Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jdphuff.c
  3.  *
  4.  * Copyright (C) 1995-1997, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains Huffman entropy decoding routines for progressive JPEG.
  9.  *
  10.  * Much of the complexity here has to do with supporting input suspension.
  11.  * If the data source module demands suspension, we want to be able to back
  12.  * up to the start of the current MCU.  To do this, we copy state variables
  13.  * into local working storage, and update them back to the permanent
  14.  * storage only upon successful completion of an MCU.
  15.  */
  16.  
  17. #define JPEG_INTERNALS
  18. #include "jinclude.h"
  19. #include "jpeglib.h"
  20. #include "jdhuff.h"             /* Declarations shared with jdhuff.c */
  21.  
  22.  
  23. #ifdef D_PROGRESSIVE_SUPPORTED
  24.  
  25. /*
  26.  * Expanded entropy decoder object for progressive Huffman decoding.
  27.  *
  28.  * The savable_state subrecord contains fields that change within an MCU,
  29.  * but must not be updated permanently until we complete the MCU.
  30.  */
  31.  
  32. typedef struct {
  33.   unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
  34.   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
  35. } savable_state;
  36.  
  37. /* This macro is to work around compilers with missing or broken
  38.  * structure assignment.  You'll need to fix this code if you have
  39.  * such a compiler and you change MAX_COMPS_IN_SCAN.
  40.  */
  41.  
  42. #ifndef NO_STRUCT_ASSIGN
  43. #define ASSIGN_STATE(dest,src)  ((dest) = (src))
  44. #else
  45. #if MAX_COMPS_IN_SCAN == 4
  46. #define ASSIGN_STATE(dest,src)  \
  47.         ((dest).EOBRUN = (src).EOBRUN, \
  48.          (dest).last_dc_val[0] = (src).last_dc_val[0], \
  49.          (dest).last_dc_val[1] = (src).last_dc_val[1], \
  50.          (dest).last_dc_val[2] = (src).last_dc_val[2], \
  51.          (dest).last_dc_val[3] = (src).last_dc_val[3])
  52. #endif
  53. #endif
  54.  
  55.  
  56. typedef struct {
  57.   struct jpeg_entropy_decoder pub; /* public fields */
  58.  
  59.   /* These fields are loaded into local variables at start of each MCU.
  60.    * In case of suspension, we exit WITHOUT updating them.
  61.    */
  62.   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
  63.   savable_state saved;          /* Other state at start of MCU */
  64.  
  65.   /* These fields are NOT loaded into local working state. */
  66.   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
  67.  
  68.   /* Pointers to derived tables (these workspaces have image lifespan) */
  69.   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
  70.  
  71.   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
  72. } phuff_entropy_decoder;
  73.  
  74. typedef phuff_entropy_decoder * phuff_entropy_ptr;
  75.  
  76. /* Forward declarations */
  77. METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
  78.                                             JBLOCKROW *MCU_data));
  79. METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
  80.                                             JBLOCKROW *MCU_data));
  81. METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
  82.                                              JBLOCKROW *MCU_data));
  83. METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
  84.                                              JBLOCKROW *MCU_data));
  85.  
  86.  
  87. /*
  88.  * Initialize for a Huffman-compressed scan.
  89.  */
  90.  
  91. METHODDEF(void)
  92. start_pass_phuff_decoder (j_decompress_ptr cinfo)
  93. {
  94.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  95.   boolean is_DC_band, bad;
  96.   int ci, coefi, tbl;
  97.   int *coef_bit_ptr;
  98.   jpeg_component_info * compptr;
  99.  
  100.   is_DC_band = (cinfo->Ss == 0);
  101.  
  102.   /* Validate scan parameters */
  103.   bad = FALSE;
  104.   if (is_DC_band) {
  105.     if (cinfo->Se != 0)
  106.       bad = TRUE;
  107.   } else {
  108.     /* need not check Ss/Se < 0 since they came from unsigned bytes */
  109.     if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
  110.       bad = TRUE;
  111.     /* AC scans may have only one component */
  112.     if (cinfo->comps_in_scan != 1)
  113.       bad = TRUE;
  114.   }
  115.   if (cinfo->Ah != 0) {
  116.     /* Successive approximation refinement scan: must have Al = Ah-1. */
  117.     if (cinfo->Al != cinfo->Ah-1)
  118.       bad = TRUE;
  119.   }
  120.   if (cinfo->Al > 13)           /* need not check for < 0 */
  121.     bad = TRUE;
  122.   /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
  123.    * but the spec doesn't say so, and we try to be liberal about what we
  124.    * accept.  Note: large Al values could result in out-of-range DC
  125.    * coefficients during early scans, leading to bizarre displays due to
  126.    * overflows in the IDCT math.  But we won't crash.
  127.    */
  128.   if (bad)
  129.     ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
  130.              cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
  131.   /* Update progression status, and verify that scan order is legal.
  132.    * Note that inter-scan inconsistencies are treated as warnings
  133.    * not fatal errors ... not clear if this is right way to behave.
  134.    */
  135.   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  136.     int cindex = cinfo->cur_comp_info[ci]->component_index;
  137.     coef_bit_ptr = & cinfo->coef_bits[cindex][0];
  138.     if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
  139.       WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
  140.     for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
  141.       int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
  142.       if (cinfo->Ah != expected)
  143.         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
  144.       coef_bit_ptr[coefi] = cinfo->Al;
  145.     }
  146.   }
  147.  
  148.   /* Select MCU decoding routine */
  149.   if (cinfo->Ah == 0) {
  150.     if (is_DC_band)
  151.       entropy->pub.decode_mcu = decode_mcu_DC_first;
  152.     else
  153.       entropy->pub.decode_mcu = decode_mcu_AC_first;
  154.   } else {
  155.     if (is_DC_band)
  156.       entropy->pub.decode_mcu = decode_mcu_DC_refine;
  157.     else
  158.       entropy->pub.decode_mcu = decode_mcu_AC_refine;
  159.   }
  160.  
  161.   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  162.     compptr = cinfo->cur_comp_info[ci];
  163.     /* Make sure requested tables are present, and compute derived tables.
  164.      * We may build same derived table more than once, but it's not expensive.
  165.      */
  166.     if (is_DC_band) {
  167.       if (cinfo->Ah == 0) {     /* DC refinement needs no table */
  168.         tbl = compptr->dc_tbl_no;
  169.         jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
  170.                                 & entropy->derived_tbls[tbl]);
  171.       }
  172.     } else {
  173.       tbl = compptr->ac_tbl_no;
  174.       jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
  175.                               & entropy->derived_tbls[tbl]);
  176.       /* remember the single active table */
  177.       entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
  178.     }
  179.     /* Initialize DC predictions to 0 */
  180.     entropy->saved.last_dc_val[ci] = 0;
  181.   }
  182.  
  183.   /* Initialize bitread state variables */
  184.   entropy->bitstate.bits_left = 0;
  185.   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
  186.   entropy->pub.insufficient_data = FALSE;
  187.  
  188.   /* Initialize private state variables */
  189.   entropy->saved.EOBRUN = 0;
  190.  
  191.   /* Initialize restart counter */
  192.   entropy->restarts_to_go = cinfo->restart_interval;
  193. }
  194.  
  195.  
  196. /*
  197.  * Figure F.12: extend sign bit.
  198.  * On some machines, a shift and add will be faster than a table lookup.
  199.  */
  200.  
  201. #ifdef AVOID_TABLES
  202.  
  203. #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
  204.  
  205. #else
  206.  
  207. #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
  208.  
  209. static const int extend_test[16] =   /* entry n is 2**(n-1) */
  210.   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  211.     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
  212.  
  213. static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
  214.   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
  215.     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
  216.     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
  217.     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
  218.  
  219. #endif /* AVOID_TABLES */
  220.  
  221.  
  222. /*
  223.  * Check for a restart marker & resynchronize decoder.
  224.  * Returns FALSE if must suspend.
  225.  */
  226.  
  227. LOCAL(boolean)
  228. process_restart (j_decompress_ptr cinfo)
  229. {
  230.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  231.   int ci;
  232.  
  233.   /* Throw away any unused bits remaining in bit buffer; */
  234.   /* include any full bytes in next_marker's count of discarded bytes */
  235.   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
  236.   entropy->bitstate.bits_left = 0;
  237.  
  238.   /* Advance past the RSTn marker */
  239.   if (! (*cinfo->marker->read_restart_marker) (cinfo))
  240.     return FALSE;
  241.  
  242.   /* Re-initialize DC predictions to 0 */
  243.   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
  244.     entropy->saved.last_dc_val[ci] = 0;
  245.   /* Re-init EOB run count, too */
  246.   entropy->saved.EOBRUN = 0;
  247.  
  248.   /* Reset restart counter */
  249.   entropy->restarts_to_go = cinfo->restart_interval;
  250.  
  251.   /* Reset out-of-data flag, unless read_restart_marker left us smack up
  252.    * against a marker.  In that case we will end up treating the next data
  253.    * segment as empty, and we can avoid producing bogus output pixels by
  254.    * leaving the flag set.
  255.    */
  256.   if (cinfo->unread_marker == 0)
  257.     entropy->pub.insufficient_data = FALSE;
  258.  
  259.   return TRUE;
  260. }
  261.  
  262.  
  263. /*
  264.  * Huffman MCU decoding.
  265.  * Each of these routines decodes and returns one MCU's worth of
  266.  * Huffman-compressed coefficients.
  267.  * The coefficients are reordered from zigzag order into natural array order,
  268.  * but are not dequantized.
  269.  *
  270.  * The i'th block of the MCU is stored into the block pointed to by
  271.  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
  272.  *
  273.  * We return FALSE if data source requested suspension.  In that case no
  274.  * changes have been made to permanent state.  (Exception: some output
  275.  * coefficients may already have been assigned.  This is harmless for
  276.  * spectral selection, since we'll just re-assign them on the next call.
  277.  * Successive approximation AC refinement has to be more careful, however.)
  278.  */
  279.  
  280. /*
  281.  * MCU decoding for DC initial scan (either spectral selection,
  282.  * or first pass of successive approximation).
  283.  */
  284.  
  285. METHODDEF(boolean)
  286. decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
  287. {  
  288.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  289.   int Al = cinfo->Al;
  290.   register int s, r;
  291.   int blkn, ci;
  292.   JBLOCKROW block;
  293.   BITREAD_STATE_VARS;
  294.   savable_state state;
  295.   d_derived_tbl * tbl;
  296.   jpeg_component_info * compptr;
  297.  
  298.   /* Process restart marker if needed; may have to suspend */
  299.   if (cinfo->restart_interval) {
  300.     if (entropy->restarts_to_go == 0)
  301.       if (! process_restart(cinfo))
  302.         return FALSE;
  303.   }
  304.  
  305.   /* If we've run out of data, just leave the MCU set to zeroes.
  306.    * This way, we return uniform gray for the remainder of the segment.
  307.    */
  308.   if (! entropy->pub.insufficient_data) {
  309.  
  310.     /* Load up working state */
  311.     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
  312.     ASSIGN_STATE(state, entropy->saved);
  313.  
  314.     /* Outer loop handles each block in the MCU */
  315.  
  316.     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
  317.       block = MCU_data[blkn];
  318.       ci = cinfo->MCU_membership[blkn];
  319.       compptr = cinfo->cur_comp_info[ci];
  320.       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
  321.  
  322.       /* Decode a single block's worth of coefficients */
  323.  
  324.       /* Section F.2.2.1: decode the DC coefficient difference */
  325.       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
  326.       if (s) {
  327.         CHECK_BIT_BUFFER(br_state, s, return FALSE);
  328.         r = GET_BITS(s);
  329.         s = HUFF_EXTEND(r, s);
  330.       }
  331.  
  332.       /* Convert DC difference to actual value, update last_dc_val */
  333.       s += state.last_dc_val[ci];
  334.       state.last_dc_val[ci] = s;
  335.       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
  336.       (*block)[0] = (JCOEF) (s << Al);
  337.     }
  338.  
  339.     /* Completed MCU, so update state */
  340.     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
  341.     ASSIGN_STATE(entropy->saved, state);
  342.   }
  343.  
  344.   /* Account for restart interval (no-op if not using restarts) */
  345.   entropy->restarts_to_go--;
  346.  
  347.   return TRUE;
  348. }
  349.  
  350.  
  351. /*
  352.  * MCU decoding for AC initial scan (either spectral selection,
  353.  * or first pass of successive approximation).
  354.  */
  355.  
  356. METHODDEF(boolean)
  357. decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
  358. {  
  359.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  360.   int Se = cinfo->Se;
  361.   int Al = cinfo->Al;
  362.   register int s, k, r;
  363.   unsigned int EOBRUN;
  364.   JBLOCKROW block;
  365.   BITREAD_STATE_VARS;
  366.   d_derived_tbl * tbl;
  367.  
  368.   /* Process restart marker if needed; may have to suspend */
  369.   if (cinfo->restart_interval) {
  370.     if (entropy->restarts_to_go == 0)
  371.       if (! process_restart(cinfo))
  372.         return FALSE;
  373.   }
  374.  
  375.   /* If we've run out of data, just leave the MCU set to zeroes.
  376.    * This way, we return uniform gray for the remainder of the segment.
  377.    */
  378.   if (! entropy->pub.insufficient_data) {
  379.  
  380.     /* Load up working state.
  381.      * We can avoid loading/saving bitread state if in an EOB run.
  382.      */
  383.     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
  384.  
  385.     /* There is always only one block per MCU */
  386.  
  387.     if (EOBRUN > 0)             /* if it's a band of zeroes... */
  388.       EOBRUN--;                 /* ...process it now (we do nothing) */
  389.     else {
  390.       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
  391.       block = MCU_data[0];
  392.       tbl = entropy->ac_derived_tbl;
  393.  
  394.       for (k = cinfo->Ss; k <= Se; k++) {
  395.         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
  396.         r = s >> 4;
  397.         s &= 15;
  398.         if (s) {
  399.           k += r;
  400.           CHECK_BIT_BUFFER(br_state, s, return FALSE);
  401.           r = GET_BITS(s);
  402.           s = HUFF_EXTEND(r, s);
  403.           /* Scale and output coefficient in natural (dezigzagged) order */
  404.           (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
  405.         } else {
  406.           if (r == 15) {        /* ZRL */
  407.             k += 15;            /* skip 15 zeroes in band */
  408.           } else {              /* EOBr, run length is 2^r + appended bits */
  409.             EOBRUN = 1 << r;
  410.             if (r) {            /* EOBr, r > 0 */
  411.               CHECK_BIT_BUFFER(br_state, r, return FALSE);
  412.               r = GET_BITS(r);
  413.               EOBRUN += r;
  414.             }
  415.             EOBRUN--;           /* this band is processed at this moment */
  416.             break;              /* force end-of-band */
  417.           }
  418.         }
  419.       }
  420.  
  421.       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
  422.     }
  423.  
  424.     /* Completed MCU, so update state */
  425.     entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
  426.   }
  427.  
  428.   /* Account for restart interval (no-op if not using restarts) */
  429.   entropy->restarts_to_go--;
  430.  
  431.   return TRUE;
  432. }
  433.  
  434.  
  435. /*
  436.  * MCU decoding for DC successive approximation refinement scan.
  437.  * Note: we assume such scans can be multi-component, although the spec
  438.  * is not very clear on the point.
  439.  */
  440.  
  441. METHODDEF(boolean)
  442. decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
  443. {  
  444.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  445.   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
  446.   int blkn;
  447.   JBLOCKROW block;
  448.   BITREAD_STATE_VARS;
  449.  
  450.   /* Process restart marker if needed; may have to suspend */
  451.   if (cinfo->restart_interval) {
  452.     if (entropy->restarts_to_go == 0)
  453.       if (! process_restart(cinfo))
  454.         return FALSE;
  455.   }
  456.  
  457.   /* Not worth the cycles to check insufficient_data here,
  458.    * since we will not change the data anyway if we read zeroes.
  459.    */
  460.  
  461.   /* Load up working state */
  462.   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
  463.  
  464.   /* Outer loop handles each block in the MCU */
  465.  
  466.   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
  467.     block = MCU_data[blkn];
  468.  
  469.     /* Encoded data is simply the next bit of the two's-complement DC value */
  470.     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
  471.     if (GET_BITS(1))
  472.       (*block)[0] |= p1;
  473.     /* Note: since we use |=, repeating the assignment later is safe */
  474.   }
  475.  
  476.   /* Completed MCU, so update state */
  477.   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
  478.  
  479.   /* Account for restart interval (no-op if not using restarts) */
  480.   entropy->restarts_to_go--;
  481.  
  482.   return TRUE;
  483. }
  484.  
  485.  
  486. /*
  487.  * MCU decoding for AC successive approximation refinement scan.
  488.  */
  489.  
  490. METHODDEF(boolean)
  491. decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
  492. {  
  493.   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
  494.   int Se = cinfo->Se;
  495.   int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
  496.   int m1 = (-1) << cinfo->Al;   /* -1 in the bit position being coded */
  497.   register int s, k, r;
  498.   unsigned int EOBRUN;
  499.   JBLOCKROW block;
  500.   JCOEFPTR thiscoef;
  501.   BITREAD_STATE_VARS;
  502.   d_derived_tbl * tbl;
  503.   int num_newnz;
  504.   int newnz_pos[DCTSIZE2];
  505.  
  506.   /* Process restart marker if needed; may have to suspend */
  507.   if (cinfo->restart_interval) {
  508.     if (entropy->restarts_to_go == 0)
  509.       if (! process_restart(cinfo))
  510.         return FALSE;
  511.   }
  512.  
  513.   /* If we've run out of data, don't modify the MCU.
  514.    */
  515.   if (! entropy->pub.insufficient_data) {
  516.  
  517.     /* Load up working state */
  518.     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
  519.     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
  520.  
  521.     /* There is always only one block per MCU */
  522.     block = MCU_data[0];
  523.     tbl = entropy->ac_derived_tbl;
  524.  
  525.     /* If we are forced to suspend, we must undo the assignments to any newly
  526.      * nonzero coefficients in the block, because otherwise we'd get confused
  527.      * next time about which coefficients were already nonzero.
  528.      * But we need not undo addition of bits to already-nonzero coefficients;
  529.      * instead, we can test the current bit to see if we already did it.
  530.      */
  531.     num_newnz = 0;
  532.  
  533.     /* initialize coefficient loop counter to start of band */
  534.     k = cinfo->Ss;
  535.  
  536.     if (EOBRUN == 0) {
  537.       for (; k <= Se; k++) {
  538.         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
  539.         r = s >> 4;
  540.         s &= 15;
  541.         if (s) {
  542.           if (s != 1)           /* size of new coef should always be 1 */
  543.             WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
  544.           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
  545.           if (GET_BITS(1))
  546.             s = p1;             /* newly nonzero coef is positive */
  547.           else
  548.             s = m1;             /* newly nonzero coef is negative */
  549.         } else {
  550.           if (r != 15) {
  551.             EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
  552.             if (r) {
  553.               CHECK_BIT_BUFFER(br_state, r, goto undoit);
  554.               r = GET_BITS(r);
  555.               EOBRUN += r;
  556.             }
  557.             break;              /* rest of block is handled by EOB logic */
  558.           }
  559.           /* note s = 0 for processing ZRL */
  560.         }
  561.         /* Advance over already-nonzero coefs and r still-zero coefs,
  562.          * appending correction bits to the nonzeroes.  A correction bit is 1
  563.          * if the absolute value of the coefficient must be increased.
  564.          */
  565.         do {
  566.           thiscoef = *block + jpeg_natural_order[k];
  567.           if (*thiscoef != 0) {
  568.             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
  569.             if (GET_BITS(1)) {
  570.               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
  571.                 if (*thiscoef >= 0)
  572.                   *thiscoef += p1;
  573.                 else
  574.                   *thiscoef += m1;
  575.               }
  576.             }
  577.           } else {
  578.             if (--r < 0)
  579.               break;            /* reached target zero coefficient */
  580.           }
  581.           k++;
  582.         } while (k <= Se);
  583.         if (s) {
  584.           int pos = jpeg_natural_order[k];
  585.           /* Output newly nonzero coefficient */
  586.           (*block)[pos] = (JCOEF) s;
  587.           /* Remember its position in case we have to suspend */
  588.           newnz_pos[num_newnz++] = pos;
  589.         }
  590.       }
  591.     }
  592.  
  593.     if (EOBRUN > 0) {
  594.       /* Scan any remaining coefficient positions after the end-of-band
  595.        * (the last newly nonzero coefficient, if any).  Append a correction
  596.        * bit to each already-nonzero coefficient.  A correction bit is 1
  597.        * if the absolute value of the coefficient must be increased.
  598.        */
  599.       for (; k <= Se; k++) {
  600.         thiscoef = *block + jpeg_natural_order[k];
  601.         if (*thiscoef != 0) {
  602.           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
  603.           if (GET_BITS(1)) {
  604.             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
  605.               if (*thiscoef >= 0)
  606.                 *thiscoef += p1;
  607.               else
  608.                 *thiscoef += m1;
  609.             }
  610.           }
  611.         }
  612.       }
  613.       /* Count one block completed in EOB run */
  614.       EOBRUN--;
  615.     }
  616.  
  617.     /* Completed MCU, so update state */
  618.     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
  619.     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
  620.   }
  621.  
  622.   /* Account for restart interval (no-op if not using restarts) */
  623.   entropy->restarts_to_go--;
  624.  
  625.   return TRUE;
  626.  
  627. undoit:
  628.   /* Re-zero any output coefficients that we made newly nonzero */
  629.   while (num_newnz > 0)
  630.     (*block)[newnz_pos[--num_newnz]] = 0;
  631.  
  632.   return FALSE;
  633. }
  634.  
  635.  
  636. /*
  637.  * Module initialization routine for progressive Huffman entropy decoding.
  638.  */
  639.  
  640. GLOBAL(void)
  641. jinit_phuff_decoder (j_decompress_ptr cinfo)
  642. {
  643.   phuff_entropy_ptr entropy;
  644.   int *coef_bit_ptr;
  645.   int ci, i;
  646.  
  647.   entropy = (phuff_entropy_ptr)
  648.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  649.                                 SIZEOF(phuff_entropy_decoder));
  650.   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
  651.   entropy->pub.start_pass = start_pass_phuff_decoder;
  652.  
  653.   /* Mark derived tables unallocated */
  654.   for (i = 0; i < NUM_HUFF_TBLS; i++) {
  655.     entropy->derived_tbls[i] = NULL;
  656.   }
  657.  
  658.   /* Create progression status table */
  659.   cinfo->coef_bits = (int (*)[DCTSIZE2])
  660.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  661.                                 cinfo->num_components*DCTSIZE2*SIZEOF(int));
  662.   coef_bit_ptr = & cinfo->coef_bits[0][0];
  663.   for (ci = 0; ci < cinfo->num_components; ci++)
  664.     for (i = 0; i < DCTSIZE2; i++)
  665.       *coef_bit_ptr++ = -1;
  666. }
  667.  
  668. #endif /* D_PROGRESSIVE_SUPPORTED */
  669.