Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jdcoefct.c
  3.  *
  4.  * Copyright (C) 1994-1997, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains the coefficient buffer controller for decompression.
  9.  * This controller is the top level of the JPEG decompressor proper.
  10.  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
  11.  *
  12.  * In buffered-image mode, this controller is the interface between
  13.  * input-oriented processing and output-oriented processing.
  14.  * Also, the input side (only) is used when reading a file for transcoding.
  15.  */
  16.  
  17. #define JPEG_INTERNALS
  18. #include "jinclude.h"
  19. #include "jpeglib.h"
  20.  
  21. /* Block smoothing is only applicable for progressive JPEG, so: */
  22. #ifndef D_PROGRESSIVE_SUPPORTED
  23. #undef BLOCK_SMOOTHING_SUPPORTED
  24. #endif
  25.  
  26. /* Private buffer controller object */
  27.  
  28. typedef struct {
  29.   struct jpeg_d_coef_controller pub; /* public fields */
  30.  
  31.   /* These variables keep track of the current location of the input side. */
  32.   /* cinfo->input_iMCU_row is also used for this. */
  33.   JDIMENSION MCU_ctr;           /* counts MCUs processed in current row */
  34.   int MCU_vert_offset;          /* counts MCU rows within iMCU row */
  35.   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
  36.  
  37.   /* The output side's location is represented by cinfo->output_iMCU_row. */
  38.  
  39.   /* In single-pass modes, it's sufficient to buffer just one MCU.
  40.    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
  41.    * and let the entropy decoder write into that workspace each time.
  42.    * (On 80x86, the workspace is FAR even though it's not really very big;
  43.    * this is to keep the module interfaces unchanged when a large coefficient
  44.    * buffer is necessary.)
  45.    * In multi-pass modes, this array points to the current MCU's blocks
  46.    * within the virtual arrays; it is used only by the input side.
  47.    */
  48.   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
  49.  
  50. #ifdef D_MULTISCAN_FILES_SUPPORTED
  51.   /* In multi-pass modes, we need a virtual block array for each component. */
  52.   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
  53. #endif
  54.  
  55. #ifdef BLOCK_SMOOTHING_SUPPORTED
  56.   /* When doing block smoothing, we latch coefficient Al values here */
  57.   int * coef_bits_latch;
  58. #define SAVED_COEFS  6          /* we save coef_bits[0..5] */
  59. #endif
  60. } my_coef_controller;
  61.  
  62. typedef my_coef_controller * my_coef_ptr;
  63.  
  64. /* Forward declarations */
  65. METHODDEF(int) decompress_onepass
  66.         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
  67. #ifdef D_MULTISCAN_FILES_SUPPORTED
  68. METHODDEF(int) decompress_data
  69.         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
  70. #endif
  71. #ifdef BLOCK_SMOOTHING_SUPPORTED
  72. LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
  73. METHODDEF(int) decompress_smooth_data
  74.         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
  75. #endif
  76.  
  77.  
  78. LOCAL(void)
  79. start_iMCU_row (j_decompress_ptr cinfo)
  80. /* Reset within-iMCU-row counters for a new row (input side) */
  81. {
  82.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  83.  
  84.   /* In an interleaved scan, an MCU row is the same as an iMCU row.
  85.    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
  86.    * But at the bottom of the image, process only what's left.
  87.    */
  88.   if (cinfo->comps_in_scan > 1) {
  89.     coef->MCU_rows_per_iMCU_row = 1;
  90.   } else {
  91.     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
  92.       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
  93.     else
  94.       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  95.   }
  96.  
  97.   coef->MCU_ctr = 0;
  98.   coef->MCU_vert_offset = 0;
  99. }
  100.  
  101.  
  102. /*
  103.  * Initialize for an input processing pass.
  104.  */
  105.  
  106. METHODDEF(void)
  107. start_input_pass (j_decompress_ptr cinfo)
  108. {
  109.   cinfo->input_iMCU_row = 0;
  110.   start_iMCU_row(cinfo);
  111. }
  112.  
  113.  
  114. /*
  115.  * Initialize for an output processing pass.
  116.  */
  117.  
  118. METHODDEF(void)
  119. start_output_pass (j_decompress_ptr cinfo)
  120. {
  121. #ifdef BLOCK_SMOOTHING_SUPPORTED
  122.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  123.  
  124.   /* If multipass, check to see whether to use block smoothing on this pass */
  125.   if (coef->pub.coef_arrays != NULL) {
  126.     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
  127.       coef->pub.decompress_data = decompress_smooth_data;
  128.     else
  129.       coef->pub.decompress_data = decompress_data;
  130.   }
  131. #endif
  132.   cinfo->output_iMCU_row = 0;
  133. }
  134.  
  135.  
  136. /*
  137.  * Decompress and return some data in the single-pass case.
  138.  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
  139.  * Input and output must run in lockstep since we have only a one-MCU buffer.
  140.  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
  141.  *
  142.  * NB: output_buf contains a plane for each component in image,
  143.  * which we index according to the component's SOF position.
  144.  */
  145.  
  146. METHODDEF(int)
  147. decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
  148. {
  149.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  150.   JDIMENSION MCU_col_num;       /* index of current MCU within row */
  151.   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  152.   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  153.   int blkn, ci, xindex, yindex, yoffset, useful_width;
  154.   JSAMPARRAY output_ptr;
  155.   JDIMENSION start_col, output_col;
  156.   jpeg_component_info *compptr;
  157.   inverse_DCT_method_ptr inverse_DCT;
  158.  
  159.   /* Loop to process as much as one whole iMCU row */
  160.   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
  161.        yoffset++) {
  162.     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
  163.          MCU_col_num++) {
  164.       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
  165.       jzero_far((void FAR *) coef->MCU_buffer[0],
  166.                 (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
  167.       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
  168.         /* Suspension forced; update state counters and exit */
  169.         coef->MCU_vert_offset = yoffset;
  170.         coef->MCU_ctr = MCU_col_num;
  171.         return JPEG_SUSPENDED;
  172.       }
  173.       /* Determine where data should go in output_buf and do the IDCT thing.
  174.        * We skip dummy blocks at the right and bottom edges (but blkn gets
  175.        * incremented past them!).  Note the inner loop relies on having
  176.        * allocated the MCU_buffer[] blocks sequentially.
  177.        */
  178.       blkn = 0;                 /* index of current DCT block within MCU */
  179.       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  180.         compptr = cinfo->cur_comp_info[ci];
  181.         /* Don't bother to IDCT an uninteresting component. */
  182.         if (! compptr->component_needed) {
  183.           blkn += compptr->MCU_blocks;
  184.           continue;
  185.         }
  186.         inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
  187.         useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
  188.                                                     : compptr->last_col_width;
  189.         output_ptr = output_buf[compptr->component_index] +
  190.           yoffset * compptr->DCT_scaled_size;
  191.         start_col = MCU_col_num * compptr->MCU_sample_width;
  192.         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
  193.           if (cinfo->input_iMCU_row < last_iMCU_row ||
  194.               yoffset+yindex < compptr->last_row_height) {
  195.             output_col = start_col;
  196.             for (xindex = 0; xindex < useful_width; xindex++) {
  197.               (*inverse_DCT) (cinfo, compptr,
  198.                               (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
  199.                               output_ptr, output_col);
  200.               output_col += compptr->DCT_scaled_size;
  201.             }
  202.           }
  203.           blkn += compptr->MCU_width;
  204.           output_ptr += compptr->DCT_scaled_size;
  205.         }
  206.       }
  207.     }
  208.     /* Completed an MCU row, but perhaps not an iMCU row */
  209.     coef->MCU_ctr = 0;
  210.   }
  211.   /* Completed the iMCU row, advance counters for next one */
  212.   cinfo->output_iMCU_row++;
  213.   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
  214.     start_iMCU_row(cinfo);
  215.     return JPEG_ROW_COMPLETED;
  216.   }
  217.   /* Completed the scan */
  218.   (*cinfo->inputctl->finish_input_pass) (cinfo);
  219.   return JPEG_SCAN_COMPLETED;
  220. }
  221.  
  222.  
  223. /*
  224.  * Dummy consume-input routine for single-pass operation.
  225.  */
  226.  
  227. METHODDEF(int)
  228. dummy_consume_data (j_decompress_ptr cinfo)
  229. {
  230.   return JPEG_SUSPENDED;        /* Always indicate nothing was done */
  231. }
  232.  
  233.  
  234. #ifdef D_MULTISCAN_FILES_SUPPORTED
  235.  
  236. /*
  237.  * Consume input data and store it in the full-image coefficient buffer.
  238.  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
  239.  * ie, v_samp_factor block rows for each component in the scan.
  240.  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
  241.  */
  242.  
  243. METHODDEF(int)
  244. consume_data (j_decompress_ptr cinfo)
  245. {
  246.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  247.   JDIMENSION MCU_col_num;       /* index of current MCU within row */
  248.   int blkn, ci, xindex, yindex, yoffset;
  249.   JDIMENSION start_col;
  250.   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  251.   JBLOCKROW buffer_ptr;
  252.   jpeg_component_info *compptr;
  253.  
  254.   /* Align the virtual buffers for the components used in this scan. */
  255.   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  256.     compptr = cinfo->cur_comp_info[ci];
  257.     buffer[ci] = (*cinfo->mem->access_virt_barray)
  258.       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
  259.        cinfo->input_iMCU_row * compptr->v_samp_factor,
  260.        (JDIMENSION) compptr->v_samp_factor, TRUE);
  261.     /* Note: entropy decoder expects buffer to be zeroed,
  262.      * but this is handled automatically by the memory manager
  263.      * because we requested a pre-zeroed array.
  264.      */
  265.   }
  266.  
  267.   /* Loop to process one whole iMCU row */
  268.   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
  269.        yoffset++) {
  270.     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
  271.          MCU_col_num++) {
  272.       /* Construct list of pointers to DCT blocks belonging to this MCU */
  273.       blkn = 0;                 /* index of current DCT block within MCU */
  274.       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  275.         compptr = cinfo->cur_comp_info[ci];
  276.         start_col = MCU_col_num * compptr->MCU_width;
  277.         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
  278.           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
  279.           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
  280.             coef->MCU_buffer[blkn++] = buffer_ptr++;
  281.           }
  282.         }
  283.       }
  284.       /* Try to fetch the MCU. */
  285.       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
  286.         /* Suspension forced; update state counters and exit */
  287.         coef->MCU_vert_offset = yoffset;
  288.         coef->MCU_ctr = MCU_col_num;
  289.         return JPEG_SUSPENDED;
  290.       }
  291.     }
  292.     /* Completed an MCU row, but perhaps not an iMCU row */
  293.     coef->MCU_ctr = 0;
  294.   }
  295.   /* Completed the iMCU row, advance counters for next one */
  296.   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
  297.     start_iMCU_row(cinfo);
  298.     return JPEG_ROW_COMPLETED;
  299.   }
  300.   /* Completed the scan */
  301.   (*cinfo->inputctl->finish_input_pass) (cinfo);
  302.   return JPEG_SCAN_COMPLETED;
  303. }
  304.  
  305.  
  306. /*
  307.  * Decompress and return some data in the multi-pass case.
  308.  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
  309.  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
  310.  *
  311.  * NB: output_buf contains a plane for each component in image.
  312.  */
  313.  
  314. METHODDEF(int)
  315. decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
  316. {
  317.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  318.   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  319.   JDIMENSION block_num;
  320.   int ci, block_row, block_rows;
  321.   JBLOCKARRAY buffer;
  322.   JBLOCKROW buffer_ptr;
  323.   JSAMPARRAY output_ptr;
  324.   JDIMENSION output_col;
  325.   jpeg_component_info *compptr;
  326.   inverse_DCT_method_ptr inverse_DCT;
  327.  
  328.   /* Force some input to be done if we are getting ahead of the input. */
  329.   while (cinfo->input_scan_number < cinfo->output_scan_number ||
  330.          (cinfo->input_scan_number == cinfo->output_scan_number &&
  331.           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
  332.     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
  333.       return JPEG_SUSPENDED;
  334.   }
  335.  
  336.   /* OK, output from the virtual arrays. */
  337.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  338.        ci++, compptr++) {
  339.     /* Don't bother to IDCT an uninteresting component. */
  340.     if (! compptr->component_needed)
  341.       continue;
  342.     /* Align the virtual buffer for this component. */
  343.     buffer = (*cinfo->mem->access_virt_barray)
  344.       ((j_common_ptr) cinfo, coef->whole_image[ci],
  345.        cinfo->output_iMCU_row * compptr->v_samp_factor,
  346.        (JDIMENSION) compptr->v_samp_factor, FALSE);
  347.     /* Count non-dummy DCT block rows in this iMCU row. */
  348.     if (cinfo->output_iMCU_row < last_iMCU_row)
  349.       block_rows = compptr->v_samp_factor;
  350.     else {
  351.       /* NB: can't use last_row_height here; it is input-side-dependent! */
  352.       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
  353.       if (block_rows == 0) block_rows = compptr->v_samp_factor;
  354.     }
  355.     inverse_DCT = cinfo->idct->inverse_DCT[ci];
  356.     output_ptr = output_buf[ci];
  357.     /* Loop over all DCT blocks to be processed. */
  358.     for (block_row = 0; block_row < block_rows; block_row++) {
  359.       buffer_ptr = buffer[block_row];
  360.       output_col = 0;
  361.       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
  362.         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
  363.                         output_ptr, output_col);
  364.         buffer_ptr++;
  365.         output_col += compptr->DCT_scaled_size;
  366.       }
  367.       output_ptr += compptr->DCT_scaled_size;
  368.     }
  369.   }
  370.  
  371.   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
  372.     return JPEG_ROW_COMPLETED;
  373.   return JPEG_SCAN_COMPLETED;
  374. }
  375.  
  376. #endif /* D_MULTISCAN_FILES_SUPPORTED */
  377.  
  378.  
  379. #ifdef BLOCK_SMOOTHING_SUPPORTED
  380.  
  381. /*
  382.  * This code applies interblock smoothing as described by section K.8
  383.  * of the JPEG standard: the first 5 AC coefficients are estimated from
  384.  * the DC values of a DCT block and its 8 neighboring blocks.
  385.  * We apply smoothing only for progressive JPEG decoding, and only if
  386.  * the coefficients it can estimate are not yet known to full precision.
  387.  */
  388.  
  389. /* Natural-order array positions of the first 5 zigzag-order coefficients */
  390. #define Q01_POS  1
  391. #define Q10_POS  8
  392. #define Q20_POS  16
  393. #define Q11_POS  9
  394. #define Q02_POS  2
  395.  
  396. /*
  397.  * Determine whether block smoothing is applicable and safe.
  398.  * We also latch the current states of the coef_bits[] entries for the
  399.  * AC coefficients; otherwise, if the input side of the decompressor
  400.  * advances into a new scan, we might think the coefficients are known
  401.  * more accurately than they really are.
  402.  */
  403.  
  404. LOCAL(boolean)
  405. smoothing_ok (j_decompress_ptr cinfo)
  406. {
  407.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  408.   boolean smoothing_useful = FALSE;
  409.   int ci, coefi;
  410.   jpeg_component_info *compptr;
  411.   JQUANT_TBL * qtable;
  412.   int * coef_bits;
  413.   int * coef_bits_latch;
  414.  
  415.   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
  416.     return FALSE;
  417.  
  418.   /* Allocate latch area if not already done */
  419.   if (coef->coef_bits_latch == NULL)
  420.     coef->coef_bits_latch = (int *)
  421.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  422.                                   cinfo->num_components *
  423.                                   (SAVED_COEFS * SIZEOF(int)));
  424.   coef_bits_latch = coef->coef_bits_latch;
  425.  
  426.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  427.        ci++, compptr++) {
  428.     /* All components' quantization values must already be latched. */
  429.     if ((qtable = compptr->quant_table) == NULL)
  430.       return FALSE;
  431.     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
  432.     if (qtable->quantval[0] == 0 ||
  433.         qtable->quantval[Q01_POS] == 0 ||
  434.         qtable->quantval[Q10_POS] == 0 ||
  435.         qtable->quantval[Q20_POS] == 0 ||
  436.         qtable->quantval[Q11_POS] == 0 ||
  437.         qtable->quantval[Q02_POS] == 0)
  438.       return FALSE;
  439.     /* DC values must be at least partly known for all components. */
  440.     coef_bits = cinfo->coef_bits[ci];
  441.     if (coef_bits[0] < 0)
  442.       return FALSE;
  443.     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
  444.     for (coefi = 1; coefi <= 5; coefi++) {
  445.       coef_bits_latch[coefi] = coef_bits[coefi];
  446.       if (coef_bits[coefi] != 0)
  447.         smoothing_useful = TRUE;
  448.     }
  449.     coef_bits_latch += SAVED_COEFS;
  450.   }
  451.  
  452.   return smoothing_useful;
  453. }
  454.  
  455.  
  456. /*
  457.  * Variant of decompress_data for use when doing block smoothing.
  458.  */
  459.  
  460. METHODDEF(int)
  461. decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
  462. {
  463.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  464.   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  465.   JDIMENSION block_num, last_block_column;
  466.   int ci, block_row, block_rows, access_rows;
  467.   JBLOCKARRAY buffer;
  468.   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
  469.   JSAMPARRAY output_ptr;
  470.   JDIMENSION output_col;
  471.   jpeg_component_info *compptr;
  472.   inverse_DCT_method_ptr inverse_DCT;
  473.   boolean first_row, last_row;
  474.   JBLOCK workspace;
  475.   int *coef_bits;
  476.   JQUANT_TBL *quanttbl;
  477.   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
  478.   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
  479.   int Al, pred;
  480.  
  481.   /* Force some input to be done if we are getting ahead of the input. */
  482.   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
  483.          ! cinfo->inputctl->eoi_reached) {
  484.     if (cinfo->input_scan_number == cinfo->output_scan_number) {
  485.       /* If input is working on current scan, we ordinarily want it to
  486.        * have completed the current row.  But if input scan is DC,
  487.        * we want it to keep one row ahead so that next block row's DC
  488.        * values are up to date.
  489.        */
  490.       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
  491.       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
  492.         break;
  493.     }
  494.     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
  495.       return JPEG_SUSPENDED;
  496.   }
  497.  
  498.   /* OK, output from the virtual arrays. */
  499.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  500.        ci++, compptr++) {
  501.     /* Don't bother to IDCT an uninteresting component. */
  502.     if (! compptr->component_needed)
  503.       continue;
  504.     /* Count non-dummy DCT block rows in this iMCU row. */
  505.     if (cinfo->output_iMCU_row < last_iMCU_row) {
  506.       block_rows = compptr->v_samp_factor;
  507.       access_rows = block_rows * 2; /* this and next iMCU row */
  508.       last_row = FALSE;
  509.     } else {
  510.       /* NB: can't use last_row_height here; it is input-side-dependent! */
  511.       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
  512.       if (block_rows == 0) block_rows = compptr->v_samp_factor;
  513.       access_rows = block_rows; /* this iMCU row only */
  514.       last_row = TRUE;
  515.     }
  516.     /* Align the virtual buffer for this component. */
  517.     if (cinfo->output_iMCU_row > 0) {
  518.       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
  519.       buffer = (*cinfo->mem->access_virt_barray)
  520.         ((j_common_ptr) cinfo, coef->whole_image[ci],
  521.          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
  522.          (JDIMENSION) access_rows, FALSE);
  523.       buffer += compptr->v_samp_factor; /* point to current iMCU row */
  524.       first_row = FALSE;
  525.     } else {
  526.       buffer = (*cinfo->mem->access_virt_barray)
  527.         ((j_common_ptr) cinfo, coef->whole_image[ci],
  528.          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
  529.       first_row = TRUE;
  530.     }
  531.     /* Fetch component-dependent info */
  532.     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
  533.     quanttbl = compptr->quant_table;
  534.     Q00 = quanttbl->quantval[0];
  535.     Q01 = quanttbl->quantval[Q01_POS];
  536.     Q10 = quanttbl->quantval[Q10_POS];
  537.     Q20 = quanttbl->quantval[Q20_POS];
  538.     Q11 = quanttbl->quantval[Q11_POS];
  539.     Q02 = quanttbl->quantval[Q02_POS];
  540.     inverse_DCT = cinfo->idct->inverse_DCT[ci];
  541.     output_ptr = output_buf[ci];
  542.     /* Loop over all DCT blocks to be processed. */
  543.     for (block_row = 0; block_row < block_rows; block_row++) {
  544.       buffer_ptr = buffer[block_row];
  545.       if (first_row && block_row == 0)
  546.         prev_block_row = buffer_ptr;
  547.       else
  548.         prev_block_row = buffer[block_row-1];
  549.       if (last_row && block_row == block_rows-1)
  550.         next_block_row = buffer_ptr;
  551.       else
  552.         next_block_row = buffer[block_row+1];
  553.       /* We fetch the surrounding DC values using a sliding-register approach.
  554.        * Initialize all nine here so as to do the right thing on narrow pics.
  555.        */
  556.       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
  557.       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
  558.       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
  559.       output_col = 0;
  560.       last_block_column = compptr->width_in_blocks - 1;
  561.       for (block_num = 0; block_num <= last_block_column; block_num++) {
  562.         /* Fetch current DCT block into workspace so we can modify it. */
  563.         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
  564.         /* Update DC values */
  565.         if (block_num < last_block_column) {
  566.           DC3 = (int) prev_block_row[1][0];
  567.           DC6 = (int) buffer_ptr[1][0];
  568.           DC9 = (int) next_block_row[1][0];
  569.         }
  570.         /* Compute coefficient estimates per K.8.
  571.          * An estimate is applied only if coefficient is still zero,
  572.          * and is not known to be fully accurate.
  573.          */
  574.         /* AC01 */
  575.         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
  576.           num = 36 * Q00 * (DC4 - DC6);
  577.           if (num >= 0) {
  578.             pred = (int) (((Q01<<7) + num) / (Q01<<8));
  579.             if (Al > 0 && pred >= (1<<Al))
  580.               pred = (1<<Al)-1;
  581.           } else {
  582.             pred = (int) (((Q01<<7) - num) / (Q01<<8));
  583.             if (Al > 0 && pred >= (1<<Al))
  584.               pred = (1<<Al)-1;
  585.             pred = -pred;
  586.           }
  587.           workspace[1] = (JCOEF) pred;
  588.         }
  589.         /* AC10 */
  590.         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
  591.           num = 36 * Q00 * (DC2 - DC8);
  592.           if (num >= 0) {
  593.             pred = (int) (((Q10<<7) + num) / (Q10<<8));
  594.             if (Al > 0 && pred >= (1<<Al))
  595.               pred = (1<<Al)-1;
  596.           } else {
  597.             pred = (int) (((Q10<<7) - num) / (Q10<<8));
  598.             if (Al > 0 && pred >= (1<<Al))
  599.               pred = (1<<Al)-1;
  600.             pred = -pred;
  601.           }
  602.           workspace[8] = (JCOEF) pred;
  603.         }
  604.         /* AC20 */
  605.         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
  606.           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
  607.           if (num >= 0) {
  608.             pred = (int) (((Q20<<7) + num) / (Q20<<8));
  609.             if (Al > 0 && pred >= (1<<Al))
  610.               pred = (1<<Al)-1;
  611.           } else {
  612.             pred = (int) (((Q20<<7) - num) / (Q20<<8));
  613.             if (Al > 0 && pred >= (1<<Al))
  614.               pred = (1<<Al)-1;
  615.             pred = -pred;
  616.           }
  617.           workspace[16] = (JCOEF) pred;
  618.         }
  619.         /* AC11 */
  620.         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
  621.           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
  622.           if (num >= 0) {
  623.             pred = (int) (((Q11<<7) + num) / (Q11<<8));
  624.             if (Al > 0 && pred >= (1<<Al))
  625.               pred = (1<<Al)-1;
  626.           } else {
  627.             pred = (int) (((Q11<<7) - num) / (Q11<<8));
  628.             if (Al > 0 && pred >= (1<<Al))
  629.               pred = (1<<Al)-1;
  630.             pred = -pred;
  631.           }
  632.           workspace[9] = (JCOEF) pred;
  633.         }
  634.         /* AC02 */
  635.         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
  636.           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
  637.           if (num >= 0) {
  638.             pred = (int) (((Q02<<7) + num) / (Q02<<8));
  639.             if (Al > 0 && pred >= (1<<Al))
  640.               pred = (1<<Al)-1;
  641.           } else {
  642.             pred = (int) (((Q02<<7) - num) / (Q02<<8));
  643.             if (Al > 0 && pred >= (1<<Al))
  644.               pred = (1<<Al)-1;
  645.             pred = -pred;
  646.           }
  647.           workspace[2] = (JCOEF) pred;
  648.         }
  649.         /* OK, do the IDCT */
  650.         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
  651.                         output_ptr, output_col);
  652.         /* Advance for next column */
  653.         DC1 = DC2; DC2 = DC3;
  654.         DC4 = DC5; DC5 = DC6;
  655.         DC7 = DC8; DC8 = DC9;
  656.         buffer_ptr++, prev_block_row++, next_block_row++;
  657.         output_col += compptr->DCT_scaled_size;
  658.       }
  659.       output_ptr += compptr->DCT_scaled_size;
  660.     }
  661.   }
  662.  
  663.   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
  664.     return JPEG_ROW_COMPLETED;
  665.   return JPEG_SCAN_COMPLETED;
  666. }
  667.  
  668. #endif /* BLOCK_SMOOTHING_SUPPORTED */
  669.  
  670.  
  671. /*
  672.  * Initialize coefficient buffer controller.
  673.  */
  674.  
  675. GLOBAL(void)
  676. jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
  677. {
  678.   my_coef_ptr coef;
  679.  
  680.   coef = (my_coef_ptr)
  681.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  682.                                 SIZEOF(my_coef_controller));
  683.   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
  684.   coef->pub.start_input_pass = start_input_pass;
  685.   coef->pub.start_output_pass = start_output_pass;
  686. #ifdef BLOCK_SMOOTHING_SUPPORTED
  687.   coef->coef_bits_latch = NULL;
  688. #endif
  689.  
  690.   /* Create the coefficient buffer. */
  691.   if (need_full_buffer) {
  692. #ifdef D_MULTISCAN_FILES_SUPPORTED
  693.     /* Allocate a full-image virtual array for each component, */
  694.     /* padded to a multiple of samp_factor DCT blocks in each direction. */
  695.     /* Note we ask for a pre-zeroed array. */
  696.     int ci, access_rows;
  697.     jpeg_component_info *compptr;
  698.  
  699.     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  700.          ci++, compptr++) {
  701.       access_rows = compptr->v_samp_factor;
  702. #ifdef BLOCK_SMOOTHING_SUPPORTED
  703.       /* If block smoothing could be used, need a bigger window */
  704.       if (cinfo->progressive_mode)
  705.         access_rows *= 3;
  706. #endif
  707.       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
  708.         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
  709.          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
  710.                                 (long) compptr->h_samp_factor),
  711.          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
  712.                                 (long) compptr->v_samp_factor),
  713.          (JDIMENSION) access_rows);
  714.     }
  715.     coef->pub.consume_data = consume_data;
  716.     coef->pub.decompress_data = decompress_data;
  717.     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
  718. #else
  719.     ERREXIT(cinfo, JERR_NOT_COMPILED);
  720. #endif
  721.   } else {
  722.     /* We only need a single-MCU buffer. */
  723.     JBLOCKROW buffer;
  724.     int i;
  725.  
  726.     buffer = (JBLOCKROW)
  727.       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  728.                                   D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
  729.     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
  730.       coef->MCU_buffer[i] = buffer + i;
  731.     }
  732.     coef->pub.consume_data = dummy_consume_data;
  733.     coef->pub.decompress_data = decompress_onepass;
  734.     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
  735.   }
  736. }
  737.