Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jdsample.c
  3.  *
  4.  * Copyright (C) 1991-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains upsampling routines.
  9.  *
  10.  * Upsampling input data is counted in "row groups".  A row group
  11.  * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
  12.  * sample rows of each component.  Upsampling will normally produce
  13.  * max_v_samp_factor pixel rows from each row group (but this could vary
  14.  * if the upsampler is applying a scale factor of its own).
  15.  *
  16.  * An excellent reference for image resampling is
  17.  *   Digital Image Warping, George Wolberg, 1990.
  18.  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
  19.  */
  20.  
  21. #define JPEG_INTERNALS
  22. #include "jinclude.h"
  23. #include "jpeglib.h"
  24.  
  25.  
  26. /* Pointer to routine to upsample a single component */
  27. typedef JMETHOD(void, upsample1_ptr,
  28.                 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  29.                  JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
  30.  
  31. /* Private subobject */
  32.  
  33. typedef struct {
  34.   struct jpeg_upsampler pub;    /* public fields */
  35.  
  36.   /* Color conversion buffer.  When using separate upsampling and color
  37.    * conversion steps, this buffer holds one upsampled row group until it
  38.    * has been color converted and output.
  39.    * Note: we do not allocate any storage for component(s) which are full-size,
  40.    * ie do not need rescaling.  The corresponding entry of color_buf[] is
  41.    * simply set to point to the input data array, thereby avoiding copying.
  42.    */
  43.   JSAMPARRAY color_buf[MAX_COMPONENTS];
  44.  
  45.   /* Per-component upsampling method pointers */
  46.   upsample1_ptr methods[MAX_COMPONENTS];
  47.  
  48.   int next_row_out;             /* counts rows emitted from color_buf */
  49.   JDIMENSION rows_to_go;        /* counts rows remaining in image */
  50.  
  51.   /* Height of an input row group for each component. */
  52.   int rowgroup_height[MAX_COMPONENTS];
  53.  
  54.   /* These arrays save pixel expansion factors so that int_expand need not
  55.    * recompute them each time.  They are unused for other upsampling methods.
  56.    */
  57.   UINT8 h_expand[MAX_COMPONENTS];
  58.   UINT8 v_expand[MAX_COMPONENTS];
  59. } my_upsampler;
  60.  
  61. typedef my_upsampler * my_upsample_ptr;
  62.  
  63.  
  64. /*
  65.  * Initialize for an upsampling pass.
  66.  */
  67.  
  68. METHODDEF(void)
  69. start_pass_upsample (j_decompress_ptr cinfo)
  70. {
  71.   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  72.  
  73.   /* Mark the conversion buffer empty */
  74.   upsample->next_row_out = cinfo->max_v_samp_factor;
  75.   /* Initialize total-height counter for detecting bottom of image */
  76.   upsample->rows_to_go = cinfo->output_height;
  77. }
  78.  
  79.  
  80. /*
  81.  * Control routine to do upsampling (and color conversion).
  82.  *
  83.  * In this version we upsample each component independently.
  84.  * We upsample one row group into the conversion buffer, then apply
  85.  * color conversion a row at a time.
  86.  */
  87.  
  88. METHODDEF(void)
  89. sep_upsample (j_decompress_ptr cinfo,
  90.               JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
  91.               JDIMENSION in_row_groups_avail,
  92.               JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  93.               JDIMENSION out_rows_avail)
  94. {
  95.   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  96.   int ci;
  97.   jpeg_component_info * compptr;
  98.   JDIMENSION num_rows;
  99.  
  100.   /* Fill the conversion buffer, if it's empty */
  101.   if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
  102.     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  103.          ci++, compptr++) {
  104.       /* Invoke per-component upsample method.  Notice we pass a POINTER
  105.        * to color_buf[ci], so that fullsize_upsample can change it.
  106.        */
  107.       (*upsample->methods[ci]) (cinfo, compptr,
  108.         input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
  109.         upsample->color_buf + ci);
  110.     }
  111.     upsample->next_row_out = 0;
  112.   }
  113.  
  114.   /* Color-convert and emit rows */
  115.  
  116.   /* How many we have in the buffer: */
  117.   num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
  118.   /* Not more than the distance to the end of the image.  Need this test
  119.    * in case the image height is not a multiple of max_v_samp_factor:
  120.    */
  121.   if (num_rows > upsample->rows_to_go)
  122.     num_rows = upsample->rows_to_go;
  123.   /* And not more than what the client can accept: */
  124.   out_rows_avail -= *out_row_ctr;
  125.   if (num_rows > out_rows_avail)
  126.     num_rows = out_rows_avail;
  127.  
  128.   (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
  129.                                      (JDIMENSION) upsample->next_row_out,
  130.                                      output_buf + *out_row_ctr,
  131.                                      (int) num_rows);
  132.  
  133.   /* Adjust counts */
  134.   *out_row_ctr += num_rows;
  135.   upsample->rows_to_go -= num_rows;
  136.   upsample->next_row_out += num_rows;
  137.   /* When the buffer is emptied, declare this input row group consumed */
  138.   if (upsample->next_row_out >= cinfo->max_v_samp_factor)
  139.     (*in_row_group_ctr)++;
  140. }
  141.  
  142.  
  143. /*
  144.  * These are the routines invoked by sep_upsample to upsample pixel values
  145.  * of a single component.  One row group is processed per call.
  146.  */
  147.  
  148.  
  149. /*
  150.  * For full-size components, we just make color_buf[ci] point at the
  151.  * input buffer, and thus avoid copying any data.  Note that this is
  152.  * safe only because sep_upsample doesn't declare the input row group
  153.  * "consumed" until we are done color converting and emitting it.
  154.  */
  155.  
  156. METHODDEF(void)
  157. fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  158.                    JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  159. {
  160.   *output_data_ptr = input_data;
  161. }
  162.  
  163.  
  164. /*
  165.  * This is a no-op version used for "uninteresting" components.
  166.  * These components will not be referenced by color conversion.
  167.  */
  168.  
  169. METHODDEF(void)
  170. noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  171.                JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  172. {
  173.   *output_data_ptr = NULL;      /* safety check */
  174. }
  175.  
  176.  
  177. /*
  178.  * This version handles any integral sampling ratios.
  179.  * This is not used for typical JPEG files, so it need not be fast.
  180.  * Nor, for that matter, is it particularly accurate: the algorithm is
  181.  * simple replication of the input pixel onto the corresponding output
  182.  * pixels.  The hi-falutin sampling literature refers to this as a
  183.  * "box filter".  A box filter tends to introduce visible artifacts,
  184.  * so if you are actually going to use 3:1 or 4:1 sampling ratios
  185.  * you would be well advised to improve this code.
  186.  */
  187.  
  188. METHODDEF(void)
  189. int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  190.               JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  191. {
  192.   my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  193.   JSAMPARRAY output_data = *output_data_ptr;
  194.   register JSAMPROW inptr, outptr;
  195.   register JSAMPLE invalue;
  196.   register int h;
  197.   JSAMPROW outend;
  198.   int h_expand, v_expand;
  199.   int inrow, outrow;
  200.  
  201.   h_expand = upsample->h_expand[compptr->component_index];
  202.   v_expand = upsample->v_expand[compptr->component_index];
  203.  
  204.   inrow = outrow = 0;
  205.   while (outrow < cinfo->max_v_samp_factor) {
  206.     /* Generate one output row with proper horizontal expansion */
  207.     inptr = input_data[inrow];
  208.     outptr = output_data[outrow];
  209.     outend = outptr + cinfo->output_width;
  210.     while (outptr < outend) {
  211.       invalue = *inptr++;       /* don't need GETJSAMPLE() here */
  212.       for (h = h_expand; h > 0; h--) {
  213.         *outptr++ = invalue;
  214.       }
  215.     }
  216.     /* Generate any additional output rows by duplicating the first one */
  217.     if (v_expand > 1) {
  218.       jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
  219.                         v_expand-1, cinfo->output_width);
  220.     }
  221.     inrow++;
  222.     outrow += v_expand;
  223.   }
  224. }
  225.  
  226.  
  227. /*
  228.  * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
  229.  * It's still a box filter.
  230.  */
  231.  
  232. METHODDEF(void)
  233. h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  234.                JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  235. {
  236.   JSAMPARRAY output_data = *output_data_ptr;
  237.   register JSAMPROW inptr, outptr;
  238.   register JSAMPLE invalue;
  239.   JSAMPROW outend;
  240.   int inrow;
  241.  
  242.   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
  243.     inptr = input_data[inrow];
  244.     outptr = output_data[inrow];
  245.     outend = outptr + cinfo->output_width;
  246.     while (outptr < outend) {
  247.       invalue = *inptr++;       /* don't need GETJSAMPLE() here */
  248.       *outptr++ = invalue;
  249.       *outptr++ = invalue;
  250.     }
  251.   }
  252. }
  253.  
  254.  
  255. /*
  256.  * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
  257.  * It's still a box filter.
  258.  */
  259.  
  260. METHODDEF(void)
  261. h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  262.                JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  263. {
  264.   JSAMPARRAY output_data = *output_data_ptr;
  265.   register JSAMPROW inptr, outptr;
  266.   register JSAMPLE invalue;
  267.   JSAMPROW outend;
  268.   int inrow, outrow;
  269.  
  270.   inrow = outrow = 0;
  271.   while (outrow < cinfo->max_v_samp_factor) {
  272.     inptr = input_data[inrow];
  273.     outptr = output_data[outrow];
  274.     outend = outptr + cinfo->output_width;
  275.     while (outptr < outend) {
  276.       invalue = *inptr++;       /* don't need GETJSAMPLE() here */
  277.       *outptr++ = invalue;
  278.       *outptr++ = invalue;
  279.     }
  280.     jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
  281.                       1, cinfo->output_width);
  282.     inrow++;
  283.     outrow += 2;
  284.   }
  285. }
  286.  
  287.  
  288. /*
  289.  * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
  290.  *
  291.  * The upsampling algorithm is linear interpolation between pixel centers,
  292.  * also known as a "triangle filter".  This is a good compromise between
  293.  * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
  294.  * of the way between input pixel centers.
  295.  *
  296.  * A note about the "bias" calculations: when rounding fractional values to
  297.  * integer, we do not want to always round 0.5 up to the next integer.
  298.  * If we did that, we'd introduce a noticeable bias towards larger values.
  299.  * Instead, this code is arranged so that 0.5 will be rounded up or down at
  300.  * alternate pixel locations (a simple ordered dither pattern).
  301.  */
  302.  
  303. METHODDEF(void)
  304. h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  305.                      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  306. {
  307.   JSAMPARRAY output_data = *output_data_ptr;
  308.   register JSAMPROW inptr, outptr;
  309.   register int invalue;
  310.   register JDIMENSION colctr;
  311.   int inrow;
  312.  
  313.   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
  314.     inptr = input_data[inrow];
  315.     outptr = output_data[inrow];
  316.     /* Special case for first column */
  317.     invalue = GETJSAMPLE(*inptr++);
  318.     *outptr++ = (JSAMPLE) invalue;
  319.     *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
  320.  
  321.     for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
  322.       /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
  323.       invalue = GETJSAMPLE(*inptr++) * 3;
  324.       *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
  325.       *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
  326.     }
  327.  
  328.     /* Special case for last column */
  329.     invalue = GETJSAMPLE(*inptr);
  330.     *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
  331.     *outptr++ = (JSAMPLE) invalue;
  332.   }
  333. }
  334.  
  335.  
  336. /*
  337.  * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
  338.  * Again a triangle filter; see comments for h2v1 case, above.
  339.  *
  340.  * It is OK for us to reference the adjacent input rows because we demanded
  341.  * context from the main buffer controller (see initialization code).
  342.  */
  343.  
  344. METHODDEF(void)
  345. h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  346.                      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
  347. {
  348.   JSAMPARRAY output_data = *output_data_ptr;
  349.   register JSAMPROW inptr0, inptr1, outptr;
  350. #if BITS_IN_JSAMPLE == 8
  351.   register int thiscolsum, lastcolsum, nextcolsum;
  352. #else
  353.   register INT32 thiscolsum, lastcolsum, nextcolsum;
  354. #endif
  355.   register JDIMENSION colctr;
  356.   int inrow, outrow, v;
  357.  
  358.   inrow = outrow = 0;
  359.   while (outrow < cinfo->max_v_samp_factor) {
  360.     for (v = 0; v < 2; v++) {
  361.       /* inptr0 points to nearest input row, inptr1 points to next nearest */
  362.       inptr0 = input_data[inrow];
  363.       if (v == 0)               /* next nearest is row above */
  364.         inptr1 = input_data[inrow-1];
  365.       else                      /* next nearest is row below */
  366.         inptr1 = input_data[inrow+1];
  367.       outptr = output_data[outrow++];
  368.  
  369.       /* Special case for first column */
  370.       thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
  371.       nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
  372.       *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
  373.       *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
  374.       lastcolsum = thiscolsum; thiscolsum = nextcolsum;
  375.  
  376.       for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
  377.         /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
  378.         /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
  379.         nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
  380.         *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
  381.         *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
  382.         lastcolsum = thiscolsum; thiscolsum = nextcolsum;
  383.       }
  384.  
  385.       /* Special case for last column */
  386.       *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
  387.       *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
  388.     }
  389.     inrow++;
  390.   }
  391. }
  392.  
  393.  
  394. /*
  395.  * Module initialization routine for upsampling.
  396.  */
  397.  
  398. GLOBAL(void)
  399. jinit_upsampler (j_decompress_ptr cinfo)
  400. {
  401.   my_upsample_ptr upsample;
  402.   int ci;
  403.   jpeg_component_info * compptr;
  404.   boolean need_buffer, do_fancy;
  405.   int h_in_group, v_in_group, h_out_group, v_out_group;
  406.  
  407.   upsample = (my_upsample_ptr)
  408.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  409.                                 SIZEOF(my_upsampler));
  410.   cinfo->upsample = (struct jpeg_upsampler *) upsample;
  411.   upsample->pub.start_pass = start_pass_upsample;
  412.   upsample->pub.upsample = sep_upsample;
  413.   upsample->pub.need_context_rows = FALSE; /* until we find out differently */
  414.  
  415.   if (cinfo->CCIR601_sampling)  /* this isn't supported */
  416.     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
  417.  
  418.   /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
  419.    * so don't ask for it.
  420.    */
  421.   do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
  422.  
  423.   /* Verify we can handle the sampling factors, select per-component methods,
  424.    * and create storage as needed.
  425.    */
  426.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  427.        ci++, compptr++) {
  428.     /* Compute size of an "input group" after IDCT scaling.  This many samples
  429.      * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
  430.      */
  431.     h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
  432.                  cinfo->min_DCT_scaled_size;
  433.     v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  434.                  cinfo->min_DCT_scaled_size;
  435.     h_out_group = cinfo->max_h_samp_factor;
  436.     v_out_group = cinfo->max_v_samp_factor;
  437.     upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
  438.     need_buffer = TRUE;
  439.     if (! compptr->component_needed) {
  440.       /* Don't bother to upsample an uninteresting component. */
  441.       upsample->methods[ci] = noop_upsample;
  442.       need_buffer = FALSE;
  443.     } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
  444.       /* Fullsize components can be processed without any work. */
  445.       upsample->methods[ci] = fullsize_upsample;
  446.       need_buffer = FALSE;
  447.     } else if (h_in_group * 2 == h_out_group &&
  448.                v_in_group == v_out_group) {
  449.       /* Special cases for 2h1v upsampling */
  450.       if (do_fancy && compptr->downsampled_width > 2)
  451.         upsample->methods[ci] = h2v1_fancy_upsample;
  452.       else
  453.         upsample->methods[ci] = h2v1_upsample;
  454.     } else if (h_in_group * 2 == h_out_group &&
  455.                v_in_group * 2 == v_out_group) {
  456.       /* Special cases for 2h2v upsampling */
  457.       if (do_fancy && compptr->downsampled_width > 2) {
  458.         upsample->methods[ci] = h2v2_fancy_upsample;
  459.         upsample->pub.need_context_rows = TRUE;
  460.       } else
  461.         upsample->methods[ci] = h2v2_upsample;
  462.     } else if ((h_out_group % h_in_group) == 0 &&
  463.                (v_out_group % v_in_group) == 0) {
  464.       /* Generic integral-factors upsampling method */
  465.       upsample->methods[ci] = int_upsample;
  466.       upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
  467.       upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
  468.     } else
  469.       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
  470.     if (need_buffer) {
  471.       upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
  472.         ((j_common_ptr) cinfo, JPOOL_IMAGE,
  473.          (JDIMENSION) jround_up((long) cinfo->output_width,
  474.                                 (long) cinfo->max_h_samp_factor),
  475.          (JDIMENSION) cinfo->max_v_samp_factor);
  476.     }
  477.   }
  478. }
  479.