Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  3.  * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. #include "libavutil/common.h"
  23. #include "libavutil/libm.h"
  24. #include "libavutil/log.h"
  25. #include "internal.h"
  26. #include "resample.h"
  27. #include "audio_data.h"
  28.  
  29. struct ResampleContext {
  30.     AVAudioResampleContext *avr;
  31.     AudioData *buffer;
  32.     uint8_t *filter_bank;
  33.     int filter_length;
  34.     int ideal_dst_incr;
  35.     int dst_incr;
  36.     int index;
  37.     int frac;
  38.     int src_incr;
  39.     int compensation_distance;
  40.     int phase_shift;
  41.     int phase_mask;
  42.     int linear;
  43.     enum AVResampleFilterType filter_type;
  44.     int kaiser_beta;
  45.     double factor;
  46.     void (*set_filter)(void *filter, double *tab, int phase, int tap_count);
  47.     void (*resample_one)(struct ResampleContext *c, int no_filter, void *dst0,
  48.                          int dst_index, const void *src0, int src_size,
  49.                          int index, int frac);
  50. };
  51.  
  52.  
  53. /* double template */
  54. #define CONFIG_RESAMPLE_DBL
  55. #include "resample_template.c"
  56. #undef CONFIG_RESAMPLE_DBL
  57.  
  58. /* float template */
  59. #define CONFIG_RESAMPLE_FLT
  60. #include "resample_template.c"
  61. #undef CONFIG_RESAMPLE_FLT
  62.  
  63. /* s32 template */
  64. #define CONFIG_RESAMPLE_S32
  65. #include "resample_template.c"
  66. #undef CONFIG_RESAMPLE_S32
  67.  
  68. /* s16 template */
  69. #include "resample_template.c"
  70.  
  71.  
  72. /* 0th order modified bessel function of the first kind. */
  73. static double bessel(double x)
  74. {
  75.     double v     = 1;
  76.     double lastv = 0;
  77.     double t     = 1;
  78.     int i;
  79.  
  80.     x = x * x / 4;
  81.     for (i = 1; v != lastv; i++) {
  82.         lastv = v;
  83.         t    *= x / (i * i);
  84.         v    += t;
  85.     }
  86.     return v;
  87. }
  88.  
  89. /* Build a polyphase filterbank. */
  90. static int build_filter(ResampleContext *c)
  91. {
  92.     int ph, i;
  93.     double x, y, w, factor;
  94.     double *tab;
  95.     int tap_count    = c->filter_length;
  96.     int phase_count  = 1 << c->phase_shift;
  97.     const int center = (tap_count - 1) / 2;
  98.  
  99.     tab = av_malloc(tap_count * sizeof(*tab));
  100.     if (!tab)
  101.         return AVERROR(ENOMEM);
  102.  
  103.     /* if upsampling, only need to interpolate, no filter */
  104.     factor = FFMIN(c->factor, 1.0);
  105.  
  106.     for (ph = 0; ph < phase_count; ph++) {
  107.         double norm = 0;
  108.         for (i = 0; i < tap_count; i++) {
  109.             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  110.             if (x == 0) y = 1.0;
  111.             else        y = sin(x) / x;
  112.             switch (c->filter_type) {
  113.             case AV_RESAMPLE_FILTER_TYPE_CUBIC: {
  114.                 const float d = -0.5; //first order derivative = -0.5
  115.                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  116.                 if (x < 1.0) y = 1 - 3 * x*x + 2 * x*x*x + d * (                -x*x + x*x*x);
  117.                 else         y =                           d * (-4 + 8 * x - 5 * x*x + x*x*x);
  118.                 break;
  119.             }
  120.             case AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL:
  121.                 w  = 2.0 * x / (factor * tap_count) + M_PI;
  122.                 y *= 0.3635819 - 0.4891775 * cos(    w) +
  123.                                  0.1365995 * cos(2 * w) -
  124.                                  0.0106411 * cos(3 * w);
  125.                 break;
  126.             case AV_RESAMPLE_FILTER_TYPE_KAISER:
  127.                 w  = 2.0 * x / (factor * tap_count * M_PI);
  128.                 y *= bessel(c->kaiser_beta * sqrt(FFMAX(1 - w * w, 0)));
  129.                 break;
  130.             }
  131.  
  132.             tab[i] = y;
  133.             norm  += y;
  134.         }
  135.         /* normalize so that an uniform color remains the same */
  136.         for (i = 0; i < tap_count; i++)
  137.             tab[i] = tab[i] / norm;
  138.  
  139.         c->set_filter(c->filter_bank, tab, ph, tap_count);
  140.     }
  141.  
  142.     av_free(tab);
  143.     return 0;
  144. }
  145.  
  146. ResampleContext *ff_audio_resample_init(AVAudioResampleContext *avr)
  147. {
  148.     ResampleContext *c;
  149.     int out_rate    = avr->out_sample_rate;
  150.     int in_rate     = avr->in_sample_rate;
  151.     double factor   = FFMIN(out_rate * avr->cutoff / in_rate, 1.0);
  152.     int phase_count = 1 << avr->phase_shift;
  153.     int felem_size;
  154.  
  155.     if (avr->internal_sample_fmt != AV_SAMPLE_FMT_S16P &&
  156.         avr->internal_sample_fmt != AV_SAMPLE_FMT_S32P &&
  157.         avr->internal_sample_fmt != AV_SAMPLE_FMT_FLTP &&
  158.         avr->internal_sample_fmt != AV_SAMPLE_FMT_DBLP) {
  159.         av_log(avr, AV_LOG_ERROR, "Unsupported internal format for "
  160.                "resampling: %s\n",
  161.                av_get_sample_fmt_name(avr->internal_sample_fmt));
  162.         return NULL;
  163.     }
  164.     c = av_mallocz(sizeof(*c));
  165.     if (!c)
  166.         return NULL;
  167.  
  168.     c->avr           = avr;
  169.     c->phase_shift   = avr->phase_shift;
  170.     c->phase_mask    = phase_count - 1;
  171.     c->linear        = avr->linear_interp;
  172.     c->factor        = factor;
  173.     c->filter_length = FFMAX((int)ceil(avr->filter_size / factor), 1);
  174.     c->filter_type   = avr->filter_type;
  175.     c->kaiser_beta   = avr->kaiser_beta;
  176.  
  177.     switch (avr->internal_sample_fmt) {
  178.     case AV_SAMPLE_FMT_DBLP:
  179.         c->resample_one  = resample_one_dbl;
  180.         c->set_filter    = set_filter_dbl;
  181.         break;
  182.     case AV_SAMPLE_FMT_FLTP:
  183.         c->resample_one  = resample_one_flt;
  184.         c->set_filter    = set_filter_flt;
  185.         break;
  186.     case AV_SAMPLE_FMT_S32P:
  187.         c->resample_one  = resample_one_s32;
  188.         c->set_filter    = set_filter_s32;
  189.         break;
  190.     case AV_SAMPLE_FMT_S16P:
  191.         c->resample_one  = resample_one_s16;
  192.         c->set_filter    = set_filter_s16;
  193.         break;
  194.     }
  195.  
  196.     felem_size = av_get_bytes_per_sample(avr->internal_sample_fmt);
  197.     c->filter_bank = av_mallocz(c->filter_length * (phase_count + 1) * felem_size);
  198.     if (!c->filter_bank)
  199.         goto error;
  200.  
  201.     if (build_filter(c) < 0)
  202.         goto error;
  203.  
  204.     memcpy(&c->filter_bank[(c->filter_length * phase_count + 1) * felem_size],
  205.            c->filter_bank, (c->filter_length - 1) * felem_size);
  206.     memcpy(&c->filter_bank[c->filter_length * phase_count * felem_size],
  207.            &c->filter_bank[(c->filter_length - 1) * felem_size], felem_size);
  208.  
  209.     c->compensation_distance = 0;
  210.     if (!av_reduce(&c->src_incr, &c->dst_incr, out_rate,
  211.                    in_rate * (int64_t)phase_count, INT32_MAX / 2))
  212.         goto error;
  213.     c->ideal_dst_incr = c->dst_incr;
  214.  
  215.     c->index = -phase_count * ((c->filter_length - 1) / 2);
  216.     c->frac  = 0;
  217.  
  218.     /* allocate internal buffer */
  219.     c->buffer = ff_audio_data_alloc(avr->resample_channels, 0,
  220.                                     avr->internal_sample_fmt,
  221.                                     "resample buffer");
  222.     if (!c->buffer)
  223.         goto error;
  224.  
  225.     av_log(avr, AV_LOG_DEBUG, "resample: %s from %d Hz to %d Hz\n",
  226.            av_get_sample_fmt_name(avr->internal_sample_fmt),
  227.            avr->in_sample_rate, avr->out_sample_rate);
  228.  
  229.     return c;
  230.  
  231. error:
  232.     ff_audio_data_free(&c->buffer);
  233.     av_free(c->filter_bank);
  234.     av_free(c);
  235.     return NULL;
  236. }
  237.  
  238. void ff_audio_resample_free(ResampleContext **c)
  239. {
  240.     if (!*c)
  241.         return;
  242.     ff_audio_data_free(&(*c)->buffer);
  243.     av_free((*c)->filter_bank);
  244.     av_freep(c);
  245. }
  246.  
  247. int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
  248.                                 int compensation_distance)
  249. {
  250.     ResampleContext *c;
  251.     AudioData *fifo_buf = NULL;
  252.     int ret = 0;
  253.  
  254.     if (compensation_distance < 0)
  255.         return AVERROR(EINVAL);
  256.     if (!compensation_distance && sample_delta)
  257.         return AVERROR(EINVAL);
  258.  
  259.     if (!avr->resample_needed) {
  260. #if FF_API_RESAMPLE_CLOSE_OPEN
  261.         /* if resampling was not enabled previously, re-initialize the
  262.            AVAudioResampleContext and force resampling */
  263.         int fifo_samples;
  264.         int restore_matrix = 0;
  265.         double matrix[AVRESAMPLE_MAX_CHANNELS * AVRESAMPLE_MAX_CHANNELS] = { 0 };
  266.  
  267.         /* buffer any remaining samples in the output FIFO before closing */
  268.         fifo_samples = av_audio_fifo_size(avr->out_fifo);
  269.         if (fifo_samples > 0) {
  270.             fifo_buf = ff_audio_data_alloc(avr->out_channels, fifo_samples,
  271.                                            avr->out_sample_fmt, NULL);
  272.             if (!fifo_buf)
  273.                 return AVERROR(EINVAL);
  274.             ret = ff_audio_data_read_from_fifo(avr->out_fifo, fifo_buf,
  275.                                                fifo_samples);
  276.             if (ret < 0)
  277.                 goto reinit_fail;
  278.         }
  279.         /* save the channel mixing matrix */
  280.         if (avr->am) {
  281.             ret = avresample_get_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
  282.             if (ret < 0)
  283.                 goto reinit_fail;
  284.             restore_matrix = 1;
  285.         }
  286.  
  287.         /* close the AVAudioResampleContext */
  288.         avresample_close(avr);
  289.  
  290.         avr->force_resampling = 1;
  291.  
  292.         /* restore the channel mixing matrix */
  293.         if (restore_matrix) {
  294.             ret = avresample_set_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS);
  295.             if (ret < 0)
  296.                 goto reinit_fail;
  297.         }
  298.  
  299.         /* re-open the AVAudioResampleContext */
  300.         ret = avresample_open(avr);
  301.         if (ret < 0)
  302.             goto reinit_fail;
  303.  
  304.         /* restore buffered samples to the output FIFO */
  305.         if (fifo_samples > 0) {
  306.             ret = ff_audio_data_add_to_fifo(avr->out_fifo, fifo_buf, 0,
  307.                                             fifo_samples);
  308.             if (ret < 0)
  309.                 goto reinit_fail;
  310.             ff_audio_data_free(&fifo_buf);
  311.         }
  312. #else
  313.         av_log(avr, AV_LOG_ERROR, "Unable to set resampling compensation\n");
  314.         return AVERROR(EINVAL);
  315. #endif
  316.     }
  317.     c = avr->resample;
  318.     c->compensation_distance = compensation_distance;
  319.     if (compensation_distance) {
  320.         c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr *
  321.                       (int64_t)sample_delta / compensation_distance;
  322.     } else {
  323.         c->dst_incr = c->ideal_dst_incr;
  324.     }
  325.     return 0;
  326.  
  327. reinit_fail:
  328.     ff_audio_data_free(&fifo_buf);
  329.     return ret;
  330. }
  331.  
  332. static int resample(ResampleContext *c, void *dst, const void *src,
  333.                     int *consumed, int src_size, int dst_size, int update_ctx)
  334. {
  335.     int dst_index;
  336.     int index         = c->index;
  337.     int frac          = c->frac;
  338.     int dst_incr_frac = c->dst_incr % c->src_incr;
  339.     int dst_incr      = c->dst_incr / c->src_incr;
  340.     int compensation_distance = c->compensation_distance;
  341.  
  342.     if (!dst != !src)
  343.         return AVERROR(EINVAL);
  344.  
  345.     if (compensation_distance == 0 && c->filter_length == 1 &&
  346.         c->phase_shift == 0) {
  347.         int64_t index2 = ((int64_t)index) << 32;
  348.         int64_t incr   = (1LL << 32) * c->dst_incr / c->src_incr;
  349.         dst_size       = FFMIN(dst_size,
  350.                                (src_size-1-index) * (int64_t)c->src_incr /
  351.                                c->dst_incr);
  352.  
  353.         if (dst) {
  354.             for(dst_index = 0; dst_index < dst_size; dst_index++) {
  355.                 c->resample_one(c, 1, dst, dst_index, src, 0, index2 >> 32, 0);
  356.                 index2 += incr;
  357.             }
  358.         } else {
  359.             dst_index = dst_size;
  360.         }
  361.         index += dst_index * dst_incr;
  362.         index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
  363.         frac   = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
  364.     } else {
  365.         for (dst_index = 0; dst_index < dst_size; dst_index++) {
  366.             int sample_index = index >> c->phase_shift;
  367.  
  368.             if (sample_index + c->filter_length > src_size ||
  369.                 -sample_index >= src_size)
  370.                 break;
  371.  
  372.             if (dst)
  373.                 c->resample_one(c, 0, dst, dst_index, src, src_size, index, frac);
  374.  
  375.             frac  += dst_incr_frac;
  376.             index += dst_incr;
  377.             if (frac >= c->src_incr) {
  378.                 frac -= c->src_incr;
  379.                 index++;
  380.             }
  381.             if (dst_index + 1 == compensation_distance) {
  382.                 compensation_distance = 0;
  383.                 dst_incr_frac = c->ideal_dst_incr % c->src_incr;
  384.                 dst_incr      = c->ideal_dst_incr / c->src_incr;
  385.             }
  386.         }
  387.     }
  388.     if (consumed)
  389.         *consumed = FFMAX(index, 0) >> c->phase_shift;
  390.  
  391.     if (update_ctx) {
  392.         if (index >= 0)
  393.             index &= c->phase_mask;
  394.  
  395.         if (compensation_distance) {
  396.             compensation_distance -= dst_index;
  397.             if (compensation_distance <= 0)
  398.                 return AVERROR_BUG;
  399.         }
  400.         c->frac     = frac;
  401.         c->index    = index;
  402.         c->dst_incr = dst_incr_frac + c->src_incr*dst_incr;
  403.         c->compensation_distance = compensation_distance;
  404.     }
  405.  
  406.     return dst_index;
  407. }
  408.  
  409. int ff_audio_resample(ResampleContext *c, AudioData *dst, AudioData *src)
  410. {
  411.     int ch, in_samples, in_leftover, consumed = 0, out_samples = 0;
  412.     int ret = AVERROR(EINVAL);
  413.  
  414.     in_samples  = src ? src->nb_samples : 0;
  415.     in_leftover = c->buffer->nb_samples;
  416.  
  417.     /* add input samples to the internal buffer */
  418.     if (src) {
  419.         ret = ff_audio_data_combine(c->buffer, in_leftover, src, 0, in_samples);
  420.         if (ret < 0)
  421.             return ret;
  422.     } else if (!in_leftover) {
  423.         /* no remaining samples to flush */
  424.         return 0;
  425.     } else {
  426.         /* TODO: pad buffer to flush completely */
  427.     }
  428.  
  429.     /* calculate output size and reallocate output buffer if needed */
  430.     /* TODO: try to calculate this without the dummy resample() run */
  431.     if (!dst->read_only && dst->allow_realloc) {
  432.         out_samples = resample(c, NULL, NULL, NULL, c->buffer->nb_samples,
  433.                                INT_MAX, 0);
  434.         ret = ff_audio_data_realloc(dst, out_samples);
  435.         if (ret < 0) {
  436.             av_log(c->avr, AV_LOG_ERROR, "error reallocating output\n");
  437.             return ret;
  438.         }
  439.     }
  440.  
  441.     /* resample each channel plane */
  442.     for (ch = 0; ch < c->buffer->channels; ch++) {
  443.         out_samples = resample(c, (void *)dst->data[ch],
  444.                                (const void *)c->buffer->data[ch], &consumed,
  445.                                c->buffer->nb_samples, dst->allocated_samples,
  446.                                ch + 1 == c->buffer->channels);
  447.     }
  448.     if (out_samples < 0) {
  449.         av_log(c->avr, AV_LOG_ERROR, "error during resampling\n");
  450.         return out_samples;
  451.     }
  452.  
  453.     /* drain consumed samples from the internal buffer */
  454.     ff_audio_data_drain(c->buffer, consumed);
  455.  
  456.     av_dlog(c->avr, "resampled %d in + %d leftover to %d out + %d leftover\n",
  457.             in_samples, in_leftover, out_samples, c->buffer->nb_samples);
  458.  
  459.     dst->nb_samples = out_samples;
  460.     return 0;
  461. }
  462.  
  463. int avresample_get_delay(AVAudioResampleContext *avr)
  464. {
  465.     if (!avr->resample_needed || !avr->resample)
  466.         return 0;
  467.  
  468.     return avr->resample->buffer->nb_samples;
  469. }
  470.