53_LONG_DOUBLE 0
  600.  
  601. /* -march=native handling only makes sense with compiler running on
  602.    an x86 or x86_64 chip.  If changing this condition, also change
  603.    the condition in driver-i386.c.  */
  604. #if defined(__i386__) || defined(__x86_64__)
  605. /* In driver-i386.c.  */
  606. extern const char *host_detect_local_cpu (int argc, const char **argv);
  607. #define EXTRA_SPEC_FUNCTIONS \
  608.   { "local_cpu_detect", host_detect_local_cpu },
  609. #define HAVE_LOCAL_CPU_DETECT
  610. #endif
  611.  
  612. #if TARGET_64BIT_DEFAULT
  613. #define OPT_ARCH64 "!m32"
  614. #define OPT_ARCH32 "m32"
  615. #else
  616. #define OPT_ARCH64 "m64|mx32"
  617. #define OPT_ARCH32 "m64|mx32:;"
  618. #endif
  619.  
  620. /* Support for configure-time defaults of some command line options.
  621.    The order here is important so that -march doesn't squash the
  622.    tune or cpu values.  */
  623. #define OPTION_DEFAULT_SPECS                                       \
  624.   {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
  625.   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  626.   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  627.   {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
  628.   {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  629.   {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  630.   {"arch", "%{!march=*:-march=%(VALUE)}"},                         \
  631.   {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},    \
  632.   {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
  633.  
  634. /* Specs for the compiler proper */
  635.  
  636. #ifndef CC1_CPU_SPEC
  637. #define CC1_CPU_SPEC_1 ""
  638.  
  639. #ifndef HAVE_LOCAL_CPU_DETECT
  640. #define CC1_CPU_SPEC CC1_CPU_SPEC_1
  641. #else
  642. #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
  643. "%{march=native:%>march=native %:local_cpu_detect(arch) \
  644.   %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
  645. %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
  646. #endif
  647. #endif
  648. /* Target CPU builtins.  */
  649. #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
  650.  
  651. /* Target Pragmas.  */
  652. #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
  653.  
  654. #ifndef CC1_SPEC
  655. #define CC1_SPEC "%(cc1_cpu) "
  656. #endif
  657.  
  658. /* This macro defines names of additional specifications to put in the
  659.    specs that can be used in various specifications like CC1_SPEC.  Its
  660.    definition is an initializer with a subgrouping for each command option.
  661.  
  662.    Each subgrouping contains a string constant, that defines the
  663.    specification name, and a string constant that used by the GCC driver
  664.    program.
  665.  
  666.    Do not define this macro if it does not need to do anything.  */
  667.  
  668. #ifndef SUBTARGET_EXTRA_SPECS
  669. #define SUBTARGET_EXTRA_SPECS
  670. #endif
  671.  
  672. #define EXTRA_SPECS                                                     \
  673.   { "cc1_cpu",  CC1_CPU_SPEC },                                         \
  674.   SUBTARGET_EXTRA_SPECS
  675.  
  676. /* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
  677.    FPU, assume that the fpcw is set to extended precision; when using
  678.    only SSE, rounding is correct; when using both SSE and the FPU,
  679.    the rounding precision is indeterminate, since either may be chosen
  680.    apparently at random.  */
  681. #define TARGET_FLT_EVAL_METHOD \
  682.   (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
  683.  
  684. /* Whether to allow x87 floating-point arithmetic on MODE (one of
  685.    SFmode, DFmode and XFmode) in the current excess precision
  686.    configuration.  */
  687. #define X87_ENABLE_ARITH(MODE) \
  688.   (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
  689.  
  690. /* Likewise, whether to allow direct conversions from integer mode
  691.    IMODE (HImode, SImode or DImode) to MODE.  */
  692. #define X87_ENABLE_FLOAT(MODE, IMODE)                   \
  693.   (flag_excess_precision == EXCESS_PRECISION_FAST       \
  694.    || (MODE) == XFmode                                  \
  695.    || ((MODE) == DFmode && (IMODE) == SImode)           \
  696.    || (IMODE) == HImode)
  697.  
  698. /* target machine storage layout */
  699.  
  700. #define SHORT_TYPE_SIZE 16
  701. #define INT_TYPE_SIZE 32
  702. #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
  703. #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
  704. #define LONG_LONG_TYPE_SIZE 64
  705. #define FLOAT_TYPE_SIZE 32
  706. #define DOUBLE_TYPE_SIZE 64
  707. #define LONG_DOUBLE_TYPE_SIZE \
  708.   (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
  709.  
  710. #define WIDEST_HARDWARE_FP_SIZE 80
  711.  
  712. #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
  713. #define MAX_BITS_PER_WORD 64
  714. #else
  715. #define MAX_BITS_PER_WORD 32
  716. #endif
  717.  
  718. /* Define this if most significant byte of a word is the lowest numbered.  */
  719. /* That is true on the 80386.  */
  720.  
  721. #define BITS_BIG_ENDIAN 0
  722.  
  723. /* Define this if most significant byte of a word is the lowest numbered.  */
  724. /* That is not true on the 80386.  */
  725. #define BYTES_BIG_ENDIAN 0
  726.  
  727. /* Define this if most significant word of a multiword number is the lowest
  728.    numbered.  */
  729. /* Not true for 80386 */
  730. #define WORDS_BIG_ENDIAN 0
  731.  
  732. /* Width of a word, in units (bytes).  */
  733. #define UNITS_PER_WORD          (TARGET_64BIT ? 8 : 4)
  734.  
  735. #ifndef IN_LIBGCC2
  736. #define MIN_UNITS_PER_WORD      4
  737. #endif
  738.  
  739. /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
  740. #define PARM_BOUNDARY BITS_PER_WORD
  741.  
  742. /* Boundary (in *bits*) on which stack pointer should be aligned.  */
  743. #define STACK_BOUNDARY \
  744.  (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
  745.  
  746. /* Stack boundary of the main function guaranteed by OS.  */
  747. #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
  748.  
  749. /* Minimum stack boundary.  */
  750. #define MIN_STACK_BOUNDARY BITS_PER_WORD
  751.  
  752. /* Boundary (in *bits*) on which the stack pointer prefers to be
  753.    aligned; the compiler cannot rely on having this alignment.  */
  754. #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
  755.  
  756. /* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
  757.    both 32bit and 64bit, to support codes that need 128 bit stack
  758.    alignment for SSE instructions, but can't realign the stack.  */
  759. #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
  760.  
  761. /* 1 if -mstackrealign should be turned on by default.  It will
  762.    generate an alternate prologue and epilogue that realigns the
  763.    runtime stack if nessary.  This supports mixing codes that keep a
  764.    4-byte aligned stack, as specified by i386 psABI, with codes that
  765.    need a 16-byte aligned stack, as required by SSE instructions.  */
  766. #define STACK_REALIGN_DEFAULT 0
  767.  
  768. /* Boundary (in *bits*) on which the incoming stack is aligned.  */
  769. #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
  770.  
  771. /* According to Windows x64 software convention, the maximum stack allocatable
  772.    in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
  773.    instructions allowed to adjust the stack pointer in the epilog, forcing the
  774.    use of frame pointer for frames larger than 2 GB.  This theorical limit
  775.    is reduced by 256, an over-estimated upper bound for the stack use by the
  776.    prologue.
  777.    We define only one threshold for both the prolog and the epilog.  When the
  778.    frame size is larger than this threshold, we allocate the area to save SSE
  779.    regs, then save them, and then allocate the remaining.  There is no SEH
  780.    unwind info for this later allocation.  */
  781. #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
  782.  
  783. /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
  784.    mandatory for the 64-bit ABI, and may or may not be true for other
  785.    operating systems.  */
  786. #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
  787.  
  788. /* Minimum allocation boundary for the code of a function.  */
  789. #define FUNCTION_BOUNDARY 8
  790.  
  791. /* C++ stores the virtual bit in the lowest bit of function pointers.  */
  792. #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
  793.  
  794. /* Minimum size in bits of the largest boundary to which any
  795.    and all fundamental data types supported by the hardware
  796.    might need to be aligned. No data type wants to be aligned
  797.    rounder than this.
  798.  
  799.    Pentium+ prefers DFmode values to be aligned to 64 bit boundary
  800.    and Pentium Pro XFmode values at 128 bit boundaries.
  801.  
  802.    When increasing the maximum, also update
  803.    TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
  804.  
  805. #define BIGGEST_ALIGNMENT \
  806.   (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
  807.  
  808. /* Maximum stack alignment.  */
  809. #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
  810.  
  811. /* Alignment value for attribute ((aligned)).  It is a constant since
  812.    it is the part of the ABI.  We shouldn't change it with -mavx.  */
  813. #define ATTRIBUTE_ALIGNED_VALUE 128
  814.  
  815. /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
  816. #define ALIGN_MODE_128(MODE) \
  817.  ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
  818.  
  819. /* The published ABIs say that doubles should be aligned on word
  820.    boundaries, so lower the alignment for structure fields unless
  821.    -malign-double is set.  */
  822.  
  823. /* ??? Blah -- this macro is used directly by libobjc.  Since it
  824.    supports no vector modes, cut out the complexity and fall back
  825.    on BIGGEST_FIELD_ALIGNMENT.  */
  826. #ifdef IN_TARGET_LIBS
  827. #ifdef __x86_64__
  828. #define BIGGEST_FIELD_ALIGNMENT 128
  829. #else
  830. #define BIGGEST_FIELD_ALIGNMENT 32
  831. #endif
  832. #else
  833. #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
  834.    x86_field_alignment (FIELD, COMPUTED)
  835. #endif
  836.  
  837. /* If defined, a C expression to compute the alignment given to a
  838.    constant that is being placed in memory.  EXP is the constant
  839.    and ALIGN is the alignment that the object would ordinarily have.
  840.    The value of this macro is used instead of that alignment to align
  841.    the object.
  842.  
  843.    If this macro is not defined, then ALIGN is used.
  844.  
  845.    The typical use of this macro is to increase alignment for string
  846.    constants to be word aligned so that `strcpy' calls that copy
  847.    constants can be done inline.  */
  848.  
  849. #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
  850.  
  851. /* If defined, a C expression to compute the alignment for a static
  852.    variable.  TYPE is the data type, and ALIGN is the alignment that
  853.    the object would ordinarily have.  The value of this macro is used
  854.    instead of that alignment to align the object.
  855.  
  856.    If this macro is not defined, then ALIGN is used.
  857.  
  858.    One use of this macro is to increase alignment of medium-size
  859.    data to make it all fit in fewer cache lines.  Another is to
  860.    cause character arrays to be word-aligned so that `strcpy' calls
  861.    that copy constants to character arrays can be done inline.  */
  862.  
  863. #define DATA_ALIGNMENT(TYPE, ALIGN) \
  864.   ix86_data_alignment ((TYPE), (ALIGN), true)
  865.  
  866. /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
  867.    some alignment increase, instead of optimization only purposes.  E.g.
  868.    AMD x86-64 psABI says that variables with array type larger than 15 bytes
  869.    must be aligned to 16 byte boundaries.
  870.  
  871.    If this macro is not defined, then ALIGN is used.  */
  872.  
  873. #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
  874.   ix86_data_alignment ((TYPE), (ALIGN), false)
  875.  
  876. /* If defined, a C expression to compute the alignment for a local
  877.    variable.  TYPE is the data type, and ALIGN is the alignment that
  878.    the object would ordinarily have.  The value of this macro is used
  879.    instead of that alignment to align the object.
  880.  
  881.    If this macro is not defined, then ALIGN is used.
  882.  
  883.    One use of this macro is to increase alignment of medium-size
  884.    data to make it all fit in fewer cache lines.  */
  885.  
  886. #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
  887.   ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
  888.  
  889. /* If defined, a C expression to compute the alignment for stack slot.
  890.    TYPE is the data type, MODE is the widest mode available, and ALIGN
  891.    is the alignment that the slot would ordinarily have.  The value of
  892.    this macro is used instead of that alignment to align the slot.
  893.  
  894.    If this macro is not defined, then ALIGN is used when TYPE is NULL,
  895.    Otherwise, LOCAL_ALIGNMENT will be used.
  896.  
  897.    One use of this macro is to set alignment of stack slot to the
  898.    maximum alignment of all possible modes which the slot may have.  */
  899.  
  900. #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
  901.   ix86_local_alignment ((TYPE), (MODE), (ALIGN))
  902.  
  903. /* If defined, a C expression to compute the alignment for a local
  904.    variable DECL.
  905.  
  906.    If this macro is not defined, then
  907.    LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
  908.  
  909.    One use of this macro is to increase alignment of medium-size
  910.    data to make it all fit in fewer cache lines.  */
  911.  
  912. #define LOCAL_DECL_ALIGNMENT(DECL) \
  913.   ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
  914.  
  915. /* If defined, a C expression to compute the minimum required alignment
  916.    for dynamic stack realignment purposes for EXP (a TYPE or DECL),
  917.    MODE, assuming normal alignment ALIGN.
  918.  
  919.    If this macro is not defined, then (ALIGN) will be used.  */
  920.  
  921. #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
  922.   ix86_minimum_alignment (EXP, MODE, ALIGN)
  923.  
  924.  
  925. /* Set this nonzero if move instructions will actually fail to work
  926.    when given unaligned data.  */
  927. #define STRICT_ALIGNMENT 0
  928.  
  929. /* If bit field type is int, don't let it cross an int,
  930.    and give entire struct the alignment of an int.  */
  931. /* Required on the 386 since it doesn't have bit-field insns.  */
  932. #define PCC_BITFIELD_TYPE_MATTERS 1
  933. /* Standard register usage.  */
  934.  
  935. /* This processor has special stack-like registers.  See reg-stack.c
  936.    for details.  */
  937.  
  938. #define STACK_REGS
  939.  
  940. #define IS_STACK_MODE(MODE)                                     \
  941.   (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH))       \
  942.    || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH))   \
  943.    || (MODE) == XFmode)
  944.  
  945. /* Number of actual hardware registers.
  946.    The hardware registers are assigned numbers for the compiler
  947.    from 0 to just below FIRST_PSEUDO_REGISTER.
  948.    All registers that the compiler knows about must be given numbers,
  949.    even those that are not normally considered general registers.
  950.  
  951.    In the 80386 we give the 8 general purpose registers the numbers 0-7.
  952.    We number the floating point registers 8-15.
  953.    Note that registers 0-7 can be accessed as a  short or int,
  954.    while only 0-3 may be used with byte `mov' instructions.
  955.  
  956.    Reg 16 does not correspond to any hardware register, but instead
  957.    appears in the RTL as an argument pointer prior to reload, and is
  958.    eliminated during reloading in favor of either the stack or frame
  959.    pointer.  */
  960.  
  961. #define FIRST_PSEUDO_REGISTER 81
  962.  
  963. /* Number of hardware registers that go into the DWARF-2 unwind info.
  964.    If not defined, equals FIRST_PSEUDO_REGISTER.  */
  965.  
  966. #define DWARF_FRAME_REGISTERS 17
  967.  
  968. /* 1 for registers that have pervasive standard uses
  969.    and are not available for the register allocator.
  970.    On the 80386, the stack pointer is such, as is the arg pointer.
  971.  
  972.    REX registers are disabled for 32bit targets in
  973.    TARGET_CONDITIONAL_REGISTER_USAGE.  */
  974.  
  975. #define FIXED_REGISTERS                                         \
  976. /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
  977. {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,       \
  978. /*arg,flags,fpsr,fpcr,frame*/                                   \
  979.     1,    1,   1,   1,    1,                                    \
  980. /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
  981.      0,   0,   0,   0,   0,   0,   0,   0,                      \
  982. /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
  983.      0,   0,   0,   0,   0,   0,   0,   0,                      \
  984. /*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
  985.      0,   0,   0,   0,   0,   0,   0,   0,                      \
  986. /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
  987.      0,   0,    0,    0,    0,    0,    0,    0,                \
  988. /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/             \
  989.      0,   0,    0,    0,    0,    0,    0,    0,                \
  990. /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/             \
  991.      0,   0,    0,    0,    0,    0,    0,    0,                \
  992. /*  k0,  k1, k2, k3, k4, k5, k6, k7*/                           \
  993.      0,  0,   0,  0,  0,  0,  0,  0,                            \
  994. /*   b0, b1, b2, b3*/                                           \
  995.      0,  0,  0,  0 }
  996.  
  997. /* 1 for registers not available across function calls.
  998.    These must include the FIXED_REGISTERS and also any
  999.    registers that can be used without being saved.
  1000.    The latter must include the registers where values are returned
  1001.    and the register where structure-value addresses are passed.
  1002.    Aside from that, you can include as many other registers as you like.
  1003.  
  1004.    Value is set to 1 if the register is call used unconditionally.
  1005.    Bit one is set if the register is call used on TARGET_32BIT ABI.
  1006.    Bit two is set if the register is call used on TARGET_64BIT ABI.
  1007.    Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
  1008.  
  1009.    Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
  1010.  
  1011. #define CALL_USED_REGISTERS                                     \
  1012. /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
  1013. {  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,       \
  1014. /*arg,flags,fpsr,fpcr,frame*/                                   \
  1015.     1,   1,    1,   1,    1,                                    \
  1016. /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
  1017.      1,   1,   1,   1,   1,   1,   6,   6,                      \
  1018. /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
  1019.      1,   1,   1,   1,   1,   1,   1,   1,                      \
  1020. /*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
  1021.      1,   1,   1,   1,   2,   2,   2,   2,                      \
  1022. /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
  1023.      6,   6,    6,    6,    6,    6,    6,    6,                \
  1024. /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/             \
  1025.      6,    6,     6,    6,    6,    6,    6,    6,              \
  1026. /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/             \
  1027.      6,    6,     6,    6,    6,    6,    6,    6,              \
  1028.  /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/                     \
  1029.      1,   1,   1,   1,   1,   1,   1,   1,                      \
  1030. /*   b0, b1, b2, b3*/                                           \
  1031.      1,  1,  1,  1 }
  1032.  
  1033. /* Order in which to allocate registers.  Each register must be
  1034.    listed once, even those in FIXED_REGISTERS.  List frame pointer
  1035.    late and fixed registers last.  Note that, in general, we prefer
  1036.    registers listed in CALL_USED_REGISTERS, keeping the others
  1037.    available for storage of persistent values.
  1038.  
  1039.    The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
  1040.    so this is just empty initializer for array.  */
  1041.  
  1042. #define REG_ALLOC_ORDER                                         \
  1043. {  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
  1044.    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  \
  1045.    33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
  1046.    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,  \
  1047.    63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,  \
  1048.    78, 79, 80 }
  1049.  
  1050. /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
  1051.    to be rearranged based on a particular function.  When using sse math,
  1052.    we want to allocate SSE before x87 registers and vice versa.  */
  1053.  
  1054. #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
  1055.  
  1056.  
  1057. #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
  1058.  
  1059. /* Return number of consecutive hard regs needed starting at reg REGNO
  1060.    to hold something of mode MODE.
  1061.    This is ordinarily the length in words of a value of mode MODE
  1062.    but can be less for certain modes in special long registers.
  1063.  
  1064.    Actually there are no two word move instructions for consecutive
  1065.    registers.  And only registers 0-3 may have mov byte instructions
  1066.    applied to them.  */
  1067.  
  1068. #define HARD_REGNO_NREGS(REGNO, MODE)                                   \
  1069.   (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)  \
  1070.    || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO)                       \
  1071.    ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                    \
  1072.    : ((MODE) == XFmode                                                  \
  1073.       ? (TARGET_64BIT ? 2 : 3)                                          \
  1074.       : (MODE) == XCmode                                                \
  1075.       ? (TARGET_64BIT ? 4 : 6)                                          \
  1076.       : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
  1077.  
  1078. #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)                       \
  1079.   ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)                         \
  1080.    ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
  1081.       ? 0                                                               \
  1082.       : ((MODE) == XFmode || (MODE) == XCmode))                         \
  1083.    : 0)
  1084.  
  1085. #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
  1086.  
  1087. #define VALID_AVX256_REG_MODE(MODE)                                     \
  1088.   ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode     \
  1089.    || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode    \
  1090.    || (MODE) == V4DFmode)
  1091.  
  1092. #define VALID_AVX256_REG_OR_OI_MODE(MODE)               \
  1093.   (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
  1094.  
  1095. #define VALID_AVX512F_SCALAR_MODE(MODE)                                 \
  1096.   ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode             \
  1097.    || (MODE) == SFmode)
  1098.  
  1099. #define VALID_AVX512F_REG_MODE(MODE)                                    \
  1100.   ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode      \
  1101.    || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
  1102.    || (MODE) == V4TImode)
  1103.  
  1104. #define VALID_AVX512VL_128_REG_MODE(MODE)                                       \
  1105.   ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode      \
  1106.    || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
  1107.  
  1108. #define VALID_SSE2_REG_MODE(MODE)                                       \
  1109.   ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode      \
  1110.    || (MODE) == V2DImode || (MODE) == DFmode)
  1111.  
  1112. #define VALID_SSE_REG_MODE(MODE)                                        \
  1113.   ((MODE) == V1TImode || (MODE) == TImode                               \
  1114.    || (MODE) == V4SFmode || (MODE) == V4SImode                          \
  1115.    || (MODE) == SFmode || (MODE) == TFmode)
  1116.  
  1117. #define VALID_MMX_REG_MODE_3DNOW(MODE) \
  1118.   ((MODE) == V2SFmode || (MODE) == SFmode)
  1119.  
  1120. #define VALID_MMX_REG_MODE(MODE)                                        \
  1121.   ((MODE == V1DImode) || (MODE) == DImode                               \
  1122.    || (MODE) == V2SImode || (MODE) == SImode                            \
  1123.    || (MODE) == V4HImode || (MODE) == V8QImode)
  1124.  
  1125. #define VALID_BND_REG_MODE(MODE) \
  1126.   (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
  1127.  
  1128. #define VALID_DFP_MODE_P(MODE) \
  1129.   ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
  1130.  
  1131. #define VALID_FP_MODE_P(MODE)                                           \
  1132.   ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode             \
  1133.    || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)         \
  1134.  
  1135. #define VALID_INT_MODE_P(MODE)                                          \
  1136.   ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode             \
  1137.    || (MODE) == DImode                                                  \
  1138.    || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode       \
  1139.    || (MODE) == CDImode                                                 \
  1140.    || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode           \
  1141.                         || (MODE) == TFmode || (MODE) == TCmode)))
  1142.  
  1143. /* Return true for modes passed in SSE registers.  */
  1144. #define SSE_REG_MODE_P(MODE)                                            \
  1145.   ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode        \
  1146.    || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode      \
  1147.    || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode    \
  1148.    || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode  \
  1149.    || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode    \
  1150.    || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode   \
  1151.    || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode  \
  1152.    || (MODE) == V16SFmode)
  1153.  
  1154. #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
  1155.  
  1156. #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
  1157.  
  1158. /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
  1159.  
  1160. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  1161.    ix86_hard_regno_mode_ok ((REGNO), (MODE))
  1162.  
  1163. /* Value is 1 if it is a good idea to tie two pseudo registers
  1164.    when one has mode MODE1 and one has mode MODE2.
  1165.    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
  1166.    for any hard reg, then this must be 0 for correct output.  */
  1167.  
  1168. #define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
  1169.  
  1170. /* It is possible to write patterns to move flags; but until someone
  1171.    does it,  */
  1172. #define AVOID_CCMODE_COPIES
  1173.  
  1174. /* Specify the modes required to caller save a given hard regno.
  1175.    We do this on i386 to prevent flags from being saved at all.
  1176.  
  1177.    Kill any attempts to combine saving of modes.  */
  1178.  
  1179. #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)                 \
  1180.   (CC_REGNO_P (REGNO) ? VOIDmode                                        \
  1181.    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode                      \
  1182.    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
  1183.    : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL                     \
  1184.                            || MASK_REGNO_P (REGNO)) ? SImode            \
  1185.    : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)           \
  1186.                            || MASK_REGNO_P (REGNO)) ? SImode            \
  1187.    : (MODE))
  1188.  
  1189. /* The only ABI that saves SSE registers across calls is Win64 (thus no
  1190.    need to check the current ABI here), and with AVX enabled Win64 only
  1191.    guarantees that the low 16 bytes are saved.  */
  1192. #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)             \
  1193.   (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
  1194.  
  1195. /* Specify the registers used for certain standard purposes.
  1196.    The values of these macros are register numbers.  */
  1197.  
  1198. /* on the 386 the pc register is %eip, and is not usable as a general
  1199.    register.  The ordinary mov instructions won't work */
  1200. /* #define PC_REGNUM  */
  1201.  
  1202. /* Register to use for pushing function arguments.  */
  1203. #define STACK_POINTER_REGNUM 7
  1204.  
  1205. /* Base register for access to local variables of the function.  */
  1206. #define HARD_FRAME_POINTER_REGNUM 6
  1207.  
  1208. /* Base register for access to local variables of the function.  */
  1209. #define FRAME_POINTER_REGNUM 20
  1210.  
  1211. /* First floating point reg */
  1212. #define FIRST_FLOAT_REG 8
  1213.  
  1214. /* First & last stack-like regs */
  1215. #define FIRST_STACK_REG FIRST_FLOAT_REG
  1216. #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
  1217.  
  1218. #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
  1219. #define LAST_SSE_REG  (FIRST_SSE_REG + 7)
  1220.  
  1221. #define FIRST_MMX_REG  (LAST_SSE_REG + 1)   /*29*/
  1222. #define LAST_MMX_REG   (FIRST_MMX_REG + 7)
  1223.  
  1224. #define FIRST_REX_INT_REG  (LAST_MMX_REG + 1) /*37*/
  1225. #define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
  1226.  
  1227. #define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1) /*45*/
  1228. #define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
  1229.  
  1230. #define FIRST_EXT_REX_SSE_REG  (LAST_REX_SSE_REG + 1) /*53*/
  1231. #define LAST_EXT_REX_SSE_REG   (FIRST_EXT_REX_SSE_REG + 15) /*68*/
  1232.  
  1233. #define FIRST_MASK_REG  (LAST_EXT_REX_SSE_REG + 1) /*69*/
  1234. #define LAST_MASK_REG   (FIRST_MASK_REG + 7) /*76*/
  1235.  
  1236. #define FIRST_BND_REG  (LAST_MASK_REG + 1) /*77*/
  1237. #define LAST_BND_REG   (FIRST_BND_REG + 3) /*80*/
  1238.  
  1239. /* Override this in other tm.h files to cope with various OS lossage
  1240.    requiring a frame pointer.  */
  1241. #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
  1242. #define SUBTARGET_FRAME_POINTER_REQUIRED 0
  1243. #endif
  1244.  
  1245. /* Make sure we can access arbitrary call frames.  */
  1246. #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
  1247.  
  1248. /* Base register for access to arguments of the function.  */
  1249. #define ARG_POINTER_REGNUM 16
  1250.  
  1251. /* Register to hold the addressing base for position independent
  1252.    code access to data items.  We don't use PIC pointer for 64bit
  1253.    mode.  Define the regnum to dummy value to prevent gcc from
  1254.    pessimizing code dealing with EBX.
  1255.  
  1256.    To avoid clobbering a call-saved register unnecessarily, we renumber
  1257.    the pic register when possible.  The change is visible after the
  1258.    prologue has been emitted.  */
  1259.  
  1260. #define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
  1261.  
  1262. #define PIC_OFFSET_TABLE_REGNUM                                         \
  1263.   (ix86_use_pseudo_pic_reg ()                                           \
  1264.    ? (pic_offset_table_rtx                                              \
  1265.       ? INVALID_REGNUM                                                  \
  1266.       : REAL_PIC_OFFSET_TABLE_REGNUM)                                   \
  1267.    : INVALID_REGNUM)
  1268.  
  1269. #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
  1270.  
  1271. /* This is overridden by <cygwin.h>.  */
  1272. #define MS_AGGREGATE_RETURN 0
  1273.  
  1274. #define KEEP_AGGREGATE_RETURN_POINTER 0
  1275. /* Define the classes of registers for register constraints in the
  1276.    machine description.  Also define ranges of constants.
  1277.  
  1278.    One of the classes must always be named ALL_REGS and include all hard regs.
  1279.    If there is more than one class, another class must be named NO_REGS
  1280.    and contain no registers.
  1281.  
  1282.    The name GENERAL_REGS must be the name of a class (or an alias for
  1283.    another name such as ALL_REGS).  This is the class of registers
  1284.    that is allowed by "g" or "r" in a register constraint.
  1285.    Also, registers outside this class are allocated only when
  1286.    instructions express preferences for them.
  1287.  
  1288.    The classes must be numbered in nondecreasing order; that is,
  1289.    a larger-numbered class must never be contained completely
  1290.    in a smaller-numbered class.
  1291.  
  1292.    For any two classes, it is very desirable that there be another
  1293.    class that represents their union.
  1294.  
  1295.    It might seem that class BREG is unnecessary, since no useful 386
  1296.    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
  1297.    and the "b" register constraint is useful in asms for syscalls.
  1298.  
  1299.    The flags, fpsr and fpcr registers are in no class.  */
  1300.  
  1301. enum reg_class
  1302. {
  1303.   NO_REGS,
  1304.   AREG, DREG, CREG, BREG, SIREG, DIREG,
  1305.   AD_REGS,                      /* %eax/%edx for DImode */
  1306.   Q_REGS,                       /* %eax %ebx %ecx %edx */
  1307.   NON_Q_REGS,                   /* %esi %edi %ebp %esp */
  1308.   INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
  1309.   LEGACY_REGS,                  /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
  1310.   CLOBBERED_REGS,               /* call-clobbered integer registers */
  1311.   GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
  1312.                                    %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
  1313.   FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
  1314.   FLOAT_REGS,
  1315.   SSE_FIRST_REG,
  1316.   NO_REX_SSE_REGS,
  1317.   SSE_REGS,
  1318.   EVEX_SSE_REGS,
  1319.   BND_REGS,
  1320.   ALL_SSE_REGS,
  1321.   MMX_REGS,
  1322.   FP_TOP_SSE_REGS,
  1323.   FP_SECOND_SSE_REGS,
  1324.   FLOAT_SSE_REGS,
  1325.   FLOAT_INT_REGS,
  1326.   INT_SSE_REGS,
  1327.   FLOAT_INT_SSE_REGS,
  1328.   MASK_EVEX_REGS,
  1329.   MASK_REGS,
  1330.   ALL_REGS, LIM_REG_CLASSES
  1331. };
  1332.  
  1333. #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
  1334.  
  1335. #define INTEGER_CLASS_P(CLASS) \
  1336.   reg_class_subset_p ((CLASS), GENERAL_REGS)
  1337. #define FLOAT_CLASS_P(CLASS) \
  1338.   reg_class_subset_p ((CLASS), FLOAT_REGS)
  1339. #define SSE_CLASS_P(CLASS) \
  1340.   reg_class_subset_p ((CLASS), ALL_SSE_REGS)
  1341. #define MMX_CLASS_P(CLASS) \
  1342.   ((CLASS) == MMX_REGS)
  1343. #define MAYBE_INTEGER_CLASS_P(CLASS) \
  1344.   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
  1345. #define MAYBE_FLOAT_CLASS_P(CLASS) \
  1346.   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
  1347. #define MAYBE_SSE_CLASS_P(CLASS) \
  1348.   reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
  1349. #define MAYBE_MMX_CLASS_P(CLASS) \
  1350.   reg_classes_intersect_p ((CLASS), MMX_REGS)
  1351. #define MAYBE_MASK_CLASS_P(CLASS) \
  1352.   reg_classes_intersect_p ((CLASS), MASK_REGS)
  1353.  
  1354. #define Q_CLASS_P(CLASS) \
  1355.   reg_class_subset_p ((CLASS), Q_REGS)
  1356.  
  1357. #define MAYBE_NON_Q_CLASS_P(CLASS) \
  1358.   reg_classes_intersect_p ((CLASS), NON_Q_REGS)
  1359.  
  1360. /* Give names of register classes as strings for dump file.  */
  1361.  
  1362. #define REG_CLASS_NAMES \
  1363. {  "NO_REGS",                           \
  1364.    "AREG", "DREG", "CREG", "BREG",      \
  1365.    "SIREG", "DIREG",                    \
  1366.    "AD_REGS",                           \
  1367.    "Q_REGS", "NON_Q_REGS",              \
  1368.    "INDEX_REGS",                        \
  1369.    "LEGACY_REGS",                       \
  1370.    "CLOBBERED_REGS",                    \
  1371.    "GENERAL_REGS",                      \
  1372.    "FP_TOP_REG", "FP_SECOND_REG",       \
  1373.    "FLOAT_REGS",                        \
  1374.    "SSE_FIRST_REG",                     \
  1375.    "NO_REX_SSE_REGS",                   \
  1376.    "SSE_REGS",                          \
  1377.    "EVEX_SSE_REGS",                     \
  1378.    "BND_REGS",                          \
  1379.    "ALL_SSE_REGS",                      \
  1380.    "MMX_REGS",                          \
  1381.    "FP_TOP_SSE_REGS",                   \
  1382.    "FP_SECOND_SSE_REGS",                \
  1383.    "FLOAT_SSE_REGS",                    \
  1384.    "FLOAT_INT_REGS",                    \
  1385.    "INT_SSE_REGS",                      \
  1386.    "FLOAT_INT_SSE_REGS",                \
  1387.    "MASK_EVEX_REGS",                    \
  1388.    "MASK_REGS",                         \
  1389.    "ALL_REGS" }
  1390.  
  1391. /* Define which registers fit in which classes.  This is an initializer
  1392.    for a vector of HARD_REG_SET of length N_REG_CLASSES.
  1393.  
  1394.    Note that CLOBBERED_REGS are calculated by
  1395.    TARGET_CONDITIONAL_REGISTER_USAGE.  */
  1396.  
  1397. #define REG_CLASS_CONTENTS                                              \
  1398. {     { 0x00,       0x0,    0x0 },                                       \
  1399.       { 0x01,       0x0,    0x0 },       /* AREG */                      \
  1400.       { 0x02,       0x0,    0x0 },       /* DREG */                      \
  1401.       { 0x04,       0x0,    0x0 },       /* CREG */                      \
  1402.       { 0x08,       0x0,    0x0 },       /* BREG */                      \
  1403.       { 0x10,       0x0,    0x0 },       /* SIREG */                     \
  1404.       { 0x20,       0x0,    0x0 },       /* DIREG */                     \
  1405.       { 0x03,       0x0,    0x0 },       /* AD_REGS */                   \
  1406.       { 0x0f,       0x0,    0x0 },       /* Q_REGS */                    \
  1407.   { 0x1100f0,    0x1fe0,    0x0 },       /* NON_Q_REGS */                \
  1408.       { 0x7f,    0x1fe0,    0x0 },       /* INDEX_REGS */                \
  1409.   { 0x1100ff,       0x0,    0x0 },       /* LEGACY_REGS */               \
  1410.       { 0x07,       0x0,    0x0 },       /* CLOBBERED_REGS */            \
  1411.   { 0x1100ff,    0x1fe0,    0x0 },       /* GENERAL_REGS */              \
  1412.      { 0x100,       0x0,    0x0 },       /* FP_TOP_REG */                \
  1413.     { 0x0200,       0x0,    0x0 },       /* FP_SECOND_REG */             \
  1414.     { 0xff00,       0x0,    0x0 },       /* FLOAT_REGS */                \
  1415.   { 0x200000,       0x0,    0x0 },       /* SSE_FIRST_REG */             \
  1416. { 0x1fe00000,  0x000000,    0x0 },       /* NO_REX_SSE_REGS */           \
  1417. { 0x1fe00000,  0x1fe000,    0x0 },       /* SSE_REGS */                  \
  1418.        { 0x0,0xffe00000,   0x1f },       /* EVEX_SSE_REGS */             \
  1419.        { 0x0,       0x0,0x1e000 },       /* BND_REGS */                  \
  1420. { 0x1fe00000,0xffffe000,   0x1f },       /* ALL_SSE_REGS */              \
  1421. { 0xe0000000,      0x1f,    0x0 },       /* MMX_REGS */                  \
  1422. { 0x1fe00100,0xffffe000,   0x1f },       /* FP_TOP_SSE_REG */            \
  1423. { 0x1fe00200,0xffffe000,   0x1f },       /* FP_SECOND_SSE_REG */         \
  1424. { 0x1fe0ff00,0xffffe000,   0x1f },       /* FLOAT_SSE_REGS */            \
  1425. {   0x11ffff,    0x1fe0,    0x0 },       /* FLOAT_INT_REGS */            \
  1426. { 0x1ff100ff,0xffffffe0,   0x1f },       /* INT_SSE_REGS */              \
  1427. { 0x1ff1ffff,0xffffffe0,   0x1f },       /* FLOAT_INT_SSE_REGS */        \
  1428.        { 0x0,       0x0, 0x1fc0 },       /* MASK_EVEX_REGS */           \
  1429.        { 0x0,       0x0, 0x1fe0 },       /* MASK_REGS */                 \
  1430. { 0xffffffff,0xffffffff,0x1ffff }                                        \
  1431. }
  1432.  
  1433. /* The same information, inverted:
  1434.    Return the class number of the smallest class containing
  1435.    reg number REGNO.  This could be a conditional expression
  1436.    or could index an array.  */
  1437.  
  1438. #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
  1439.  
  1440. /* When this hook returns true for MODE, the compiler allows
  1441.    registers explicitly used in the rtl to be used as spill registers
  1442.    but prevents the compiler from extending the lifetime of these
  1443.    registers.  */
  1444. #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
  1445.  
  1446. #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
  1447. #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
  1448.  
  1449. #define GENERAL_REG_P(X) \
  1450.   (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
  1451. #define GENERAL_REGNO_P(N) \
  1452.   (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
  1453.  
  1454. #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
  1455. #define ANY_QI_REGNO_P(N) \
  1456.   (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
  1457.  
  1458. #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
  1459. #define REX_INT_REGNO_P(N) \
  1460.   IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
  1461.  
  1462. #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
  1463. #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
  1464.  
  1465. #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
  1466. #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
  1467.  
  1468. #define X87_FLOAT_MODE_P(MODE)  \
  1469.   (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
  1470.  
  1471. #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
  1472. #define SSE_REGNO_P(N)                                          \
  1473.   (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)                  \
  1474.    || REX_SSE_REGNO_P (N)                                       \
  1475.    || EXT_REX_SSE_REGNO_P (N))
  1476.  
  1477. #define REX_SSE_REGNO_P(N) \
  1478.   IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
  1479.  
  1480. #define EXT_REX_SSE_REGNO_P(N) \
  1481.   IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
  1482.  
  1483. #define SSE_REGNO(N) \
  1484.   ((N) < 8 ? FIRST_SSE_REG + (N) \
  1485.          : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
  1486.                                    : (FIRST_EXT_REX_SSE_REG + (N) - 16))
  1487.  
  1488. #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
  1489. #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
  1490. #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
  1491.  
  1492. #define SSE_FLOAT_MODE_P(MODE) \
  1493.   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
  1494.  
  1495. #define FMA4_VEC_FLOAT_MODE_P(MODE) \
  1496.   (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
  1497.                   || (MODE) == V8SFmode || (MODE) == V4DFmode))
  1498.  
  1499. #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
  1500. #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
  1501.  
  1502. #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
  1503.  
  1504. #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
  1505. #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
  1506.  
  1507. #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
  1508. #define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
  1509.  
  1510. /* The class value for index registers, and the one for base regs.  */
  1511.  
  1512. #define INDEX_REG_CLASS INDEX_REGS
  1513. #define BASE_REG_CLASS GENERAL_REGS
  1514.  
  1515. /* Place additional restrictions on the register class to use when it
  1516.    is necessary to be able to hold a value of mode MODE in a reload
  1517.    register for which class CLASS would ordinarily be used.
  1518.  
  1519.    We avoid classes containing registers from multiple units due to
  1520.    the limitation in ix86_secondary_memory_needed.  We limit these
  1521.    classes to their "natural mode" single unit register class, depending
  1522.    on the unit availability.
  1523.  
  1524.    Please note that reg_class_subset_p is not commutative, so these
  1525.    conditions mean "... if (CLASS) includes ALL registers from the
  1526.    register set."  */
  1527.  
  1528. #define LIMIT_RELOAD_CLASS(MODE, CLASS)                                 \
  1529.   (((MODE) == QImode && !TARGET_64BIT                                   \
  1530.     && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS                   \
  1531.    : (((MODE) == SImode || (MODE) == DImode)                            \
  1532.       && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS     \
  1533.    : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH                        \
  1534.       && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS             \
  1535.    : (X87_FLOAT_MODE_P (MODE)                                           \
  1536.       && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS         \
  1537.    : (CLASS))
  1538.  
  1539. /* If we are copying between general and FP registers, we need a memory
  1540.    location. The same is true for SSE and MMX registers.  */
  1541. #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
  1542.   ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
  1543.  
  1544. /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
  1545.    There is no need to emit full 64 bit move on 64 bit targets
  1546.    for integral modes that can be moved using 32 bit move.  */
  1547. #define SECONDARY_MEMORY_NEEDED_MODE(MODE)                      \
  1548.   (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE)       \
  1549.    ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)               \
  1550.    : MODE)
  1551.  
  1552. /* Return a class of registers that cannot change FROM mode to TO mode.  */
  1553.  
  1554. #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
  1555.   ix86_cannot_change_mode_class (FROM, TO, CLASS)
  1556. /* Stack layout; function entry, exit and calling.  */
  1557.  
  1558. /* Define this if pushing a word on the stack
  1559.    makes the stack pointer a smaller address.  */
  1560. #define STACK_GROWS_DOWNWARD
  1561.  
  1562. /* Define this to nonzero if the nominal address of the stack frame
  1563.    is at the high-address end of the local variables;
  1564.    that is, each additional local variable allocated
  1565.    goes at a more negative offset in the frame.  */
  1566. #define FRAME_GROWS_DOWNWARD 1
  1567.  
  1568. /* Offset within stack frame to start allocating local variables at.
  1569.    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
  1570.    first local allocated.  Otherwise, it is the offset to the BEGINNING
  1571.    of the first local allocated.  */
  1572. #define STARTING_FRAME_OFFSET 0
  1573.  
  1574. /* If we generate an insn to push BYTES bytes, this says how many the stack
  1575.    pointer really advances by.  On 386, we have pushw instruction that
  1576.    decrements by exactly 2 no matter what the position was, there is no pushb.
  1577.  
  1578.    But as CIE data alignment factor on this arch is -4 for 32bit targets
  1579.    and -8 for 64bit targets, we need to make sure all stack pointer adjustments
  1580.    are in multiple of 4 for 32bit targets and 8 for 64bit targets.  */
  1581.  
  1582. #define PUSH_ROUNDING(BYTES) \
  1583.   (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
  1584.  
  1585. /* If defined, the maximum amount of space required for outgoing arguments
  1586.    will be computed and placed into the variable `crtl->outgoing_args_size'.
  1587.    No space will be pushed onto the stack for each call; instead, the
  1588.    function prologue should increase the stack frame size by this amount.  
  1589.  
  1590.    In 32bit mode enabling argument accumulation results in about 5% code size
  1591.    growth becuase move instructions are less compact than push.  In 64bit
  1592.    mode the difference is less drastic but visible.  
  1593.  
  1594.    FIXME: Unlike earlier implementations, the size of unwind info seems to
  1595.    actually grow with accumulation.  Is that because accumulated args
  1596.    unwind info became unnecesarily bloated?
  1597.  
  1598.    With the 64-bit MS ABI, we can generate correct code with or without
  1599.    accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
  1600.    generated without accumulated args is terrible.
  1601.  
  1602.    If stack probes are required, the space used for large function
  1603.    arguments on the stack must also be probed, so enable
  1604.    -maccumulate-outgoing-args so this happens in the prologue.  */
  1605.  
  1606. #define ACCUMULATE_OUTGOING_ARGS \
  1607.   ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
  1608.    || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
  1609.  
  1610. /* If defined, a C expression whose value is nonzero when we want to use PUSH
  1611.    instructions to pass outgoing arguments.  */
  1612.  
  1613. #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
  1614.  
  1615. /* We want the stack and args grow in opposite directions, even if
  1616.    PUSH_ARGS is 0.  */
  1617. #define PUSH_ARGS_REVERSED 1
  1618.  
  1619. /* Offset of first parameter from the argument pointer register value.  */
  1620. #define FIRST_PARM_OFFSET(FNDECL) 0
  1621.  
  1622. /* Define this macro if functions should assume that stack space has been
  1623.    allocated for arguments even when their values are passed in registers.
  1624.  
  1625.    The value of this macro is the size, in bytes, of the area reserved for
  1626.    arguments passed in registers for the function represented by FNDECL.
  1627.  
  1628.    This space can be allocated by the caller, or be a part of the
  1629.    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
  1630.    which.  */
  1631. #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
  1632.  
  1633. #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
  1634.   (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
  1635.  
  1636. /* Define how to find the value returned by a library function
  1637.    assuming the value has mode MODE.  */
  1638.  
  1639. #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
  1640.  
  1641. /* Define the size of the result block used for communication between
  1642.    untyped_call and untyped_return.  The block contains a DImode value
  1643.    followed by the block used by fnsave and frstor.  */
  1644.  
  1645. #define APPLY_RESULT_SIZE (8+108)
  1646.  
  1647. /* 1 if N is a possible register number for function argument passing.  */
  1648. #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
  1649.  
  1650. /* Define a data type for recording info about an argument list
  1651.    during the scan of that argument list.  This data type should
  1652.    hold all necessary information about the function itself
  1653.    and about the args processed so far, enough to enable macros
  1654.    such as FUNCTION_ARG to determine where the next arg should go.  */
  1655.  
  1656. typedef struct ix86_args {
  1657.   int words;                    /* # words passed so far */
  1658.   int nregs;                    /* # registers available for passing */
  1659.   int regno;                    /* next available register number */
  1660.   int fastcall;                 /* fastcall or thiscall calling convention
  1661.                                    is used */
  1662.   int sse_words;                /* # sse words passed so far */
  1663.   int sse_nregs;                /* # sse registers available for passing */
  1664.   int warn_avx512f;             /* True when we want to warn
  1665.                                    about AVX512F ABI.  */
  1666.   int warn_avx;                 /* True when we want to warn about AVX ABI.  */
  1667.   int warn_sse;                 /* True when we want to warn about SSE ABI.  */
  1668.   int warn_mmx;                 /* True when we want to warn about MMX ABI.  */
  1669.   int sse_regno;                /* next available sse register number */
  1670.   int mmx_words;                /* # mmx words passed so far */
  1671.   int mmx_nregs;                /* # mmx registers available for passing */
  1672.   int mmx_regno;                /* next available mmx register number */
  1673.   int maybe_vaarg;              /* true for calls to possibly vardic fncts.  */
  1674.   int caller;                   /* true if it is caller.  */
  1675.   int float_in_sse;             /* Set to 1 or 2 for 32bit targets if
  1676.                                    SFmode/DFmode arguments should be passed
  1677.                                    in SSE registers.  Otherwise 0.  */
  1678.   int bnd_regno;                /* next available bnd register number */
  1679.   int bnds_in_bt;               /* number of bounds expected in BT.  */
  1680.   int force_bnd_pass;           /* number of bounds expected for stdarg arg.  */
  1681.   int stdarg;                   /* Set to 1 if function is stdarg.  */
  1682.   enum calling_abi call_abi;    /* Set to SYSV_ABI for sysv abi. Otherwise
  1683.                                    MS_ABI for ms abi.  */
  1684.   tree decl;                    /* Callee decl.  */
  1685. } CUMULATIVE_ARGS;
  1686.  
  1687. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  1688.    for a call to a function whose data type is FNTYPE.
  1689.    For a library call, FNTYPE is 0.  */
  1690.  
  1691. #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
  1692.   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
  1693.                         (N_NAMED_ARGS) != -1)
  1694.  
  1695. /* Output assembler code to FILE to increment profiler label # LABELNO
  1696.    for profiling a function entry.  */
  1697.  
  1698. #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
  1699.  
  1700. #define MCOUNT_NAME "_mcount"
  1701.  
  1702. #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
  1703.  
  1704. #define PROFILE_COUNT_REGISTER "edx"
  1705.  
  1706. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  1707.    the stack pointer does not matter.  The value is tested only in
  1708.    functions that have frame pointers.
  1709.    No definition is equivalent to always zero.  */
  1710. /* Note on the 386 it might be more efficient not to define this since
  1711.    we have to restore it ourselves from the frame pointer, in order to
  1712.    use pop */
  1713.  
  1714. #define EXIT_IGNORE_STACK 1
  1715.  
  1716. /* Output assembler code for a block containing the constant parts
  1717.    of a trampoline, leaving space for the variable parts.  */
  1718.  
  1719. /* On the 386, the trampoline contains two instructions:
  1720.      mov #STATIC,ecx
  1721.      jmp FUNCTION
  1722.    The trampoline is generated entirely at runtime.  The operand of JMP
  1723.    is the address of FUNCTION relative to the instruction following the
  1724.    JMP (which is 5 bytes long).  */
  1725.  
  1726. /* Length in units of the trampoline for entering a nested function.  */
  1727.  
  1728. #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
  1729. /* Definitions for register eliminations.
  1730.  
  1731.    This is an array of structures.  Each structure initializes one pair
  1732.    of eliminable registers.  The "from" register number is given first,
  1733.    followed by "to".  Eliminations of the same "from" register are listed
  1734.    in order of preference.
  1735.  
  1736.    There are two registers that can always be eliminated on the i386.
  1737.    The frame pointer and the arg pointer can be replaced by either the
  1738.    hard frame pointer or to the stack pointer, depending upon the
  1739.    circumstances.  The hard frame pointer is not used before reload and
  1740.    so it is not eligible for elimination.  */
  1741.  
  1742. #define ELIMINABLE_REGS                                 \
  1743. {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
  1744.  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
  1745.  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
  1746.  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}    \
  1747.  
  1748. /* Define the offset between two registers, one to be eliminated, and the other
  1749.    its replacement, at the start of a routine.  */
  1750.  
  1751. #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  1752.   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
  1753. /* Addressing modes, and classification of registers for them.  */
  1754.  
  1755. /* Macros to check register numbers against specific register classes.  */
  1756.  
  1757. /* These assume that REGNO is a hard or pseudo reg number.
  1758.    They give nonzero only if REGNO is a hard reg of the suitable class
  1759.    or a pseudo reg currently allocated to a suitable hard reg.
  1760.    Since they use reg_renumber, they are safe only once reg_renumber
  1761.    has been allocated, which happens in reginfo.c during register
  1762.    allocation.  */
  1763.  
  1764. #define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
  1765.   ((REGNO) < STACK_POINTER_REGNUM                                       \
  1766.    || REX_INT_REGNO_P (REGNO)                                           \
  1767.    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM           \
  1768.    || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
  1769.  
  1770. #define REGNO_OK_FOR_BASE_P(REGNO)                                      \
  1771.   (GENERAL_REGNO_P (REGNO)                                              \
  1772.    || (REGNO) == ARG_POINTER_REGNUM                                     \
  1773.    || (REGNO) == FRAME_POINTER_REGNUM                                   \
  1774.    || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
  1775.  
  1776. /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
  1777.    and check its validity for a certain class.
  1778.    We have two alternate definitions for each of them.
  1779.    The usual definition accepts all pseudo regs; the other rejects
  1780.    them unless they have been allocated suitable hard regs.
  1781.    The symbol REG_OK_STRICT causes the latter definition to be used.
  1782.  
  1783.    Most source files want to accept pseudo regs in the hope that
  1784.    they will get allocated to the class that the insn wants them to be in.
  1785.    Source files for reload pass need to be strict.
  1786.    After reload, it makes no difference, since pseudo regs have
  1787.    been eliminated by then.  */
  1788.  
  1789.  
  1790. /* Non strict versions, pseudos are ok.  */
  1791. #define REG_OK_FOR_INDEX_NONSTRICT_P(X)                                 \
  1792.   (REGNO (X) < STACK_POINTER_REGNUM                                     \
  1793.    || REX_INT_REGNO_P (REGNO (X))                                       \
  1794.    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  1795.  
  1796. #define REG_OK_FOR_BASE_NONSTRICT_P(X)                                  \
  1797.   (GENERAL_REGNO_P (REGNO (X))                                          \
  1798.    || REGNO (X) == ARG_POINTER_REGNUM                                   \
  1799.    || REGNO (X) == FRAME_POINTER_REGNUM                                 \
  1800.    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  1801.  
  1802. /* Strict versions, hard registers only */
  1803. #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
  1804. #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
  1805.  
  1806. #ifndef REG_OK_STRICT
  1807. #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
  1808. #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
  1809.  
  1810. #else
  1811. #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
  1812. #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
  1813. #endif
  1814.  
  1815. /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
  1816.    that is a valid memory address for an instruction.
  1817.    The MODE argument is the machine mode for the MEM expression
  1818.    that wants to use this address.
  1819.  
  1820.    The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
  1821.    except for CONSTANT_ADDRESS_P which is usually machine-independent.
  1822.  
  1823.    See legitimize_pic_address in i386.c for details as to what
  1824.    constitutes a legitimate address when -fpic is used.  */
  1825.  
  1826. #define MAX_REGS_PER_ADDRESS 2
  1827.  
  1828. #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
  1829.  
  1830. /* Try a machine-dependent way of reloading an illegitimate address
  1831.    operand.  If we find one, push the reload and jump to WIN.  This
  1832.    macro is used in only one place: `find_reloads_address' in reload.c.  */
  1833.  
  1834. #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN)      \
  1835. do {                                                                    \
  1836.   if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM),             \
  1837.                                       (int)(TYPE), (INDL)))             \
  1838.     goto WIN;                                                           \
  1839. } while (0)
  1840.  
  1841. /* If defined, a C expression to determine the base term of address X.
  1842.    This macro is used in only one place: `find_base_term' in alias.c.
  1843.  
  1844.    It is always safe for this macro to not be defined.  It exists so
  1845.    that alias analysis can understand machine-dependent addresses.
  1846.  
  1847.    The typical use of this macro is to handle addresses containing
  1848.    a label_ref or symbol_ref within an UNSPEC.  */
  1849.  
  1850. #define FIND_BASE_TERM(X) ix86_find_base_term (X)
  1851.  
  1852. /* Nonzero if the constant value X is a legitimate general operand
  1853.    when generating PIC code.  It is given that flag_pic is on and
  1854.    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
  1855.  
  1856. #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
  1857.  
  1858. #define SYMBOLIC_CONST(X)       \
  1859.   (GET_CODE (X) == SYMBOL_REF                                           \
  1860.    || GET_CODE (X) == LABEL_REF                                         \
  1861.    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
  1862. /* Max number of args passed in registers.  If this is more than 3, we will
  1863.    have problems with ebx (register #4), since it is a caller save register and
  1864.    is also used as the pic register in ELF.  So for now, don't allow more than
  1865.    3 registers to be passed in registers.  */
  1866.  
  1867. /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
  1868. #define X86_64_REGPARM_MAX 6
  1869. #define X86_64_MS_REGPARM_MAX 4
  1870.  
  1871. #define X86_32_REGPARM_MAX 3
  1872.  
  1873. #define REGPARM_MAX                                                     \
  1874.   (TARGET_64BIT                                                         \
  1875.    ? (TARGET_64BIT_MS_ABI                                               \
  1876.       ? X86_64_MS_REGPARM_MAX                                           \
  1877.       : X86_64_REGPARM_MAX)                                             \
  1878.    : X86_32_REGPARM_MAX)
  1879.  
  1880. #define X86_64_SSE_REGPARM_MAX 8
  1881. #define X86_64_MS_SSE_REGPARM_MAX 4
  1882.  
  1883. #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
  1884.  
  1885. #define SSE_REGPARM_MAX                                                 \
  1886.   (TARGET_64BIT                                                         \
  1887.    ? (TARGET_64BIT_MS_ABI                                               \
  1888.       ? X86_64_MS_SSE_REGPARM_MAX                                       \
  1889.       : X86_64_SSE_REGPARM_MAX)                                         \
  1890.    : X86_32_SSE_REGPARM_MAX)
  1891.  
  1892. #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
  1893. /* Specify the machine mode that this machine uses
  1894.    for the index in the tablejump instruction.  */
  1895. #define CASE_VECTOR_MODE \
  1896.  (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
  1897.  
  1898. /* Define this as 1 if `char' should by default be signed; else as 0.  */
  1899. #define DEFAULT_SIGNED_CHAR 1
  1900.  
  1901. /* Max number of bytes we can move from memory to memory
  1902.    in one reasonably fast instruction.  */
  1903. #define MOVE_MAX 16
  1904.  
  1905. /* MOVE_MAX_PIECES is the number of bytes at a time which we can
  1906.    move efficiently, as opposed to  MOVE_MAX which is the maximum
  1907.    number of bytes we can move with a single instruction.  */
  1908. #define MOVE_MAX_PIECES UNITS_PER_WORD
  1909.  
  1910. /* If a memory-to-memory move would take MOVE_RATIO or more simple
  1911.    move-instruction pairs, we will do a movmem or libcall instead.
  1912.    Increasing the value will always make code faster, but eventually
  1913.    incurs high cost in increased code size.
  1914.  
  1915.    If you don't define this, a reasonable default is used.  */
  1916.  
  1917. #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
  1918.  
  1919. /* If a clear memory operation would take CLEAR_RATIO or more simple
  1920.    move-instruction sequences, we will do a clrmem or libcall instead.  */
  1921.  
  1922. #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
  1923.  
  1924. /* Define if shifts truncate the shift count which implies one can
  1925.    omit a sign-extension or zero-extension of a shift count.
  1926.  
  1927.    On i386, shifts do truncate the count.  But bit test instructions
  1928.    take the modulo of the bit offset operand.  */
  1929.  
  1930. /* #define SHIFT_COUNT_TRUNCATED */
  1931.  
  1932. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  1933.    is done just by pretending it is already truncated.  */
  1934. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
  1935.  
  1936. /* A macro to update M and UNSIGNEDP when an object whose type is
  1937.    TYPE and which has the specified mode and signedness is to be
  1938.    stored in a register.  This macro is only called when TYPE is a
  1939.    scalar type.
  1940.  
  1941.    On i386 it is sometimes useful to promote HImode and QImode
  1942.    quantities to SImode.  The choice depends on target type.  */
  1943.  
  1944. #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)             \
  1945. do {                                                    \
  1946.   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)      \
  1947.       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))  \
  1948.     (MODE) = SImode;                                    \
  1949. } while (0)
  1950.  
  1951. /* Specify the machine mode that pointers have.
  1952.    After generation of rtl, the compiler makes no further distinction
  1953.    between pointers and any other objects of this machine mode.  */
  1954. #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
  1955.  
  1956. /* Specify the machine mode that bounds have.  */
  1957. #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
  1958.  
  1959. /* A C expression whose value is zero if pointers that need to be extended
  1960.    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
  1961.    greater then zero if they are zero-extended and less then zero if the
  1962.    ptr_extend instruction should be used.  */
  1963.  
  1964. #define POINTERS_EXTEND_UNSIGNED 1
  1965.  
  1966. /* A function address in a call instruction
  1967.    is a byte address (for indexing purposes)
  1968.    so give the MEM rtx a byte's mode.  */
  1969. #define FUNCTION_MODE QImode
  1970.  
  1971. /* A C expression for the cost of a branch instruction.  A value of 1
  1972.    is the default; other values are interpreted relative to that.  */
  1973.  
  1974. #define BRANCH_COST(speed_p, predictable_p) \
  1975.   (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
  1976.  
  1977. /* An integer expression for the size in bits of the largest integer machine
  1978.    mode that should actually be used.  We allow pairs of registers.  */
  1979. #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
  1980.  
  1981. /* Define this macro as a C expression which is nonzero if accessing
  1982.    less than a word of memory (i.e. a `char' or a `short') is no
  1983.    faster than accessing a word of memory, i.e., if such access
  1984.    require more than one instruction or if there is no difference in
  1985.    cost between byte and (aligned) word loads.
  1986.  
  1987.    When this macro is not defined, the compiler will access a field by
  1988.    finding the smallest containing object; when it is defined, a
  1989.    fullword load will be used if alignment permits.  Unless bytes
  1990.    accesses are faster than word accesses, using word accesses is
  1991.    preferable since it may eliminate subsequent memory access if
  1992.    subsequent accesses occur to other fields in the same word of the
  1993.    structure, but to different bytes.  */
  1994.  
  1995. #define SLOW_BYTE_ACCESS 0
  1996.  
  1997. /* Nonzero if access to memory by shorts is slow and undesirable.  */
  1998. #define SLOW_SHORT_ACCESS 0
  1999.  
  2000. /* Define this macro to be the value 1 if unaligned accesses have a
  2001.    cost many times greater than aligned accesses, for example if they
  2002.    are emulated in a trap handler.
  2003.  
  2004.    When this macro is nonzero, the compiler will act as if
  2005.    `STRICT_ALIGNMENT' were nonzero when generating code for block
  2006.    moves.  This can cause significantly more instructions to be
  2007.    produced.  Therefore, do not set this macro nonzero if unaligned
  2008.    accesses only add a cycle or two to the time for a memory access.
  2009.  
  2010.    If the value of this macro is always zero, it need not be defined.  */
  2011.  
  2012. /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
  2013.  
  2014. /* Define this macro if it is as good or better to call a constant
  2015.    function address than to call an address kept in a register.
  2016.  
  2017.    Desirable on the 386 because a CALL with a constant address is
  2018.    faster than one with a register address.  */
  2019.  
  2020. #define NO_FUNCTION_CSE
  2021. /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
  2022.    return the mode to be used for the comparison.
  2023.  
  2024.    For floating-point equality comparisons, CCFPEQmode should be used.
  2025.    VOIDmode should be used in all other cases.
  2026.  
  2027.    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
  2028.    possible, to allow for more combinations.  */
  2029.  
  2030. #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
  2031.  
  2032. /* Return nonzero if MODE implies a floating point inequality can be
  2033.    reversed.  */
  2034.  
  2035. #define REVERSIBLE_CC_MODE(MODE) 1
  2036.  
  2037. /* A C expression whose value is reversed condition code of the CODE for
  2038.    comparison done in CC_MODE mode.  */
  2039. #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
  2040.  
  2041. /* Control the assembler format that we output, to the extent
  2042.    this does not vary between assemblers.  */
  2043.  
  2044. /* How to refer to registers in assembler output.
  2045.    This sequence is indexed by compiler's hard-register-number (see above).  */
  2046.  
  2047. /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
  2048.    For non floating point regs, the following are the HImode names.
  2049.  
  2050.    For float regs, the stack top is sometimes referred to as "%st(0)"
  2051.    instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
  2052.    "y" code.  */
  2053.  
  2054. #define HI_REGISTER_NAMES                                               \
  2055. {"ax","dx","cx","bx","si","di","bp","sp",                               \
  2056.  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",          \
  2057.  "argp", "flags", "fpsr", "fpcr", "frame",                              \
  2058.  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",               \
  2059.  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",                \
  2060.  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",                  \
  2061.  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",  \
  2062.  "xmm16", "xmm17", "xmm18", "xmm19",                                    \
  2063.  "xmm20", "xmm21", "xmm22", "xmm23",                                    \
  2064.  "xmm24", "xmm25", "xmm26", "xmm27",                                    \
  2065.  "xmm28", "xmm29", "xmm30", "xmm31",                                    \
  2066.  "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7",                        \
  2067.  "bnd0", "bnd1", "bnd2", "bnd3" }
  2068.  
  2069. #define REGISTER_NAMES HI_REGISTER_NAMES
  2070.  
  2071. /* Table of additional register names to use in user input.  */
  2072.  
  2073. #define ADDITIONAL_REGISTER_NAMES \
  2074. { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },               \
  2075.   { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },               \
  2076.   { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },               \
  2077.   { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },               \
  2078.   { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },                   \
  2079.   { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },                   \
  2080.   { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24},           \
  2081.   { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28},           \
  2082.   { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48},         \
  2083.   { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52},       \
  2084.   { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56},       \
  2085.   { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60},       \
  2086.   { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64},       \
  2087.   { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68},       \
  2088.   { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24},           \
  2089.   { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28},           \
  2090.   { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48},         \
  2091.   { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52},       \
  2092.   { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56},       \
  2093.   { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60},       \
  2094.   { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64},       \
  2095.   { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
  2096.  
  2097. /* Note we are omitting these since currently I don't know how
  2098. to get gcc to use these, since they want the same but different
  2099. number as al, and ax.
  2100. */
  2101.  
  2102. #define QI_REGISTER_NAMES \
  2103. {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
  2104.  
  2105. /* These parallel the array above, and can be used to access bits 8:15
  2106.    of regs 0 through 3.  */
  2107.  
  2108. #define QI_HIGH_REGISTER_NAMES \
  2109. {"ah", "dh", "ch", "bh", }
  2110.  
  2111. /* How to renumber registers for dbx and gdb.  */
  2112.  
  2113. #define DBX_REGISTER_NUMBER(N) \
  2114.   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
  2115.  
  2116. extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
  2117. extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
  2118. extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
  2119.  
  2120. extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
  2121.  
  2122. /* Before the prologue, RA is at 0(%esp).  */
  2123. #define INCOMING_RETURN_ADDR_RTX \
  2124.   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
  2125.  
  2126. /* After the prologue, RA is at -4(AP) in the current frame.  */
  2127. #define RETURN_ADDR_RTX(COUNT, FRAME)                                      \
  2128.   ((COUNT) == 0                                                            \
  2129.    ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,    \
  2130.                                         -UNITS_PER_WORD))                  \
  2131.    : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
  2132.  
  2133. /* PC is dbx register 8; let's use that column for RA.  */
  2134. #define DWARF_FRAME_RETURN_COLUMN       (TARGET_64BIT ? 16 : 8)
  2135.  
  2136. /* Before the prologue, the top of the frame is at 4(%esp).  */
  2137. #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
  2138.  
  2139. /* Describe how we implement __builtin_eh_return.  */
  2140. #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
  2141. #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, CX_REG)
  2142.  
  2143.  
  2144. /* Select a format to encode pointers in exception handling data.  CODE
  2145.    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
  2146.    true if the symbol may be affected by dynamic relocations.
  2147.  
  2148.    ??? All x86 object file formats are capable of representing this.
  2149.    After all, the relocation needed is the same as for the call insn.
  2150.    Whether or not a particular assembler allows us to enter such, I
  2151.    guess we'll have to see.  */
  2152. #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
  2153.   asm_preferred_eh_data_format ((CODE), (GLOBAL))
  2154.  
  2155. /* This is how to output an insn to push a register on the stack.
  2156.    It need not be very fast code.  */
  2157.  
  2158. #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
  2159. do {                                                                    \
  2160.   if (TARGET_64BIT)                                                     \
  2161.     asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",                          \
  2162.                  reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
  2163.   else                                                                  \
  2164.     asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);     \
  2165. } while (0)
  2166.  
  2167. /* This is how to output an insn to pop a register from the stack.
  2168.    It need not be very fast code.  */
  2169.  
  2170. #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
  2171. do {                                                                    \
  2172.   if (TARGET_64BIT)                                                     \
  2173.     asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",                           \
  2174.                  reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
  2175.   else                                                                  \
  2176.     asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);      \
  2177. } while (0)
  2178.  
  2179. /* This is how to output an element of a case-vector that is absolute.  */
  2180.  
  2181. #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
  2182.   ix86_output_addr_vec_elt ((FILE), (VALUE))
  2183.  
  2184. /* This is how to output an element of a case-vector that is relative.  */
  2185.  
  2186. #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  2187.   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
  2188.  
  2189. /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
  2190.  
  2191. #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)      \
  2192. {                                               \
  2193.   if ((PTR)[0] == '%' && (PTR)[1] == 'v')       \
  2194.     (PTR) += TARGET_AVX ? 1 : 2;                \
  2195. }
  2196.  
  2197. /* A C statement or statements which output an assembler instruction
  2198.    opcode to the stdio stream STREAM.  The macro-operand PTR is a
  2199.    variable of type `char *' which points to the opcode name in
  2200.    its "internal" form--the form that is written in the machine
  2201.    description.  */
  2202.  
  2203. #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
  2204.   ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
  2205.  
  2206. /* A C statement to output to the stdio stream FILE an assembler
  2207.    command to pad the location counter to a multiple of 1<<LOG
  2208.    bytes if it is within MAX_SKIP bytes.  */
  2209.  
  2210. #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
  2211. #undef  ASM_OUTPUT_MAX_SKIP_PAD
  2212. #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)                    \
  2213.   if ((LOG) != 0)                                                       \
  2214.     {                                                                   \
  2215.       if ((MAX_SKIP) == 0)                                              \
  2216.         fprintf ((FILE), "\t.p2align %d\n", (LOG));                     \
  2217.       else                                                              \
  2218.         fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));     \
  2219.     }
  2220. #endif
  2221.  
  2222. /* Write the extra assembler code needed to declare a function
  2223.    properly.  */
  2224.  
  2225. #undef ASM_OUTPUT_FUNCTION_LABEL
  2226. #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
  2227.   ix86_asm_output_function_label (FILE, NAME, DECL)
  2228.  
  2229. /* Under some conditions we need jump tables in the text section,
  2230.    because the assembler cannot handle label differences between
  2231.    sections.  This is the case for x86_64 on Mach-O for example.  */
  2232.  
  2233. #define JUMP_TABLES_IN_TEXT_SECTION \
  2234.   (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
  2235.    || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
  2236.  
  2237. /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
  2238.    and switch back.  For x86 we do this only to save a few bytes that
  2239.    would otherwise be unused in the text section.  */
  2240. #define CRT_MKSTR2(VAL) #VAL
  2241. #define CRT_MKSTR(x) CRT_MKSTR2(x)
  2242.  
  2243. #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)              \
  2244.    asm (SECTION_OP "\n\t"                                       \
  2245.         "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"     \
  2246.         TEXT_SECTION_ASM_OP);
  2247.  
  2248. /* Default threshold for putting data in large sections
  2249.    with x86-64 medium memory model */
  2250. #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
  2251. /* Which processor to tune code generation for.  These must be in sync
  2252.    with processor_target_table in i386.c.  */
  2253.  
  2254. enum processor_type
  2255. {
  2256.   PROCESSOR_GENERIC = 0,
  2257.   PROCESSOR_I386,                       /* 80386 */
  2258.   PROCESSOR_I486,                       /* 80486DX, 80486SX, 80486DX[24] */
  2259.   PROCESSOR_PENTIUM,
  2260.   PROCESSOR_PENTIUMPRO,
  2261.   PROCESSOR_PENTIUM4,
  2262.   PROCESSOR_NOCONA,
  2263.   PROCESSOR_CORE2,
  2264.   PROCESSOR_NEHALEM,
  2265.   PROCESSOR_SANDYBRIDGE,
  2266.   PROCESSOR_HASWELL,
  2267.   PROCESSOR_BONNELL,
  2268.   PROCESSOR_SILVERMONT,
  2269.   PROCESSOR_KNL,
  2270.   PROCESSOR_INTEL,
  2271.   PROCESSOR_GEODE,
  2272.   PROCESSOR_K6,
  2273.   PROCESSOR_ATHLON,
  2274.   PROCESSOR_K8,
  2275.   PROCESSOR_AMDFAM10,
  2276.   PROCESSOR_BDVER1,
  2277.   PROCESSOR_BDVER2,
  2278.   PROCESSOR_BDVER3,
  2279.   PROCESSOR_BDVER4,
  2280.   PROCESSOR_BTVER1,
  2281.   PROCESSOR_BTVER2,
  2282.   PROCESSOR_max
  2283. };
  2284.  
  2285. extern enum processor_type ix86_tune;
  2286. extern enum processor_type ix86_arch;
  2287.  
  2288. /* Size of the RED_ZONE area.  */
  2289. #define RED_ZONE_SIZE 128
  2290. /* Reserved area of the red zone for temporaries.  */
  2291. #define RED_ZONE_RESERVE 8
  2292.  
  2293. extern unsigned int ix86_preferred_stack_boundary;
  2294. extern unsigned int ix86_incoming_stack_boundary;
  2295.  
  2296. /* Smallest class containing REGNO.  */
  2297. extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
  2298.  
  2299. enum ix86_fpcmp_strategy {
  2300.   IX86_FPCMP_SAHF,
  2301.   IX86_FPCMP_COMI,
  2302.   IX86_FPCMP_ARITH
  2303. };
  2304. /* To properly truncate FP values into integers, we need to set i387 control
  2305.    word.  We can't emit proper mode switching code before reload, as spills
  2306.    generated by reload may truncate values incorrectly, but we still can avoid
  2307.    redundant computation of new control word by the mode switching pass.
  2308.    The fldcw instructions are still emitted redundantly, but this is probably
  2309.    not going to be noticeable problem, as most CPUs do have fast path for
  2310.    the sequence.
  2311.  
  2312.    The machinery is to emit simple truncation instructions and split them
  2313.    before reload to instructions having USEs of two memory locations that
  2314.    are filled by this code to old and new control word.
  2315.  
  2316.    Post-reload pass may be later used to eliminate the redundant fildcw if
  2317.    needed.  */
  2318.  
  2319. enum ix86_entity
  2320. {
  2321.   AVX_U128 = 0,
  2322.   I387_TRUNC,
  2323.   I387_FLOOR,
  2324.   I387_CEIL,
  2325.   I387_MASK_PM,
  2326.   MAX_386_ENTITIES
  2327. };
  2328.  
  2329. enum ix86_stack_slot
  2330. {
  2331.   SLOT_TEMP = 0,
  2332.   SLOT_CW_STORED,
  2333.   SLOT_CW_TRUNC,
  2334.   SLOT_CW_FLOOR,
  2335.   SLOT_CW_CEIL,
  2336.   SLOT_CW_MASK_PM,
  2337.   MAX_386_STACK_LOCALS
  2338. };
  2339.  
  2340. enum avx_u128_state
  2341. {
  2342.   AVX_U128_CLEAN,
  2343.   AVX_U128_DIRTY,
  2344.   AVX_U128_ANY
  2345. };
  2346.  
  2347. /* Define this macro if the port needs extra instructions inserted
  2348.    for mode switching in an optimizing compilation.  */
  2349.  
  2350. #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
  2351.    ix86_optimize_mode_switching[(ENTITY)]
  2352.  
  2353. /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
  2354.    initializer for an array of integers.  Each initializer element N
  2355.    refers to an entity that needs mode switching, and specifies the
  2356.    number of different modes that might need to be set for this
  2357.    entity.  The position of the initializer in the initializer -
  2358.    starting counting at zero - determines the integer that is used to
  2359.    refer to the mode-switched entity in question.  */
  2360.  
  2361. #define NUM_MODES_FOR_MODE_SWITCHING \
  2362.   { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
  2363.  
  2364. /* Avoid renaming of stack registers, as doing so in combination with
  2365.    scheduling just increases amount of live registers at time and in
  2366.    the turn amount of fxch instructions needed.
  2367.  
  2368.    ??? Maybe Pentium chips benefits from renaming, someone can try....
  2369.  
  2370.    Don't rename evex to non-evex sse registers.  */
  2371.  
  2372. #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) &&       \
  2373.                                            (EXT_REX_SSE_REGNO_P (SRC) == \
  2374.                                             EXT_REX_SSE_REGNO_P (TARGET)))
  2375.  
  2376. #define FASTCALL_PREFIX '@'
  2377. /* Machine specific frame tracking during prologue/epilogue generation.  */
  2378.  
  2379. #ifndef USED_FOR_TARGET
  2380. struct GTY(()) machine_frame_state
  2381. {
  2382.   /* This pair tracks the currently active CFA as reg+offset.  When reg
  2383.      is drap_reg, we don't bother trying to record here the real CFA when
  2384.      it might really be a DW_CFA_def_cfa_expression.  */
  2385.   rtx cfa_reg;
  2386.   HOST_WIDE_INT cfa_offset;
  2387.  
  2388.   /* The current offset (canonically from the CFA) of ESP and EBP.
  2389.      When stack frame re-alignment is active, these may not be relative
  2390.      to the CFA.  However, in all cases they are relative to the offsets
  2391.      of the saved registers stored in ix86_frame.  */
  2392.   HOST_WIDE_INT sp_offset;
  2393.   HOST_WIDE_INT fp_offset;
  2394.  
  2395.   /* The size of the red-zone that may be assumed for the purposes of
  2396.      eliding register restore notes in the epilogue.  This may be zero
  2397.      if no red-zone is in effect, or may be reduced from the real
  2398.      red-zone value by a maximum runtime stack re-alignment value.  */
  2399.   int red_zone_offset;
  2400.  
  2401.   /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
  2402.      value within the frame.  If false then the offset above should be
  2403.      ignored.  Note that DRAP, if valid, *always* points to the CFA and
  2404.      thus has an offset of zero.  */
  2405.   BOOL_BITFIELD sp_valid : 1;
  2406.   BOOL_BITFIELD fp_valid : 1;
  2407.   BOOL_BITFIELD drap_valid : 1;
  2408.  
  2409.   /* Indicate whether the local stack frame has been re-aligned.  When
  2410.      set, the SP/FP offsets above are relative to the aligned frame
  2411.      and not the CFA.  */
  2412.   BOOL_BITFIELD realigned : 1;
  2413. };
  2414.  
  2415. /* Private to winnt.c.  */
  2416. struct seh_frame_state;
  2417.  
  2418. struct GTY(()) machine_function {
  2419.   struct stack_local_entry *stack_locals;
  2420.   const char *some_ld_name;
  2421.   int varargs_gpr_size;
  2422.   int varargs_fpr_size;
  2423.   int optimize_mode_switching[MAX_386_ENTITIES];
  2424.  
  2425.   /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
  2426.      has been computed for.  */
  2427.   int use_fast_prologue_epilogue_nregs;
  2428.  
  2429.   /* For -fsplit-stack support: A stack local which holds a pointer to
  2430.      the stack arguments for a function with a variable number of
  2431.      arguments.  This is set at the start of the function and is used
  2432.      to initialize the overflow_arg_area field of the va_list
  2433.      structure.  */
  2434.   rtx split_stack_varargs_pointer;
  2435.  
  2436.   /* This value is used for amd64 targets and specifies the current abi
  2437.      to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
  2438.   ENUM_BITFIELD(calling_abi) call_abi : 8;
  2439.  
  2440.   /* Nonzero if the function accesses a previous frame.  */
  2441.   BOOL_BITFIELD accesses_prev_frame : 1;
  2442.  
  2443.   /* Nonzero if the function requires a CLD in the prologue.  */
  2444.   BOOL_BITFIELD needs_cld : 1;
  2445.  
  2446.   /* Set by ix86_compute_frame_layout and used by prologue/epilogue
  2447.      expander to determine the style used.  */
  2448.   BOOL_BITFIELD use_fast_prologue_epilogue : 1;
  2449.  
  2450.   /* If true, the current function needs the default PIC register, not
  2451.      an alternate register (on x86) and must not use the red zone (on
  2452.      x86_64), even if it's a leaf function.  We don't want the
  2453.      function to be regarded as non-leaf because TLS calls need not
  2454.      affect register allocation.  This flag is set when a TLS call
  2455.      instruction is expanded within a function, and never reset, even
  2456.      if all such instructions are optimized away.  Use the
  2457.      ix86_current_function_calls_tls_descriptor macro for a better
  2458.      approximation.  */
  2459.   BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
  2460.  
  2461.   /* If true, the current function has a STATIC_CHAIN is placed on the
  2462.      stack below the return address.  */
  2463.   BOOL_BITFIELD static_chain_on_stack : 1;
  2464.  
  2465.   /* If true, it is safe to not save/restore DRAP register.  */
  2466.   BOOL_BITFIELD no_drap_save_restore : 1;
  2467.  
  2468.   /* During prologue/epilogue generation, the current frame state.
  2469.      Otherwise, the frame state at the end of the prologue.  */
  2470.   struct machine_frame_state fs;
  2471.  
  2472.   /* During SEH output, this is non-null.  */
  2473.   struct seh_frame_state * GTY((skip(""))) seh;
  2474. };
  2475. #endif
  2476.  
  2477. #define ix86_stack_locals (cfun->machine->stack_locals)
  2478. #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
  2479. #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
  2480. #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
  2481. #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
  2482. #define ix86_tls_descriptor_calls_expanded_in_cfun \
  2483.   (cfun->machine->tls_descriptor_call_expanded_p)
  2484. /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
  2485.    calls are optimized away, we try to detect cases in which it was
  2486.    optimized away.  Since such instructions (use (reg REG_SP)), we can
  2487.    verify whether there's any such instruction live by testing that
  2488.    REG_SP is live.  */
  2489. #define ix86_current_function_calls_tls_descriptor \
  2490.   (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
  2491. #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
  2492.  
  2493. /* Control behavior of x86_file_start.  */
  2494. #define X86_FILE_START_VERSION_DIRECTIVE false
  2495. #define X86_FILE_START_FLTUSED false
  2496.  
  2497. /* Flag to mark data that is in the large address area.  */
  2498. #define SYMBOL_FLAG_FAR_ADDR            (SYMBOL_FLAG_MACH_DEP << 0)
  2499. #define SYMBOL_REF_FAR_ADDR_P(X)        \
  2500.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
  2501.  
  2502. /* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
  2503.    have defined always, to avoid ifdefing.  */
  2504. #define SYMBOL_FLAG_DLLIMPORT           (SYMBOL_FLAG_MACH_DEP << 1)
  2505. #define SYMBOL_REF_DLLIMPORT_P(X) \
  2506.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
  2507.  
  2508. #define SYMBOL_FLAG_DLLEXPORT           (SYMBOL_FLAG_MACH_DEP << 2)
  2509. #define SYMBOL_REF_DLLEXPORT_P(X) \
  2510.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
  2511.  
  2512. #define SYMBOL_FLAG_STUBVAR     (SYMBOL_FLAG_MACH_DEP << 4)
  2513. #define SYMBOL_REF_STUBVAR_P(X) \
  2514.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
  2515.  
  2516. extern void debug_ready_dispatch (void);
  2517. extern void debug_dispatch_window (int);
  2518.  
  2519. /* The value at zero is only defined for the BMI instructions
  2520.    LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
  2521. #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
  2522.         ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
  2523. #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
  2524.         ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
  2525.  
  2526.  
  2527. /* Flags returned by ix86_get_callcvt ().  */
  2528. #define IX86_CALLCVT_CDECL      0x1
  2529. #define IX86_CALLCVT_STDCALL    0x2
  2530. #define IX86_CALLCVT_FASTCALL   0x4
  2531. #define IX86_CALLCVT_THISCALL   0x8
  2532. #define IX86_CALLCVT_REGPARM    0x10
  2533. #define IX86_CALLCVT_SSEREGPARM 0x20
  2534.  
  2535. #define IX86_BASE_CALLCVT(FLAGS) \
  2536.         ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
  2537.                     | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
  2538.  
  2539. #define RECIP_MASK_NONE         0x00
  2540. #define RECIP_MASK_DIV          0x01
  2541. #define RECIP_MASK_SQRT         0x02
  2542. #define RECIP_MASK_VEC_DIV      0x04
  2543. #define RECIP_MASK_VEC_SQRT     0x08
  2544. #define RECIP_MASK_ALL  (RECIP_MASK_DIV | RECIP_MASK_SQRT \
  2545.                          | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
  2546. #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
  2547.  
  2548. #define TARGET_RECIP_DIV        ((recip_mask & RECIP_MASK_DIV) != 0)
  2549. #define TARGET_RECIP_SQRT       ((recip_mask & RECIP_MASK_SQRT) != 0)
  2550. #define TARGET_RECIP_VEC_DIV    ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
  2551. #define TARGET_RECIP_VEC_SQRT   ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
  2552.  
  2553. #define IX86_HLE_ACQUIRE (1 << 16)
  2554. #define IX86_HLE_RELEASE (1 << 17)
  2555.  
  2556. /* For switching between functions with different target attributes.  */
  2557. #define SWITCHABLE_TARGET 1
  2558.  
  2559. /*
  2560. Local variables:
  2561. version-control: t
  2562. End:
  2563. */
  2564.