Subversion Repositories Kolibri OS

Rev

Rev 4874 | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1. /* Byte-wise substring search, using the Two-Way algorithm.
  2.  * Copyright (C) 2008, 2010 Eric Blake
  3.  * Permission to use, copy, modify, and distribute this software
  4.  * is freely granted, provided that this notice is preserved.
  5.  */
  6.  
  7.  
  8. /* Before including this file, you need to include <string.h>, and define:
  9.      RESULT_TYPE                A macro that expands to the return type.
  10.      AVAILABLE(h, h_l, j, n_l)  A macro that returns nonzero if there are
  11.                                 at least N_L bytes left starting at
  12.                                 H[J].  H is 'unsigned char *', H_L, J,
  13.                                 and N_L are 'size_t'; H_L is an
  14.                                 lvalue.  For NUL-terminated searches,
  15.                                 H_L can be modified each iteration to
  16.                                 avoid having to compute the end of H
  17.                                 up front.
  18.  
  19.   For case-insensitivity, you may optionally define:
  20.      CMP_FUNC(p1, p2, l)        A macro that returns 0 iff the first L
  21.                                 characters of P1 and P2 are equal.
  22.      CANON_ELEMENT(c)           A macro that canonicalizes an element
  23.                                 right after it has been fetched from
  24.                                 one of the two strings.  The argument
  25.                                 is an 'unsigned char'; the result must
  26.                                 be an 'unsigned char' as well.
  27.  
  28.   This file undefines the macros documented above, and defines
  29.   LONG_NEEDLE_THRESHOLD.
  30. */
  31.  
  32. #include <limits.h>
  33. #include <stdint.h>
  34.  
  35. /* We use the Two-Way string matching algorithm, which guarantees
  36.    linear complexity with constant space.  Additionally, for long
  37.    needles, we also use a bad character shift table similar to the
  38.    Boyer-Moore algorithm to achieve improved (potentially sub-linear)
  39.    performance.
  40.  
  41.    See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
  42.    and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
  43. */
  44.  
  45. /* Point at which computing a bad-byte shift table is likely to be
  46.    worthwhile.  Small needles should not compute a table, since it
  47.    adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
  48.    speedup no greater than a factor of NEEDLE_LEN.  The larger the
  49.    needle, the better the potential performance gain.  On the other
  50.    hand, on non-POSIX systems with CHAR_BIT larger than eight, the
  51.    memory required for the table is prohibitive.  */
  52. #if CHAR_BIT < 10
  53. # define LONG_NEEDLE_THRESHOLD 32U
  54. #else
  55. # define LONG_NEEDLE_THRESHOLD SIZE_MAX
  56. #endif
  57.  
  58. #define MAX(a, b) ((a < b) ? (b) : (a))
  59.  
  60. #ifndef CANON_ELEMENT
  61. # define CANON_ELEMENT(c) c
  62. #endif
  63. #ifndef CMP_FUNC
  64. # define CMP_FUNC memcmp
  65. #endif
  66.  
  67. /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
  68.    Return the index of the first byte in the right half, and set
  69.    *PERIOD to the global period of the right half.
  70.  
  71.    The global period of a string is the smallest index (possibly its
  72.    length) at which all remaining bytes in the string are repetitions
  73.    of the prefix (the last repetition may be a subset of the prefix).
  74.  
  75.    When NEEDLE is factored into two halves, a local period is the
  76.    length of the smallest word that shares a suffix with the left half
  77.    and shares a prefix with the right half.  All factorizations of a
  78.    non-empty NEEDLE have a local period of at least 1 and no greater
  79.    than NEEDLE_LEN.
  80.  
  81.    A critical factorization has the property that the local period
  82.    equals the global period.  All strings have at least one critical
  83.    factorization with the left half smaller than the global period.
  84.  
  85.    Given an ordered alphabet, a critical factorization can be computed
  86.    in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
  87.    larger of two ordered maximal suffixes.  The ordered maximal
  88.    suffixes are determined by lexicographic comparison of
  89.    periodicity.  */
  90. static size_t
  91. critical_factorization (const unsigned char *needle, size_t needle_len,
  92.                         size_t *period)
  93. {
  94.   /* Index of last byte of left half, or SIZE_MAX.  */
  95.   size_t max_suffix, max_suffix_rev;
  96.   size_t j; /* Index into NEEDLE for current candidate suffix.  */
  97.   size_t k; /* Offset into current period.  */
  98.   size_t p; /* Intermediate period.  */
  99.   unsigned char a, b; /* Current comparison bytes.  */
  100.  
  101.   /* Invariants:
  102.      0 <= j < NEEDLE_LEN - 1
  103.      -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
  104.      min(max_suffix, max_suffix_rev) < global period of NEEDLE
  105.      1 <= p <= global period of NEEDLE
  106.      p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
  107.      1 <= k <= p
  108.   */
  109.  
  110.   /* Perform lexicographic search.  */
  111.   max_suffix = SIZE_MAX;
  112.   j = 0;
  113.   k = p = 1;
  114.   while (j + k < needle_len)
  115.     {
  116.       a = CANON_ELEMENT (needle[j + k]);
  117.       b = CANON_ELEMENT (needle[(size_t)(max_suffix + k)]);
  118.       if (a < b)
  119.         {
  120.           /* Suffix is smaller, period is entire prefix so far.  */
  121.           j += k;
  122.           k = 1;
  123.           p = j - max_suffix;
  124.         }
  125.       else if (a == b)
  126.         {
  127.           /* Advance through repetition of the current period.  */
  128.           if (k != p)
  129.             ++k;
  130.           else
  131.             {
  132.               j += p;
  133.               k = 1;
  134.             }
  135.         }
  136.       else /* b < a */
  137.         {
  138.           /* Suffix is larger, start over from current location.  */
  139.           max_suffix = j++;
  140.           k = p = 1;
  141.         }
  142.     }
  143.   *period = p;
  144.  
  145.   /* Perform reverse lexicographic search.  */
  146.   max_suffix_rev = SIZE_MAX;
  147.   j = 0;
  148.   k = p = 1;
  149.   while (j + k < needle_len)
  150.     {
  151.       a = CANON_ELEMENT (needle[j + k]);
  152.       b = CANON_ELEMENT (needle[max_suffix_rev + k]);
  153.       if (b < a)
  154.         {
  155.           /* Suffix is smaller, period is entire prefix so far.  */
  156.           j += k;
  157.           k = 1;
  158.           p = j - max_suffix_rev;
  159.         }
  160.       else if (a == b)
  161.         {
  162.           /* Advance through repetition of the current period.  */
  163.           if (k != p)
  164.             ++k;
  165.           else
  166.             {
  167.               j += p;
  168.               k = 1;
  169.             }
  170.         }
  171.       else /* a < b */
  172.         {
  173.           /* Suffix is larger, start over from current location.  */
  174.           max_suffix_rev = j++;
  175.           k = p = 1;
  176.         }
  177.     }
  178.  
  179.   /* Choose the longer suffix.  Return the first byte of the right
  180.      half, rather than the last byte of the left half.  */
  181.   if (max_suffix_rev + 1 < max_suffix + 1)
  182.     return max_suffix + 1;
  183.   *period = p;
  184.   return max_suffix_rev + 1;
  185. }
  186.  
  187. /* Return the first location of non-empty NEEDLE within HAYSTACK, or
  188.    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
  189.    method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
  190.    Performance is guaranteed to be linear, with an initialization cost
  191.    of 2 * NEEDLE_LEN comparisons.
  192.  
  193.    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
  194.    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
  195.    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
  196.    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.  */
  197. static RETURN_TYPE
  198. two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
  199.                       const unsigned char *needle, size_t needle_len)
  200. {
  201.   size_t i; /* Index into current byte of NEEDLE.  */
  202.   size_t j; /* Index into current window of HAYSTACK.  */
  203.   size_t period; /* The period of the right half of needle.  */
  204.   size_t suffix; /* The index of the right half of needle.  */
  205.  
  206.   /* Factor the needle into two halves, such that the left half is
  207.      smaller than the global period, and the right half is
  208.      periodic (with a period as large as NEEDLE_LEN - suffix).  */
  209.   suffix = critical_factorization (needle, needle_len, &period);
  210.  
  211.   /* Perform the search.  Each iteration compares the right half
  212.      first.  */
  213.   if (CMP_FUNC (needle, needle + period, suffix) == 0)
  214.     {
  215.       /* Entire needle is periodic; a mismatch can only advance by the
  216.          period, so use memory to avoid rescanning known occurrences
  217.          of the period.  */
  218.       size_t memory = 0;
  219.       j = 0;
  220.       while (AVAILABLE (haystack, haystack_len, j, needle_len))
  221.         {
  222.           /* Scan for matches in right half.  */
  223.           i = MAX (suffix, memory);
  224.           while (i < needle_len && (CANON_ELEMENT (needle[i])
  225.                                     == CANON_ELEMENT (haystack[i + j])))
  226.             ++i;
  227.           if (needle_len <= i)
  228.             {
  229.               /* Scan for matches in left half.  */
  230.               i = suffix - 1;
  231.               while (memory < i + 1 && (CANON_ELEMENT (needle[i])
  232.                                         == CANON_ELEMENT (haystack[i + j])))
  233.                 --i;
  234.               if (i + 1 < memory + 1)
  235.                 return (RETURN_TYPE) (haystack + j);
  236.               /* No match, so remember how many repetitions of period
  237.                  on the right half were scanned.  */
  238.               j += period;
  239.               memory = needle_len - period;
  240.             }
  241.           else
  242.             {
  243.               j += i - suffix + 1;
  244.               memory = 0;
  245.             }
  246.         }
  247.     }
  248.   else
  249.     {
  250.       /* The two halves of needle are distinct; no extra memory is
  251.          required, and any mismatch results in a maximal shift.  */
  252.       period = MAX (suffix, needle_len - suffix) + 1;
  253.       j = 0;
  254.       while (AVAILABLE (haystack, haystack_len, j, needle_len))
  255.         {
  256.           /* Scan for matches in right half.  */
  257.           i = suffix;
  258.           while (i < needle_len && (CANON_ELEMENT (needle[i])
  259.                                     == CANON_ELEMENT (haystack[i + j])))
  260.             ++i;
  261.           if (needle_len <= i)
  262.             {
  263.               /* Scan for matches in left half.  */
  264.               i = suffix - 1;
  265.               while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
  266.                                        == CANON_ELEMENT (haystack[i + j])))
  267.                 --i;
  268.               if (i == SIZE_MAX)
  269.                 return (RETURN_TYPE) (haystack + j);
  270.               j += period;
  271.             }
  272.           else
  273.             j += i - suffix + 1;
  274.         }
  275.     }
  276.   return NULL;
  277. }
  278.  
  279. /* Return the first location of non-empty NEEDLE within HAYSTACK, or
  280.    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
  281.    method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
  282.    Performance is guaranteed to be linear, with an initialization cost
  283.    of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
  284.  
  285.    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
  286.    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
  287.    and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
  288.    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
  289.    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
  290.    sublinear performance is not possible.  */
  291. static RETURN_TYPE
  292. two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
  293.                      const unsigned char *needle, size_t needle_len)
  294. {
  295.   size_t i; /* Index into current byte of NEEDLE.  */
  296.   size_t j; /* Index into current window of HAYSTACK.  */
  297.   size_t period; /* The period of the right half of needle.  */
  298.   size_t suffix; /* The index of the right half of needle.  */
  299.   size_t shift_table[1U << CHAR_BIT]; /* See below.  */
  300.  
  301.   /* Factor the needle into two halves, such that the left half is
  302.      smaller than the global period, and the right half is
  303.      periodic (with a period as large as NEEDLE_LEN - suffix).  */
  304.   suffix = critical_factorization (needle, needle_len, &period);
  305.  
  306.   /* Populate shift_table.  For each possible byte value c,
  307.      shift_table[c] is the distance from the last occurrence of c to
  308.      the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
  309.      shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
  310.   for (i = 0; i < 1U << CHAR_BIT; i++)
  311.     shift_table[i] = needle_len;
  312.   for (i = 0; i < needle_len; i++)
  313.     shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
  314.  
  315.   /* Perform the search.  Each iteration compares the right half
  316.      first.  */
  317.   if (CMP_FUNC (needle, needle + period, suffix) == 0)
  318.     {
  319.       /* Entire needle is periodic; a mismatch can only advance by the
  320.          period, so use memory to avoid rescanning known occurrences
  321.          of the period.  */
  322.       size_t memory = 0;
  323.       size_t shift;
  324.       j = 0;
  325.       while (AVAILABLE (haystack, haystack_len, j, needle_len))
  326.         {
  327.           /* Check the last byte first; if it does not match, then
  328.              shift to the next possible match location.  */
  329.           shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
  330.           if (0 < shift)
  331.             {
  332.               if (memory && shift < period)
  333.                 {
  334.                   /* Since needle is periodic, but the last period has
  335.                      a byte out of place, there can be no match until
  336.                      after the mismatch.  */
  337.                   shift = needle_len - period;
  338.                 }
  339.               memory = 0;
  340.               j += shift;
  341.               continue;
  342.             }
  343.           /* Scan for matches in right half.  The last byte has
  344.              already been matched, by virtue of the shift table.  */
  345.           i = MAX (suffix, memory);
  346.           while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
  347.                                         == CANON_ELEMENT (haystack[i + j])))
  348.             ++i;
  349.           if (needle_len - 1 <= i)
  350.             {
  351.               /* Scan for matches in left half.  */
  352.               i = suffix - 1;
  353.               while (memory < i + 1 && (CANON_ELEMENT (needle[i])
  354.                                         == CANON_ELEMENT (haystack[i + j])))
  355.                 --i;
  356.               if (i + 1 < memory + 1)
  357.                 return (RETURN_TYPE) (haystack + j);
  358.               /* No match, so remember how many repetitions of period
  359.                  on the right half were scanned.  */
  360.               j += period;
  361.               memory = needle_len - period;
  362.             }
  363.           else
  364.             {
  365.               j += i - suffix + 1;
  366.               memory = 0;
  367.             }
  368.         }
  369.     }
  370.   else
  371.     {
  372.       /* The two halves of needle are distinct; no extra memory is
  373.          required, and any mismatch results in a maximal shift.  */
  374.       size_t shift;
  375.       period = MAX (suffix, needle_len - suffix) + 1;
  376.       j = 0;
  377.       while (AVAILABLE (haystack, haystack_len, j, needle_len))
  378.         {
  379.           /* Check the last byte first; if it does not match, then
  380.              shift to the next possible match location.  */
  381.           shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
  382.           if (0 < shift)
  383.             {
  384.               j += shift;
  385.               continue;
  386.             }
  387.           /* Scan for matches in right half.  The last byte has
  388.              already been matched, by virtue of the shift table.  */
  389.           i = suffix;
  390.           while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
  391.                                         == CANON_ELEMENT (haystack[i + j])))
  392.             ++i;
  393.           if (needle_len - 1 <= i)
  394.             {
  395.               /* Scan for matches in left half.  */
  396.               i = suffix - 1;
  397.               while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
  398.                                        == CANON_ELEMENT (haystack[i + j])))
  399.                 --i;
  400.               if (i == SIZE_MAX)
  401.                 return (RETURN_TYPE) (haystack + j);
  402.               j += period;
  403.             }
  404.           else
  405.             j += i - suffix + 1;
  406.         }
  407.     }
  408.   return NULL;
  409. }
  410.  
  411. #undef AVAILABLE
  412. #undef CANON_ELEMENT
  413. #undef CMP_FUNC
  414. #undef MAX
  415. #undef RETURN_TYPE
  416.