Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * jcparam.c
  3.  *
  4.  * Copyright (C) 1991-1998, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains optional default-setting code for the JPEG compressor.
  9.  * Applications do not have to use this file, but those that don't use it
  10.  * must know a lot more about the innards of the JPEG code.
  11.  */
  12.  
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16.  
  17.  
  18. /*
  19.  * Quantization table setup routines
  20.  */
  21.  
  22. GLOBAL(void)
  23. jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
  24.                       const unsigned int *basic_table,
  25.                       int scale_factor, boolean force_baseline)
  26. /* Define a quantization table equal to the basic_table times
  27.  * a scale factor (given as a percentage).
  28.  * If force_baseline is TRUE, the computed quantization table entries
  29.  * are limited to 1..255 for JPEG baseline compatibility.
  30.  */
  31. {
  32.   JQUANT_TBL ** qtblptr;
  33.   int i;
  34.   long temp;
  35.  
  36.   /* Safety check to ensure start_compress not called yet. */
  37.   if (cinfo->global_state != CSTATE_START)
  38.     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  39.  
  40.   if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
  41.     ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
  42.  
  43.   qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
  44.  
  45.   if (*qtblptr == NULL)
  46.     *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
  47.  
  48.   for (i = 0; i < DCTSIZE2; i++) {
  49.     temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
  50.     /* limit the values to the valid range */
  51.     if (temp <= 0L) temp = 1L;
  52.     if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
  53.     if (force_baseline && temp > 255L)
  54.       temp = 255L;              /* limit to baseline range if requested */
  55.     (*qtblptr)->quantval[i] = (UINT16) temp;
  56.   }
  57.  
  58.   /* Initialize sent_table FALSE so table will be written to JPEG file. */
  59.   (*qtblptr)->sent_table = FALSE;
  60. }
  61.  
  62.  
  63. GLOBAL(void)
  64. jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
  65.                          boolean force_baseline)
  66. /* Set or change the 'quality' (quantization) setting, using default tables
  67.  * and a straight percentage-scaling quality scale.  In most cases it's better
  68.  * to use jpeg_set_quality (below); this entry point is provided for
  69.  * applications that insist on a linear percentage scaling.
  70.  */
  71. {
  72.   /* These are the sample quantization tables given in JPEG spec section K.1.
  73.    * The spec says that the values given produce "good" quality, and
  74.    * when divided by 2, "very good" quality.
  75.    */
  76.   static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
  77.     16,  11,  10,  16,  24,  40,  51,  61,
  78.     12,  12,  14,  19,  26,  58,  60,  55,
  79.     14,  13,  16,  24,  40,  57,  69,  56,
  80.     14,  17,  22,  29,  51,  87,  80,  62,
  81.     18,  22,  37,  56,  68, 109, 103,  77,
  82.     24,  35,  55,  64,  81, 104, 113,  92,
  83.     49,  64,  78,  87, 103, 121, 120, 101,
  84.     72,  92,  95,  98, 112, 100, 103,  99
  85.   };
  86.   static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
  87.     17,  18,  24,  47,  99,  99,  99,  99,
  88.     18,  21,  26,  66,  99,  99,  99,  99,
  89.     24,  26,  56,  99,  99,  99,  99,  99,
  90.     47,  66,  99,  99,  99,  99,  99,  99,
  91.     99,  99,  99,  99,  99,  99,  99,  99,
  92.     99,  99,  99,  99,  99,  99,  99,  99,
  93.     99,  99,  99,  99,  99,  99,  99,  99,
  94.     99,  99,  99,  99,  99,  99,  99,  99
  95.   };
  96.  
  97.   /* Set up two quantization tables using the specified scaling */
  98.   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
  99.                        scale_factor, force_baseline);
  100.   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
  101.                        scale_factor, force_baseline);
  102. }
  103.  
  104.  
  105. GLOBAL(int)
  106. jpeg_quality_scaling (int quality)
  107. /* Convert a user-specified quality rating to a percentage scaling factor
  108.  * for an underlying quantization table, using our recommended scaling curve.
  109.  * The input 'quality' factor should be 0 (terrible) to 100 (very good).
  110.  */
  111. {
  112.   /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
  113.   if (quality <= 0) quality = 1;
  114.   if (quality > 100) quality = 100;
  115.  
  116.   /* The basic table is used as-is (scaling 100) for a quality of 50.
  117.    * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
  118.    * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
  119.    * to make all the table entries 1 (hence, minimum quantization loss).
  120.    * Qualities 1..50 are converted to scaling percentage 5000/Q.
  121.    */
  122.   if (quality < 50)
  123.     quality = 5000 / quality;
  124.   else
  125.     quality = 200 - quality*2;
  126.  
  127.   return quality;
  128. }
  129.  
  130.  
  131. GLOBAL(void)
  132. jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
  133. /* Set or change the 'quality' (quantization) setting, using default tables.
  134.  * This is the standard quality-adjusting entry point for typical user
  135.  * interfaces; only those who want detailed control over quantization tables
  136.  * would use the preceding three routines directly.
  137.  */
  138. {
  139.   /* Convert user 0-100 rating to percentage scaling */
  140.   quality = jpeg_quality_scaling(quality);
  141.  
  142.   /* Set up standard quality tables */
  143.   jpeg_set_linear_quality(cinfo, quality, force_baseline);
  144. }
  145.  
  146.  
  147. /*
  148.  * Huffman table setup routines
  149.  */
  150.  
  151. LOCAL(void)
  152. add_huff_table (j_compress_ptr cinfo,
  153.                 JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
  154. /* Define a Huffman table */
  155. {
  156.   int nsymbols, len;
  157.  
  158.   if (*htblptr == NULL)
  159.     *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
  160.  
  161.   /* Copy the number-of-symbols-of-each-code-length counts */
  162.   MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
  163.  
  164.   /* Validate the counts.  We do this here mainly so we can copy the right
  165.    * number of symbols from the val[] array, without risking marching off
  166.    * the end of memory.  jchuff.c will do a more thorough test later.
  167.    */
  168.   nsymbols = 0;
  169.   for (len = 1; len <= 16; len++)
  170.     nsymbols += bits[len];
  171.   if (nsymbols < 1 || nsymbols > 256)
  172.     ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
  173.  
  174.   MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
  175.  
  176.   /* Initialize sent_table FALSE so table will be written to JPEG file. */
  177.   (*htblptr)->sent_table = FALSE;
  178. }
  179.  
  180.  
  181. LOCAL(void)
  182. std_huff_tables (j_compress_ptr cinfo)
  183. /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
  184. /* IMPORTANT: these are only valid for 8-bit data precision! */
  185. {
  186.   static const UINT8 bits_dc_luminance[17] =
  187.     { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
  188.   static const UINT8 val_dc_luminance[] =
  189.     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  190.  
  191.   static const UINT8 bits_dc_chrominance[17] =
  192.     { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  193.   static const UINT8 val_dc_chrominance[] =
  194.     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  195.  
  196.   static const UINT8 bits_ac_luminance[17] =
  197.     { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
  198.   static const UINT8 val_ac_luminance[] =
  199.     { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
  200.       0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
  201.       0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
  202.       0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
  203.       0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
  204.       0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
  205.       0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
  206.       0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
  207.       0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
  208.       0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
  209.       0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
  210.       0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
  211.       0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
  212.       0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
  213.       0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
  214.       0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
  215.       0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
  216.       0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
  217.       0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
  218.       0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  219.       0xf9, 0xfa };
  220.  
  221.   static const UINT8 bits_ac_chrominance[17] =
  222.     { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
  223.   static const UINT8 val_ac_chrominance[] =
  224.     { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
  225.       0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
  226.       0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
  227.       0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
  228.       0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
  229.       0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
  230.       0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
  231.       0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
  232.       0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
  233.       0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
  234.       0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
  235.       0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
  236.       0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
  237.       0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
  238.       0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
  239.       0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
  240.       0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
  241.       0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
  242.       0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
  243.       0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  244.       0xf9, 0xfa };
  245.  
  246.   add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
  247.                  bits_dc_luminance, val_dc_luminance);
  248.   add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
  249.                  bits_ac_luminance, val_ac_luminance);
  250.   add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
  251.                  bits_dc_chrominance, val_dc_chrominance);
  252.   add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
  253.                  bits_ac_chrominance, val_ac_chrominance);
  254. }
  255.  
  256.  
  257. /*
  258.  * Default parameter setup for compression.
  259.  *
  260.  * Applications that don't choose to use this routine must do their
  261.  * own setup of all these parameters.  Alternately, you can call this
  262.  * to establish defaults and then alter parameters selectively.  This
  263.  * is the recommended approach since, if we add any new parameters,
  264.  * your code will still work (they'll be set to reasonable defaults).
  265.  */
  266.  
  267. GLOBAL(void)
  268. jpeg_set_defaults (j_compress_ptr cinfo)
  269. {
  270.   int i;
  271.  
  272.   /* Safety check to ensure start_compress not called yet. */
  273.   if (cinfo->global_state != CSTATE_START)
  274.     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  275.  
  276.   /* Allocate comp_info array large enough for maximum component count.
  277.    * Array is made permanent in case application wants to compress
  278.    * multiple images at same param settings.
  279.    */
  280.   if (cinfo->comp_info == NULL)
  281.     cinfo->comp_info = (jpeg_component_info *)
  282.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
  283.                                   MAX_COMPONENTS * SIZEOF(jpeg_component_info));
  284.  
  285.   /* Initialize everything not dependent on the color space */
  286.  
  287.   cinfo->data_precision = BITS_IN_JSAMPLE;
  288.   /* Set up two quantization tables using default quality of 75 */
  289.   jpeg_set_quality(cinfo, 75, TRUE);
  290.   /* Set up two Huffman tables */
  291.   std_huff_tables(cinfo);
  292.  
  293.   /* Initialize default arithmetic coding conditioning */
  294.   for (i = 0; i < NUM_ARITH_TBLS; i++) {
  295.     cinfo->arith_dc_L[i] = 0;
  296.     cinfo->arith_dc_U[i] = 1;
  297.     cinfo->arith_ac_K[i] = 5;
  298.   }
  299.  
  300.   /* Default is no multiple-scan output */
  301.   cinfo->scan_info = NULL;
  302.   cinfo->num_scans = 0;
  303.  
  304.   /* Expect normal source image, not raw downsampled data */
  305.   cinfo->raw_data_in = FALSE;
  306.  
  307.   /* Use Huffman coding, not arithmetic coding, by default */
  308.   cinfo->arith_code = FALSE;
  309.  
  310.   /* By default, don't do extra passes to optimize entropy coding */
  311.   cinfo->optimize_coding = FALSE;
  312.   /* The standard Huffman tables are only valid for 8-bit data precision.
  313.    * If the precision is higher, force optimization on so that usable
  314.    * tables will be computed.  This test can be removed if default tables
  315.    * are supplied that are valid for the desired precision.
  316.    */
  317.   if (cinfo->data_precision > 8)
  318.     cinfo->optimize_coding = TRUE;
  319.  
  320.   /* By default, use the simpler non-cosited sampling alignment */
  321.   cinfo->CCIR601_sampling = FALSE;
  322.  
  323.   /* No input smoothing */
  324.   cinfo->smoothing_factor = 0;
  325.  
  326.   /* DCT algorithm preference */
  327.   cinfo->dct_method = JDCT_DEFAULT;
  328.  
  329.   /* No restart markers */
  330.   cinfo->restart_interval = 0;
  331.   cinfo->restart_in_rows = 0;
  332.  
  333.   /* Fill in default JFIF marker parameters.  Note that whether the marker
  334.    * will actually be written is determined by jpeg_set_colorspace.
  335.    *
  336.    * By default, the library emits JFIF version code 1.01.
  337.    * An application that wants to emit JFIF 1.02 extension markers should set
  338.    * JFIF_minor_version to 2.  We could probably get away with just defaulting
  339.    * to 1.02, but there may still be some decoders in use that will complain
  340.    * about that; saying 1.01 should minimize compatibility problems.
  341.    */
  342.   cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
  343.   cinfo->JFIF_minor_version = 1;
  344.   cinfo->density_unit = 0;      /* Pixel size is unknown by default */
  345.   cinfo->X_density = 1;         /* Pixel aspect ratio is square by default */
  346.   cinfo->Y_density = 1;
  347.  
  348.   /* Choose JPEG colorspace based on input space, set defaults accordingly */
  349.  
  350.   jpeg_default_colorspace(cinfo);
  351. }
  352.  
  353.  
  354. /*
  355.  * Select an appropriate JPEG colorspace for in_color_space.
  356.  */
  357.  
  358. GLOBAL(void)
  359. jpeg_default_colorspace (j_compress_ptr cinfo)
  360. {
  361.   switch (cinfo->in_color_space) {
  362.   case JCS_GRAYSCALE:
  363.     jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
  364.     break;
  365.   case JCS_RGB:
  366.     jpeg_set_colorspace(cinfo, JCS_YCbCr);
  367.     break;
  368.   case JCS_YCbCr:
  369.     jpeg_set_colorspace(cinfo, JCS_YCbCr);
  370.     break;
  371.   case JCS_CMYK:
  372.     jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
  373.     break;
  374.   case JCS_YCCK:
  375.     jpeg_set_colorspace(cinfo, JCS_YCCK);
  376.     break;
  377.   case JCS_UNKNOWN:
  378.     jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
  379.     break;
  380.   default:
  381.     ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
  382.   }
  383. }
  384.  
  385.  
  386. /*
  387.  * Set the JPEG colorspace, and choose colorspace-dependent default values.
  388.  */
  389.  
  390. GLOBAL(void)
  391. jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
  392. {
  393.   jpeg_component_info * compptr;
  394.   int ci;
  395.  
  396. #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
  397.   (compptr = &cinfo->comp_info[index], \
  398.    compptr->component_id = (id), \
  399.    compptr->h_samp_factor = (hsamp), \
  400.    compptr->v_samp_factor = (vsamp), \
  401.    compptr->quant_tbl_no = (quant), \
  402.    compptr->dc_tbl_no = (dctbl), \
  403.    compptr->ac_tbl_no = (actbl) )
  404.  
  405.   /* Safety check to ensure start_compress not called yet. */
  406.   if (cinfo->global_state != CSTATE_START)
  407.     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  408.  
  409.   /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
  410.    * tables 1 for chrominance components.
  411.    */
  412.  
  413.   cinfo->jpeg_color_space = colorspace;
  414.  
  415.   cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
  416.   cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
  417.  
  418.   switch (colorspace) {
  419.   case JCS_GRAYSCALE:
  420.     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
  421.     cinfo->num_components = 1;
  422.     /* JFIF specifies component ID 1 */
  423.     SET_COMP(0, 1, 1,1, 0, 0,0);
  424.     break;
  425.   case JCS_RGB:
  426.     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
  427.     cinfo->num_components = 3;
  428.     SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
  429.     SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
  430.     SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
  431.     break;
  432.   case JCS_YCbCr:
  433.     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
  434.     cinfo->num_components = 3;
  435.     /* JFIF specifies component IDs 1,2,3 */
  436.     /* We default to 2x2 subsamples of chrominance */
  437.     SET_COMP(0, 1, 2,2, 0, 0,0);
  438.     SET_COMP(1, 2, 1,1, 1, 1,1);
  439.     SET_COMP(2, 3, 1,1, 1, 1,1);
  440.     break;
  441.   case JCS_CMYK:
  442.     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
  443.     cinfo->num_components = 4;
  444.     SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
  445.     SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
  446.     SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
  447.     SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
  448.     break;
  449.   case JCS_YCCK:
  450.     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
  451.     cinfo->num_components = 4;
  452.     SET_COMP(0, 1, 2,2, 0, 0,0);
  453.     SET_COMP(1, 2, 1,1, 1, 1,1);
  454.     SET_COMP(2, 3, 1,1, 1, 1,1);
  455.     SET_COMP(3, 4, 2,2, 0, 0,0);
  456.     break;
  457.   case JCS_UNKNOWN:
  458.     cinfo->num_components = cinfo->input_components;
  459.     if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
  460.       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
  461.                MAX_COMPONENTS);
  462.     for (ci = 0; ci < cinfo->num_components; ci++) {
  463.       SET_COMP(ci, ci, 1,1, 0, 0,0);
  464.     }
  465.     break;
  466.   default:
  467.     ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
  468.   }
  469. }
  470.  
  471.  
  472. #ifdef C_PROGRESSIVE_SUPPORTED
  473.  
  474. LOCAL(jpeg_scan_info *)
  475. fill_a_scan (jpeg_scan_info * scanptr, int ci,
  476.              int Ss, int Se, int Ah, int Al)
  477. /* Support routine: generate one scan for specified component */
  478. {
  479.   scanptr->comps_in_scan = 1;
  480.   scanptr->component_index[0] = ci;
  481.   scanptr->Ss = Ss;
  482.   scanptr->Se = Se;
  483.   scanptr->Ah = Ah;
  484.   scanptr->Al = Al;
  485.   scanptr++;
  486.   return scanptr;
  487. }
  488.  
  489. LOCAL(jpeg_scan_info *)
  490. fill_scans (jpeg_scan_info * scanptr, int ncomps,
  491.             int Ss, int Se, int Ah, int Al)
  492. /* Support routine: generate one scan for each component */
  493. {
  494.   int ci;
  495.  
  496.   for (ci = 0; ci < ncomps; ci++) {
  497.     scanptr->comps_in_scan = 1;
  498.     scanptr->component_index[0] = ci;
  499.     scanptr->Ss = Ss;
  500.     scanptr->Se = Se;
  501.     scanptr->Ah = Ah;
  502.     scanptr->Al = Al;
  503.     scanptr++;
  504.   }
  505.   return scanptr;
  506. }
  507.  
  508. LOCAL(jpeg_scan_info *)
  509. fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
  510. /* Support routine: generate interleaved DC scan if possible, else N scans */
  511. {
  512.   int ci;
  513.  
  514.   if (ncomps <= MAX_COMPS_IN_SCAN) {
  515.     /* Single interleaved DC scan */
  516.     scanptr->comps_in_scan = ncomps;
  517.     for (ci = 0; ci < ncomps; ci++)
  518.       scanptr->component_index[ci] = ci;
  519.     scanptr->Ss = scanptr->Se = 0;
  520.     scanptr->Ah = Ah;
  521.     scanptr->Al = Al;
  522.     scanptr++;
  523.   } else {
  524.     /* Noninterleaved DC scan for each component */
  525.     scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
  526.   }
  527.   return scanptr;
  528. }
  529.  
  530.  
  531. /*
  532.  * Create a recommended progressive-JPEG script.
  533.  * cinfo->num_components and cinfo->jpeg_color_space must be correct.
  534.  */
  535.  
  536. GLOBAL(void)
  537. jpeg_simple_progression (j_compress_ptr cinfo)
  538. {
  539.   int ncomps = cinfo->num_components;
  540.   int nscans;
  541.   jpeg_scan_info * scanptr;
  542.  
  543.   /* Safety check to ensure start_compress not called yet. */
  544.   if (cinfo->global_state != CSTATE_START)
  545.     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  546.  
  547.   /* Figure space needed for script.  Calculation must match code below! */
  548.   if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
  549.     /* Custom script for YCbCr color images. */
  550.     nscans = 10;
  551.   } else {
  552.     /* All-purpose script for other color spaces. */
  553.     if (ncomps > MAX_COMPS_IN_SCAN)
  554.       nscans = 6 * ncomps;      /* 2 DC + 4 AC scans per component */
  555.     else
  556.       nscans = 2 + 4 * ncomps;  /* 2 DC scans; 4 AC scans per component */
  557.   }
  558.  
  559.   /* Allocate space for script.
  560.    * We need to put it in the permanent pool in case the application performs
  561.    * multiple compressions without changing the settings.  To avoid a memory
  562.    * leak if jpeg_simple_progression is called repeatedly for the same JPEG
  563.    * object, we try to re-use previously allocated space, and we allocate
  564.    * enough space to handle YCbCr even if initially asked for grayscale.
  565.    */
  566.   if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
  567.     cinfo->script_space_size = MAX(nscans, 10);
  568.     cinfo->script_space = (jpeg_scan_info *)
  569.       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
  570.                         cinfo->script_space_size * SIZEOF(jpeg_scan_info));
  571.   }
  572.   scanptr = cinfo->script_space;
  573.   cinfo->scan_info = scanptr;
  574.   cinfo->num_scans = nscans;
  575.  
  576.   if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
  577.     /* Custom script for YCbCr color images. */
  578.     /* Initial DC scan */
  579.     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
  580.     /* Initial AC scan: get some luma data out in a hurry */
  581.     scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
  582.     /* Chroma data is too small to be worth expending many scans on */
  583.     scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
  584.     scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
  585.     /* Complete spectral selection for luma AC */
  586.     scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
  587.     /* Refine next bit of luma AC */
  588.     scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
  589.     /* Finish DC successive approximation */
  590.     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
  591.     /* Finish AC successive approximation */
  592.     scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
  593.     scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
  594.     /* Luma bottom bit comes last since it's usually largest scan */
  595.     scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
  596.   } else {
  597.     /* All-purpose script for other color spaces. */
  598.     /* Successive approximation first pass */
  599.     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
  600.     scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
  601.     scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
  602.     /* Successive approximation second pass */
  603.     scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
  604.     /* Successive approximation final pass */
  605.     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
  606.     scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
  607.   }
  608. }
  609.  
  610. #endif /* C_PROGRESSIVE_SUPPORTED */
  611.