Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jfdctint.c
  3.  *
  4.  * Copyright (C) 1991-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains a slow-but-accurate integer implementation of the
  9.  * forward DCT (Discrete Cosine Transform).
  10.  *
  11.  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  12.  * on each column.  Direct algorithms are also available, but they are
  13.  * much more complex and seem not to be any faster when reduced to code.
  14.  *
  15.  * This implementation is based on an algorithm described in
  16.  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  17.  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  18.  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  19.  * The primary algorithm described there uses 11 multiplies and 29 adds.
  20.  * We use their alternate method with 12 multiplies and 32 adds.
  21.  * The advantage of this method is that no data path contains more than one
  22.  * multiplication; this allows a very simple and accurate implementation in
  23.  * scaled fixed-point arithmetic, with a minimal number of shifts.
  24.  */
  25.  
  26. #define JPEG_INTERNALS
  27. #include "jinclude.h"
  28. #include "jpeglib.h"
  29. #include "jdct.h"               /* Private declarations for DCT subsystem */
  30.  
  31. #ifdef DCT_ISLOW_SUPPORTED
  32.  
  33.  
  34. /*
  35.  * This module is specialized to the case DCTSIZE = 8.
  36.  */
  37.  
  38. #if DCTSIZE != 8
  39.   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  40. #endif
  41.  
  42.  
  43. /*
  44.  * The poop on this scaling stuff is as follows:
  45.  *
  46.  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
  47.  * larger than the true DCT outputs.  The final outputs are therefore
  48.  * a factor of N larger than desired; since N=8 this can be cured by
  49.  * a simple right shift at the end of the algorithm.  The advantage of
  50.  * this arrangement is that we save two multiplications per 1-D DCT,
  51.  * because the y0 and y4 outputs need not be divided by sqrt(N).
  52.  * In the IJG code, this factor of 8 is removed by the quantization step
  53.  * (in jcdctmgr.c), NOT in this module.
  54.  *
  55.  * We have to do addition and subtraction of the integer inputs, which
  56.  * is no problem, and multiplication by fractional constants, which is
  57.  * a problem to do in integer arithmetic.  We multiply all the constants
  58.  * by CONST_SCALE and convert them to integer constants (thus retaining
  59.  * CONST_BITS bits of precision in the constants).  After doing a
  60.  * multiplication we have to divide the product by CONST_SCALE, with proper
  61.  * rounding, to produce the correct output.  This division can be done
  62.  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  63.  * as long as possible so that partial sums can be added together with
  64.  * full fractional precision.
  65.  *
  66.  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  67.  * they are represented to better-than-integral precision.  These outputs
  68.  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  69.  * with the recommended scaling.  (For 12-bit sample data, the intermediate
  70.  * array is INT32 anyway.)
  71.  *
  72.  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  73.  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  74.  * shows that the values given below are the most effective.
  75.  */
  76.  
  77. #if BITS_IN_JSAMPLE == 8
  78. #define CONST_BITS  13
  79. #define PASS1_BITS  2
  80. #else
  81. #define CONST_BITS  13
  82. #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
  83. #endif
  84.  
  85. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  86.  * causing a lot of useless floating-point operations at run time.
  87.  * To get around this we use the following pre-calculated constants.
  88.  * If you change CONST_BITS you may want to add appropriate values.
  89.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  90.  */
  91.  
  92. #if CONST_BITS == 13
  93. #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
  94. #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
  95. #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
  96. #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
  97. #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
  98. #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
  99. #define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
  100. #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
  101. #define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
  102. #define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
  103. #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
  104. #define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
  105. #else
  106. #define FIX_0_298631336  FIX(0.298631336)
  107. #define FIX_0_390180644  FIX(0.390180644)
  108. #define FIX_0_541196100  FIX(0.541196100)
  109. #define FIX_0_765366865  FIX(0.765366865)
  110. #define FIX_0_899976223  FIX(0.899976223)
  111. #define FIX_1_175875602  FIX(1.175875602)
  112. #define FIX_1_501321110  FIX(1.501321110)
  113. #define FIX_1_847759065  FIX(1.847759065)
  114. #define FIX_1_961570560  FIX(1.961570560)
  115. #define FIX_2_053119869  FIX(2.053119869)
  116. #define FIX_2_562915447  FIX(2.562915447)
  117. #define FIX_3_072711026  FIX(3.072711026)
  118. #endif
  119.  
  120.  
  121. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  122.  * For 8-bit samples with the recommended scaling, all the variable
  123.  * and constant values involved are no more than 16 bits wide, so a
  124.  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  125.  * For 12-bit samples, a full 32-bit multiplication will be needed.
  126.  */
  127.  
  128. #if BITS_IN_JSAMPLE == 8
  129. #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
  130. #else
  131. #define MULTIPLY(var,const)  ((var) * (const))
  132. #endif
  133.  
  134.  
  135. /*
  136.  * Perform the forward DCT on one block of samples.
  137.  */
  138.  
  139. GLOBAL(void)
  140. jpeg_fdct_islow (DCTELEM * data)
  141. {
  142.   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  143.   INT32 tmp10, tmp11, tmp12, tmp13;
  144.   INT32 z1, z2, z3, z4, z5;
  145.   DCTELEM *dataptr;
  146.   int ctr;
  147.   SHIFT_TEMPS
  148.  
  149.   /* Pass 1: process rows. */
  150.   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  151.   /* furthermore, we scale the results by 2**PASS1_BITS. */
  152.  
  153.   dataptr = data;
  154.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  155.     tmp0 = dataptr[0] + dataptr[7];
  156.     tmp7 = dataptr[0] - dataptr[7];
  157.     tmp1 = dataptr[1] + dataptr[6];
  158.     tmp6 = dataptr[1] - dataptr[6];
  159.     tmp2 = dataptr[2] + dataptr[5];
  160.     tmp5 = dataptr[2] - dataptr[5];
  161.     tmp3 = dataptr[3] + dataptr[4];
  162.     tmp4 = dataptr[3] - dataptr[4];
  163.    
  164.     /* Even part per LL&M figure 1 --- note that published figure is faulty;
  165.      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  166.      */
  167.    
  168.     tmp10 = tmp0 + tmp3;
  169.     tmp13 = tmp0 - tmp3;
  170.     tmp11 = tmp1 + tmp2;
  171.     tmp12 = tmp1 - tmp2;
  172.    
  173.     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  174.     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  175.    
  176.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  177.     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  178.                                    CONST_BITS-PASS1_BITS);
  179.     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  180.                                    CONST_BITS-PASS1_BITS);
  181.    
  182.     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  183.      * cK represents cos(K*pi/16).
  184.      * i0..i3 in the paper are tmp4..tmp7 here.
  185.      */
  186.    
  187.     z1 = tmp4 + tmp7;
  188.     z2 = tmp5 + tmp6;
  189.     z3 = tmp4 + tmp6;
  190.     z4 = tmp5 + tmp7;
  191.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  192.    
  193.     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  194.     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  195.     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  196.     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  197.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  198.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  199.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  200.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  201.    
  202.     z3 += z5;
  203.     z4 += z5;
  204.    
  205.     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  206.     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  207.     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  208.     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  209.    
  210.     dataptr += DCTSIZE;         /* advance pointer to next row */
  211.   }
  212.  
  213.   /* Pass 2: process columns.
  214.    * We remove the PASS1_BITS scaling, but leave the results scaled up
  215.    * by an overall factor of 8.
  216.    */
  217.  
  218.   dataptr = data;
  219.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  220.     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  221.     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  222.     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  223.     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  224.     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  225.     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  226.     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  227.     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  228.    
  229.     /* Even part per LL&M figure 1 --- note that published figure is faulty;
  230.      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
  231.      */
  232.    
  233.     tmp10 = tmp0 + tmp3;
  234.     tmp13 = tmp0 - tmp3;
  235.     tmp11 = tmp1 + tmp2;
  236.     tmp12 = tmp1 - tmp2;
  237.    
  238.     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
  239.     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
  240.    
  241.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  242.     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  243.                                            CONST_BITS+PASS1_BITS);
  244.     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  245.                                            CONST_BITS+PASS1_BITS);
  246.    
  247.     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
  248.      * cK represents cos(K*pi/16).
  249.      * i0..i3 in the paper are tmp4..tmp7 here.
  250.      */
  251.    
  252.     z1 = tmp4 + tmp7;
  253.     z2 = tmp5 + tmp6;
  254.     z3 = tmp4 + tmp6;
  255.     z4 = tmp5 + tmp7;
  256.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  257.    
  258.     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  259.     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  260.     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  261.     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  262.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  263.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  264.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  265.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  266.    
  267.     z3 += z5;
  268.     z4 += z5;
  269.    
  270.     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
  271.                                            CONST_BITS+PASS1_BITS);
  272.     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
  273.                                            CONST_BITS+PASS1_BITS);
  274.     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
  275.                                            CONST_BITS+PASS1_BITS);
  276.     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
  277.                                            CONST_BITS+PASS1_BITS);
  278.    
  279.     dataptr++;                  /* advance pointer to next column */
  280.   }
  281. }
  282.  
  283. #endif /* DCT_ISLOW_SUPPORTED */
  284.