Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /* Definitions of target machine for GCC for IA-32.
  2.    Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
  3.    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
  4.    Free Software Foundation, Inc.
  5.  
  6. This file is part of GCC.
  7.  
  8. GCC is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 3, or (at your option)
  11. any later version.
  12.  
  13. GCC is distributed in the hope that it will be useful,
  14. but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. GNU General Public License for more details.
  17.  
  18. Under Section 7 of GPL version 3, you are granted additional
  19. permissions described in the GCC Runtime Library Exception, version
  20. 3.1, as published by the Free Software Foundation.
  21.  
  22. You should have received a copy of the GNU General Public License and
  23. a copy of the GCC Runtime Library Exception along with this program;
  24. see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  25. <http://www.gnu.org/licenses/>.  */
  26.  
  27. /* The purpose of this file is to define the characteristics of the i386,
  28.    independent of assembler syntax or operating system.
  29.  
  30.    Three other files build on this one to describe a specific assembler syntax:
  31.    bsd386.h, att386.h, and sun386.h.
  32.  
  33.    The actual tm.h file for a particular system should include
  34.    this file, and then the file for the appropriate assembler syntax.
  35.  
  36.    Many macros that specify assembler syntax are omitted entirely from
  37.    this file because they really belong in the files for particular
  38.    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
  39.    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
  40.    that start with ASM_ or end in ASM_OP.  */
  41.  
  42. /* Redefines for option macros.  */
  43.  
  44. #define TARGET_64BIT    OPTION_ISA_64BIT
  45. #define TARGET_MMX      OPTION_ISA_MMX
  46. #define TARGET_3DNOW    OPTION_ISA_3DNOW
  47. #define TARGET_3DNOW_A  OPTION_ISA_3DNOW_A
  48. #define TARGET_SSE      OPTION_ISA_SSE
  49. #define TARGET_SSE2     OPTION_ISA_SSE2
  50. #define TARGET_SSE3     OPTION_ISA_SSE3
  51. #define TARGET_SSSE3    OPTION_ISA_SSSE3
  52. #define TARGET_SSE4_1   OPTION_ISA_SSE4_1
  53. #define TARGET_SSE4_2   OPTION_ISA_SSE4_2
  54. #define TARGET_AVX      OPTION_ISA_AVX
  55. #define TARGET_FMA      OPTION_ISA_FMA
  56. #define TARGET_SSE4A    OPTION_ISA_SSE4A
  57. #define TARGET_FMA4     OPTION_ISA_FMA4
  58. #define TARGET_XOP      OPTION_ISA_XOP
  59. #define TARGET_LWP      OPTION_ISA_LWP
  60. #define TARGET_ROUND    OPTION_ISA_ROUND
  61. #define TARGET_ABM      OPTION_ISA_ABM
  62. #define TARGET_POPCNT   OPTION_ISA_POPCNT
  63. #define TARGET_SAHF     OPTION_ISA_SAHF
  64. #define TARGET_MOVBE    OPTION_ISA_MOVBE
  65. #define TARGET_CRC32    OPTION_ISA_CRC32
  66. #define TARGET_AES      OPTION_ISA_AES
  67. #define TARGET_PCLMUL   OPTION_ISA_PCLMUL
  68. #define TARGET_CMPXCHG16B OPTION_ISA_CX16
  69.  
  70.  
  71. /* SSE4.1 defines round instructions */
  72. #define OPTION_MASK_ISA_ROUND   OPTION_MASK_ISA_SSE4_1
  73. #define OPTION_ISA_ROUND        ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
  74.  
  75. #include "config/vxworks-dummy.h"
  76.  
  77. /* Algorithm to expand string function with.  */
  78. enum stringop_alg
  79. {
  80.    no_stringop,
  81.    libcall,
  82.    rep_prefix_1_byte,
  83.    rep_prefix_4_byte,
  84.    rep_prefix_8_byte,
  85.    loop_1_byte,
  86.    loop,
  87.    unrolled_loop
  88. };
  89.  
  90. #define NAX_STRINGOP_ALGS 4
  91.  
  92. /* Specify what algorithm to use for stringops on known size.
  93.    When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
  94.    known at compile time or estimated via feedback, the SIZE array
  95.    is walked in order until MAX is greater then the estimate (or -1
  96.    means infinity).  Corresponding ALG is used then.
  97.    For example initializer:
  98.     {{256, loop}, {-1, rep_prefix_4_byte}}
  99.    will use loop for blocks smaller or equal to 256 bytes, rep prefix will
  100.    be used otherwise.  */
  101. struct stringop_algs
  102. {
  103.   const enum stringop_alg unknown_size;
  104.   const struct stringop_strategy {
  105.     const int max;
  106.     const enum stringop_alg alg;
  107.   } size [NAX_STRINGOP_ALGS];
  108. };
  109.  
  110. /* Define the specific costs for a given cpu */
  111.  
  112. struct processor_costs {
  113.   const int add;                /* cost of an add instruction */
  114.   const int lea;                /* cost of a lea instruction */
  115.   const int shift_var;          /* variable shift costs */
  116.   const int shift_const;        /* constant shift costs */
  117.   const int mult_init[5];       /* cost of starting a multiply
  118.                                    in QImode, HImode, SImode, DImode, TImode*/
  119.   const int mult_bit;           /* cost of multiply per each bit set */
  120.   const int divide[5];          /* cost of a divide/mod
  121.                                    in QImode, HImode, SImode, DImode, TImode*/
  122.   int movsx;                    /* The cost of movsx operation.  */
  123.   int movzx;                    /* The cost of movzx operation.  */
  124.   const int large_insn;         /* insns larger than this cost more */
  125.   const int move_ratio;         /* The threshold of number of scalar
  126.                                    memory-to-memory move insns.  */
  127.   const int movzbl_load;        /* cost of loading using movzbl */
  128.   const int int_load[3];        /* cost of loading integer registers
  129.                                    in QImode, HImode and SImode relative
  130.                                    to reg-reg move (2).  */
  131.   const int int_store[3];       /* cost of storing integer register
  132.                                    in QImode, HImode and SImode */
  133.   const int fp_move;            /* cost of reg,reg fld/fst */
  134.   const int fp_load[3];         /* cost of loading FP register
  135.                                    in SFmode, DFmode and XFmode */
  136.   const int fp_store[3];        /* cost of storing FP register
  137.                                    in SFmode, DFmode and XFmode */
  138.   const int mmx_move;           /* cost of moving MMX register.  */
  139.   const int mmx_load[2];        /* cost of loading MMX register
  140.                                    in SImode and DImode */
  141.   const int mmx_store[2];       /* cost of storing MMX register
  142.                                    in SImode and DImode */
  143.   const int sse_move;           /* cost of moving SSE register.  */
  144.   const int sse_load[3];        /* cost of loading SSE register
  145.                                    in SImode, DImode and TImode*/
  146.   const int sse_store[3];       /* cost of storing SSE register
  147.                                    in SImode, DImode and TImode*/
  148.   const int mmxsse_to_integer;  /* cost of moving mmxsse register to
  149.                                    integer and vice versa.  */
  150.   const int l1_cache_size;      /* size of l1 cache, in kilobytes.  */
  151.   const int l2_cache_size;      /* size of l2 cache, in kilobytes.  */
  152.   const int prefetch_block;     /* bytes moved to cache for prefetch.  */
  153.   const int simultaneous_prefetches; /* number of parallel prefetch
  154.                                    operations.  */
  155.   const int branch_cost;        /* Default value for BRANCH_COST.  */
  156.   const int fadd;               /* cost of FADD and FSUB instructions.  */
  157.   const int fmul;               /* cost of FMUL instruction.  */
  158.   const int fdiv;               /* cost of FDIV instruction.  */
  159.   const int fabs;               /* cost of FABS instruction.  */
  160.   const int fchs;               /* cost of FCHS instruction.  */
  161.   const int fsqrt;              /* cost of FSQRT instruction.  */
  162.                                 /* Specify what algorithm
  163.                                    to use for stringops on unknown size.  */
  164.   struct stringop_algs memcpy[2], memset[2];
  165.   const int scalar_stmt_cost;   /* Cost of any scalar operation, excluding
  166.                                    load and store.  */
  167.   const int scalar_load_cost;   /* Cost of scalar load.  */
  168.   const int scalar_store_cost;  /* Cost of scalar store.  */
  169.   const int vec_stmt_cost;      /* Cost of any vector operation, excluding
  170.                                    load, store, vector-to-scalar and
  171.                                    scalar-to-vector operation.  */
  172.   const int vec_to_scalar_cost;    /* Cost of vect-to-scalar operation.  */
  173.   const int scalar_to_vec_cost;    /* Cost of scalar-to-vector operation.  */
  174.   const int vec_align_load_cost;   /* Cost of aligned vector load.  */
  175.   const int vec_unalign_load_cost; /* Cost of unaligned vector load.  */
  176.   const int vec_store_cost;        /* Cost of vector store.  */
  177.   const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
  178.                                           cost model.  */
  179.   const int cond_not_taken_branch_cost;/* Cost of not taken branch for
  180.                                           vectorizer cost model.  */
  181. };
  182.  
  183. extern const struct processor_costs *ix86_cost;
  184. extern const struct processor_costs ix86_size_cost;
  185.  
  186. #define ix86_cur_cost() \
  187.   (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
  188.  
  189. /* Macros used in the machine description to test the flags.  */
  190.  
  191. /* configure can arrange to make this 2, to force a 486.  */
  192.  
  193. #ifndef TARGET_CPU_DEFAULT
  194. #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
  195. #endif
  196.  
  197. #ifndef TARGET_FPMATH_DEFAULT
  198. #define TARGET_FPMATH_DEFAULT \
  199.   (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
  200. #endif
  201.  
  202. #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
  203.  
  204. /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
  205.    compile-time constant.  */
  206. #ifdef IN_LIBGCC2
  207. #undef TARGET_64BIT
  208. #ifdef __x86_64__
  209. #define TARGET_64BIT 1
  210. #else
  211. #define TARGET_64BIT 0
  212. #endif
  213. #else
  214. #ifndef TARGET_BI_ARCH
  215. #undef TARGET_64BIT
  216. #if TARGET_64BIT_DEFAULT
  217. #define TARGET_64BIT 1
  218. #else
  219. #define TARGET_64BIT 0
  220. #endif
  221. #endif
  222. #endif
  223.  
  224. #define HAS_LONG_COND_BRANCH 1
  225. #define HAS_LONG_UNCOND_BRANCH 1
  226.  
  227. #define TARGET_386 (ix86_tune == PROCESSOR_I386)
  228. #define TARGET_486 (ix86_tune == PROCESSOR_I486)
  229. #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
  230. #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
  231. #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
  232. #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
  233. #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
  234. #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
  235. #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
  236. #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
  237. #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
  238. #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
  239. #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
  240. #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
  241. #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
  242. #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
  243. #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
  244.  
  245. /* Feature tests against the various tunings.  */
  246. enum ix86_tune_indices {
  247.   X86_TUNE_USE_LEAVE,
  248.   X86_TUNE_PUSH_MEMORY,
  249.   X86_TUNE_ZERO_EXTEND_WITH_AND,
  250.   X86_TUNE_UNROLL_STRLEN,
  251.   X86_TUNE_DEEP_BRANCH_PREDICTION,
  252.   X86_TUNE_BRANCH_PREDICTION_HINTS,
  253.   X86_TUNE_DOUBLE_WITH_ADD,
  254.   X86_TUNE_USE_SAHF,
  255.   X86_TUNE_MOVX,
  256.   X86_TUNE_PARTIAL_REG_STALL,
  257.   X86_TUNE_PARTIAL_FLAG_REG_STALL,
  258.   X86_TUNE_USE_HIMODE_FIOP,
  259.   X86_TUNE_USE_SIMODE_FIOP,
  260.   X86_TUNE_USE_MOV0,
  261.   X86_TUNE_USE_CLTD,
  262.   X86_TUNE_USE_XCHGB,
  263.   X86_TUNE_SPLIT_LONG_MOVES,
  264.   X86_TUNE_READ_MODIFY_WRITE,
  265.   X86_TUNE_READ_MODIFY,
  266.   X86_TUNE_PROMOTE_QIMODE,
  267.   X86_TUNE_FAST_PREFIX,
  268.   X86_TUNE_SINGLE_STRINGOP,
  269.   X86_TUNE_QIMODE_MATH,
  270.   X86_TUNE_HIMODE_MATH,
  271.   X86_TUNE_PROMOTE_QI_REGS,
  272.   X86_TUNE_PROMOTE_HI_REGS,
  273.   X86_TUNE_ADD_ESP_4,
  274.   X86_TUNE_ADD_ESP_8,
  275.   X86_TUNE_SUB_ESP_4,
  276.   X86_TUNE_SUB_ESP_8,
  277.   X86_TUNE_INTEGER_DFMODE_MOVES,
  278.   X86_TUNE_PARTIAL_REG_DEPENDENCY,
  279.   X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
  280.   X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
  281.   X86_TUNE_SSE_SPLIT_REGS,
  282.   X86_TUNE_SSE_TYPELESS_STORES,
  283.   X86_TUNE_SSE_LOAD0_BY_PXOR,
  284.   X86_TUNE_MEMORY_MISMATCH_STALL,
  285.   X86_TUNE_PROLOGUE_USING_MOVE,
  286.   X86_TUNE_EPILOGUE_USING_MOVE,
  287.   X86_TUNE_SHIFT1,
  288.   X86_TUNE_USE_FFREEP,
  289.   X86_TUNE_INTER_UNIT_MOVES,
  290.   X86_TUNE_INTER_UNIT_CONVERSIONS,
  291.   X86_TUNE_FOUR_JUMP_LIMIT,
  292.   X86_TUNE_SCHEDULE,
  293.   X86_TUNE_USE_BT,
  294.   X86_TUNE_USE_INCDEC,
  295.   X86_TUNE_PAD_RETURNS,
  296.   X86_TUNE_EXT_80387_CONSTANTS,
  297.   X86_TUNE_SHORTEN_X87_SSE,
  298.   X86_TUNE_AVOID_VECTOR_DECODE,
  299.   X86_TUNE_PROMOTE_HIMODE_IMUL,
  300.   X86_TUNE_SLOW_IMUL_IMM32_MEM,
  301.   X86_TUNE_SLOW_IMUL_IMM8,
  302.   X86_TUNE_MOVE_M1_VIA_OR,
  303.   X86_TUNE_NOT_UNPAIRABLE,
  304.   X86_TUNE_NOT_VECTORMODE,
  305.   X86_TUNE_USE_VECTOR_FP_CONVERTS,
  306.   X86_TUNE_USE_VECTOR_CONVERTS,
  307.   X86_TUNE_FUSE_CMP_AND_BRANCH,
  308.   X86_TUNE_OPT_AGU,
  309.  
  310.   X86_TUNE_LAST
  311. };
  312.  
  313. extern unsigned char ix86_tune_features[X86_TUNE_LAST];
  314.  
  315. #define TARGET_USE_LEAVE        ix86_tune_features[X86_TUNE_USE_LEAVE]
  316. #define TARGET_PUSH_MEMORY      ix86_tune_features[X86_TUNE_PUSH_MEMORY]
  317. #define TARGET_ZERO_EXTEND_WITH_AND \
  318.         ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
  319. #define TARGET_UNROLL_STRLEN    ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
  320. #define TARGET_DEEP_BRANCH_PREDICTION \
  321.         ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
  322. #define TARGET_BRANCH_PREDICTION_HINTS \
  323.         ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
  324. #define TARGET_DOUBLE_WITH_ADD  ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
  325. #define TARGET_USE_SAHF         ix86_tune_features[X86_TUNE_USE_SAHF]
  326. #define TARGET_MOVX             ix86_tune_features[X86_TUNE_MOVX]
  327. #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
  328. #define TARGET_PARTIAL_FLAG_REG_STALL \
  329.         ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
  330. #define TARGET_USE_HIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
  331. #define TARGET_USE_SIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
  332. #define TARGET_USE_MOV0         ix86_tune_features[X86_TUNE_USE_MOV0]
  333. #define TARGET_USE_CLTD         ix86_tune_features[X86_TUNE_USE_CLTD]
  334. #define TARGET_USE_XCHGB        ix86_tune_features[X86_TUNE_USE_XCHGB]
  335. #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
  336. #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
  337. #define TARGET_READ_MODIFY      ix86_tune_features[X86_TUNE_READ_MODIFY]
  338. #define TARGET_PROMOTE_QImode   ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
  339. #define TARGET_FAST_PREFIX      ix86_tune_features[X86_TUNE_FAST_PREFIX]
  340. #define TARGET_SINGLE_STRINGOP  ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
  341. #define TARGET_QIMODE_MATH      ix86_tune_features[X86_TUNE_QIMODE_MATH]
  342. #define TARGET_HIMODE_MATH      ix86_tune_features[X86_TUNE_HIMODE_MATH]
  343. #define TARGET_PROMOTE_QI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
  344. #define TARGET_PROMOTE_HI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
  345. #define TARGET_ADD_ESP_4        ix86_tune_features[X86_TUNE_ADD_ESP_4]
  346. #define TARGET_ADD_ESP_8        ix86_tune_features[X86_TUNE_ADD_ESP_8]
  347. #define TARGET_SUB_ESP_4        ix86_tune_features[X86_TUNE_SUB_ESP_4]
  348. #define TARGET_SUB_ESP_8        ix86_tune_features[X86_TUNE_SUB_ESP_8]
  349. #define TARGET_INTEGER_DFMODE_MOVES \
  350.         ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
  351. #define TARGET_PARTIAL_REG_DEPENDENCY \
  352.         ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
  353. #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
  354.         ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
  355. #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
  356.         ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
  357. #define TARGET_SSE_SPLIT_REGS   ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
  358. #define TARGET_SSE_TYPELESS_STORES \
  359.         ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
  360. #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
  361. #define TARGET_MEMORY_MISMATCH_STALL \
  362.         ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
  363. #define TARGET_PROLOGUE_USING_MOVE \
  364.         ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
  365. #define TARGET_EPILOGUE_USING_MOVE \
  366.         ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
  367. #define TARGET_SHIFT1           ix86_tune_features[X86_TUNE_SHIFT1]
  368. #define TARGET_USE_FFREEP       ix86_tune_features[X86_TUNE_USE_FFREEP]
  369. #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
  370. #define TARGET_INTER_UNIT_CONVERSIONS\
  371.         ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
  372. #define TARGET_FOUR_JUMP_LIMIT  ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
  373. #define TARGET_SCHEDULE         ix86_tune_features[X86_TUNE_SCHEDULE]
  374. #define TARGET_USE_BT           ix86_tune_features[X86_TUNE_USE_BT]
  375. #define TARGET_USE_INCDEC       ix86_tune_features[X86_TUNE_USE_INCDEC]
  376. #define TARGET_PAD_RETURNS      ix86_tune_features[X86_TUNE_PAD_RETURNS]
  377. #define TARGET_EXT_80387_CONSTANTS \
  378.         ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
  379. #define TARGET_SHORTEN_X87_SSE  ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
  380. #define TARGET_AVOID_VECTOR_DECODE \
  381.         ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
  382. #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
  383.         ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
  384. #define TARGET_SLOW_IMUL_IMM32_MEM \
  385.         ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
  386. #define TARGET_SLOW_IMUL_IMM8   ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
  387. #define TARGET_MOVE_M1_VIA_OR   ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
  388. #define TARGET_NOT_UNPAIRABLE   ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
  389. #define TARGET_NOT_VECTORMODE   ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
  390. #define TARGET_USE_VECTOR_FP_CONVERTS \
  391.         ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
  392. #define TARGET_USE_VECTOR_CONVERTS \
  393.         ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
  394. #define TARGET_FUSE_CMP_AND_BRANCH \
  395.         ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
  396. #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
  397.  
  398. /* Feature tests against the various architecture variations.  */
  399. enum ix86_arch_indices {
  400.   X86_ARCH_CMOVE,               /* || TARGET_SSE */
  401.   X86_ARCH_CMPXCHG,
  402.   X86_ARCH_CMPXCHG8B,
  403.   X86_ARCH_XADD,
  404.   X86_ARCH_BSWAP,
  405.  
  406.   X86_ARCH_LAST
  407. };
  408.  
  409. extern unsigned char ix86_arch_features[X86_ARCH_LAST];
  410.  
  411. #define TARGET_CMOVE            ix86_arch_features[X86_ARCH_CMOVE]
  412. #define TARGET_CMPXCHG          ix86_arch_features[X86_ARCH_CMPXCHG]
  413. #define TARGET_CMPXCHG8B        ix86_arch_features[X86_ARCH_CMPXCHG8B]
  414. #define TARGET_XADD             ix86_arch_features[X86_ARCH_XADD]
  415. #define TARGET_BSWAP            ix86_arch_features[X86_ARCH_BSWAP]
  416.  
  417. #define TARGET_FISTTP           (TARGET_SSE3 && TARGET_80387)
  418.  
  419. extern int x86_prefetch_sse;
  420.  
  421. #define TARGET_PREFETCH_SSE     x86_prefetch_sse
  422.  
  423. #define ASSEMBLER_DIALECT       (ix86_asm_dialect)
  424.  
  425. #define TARGET_SSE_MATH         ((ix86_fpmath & FPMATH_SSE) != 0)
  426. #define TARGET_MIX_SSE_I387 \
  427.  ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
  428.  
  429. #define TARGET_GNU_TLS          (ix86_tls_dialect == TLS_DIALECT_GNU)
  430. #define TARGET_GNU2_TLS         (ix86_tls_dialect == TLS_DIALECT_GNU2)
  431. #define TARGET_ANY_GNU_TLS      (TARGET_GNU_TLS || TARGET_GNU2_TLS)
  432. #define TARGET_SUN_TLS          0
  433.  
  434. extern int ix86_isa_flags;
  435.  
  436. #ifndef TARGET_64BIT_DEFAULT
  437. #define TARGET_64BIT_DEFAULT 0
  438. #endif
  439. #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
  440. #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
  441. #endif
  442.  
  443. /* Fence to use after loop using storent.  */
  444.  
  445. extern tree x86_mfence;
  446. #define FENCE_FOLLOWING_MOVNT x86_mfence
  447.  
  448. /* Once GDB has been enhanced to deal with functions without frame
  449.    pointers, we can change this to allow for elimination of
  450.    the frame pointer in leaf functions.  */
  451. #define TARGET_DEFAULT 0
  452.  
  453. /* Extra bits to force.  */
  454. #define TARGET_SUBTARGET_DEFAULT 0
  455. #define TARGET_SUBTARGET_ISA_DEFAULT 0
  456.  
  457. /* Extra bits to force on w/ 32-bit mode.  */
  458. #define TARGET_SUBTARGET32_DEFAULT 0
  459. #define TARGET_SUBTARGET32_ISA_DEFAULT 0
  460.  
  461. /* Extra bits to force on w/ 64-bit mode.  */
  462. #define TARGET_SUBTARGET64_DEFAULT 0
  463. #define TARGET_SUBTARGET64_ISA_DEFAULT 0
  464.  
  465. /* This is not really a target flag, but is done this way so that
  466.    it's analogous to similar code for Mach-O on PowerPC.  darwin.h
  467.    redefines this to 1.  */
  468. #define TARGET_MACHO 0
  469.  
  470. /* Likewise, for the Windows 64-bit ABI.  */
  471. #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
  472.  
  473. /* Available call abi.  */
  474. enum calling_abi
  475. {
  476.   SYSV_ABI = 0,
  477.   MS_ABI = 1
  478. };
  479.  
  480. /* The abi used by target.  */
  481. extern enum calling_abi ix86_abi;
  482.  
  483. /* The default abi used by target.  */
  484. #define DEFAULT_ABI SYSV_ABI
  485.  
  486. /* Subtargets may reset this to 1 in order to enable 96-bit long double
  487.    with the rounding mode forced to 53 bits.  */
  488. #define TARGET_96_ROUND_53_LONG_DOUBLE 0
  489.  
  490. /* Sometimes certain combinations of command options do not make
  491.    sense on a particular target machine.  You can define a macro
  492.    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
  493.    defined, is executed once just after all the command options have
  494.    been parsed.
  495.  
  496.    Don't use this macro to turn on various extra optimizations for
  497.    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
  498.  
  499. #define OVERRIDE_OPTIONS override_options (true)
  500.  
  501. /* Define this to change the optimizations performed by default.  */
  502. #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
  503.   optimization_options ((LEVEL), (SIZE))
  504.  
  505. /* -march=native handling only makes sense with compiler running on
  506.    an x86 or x86_64 chip.  If changing this condition, also change
  507.    the condition in driver-i386.c.  */
  508. #if defined(__i386__) || defined(__x86_64__)
  509. /* In driver-i386.c.  */
  510. extern const char *host_detect_local_cpu (int argc, const char **argv);
  511. #define EXTRA_SPEC_FUNCTIONS \
  512.   { "local_cpu_detect", host_detect_local_cpu },
  513. #define HAVE_LOCAL_CPU_DETECT
  514. #endif
  515.  
  516. #if TARGET_64BIT_DEFAULT
  517. #define OPT_ARCH64 "!m32"
  518. #define OPT_ARCH32 "m32"
  519. #else
  520. #define OPT_ARCH64 "m64"
  521. #define OPT_ARCH32 "!m64"
  522. #endif
  523.  
  524. /* Support for configure-time defaults of some command line options.
  525.    The order here is important so that -march doesn't squash the
  526.    tune or cpu values.  */
  527. #define OPTION_DEFAULT_SPECS                                       \
  528.   {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
  529.   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  530.   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  531.   {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
  532.   {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  533.   {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
  534.   {"arch", "%{!march=*:-march=%(VALUE)}"},                         \
  535.   {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},    \
  536.   {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
  537.  
  538. /* Specs for the compiler proper */
  539.  
  540. #ifndef CC1_CPU_SPEC
  541. #define CC1_CPU_SPEC_1 "\
  542. %{mcpu=*:-mtune=%* \
  543. %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
  544. %<mcpu=* \
  545. %{mintel-syntax:-masm=intel \
  546. %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
  547. %{msse5:-mavx \
  548. %n'-msse5' was removed.\n} \
  549. %{mno-intel-syntax:-masm=att \
  550. %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
  551.  
  552. #ifndef HAVE_LOCAL_CPU_DETECT
  553. #define CC1_CPU_SPEC CC1_CPU_SPEC_1
  554. #else
  555. #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
  556. "%{march=native:%<march=native %:local_cpu_detect(arch) \
  557.   %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
  558. %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
  559. #endif
  560. #endif
  561. /* Target CPU builtins.  */
  562. #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
  563.  
  564. /* Target Pragmas.  */
  565. #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
  566.  
  567. enum target_cpu_default
  568. {
  569.   TARGET_CPU_DEFAULT_generic = 0,
  570.  
  571.   TARGET_CPU_DEFAULT_i386,
  572.   TARGET_CPU_DEFAULT_i486,
  573.   TARGET_CPU_DEFAULT_pentium,
  574.   TARGET_CPU_DEFAULT_pentium_mmx,
  575.   TARGET_CPU_DEFAULT_pentiumpro,
  576.   TARGET_CPU_DEFAULT_pentium2,
  577.   TARGET_CPU_DEFAULT_pentium3,
  578.   TARGET_CPU_DEFAULT_pentium4,
  579.   TARGET_CPU_DEFAULT_pentium_m,
  580.   TARGET_CPU_DEFAULT_prescott,
  581.   TARGET_CPU_DEFAULT_nocona,
  582.   TARGET_CPU_DEFAULT_core2,
  583.   TARGET_CPU_DEFAULT_atom,
  584.  
  585.   TARGET_CPU_DEFAULT_geode,
  586.   TARGET_CPU_DEFAULT_k6,
  587.   TARGET_CPU_DEFAULT_k6_2,
  588.   TARGET_CPU_DEFAULT_k6_3,
  589.   TARGET_CPU_DEFAULT_athlon,
  590.   TARGET_CPU_DEFAULT_athlon_sse,
  591.   TARGET_CPU_DEFAULT_k8,
  592.   TARGET_CPU_DEFAULT_amdfam10,
  593.  
  594.   TARGET_CPU_DEFAULT_max
  595. };
  596.  
  597. #ifndef CC1_SPEC
  598. #define CC1_SPEC "%(cc1_cpu) "
  599. #endif
  600.  
  601. /* This macro defines names of additional specifications to put in the
  602.    specs that can be used in various specifications like CC1_SPEC.  Its
  603.    definition is an initializer with a subgrouping for each command option.
  604.  
  605.    Each subgrouping contains a string constant, that defines the
  606.    specification name, and a string constant that used by the GCC driver
  607.    program.
  608.  
  609.    Do not define this macro if it does not need to do anything.  */
  610.  
  611. #ifndef SUBTARGET_EXTRA_SPECS
  612. #define SUBTARGET_EXTRA_SPECS
  613. #endif
  614.  
  615. #define EXTRA_SPECS                                                     \
  616.   { "cc1_cpu",  CC1_CPU_SPEC },                                         \
  617.   SUBTARGET_EXTRA_SPECS
  618.  
  619. /* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
  620.    FPU, assume that the fpcw is set to extended precision; when using
  621.    only SSE, rounding is correct; when using both SSE and the FPU,
  622.    the rounding precision is indeterminate, since either may be chosen
  623.    apparently at random.  */
  624. #define TARGET_FLT_EVAL_METHOD \
  625.   (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
  626.  
  627. /* Whether to allow x87 floating-point arithmetic on MODE (one of
  628.    SFmode, DFmode and XFmode) in the current excess precision
  629.    configuration.  */
  630. #define X87_ENABLE_ARITH(MODE) \
  631.   (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
  632.  
  633. /* Likewise, whether to allow direct conversions from integer mode
  634.    IMODE (HImode, SImode or DImode) to MODE.  */
  635. #define X87_ENABLE_FLOAT(MODE, IMODE)                   \
  636.   (flag_excess_precision == EXCESS_PRECISION_FAST       \
  637.    || (MODE) == XFmode                                  \
  638.    || ((MODE) == DFmode && (IMODE) == SImode)           \
  639.    || (IMODE) == HImode)
  640.  
  641. /* target machine storage layout */
  642.  
  643. #define SHORT_TYPE_SIZE 16
  644. #define INT_TYPE_SIZE 32
  645. #define FLOAT_TYPE_SIZE 32
  646. #define LONG_TYPE_SIZE BITS_PER_WORD
  647. #define DOUBLE_TYPE_SIZE 64
  648. #define LONG_LONG_TYPE_SIZE 64
  649. #define LONG_DOUBLE_TYPE_SIZE 80
  650.  
  651. #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
  652.  
  653. #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
  654. #define MAX_BITS_PER_WORD 64
  655. #else
  656. #define MAX_BITS_PER_WORD 32
  657. #endif
  658.  
  659. /* Define this if most significant byte of a word is the lowest numbered.  */
  660. /* That is true on the 80386.  */
  661.  
  662. #define BITS_BIG_ENDIAN 0
  663.  
  664. /* Define this if most significant byte of a word is the lowest numbered.  */
  665. /* That is not true on the 80386.  */
  666. #define BYTES_BIG_ENDIAN 0
  667.  
  668. /* Define this if most significant word of a multiword number is the lowest
  669.    numbered.  */
  670. /* Not true for 80386 */
  671. #define WORDS_BIG_ENDIAN 0
  672.  
  673. /* Width of a word, in units (bytes).  */
  674. #define UNITS_PER_WORD          (TARGET_64BIT ? 8 : 4)
  675. #ifdef IN_LIBGCC2
  676. #define MIN_UNITS_PER_WORD      (TARGET_64BIT ? 8 : 4)
  677. #else
  678. #define MIN_UNITS_PER_WORD      4
  679. #endif
  680.  
  681. /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
  682. #define PARM_BOUNDARY BITS_PER_WORD
  683.  
  684. /* Boundary (in *bits*) on which stack pointer should be aligned.  */
  685. #define STACK_BOUNDARY \
  686.  (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
  687.  
  688. /* Stack boundary of the main function guaranteed by OS.  */
  689. #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
  690.  
  691. /* Minimum stack boundary.  */
  692. #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
  693.  
  694. /* Boundary (in *bits*) on which the stack pointer prefers to be
  695.    aligned; the compiler cannot rely on having this alignment.  */
  696. #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
  697.  
  698. /* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
  699.    both 32bit and 64bit, to support codes that need 128 bit stack
  700.    alignment for SSE instructions, but can't realign the stack.  */
  701. #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
  702.  
  703. /* 1 if -mstackrealign should be turned on by default.  It will
  704.    generate an alternate prologue and epilogue that realigns the
  705.    runtime stack if nessary.  This supports mixing codes that keep a
  706.    4-byte aligned stack, as specified by i386 psABI, with codes that
  707.    need a 16-byte aligned stack, as required by SSE instructions.  */
  708. #define STACK_REALIGN_DEFAULT 0
  709.  
  710. /* Boundary (in *bits*) on which the incoming stack is aligned.  */
  711. #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
  712.  
  713. /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
  714.    mandatory for the 64-bit ABI, and may or may not be true for other
  715.    operating systems.  */
  716. #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
  717.  
  718. /* Minimum allocation boundary for the code of a function.  */
  719. #define FUNCTION_BOUNDARY 8
  720.  
  721. /* C++ stores the virtual bit in the lowest bit of function pointers.  */
  722. #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
  723.  
  724. /* Alignment of field after `int : 0' in a structure.  */
  725.  
  726. #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
  727.  
  728. /* Minimum size in bits of the largest boundary to which any
  729.    and all fundamental data types supported by the hardware
  730.    might need to be aligned. No data type wants to be aligned
  731.    rounder than this.
  732.  
  733.    Pentium+ prefers DFmode values to be aligned to 64 bit boundary
  734.    and Pentium Pro XFmode values at 128 bit boundaries.  */
  735.  
  736. #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
  737.  
  738. /* Maximum stack alignment.  */
  739. #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
  740.  
  741. /* Alignment value for attribute ((aligned)).  It is a constant since
  742.    it is the part of the ABI.  We shouldn't change it with -mavx.  */
  743. #define ATTRIBUTE_ALIGNED_VALUE 128
  744.  
  745. /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
  746. #define ALIGN_MODE_128(MODE) \
  747.  ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
  748.  
  749. /* The published ABIs say that doubles should be aligned on word
  750.    boundaries, so lower the alignment for structure fields unless
  751.    -malign-double is set.  */
  752.  
  753. /* ??? Blah -- this macro is used directly by libobjc.  Since it
  754.    supports no vector modes, cut out the complexity and fall back
  755.    on BIGGEST_FIELD_ALIGNMENT.  */
  756. #ifdef IN_TARGET_LIBS
  757. #ifdef __x86_64__
  758. #define BIGGEST_FIELD_ALIGNMENT 128
  759. #else
  760. #define BIGGEST_FIELD_ALIGNMENT 32
  761. #endif
  762. #else
  763. #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
  764.    x86_field_alignment (FIELD, COMPUTED)
  765. #endif
  766.  
  767. /* If defined, a C expression to compute the alignment given to a
  768.    constant that is being placed in memory.  EXP is the constant
  769.    and ALIGN is the alignment that the object would ordinarily have.
  770.    The value of this macro is used instead of that alignment to align
  771.    the object.
  772.  
  773.    If this macro is not defined, then ALIGN is used.
  774.  
  775.    The typical use of this macro is to increase alignment for string
  776.    constants to be word aligned so that `strcpy' calls that copy
  777.    constants can be done inline.  */
  778.  
  779. #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
  780.  
  781. /* If defined, a C expression to compute the alignment for a static
  782.    variable.  TYPE is the data type, and ALIGN is the alignment that
  783.    the object would ordinarily have.  The value of this macro is used
  784.    instead of that alignment to align the object.
  785.  
  786.    If this macro is not defined, then ALIGN is used.
  787.  
  788.    One use of this macro is to increase alignment of medium-size
  789.    data to make it all fit in fewer cache lines.  Another is to
  790.    cause character arrays to be word-aligned so that `strcpy' calls
  791.    that copy constants to character arrays can be done inline.  */
  792.  
  793. #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
  794.  
  795. /* If defined, a C expression to compute the alignment for a local
  796.    variable.  TYPE is the data type, and ALIGN is the alignment that
  797.    the object would ordinarily have.  The value of this macro is used
  798.    instead of that alignment to align the object.
  799.  
  800.    If this macro is not defined, then ALIGN is used.
  801.  
  802.    One use of this macro is to increase alignment of medium-size
  803.    data to make it all fit in fewer cache lines.  */
  804.  
  805. #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
  806.   ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
  807.  
  808. /* If defined, a C expression to compute the alignment for stack slot.
  809.    TYPE is the data type, MODE is the widest mode available, and ALIGN
  810.    is the alignment that the slot would ordinarily have.  The value of
  811.    this macro is used instead of that alignment to align the slot.
  812.  
  813.    If this macro is not defined, then ALIGN is used when TYPE is NULL,
  814.    Otherwise, LOCAL_ALIGNMENT will be used.
  815.  
  816.    One use of this macro is to set alignment of stack slot to the
  817.    maximum alignment of all possible modes which the slot may have.  */
  818.  
  819. #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
  820.   ix86_local_alignment ((TYPE), (MODE), (ALIGN))
  821.  
  822. /* If defined, a C expression to compute the alignment for a local
  823.    variable DECL.
  824.  
  825.    If this macro is not defined, then
  826.    LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
  827.  
  828.    One use of this macro is to increase alignment of medium-size
  829.    data to make it all fit in fewer cache lines.  */
  830.  
  831. #define LOCAL_DECL_ALIGNMENT(DECL) \
  832.   ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
  833.  
  834. /* If defined, a C expression to compute the minimum required alignment
  835.    for dynamic stack realignment purposes for EXP (a TYPE or DECL),
  836.    MODE, assuming normal alignment ALIGN.
  837.  
  838.    If this macro is not defined, then (ALIGN) will be used.  */
  839.  
  840. #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
  841.   ix86_minimum_alignment (EXP, MODE, ALIGN)
  842.  
  843.  
  844. /* If defined, a C expression that gives the alignment boundary, in
  845.    bits, of an argument with the specified mode and type.  If it is
  846.    not defined, `PARM_BOUNDARY' is used for all arguments.  */
  847.  
  848. #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
  849.   ix86_function_arg_boundary ((MODE), (TYPE))
  850.  
  851. /* Set this nonzero if move instructions will actually fail to work
  852.    when given unaligned data.  */
  853. #define STRICT_ALIGNMENT 0
  854.  
  855. /* If bit field type is int, don't let it cross an int,
  856.    and give entire struct the alignment of an int.  */
  857. /* Required on the 386 since it doesn't have bit-field insns.  */
  858. #define PCC_BITFIELD_TYPE_MATTERS 1
  859. /* Standard register usage.  */
  860.  
  861. /* This processor has special stack-like registers.  See reg-stack.c
  862.    for details.  */
  863.  
  864. #define STACK_REGS
  865.  
  866. #define IS_STACK_MODE(MODE)                                     \
  867.   (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))      \
  868.    || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
  869.    || (MODE) == XFmode)
  870.  
  871. /* Cover class containing the stack registers.  */
  872. #define STACK_REG_COVER_CLASS FLOAT_REGS
  873.  
  874. /* Number of actual hardware registers.
  875.    The hardware registers are assigned numbers for the compiler
  876.    from 0 to just below FIRST_PSEUDO_REGISTER.
  877.    All registers that the compiler knows about must be given numbers,
  878.    even those that are not normally considered general registers.
  879.  
  880.    In the 80386 we give the 8 general purpose registers the numbers 0-7.
  881.    We number the floating point registers 8-15.
  882.    Note that registers 0-7 can be accessed as a  short or int,
  883.    while only 0-3 may be used with byte `mov' instructions.
  884.  
  885.    Reg 16 does not correspond to any hardware register, but instead
  886.    appears in the RTL as an argument pointer prior to reload, and is
  887.    eliminated during reloading in favor of either the stack or frame
  888.    pointer.  */
  889.  
  890. #define FIRST_PSEUDO_REGISTER 53
  891.  
  892. /* Number of hardware registers that go into the DWARF-2 unwind info.
  893.    If not defined, equals FIRST_PSEUDO_REGISTER.  */
  894.  
  895. #define DWARF_FRAME_REGISTERS 17
  896.  
  897. /* 1 for registers that have pervasive standard uses
  898.    and are not available for the register allocator.
  899.    On the 80386, the stack pointer is such, as is the arg pointer.
  900.  
  901.    The value is zero if the register is not fixed on either 32 or
  902.    64 bit targets, one if the register if fixed on both 32 and 64
  903.    bit targets, two if it is only fixed on 32bit targets and three
  904.    if its only fixed on 64bit targets.
  905.    Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
  906.  */
  907. #define FIXED_REGISTERS                                         \
  908. /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
  909. {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,       \
  910. /*arg,flags,fpsr,fpcr,frame*/                                   \
  911.     1,    1,   1,   1,    1,                                    \
  912. /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
  913.      0,   0,   0,   0,   0,   0,   0,   0,                      \
  914. /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
  915.      0,   0,   0,   0,   0,   0,   0,   0,                      \
  916. /*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
  917.      2,   2,   2,   2,   2,   2,   2,   2,                      \
  918. /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
  919.      2,   2,    2,    2,    2,    2,    2,    2 }
  920.  
  921.  
  922. /* 1 for registers not available across function calls.
  923.    These must include the FIXED_REGISTERS and also any
  924.    registers that can be used without being saved.
  925.    The latter must include the registers where values are returned
  926.    and the register where structure-value addresses are passed.
  927.    Aside from that, you can include as many other registers as you like.
  928.  
  929.    The value is zero if the register is not call used on either 32 or
  930.    64 bit targets, one if the register if call used on both 32 and 64
  931.    bit targets, two if it is only call used on 32bit targets and three
  932.    if its only call used on 64bit targets.
  933.    Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
  934. */
  935. #define CALL_USED_REGISTERS                                     \
  936. /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
  937. {  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,       \
  938. /*arg,flags,fpsr,fpcr,frame*/                                   \
  939.     1,   1,    1,   1,    1,                                    \
  940. /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
  941.      1,   1,   1,   1,   1,   1,   1,   1,                      \
  942. /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
  943.      1,   1,   1,   1,   1,   1,   1,   1,                      \
  944. /*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
  945.      1,   1,   1,   1,   2,   2,   2,   2,                      \
  946. /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
  947.      1,   1,    1,    1,    1,    1,    1,    1 }
  948.  
  949. /* Order in which to allocate registers.  Each register must be
  950.    listed once, even those in FIXED_REGISTERS.  List frame pointer
  951.    late and fixed registers last.  Note that, in general, we prefer
  952.    registers listed in CALL_USED_REGISTERS, keeping the others
  953.    available for storage of persistent values.
  954.  
  955.    The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
  956.    so this is just empty initializer for array.  */
  957.  
  958. #define REG_ALLOC_ORDER                                         \
  959. {  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
  960.    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  \
  961.    33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
  962.    48, 49, 50, 51, 52 }
  963.  
  964. /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
  965.    to be rearranged based on a particular function.  When using sse math,
  966.    we want to allocate SSE before x87 registers and vice versa.  */
  967.  
  968. #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
  969.  
  970.  
  971. #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
  972.  
  973. /* Macro to conditionally modify fixed_regs/call_used_regs.  */
  974. #define CONDITIONAL_REGISTER_USAGE  ix86_conditional_register_usage ()
  975.  
  976. /* Return number of consecutive hard regs needed starting at reg REGNO
  977.    to hold something of mode MODE.
  978.    This is ordinarily the length in words of a value of mode MODE
  979.    but can be less for certain modes in special long registers.
  980.  
  981.    Actually there are no two word move instructions for consecutive
  982.    registers.  And only registers 0-3 may have mov byte instructions
  983.    applied to them.
  984.    */
  985.  
  986. #define HARD_REGNO_NREGS(REGNO, MODE)                                   \
  987.   (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)     \
  988.    ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                    \
  989.    : ((MODE) == XFmode                                                  \
  990.       ? (TARGET_64BIT ? 2 : 3)                                          \
  991.       : (MODE) == XCmode                                                \
  992.       ? (TARGET_64BIT ? 4 : 6)                                          \
  993.       : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
  994.  
  995. #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)                       \
  996.   ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)                         \
  997.    ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)  \
  998.       ? 0                                                               \
  999.       : ((MODE) == XFmode || (MODE) == XCmode))                         \
  1000.    : 0)
  1001.  
  1002. #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
  1003.  
  1004. #define VALID_AVX256_REG_MODE(MODE)                                     \
  1005.   ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode     \
  1006.    || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
  1007.  
  1008. #define VALID_SSE2_REG_MODE(MODE)                                       \
  1009.   ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode      \
  1010.    || (MODE) == V2DImode || (MODE) == DFmode)
  1011.  
  1012. #define VALID_SSE_REG_MODE(MODE)                                        \
  1013.   ((MODE) == V1TImode || (MODE) == TImode                               \
  1014.    || (MODE) == V4SFmode || (MODE) == V4SImode                          \
  1015.    || (MODE) == SFmode || (MODE) == TFmode)
  1016.  
  1017. #define VALID_MMX_REG_MODE_3DNOW(MODE) \
  1018.   ((MODE) == V2SFmode || (MODE) == SFmode)
  1019.  
  1020. #define VALID_MMX_REG_MODE(MODE)                                        \
  1021.   ((MODE == V1DImode) || (MODE) == DImode                               \
  1022.    || (MODE) == V2SImode || (MODE) == SImode                            \
  1023.    || (MODE) == V4HImode || (MODE) == V8QImode)
  1024.  
  1025. /* ??? No autovectorization into MMX or 3DNOW until we can reliably
  1026.    place emms and femms instructions.
  1027.    FIXME: AVX has 32byte floating point vector operations and 16byte
  1028.    integer vector operations.  But vectorizer doesn't support
  1029.    different sizes for integer and floating point vectors.  We limit
  1030.    vector size to 16byte.  */
  1031. #define UNITS_PER_SIMD_WORD(MODE)                                       \
  1032.   (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16)      \
  1033.               : (TARGET_SSE ? 16 : UNITS_PER_WORD))
  1034.  
  1035. #define VALID_DFP_MODE_P(MODE) \
  1036.   ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
  1037.  
  1038. #define VALID_FP_MODE_P(MODE)                                           \
  1039.   ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode             \
  1040.    || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)         \
  1041.  
  1042. #define VALID_INT_MODE_P(MODE)                                          \
  1043.   ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode             \
  1044.    || (MODE) == DImode                                                  \
  1045.    || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode       \
  1046.    || (MODE) == CDImode                                                 \
  1047.    || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode           \
  1048.                         || (MODE) == TFmode || (MODE) == TCmode)))
  1049.  
  1050. /* Return true for modes passed in SSE registers.  */
  1051. #define SSE_REG_MODE_P(MODE)                                            \
  1052.   ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode        \
  1053.    || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode      \
  1054.    || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode    \
  1055.    || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode  \
  1056.    || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
  1057.  
  1058. /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
  1059.  
  1060. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  1061.    ix86_hard_regno_mode_ok ((REGNO), (MODE))
  1062.  
  1063. /* Value is 1 if it is a good idea to tie two pseudo registers
  1064.    when one has mode MODE1 and one has mode MODE2.
  1065.    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
  1066.    for any hard reg, then this must be 0 for correct output.  */
  1067.  
  1068. #define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
  1069.  
  1070. /* It is possible to write patterns to move flags; but until someone
  1071.    does it,  */
  1072. #define AVOID_CCMODE_COPIES
  1073.  
  1074. /* Specify the modes required to caller save a given hard regno.
  1075.    We do this on i386 to prevent flags from being saved at all.
  1076.  
  1077.    Kill any attempts to combine saving of modes.  */
  1078.  
  1079. #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)                 \
  1080.   (CC_REGNO_P (REGNO) ? VOIDmode                                        \
  1081.    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode                      \
  1082.    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
  1083.    : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode             \
  1084.    : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode     \
  1085.    : (MODE))
  1086.  
  1087. /* Specify the registers used for certain standard purposes.
  1088.    The values of these macros are register numbers.  */
  1089.  
  1090. /* on the 386 the pc register is %eip, and is not usable as a general
  1091.    register.  The ordinary mov instructions won't work */
  1092. /* #define PC_REGNUM  */
  1093.  
  1094. /* Register to use for pushing function arguments.  */
  1095. #define STACK_POINTER_REGNUM 7
  1096.  
  1097. /* Base register for access to local variables of the function.  */
  1098. #define HARD_FRAME_POINTER_REGNUM 6
  1099.  
  1100. /* Base register for access to local variables of the function.  */
  1101. #define FRAME_POINTER_REGNUM 20
  1102.  
  1103. /* First floating point reg */
  1104. #define FIRST_FLOAT_REG 8
  1105.  
  1106. /* First & last stack-like regs */
  1107. #define FIRST_STACK_REG FIRST_FLOAT_REG
  1108. #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
  1109.  
  1110. #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
  1111. #define LAST_SSE_REG  (FIRST_SSE_REG + 7)
  1112.  
  1113. #define FIRST_MMX_REG  (LAST_SSE_REG + 1)
  1114. #define LAST_MMX_REG   (FIRST_MMX_REG + 7)
  1115.  
  1116. #define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
  1117. #define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
  1118.  
  1119. #define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
  1120. #define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
  1121.  
  1122. /* Override this in other tm.h files to cope with various OS lossage
  1123.    requiring a frame pointer.  */
  1124. #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
  1125. #define SUBTARGET_FRAME_POINTER_REQUIRED 0
  1126. #endif
  1127.  
  1128. /* Make sure we can access arbitrary call frames.  */
  1129. #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
  1130.  
  1131. /* Base register for access to arguments of the function.  */
  1132. #define ARG_POINTER_REGNUM 16
  1133.  
  1134. /* Register to hold the addressing base for position independent
  1135.    code access to data items.  We don't use PIC pointer for 64bit
  1136.    mode.  Define the regnum to dummy value to prevent gcc from
  1137.    pessimizing code dealing with EBX.
  1138.  
  1139.    To avoid clobbering a call-saved register unnecessarily, we renumber
  1140.    the pic register when possible.  The change is visible after the
  1141.    prologue has been emitted.  */
  1142.  
  1143. #define REAL_PIC_OFFSET_TABLE_REGNUM  BX_REG
  1144.  
  1145. #define PIC_OFFSET_TABLE_REGNUM                         \
  1146.   ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)        \
  1147.    || !flag_pic ? INVALID_REGNUM                        \
  1148.    : reload_completed ? REGNO (pic_offset_table_rtx)    \
  1149.    : REAL_PIC_OFFSET_TABLE_REGNUM)
  1150.  
  1151. #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
  1152.  
  1153. /* This is overridden by <cygwin.h>.  */
  1154. #define MS_AGGREGATE_RETURN 0
  1155.  
  1156. /* This is overridden by <netware.h>.  */
  1157. #define KEEP_AGGREGATE_RETURN_POINTER 0
  1158. /* Define the classes of registers for register constraints in the
  1159.    machine description.  Also define ranges of constants.
  1160.  
  1161.    One of the classes must always be named ALL_REGS and include all hard regs.
  1162.    If there is more than one class, another class must be named NO_REGS
  1163.    and contain no registers.
  1164.  
  1165.    The name GENERAL_REGS must be the name of a class (or an alias for
  1166.    another name such as ALL_REGS).  This is the class of registers
  1167.    that is allowed by "g" or "r" in a register constraint.
  1168.    Also, registers outside this class are allocated only when
  1169.    instructions express preferences for them.
  1170.  
  1171.    The classes must be numbered in nondecreasing order; that is,
  1172.    a larger-numbered class must never be contained completely
  1173.    in a smaller-numbered class.
  1174.  
  1175.    For any two classes, it is very desirable that there be another
  1176.    class that represents their union.
  1177.  
  1178.    It might seem that class BREG is unnecessary, since no useful 386
  1179.    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
  1180.    and the "b" register constraint is useful in asms for syscalls.
  1181.  
  1182.    The flags, fpsr and fpcr registers are in no class.  */
  1183.  
  1184. enum reg_class
  1185. {
  1186.   NO_REGS,
  1187.   AREG, DREG, CREG, BREG, SIREG, DIREG,
  1188.   AD_REGS,                      /* %eax/%edx for DImode */
  1189.   CLOBBERED_REGS,               /* call-clobbered integers */
  1190.   Q_REGS,                       /* %eax %ebx %ecx %edx */
  1191.   NON_Q_REGS,                   /* %esi %edi %ebp %esp */
  1192.   INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
  1193.   LEGACY_REGS,                  /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
  1194.   GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
  1195.   FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
  1196.   FLOAT_REGS,
  1197.   SSE_FIRST_REG,
  1198.   SSE_REGS,
  1199.   MMX_REGS,
  1200.   FP_TOP_SSE_REGS,
  1201.   FP_SECOND_SSE_REGS,
  1202.   FLOAT_SSE_REGS,
  1203.   FLOAT_INT_REGS,
  1204.   INT_SSE_REGS,
  1205.   FLOAT_INT_SSE_REGS,
  1206.   ALL_REGS, LIM_REG_CLASSES
  1207. };
  1208.  
  1209. #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
  1210.  
  1211. #define INTEGER_CLASS_P(CLASS) \
  1212.   reg_class_subset_p ((CLASS), GENERAL_REGS)
  1213. #define FLOAT_CLASS_P(CLASS) \
  1214.   reg_class_subset_p ((CLASS), FLOAT_REGS)
  1215. #define SSE_CLASS_P(CLASS) \
  1216.   reg_class_subset_p ((CLASS), SSE_REGS)
  1217. #define MMX_CLASS_P(CLASS) \
  1218.   ((CLASS) == MMX_REGS)
  1219. #define MAYBE_INTEGER_CLASS_P(CLASS) \
  1220.   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
  1221. #define MAYBE_FLOAT_CLASS_P(CLASS) \
  1222.   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
  1223. #define MAYBE_SSE_CLASS_P(CLASS) \
  1224.   reg_classes_intersect_p (SSE_REGS, (CLASS))
  1225. #define MAYBE_MMX_CLASS_P(CLASS) \
  1226.   reg_classes_intersect_p (MMX_REGS, (CLASS))
  1227.  
  1228. #define Q_CLASS_P(CLASS) \
  1229.   reg_class_subset_p ((CLASS), Q_REGS)
  1230.  
  1231. /* Give names of register classes as strings for dump file.  */
  1232.  
  1233. #define REG_CLASS_NAMES \
  1234. {  "NO_REGS",                           \
  1235.    "AREG", "DREG", "CREG", "BREG",      \
  1236.    "SIREG", "DIREG",                    \
  1237.    "AD_REGS",                           \
  1238.    "CLOBBERED_REGS",                    \
  1239.    "Q_REGS", "NON_Q_REGS",              \
  1240.    "INDEX_REGS",                        \
  1241.    "LEGACY_REGS",                       \
  1242.    "GENERAL_REGS",                      \
  1243.    "FP_TOP_REG", "FP_SECOND_REG",       \
  1244.    "FLOAT_REGS",                        \
  1245.    "SSE_FIRST_REG",                     \
  1246.    "SSE_REGS",                          \
  1247.    "MMX_REGS",                          \
  1248.    "FP_TOP_SSE_REGS",                   \
  1249.    "FP_SECOND_SSE_REGS",                \
  1250.    "FLOAT_SSE_REGS",                    \
  1251.    "FLOAT_INT_REGS",                    \
  1252.    "INT_SSE_REGS",                      \
  1253.    "FLOAT_INT_SSE_REGS",                \
  1254.    "ALL_REGS" }
  1255.  
  1256. /* Define which registers fit in which classes.  This is an initializer
  1257.    for a vector of HARD_REG_SET of length N_REG_CLASSES.
  1258.  
  1259.    Note that the default setting of CLOBBERED_REGS is for 32-bit; this
  1260.    is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect.  */
  1261.  
  1262. #define REG_CLASS_CONTENTS                                              \
  1263. {     { 0x00,     0x0 },                                                \
  1264.       { 0x01,     0x0 }, { 0x02, 0x0 }, /* AREG, DREG */                \
  1265.       { 0x04,     0x0 }, { 0x08, 0x0 }, /* CREG, BREG */                \
  1266.       { 0x10,     0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */              \
  1267.       { 0x03,     0x0 },                /* AD_REGS */                   \
  1268.       { 0x07,     0x0 },                /* CLOBBERED_REGS */            \
  1269.       { 0x0f,     0x0 },                /* Q_REGS */                    \
  1270.   { 0x1100f0,  0x1fe0 },                /* NON_Q_REGS */                \
  1271.       { 0x7f,  0x1fe0 },                /* INDEX_REGS */                \
  1272.   { 0x1100ff,     0x0 },                /* LEGACY_REGS */               \
  1273.   { 0x1100ff,  0x1fe0 },                /* GENERAL_REGS */              \
  1274.      { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
  1275.     { 0xff00,     0x0 },                /* FLOAT_REGS */                \
  1276.   { 0x200000,     0x0 },                /* SSE_FIRST_REG */             \
  1277. { 0x1fe00000,0x1fe000 },                /* SSE_REGS */                  \
  1278. { 0xe0000000,    0x1f },                /* MMX_REGS */                  \
  1279. { 0x1fe00100,0x1fe000 },                /* FP_TOP_SSE_REG */            \
  1280. { 0x1fe00200,0x1fe000 },                /* FP_SECOND_SSE_REG */         \
  1281. { 0x1fe0ff00,0x3fe000 },                /* FLOAT_SSE_REGS */            \
  1282.    { 0x1ffff,  0x1fe0 },                /* FLOAT_INT_REGS */            \
  1283. { 0x1fe100ff,0x1fffe0 },                /* INT_SSE_REGS */              \
  1284. { 0x1fe1ffff,0x1fffe0 },                /* FLOAT_INT_SSE_REGS */        \
  1285. { 0xffffffff,0x1fffff }                                                 \
  1286. }
  1287.  
  1288. /* The same information, inverted:
  1289.    Return the class number of the smallest class containing
  1290.    reg number REGNO.  This could be a conditional expression
  1291.    or could index an array.  */
  1292.  
  1293. #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
  1294.  
  1295. /* When defined, the compiler allows registers explicitly used in the
  1296.    rtl to be used as spill registers but prevents the compiler from
  1297.    extending the lifetime of these registers.  */
  1298.  
  1299. #define SMALL_REGISTER_CLASSES 1
  1300.  
  1301. #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
  1302.  
  1303. #define GENERAL_REGNO_P(N) \
  1304.   ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
  1305.  
  1306. #define GENERAL_REG_P(X) \
  1307.   (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
  1308.  
  1309. #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
  1310.  
  1311. #define REX_INT_REGNO_P(N) \
  1312.   IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
  1313. #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
  1314.  
  1315. #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
  1316. #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
  1317. #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
  1318. #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
  1319.  
  1320. #define X87_FLOAT_MODE_P(MODE)  \
  1321.   (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
  1322.  
  1323. #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
  1324. #define SSE_REGNO_P(N)                                          \
  1325.   (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)                  \
  1326.    || REX_SSE_REGNO_P (N))
  1327.  
  1328. #define REX_SSE_REGNO_P(N) \
  1329.   IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
  1330.  
  1331. #define SSE_REGNO(N) \
  1332.   ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
  1333.  
  1334. #define SSE_FLOAT_MODE_P(MODE) \
  1335.   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
  1336.  
  1337. #define SSE_VEC_FLOAT_MODE_P(MODE) \
  1338.   ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
  1339.  
  1340. #define AVX_FLOAT_MODE_P(MODE) \
  1341.   (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
  1342.  
  1343. #define AVX128_VEC_FLOAT_MODE_P(MODE) \
  1344.   (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
  1345.  
  1346. #define AVX256_VEC_FLOAT_MODE_P(MODE) \
  1347.   (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
  1348.  
  1349. #define AVX_VEC_FLOAT_MODE_P(MODE) \
  1350.   (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
  1351.                   || (MODE) == V8SFmode || (MODE) == V4DFmode))
  1352.  
  1353. #define FMA4_VEC_FLOAT_MODE_P(MODE) \
  1354.   (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
  1355.                   || (MODE) == V8SFmode || (MODE) == V4DFmode))
  1356.  
  1357. #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
  1358. #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
  1359.  
  1360. #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
  1361. #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
  1362.  
  1363. #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
  1364.  
  1365. #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
  1366. #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
  1367.  
  1368. /* The class value for index registers, and the one for base regs.  */
  1369.  
  1370. #define INDEX_REG_CLASS INDEX_REGS
  1371. #define BASE_REG_CLASS GENERAL_REGS
  1372.  
  1373. /* Place additional restrictions on the register class to use when it
  1374.    is necessary to be able to hold a value of mode MODE in a reload
  1375.    register for which class CLASS would ordinarily be used.  */
  1376.  
  1377. #define LIMIT_RELOAD_CLASS(MODE, CLASS)                         \
  1378.   ((MODE) == QImode && !TARGET_64BIT                            \
  1379.    && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS           \
  1380.        || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)      \
  1381.    ? Q_REGS : (CLASS))
  1382.  
  1383. /* Given an rtx X being reloaded into a reg required to be
  1384.    in class CLASS, return the class of reg to actually use.
  1385.    In general this is just CLASS; but on some machines
  1386.    in some cases it is preferable to use a more restrictive class.
  1387.    On the 80386 series, we prevent floating constants from being
  1388.    reloaded into floating registers (since no move-insn can do that)
  1389.    and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
  1390.  
  1391. /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
  1392.    QImode must go into class Q_REGS.
  1393.    Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
  1394.    movdf to do mem-to-mem moves through integer regs.  */
  1395.  
  1396. #define PREFERRED_RELOAD_CLASS(X, CLASS) \
  1397.    ix86_preferred_reload_class ((X), (CLASS))
  1398.  
  1399. /* Discourage putting floating-point values in SSE registers unless
  1400.    SSE math is being used, and likewise for the 387 registers.  */
  1401.  
  1402. #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
  1403.    ix86_preferred_output_reload_class ((X), (CLASS))
  1404.  
  1405. /* If we are copying between general and FP registers, we need a memory
  1406.    location. The same is true for SSE and MMX registers.  */
  1407. #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
  1408.   ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
  1409.  
  1410. /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
  1411.    There is no need to emit full 64 bit move on 64 bit targets
  1412.    for integral modes that can be moved using 32 bit move.  */
  1413. #define SECONDARY_MEMORY_NEEDED_MODE(MODE)                      \
  1414.   (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE)       \
  1415.    ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)               \
  1416.    : MODE)
  1417.  
  1418. /* Return the maximum number of consecutive registers
  1419.    needed to represent mode MODE in a register of class CLASS.  */
  1420. /* On the 80386, this is the size of MODE in words,
  1421.    except in the FP regs, where a single reg is always enough.  */
  1422. #define CLASS_MAX_NREGS(CLASS, MODE)                                    \
  1423.  (!MAYBE_INTEGER_CLASS_P (CLASS)                                        \
  1424.   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                     \
  1425.   : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))                  \
  1426.       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
  1427.  
  1428. /* A C expression whose value is nonzero if pseudos that have been
  1429.    assigned to registers of class CLASS would likely be spilled
  1430.    because registers of CLASS are needed for spill registers.
  1431.  
  1432.    The default value of this macro returns 1 if CLASS has exactly one
  1433.    register and zero otherwise.  On most machines, this default
  1434.    should be used.  Only define this macro to some other expression
  1435.    if pseudo allocated by `local-alloc.c' end up in memory because
  1436.    their hard registers were needed for spill registers.  If this
  1437.    macro returns nonzero for those classes, those pseudos will only
  1438.    be allocated by `global.c', which knows how to reallocate the
  1439.    pseudo to another register.  If there would not be another
  1440.    register available for reallocation, you should not change the
  1441.    definition of this macro since the only effect of such a
  1442.    definition would be to slow down register allocation.  */
  1443.  
  1444. #define CLASS_LIKELY_SPILLED_P(CLASS)                                   \
  1445.   (((CLASS) == AREG)                                                    \
  1446.    || ((CLASS) == DREG)                                                 \
  1447.    || ((CLASS) == CREG)                                                 \
  1448.    || ((CLASS) == BREG)                                                 \
  1449.    || ((CLASS) == AD_REGS)                                              \
  1450.    || ((CLASS) == SIREG)                                                \
  1451.    || ((CLASS) == DIREG)                                                \
  1452.    || ((CLASS) == SSE_FIRST_REG)                                        \
  1453.    || ((CLASS) == FP_TOP_REG)                                           \
  1454.    || ((CLASS) == FP_SECOND_REG))
  1455.  
  1456. /* Return a class of registers that cannot change FROM mode to TO mode.  */
  1457.  
  1458. #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
  1459.   ix86_cannot_change_mode_class (FROM, TO, CLASS)
  1460. /* Stack layout; function entry, exit and calling.  */
  1461.  
  1462. /* Define this if pushing a word on the stack
  1463.    makes the stack pointer a smaller address.  */
  1464. #define STACK_GROWS_DOWNWARD
  1465.  
  1466. /* Define this to nonzero if the nominal address of the stack frame
  1467.    is at the high-address end of the local variables;
  1468.    that is, each additional local variable allocated
  1469.    goes at a more negative offset in the frame.  */
  1470. #define FRAME_GROWS_DOWNWARD 1
  1471.  
  1472. /* Offset within stack frame to start allocating local variables at.
  1473.    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
  1474.    first local allocated.  Otherwise, it is the offset to the BEGINNING
  1475.    of the first local allocated.  */
  1476. #define STARTING_FRAME_OFFSET 0
  1477.  
  1478. /* If we generate an insn to push BYTES bytes,
  1479.    this says how many the stack pointer really advances by.
  1480.    On 386, we have pushw instruction that decrements by exactly 2 no
  1481.    matter what the position was, there is no pushb.
  1482.    But as CIE data alignment factor on this arch is -4, we need to make
  1483.    sure all stack pointer adjustments are in multiple of 4.
  1484.  
  1485.    For 64bit ABI we round up to 8 bytes.
  1486.  */
  1487.  
  1488. #define PUSH_ROUNDING(BYTES) \
  1489.   (TARGET_64BIT              \
  1490.    ? (((BYTES) + 7) & (-8))  \
  1491.    : (((BYTES) + 3) & (-4)))
  1492.  
  1493. /* If defined, the maximum amount of space required for outgoing arguments will
  1494.    be computed and placed into the variable
  1495.    `crtl->outgoing_args_size'.  No space will be pushed onto the
  1496.    stack for each call; instead, the function prologue should increase the stack
  1497.    frame size by this amount.  
  1498.    
  1499.    MS ABI seem to require 16 byte alignment everywhere except for function
  1500.    prologue and apilogue.  This is not possible without
  1501.    ACCUMULATE_OUTGOING_ARGS.  */
  1502.  
  1503. #define ACCUMULATE_OUTGOING_ARGS \
  1504.   (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
  1505.  
  1506. /* If defined, a C expression whose value is nonzero when we want to use PUSH
  1507.    instructions to pass outgoing arguments.  */
  1508.  
  1509. #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
  1510.  
  1511. /* We want the stack and args grow in opposite directions, even if
  1512.    PUSH_ARGS is 0.  */
  1513. #define PUSH_ARGS_REVERSED 1
  1514.  
  1515. /* Offset of first parameter from the argument pointer register value.  */
  1516. #define FIRST_PARM_OFFSET(FNDECL) 0
  1517.  
  1518. /* Define this macro if functions should assume that stack space has been
  1519.    allocated for arguments even when their values are passed in registers.
  1520.  
  1521.    The value of this macro is the size, in bytes, of the area reserved for
  1522.    arguments passed in registers for the function represented by FNDECL.
  1523.  
  1524.    This space can be allocated by the caller, or be a part of the
  1525.    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
  1526.    which.  */
  1527. #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
  1528.  
  1529. #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
  1530.   (ix86_function_type_abi (FNTYPE) == MS_ABI)
  1531.  
  1532. /* Value is the number of bytes of arguments automatically
  1533.    popped when returning from a subroutine call.
  1534.    FUNDECL is the declaration node of the function (as a tree),
  1535.    FUNTYPE is the data type of the function (as a tree),
  1536.    or for a library call it is an identifier node for the subroutine name.
  1537.    SIZE is the number of bytes of arguments passed on the stack.
  1538.  
  1539.    On the 80386, the RTD insn may be used to pop them if the number
  1540.      of args is fixed, but if the number is variable then the caller
  1541.      must pop them all.  RTD can't be used for library calls now
  1542.      because the library is compiled with the Unix compiler.
  1543.    Use of RTD is a selectable option, since it is incompatible with
  1544.    standard Unix calling sequences.  If the option is not selected,
  1545.    the caller must always pop the args.
  1546.  
  1547.    The attribute stdcall is equivalent to RTD on a per module basis.  */
  1548.  
  1549. #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
  1550.   ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
  1551.  
  1552. #define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
  1553.  
  1554. /* Define how to find the value returned by a library function
  1555.    assuming the value has mode MODE.  */
  1556.  
  1557. #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
  1558.  
  1559. /* Define the size of the result block used for communication between
  1560.    untyped_call and untyped_return.  The block contains a DImode value
  1561.    followed by the block used by fnsave and frstor.  */
  1562.  
  1563. #define APPLY_RESULT_SIZE (8+108)
  1564.  
  1565. /* 1 if N is a possible register number for function argument passing.  */
  1566. #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
  1567.  
  1568. /* Define a data type for recording info about an argument list
  1569.    during the scan of that argument list.  This data type should
  1570.    hold all necessary information about the function itself
  1571.    and about the args processed so far, enough to enable macros
  1572.    such as FUNCTION_ARG to determine where the next arg should go.  */
  1573.  
  1574. typedef struct ix86_args {
  1575.   int words;                    /* # words passed so far */
  1576.   int nregs;                    /* # registers available for passing */
  1577.   int regno;                    /* next available register number */
  1578.   int fastcall;                 /* fastcall calling convention is used */
  1579.   int sse_words;                /* # sse words passed so far */
  1580.   int sse_nregs;                /* # sse registers available for passing */
  1581.   int warn_avx;                 /* True when we want to warn about AVX ABI.  */
  1582.   int warn_sse;                 /* True when we want to warn about SSE ABI.  */
  1583.   int warn_mmx;                 /* True when we want to warn about MMX ABI.  */
  1584.   int sse_regno;                /* next available sse register number */
  1585.   int mmx_words;                /* # mmx words passed so far */
  1586.   int mmx_nregs;                /* # mmx registers available for passing */
  1587.   int mmx_regno;                /* next available mmx register number */
  1588.   int maybe_vaarg;              /* true for calls to possibly vardic fncts.  */
  1589.   int float_in_sse;             /* 1 if in 32-bit mode SFmode (2 for DFmode) should
  1590.                                    be passed in SSE registers.  Otherwise 0.  */
  1591.   enum calling_abi call_abi;    /* Set to SYSV_ABI for sysv abi. Otherwise
  1592.                                    MS_ABI for ms abi.  */
  1593. } CUMULATIVE_ARGS;
  1594.  
  1595. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  1596.    for a call to a function whose data type is FNTYPE.
  1597.    For a library call, FNTYPE is 0.  */
  1598.  
  1599. #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
  1600.   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
  1601.  
  1602. /* Update the data in CUM to advance over an argument
  1603.    of mode MODE and data type TYPE.
  1604.    (TYPE is null for libcalls where that information may not be available.)  */
  1605.  
  1606. #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
  1607.   function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
  1608.  
  1609. /* Define where to put the arguments to a function.
  1610.    Value is zero to push the argument on the stack,
  1611.    or a hard register in which to store the argument.
  1612.  
  1613.    MODE is the argument's machine mode.
  1614.    TYPE is the data type of the argument (as a tree).
  1615.     This is null for libcalls where that information may
  1616.     not be available.
  1617.    CUM is a variable of type CUMULATIVE_ARGS which gives info about
  1618.     the preceding args and about the function being called.
  1619.    NAMED is nonzero if this argument is a named parameter
  1620.     (otherwise it is an extra parameter matching an ellipsis).  */
  1621.  
  1622. #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  1623.   function_arg (&(CUM), (MODE), (TYPE), (NAMED))
  1624.  
  1625. /* Output assembler code to FILE to increment profiler label # LABELNO
  1626.    for profiling a function entry.  */
  1627.  
  1628. #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
  1629.  
  1630. #define MCOUNT_NAME "_mcount"
  1631.  
  1632. #define PROFILE_COUNT_REGISTER "edx"
  1633.  
  1634. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  1635.    the stack pointer does not matter.  The value is tested only in
  1636.    functions that have frame pointers.
  1637.    No definition is equivalent to always zero.  */
  1638. /* Note on the 386 it might be more efficient not to define this since
  1639.    we have to restore it ourselves from the frame pointer, in order to
  1640.    use pop */
  1641.  
  1642. #define EXIT_IGNORE_STACK 1
  1643.  
  1644. /* Output assembler code for a block containing the constant parts
  1645.    of a trampoline, leaving space for the variable parts.  */
  1646.  
  1647. /* On the 386, the trampoline contains two instructions:
  1648.      mov #STATIC,ecx
  1649.      jmp FUNCTION
  1650.    The trampoline is generated entirely at runtime.  The operand of JMP
  1651.    is the address of FUNCTION relative to the instruction following the
  1652.    JMP (which is 5 bytes long).  */
  1653.  
  1654. /* Length in units of the trampoline for entering a nested function.  */
  1655.  
  1656. #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
  1657. /* Definitions for register eliminations.
  1658.  
  1659.    This is an array of structures.  Each structure initializes one pair
  1660.    of eliminable registers.  The "from" register number is given first,
  1661.    followed by "to".  Eliminations of the same "from" register are listed
  1662.    in order of preference.
  1663.  
  1664.    There are two registers that can always be eliminated on the i386.
  1665.    The frame pointer and the arg pointer can be replaced by either the
  1666.    hard frame pointer or to the stack pointer, depending upon the
  1667.    circumstances.  The hard frame pointer is not used before reload and
  1668.    so it is not eligible for elimination.  */
  1669.  
  1670. #define ELIMINABLE_REGS                                 \
  1671. {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
  1672.  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
  1673.  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
  1674.  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}    \
  1675.  
  1676. /* Define the offset between two registers, one to be eliminated, and the other
  1677.    its replacement, at the start of a routine.  */
  1678.  
  1679. #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  1680.   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
  1681. /* Addressing modes, and classification of registers for them.  */
  1682.  
  1683. /* Macros to check register numbers against specific register classes.  */
  1684.  
  1685. /* These assume that REGNO is a hard or pseudo reg number.
  1686.    They give nonzero only if REGNO is a hard reg of the suitable class
  1687.    or a pseudo reg currently allocated to a suitable hard reg.
  1688.    Since they use reg_renumber, they are safe only once reg_renumber
  1689.    has been allocated, which happens in local-alloc.c.  */
  1690.  
  1691. #define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
  1692.   ((REGNO) < STACK_POINTER_REGNUM                                       \
  1693.    || REX_INT_REGNO_P (REGNO)                                           \
  1694.    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM           \
  1695.    || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
  1696.  
  1697. #define REGNO_OK_FOR_BASE_P(REGNO)                                      \
  1698.   (GENERAL_REGNO_P (REGNO)                                              \
  1699.    || (REGNO) == ARG_POINTER_REGNUM                                     \
  1700.    || (REGNO) == FRAME_POINTER_REGNUM                                   \
  1701.    || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
  1702.  
  1703. /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
  1704.    and check its validity for a certain class.
  1705.    We have two alternate definitions for each of them.
  1706.    The usual definition accepts all pseudo regs; the other rejects
  1707.    them unless they have been allocated suitable hard regs.
  1708.    The symbol REG_OK_STRICT causes the latter definition to be used.
  1709.  
  1710.    Most source files want to accept pseudo regs in the hope that
  1711.    they will get allocated to the class that the insn wants them to be in.
  1712.    Source files for reload pass need to be strict.
  1713.    After reload, it makes no difference, since pseudo regs have
  1714.    been eliminated by then.  */
  1715.  
  1716.  
  1717. /* Non strict versions, pseudos are ok.  */
  1718. #define REG_OK_FOR_INDEX_NONSTRICT_P(X)                                 \
  1719.   (REGNO (X) < STACK_POINTER_REGNUM                                     \
  1720.    || REX_INT_REGNO_P (REGNO (X))                                       \
  1721.    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  1722.  
  1723. #define REG_OK_FOR_BASE_NONSTRICT_P(X)                                  \
  1724.   (GENERAL_REGNO_P (REGNO (X))                                          \
  1725.    || REGNO (X) == ARG_POINTER_REGNUM                                   \
  1726.    || REGNO (X) == FRAME_POINTER_REGNUM                                 \
  1727.    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  1728.  
  1729. /* Strict versions, hard registers only */
  1730. #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
  1731. #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
  1732.  
  1733. #ifndef REG_OK_STRICT
  1734. #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
  1735. #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
  1736.  
  1737. #else
  1738. #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
  1739. #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
  1740. #endif
  1741.  
  1742. /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
  1743.    that is a valid memory address for an instruction.
  1744.    The MODE argument is the machine mode for the MEM expression
  1745.    that wants to use this address.
  1746.  
  1747.    The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
  1748.    except for CONSTANT_ADDRESS_P which is usually machine-independent.
  1749.  
  1750.    See legitimize_pic_address in i386.c for details as to what
  1751.    constitutes a legitimate address when -fpic is used.  */
  1752.  
  1753. #define MAX_REGS_PER_ADDRESS 2
  1754.  
  1755. #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
  1756.  
  1757. /* Nonzero if the constant value X is a legitimate general operand.
  1758.    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
  1759.  
  1760. #define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
  1761.  
  1762. /* If defined, a C expression to determine the base term of address X.
  1763.    This macro is used in only one place: `find_base_term' in alias.c.
  1764.  
  1765.    It is always safe for this macro to not be defined.  It exists so
  1766.    that alias analysis can understand machine-dependent addresses.
  1767.  
  1768.    The typical use of this macro is to handle addresses containing
  1769.    a label_ref or symbol_ref within an UNSPEC.  */
  1770.  
  1771. #define FIND_BASE_TERM(X) ix86_find_base_term (X)
  1772.  
  1773. /* Nonzero if the constant value X is a legitimate general operand
  1774.    when generating PIC code.  It is given that flag_pic is on and
  1775.    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
  1776.  
  1777. #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
  1778.  
  1779. #define SYMBOLIC_CONST(X)       \
  1780.   (GET_CODE (X) == SYMBOL_REF                                           \
  1781.    || GET_CODE (X) == LABEL_REF                                         \
  1782.    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
  1783. /* Max number of args passed in registers.  If this is more than 3, we will
  1784.    have problems with ebx (register #4), since it is a caller save register and
  1785.    is also used as the pic register in ELF.  So for now, don't allow more than
  1786.    3 registers to be passed in registers.  */
  1787.  
  1788. /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
  1789. #define X86_64_REGPARM_MAX 6
  1790. #define X86_64_MS_REGPARM_MAX 4
  1791.  
  1792. #define X86_32_REGPARM_MAX 3
  1793.  
  1794. #define REGPARM_MAX                                                     \
  1795.   (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX          \
  1796.                    : X86_64_REGPARM_MAX)                                \
  1797.    : X86_32_REGPARM_MAX)
  1798.  
  1799. #define X86_64_SSE_REGPARM_MAX 8
  1800. #define X86_64_MS_SSE_REGPARM_MAX 4
  1801.  
  1802. #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
  1803.  
  1804. #define SSE_REGPARM_MAX                                                 \
  1805.   (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX      \
  1806.                    : X86_64_SSE_REGPARM_MAX)                            \
  1807.    : X86_32_SSE_REGPARM_MAX)
  1808.  
  1809. #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
  1810.  
  1811. /* Specify the machine mode that this machine uses
  1812.    for the index in the tablejump instruction.  */
  1813. #define CASE_VECTOR_MODE \
  1814.  (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
  1815.  
  1816. /* Define this as 1 if `char' should by default be signed; else as 0.  */
  1817. #define DEFAULT_SIGNED_CHAR 1
  1818.  
  1819. /* Max number of bytes we can move from memory to memory
  1820.    in one reasonably fast instruction.  */
  1821. #define MOVE_MAX 16
  1822.  
  1823. /* MOVE_MAX_PIECES is the number of bytes at a time which we can
  1824.    move efficiently, as opposed to  MOVE_MAX which is the maximum
  1825.    number of bytes we can move with a single instruction.  */
  1826. #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
  1827.  
  1828. /* If a memory-to-memory move would take MOVE_RATIO or more simple
  1829.    move-instruction pairs, we will do a movmem or libcall instead.
  1830.    Increasing the value will always make code faster, but eventually
  1831.    incurs high cost in increased code size.
  1832.  
  1833.    If you don't define this, a reasonable default is used.  */
  1834.  
  1835. #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
  1836.  
  1837. /* If a clear memory operation would take CLEAR_RATIO or more simple
  1838.    move-instruction sequences, we will do a clrmem or libcall instead.  */
  1839.  
  1840. #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
  1841.  
  1842. /* Define if shifts truncate the shift count
  1843.    which implies one can omit a sign-extension or zero-extension
  1844.    of a shift count.  */
  1845. /* On i386, shifts do truncate the count.  But bit opcodes don't.  */
  1846.  
  1847. /* #define SHIFT_COUNT_TRUNCATED */
  1848.  
  1849. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  1850.    is done just by pretending it is already truncated.  */
  1851. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
  1852.  
  1853. /* A macro to update M and UNSIGNEDP when an object whose type is
  1854.    TYPE and which has the specified mode and signedness is to be
  1855.    stored in a register.  This macro is only called when TYPE is a
  1856.    scalar type.
  1857.  
  1858.    On i386 it is sometimes useful to promote HImode and QImode
  1859.    quantities to SImode.  The choice depends on target type.  */
  1860.  
  1861. #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)             \
  1862. do {                                                    \
  1863.   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)      \
  1864.       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))  \
  1865.     (MODE) = SImode;                                    \
  1866. } while (0)
  1867.  
  1868. /* Specify the machine mode that pointers have.
  1869.    After generation of rtl, the compiler makes no further distinction
  1870.    between pointers and any other objects of this machine mode.  */
  1871. #define Pmode (TARGET_64BIT ? DImode : SImode)
  1872.  
  1873. /* A function address in a call instruction
  1874.    is a byte address (for indexing purposes)
  1875.    so give the MEM rtx a byte's mode.  */
  1876. #define FUNCTION_MODE QImode
  1877. /* A C expression for the cost of moving data from a register in class FROM to
  1878.    one in class TO.  The classes are expressed using the enumeration values
  1879.    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
  1880.    interpreted relative to that.
  1881.  
  1882.    It is not required that the cost always equal 2 when FROM is the same as TO;
  1883.    on some machines it is expensive to move between registers if they are not
  1884.    general registers.  */
  1885.  
  1886. #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
  1887.    ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
  1888.  
  1889. /* A C expression for the cost of moving data of mode M between a
  1890.    register and memory.  A value of 2 is the default; this cost is
  1891.    relative to those in `REGISTER_MOVE_COST'.
  1892.  
  1893.    If moving between registers and memory is more expensive than
  1894.    between two registers, you should define this macro to express the
  1895.    relative cost.  */
  1896.  
  1897. #define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
  1898.   ix86_memory_move_cost ((MODE), (CLASS), (IN))
  1899.  
  1900. /* A C expression for the cost of a branch instruction.  A value of 1
  1901.    is the default; other values are interpreted relative to that.  */
  1902.  
  1903. #define BRANCH_COST(speed_p, predictable_p) \
  1904.   (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
  1905.  
  1906. /* Define this macro as a C expression which is nonzero if accessing
  1907.    less than a word of memory (i.e. a `char' or a `short') is no
  1908.    faster than accessing a word of memory, i.e., if such access
  1909.    require more than one instruction or if there is no difference in
  1910.    cost between byte and (aligned) word loads.
  1911.  
  1912.    When this macro is not defined, the compiler will access a field by
  1913.    finding the smallest containing object; when it is defined, a
  1914.    fullword load will be used if alignment permits.  Unless bytes
  1915.    accesses are faster than word accesses, using word accesses is
  1916.    preferable since it may eliminate subsequent memory access if
  1917.    subsequent accesses occur to other fields in the same word of the
  1918.    structure, but to different bytes.  */
  1919.  
  1920. #define SLOW_BYTE_ACCESS 0
  1921.  
  1922. /* Nonzero if access to memory by shorts is slow and undesirable.  */
  1923. #define SLOW_SHORT_ACCESS 0
  1924.  
  1925. /* Define this macro to be the value 1 if unaligned accesses have a
  1926.    cost many times greater than aligned accesses, for example if they
  1927.    are emulated in a trap handler.
  1928.  
  1929.    When this macro is nonzero, the compiler will act as if
  1930.    `STRICT_ALIGNMENT' were nonzero when generating code for block
  1931.    moves.  This can cause significantly more instructions to be
  1932.    produced.  Therefore, do not set this macro nonzero if unaligned
  1933.    accesses only add a cycle or two to the time for a memory access.
  1934.  
  1935.    If the value of this macro is always zero, it need not be defined.  */
  1936.  
  1937. /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
  1938.  
  1939. /* Define this macro if it is as good or better to call a constant
  1940.    function address than to call an address kept in a register.
  1941.  
  1942.    Desirable on the 386 because a CALL with a constant address is
  1943.    faster than one with a register address.  */
  1944.  
  1945. #define NO_FUNCTION_CSE
  1946. /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
  1947.    return the mode to be used for the comparison.
  1948.  
  1949.    For floating-point equality comparisons, CCFPEQmode should be used.
  1950.    VOIDmode should be used in all other cases.
  1951.  
  1952.    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
  1953.    possible, to allow for more combinations.  */
  1954.  
  1955. #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
  1956.  
  1957. /* Return nonzero if MODE implies a floating point inequality can be
  1958.    reversed.  */
  1959.  
  1960. #define REVERSIBLE_CC_MODE(MODE) 1
  1961.  
  1962. /* A C expression whose value is reversed condition code of the CODE for
  1963.    comparison done in CC_MODE mode.  */
  1964. #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
  1965.  
  1966. /* Control the assembler format that we output, to the extent
  1967.    this does not vary between assemblers.  */
  1968.  
  1969. /* How to refer to registers in assembler output.
  1970.    This sequence is indexed by compiler's hard-register-number (see above).  */
  1971.  
  1972. /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
  1973.    For non floating point regs, the following are the HImode names.
  1974.  
  1975.    For float regs, the stack top is sometimes referred to as "%st(0)"
  1976.    instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
  1977.  
  1978. #define HI_REGISTER_NAMES                                               \
  1979. {"ax","dx","cx","bx","si","di","bp","sp",                               \
  1980.  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",          \
  1981.  "argp", "flags", "fpsr", "fpcr", "frame",                              \
  1982.  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",               \
  1983.  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",                \
  1984.  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",                  \
  1985.  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
  1986.  
  1987. #define REGISTER_NAMES HI_REGISTER_NAMES
  1988.  
  1989. /* Table of additional register names to use in user input.  */
  1990.  
  1991. #define ADDITIONAL_REGISTER_NAMES \
  1992. { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },       \
  1993.   { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },       \
  1994.   { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },       \
  1995.   { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },       \
  1996.   { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },           \
  1997.   { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
  1998.  
  1999. /* Note we are omitting these since currently I don't know how
  2000. to get gcc to use these, since they want the same but different
  2001. number as al, and ax.
  2002. */
  2003.  
  2004. #define QI_REGISTER_NAMES \
  2005. {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
  2006.  
  2007. /* These parallel the array above, and can be used to access bits 8:15
  2008.    of regs 0 through 3.  */
  2009.  
  2010. #define QI_HIGH_REGISTER_NAMES \
  2011. {"ah", "dh", "ch", "bh", }
  2012.  
  2013. /* How to renumber registers for dbx and gdb.  */
  2014.  
  2015. #define DBX_REGISTER_NUMBER(N) \
  2016.   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
  2017.  
  2018. extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
  2019. extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
  2020. extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
  2021.  
  2022. /* Before the prologue, RA is at 0(%esp).  */
  2023. #define INCOMING_RETURN_ADDR_RTX \
  2024.   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
  2025.  
  2026. /* After the prologue, RA is at -4(AP) in the current frame.  */
  2027. #define RETURN_ADDR_RTX(COUNT, FRAME)                                      \
  2028.   ((COUNT) == 0                                                            \
  2029.    ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
  2030.    : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
  2031.  
  2032. /* PC is dbx register 8; let's use that column for RA.  */
  2033. #define DWARF_FRAME_RETURN_COLUMN       (TARGET_64BIT ? 16 : 8)
  2034.  
  2035. /* Before the prologue, the top of the frame is at 4(%esp).  */
  2036. #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
  2037.  
  2038. /* Describe how we implement __builtin_eh_return.  */
  2039. #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
  2040. #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 2)
  2041.  
  2042.  
  2043. /* Select a format to encode pointers in exception handling data.  CODE
  2044.    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
  2045.    true if the symbol may be affected by dynamic relocations.
  2046.  
  2047.    ??? All x86 object file formats are capable of representing this.
  2048.    After all, the relocation needed is the same as for the call insn.
  2049.    Whether or not a particular assembler allows us to enter such, I
  2050.    guess we'll have to see.  */
  2051. #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
  2052.   asm_preferred_eh_data_format ((CODE), (GLOBAL))
  2053.  
  2054. /* This is how to output an insn to push a register on the stack.
  2055.    It need not be very fast code.  */
  2056.  
  2057. #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
  2058. do {                                                                    \
  2059.   if (TARGET_64BIT)                                                     \
  2060.     asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",                          \
  2061.                  reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
  2062.   else                                                                  \
  2063.     asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);     \
  2064. } while (0)
  2065.  
  2066. /* This is how to output an insn to pop a register from the stack.
  2067.    It need not be very fast code.  */
  2068.  
  2069. #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
  2070. do {                                                                    \
  2071.   if (TARGET_64BIT)                                                     \
  2072.     asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",                           \
  2073.                  reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));  \
  2074.   else                                                                  \
  2075.     asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);      \
  2076. } while (0)
  2077.  
  2078. /* This is how to output an element of a case-vector that is absolute.  */
  2079.  
  2080. #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
  2081.   ix86_output_addr_vec_elt ((FILE), (VALUE))
  2082.  
  2083. /* This is how to output an element of a case-vector that is relative.  */
  2084.  
  2085. #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  2086.   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
  2087.  
  2088. /* When we see %v, we will print the 'v' prefix if TARGET_AVX is
  2089.    true.  */
  2090.  
  2091. #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)      \
  2092. {                                               \
  2093.   if ((PTR)[0] == '%' && (PTR)[1] == 'v')       \
  2094.     {                                           \
  2095.       if (TARGET_AVX)                           \
  2096.         (PTR) += 1;                             \
  2097.       else                                      \
  2098.         (PTR) += 2;                             \
  2099.     }                                           \
  2100. }
  2101.  
  2102. /* A C statement or statements which output an assembler instruction
  2103.    opcode to the stdio stream STREAM.  The macro-operand PTR is a
  2104.    variable of type `char *' which points to the opcode name in
  2105.    its "internal" form--the form that is written in the machine
  2106.    description.  */
  2107.  
  2108. #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
  2109.   ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
  2110.  
  2111. /* A C statement to output to the stdio stream FILE an assembler
  2112.    command to pad the location counter to a multiple of 1<<LOG
  2113.    bytes if it is within MAX_SKIP bytes.  */
  2114.  
  2115. #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
  2116. #undef  ASM_OUTPUT_MAX_SKIP_PAD
  2117. #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)                    \
  2118.   if ((LOG) != 0)                                                       \
  2119.     {                                                                   \
  2120.       if ((MAX_SKIP) == 0)                                              \
  2121.         fprintf ((FILE), "\t.p2align %d\n", (LOG));                     \
  2122.       else                                                              \
  2123.         fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));     \
  2124.     }
  2125. #endif
  2126.  
  2127. /* Under some conditions we need jump tables in the text section,
  2128.    because the assembler cannot handle label differences between
  2129.    sections.  This is the case for x86_64 on Mach-O for example.  */
  2130.  
  2131. #define JUMP_TABLES_IN_TEXT_SECTION \
  2132.   (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
  2133.    || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
  2134.  
  2135. /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
  2136.    and switch back.  For x86 we do this only to save a few bytes that
  2137.    would otherwise be unused in the text section.  */
  2138. #define CRT_MKSTR2(VAL) #VAL
  2139. #define CRT_MKSTR(x) CRT_MKSTR2(x)
  2140.  
  2141. #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)              \
  2142.    asm (SECTION_OP "\n\t"                                       \
  2143.         "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"     \
  2144.         TEXT_SECTION_ASM_OP);
  2145. /* Print operand X (an rtx) in assembler syntax to file FILE.
  2146.    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
  2147.    Effect of various CODE letters is described in i386.c near
  2148.    print_operand function.  */
  2149.  
  2150. #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
  2151.   ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
  2152.  
  2153. #define PRINT_OPERAND(FILE, X, CODE)  \
  2154.   print_operand ((FILE), (X), (CODE))
  2155.  
  2156. #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
  2157.   print_operand_address ((FILE), (ADDR))
  2158.  
  2159. #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)  \
  2160. do {                                            \
  2161.   if (! output_addr_const_extra (FILE, (X)))    \
  2162.     goto FAIL;                                  \
  2163. } while (0);
  2164. /* Which processor to schedule for. The cpu attribute defines a list that
  2165.    mirrors this list, so changes to i386.md must be made at the same time.  */
  2166.  
  2167. enum processor_type
  2168. {
  2169.   PROCESSOR_I386 = 0,                   /* 80386 */
  2170.   PROCESSOR_I486,                       /* 80486DX, 80486SX, 80486DX[24] */
  2171.   PROCESSOR_PENTIUM,
  2172.   PROCESSOR_PENTIUMPRO,
  2173.   PROCESSOR_GEODE,
  2174.   PROCESSOR_K6,
  2175.   PROCESSOR_ATHLON,
  2176.   PROCESSOR_PENTIUM4,
  2177.   PROCESSOR_K8,
  2178.   PROCESSOR_NOCONA,
  2179.   PROCESSOR_CORE2,
  2180.   PROCESSOR_GENERIC32,
  2181.   PROCESSOR_GENERIC64,
  2182.   PROCESSOR_AMDFAM10,
  2183.   PROCESSOR_ATOM,
  2184.   PROCESSOR_max
  2185. };
  2186.  
  2187. extern enum processor_type ix86_tune;
  2188. extern enum processor_type ix86_arch;
  2189.  
  2190. enum fpmath_unit
  2191. {
  2192.   FPMATH_387 = 1,
  2193.   FPMATH_SSE = 2
  2194. };
  2195.  
  2196. extern enum fpmath_unit ix86_fpmath;
  2197.  
  2198. enum tls_dialect
  2199. {
  2200.   TLS_DIALECT_GNU,
  2201.   TLS_DIALECT_GNU2,
  2202.   TLS_DIALECT_SUN
  2203. };
  2204.  
  2205. extern enum tls_dialect ix86_tls_dialect;
  2206.  
  2207. enum cmodel {
  2208.   CM_32,        /* The traditional 32-bit ABI.  */
  2209.   CM_SMALL,     /* Assumes all code and data fits in the low 31 bits.  */
  2210.   CM_KERNEL,    /* Assumes all code and data fits in the high 31 bits.  */
  2211.   CM_MEDIUM,    /* Assumes code fits in the low 31 bits; data unlimited.  */
  2212.   CM_LARGE,     /* No assumptions.  */
  2213.   CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region.  */
  2214.   CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region.  */
  2215.   CM_LARGE_PIC  /* No assumptions.  */
  2216. };
  2217.  
  2218. extern enum cmodel ix86_cmodel;
  2219.  
  2220. /* Size of the RED_ZONE area.  */
  2221. #define RED_ZONE_SIZE 128
  2222. /* Reserved area of the red zone for temporaries.  */
  2223. #define RED_ZONE_RESERVE 8
  2224.  
  2225. enum asm_dialect {
  2226.   ASM_ATT,
  2227.   ASM_INTEL
  2228. };
  2229.  
  2230. extern enum asm_dialect ix86_asm_dialect;
  2231. extern unsigned int ix86_preferred_stack_boundary;
  2232. extern unsigned int ix86_incoming_stack_boundary;
  2233. extern int ix86_branch_cost, ix86_section_threshold;
  2234.  
  2235. /* Smallest class containing REGNO.  */
  2236. extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
  2237.  
  2238. extern rtx ix86_compare_op0;    /* operand 0 for comparisons */
  2239. extern rtx ix86_compare_op1;    /* operand 1 for comparisons */
  2240.  
  2241. enum ix86_fpcmp_strategy {
  2242.   IX86_FPCMP_SAHF,
  2243.   IX86_FPCMP_COMI,
  2244.   IX86_FPCMP_ARITH
  2245. };
  2246. /* To properly truncate FP values into integers, we need to set i387 control
  2247.    word.  We can't emit proper mode switching code before reload, as spills
  2248.    generated by reload may truncate values incorrectly, but we still can avoid
  2249.    redundant computation of new control word by the mode switching pass.
  2250.    The fldcw instructions are still emitted redundantly, but this is probably
  2251.    not going to be noticeable problem, as most CPUs do have fast path for
  2252.    the sequence.
  2253.  
  2254.    The machinery is to emit simple truncation instructions and split them
  2255.    before reload to instructions having USEs of two memory locations that
  2256.    are filled by this code to old and new control word.
  2257.  
  2258.    Post-reload pass may be later used to eliminate the redundant fildcw if
  2259.    needed.  */
  2260.  
  2261. enum ix86_entity
  2262. {
  2263.   I387_TRUNC = 0,
  2264.   I387_FLOOR,
  2265.   I387_CEIL,
  2266.   I387_MASK_PM,
  2267.   MAX_386_ENTITIES
  2268. };
  2269.  
  2270. enum ix86_stack_slot
  2271. {
  2272.   SLOT_VIRTUAL = 0,
  2273.   SLOT_TEMP,
  2274.   SLOT_CW_STORED,
  2275.   SLOT_CW_TRUNC,
  2276.   SLOT_CW_FLOOR,
  2277.   SLOT_CW_CEIL,
  2278.   SLOT_CW_MASK_PM,
  2279.   MAX_386_STACK_LOCALS
  2280. };
  2281.  
  2282. /* Define this macro if the port needs extra instructions inserted
  2283.    for mode switching in an optimizing compilation.  */
  2284.  
  2285. #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
  2286.    ix86_optimize_mode_switching[(ENTITY)]
  2287.  
  2288. /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
  2289.    initializer for an array of integers.  Each initializer element N
  2290.    refers to an entity that needs mode switching, and specifies the
  2291.    number of different modes that might need to be set for this
  2292.    entity.  The position of the initializer in the initializer -
  2293.    starting counting at zero - determines the integer that is used to
  2294.    refer to the mode-switched entity in question.  */
  2295.  
  2296. #define NUM_MODES_FOR_MODE_SWITCHING \
  2297.    { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
  2298.  
  2299. /* ENTITY is an integer specifying a mode-switched entity.  If
  2300.    `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
  2301.    return an integer value not larger than the corresponding element
  2302.    in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
  2303.    must be switched into prior to the execution of INSN. */
  2304.  
  2305. #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
  2306.  
  2307. /* This macro specifies the order in which modes for ENTITY are
  2308.    processed.  0 is the highest priority.  */
  2309.  
  2310. #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
  2311.  
  2312. /* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
  2313.    is the set of hard registers live at the point where the insn(s)
  2314.    are to be inserted.  */
  2315.  
  2316. #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE)                     \
  2317.   ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED             \
  2318.    ? emit_i387_cw_initialization (MODE), 0                              \
  2319.    : 0)
  2320.  
  2321. /* Avoid renaming of stack registers, as doing so in combination with
  2322.    scheduling just increases amount of live registers at time and in
  2323.    the turn amount of fxch instructions needed.
  2324.  
  2325.    ??? Maybe Pentium chips benefits from renaming, someone can try....  */
  2326.  
  2327. #define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
  2328.   (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
  2329.  
  2330. #define FASTCALL_PREFIX '@'
  2331. /* Machine specific CFA tracking during prologue/epilogue generation.  */
  2332.  
  2333. #ifndef USED_FOR_TARGET
  2334. struct GTY(()) machine_cfa_state
  2335. {
  2336.   rtx reg;
  2337.   HOST_WIDE_INT offset;
  2338. };
  2339.  
  2340. struct GTY(()) machine_function {
  2341.   struct stack_local_entry *stack_locals;
  2342.   const char *some_ld_name;
  2343.   int varargs_gpr_size;
  2344.   int varargs_fpr_size;
  2345.   int optimize_mode_switching[MAX_386_ENTITIES];
  2346.  
  2347.   /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
  2348.      has been computed for.  */
  2349.   int use_fast_prologue_epilogue_nregs;
  2350.  
  2351.   /* The CFA state at the end of the prologue.  */
  2352.   struct machine_cfa_state cfa;
  2353.  
  2354.   /* This value is used for amd64 targets and specifies the current abi
  2355.      to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
  2356.   enum calling_abi call_abi;
  2357.  
  2358.   /* Nonzero if the function accesses a previous frame.  */
  2359.   BOOL_BITFIELD accesses_prev_frame : 1;
  2360.  
  2361.   /* Nonzero if the function requires a CLD in the prologue.  */
  2362.   BOOL_BITFIELD needs_cld : 1;
  2363.  
  2364.   /* Set by ix86_compute_frame_layout and used by prologue/epilogue
  2365.      expander to determine the style used.  */
  2366.   BOOL_BITFIELD use_fast_prologue_epilogue : 1;
  2367.  
  2368.   /* If true, the current function needs the default PIC register, not
  2369.      an alternate register (on x86) and must not use the red zone (on
  2370.      x86_64), even if it's a leaf function.  We don't want the
  2371.      function to be regarded as non-leaf because TLS calls need not
  2372.      affect register allocation.  This flag is set when a TLS call
  2373.      instruction is expanded within a function, and never reset, even
  2374.      if all such instructions are optimized away.  Use the
  2375.      ix86_current_function_calls_tls_descriptor macro for a better
  2376.      approximation.  */
  2377.   BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
  2378.  
  2379.   /* If true, the current function has a STATIC_CHAIN is placed on the
  2380.      stack below the return address.  */
  2381.   BOOL_BITFIELD static_chain_on_stack : 1;
  2382. };
  2383. #endif
  2384.  
  2385. #define ix86_stack_locals (cfun->machine->stack_locals)
  2386. #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
  2387. #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
  2388. #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
  2389. #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
  2390. #define ix86_tls_descriptor_calls_expanded_in_cfun \
  2391.   (cfun->machine->tls_descriptor_call_expanded_p)
  2392. /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
  2393.    calls are optimized away, we try to detect cases in which it was
  2394.    optimized away.  Since such instructions (use (reg REG_SP)), we can
  2395.    verify whether there's any such instruction live by testing that
  2396.    REG_SP is live.  */
  2397. #define ix86_current_function_calls_tls_descriptor \
  2398.   (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
  2399. #define ix86_cfa_state (&cfun->machine->cfa)
  2400. #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
  2401.  
  2402. /* Control behavior of x86_file_start.  */
  2403. #define X86_FILE_START_VERSION_DIRECTIVE false
  2404. #define X86_FILE_START_FLTUSED false
  2405.  
  2406. /* Flag to mark data that is in the large address area.  */
  2407. #define SYMBOL_FLAG_FAR_ADDR            (SYMBOL_FLAG_MACH_DEP << 0)
  2408. #define SYMBOL_REF_FAR_ADDR_P(X)        \
  2409.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
  2410.  
  2411. /* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
  2412.    have defined always, to avoid ifdefing.  */
  2413. #define SYMBOL_FLAG_DLLIMPORT           (SYMBOL_FLAG_MACH_DEP << 1)
  2414. #define SYMBOL_REF_DLLIMPORT_P(X) \
  2415.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
  2416.  
  2417. #define SYMBOL_FLAG_DLLEXPORT           (SYMBOL_FLAG_MACH_DEP << 2)
  2418. #define SYMBOL_REF_DLLEXPORT_P(X) \
  2419.         ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
  2420.  
  2421. /* Model costs for vectorizer.  */
  2422.  
  2423. /* Cost of conditional branch.  */
  2424. #undef TARG_COND_BRANCH_COST
  2425. #define TARG_COND_BRANCH_COST           ix86_cost->branch_cost
  2426.  
  2427. /* Enum through the target specific extra va_list types.
  2428.    Please, do not iterate the base va_list type name.  */
  2429. #define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
  2430.   (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
  2431.  
  2432. /* Cost of any scalar operation, excluding load and store.  */
  2433. #undef TARG_SCALAR_STMT_COST
  2434. #define TARG_SCALAR_STMT_COST           ix86_cost->scalar_stmt_cost
  2435.  
  2436. /* Cost of scalar load.  */
  2437. #undef TARG_SCALAR_LOAD_COST
  2438. #define TARG_SCALAR_LOAD_COST           ix86_cost->scalar_load_cost
  2439.  
  2440. /* Cost of scalar store.  */
  2441. #undef TARG_SCALAR_STORE_COST
  2442. #define TARG_SCALAR_STORE_COST          ix86_cost->scalar_store_cost
  2443.  
  2444. /* Cost of any vector operation, excluding load, store or vector to scalar
  2445.    operation.  */
  2446. #undef TARG_VEC_STMT_COST
  2447. #define TARG_VEC_STMT_COST              ix86_cost->vec_stmt_cost
  2448.  
  2449. /* Cost of vector to scalar operation.  */
  2450. #undef TARG_VEC_TO_SCALAR_COST
  2451. #define TARG_VEC_TO_SCALAR_COST         ix86_cost->vec_to_scalar_cost
  2452.  
  2453. /* Cost of scalar to vector operation.  */
  2454. #undef TARG_SCALAR_TO_VEC_COST
  2455. #define TARG_SCALAR_TO_VEC_COST         ix86_cost->scalar_to_vec_cost
  2456.  
  2457. /* Cost of aligned vector load.  */
  2458. #undef TARG_VEC_LOAD_COST
  2459. #define TARG_VEC_LOAD_COST              ix86_cost->vec_align_load_cost
  2460.  
  2461. /* Cost of misaligned vector load.  */
  2462. #undef TARG_VEC_UNALIGNED_LOAD_COST
  2463. #define TARG_VEC_UNALIGNED_LOAD_COST    ix86_cost->vec_unalign_load_cost
  2464.  
  2465. /* Cost of vector store.  */
  2466. #undef TARG_VEC_STORE_COST
  2467. #define TARG_VEC_STORE_COST             ix86_cost->vec_store_cost
  2468.  
  2469. /* Cost of conditional taken branch for vectorizer cost model.  */
  2470. #undef TARG_COND_TAKEN_BRANCH_COST
  2471. #define TARG_COND_TAKEN_BRANCH_COST     ix86_cost->cond_taken_branch_cost
  2472.  
  2473. /* Cost of conditional not taken branch for vectorizer cost model.  */
  2474. #undef TARG_COND_NOT_TAKEN_BRANCH_COST
  2475. #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
  2476.  
  2477. /*
  2478. Local variables:
  2479. version-control: t
  2480. End:
  2481. */
  2482.