Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jcsample.c
  3.  *
  4.  * Copyright (C) 1991-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains downsampling routines.
  9.  *
  10.  * Downsampling input data is counted in "row groups".  A row group
  11.  * is defined to be max_v_samp_factor pixel rows of each component,
  12.  * from which the downsampler produces v_samp_factor sample rows.
  13.  * A single row group is processed in each call to the downsampler module.
  14.  *
  15.  * The downsampler is responsible for edge-expansion of its output data
  16.  * to fill an integral number of DCT blocks horizontally.  The source buffer
  17.  * may be modified if it is helpful for this purpose (the source buffer is
  18.  * allocated wide enough to correspond to the desired output width).
  19.  * The caller (the prep controller) is responsible for vertical padding.
  20.  *
  21.  * The downsampler may request "context rows" by setting need_context_rows
  22.  * during startup.  In this case, the input arrays will contain at least
  23.  * one row group's worth of pixels above and below the passed-in data;
  24.  * the caller will create dummy rows at image top and bottom by replicating
  25.  * the first or last real pixel row.
  26.  *
  27.  * An excellent reference for image resampling is
  28.  *   Digital Image Warping, George Wolberg, 1990.
  29.  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
  30.  *
  31.  * The downsampling algorithm used here is a simple average of the source
  32.  * pixels covered by the output pixel.  The hi-falutin sampling literature
  33.  * refers to this as a "box filter".  In general the characteristics of a box
  34.  * filter are not very good, but for the specific cases we normally use (1:1
  35.  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
  36.  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
  37.  * advised to improve this code.
  38.  *
  39.  * A simple input-smoothing capability is provided.  This is mainly intended
  40.  * for cleaning up color-dithered GIF input files (if you find it inadequate,
  41.  * we suggest using an external filtering program such as pnmconvol).  When
  42.  * enabled, each input pixel P is replaced by a weighted sum of itself and its
  43.  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
  44.  * where SF = (smoothing_factor / 1024).
  45.  * Currently, smoothing is only supported for 2h2v sampling factors.
  46.  */
  47.  
  48. #define JPEG_INTERNALS
  49. #include "jinclude.h"
  50. #include "jpeglib.h"
  51.  
  52.  
  53. /* Pointer to routine to downsample a single component */
  54. typedef JMETHOD(void, downsample1_ptr,
  55.                 (j_compress_ptr cinfo, jpeg_component_info * compptr,
  56.                  JSAMPARRAY input_data, JSAMPARRAY output_data));
  57.  
  58. /* Private subobject */
  59.  
  60. typedef struct {
  61.   struct jpeg_downsampler pub;  /* public fields */
  62.  
  63.   /* Downsampling method pointers, one per component */
  64.   downsample1_ptr methods[MAX_COMPONENTS];
  65. } my_downsampler;
  66.  
  67. typedef my_downsampler * my_downsample_ptr;
  68.  
  69.  
  70. /*
  71.  * Initialize for a downsampling pass.
  72.  */
  73.  
  74. METHODDEF(void)
  75. start_pass_downsample (j_compress_ptr cinfo)
  76. {
  77.   /* no work for now */
  78. }
  79.  
  80.  
  81. /*
  82.  * Expand a component horizontally from width input_cols to width output_cols,
  83.  * by duplicating the rightmost samples.
  84.  */
  85.  
  86. LOCAL(void)
  87. expand_right_edge (JSAMPARRAY image_data, int num_rows,
  88.                    JDIMENSION input_cols, JDIMENSION output_cols)
  89. {
  90.   register JSAMPROW ptr;
  91.   register JSAMPLE pixval;
  92.   register int count;
  93.   int row;
  94.   int numcols = (int) (output_cols - input_cols);
  95.  
  96.   if (numcols > 0) {
  97.     for (row = 0; row < num_rows; row++) {
  98.       ptr = image_data[row] + input_cols;
  99.       pixval = ptr[-1];         /* don't need GETJSAMPLE() here */
  100.       for (count = numcols; count > 0; count--)
  101.         *ptr++ = pixval;
  102.     }
  103.   }
  104. }
  105.  
  106.  
  107. /*
  108.  * Do downsampling for a whole row group (all components).
  109.  *
  110.  * In this version we simply downsample each component independently.
  111.  */
  112.  
  113. METHODDEF(void)
  114. sep_downsample (j_compress_ptr cinfo,
  115.                 JSAMPIMAGE input_buf, JDIMENSION in_row_index,
  116.                 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
  117. {
  118.   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
  119.   int ci;
  120.   jpeg_component_info * compptr;
  121.   JSAMPARRAY in_ptr, out_ptr;
  122.  
  123.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  124.        ci++, compptr++) {
  125.     in_ptr = input_buf[ci] + in_row_index;
  126.     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
  127.     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
  128.   }
  129. }
  130.  
  131.  
  132. /*
  133.  * Downsample pixel values of a single component.
  134.  * One row group is processed per call.
  135.  * This version handles arbitrary integral sampling ratios, without smoothing.
  136.  * Note that this version is not actually used for customary sampling ratios.
  137.  */
  138.  
  139. METHODDEF(void)
  140. int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
  141.                 JSAMPARRAY input_data, JSAMPARRAY output_data)
  142. {
  143.   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
  144.   JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
  145.   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  146.   JSAMPROW inptr, outptr;
  147.   INT32 outvalue;
  148.  
  149.   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
  150.   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
  151.   numpix = h_expand * v_expand;
  152.   numpix2 = numpix/2;
  153.  
  154.   /* Expand input data enough to let all the output samples be generated
  155.    * by the standard loop.  Special-casing padded output would be more
  156.    * efficient.
  157.    */
  158.   expand_right_edge(input_data, cinfo->max_v_samp_factor,
  159.                     cinfo->image_width, output_cols * h_expand);
  160.  
  161.   inrow = 0;
  162.   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
  163.     outptr = output_data[outrow];
  164.     for (outcol = 0, outcol_h = 0; outcol < output_cols;
  165.          outcol++, outcol_h += h_expand) {
  166.       outvalue = 0;
  167.       for (v = 0; v < v_expand; v++) {
  168.         inptr = input_data[inrow+v] + outcol_h;
  169.         for (h = 0; h < h_expand; h++) {
  170.           outvalue += (INT32) GETJSAMPLE(*inptr++);
  171.         }
  172.       }
  173.       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
  174.     }
  175.     inrow += v_expand;
  176.   }
  177. }
  178.  
  179.  
  180. /*
  181.  * Downsample pixel values of a single component.
  182.  * This version handles the special case of a full-size component,
  183.  * without smoothing.
  184.  */
  185.  
  186. METHODDEF(void)
  187. fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
  188.                      JSAMPARRAY input_data, JSAMPARRAY output_data)
  189. {
  190.   /* Copy the data */
  191.   jcopy_sample_rows(input_data, 0, output_data, 0,
  192.                     cinfo->max_v_samp_factor, cinfo->image_width);
  193.   /* Edge-expand */
  194.   expand_right_edge(output_data, cinfo->max_v_samp_factor,
  195.                     cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
  196. }
  197.  
  198.  
  199. /*
  200.  * Downsample pixel values of a single component.
  201.  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
  202.  * without smoothing.
  203.  *
  204.  * A note about the "bias" calculations: when rounding fractional values to
  205.  * integer, we do not want to always round 0.5 up to the next integer.
  206.  * If we did that, we'd introduce a noticeable bias towards larger values.
  207.  * Instead, this code is arranged so that 0.5 will be rounded up or down at
  208.  * alternate pixel locations (a simple ordered dither pattern).
  209.  */
  210.  
  211. METHODDEF(void)
  212. h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
  213.                  JSAMPARRAY input_data, JSAMPARRAY output_data)
  214. {
  215.   int outrow;
  216.   JDIMENSION outcol;
  217.   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  218.   register JSAMPROW inptr, outptr;
  219.   register int bias;
  220.  
  221.   /* Expand input data enough to let all the output samples be generated
  222.    * by the standard loop.  Special-casing padded output would be more
  223.    * efficient.
  224.    */
  225.   expand_right_edge(input_data, cinfo->max_v_samp_factor,
  226.                     cinfo->image_width, output_cols * 2);
  227.  
  228.   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
  229.     outptr = output_data[outrow];
  230.     inptr = input_data[outrow];
  231.     bias = 0;                   /* bias = 0,1,0,1,... for successive samples */
  232.     for (outcol = 0; outcol < output_cols; outcol++) {
  233.       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
  234.                               + bias) >> 1);
  235.       bias ^= 1;                /* 0=>1, 1=>0 */
  236.       inptr += 2;
  237.     }
  238.   }
  239. }
  240.  
  241.  
  242. /*
  243.  * Downsample pixel values of a single component.
  244.  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
  245.  * without smoothing.
  246.  */
  247.  
  248. METHODDEF(void)
  249. h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
  250.                  JSAMPARRAY input_data, JSAMPARRAY output_data)
  251. {
  252.   int inrow, outrow;
  253.   JDIMENSION outcol;
  254.   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  255.   register JSAMPROW inptr0, inptr1, outptr;
  256.   register int bias;
  257.  
  258.   /* Expand input data enough to let all the output samples be generated
  259.    * by the standard loop.  Special-casing padded output would be more
  260.    * efficient.
  261.    */
  262.   expand_right_edge(input_data, cinfo->max_v_samp_factor,
  263.                     cinfo->image_width, output_cols * 2);
  264.  
  265.   inrow = 0;
  266.   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
  267.     outptr = output_data[outrow];
  268.     inptr0 = input_data[inrow];
  269.     inptr1 = input_data[inrow+1];
  270.     bias = 1;                   /* bias = 1,2,1,2,... for successive samples */
  271.     for (outcol = 0; outcol < output_cols; outcol++) {
  272.       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
  273.                               GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
  274.                               + bias) >> 2);
  275.       bias ^= 3;                /* 1=>2, 2=>1 */
  276.       inptr0 += 2; inptr1 += 2;
  277.     }
  278.     inrow += 2;
  279.   }
  280. }
  281.  
  282.  
  283. #ifdef INPUT_SMOOTHING_SUPPORTED
  284.  
  285. /*
  286.  * Downsample pixel values of a single component.
  287.  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
  288.  * with smoothing.  One row of context is required.
  289.  */
  290.  
  291. METHODDEF(void)
  292. h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
  293.                         JSAMPARRAY input_data, JSAMPARRAY output_data)
  294. {
  295.   int inrow, outrow;
  296.   JDIMENSION colctr;
  297.   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  298.   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
  299.   INT32 membersum, neighsum, memberscale, neighscale;
  300.  
  301.   /* Expand input data enough to let all the output samples be generated
  302.    * by the standard loop.  Special-casing padded output would be more
  303.    * efficient.
  304.    */
  305.   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
  306.                     cinfo->image_width, output_cols * 2);
  307.  
  308.   /* We don't bother to form the individual "smoothed" input pixel values;
  309.    * we can directly compute the output which is the average of the four
  310.    * smoothed values.  Each of the four member pixels contributes a fraction
  311.    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
  312.    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
  313.    * output.  The four corner-adjacent neighbor pixels contribute a fraction
  314.    * SF to just one smoothed pixel, or SF/4 to the final output; while the
  315.    * eight edge-adjacent neighbors contribute SF to each of two smoothed
  316.    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
  317.    * factors are scaled by 2^16 = 65536.
  318.    * Also recall that SF = smoothing_factor / 1024.
  319.    */
  320.  
  321.   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
  322.   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
  323.  
  324.   inrow = 0;
  325.   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
  326.     outptr = output_data[outrow];
  327.     inptr0 = input_data[inrow];
  328.     inptr1 = input_data[inrow+1];
  329.     above_ptr = input_data[inrow-1];
  330.     below_ptr = input_data[inrow+2];
  331.  
  332.     /* Special case for first column: pretend column -1 is same as column 0 */
  333.     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
  334.                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
  335.     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
  336.                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
  337.                GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
  338.                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
  339.     neighsum += neighsum;
  340.     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
  341.                 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
  342.     membersum = membersum * memberscale + neighsum * neighscale;
  343.     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
  344.     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
  345.  
  346.     for (colctr = output_cols - 2; colctr > 0; colctr--) {
  347.       /* sum of pixels directly mapped to this output element */
  348.       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
  349.                   GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
  350.       /* sum of edge-neighbor pixels */
  351.       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
  352.                  GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
  353.                  GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
  354.                  GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
  355.       /* The edge-neighbors count twice as much as corner-neighbors */
  356.       neighsum += neighsum;
  357.       /* Add in the corner-neighbors */
  358.       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
  359.                   GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
  360.       /* form final output scaled up by 2^16 */
  361.       membersum = membersum * memberscale + neighsum * neighscale;
  362.       /* round, descale and output it */
  363.       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
  364.       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
  365.     }
  366.  
  367.     /* Special case for last column */
  368.     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
  369.                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
  370.     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
  371.                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
  372.                GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
  373.                GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
  374.     neighsum += neighsum;
  375.     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
  376.                 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
  377.     membersum = membersum * memberscale + neighsum * neighscale;
  378.     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
  379.  
  380.     inrow += 2;
  381.   }
  382. }
  383.  
  384.  
  385. /*
  386.  * Downsample pixel values of a single component.
  387.  * This version handles the special case of a full-size component,
  388.  * with smoothing.  One row of context is required.
  389.  */
  390.  
  391. METHODDEF(void)
  392. fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
  393.                             JSAMPARRAY input_data, JSAMPARRAY output_data)
  394. {
  395.   int outrow;
  396.   JDIMENSION colctr;
  397.   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  398.   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
  399.   INT32 membersum, neighsum, memberscale, neighscale;
  400.   int colsum, lastcolsum, nextcolsum;
  401.  
  402.   /* Expand input data enough to let all the output samples be generated
  403.    * by the standard loop.  Special-casing padded output would be more
  404.    * efficient.
  405.    */
  406.   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
  407.                     cinfo->image_width, output_cols);
  408.  
  409.   /* Each of the eight neighbor pixels contributes a fraction SF to the
  410.    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
  411.    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
  412.    * Also recall that SF = smoothing_factor / 1024.
  413.    */
  414.  
  415.   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
  416.   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
  417.  
  418.   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
  419.     outptr = output_data[outrow];
  420.     inptr = input_data[outrow];
  421.     above_ptr = input_data[outrow-1];
  422.     below_ptr = input_data[outrow+1];
  423.  
  424.     /* Special case for first column */
  425.     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
  426.              GETJSAMPLE(*inptr);
  427.     membersum = GETJSAMPLE(*inptr++);
  428.     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
  429.                  GETJSAMPLE(*inptr);
  430.     neighsum = colsum + (colsum - membersum) + nextcolsum;
  431.     membersum = membersum * memberscale + neighsum * neighscale;
  432.     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
  433.     lastcolsum = colsum; colsum = nextcolsum;
  434.  
  435.     for (colctr = output_cols - 2; colctr > 0; colctr--) {
  436.       membersum = GETJSAMPLE(*inptr++);
  437.       above_ptr++; below_ptr++;
  438.       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
  439.                    GETJSAMPLE(*inptr);
  440.       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
  441.       membersum = membersum * memberscale + neighsum * neighscale;
  442.       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
  443.       lastcolsum = colsum; colsum = nextcolsum;
  444.     }
  445.  
  446.     /* Special case for last column */
  447.     membersum = GETJSAMPLE(*inptr);
  448.     neighsum = lastcolsum + (colsum - membersum) + colsum;
  449.     membersum = membersum * memberscale + neighsum * neighscale;
  450.     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
  451.  
  452.   }
  453. }
  454.  
  455. #endif /* INPUT_SMOOTHING_SUPPORTED */
  456.  
  457.  
  458. /*
  459.  * Module initialization routine for downsampling.
  460.  * Note that we must select a routine for each component.
  461.  */
  462.  
  463. GLOBAL(void)
  464. jinit_downsampler (j_compress_ptr cinfo)
  465. {
  466.   my_downsample_ptr downsample;
  467.   int ci;
  468.   jpeg_component_info * compptr;
  469.   boolean smoothok = TRUE;
  470.  
  471.   downsample = (my_downsample_ptr)
  472.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  473.                                 SIZEOF(my_downsampler));
  474.   cinfo->downsample = (struct jpeg_downsampler *) downsample;
  475.   downsample->pub.start_pass = start_pass_downsample;
  476.   downsample->pub.downsample = sep_downsample;
  477.   downsample->pub.need_context_rows = FALSE;
  478.  
  479.   if (cinfo->CCIR601_sampling)
  480.     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
  481.  
  482.   /* Verify we can handle the sampling factors, and set up method pointers */
  483.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  484.        ci++, compptr++) {
  485.     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
  486.         compptr->v_samp_factor == cinfo->max_v_samp_factor) {
  487. #ifdef INPUT_SMOOTHING_SUPPORTED
  488.       if (cinfo->smoothing_factor) {
  489.         downsample->methods[ci] = fullsize_smooth_downsample;
  490.         downsample->pub.need_context_rows = TRUE;
  491.       } else
  492. #endif
  493.         downsample->methods[ci] = fullsize_downsample;
  494.     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
  495.                compptr->v_samp_factor == cinfo->max_v_samp_factor) {
  496.       smoothok = FALSE;
  497.       downsample->methods[ci] = h2v1_downsample;
  498.     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
  499.                compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
  500. #ifdef INPUT_SMOOTHING_SUPPORTED
  501.       if (cinfo->smoothing_factor) {
  502.         downsample->methods[ci] = h2v2_smooth_downsample;
  503.         downsample->pub.need_context_rows = TRUE;
  504.       } else
  505. #endif
  506.         downsample->methods[ci] = h2v2_downsample;
  507.     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
  508.                (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
  509.       smoothok = FALSE;
  510.       downsample->methods[ci] = int_downsample;
  511.     } else
  512.       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
  513.   }
  514.  
  515. #ifdef INPUT_SMOOTHING_SUPPORTED
  516.   if (cinfo->smoothing_factor && !smoothok)
  517.     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
  518. #endif
  519. }
  520.