Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jmemmgr.c
  3.  *
  4.  * Copyright (C) 1991-1997, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains the JPEG system-independent memory management
  9.  * routines.  This code is usable across a wide variety of machines; most
  10.  * of the system dependencies have been isolated in a separate file.
  11.  * The major functions provided here are:
  12.  *   * pool-based allocation and freeing of memory;
  13.  *   * policy decisions about how to divide available memory among the
  14.  *     virtual arrays;
  15.  *   * control logic for swapping virtual arrays between main memory and
  16.  *     backing storage.
  17.  * The separate system-dependent file provides the actual backing-storage
  18.  * access code, and it contains the policy decision about how much total
  19.  * main memory to use.
  20.  * This file is system-dependent in the sense that some of its functions
  21.  * are unnecessary in some systems.  For example, if there is enough virtual
  22.  * memory so that backing storage will never be used, much of the virtual
  23.  * array control logic could be removed.  (Of course, if you have that much
  24.  * memory then you shouldn't care about a little bit of unused code...)
  25.  */
  26.  
  27. #define JPEG_INTERNALS
  28. #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
  29. #include "jinclude.h"
  30. #include "jpeglib.h"
  31. #include "jmemsys.h"            /* import the system-dependent declarations */
  32.  
  33. #ifndef NO_GETENV
  34. #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
  35. extern char * getenv JPP((const char * name));
  36. #endif
  37. #endif
  38.  
  39.  
  40. /*
  41.  * Some important notes:
  42.  *   The allocation routines provided here must never return NULL.
  43.  *   They should exit to error_exit if unsuccessful.
  44.  *
  45.  *   It's not a good idea to try to merge the sarray and barray routines,
  46.  *   even though they are textually almost the same, because samples are
  47.  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
  48.  *   in machines where byte pointers have a different representation from
  49.  *   word pointers, the resulting machine code could not be the same.
  50.  */
  51.  
  52.  
  53. /*
  54.  * Many machines require storage alignment: longs must start on 4-byte
  55.  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
  56.  * always returns pointers that are multiples of the worst-case alignment
  57.  * requirement, and we had better do so too.
  58.  * There isn't any really portable way to determine the worst-case alignment
  59.  * requirement.  This module assumes that the alignment requirement is
  60.  * multiples of sizeof(ALIGN_TYPE).
  61.  * By default, we define ALIGN_TYPE as double.  This is necessary on some
  62.  * workstations (where doubles really do need 8-byte alignment) and will work
  63.  * fine on nearly everything.  If your machine has lesser alignment needs,
  64.  * you can save a few bytes by making ALIGN_TYPE smaller.
  65.  * The only place I know of where this will NOT work is certain Macintosh
  66.  * 680x0 compilers that define double as a 10-byte IEEE extended float.
  67.  * Doing 10-byte alignment is counterproductive because longwords won't be
  68.  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
  69.  * such a compiler.
  70.  */
  71.  
  72. #ifndef ALIGN_TYPE              /* so can override from jconfig.h */
  73. #define ALIGN_TYPE  double
  74. #endif
  75.  
  76.  
  77. /*
  78.  * We allocate objects from "pools", where each pool is gotten with a single
  79.  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
  80.  * overhead within a pool, except for alignment padding.  Each pool has a
  81.  * header with a link to the next pool of the same class.
  82.  * Small and large pool headers are identical except that the latter's
  83.  * link pointer must be FAR on 80x86 machines.
  84.  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
  85.  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
  86.  * of the alignment requirement of ALIGN_TYPE.
  87.  */
  88.  
  89. typedef union small_pool_struct * small_pool_ptr;
  90.  
  91. typedef union small_pool_struct {
  92.   struct {
  93.     small_pool_ptr next;        /* next in list of pools */
  94.     size_t bytes_used;          /* how many bytes already used within pool */
  95.     size_t bytes_left;          /* bytes still available in this pool */
  96.   } hdr;
  97.   ALIGN_TYPE dummy;             /* included in union to ensure alignment */
  98. } small_pool_hdr;
  99.  
  100. typedef union large_pool_struct FAR * large_pool_ptr;
  101.  
  102. typedef union large_pool_struct {
  103.   struct {
  104.     large_pool_ptr next;        /* next in list of pools */
  105.     size_t bytes_used;          /* how many bytes already used within pool */
  106.     size_t bytes_left;          /* bytes still available in this pool */
  107.   } hdr;
  108.   ALIGN_TYPE dummy;             /* included in union to ensure alignment */
  109. } large_pool_hdr;
  110.  
  111.  
  112. /*
  113.  * Here is the full definition of a memory manager object.
  114.  */
  115.  
  116. typedef struct {
  117.   struct jpeg_memory_mgr pub;   /* public fields */
  118.  
  119.   /* Each pool identifier (lifetime class) names a linked list of pools. */
  120.   small_pool_ptr small_list[JPOOL_NUMPOOLS];
  121.   large_pool_ptr large_list[JPOOL_NUMPOOLS];
  122.  
  123.   /* Since we only have one lifetime class of virtual arrays, only one
  124.    * linked list is necessary (for each datatype).  Note that the virtual
  125.    * array control blocks being linked together are actually stored somewhere
  126.    * in the small-pool list.
  127.    */
  128.   jvirt_sarray_ptr virt_sarray_list;
  129.   jvirt_barray_ptr virt_barray_list;
  130.  
  131.   /* This counts total space obtained from jpeg_get_small/large */
  132.   long total_space_allocated;
  133.  
  134.   /* alloc_sarray and alloc_barray set this value for use by virtual
  135.    * array routines.
  136.    */
  137.   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
  138. } my_memory_mgr;
  139.  
  140. typedef my_memory_mgr * my_mem_ptr;
  141.  
  142.  
  143. /*
  144.  * The control blocks for virtual arrays.
  145.  * Note that these blocks are allocated in the "small" pool area.
  146.  * System-dependent info for the associated backing store (if any) is hidden
  147.  * inside the backing_store_info struct.
  148.  */
  149.  
  150. struct jvirt_sarray_control {
  151.   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
  152.   JDIMENSION rows_in_array;     /* total virtual array height */
  153.   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
  154.   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
  155.   JDIMENSION rows_in_mem;       /* height of memory buffer */
  156.   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
  157.   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
  158.   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
  159.   boolean pre_zero;             /* pre-zero mode requested? */
  160.   boolean dirty;                /* do current buffer contents need written? */
  161.   boolean b_s_open;             /* is backing-store data valid? */
  162.   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
  163.   backing_store_info b_s_info;  /* System-dependent control info */
  164. };
  165.  
  166. struct jvirt_barray_control {
  167.   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
  168.   JDIMENSION rows_in_array;     /* total virtual array height */
  169.   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
  170.   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
  171.   JDIMENSION rows_in_mem;       /* height of memory buffer */
  172.   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
  173.   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
  174.   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
  175.   boolean pre_zero;             /* pre-zero mode requested? */
  176.   boolean dirty;                /* do current buffer contents need written? */
  177.   boolean b_s_open;             /* is backing-store data valid? */
  178.   jvirt_barray_ptr next;        /* link to next virtual barray control block */
  179.   backing_store_info b_s_info;  /* System-dependent control info */
  180. };
  181.  
  182.  
  183. #ifdef MEM_STATS                /* optional extra stuff for statistics */
  184.  
  185. LOCAL(void)
  186. print_mem_stats (j_common_ptr cinfo, int pool_id)
  187. {
  188.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  189.   small_pool_ptr shdr_ptr;
  190.   large_pool_ptr lhdr_ptr;
  191.  
  192.   /* Since this is only a debugging stub, we can cheat a little by using
  193.    * fprintf directly rather than going through the trace message code.
  194.    * This is helpful because message parm array can't handle longs.
  195.    */
  196.   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
  197.           pool_id, mem->total_space_allocated);
  198.  
  199.   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
  200.        lhdr_ptr = lhdr_ptr->hdr.next) {
  201.     fprintf(stderr, "  Large chunk used %ld\n",
  202.             (long) lhdr_ptr->hdr.bytes_used);
  203.   }
  204.  
  205.   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
  206.        shdr_ptr = shdr_ptr->hdr.next) {
  207.     fprintf(stderr, "  Small chunk used %ld free %ld\n",
  208.             (long) shdr_ptr->hdr.bytes_used,
  209.             (long) shdr_ptr->hdr.bytes_left);
  210.   }
  211. }
  212.  
  213. #endif /* MEM_STATS */
  214.  
  215.  
  216. LOCAL(void)
  217. out_of_memory (j_common_ptr cinfo, int which)
  218. /* Report an out-of-memory error and stop execution */
  219. /* If we compiled MEM_STATS support, report alloc requests before dying */
  220. {
  221. #ifdef MEM_STATS
  222.   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
  223. #endif
  224.   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
  225. }
  226.  
  227.  
  228. /*
  229.  * Allocation of "small" objects.
  230.  *
  231.  * For these, we use pooled storage.  When a new pool must be created,
  232.  * we try to get enough space for the current request plus a "slop" factor,
  233.  * where the slop will be the amount of leftover space in the new pool.
  234.  * The speed vs. space tradeoff is largely determined by the slop values.
  235.  * A different slop value is provided for each pool class (lifetime),
  236.  * and we also distinguish the first pool of a class from later ones.
  237.  * NOTE: the values given work fairly well on both 16- and 32-bit-int
  238.  * machines, but may be too small if longs are 64 bits or more.
  239.  */
  240.  
  241. static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
  242. {
  243.         1600,                   /* first PERMANENT pool */
  244.         16000                   /* first IMAGE pool */
  245. };
  246.  
  247. static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
  248. {
  249.         0,                      /* additional PERMANENT pools */
  250.         5000                    /* additional IMAGE pools */
  251. };
  252.  
  253. #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
  254.  
  255.  
  256. METHODDEF(void *)
  257. alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
  258. /* Allocate a "small" object */
  259. {
  260.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  261.   small_pool_ptr hdr_ptr, prev_hdr_ptr;
  262.   char * data_ptr;
  263.   size_t odd_bytes, min_request, slop;
  264.  
  265.   /* Check for unsatisfiable request (do now to ensure no overflow below) */
  266.   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
  267.     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
  268.  
  269.   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
  270.   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
  271.   if (odd_bytes > 0)
  272.     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
  273.  
  274.   /* See if space is available in any existing pool */
  275.   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  276.     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  277.   prev_hdr_ptr = NULL;
  278.   hdr_ptr = mem->small_list[pool_id];
  279.   while (hdr_ptr != NULL) {
  280.     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
  281.       break;                    /* found pool with enough space */
  282.     prev_hdr_ptr = hdr_ptr;
  283.     hdr_ptr = hdr_ptr->hdr.next;
  284.   }
  285.  
  286.   /* Time to make a new pool? */
  287.   if (hdr_ptr == NULL) {
  288.     /* min_request is what we need now, slop is what will be leftover */
  289.     min_request = sizeofobject + SIZEOF(small_pool_hdr);
  290.     if (prev_hdr_ptr == NULL)   /* first pool in class? */
  291.       slop = first_pool_slop[pool_id];
  292.     else
  293.       slop = extra_pool_slop[pool_id];
  294.     /* Don't ask for more than MAX_ALLOC_CHUNK */
  295.     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
  296.       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
  297.     /* Try to get space, if fail reduce slop and try again */
  298.     for (;;) {
  299.       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
  300.       if (hdr_ptr != NULL)
  301.         break;
  302.       slop /= 2;
  303.       if (slop < MIN_SLOP)      /* give up when it gets real small */
  304.         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
  305.     }
  306.     mem->total_space_allocated += min_request + slop;
  307.     /* Success, initialize the new pool header and add to end of list */
  308.     hdr_ptr->hdr.next = NULL;
  309.     hdr_ptr->hdr.bytes_used = 0;
  310.     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
  311.     if (prev_hdr_ptr == NULL)   /* first pool in class? */
  312.       mem->small_list[pool_id] = hdr_ptr;
  313.     else
  314.       prev_hdr_ptr->hdr.next = hdr_ptr;
  315.   }
  316.  
  317.   /* OK, allocate the object from the current pool */
  318.   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
  319.   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
  320.   hdr_ptr->hdr.bytes_used += sizeofobject;
  321.   hdr_ptr->hdr.bytes_left -= sizeofobject;
  322.  
  323.   return (void *) data_ptr;
  324. }
  325.  
  326.  
  327. /*
  328.  * Allocation of "large" objects.
  329.  *
  330.  * The external semantics of these are the same as "small" objects,
  331.  * except that FAR pointers are used on 80x86.  However the pool
  332.  * management heuristics are quite different.  We assume that each
  333.  * request is large enough that it may as well be passed directly to
  334.  * jpeg_get_large; the pool management just links everything together
  335.  * so that we can free it all on demand.
  336.  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
  337.  * structures.  The routines that create these structures (see below)
  338.  * deliberately bunch rows together to ensure a large request size.
  339.  */
  340.  
  341. METHODDEF(void FAR *)
  342. alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
  343. /* Allocate a "large" object */
  344. {
  345.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  346.   large_pool_ptr hdr_ptr;
  347.   size_t odd_bytes;
  348.  
  349.   /* Check for unsatisfiable request (do now to ensure no overflow below) */
  350.   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
  351.     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
  352.  
  353.   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
  354.   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
  355.   if (odd_bytes > 0)
  356.     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
  357.  
  358.   /* Always make a new pool */
  359.   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  360.     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  361.  
  362.   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
  363.                                             SIZEOF(large_pool_hdr));
  364.   if (hdr_ptr == NULL)
  365.     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
  366.   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
  367.  
  368.   /* Success, initialize the new pool header and add to list */
  369.   hdr_ptr->hdr.next = mem->large_list[pool_id];
  370.   /* We maintain space counts in each pool header for statistical purposes,
  371.    * even though they are not needed for allocation.
  372.    */
  373.   hdr_ptr->hdr.bytes_used = sizeofobject;
  374.   hdr_ptr->hdr.bytes_left = 0;
  375.   mem->large_list[pool_id] = hdr_ptr;
  376.  
  377.   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
  378. }
  379.  
  380.  
  381. /*
  382.  * Creation of 2-D sample arrays.
  383.  * The pointers are in near heap, the samples themselves in FAR heap.
  384.  *
  385.  * To minimize allocation overhead and to allow I/O of large contiguous
  386.  * blocks, we allocate the sample rows in groups of as many rows as possible
  387.  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
  388.  * NB: the virtual array control routines, later in this file, know about
  389.  * this chunking of rows.  The rowsperchunk value is left in the mem manager
  390.  * object so that it can be saved away if this sarray is the workspace for
  391.  * a virtual array.
  392.  */
  393.  
  394. METHODDEF(JSAMPARRAY)
  395. alloc_sarray (j_common_ptr cinfo, int pool_id,
  396.               JDIMENSION samplesperrow, JDIMENSION numrows)
  397. /* Allocate a 2-D sample array */
  398. {
  399.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  400.   JSAMPARRAY result;
  401.   JSAMPROW workspace;
  402.   JDIMENSION rowsperchunk, currow, i;
  403.   long ltemp;
  404.  
  405.   /* Calculate max # of rows allowed in one allocation chunk */
  406.   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
  407.           ((long) samplesperrow * SIZEOF(JSAMPLE));
  408.   if (ltemp <= 0)
  409.     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
  410.   if (ltemp < (long) numrows)
  411.     rowsperchunk = (JDIMENSION) ltemp;
  412.   else
  413.     rowsperchunk = numrows;
  414.   mem->last_rowsperchunk = rowsperchunk;
  415.  
  416.   /* Get space for row pointers (small object) */
  417.   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
  418.                                     (size_t) (numrows * SIZEOF(JSAMPROW)));
  419.  
  420.   /* Get the rows themselves (large objects) */
  421.   currow = 0;
  422.   while (currow < numrows) {
  423.     rowsperchunk = MIN(rowsperchunk, numrows - currow);
  424.     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
  425.         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
  426.                   * SIZEOF(JSAMPLE)));
  427.     for (i = rowsperchunk; i > 0; i--) {
  428.       result[currow++] = workspace;
  429.       workspace += samplesperrow;
  430.     }
  431.   }
  432.  
  433.   return result;
  434. }
  435.  
  436.  
  437. /*
  438.  * Creation of 2-D coefficient-block arrays.
  439.  * This is essentially the same as the code for sample arrays, above.
  440.  */
  441.  
  442. METHODDEF(JBLOCKARRAY)
  443. alloc_barray (j_common_ptr cinfo, int pool_id,
  444.               JDIMENSION blocksperrow, JDIMENSION numrows)
  445. /* Allocate a 2-D coefficient-block array */
  446. {
  447.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  448.   JBLOCKARRAY result;
  449.   JBLOCKROW workspace;
  450.   JDIMENSION rowsperchunk, currow, i;
  451.   long ltemp;
  452.  
  453.   /* Calculate max # of rows allowed in one allocation chunk */
  454.   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
  455.           ((long) blocksperrow * SIZEOF(JBLOCK));
  456.   if (ltemp <= 0)
  457.     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
  458.   if (ltemp < (long) numrows)
  459.     rowsperchunk = (JDIMENSION) ltemp;
  460.   else
  461.     rowsperchunk = numrows;
  462.   mem->last_rowsperchunk = rowsperchunk;
  463.  
  464.   /* Get space for row pointers (small object) */
  465.   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
  466.                                      (size_t) (numrows * SIZEOF(JBLOCKROW)));
  467.  
  468.   /* Get the rows themselves (large objects) */
  469.   currow = 0;
  470.   while (currow < numrows) {
  471.     rowsperchunk = MIN(rowsperchunk, numrows - currow);
  472.     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
  473.         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
  474.                   * SIZEOF(JBLOCK)));
  475.     for (i = rowsperchunk; i > 0; i--) {
  476.       result[currow++] = workspace;
  477.       workspace += blocksperrow;
  478.     }
  479.   }
  480.  
  481.   return result;
  482. }
  483.  
  484.  
  485. /*
  486.  * About virtual array management:
  487.  *
  488.  * The above "normal" array routines are only used to allocate strip buffers
  489.  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
  490.  * are handled as "virtual" arrays.  The array is still accessed a strip at a
  491.  * time, but the memory manager must save the whole array for repeated
  492.  * accesses.  The intended implementation is that there is a strip buffer in
  493.  * memory (as high as is possible given the desired memory limit), plus a
  494.  * backing file that holds the rest of the array.
  495.  *
  496.  * The request_virt_array routines are told the total size of the image and
  497.  * the maximum number of rows that will be accessed at once.  The in-memory
  498.  * buffer must be at least as large as the maxaccess value.
  499.  *
  500.  * The request routines create control blocks but not the in-memory buffers.
  501.  * That is postponed until realize_virt_arrays is called.  At that time the
  502.  * total amount of space needed is known (approximately, anyway), so free
  503.  * memory can be divided up fairly.
  504.  *
  505.  * The access_virt_array routines are responsible for making a specific strip
  506.  * area accessible (after reading or writing the backing file, if necessary).
  507.  * Note that the access routines are told whether the caller intends to modify
  508.  * the accessed strip; during a read-only pass this saves having to rewrite
  509.  * data to disk.  The access routines are also responsible for pre-zeroing
  510.  * any newly accessed rows, if pre-zeroing was requested.
  511.  *
  512.  * In current usage, the access requests are usually for nonoverlapping
  513.  * strips; that is, successive access start_row numbers differ by exactly
  514.  * num_rows = maxaccess.  This means we can get good performance with simple
  515.  * buffer dump/reload logic, by making the in-memory buffer be a multiple
  516.  * of the access height; then there will never be accesses across bufferload
  517.  * boundaries.  The code will still work with overlapping access requests,
  518.  * but it doesn't handle bufferload overlaps very efficiently.
  519.  */
  520.  
  521.  
  522. METHODDEF(jvirt_sarray_ptr)
  523. request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
  524.                      JDIMENSION samplesperrow, JDIMENSION numrows,
  525.                      JDIMENSION maxaccess)
  526. /* Request a virtual 2-D sample array */
  527. {
  528.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  529.   jvirt_sarray_ptr result;
  530.  
  531.   /* Only IMAGE-lifetime virtual arrays are currently supported */
  532.   if (pool_id != JPOOL_IMAGE)
  533.     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  534.  
  535.   /* get control block */
  536.   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
  537.                                           SIZEOF(struct jvirt_sarray_control));
  538.  
  539.   result->mem_buffer = NULL;    /* marks array not yet realized */
  540.   result->rows_in_array = numrows;
  541.   result->samplesperrow = samplesperrow;
  542.   result->maxaccess = maxaccess;
  543.   result->pre_zero = pre_zero;
  544.   result->b_s_open = FALSE;     /* no associated backing-store object */
  545.   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
  546.   mem->virt_sarray_list = result;
  547.  
  548.   return result;
  549. }
  550.  
  551.  
  552. METHODDEF(jvirt_barray_ptr)
  553. request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
  554.                      JDIMENSION blocksperrow, JDIMENSION numrows,
  555.                      JDIMENSION maxaccess)
  556. /* Request a virtual 2-D coefficient-block array */
  557. {
  558.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  559.   jvirt_barray_ptr result;
  560.  
  561.   /* Only IMAGE-lifetime virtual arrays are currently supported */
  562.   if (pool_id != JPOOL_IMAGE)
  563.     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  564.  
  565.   /* get control block */
  566.   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
  567.                                           SIZEOF(struct jvirt_barray_control));
  568.  
  569.   result->mem_buffer = NULL;    /* marks array not yet realized */
  570.   result->rows_in_array = numrows;
  571.   result->blocksperrow = blocksperrow;
  572.   result->maxaccess = maxaccess;
  573.   result->pre_zero = pre_zero;
  574.   result->b_s_open = FALSE;     /* no associated backing-store object */
  575.   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
  576.   mem->virt_barray_list = result;
  577.  
  578.   return result;
  579. }
  580.  
  581.  
  582. METHODDEF(void)
  583. realize_virt_arrays (j_common_ptr cinfo)
  584. /* Allocate the in-memory buffers for any unrealized virtual arrays */
  585. {
  586.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  587.   long space_per_minheight, maximum_space, avail_mem;
  588.   long minheights, max_minheights;
  589.   jvirt_sarray_ptr sptr;
  590.   jvirt_barray_ptr bptr;
  591.  
  592.   /* Compute the minimum space needed (maxaccess rows in each buffer)
  593.    * and the maximum space needed (full image height in each buffer).
  594.    * These may be of use to the system-dependent jpeg_mem_available routine.
  595.    */
  596.   space_per_minheight = 0;
  597.   maximum_space = 0;
  598.   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  599.     if (sptr->mem_buffer == NULL) { /* if not realized yet */
  600.       space_per_minheight += (long) sptr->maxaccess *
  601.                              (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
  602.       maximum_space += (long) sptr->rows_in_array *
  603.                        (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
  604.     }
  605.   }
  606.   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  607.     if (bptr->mem_buffer == NULL) { /* if not realized yet */
  608.       space_per_minheight += (long) bptr->maxaccess *
  609.                              (long) bptr->blocksperrow * SIZEOF(JBLOCK);
  610.       maximum_space += (long) bptr->rows_in_array *
  611.                        (long) bptr->blocksperrow * SIZEOF(JBLOCK);
  612.     }
  613.   }
  614.  
  615.   if (space_per_minheight <= 0)
  616.     return;                     /* no unrealized arrays, no work */
  617.  
  618.   /* Determine amount of memory to actually use; this is system-dependent. */
  619.   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
  620.                                  mem->total_space_allocated);
  621.  
  622.   /* If the maximum space needed is available, make all the buffers full
  623.    * height; otherwise parcel it out with the same number of minheights
  624.    * in each buffer.
  625.    */
  626.   if (avail_mem >= maximum_space)
  627.     max_minheights = 1000000000L;
  628.   else {
  629.     max_minheights = avail_mem / space_per_minheight;
  630.     /* If there doesn't seem to be enough space, try to get the minimum
  631.      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
  632.      */
  633.     if (max_minheights <= 0)
  634.       max_minheights = 1;
  635.   }
  636.  
  637.   /* Allocate the in-memory buffers and initialize backing store as needed. */
  638.  
  639.   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  640.     if (sptr->mem_buffer == NULL) { /* if not realized yet */
  641.       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
  642.       if (minheights <= max_minheights) {
  643.         /* This buffer fits in memory */
  644.         sptr->rows_in_mem = sptr->rows_in_array;
  645.       } else {
  646.         /* It doesn't fit in memory, create backing store. */
  647.         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
  648.         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
  649.                                 (long) sptr->rows_in_array *
  650.                                 (long) sptr->samplesperrow *
  651.                                 (long) SIZEOF(JSAMPLE));
  652.         sptr->b_s_open = TRUE;
  653.       }
  654.       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
  655.                                       sptr->samplesperrow, sptr->rows_in_mem);
  656.       sptr->rowsperchunk = mem->last_rowsperchunk;
  657.       sptr->cur_start_row = 0;
  658.       sptr->first_undef_row = 0;
  659.       sptr->dirty = FALSE;
  660.     }
  661.   }
  662.  
  663.   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  664.     if (bptr->mem_buffer == NULL) { /* if not realized yet */
  665.       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
  666.       if (minheights <= max_minheights) {
  667.         /* This buffer fits in memory */
  668.         bptr->rows_in_mem = bptr->rows_in_array;
  669.       } else {
  670.         /* It doesn't fit in memory, create backing store. */
  671.         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
  672.         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
  673.                                 (long) bptr->rows_in_array *
  674.                                 (long) bptr->blocksperrow *
  675.                                 (long) SIZEOF(JBLOCK));
  676.         bptr->b_s_open = TRUE;
  677.       }
  678.       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
  679.                                       bptr->blocksperrow, bptr->rows_in_mem);
  680.       bptr->rowsperchunk = mem->last_rowsperchunk;
  681.       bptr->cur_start_row = 0;
  682.       bptr->first_undef_row = 0;
  683.       bptr->dirty = FALSE;
  684.     }
  685.   }
  686. }
  687.  
  688.  
  689. LOCAL(void)
  690. do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
  691. /* Do backing store read or write of a virtual sample array */
  692. {
  693.   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
  694.  
  695.   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
  696.   file_offset = ptr->cur_start_row * bytesperrow;
  697.   /* Loop to read or write each allocation chunk in mem_buffer */
  698.   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
  699.     /* One chunk, but check for short chunk at end of buffer */
  700.     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
  701.     /* Transfer no more than is currently defined */
  702.     thisrow = (long) ptr->cur_start_row + i;
  703.     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
  704.     /* Transfer no more than fits in file */
  705.     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
  706.     if (rows <= 0)              /* this chunk might be past end of file! */
  707.       break;
  708.     byte_count = rows * bytesperrow;
  709.     if (writing)
  710.       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
  711.                                             (void FAR *) ptr->mem_buffer[i],
  712.                                             file_offset, byte_count);
  713.     else
  714.       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
  715.                                            (void FAR *) ptr->mem_buffer[i],
  716.                                            file_offset, byte_count);
  717.     file_offset += byte_count;
  718.   }
  719. }
  720.  
  721.  
  722. LOCAL(void)
  723. do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
  724. /* Do backing store read or write of a virtual coefficient-block array */
  725. {
  726.   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
  727.  
  728.   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
  729.   file_offset = ptr->cur_start_row * bytesperrow;
  730.   /* Loop to read or write each allocation chunk in mem_buffer */
  731.   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
  732.     /* One chunk, but check for short chunk at end of buffer */
  733.     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
  734.     /* Transfer no more than is currently defined */
  735.     thisrow = (long) ptr->cur_start_row + i;
  736.     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
  737.     /* Transfer no more than fits in file */
  738.     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
  739.     if (rows <= 0)              /* this chunk might be past end of file! */
  740.       break;
  741.     byte_count = rows * bytesperrow;
  742.     if (writing)
  743.       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
  744.                                             (void FAR *) ptr->mem_buffer[i],
  745.                                             file_offset, byte_count);
  746.     else
  747.       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
  748.                                            (void FAR *) ptr->mem_buffer[i],
  749.                                            file_offset, byte_count);
  750.     file_offset += byte_count;
  751.   }
  752. }
  753.  
  754.  
  755. METHODDEF(JSAMPARRAY)
  756. access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
  757.                     JDIMENSION start_row, JDIMENSION num_rows,
  758.                     boolean writable)
  759. /* Access the part of a virtual sample array starting at start_row */
  760. /* and extending for num_rows rows.  writable is true if  */
  761. /* caller intends to modify the accessed area. */
  762. {
  763.   JDIMENSION end_row = start_row + num_rows;
  764.   JDIMENSION undef_row;
  765.  
  766.   /* debugging check */
  767.   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
  768.       ptr->mem_buffer == NULL)
  769.     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  770.  
  771.   /* Make the desired part of the virtual array accessible */
  772.   if (start_row < ptr->cur_start_row ||
  773.       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
  774.     if (! ptr->b_s_open)
  775.       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
  776.     /* Flush old buffer contents if necessary */
  777.     if (ptr->dirty) {
  778.       do_sarray_io(cinfo, ptr, TRUE);
  779.       ptr->dirty = FALSE;
  780.     }
  781.     /* Decide what part of virtual array to access.
  782.      * Algorithm: if target address > current window, assume forward scan,
  783.      * load starting at target address.  If target address < current window,
  784.      * assume backward scan, load so that target area is top of window.
  785.      * Note that when switching from forward write to forward read, will have
  786.      * start_row = 0, so the limiting case applies and we load from 0 anyway.
  787.      */
  788.     if (start_row > ptr->cur_start_row) {
  789.       ptr->cur_start_row = start_row;
  790.     } else {
  791.       /* use long arithmetic here to avoid overflow & unsigned problems */
  792.       long ltemp;
  793.  
  794.       ltemp = (long) end_row - (long) ptr->rows_in_mem;
  795.       if (ltemp < 0)
  796.         ltemp = 0;              /* don't fall off front end of file */
  797.       ptr->cur_start_row = (JDIMENSION) ltemp;
  798.     }
  799.     /* Read in the selected part of the array.
  800.      * During the initial write pass, we will do no actual read
  801.      * because the selected part is all undefined.
  802.      */
  803.     do_sarray_io(cinfo, ptr, FALSE);
  804.   }
  805.   /* Ensure the accessed part of the array is defined; prezero if needed.
  806.    * To improve locality of access, we only prezero the part of the array
  807.    * that the caller is about to access, not the entire in-memory array.
  808.    */
  809.   if (ptr->first_undef_row < end_row) {
  810.     if (ptr->first_undef_row < start_row) {
  811.       if (writable)             /* writer skipped over a section of array */
  812.         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  813.       undef_row = start_row;    /* but reader is allowed to read ahead */
  814.     } else {
  815.       undef_row = ptr->first_undef_row;
  816.     }
  817.     if (writable)
  818.       ptr->first_undef_row = end_row;
  819.     if (ptr->pre_zero) {
  820.       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
  821.       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
  822.       end_row -= ptr->cur_start_row;
  823.       while (undef_row < end_row) {
  824.         jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
  825.         undef_row++;
  826.       }
  827.     } else {
  828.       if (! writable)           /* reader looking at undefined data */
  829.         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  830.     }
  831.   }
  832.   /* Flag the buffer dirty if caller will write in it */
  833.   if (writable)
  834.     ptr->dirty = TRUE;
  835.   /* Return address of proper part of the buffer */
  836.   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
  837. }
  838.  
  839.  
  840. METHODDEF(JBLOCKARRAY)
  841. access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
  842.                     JDIMENSION start_row, JDIMENSION num_rows,
  843.                     boolean writable)
  844. /* Access the part of a virtual block array starting at start_row */
  845. /* and extending for num_rows rows.  writable is true if  */
  846. /* caller intends to modify the accessed area. */
  847. {
  848.   JDIMENSION end_row = start_row + num_rows;
  849.   JDIMENSION undef_row;
  850.  
  851.   /* debugging check */
  852.   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
  853.       ptr->mem_buffer == NULL)
  854.     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  855.  
  856.   /* Make the desired part of the virtual array accessible */
  857.   if (start_row < ptr->cur_start_row ||
  858.       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
  859.     if (! ptr->b_s_open)
  860.       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
  861.     /* Flush old buffer contents if necessary */
  862.     if (ptr->dirty) {
  863.       do_barray_io(cinfo, ptr, TRUE);
  864.       ptr->dirty = FALSE;
  865.     }
  866.     /* Decide what part of virtual array to access.
  867.      * Algorithm: if target address > current window, assume forward scan,
  868.      * load starting at target address.  If target address < current window,
  869.      * assume backward scan, load so that target area is top of window.
  870.      * Note that when switching from forward write to forward read, will have
  871.      * start_row = 0, so the limiting case applies and we load from 0 anyway.
  872.      */
  873.     if (start_row > ptr->cur_start_row) {
  874.       ptr->cur_start_row = start_row;
  875.     } else {
  876.       /* use long arithmetic here to avoid overflow & unsigned problems */
  877.       long ltemp;
  878.  
  879.       ltemp = (long) end_row - (long) ptr->rows_in_mem;
  880.       if (ltemp < 0)
  881.         ltemp = 0;              /* don't fall off front end of file */
  882.       ptr->cur_start_row = (JDIMENSION) ltemp;
  883.     }
  884.     /* Read in the selected part of the array.
  885.      * During the initial write pass, we will do no actual read
  886.      * because the selected part is all undefined.
  887.      */
  888.     do_barray_io(cinfo, ptr, FALSE);
  889.   }
  890.   /* Ensure the accessed part of the array is defined; prezero if needed.
  891.    * To improve locality of access, we only prezero the part of the array
  892.    * that the caller is about to access, not the entire in-memory array.
  893.    */
  894.   if (ptr->first_undef_row < end_row) {
  895.     if (ptr->first_undef_row < start_row) {
  896.       if (writable)             /* writer skipped over a section of array */
  897.         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  898.       undef_row = start_row;    /* but reader is allowed to read ahead */
  899.     } else {
  900.       undef_row = ptr->first_undef_row;
  901.     }
  902.     if (writable)
  903.       ptr->first_undef_row = end_row;
  904.     if (ptr->pre_zero) {
  905.       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
  906.       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
  907.       end_row -= ptr->cur_start_row;
  908.       while (undef_row < end_row) {
  909.         jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
  910.         undef_row++;
  911.       }
  912.     } else {
  913.       if (! writable)           /* reader looking at undefined data */
  914.         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  915.     }
  916.   }
  917.   /* Flag the buffer dirty if caller will write in it */
  918.   if (writable)
  919.     ptr->dirty = TRUE;
  920.   /* Return address of proper part of the buffer */
  921.   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
  922. }
  923.  
  924.  
  925. /*
  926.  * Release all objects belonging to a specified pool.
  927.  */
  928.  
  929. METHODDEF(void)
  930. free_pool (j_common_ptr cinfo, int pool_id)
  931. {
  932.   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  933.   small_pool_ptr shdr_ptr;
  934.   large_pool_ptr lhdr_ptr;
  935.   size_t space_freed;
  936.  
  937.   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  938.     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  939.  
  940. #ifdef MEM_STATS
  941.   if (cinfo->err->trace_level > 1)
  942.     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
  943. #endif
  944.  
  945.   /* If freeing IMAGE pool, close any virtual arrays first */
  946.   if (pool_id == JPOOL_IMAGE) {
  947.     jvirt_sarray_ptr sptr;
  948.     jvirt_barray_ptr bptr;
  949.  
  950.     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  951.       if (sptr->b_s_open) {     /* there may be no backing store */
  952.         sptr->b_s_open = FALSE; /* prevent recursive close if error */
  953.         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
  954.       }
  955.     }
  956.     mem->virt_sarray_list = NULL;
  957.     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  958.       if (bptr->b_s_open) {     /* there may be no backing store */
  959.         bptr->b_s_open = FALSE; /* prevent recursive close if error */
  960.         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
  961.       }
  962.     }
  963.     mem->virt_barray_list = NULL;
  964.   }
  965.  
  966.   /* Release large objects */
  967.   lhdr_ptr = mem->large_list[pool_id];
  968.   mem->large_list[pool_id] = NULL;
  969.  
  970.   while (lhdr_ptr != NULL) {
  971.     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
  972.     space_freed = lhdr_ptr->hdr.bytes_used +
  973.                   lhdr_ptr->hdr.bytes_left +
  974.                   SIZEOF(large_pool_hdr);
  975.     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
  976.     mem->total_space_allocated -= space_freed;
  977.     lhdr_ptr = next_lhdr_ptr;
  978.   }
  979.  
  980.   /* Release small objects */
  981.   shdr_ptr = mem->small_list[pool_id];
  982.   mem->small_list[pool_id] = NULL;
  983.  
  984.   while (shdr_ptr != NULL) {
  985.     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
  986.     space_freed = shdr_ptr->hdr.bytes_used +
  987.                   shdr_ptr->hdr.bytes_left +
  988.                   SIZEOF(small_pool_hdr);
  989.     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
  990.     mem->total_space_allocated -= space_freed;
  991.     shdr_ptr = next_shdr_ptr;
  992.   }
  993. }
  994.  
  995.  
  996. /*
  997.  * Close up shop entirely.
  998.  * Note that this cannot be called unless cinfo->mem is non-NULL.
  999.  */
  1000.  
  1001. METHODDEF(void)
  1002. self_destruct (j_common_ptr cinfo)
  1003. {
  1004.   int pool;
  1005.  
  1006.   /* Close all backing store, release all memory.
  1007.    * Releasing pools in reverse order might help avoid fragmentation
  1008.    * with some (brain-damaged) malloc libraries.
  1009.    */
  1010.   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  1011.     free_pool(cinfo, pool);
  1012.   }
  1013.  
  1014.   /* Release the memory manager control block too. */
  1015.   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
  1016.   cinfo->mem = NULL;            /* ensures I will be called only once */
  1017.  
  1018.   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
  1019. }
  1020.  
  1021.  
  1022. /*
  1023.  * Memory manager initialization.
  1024.  * When this is called, only the error manager pointer is valid in cinfo!
  1025.  */
  1026.  
  1027. GLOBAL(void)
  1028. jinit_memory_mgr (j_common_ptr cinfo)
  1029. {
  1030.   my_mem_ptr mem;
  1031.   long max_to_use;
  1032.   int pool;
  1033.   size_t test_mac;
  1034.  
  1035.   cinfo->mem = NULL;            /* for safety if init fails */
  1036.  
  1037.   /* Check for configuration errors.
  1038.    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
  1039.    * doesn't reflect any real hardware alignment requirement.
  1040.    * The test is a little tricky: for X>0, X and X-1 have no one-bits
  1041.    * in common if and only if X is a power of 2, ie has only one one-bit.
  1042.    * Some compilers may give an "unreachable code" warning here; ignore it.
  1043.    */
  1044.   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
  1045.     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
  1046.   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
  1047.    * a multiple of SIZEOF(ALIGN_TYPE).
  1048.    * Again, an "unreachable code" warning may be ignored here.
  1049.    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
  1050.    */
  1051.   test_mac = (size_t) MAX_ALLOC_CHUNK;
  1052.   if ((long) test_mac != MAX_ALLOC_CHUNK ||
  1053.       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
  1054.     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
  1055.  
  1056.   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
  1057.  
  1058.   /* Attempt to allocate memory manager's control block */
  1059.   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
  1060.  
  1061.   if (mem == NULL) {
  1062.     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
  1063.     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
  1064.   }
  1065.  
  1066.   /* OK, fill in the method pointers */
  1067.   mem->pub.alloc_small = alloc_small;
  1068.   mem->pub.alloc_large = alloc_large;
  1069.   mem->pub.alloc_sarray = alloc_sarray;
  1070.   mem->pub.alloc_barray = alloc_barray;
  1071.   mem->pub.request_virt_sarray = request_virt_sarray;
  1072.   mem->pub.request_virt_barray = request_virt_barray;
  1073.   mem->pub.realize_virt_arrays = realize_virt_arrays;
  1074.   mem->pub.access_virt_sarray = access_virt_sarray;
  1075.   mem->pub.access_virt_barray = access_virt_barray;
  1076.   mem->pub.free_pool = free_pool;
  1077.   mem->pub.self_destruct = self_destruct;
  1078.  
  1079.   /* Make MAX_ALLOC_CHUNK accessible to other modules */
  1080.   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
  1081.  
  1082.   /* Initialize working state */
  1083.   mem->pub.max_memory_to_use = max_to_use;
  1084.  
  1085.   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  1086.     mem->small_list[pool] = NULL;
  1087.     mem->large_list[pool] = NULL;
  1088.   }
  1089.   mem->virt_sarray_list = NULL;
  1090.   mem->virt_barray_list = NULL;
  1091.  
  1092.   mem->total_space_allocated = SIZEOF(my_memory_mgr);
  1093.  
  1094.   /* Declare ourselves open for business */
  1095.   cinfo->mem = & mem->pub;
  1096.  
  1097.   /* Check for an environment variable JPEGMEM; if found, override the
  1098.    * default max_memory setting from jpeg_mem_init.  Note that the
  1099.    * surrounding application may again override this value.
  1100.    * If your system doesn't support getenv(), define NO_GETENV to disable
  1101.    * this feature.
  1102.    */
  1103. #ifndef NO_GETENV
  1104.   { char * memenv;
  1105.  
  1106.     if ((memenv = getenv("JPEGMEM")) != NULL) {
  1107.       char ch = 'x';
  1108.  
  1109.       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
  1110.         if (ch == 'm' || ch == 'M')
  1111.           max_to_use *= 1000L;
  1112.         mem->pub.max_memory_to_use = max_to_use * 1000L;
  1113.       }
  1114.     }
  1115.   }
  1116. #endif
  1117.  
  1118. }
  1119.