Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3.  * Copyright (C) 2009 Konstantin Shishkov
  4.  * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
  5.  * and on BSD-licensed SHA-2 code by Aaron D. Gifford
  6.  *
  7.  * This file is part of FFmpeg.
  8.  *
  9.  * FFmpeg is free software; you can redistribute it and/or
  10.  * modify it under the terms of the GNU Lesser General Public
  11.  * License as published by the Free Software Foundation; either
  12.  * version 2.1 of the License, or (at your option) any later version.
  13.  *
  14.  * FFmpeg is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17.  * Lesser General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU Lesser General Public
  20.  * License along with FFmpeg; if not, write to the Free Software
  21.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22.  */
  23.  
  24. #include <string.h>
  25.  
  26. #include "attributes.h"
  27. #include "avutil.h"
  28. #include "bswap.h"
  29. #include "sha.h"
  30. #include "intreadwrite.h"
  31. #include "mem.h"
  32.  
  33. /** hash context */
  34. typedef struct AVSHA {
  35.     uint8_t  digest_len;  ///< digest length in 32-bit words
  36.     uint64_t count;       ///< number of bytes in buffer
  37.     uint8_t  buffer[64];  ///< 512-bit buffer of input values used in hash updating
  38.     uint32_t state[8];    ///< current hash value
  39.     /** function used to update hash for 512-bit input block */
  40.     void     (*transform)(uint32_t *state, const uint8_t buffer[64]);
  41. } AVSHA;
  42.  
  43. const int av_sha_size = sizeof(AVSHA);
  44.  
  45. struct AVSHA *av_sha_alloc(void)
  46. {
  47.     return av_mallocz(sizeof(struct AVSHA));
  48. }
  49.  
  50. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  51.  
  52. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  53. #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
  54. #define blk(i)  (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
  55.  
  56. #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y)     + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  57. #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y)     + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  58. #define R2(v,w,x,y,z,i) z += ( w^x     ^y)     + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
  59. #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
  60. #define R4(v,w,x,y,z,i) z += ( w^x     ^y)     + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
  61.  
  62. /* Hash a single 512-bit block. This is the core of the algorithm. */
  63.  
  64. static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
  65. {
  66.     uint32_t block[80];
  67.     unsigned int i, a, b, c, d, e;
  68.  
  69.     a = state[0];
  70.     b = state[1];
  71.     c = state[2];
  72.     d = state[3];
  73.     e = state[4];
  74. #if CONFIG_SMALL
  75.     for (i = 0; i < 80; i++) {
  76.         int t;
  77.         if (i < 16)
  78.             t = AV_RB32(buffer + 4 * i);
  79.         else
  80.             t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
  81.         block[i] = t;
  82.         t += e + rol(a, 5);
  83.         if (i < 40) {
  84.             if (i < 20)
  85.                 t += ((b&(c^d))^d)     + 0x5A827999;
  86.             else
  87.                 t += ( b^c     ^d)     + 0x6ED9EBA1;
  88.         } else {
  89.             if (i < 60)
  90.                 t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
  91.             else
  92.                 t += ( b^c     ^d)     + 0xCA62C1D6;
  93.         }
  94.         e = d;
  95.         d = c;
  96.         c = rol(b, 30);
  97.         b = a;
  98.         a = t;
  99.     }
  100. #else
  101.  
  102. #define R1_0 \
  103.     R0(a, b, c, d, e, 0 + i); \
  104.     R0(e, a, b, c, d, 1 + i); \
  105.     R0(d, e, a, b, c, 2 + i); \
  106.     R0(c, d, e, a, b, 3 + i); \
  107.     R0(b, c, d, e, a, 4 + i); \
  108.     i += 5
  109.  
  110.     i = 0;
  111.     R1_0; R1_0; R1_0;
  112.     R0(a, b, c, d, e, 15);
  113.     R1(e, a, b, c, d, 16);
  114.     R1(d, e, a, b, c, 17);
  115.     R1(c, d, e, a, b, 18);
  116.     R1(b, c, d, e, a, 19);
  117.  
  118. #define R1_20 \
  119.     R2(a, b, c, d, e, 0 + i); \
  120.     R2(e, a, b, c, d, 1 + i); \
  121.     R2(d, e, a, b, c, 2 + i); \
  122.     R2(c, d, e, a, b, 3 + i); \
  123.     R2(b, c, d, e, a, 4 + i); \
  124.     i += 5
  125.  
  126.     i = 20;
  127.     R1_20; R1_20; R1_20; R1_20;
  128.  
  129. #define R1_40 \
  130.     R3(a, b, c, d, e, 0 + i); \
  131.     R3(e, a, b, c, d, 1 + i); \
  132.     R3(d, e, a, b, c, 2 + i); \
  133.     R3(c, d, e, a, b, 3 + i); \
  134.     R3(b, c, d, e, a, 4 + i); \
  135.     i += 5
  136.  
  137.     R1_40; R1_40; R1_40; R1_40;
  138.  
  139. #define R1_60 \
  140.     R4(a, b, c, d, e, 0 + i); \
  141.     R4(e, a, b, c, d, 1 + i); \
  142.     R4(d, e, a, b, c, 2 + i); \
  143.     R4(c, d, e, a, b, 3 + i); \
  144.     R4(b, c, d, e, a, 4 + i); \
  145.     i += 5
  146.  
  147.     R1_60; R1_60; R1_60; R1_60;
  148. #endif
  149.     state[0] += a;
  150.     state[1] += b;
  151.     state[2] += c;
  152.     state[3] += d;
  153.     state[4] += e;
  154. }
  155.  
  156. static const uint32_t K256[64] = {
  157.     0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  158.     0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  159.     0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  160.     0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  161.     0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  162.     0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  163.     0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  164.     0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  165.     0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  166.     0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  167.     0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  168.     0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  169.     0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  170.     0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  171.     0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  172.     0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  173. };
  174.  
  175.  
  176. #define Ch(x,y,z)   (((x) & ((y) ^ (z))) ^ (z))
  177. #define Maj(z,y,x)  ((((x) | (y)) & (z)) | ((x) & (y)))
  178.  
  179. #define Sigma0_256(x)   (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
  180. #define Sigma1_256(x)   (rol((x), 26) ^ rol((x), 21) ^ rol((x),  7))
  181. #define sigma0_256(x)   (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
  182. #define sigma1_256(x)   (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
  183.  
  184. #undef blk
  185. #define blk(i)  (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
  186.                             sigma1_256(block[i - 2]) + block[i - 7])
  187.  
  188. #define ROUND256(a,b,c,d,e,f,g,h)   \
  189.     T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
  190.     (d) += T1; \
  191.     (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  192.     i++
  193.  
  194. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)   \
  195.     T1 = blk0(i); \
  196.     ROUND256(a,b,c,d,e,f,g,h)
  197.  
  198. #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h)   \
  199.     T1 = blk(i); \
  200.     ROUND256(a,b,c,d,e,f,g,h)
  201.  
  202. static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
  203. {
  204.     unsigned int i, a, b, c, d, e, f, g, h;
  205.     uint32_t block[64];
  206.     uint32_t T1;
  207.  
  208.     a = state[0];
  209.     b = state[1];
  210.     c = state[2];
  211.     d = state[3];
  212.     e = state[4];
  213.     f = state[5];
  214.     g = state[6];
  215.     h = state[7];
  216. #if CONFIG_SMALL
  217.     for (i = 0; i < 64; i++) {
  218.         uint32_t T2;
  219.         if (i < 16)
  220.             T1 = blk0(i);
  221.         else
  222.             T1 = blk(i);
  223.         T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
  224.         T2 = Sigma0_256(a) + Maj(a, b, c);
  225.         h = g;
  226.         g = f;
  227.         f = e;
  228.         e = d + T1;
  229.         d = c;
  230.         c = b;
  231.         b = a;
  232.         a = T1 + T2;
  233.     }
  234. #else
  235.  
  236.     i = 0;
  237. #define R256_0 \
  238.     ROUND256_0_TO_15(a, b, c, d, e, f, g, h); \
  239.     ROUND256_0_TO_15(h, a, b, c, d, e, f, g); \
  240.     ROUND256_0_TO_15(g, h, a, b, c, d, e, f); \
  241.     ROUND256_0_TO_15(f, g, h, a, b, c, d, e); \
  242.     ROUND256_0_TO_15(e, f, g, h, a, b, c, d); \
  243.     ROUND256_0_TO_15(d, e, f, g, h, a, b, c); \
  244.     ROUND256_0_TO_15(c, d, e, f, g, h, a, b); \
  245.     ROUND256_0_TO_15(b, c, d, e, f, g, h, a)
  246.  
  247.     R256_0; R256_0;
  248.  
  249. #define R256_16 \
  250.     ROUND256_16_TO_63(a, b, c, d, e, f, g, h); \
  251.     ROUND256_16_TO_63(h, a, b, c, d, e, f, g); \
  252.     ROUND256_16_TO_63(g, h, a, b, c, d, e, f); \
  253.     ROUND256_16_TO_63(f, g, h, a, b, c, d, e); \
  254.     ROUND256_16_TO_63(e, f, g, h, a, b, c, d); \
  255.     ROUND256_16_TO_63(d, e, f, g, h, a, b, c); \
  256.     ROUND256_16_TO_63(c, d, e, f, g, h, a, b); \
  257.     ROUND256_16_TO_63(b, c, d, e, f, g, h, a)
  258.  
  259.     R256_16; R256_16; R256_16;
  260.     R256_16; R256_16; R256_16;
  261. #endif
  262.     state[0] += a;
  263.     state[1] += b;
  264.     state[2] += c;
  265.     state[3] += d;
  266.     state[4] += e;
  267.     state[5] += f;
  268.     state[6] += g;
  269.     state[7] += h;
  270. }
  271.  
  272.  
  273. av_cold int av_sha_init(AVSHA *ctx, int bits)
  274. {
  275.     ctx->digest_len = bits >> 5;
  276.     switch (bits) {
  277.     case 160: // SHA-1
  278.         ctx->state[0] = 0x67452301;
  279.         ctx->state[1] = 0xEFCDAB89;
  280.         ctx->state[2] = 0x98BADCFE;
  281.         ctx->state[3] = 0x10325476;
  282.         ctx->state[4] = 0xC3D2E1F0;
  283.         ctx->transform = sha1_transform;
  284.         break;
  285.     case 224: // SHA-224
  286.         ctx->state[0] = 0xC1059ED8;
  287.         ctx->state[1] = 0x367CD507;
  288.         ctx->state[2] = 0x3070DD17;
  289.         ctx->state[3] = 0xF70E5939;
  290.         ctx->state[4] = 0xFFC00B31;
  291.         ctx->state[5] = 0x68581511;
  292.         ctx->state[6] = 0x64F98FA7;
  293.         ctx->state[7] = 0xBEFA4FA4;
  294.         ctx->transform = sha256_transform;
  295.         break;
  296.     case 256: // SHA-256
  297.         ctx->state[0] = 0x6A09E667;
  298.         ctx->state[1] = 0xBB67AE85;
  299.         ctx->state[2] = 0x3C6EF372;
  300.         ctx->state[3] = 0xA54FF53A;
  301.         ctx->state[4] = 0x510E527F;
  302.         ctx->state[5] = 0x9B05688C;
  303.         ctx->state[6] = 0x1F83D9AB;
  304.         ctx->state[7] = 0x5BE0CD19;
  305.         ctx->transform = sha256_transform;
  306.         break;
  307.     default:
  308.         return -1;
  309.     }
  310.     ctx->count = 0;
  311.     return 0;
  312. }
  313.  
  314. void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
  315. {
  316.     unsigned int i, j;
  317.  
  318.     j = ctx->count & 63;
  319.     ctx->count += len;
  320. #if CONFIG_SMALL
  321.     for (i = 0; i < len; i++) {
  322.         ctx->buffer[j++] = data[i];
  323.         if (64 == j) {
  324.             ctx->transform(ctx->state, ctx->buffer);
  325.             j = 0;
  326.         }
  327.     }
  328. #else
  329.     if ((j + len) > 63) {
  330.         memcpy(&ctx->buffer[j], data, (i = 64 - j));
  331.         ctx->transform(ctx->state, ctx->buffer);
  332.         for (; i + 63 < len; i += 64)
  333.             ctx->transform(ctx->state, &data[i]);
  334.         j = 0;
  335.     } else
  336.         i = 0;
  337.     memcpy(&ctx->buffer[j], &data[i], len - i);
  338. #endif
  339. }
  340.  
  341. void av_sha_final(AVSHA* ctx, uint8_t *digest)
  342. {
  343.     int i;
  344.     uint64_t finalcount = av_be2ne64(ctx->count << 3);
  345.  
  346.     av_sha_update(ctx, "\200", 1);
  347.     while ((ctx->count & 63) != 56)
  348.         av_sha_update(ctx, "", 1);
  349.     av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  350.     for (i = 0; i < ctx->digest_len; i++)
  351.         AV_WB32(digest + i*4, ctx->state[i]);
  352. }
  353.  
  354. #ifdef TEST
  355. #include <stdio.h>
  356.  
  357. int main(void)
  358. {
  359.     int i, j, k;
  360.     AVSHA ctx;
  361.     unsigned char digest[32];
  362.     static const int lengths[3] = { 160, 224, 256 };
  363.  
  364.     for (j = 0; j < 3; j++) {
  365.         printf("Testing SHA-%d\n", lengths[j]);
  366.         for (k = 0; k < 3; k++) {
  367.             av_sha_init(&ctx, lengths[j]);
  368.             if (k == 0)
  369.                 av_sha_update(&ctx, "abc", 3);
  370.             else if (k == 1)
  371.                 av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
  372.             else
  373.                 for (i = 0; i < 1000*1000; i++)
  374.                     av_sha_update(&ctx, "a", 1);
  375.             av_sha_final(&ctx, digest);
  376.             for (i = 0; i < lengths[j] >> 3; i++)
  377.                 printf("%02X", digest[i]);
  378.             putchar('\n');
  379.         }
  380.         switch (j) {
  381.         case 0:
  382.             //test vectors (from FIPS PUB 180-1)
  383.             printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
  384.                    "84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
  385.                    "34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
  386.             break;
  387.         case 1:
  388.             //test vectors (from FIPS PUB 180-2 Appendix A)
  389.             printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
  390.                    "75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
  391.                    "20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
  392.             break;
  393.         case 2:
  394.             //test vectors (from FIPS PUB 180-2)
  395.             printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
  396.                    "248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
  397.                    "cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
  398.             break;
  399.         }
  400.     }
  401.  
  402.     return 0;
  403. }
  404. #endif
  405.