Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jdhuff.c
  3.  *
  4.  * Copyright (C) 1991-1997, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains Huffman entropy decoding routines.
  9.  *
  10.  * Much of the complexity here has to do with supporting input suspension.
  11.  * If the data source module demands suspension, we want to be able to back
  12.  * up to the start of the current MCU.  To do this, we copy state variables
  13.  * into local working storage, and update them back to the permanent
  14.  * storage only upon successful completion of an MCU.
  15.  */
  16.  
  17. #define JPEG_INTERNALS
  18. #include "jinclude.h"
  19. #include "jpeglib.h"
  20. #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
  21.  
  22.  
  23. /*
  24.  * Expanded entropy decoder object for Huffman decoding.
  25.  *
  26.  * The savable_state subrecord contains fields that change within an MCU,
  27.  * but must not be updated permanently until we complete the MCU.
  28.  */
  29.  
  30. typedef struct {
  31.   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
  32. } savable_state;
  33.  
  34. /* This macro is to work around compilers with missing or broken
  35.  * structure assignment.  You'll need to fix this code if you have
  36.  * such a compiler and you change MAX_COMPS_IN_SCAN.
  37.  */
  38.  
  39. #ifndef NO_STRUCT_ASSIGN
  40. #define ASSIGN_STATE(dest,src)  ((dest) = (src))
  41. #else
  42. #if MAX_COMPS_IN_SCAN == 4
  43. #define ASSIGN_STATE(dest,src)  \
  44.         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
  45.          (dest).last_dc_val[1] = (src).last_dc_val[1], \
  46.          (dest).last_dc_val[2] = (src).last_dc_val[2], \
  47.          (dest).last_dc_val[3] = (src).last_dc_val[3])
  48. #endif
  49. #endif
  50.  
  51.  
  52. typedef struct {
  53.   struct jpeg_entropy_decoder pub; /* public fields */
  54.  
  55.   /* These fields are loaded into local variables at start of each MCU.
  56.    * In case of suspension, we exit WITHOUT updating them.
  57.    */
  58.   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
  59.   savable_state saved;          /* Other state at start of MCU */
  60.  
  61.   /* These fields are NOT loaded into local working state. */
  62.   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
  63.  
  64.   /* Pointers to derived tables (these workspaces have image lifespan) */
  65.   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  66.   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
  67.  
  68.   /* Precalculated info set up by start_pass for use in decode_mcu: */
  69.  
  70.   /* Pointers to derived tables to be used for each block within an MCU */
  71.   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  72.   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  73.   /* Whether we care about the DC and AC coefficient values for each block */
  74.   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
  75.   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
  76. } huff_entropy_decoder;
  77.  
  78. typedef huff_entropy_decoder * huff_entropy_ptr;
  79.  
  80.  
  81. /*
  82.  * Initialize for a Huffman-compressed scan.
  83.  */
  84.  
  85. METHODDEF(void)
  86. start_pass_huff_decoder (j_decompress_ptr cinfo)
  87. {
  88.   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  89.   int ci, blkn, dctbl, actbl;
  90.   jpeg_component_info * compptr;
  91.  
  92.   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
  93.    * This ought to be an error condition, but we make it a warning because
  94.    * there are some baseline files out there with all zeroes in these bytes.
  95.    */
  96.   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
  97.       cinfo->Ah != 0 || cinfo->Al != 0)
  98.     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
  99.  
  100.   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  101.     compptr = cinfo->cur_comp_info[ci];
  102.     dctbl = compptr->dc_tbl_no;
  103.     actbl = compptr->ac_tbl_no;
  104.     /* Compute derived values for Huffman tables */
  105.     /* We may do this more than once for a table, but it's not expensive */
  106.     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
  107.                             & entropy->dc_derived_tbls[dctbl]);
  108.     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
  109.                             & entropy->ac_derived_tbls[actbl]);
  110.     /* Initialize DC predictions to 0 */
  111.     entropy->saved.last_dc_val[ci] = 0;
  112.   }
  113.  
  114.   /* Precalculate decoding info for each block in an MCU of this scan */
  115.   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
  116.     ci = cinfo->MCU_membership[blkn];
  117.     compptr = cinfo->cur_comp_info[ci];
  118.     /* Precalculate which table to use for each block */
  119.     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
  120.     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
  121.     /* Decide whether we really care about the coefficient values */
  122.     if (compptr->component_needed) {
  123.       entropy->dc_needed[blkn] = TRUE;
  124.       /* we don't need the ACs if producing a 1/8th-size image */
  125.       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
  126.     } else {
  127.       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
  128.     }
  129.   }
  130.  
  131.   /* Initialize bitread state variables */
  132.   entropy->bitstate.bits_left = 0;
  133.   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
  134.   entropy->pub.insufficient_data = FALSE;
  135.  
  136.   /* Initialize restart counter */
  137.   entropy->restarts_to_go = cinfo->restart_interval;
  138. }
  139.  
  140.  
  141. /*
  142.  * Compute the derived values for a Huffman table.
  143.  * This routine also performs some validation checks on the table.
  144.  *
  145.  * Note this is also used by jdphuff.c.
  146.  */
  147.  
  148. GLOBAL(void)
  149. jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
  150.                          d_derived_tbl ** pdtbl)
  151. {
  152.   JHUFF_TBL *htbl;
  153.   d_derived_tbl *dtbl;
  154.   int p, i, l, si, numsymbols;
  155.   int lookbits, ctr;
  156.   char huffsize[257];
  157.   unsigned int huffcode[257];
  158.   unsigned int code;
  159.  
  160.   /* Note that huffsize[] and huffcode[] are filled in code-length order,
  161.    * paralleling the order of the symbols themselves in htbl->huffval[].
  162.    */
  163.  
  164.   /* Find the input Huffman table */
  165.   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
  166.     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
  167.   htbl =
  168.     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
  169.   if (htbl == NULL)
  170.     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
  171.  
  172.   /* Allocate a workspace if we haven't already done so. */
  173.   if (*pdtbl == NULL)
  174.     *pdtbl = (d_derived_tbl *)
  175.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  176.                                   SIZEOF(d_derived_tbl));
  177.   dtbl = *pdtbl;
  178.   dtbl->pub = htbl;             /* fill in back link */
  179.  
  180.   /* Figure C.1: make table of Huffman code length for each symbol */
  181.  
  182.   p = 0;
  183.   for (l = 1; l <= 16; l++) {
  184.     i = (int) htbl->bits[l];
  185.     if (i < 0 || p + i > 256)   /* protect against table overrun */
  186.       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
  187.     while (i--)
  188.       huffsize[p++] = (char) l;
  189.   }
  190.   huffsize[p] = 0;
  191.   numsymbols = p;
  192.  
  193.   /* Figure C.2: generate the codes themselves */
  194.   /* We also validate that the counts represent a legal Huffman code tree. */
  195.  
  196.   code = 0;
  197.   si = huffsize[0];
  198.   p = 0;
  199.   while (huffsize[p]) {
  200.     while (((int) huffsize[p]) == si) {
  201.       huffcode[p++] = code;
  202.       code++;
  203.     }
  204.     /* code is now 1 more than the last code used for codelength si; but
  205.      * it must still fit in si bits, since no code is allowed to be all ones.
  206.      */
  207.     if (((INT32) code) >= (((INT32) 1) << si))
  208.       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
  209.     code <<= 1;
  210.     si++;
  211.   }
  212.  
  213.   /* Figure F.15: generate decoding tables for bit-sequential decoding */
  214.  
  215.   p = 0;
  216.   for (l = 1; l <= 16; l++) {
  217.     if (htbl->bits[l]) {
  218.       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
  219.        * minus the minimum code of length l
  220.        */
  221.       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
  222.       p += htbl->bits[l];
  223.       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
  224.     } else {
  225.       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
  226.     }
  227.   }
  228.   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
  229.  
  230.   /* Compute lookahead tables to speed up decoding.
  231.    * First we set all the table entries to 0, indicating "too long";
  232.    * then we iterate through the Huffman codes that are short enough and
  233.    * fill in all the entries that correspond to bit sequences starting
  234.    * with that code.
  235.    */
  236.  
  237.   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
  238.  
  239.   p = 0;
  240.   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
  241.     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
  242.       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
  243.       /* Generate left-justified code followed by all possible bit sequences */
  244.       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
  245.       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
  246.         dtbl->look_nbits[lookbits] = l;
  247.         dtbl->look_sym[lookbits] = htbl->huffval[p];
  248.         lookbits++;
  249.       }
  250.     }
  251.   }
  252.  
  253.   /* Validate symbols as being reasonable.
  254.    * For AC tables, we make no check, but accept all byte values 0..255.
  255.    * For DC tables, we require the symbols to be in range 0..15.
  256.    * (Tighter bounds could be applied depending on the data depth and mode,
  257.    * but this is sufficient to ensure safe decoding.)
  258.    */
  259.   if (isDC) {
  260.     for (i = 0; i < numsymbols; i++) {
  261.       int sym = htbl->huffval[i];
  262.       if (sym < 0 || sym > 15)
  263.         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
  264.     }
  265.   }
  266. }
  267.  
  268.  
  269. /*
  270.  * Out-of-line code for bit fetching (shared with jdphuff.c).
  271.  * See jdhuff.h for info about usage.
  272.  * Note: current values of get_buffer and bits_left are passed as parameters,
  273.  * but are returned in the corresponding fields of the state struct.
  274.  *
  275.  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
  276.  * of get_buffer to be used.  (On machines with wider words, an even larger
  277.  * buffer could be used.)  However, on some machines 32-bit shifts are
  278.  * quite slow and take time proportional to the number of places shifted.
  279.  * (This is true with most PC compilers, for instance.)  In this case it may
  280.  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
  281.  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
  282.  */
  283.  
  284. #ifdef SLOW_SHIFT_32
  285. #define MIN_GET_BITS  15        /* minimum allowable value */
  286. #else
  287. #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
  288. #endif
  289.  
  290.  
  291. GLOBAL(boolean)
  292. jpeg_fill_bit_buffer (bitread_working_state * state,
  293.                       register bit_buf_type get_buffer, register int bits_left,
  294.                       int nbits)
  295. /* Load up the bit buffer to a depth of at least nbits */
  296. {
  297.   /* Copy heavily used state fields into locals (hopefully registers) */
  298.   register const JOCTET * next_input_byte = state->next_input_byte;
  299.   register size_t bytes_in_buffer = state->bytes_in_buffer;
  300.   j_decompress_ptr cinfo = state->cinfo;
  301.  
  302.   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
  303.   /* (It is assumed that no request will be for more than that many bits.) */
  304.   /* We fail to do so only if we hit a marker or are forced to suspend. */
  305.  
  306.   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
  307.     while (bits_left < MIN_GET_BITS) {
  308.       register int c;
  309.  
  310.       /* Attempt to read a byte */
  311.       if (bytes_in_buffer == 0) {
  312.         if (! (*cinfo->src->fill_input_buffer) (cinfo))
  313.           return FALSE;
  314.         next_input_byte = cinfo->src->next_input_byte;
  315.         bytes_in_buffer = cinfo->src->bytes_in_buffer;
  316.       }
  317.       bytes_in_buffer--;
  318.       c = GETJOCTET(*next_input_byte++);
  319.  
  320.       /* If it's 0xFF, check and discard stuffed zero byte */
  321.       if (c == 0xFF) {
  322.         /* Loop here to discard any padding FF's on terminating marker,
  323.          * so that we can save a valid unread_marker value.  NOTE: we will
  324.          * accept multiple FF's followed by a 0 as meaning a single FF data
  325.          * byte.  This data pattern is not valid according to the standard.
  326.          */
  327.         do {
  328.           if (bytes_in_buffer == 0) {
  329.             if (! (*cinfo->src->fill_input_buffer) (cinfo))
  330.               return FALSE;
  331.             next_input_byte = cinfo->src->next_input_byte;
  332.             bytes_in_buffer = cinfo->src->bytes_in_buffer;
  333.           }
  334.           bytes_in_buffer--;
  335.           c = GETJOCTET(*next_input_byte++);
  336.         } while (c == 0xFF);
  337.  
  338.         if (c == 0) {
  339.           /* Found FF/00, which represents an FF data byte */
  340.           c = 0xFF;
  341.         } else {
  342.           /* Oops, it's actually a marker indicating end of compressed data.
  343.            * Save the marker code for later use.
  344.            * Fine point: it might appear that we should save the marker into
  345.            * bitread working state, not straight into permanent state.  But
  346.            * once we have hit a marker, we cannot need to suspend within the
  347.            * current MCU, because we will read no more bytes from the data
  348.            * source.  So it is OK to update permanent state right away.
  349.            */
  350.           cinfo->unread_marker = c;
  351.           /* See if we need to insert some fake zero bits. */
  352.           goto no_more_bytes;
  353.         }
  354.       }
  355.  
  356.       /* OK, load c into get_buffer */
  357.       get_buffer = (get_buffer << 8) | c;
  358.       bits_left += 8;
  359.     } /* end while */
  360.   } else {
  361.   no_more_bytes:
  362.     /* We get here if we've read the marker that terminates the compressed
  363.      * data segment.  There should be enough bits in the buffer register
  364.      * to satisfy the request; if so, no problem.
  365.      */
  366.     if (nbits > bits_left) {
  367.       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
  368.        * the data stream, so that we can produce some kind of image.
  369.        * We use a nonvolatile flag to ensure that only one warning message
  370.        * appears per data segment.
  371.        */
  372.       if (! cinfo->entropy->insufficient_data) {
  373.         WARNMS(cinfo, JWRN_HIT_MARKER);
  374.         cinfo->entropy->insufficient_data = TRUE;
  375.       }
  376.       /* Fill the buffer with zero bits */
  377.       get_buffer <<= MIN_GET_BITS - bits_left;
  378.       bits_left = MIN_GET_BITS;
  379.     }
  380.   }
  381.  
  382.   /* Unload the local registers */
  383.   state->next_input_byte = next_input_byte;
  384.   state->bytes_in_buffer = bytes_in_buffer;
  385.   state->get_buffer = get_buffer;
  386.   state->bits_left = bits_left;
  387.  
  388.   return TRUE;
  389. }
  390.  
  391.  
  392. /*
  393.  * Out-of-line code for Huffman code decoding.
  394.  * See jdhuff.h for info about usage.
  395.  */
  396.  
  397. GLOBAL(int)
  398. jpeg_huff_decode (bitread_working_state * state,
  399.                   register bit_buf_type get_buffer, register int bits_left,
  400.                   d_derived_tbl * htbl, int min_bits)
  401. {
  402.   register int l = min_bits;
  403.   register INT32 code;
  404.  
  405.   /* HUFF_DECODE has determined that the code is at least min_bits */
  406.   /* bits long, so fetch that many bits in one swoop. */
  407.  
  408.   CHECK_BIT_BUFFER(*state, l, return -1);
  409.   code = GET_BITS(l);
  410.  
  411.   /* Collect the rest of the Huffman code one bit at a time. */
  412.   /* This is per Figure F.16 in the JPEG spec. */
  413.  
  414.   while (code > htbl->maxcode[l]) {
  415.     code <<= 1;
  416.     CHECK_BIT_BUFFER(*state, 1, return -1);
  417.     code |= GET_BITS(1);
  418.     l++;
  419.   }
  420.  
  421.   /* Unload the local registers */
  422.   state->get_buffer = get_buffer;
  423.   state->bits_left = bits_left;
  424.  
  425.   /* With garbage input we may reach the sentinel value l = 17. */
  426.  
  427.   if (l > 16) {
  428.     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
  429.     return 0;                   /* fake a zero as the safest result */
  430.   }
  431.  
  432.   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
  433. }
  434.  
  435.  
  436. /*
  437.  * Figure F.12: extend sign bit.
  438.  * On some machines, a shift and add will be faster than a table lookup.
  439.  */
  440.  
  441. #ifdef AVOID_TABLES
  442.  
  443. #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
  444.  
  445. #else
  446.  
  447. #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
  448.  
  449. static const int extend_test[16] =   /* entry n is 2**(n-1) */
  450.   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  451.     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
  452.  
  453. static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
  454.   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
  455.     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
  456.     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
  457.     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
  458.  
  459. #endif /* AVOID_TABLES */
  460.  
  461.  
  462. /*
  463.  * Check for a restart marker & resynchronize decoder.
  464.  * Returns FALSE if must suspend.
  465.  */
  466.  
  467. LOCAL(boolean)
  468. process_restart (j_decompress_ptr cinfo)
  469. {
  470.   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  471.   int ci;
  472.  
  473.   /* Throw away any unused bits remaining in bit buffer; */
  474.   /* include any full bytes in next_marker's count of discarded bytes */
  475.   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
  476.   entropy->bitstate.bits_left = 0;
  477.  
  478.   /* Advance past the RSTn marker */
  479.   if (! (*cinfo->marker->read_restart_marker) (cinfo))
  480.     return FALSE;
  481.  
  482.   /* Re-initialize DC predictions to 0 */
  483.   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
  484.     entropy->saved.last_dc_val[ci] = 0;
  485.  
  486.   /* Reset restart counter */
  487.   entropy->restarts_to_go = cinfo->restart_interval;
  488.  
  489.   /* Reset out-of-data flag, unless read_restart_marker left us smack up
  490.    * against a marker.  In that case we will end up treating the next data
  491.    * segment as empty, and we can avoid producing bogus output pixels by
  492.    * leaving the flag set.
  493.    */
  494.   if (cinfo->unread_marker == 0)
  495.     entropy->pub.insufficient_data = FALSE;
  496.  
  497.   return TRUE;
  498. }
  499.  
  500.  
  501. /*
  502.  * Decode and return one MCU's worth of Huffman-compressed coefficients.
  503.  * The coefficients are reordered from zigzag order into natural array order,
  504.  * but are not dequantized.
  505.  *
  506.  * The i'th block of the MCU is stored into the block pointed to by
  507.  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
  508.  * (Wholesale zeroing is usually a little faster than retail...)
  509.  *
  510.  * Returns FALSE if data source requested suspension.  In that case no
  511.  * changes have been made to permanent state.  (Exception: some output
  512.  * coefficients may already have been assigned.  This is harmless for
  513.  * this module, since we'll just re-assign them on the next call.)
  514.  */
  515.  
  516. METHODDEF(boolean)
  517. decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
  518. {
  519.   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  520.   int blkn;
  521.   BITREAD_STATE_VARS;
  522.   savable_state state;
  523.  
  524.   /* Process restart marker if needed; may have to suspend */
  525.   if (cinfo->restart_interval) {
  526.     if (entropy->restarts_to_go == 0)
  527.       if (! process_restart(cinfo))
  528.         return FALSE;
  529.   }
  530.  
  531.   /* If we've run out of data, just leave the MCU set to zeroes.
  532.    * This way, we return uniform gray for the remainder of the segment.
  533.    */
  534.   if (! entropy->pub.insufficient_data) {
  535.  
  536.     /* Load up working state */
  537.     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
  538.     ASSIGN_STATE(state, entropy->saved);
  539.  
  540.     /* Outer loop handles each block in the MCU */
  541.  
  542.     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
  543.       JBLOCKROW block = MCU_data[blkn];
  544.       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
  545.       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
  546.       register int s, k, r;
  547.  
  548.       /* Decode a single block's worth of coefficients */
  549.  
  550.       /* Section F.2.2.1: decode the DC coefficient difference */
  551.       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
  552.       if (s) {
  553.         CHECK_BIT_BUFFER(br_state, s, return FALSE);
  554.         r = GET_BITS(s);
  555.         s = HUFF_EXTEND(r, s);
  556.       }
  557.  
  558.       if (entropy->dc_needed[blkn]) {
  559.         /* Convert DC difference to actual value, update last_dc_val */
  560.         int ci = cinfo->MCU_membership[blkn];
  561.         s += state.last_dc_val[ci];
  562.         state.last_dc_val[ci] = s;
  563.         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
  564.         (*block)[0] = (JCOEF) s;
  565.       }
  566.  
  567.       if (entropy->ac_needed[blkn]) {
  568.  
  569.         /* Section F.2.2.2: decode the AC coefficients */
  570.         /* Since zeroes are skipped, output area must be cleared beforehand */
  571.         for (k = 1; k < DCTSIZE2; k++) {
  572.           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
  573.      
  574.           r = s >> 4;
  575.           s &= 15;
  576.      
  577.           if (s) {
  578.             k += r;
  579.             CHECK_BIT_BUFFER(br_state, s, return FALSE);
  580.             r = GET_BITS(s);
  581.             s = HUFF_EXTEND(r, s);
  582.             /* Output coefficient in natural (dezigzagged) order.
  583.              * Note: the extra entries in jpeg_natural_order[] will save us
  584.              * if k >= DCTSIZE2, which could happen if the data is corrupted.
  585.              */
  586.             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
  587.           } else {
  588.             if (r != 15)
  589.               break;
  590.             k += 15;
  591.           }
  592.         }
  593.  
  594.       } else {
  595.  
  596.         /* Section F.2.2.2: decode the AC coefficients */
  597.         /* In this path we just discard the values */
  598.         for (k = 1; k < DCTSIZE2; k++) {
  599.           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
  600.      
  601.           r = s >> 4;
  602.           s &= 15;
  603.      
  604.           if (s) {
  605.             k += r;
  606.             CHECK_BIT_BUFFER(br_state, s, return FALSE);
  607.             DROP_BITS(s);
  608.           } else {
  609.             if (r != 15)
  610.               break;
  611.             k += 15;
  612.           }
  613.         }
  614.  
  615.       }
  616.     }
  617.  
  618.     /* Completed MCU, so update state */
  619.     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
  620.     ASSIGN_STATE(entropy->saved, state);
  621.   }
  622.  
  623.   /* Account for restart interval (no-op if not using restarts) */
  624.   entropy->restarts_to_go--;
  625.  
  626.   return TRUE;
  627. }
  628.  
  629.  
  630. /*
  631.  * Module initialization routine for Huffman entropy decoding.
  632.  */
  633.  
  634. GLOBAL(void)
  635. jinit_huff_decoder (j_decompress_ptr cinfo)
  636. {
  637.   huff_entropy_ptr entropy;
  638.   int i;
  639.  
  640.   entropy = (huff_entropy_ptr)
  641.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  642.                                 SIZEOF(huff_entropy_decoder));
  643.   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
  644.   entropy->pub.start_pass = start_pass_huff_decoder;
  645.   entropy->pub.decode_mcu = decode_mcu;
  646.  
  647.   /* Mark tables unallocated */
  648.   for (i = 0; i < NUM_HUFF_TBLS; i++) {
  649.     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
  650.   }
  651. }
  652.