Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
  3.  * Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
  4.  * Based on the process described by Martin Weston for BBC R&D
  5.  * Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development
  6.  *
  7.  * This file is part of FFmpeg.
  8.  *
  9.  * FFmpeg is free software; you can redistribute it and/or
  10.  * modify it under the terms of the GNU Lesser General Public
  11.  * License as published by the Free Software Foundation; either
  12.  * version 2.1 of the License, or (at your option) any later version.
  13.  *
  14.  * FFmpeg is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17.  * Lesser General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU Lesser General Public
  20.  * License along with FFmpeg; if not, write to the Free Software
  21.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22.  */
  23.  
  24. #include "libavutil/common.h"
  25. #include "libavutil/imgutils.h"
  26. #include "libavutil/opt.h"
  27. #include "libavutil/pixdesc.h"
  28. #include "avfilter.h"
  29. #include "formats.h"
  30. #include "internal.h"
  31. #include "video.h"
  32.  
  33. typedef struct W3FDIFContext {
  34.     const AVClass *class;
  35.     int filter;           ///< 0 is simple, 1 is more complex
  36.     int deint;            ///< which frames to deinterlace
  37.     int linesize[4];      ///< bytes of pixel data per line for each plane
  38.     int planeheight[4];   ///< height of each plane
  39.     int field;            ///< which field are we on, 0 or 1
  40.     int eof;
  41.     int nb_planes;
  42.     AVFrame *prev, *cur, *next;  ///< previous, current, next frames
  43.     int32_t *work_line;   ///< line we are calculating
  44. } W3FDIFContext;
  45.  
  46. #define OFFSET(x) offsetof(W3FDIFContext, x)
  47. #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  48. #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
  49.  
  50. static const AVOption w3fdif_options[] = {
  51.     { "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" },
  52.     CONST("simple",  NULL, 0, "filter"),
  53.     CONST("complex", NULL, 1, "filter"),
  54.     { "deint",  "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
  55.     CONST("all",        "deinterlace all frames",                       0, "deint"),
  56.     CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"),
  57.     { NULL }
  58. };
  59.  
  60. AVFILTER_DEFINE_CLASS(w3fdif);
  61.  
  62. static int query_formats(AVFilterContext *ctx)
  63. {
  64.     static const enum AVPixelFormat pix_fmts[] = {
  65.         AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
  66.         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
  67.         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
  68.         AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
  69.         AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
  70.         AV_PIX_FMT_YUVJ411P,
  71.         AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
  72.         AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
  73.         AV_PIX_FMT_GRAY8,
  74.         AV_PIX_FMT_NONE
  75.     };
  76.  
  77.     ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
  78.  
  79.     return 0;
  80. }
  81.  
  82. static int config_input(AVFilterLink *inlink)
  83. {
  84.     W3FDIFContext *s = inlink->dst->priv;
  85.     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  86.     int ret;
  87.  
  88.     if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
  89.         return ret;
  90.  
  91.     s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
  92.     s->planeheight[0] = s->planeheight[3] = inlink->h;
  93.  
  94.     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
  95.     s->work_line = av_calloc(s->linesize[0], sizeof(*s->work_line));
  96.     if (!s->work_line)
  97.         return AVERROR(ENOMEM);
  98.  
  99.     return 0;
  100. }
  101.  
  102. static int config_output(AVFilterLink *outlink)
  103. {
  104.     AVFilterLink *inlink = outlink->src->inputs[0];
  105.  
  106.     outlink->time_base.num = inlink->time_base.num;
  107.     outlink->time_base.den = inlink->time_base.den * 2;
  108.     outlink->frame_rate.num = inlink->frame_rate.num * 2;
  109.     outlink->frame_rate.den = inlink->frame_rate.den;
  110.     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
  111.  
  112.     return 0;
  113. }
  114.  
  115. /*
  116.  * Filter coefficients from PH-2071, scaled by 256 * 256.
  117.  * Each set of coefficients has a set for low-frequencies and high-frequencies.
  118.  * n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex.
  119.  * It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd.
  120.  * coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies
  121.  * and high-frequencies for simple and more-complex mode.
  122.  */
  123. static const int8_t   n_coef_lf[2] = { 2, 4 };
  124. static const int32_t coef_lf[2][4] = {{ 32768, 32768,     0,     0},
  125.                                       { -1704, 34472, 34472, -1704}};
  126. static const int8_t   n_coef_hf[2] = { 3, 5 };
  127. static const int32_t coef_hf[2][5] = {{ -4096,  8192, -4096,     0,     0},
  128.                                       {  2032, -7602, 11140, -7602,  2032}};
  129.  
  130. static void deinterlace_plane(AVFilterContext *ctx, AVFrame *out,
  131.                               const AVFrame *cur, const AVFrame *adj,
  132.                               const int filter, const int plane)
  133. {
  134.     W3FDIFContext *s = ctx->priv;
  135.     uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5];
  136.     uint8_t *out_line, *out_pixel;
  137.     int32_t *work_line, *work_pixel;
  138.     uint8_t *cur_data = cur->data[plane];
  139.     uint8_t *adj_data = adj->data[plane];
  140.     uint8_t *dst_data = out->data[plane];
  141.     const int linesize = s->linesize[plane];
  142.     const int height   = s->planeheight[plane];
  143.     const int cur_line_stride = cur->linesize[plane];
  144.     const int adj_line_stride = adj->linesize[plane];
  145.     const int dst_line_stride = out->linesize[plane];
  146.     int i, j, y_in, y_out;
  147.  
  148.     /* copy unchanged the lines of the field */
  149.     y_out = s->field == cur->top_field_first;
  150.  
  151.     in_line  = cur_data + (y_out * cur_line_stride);
  152.     out_line = dst_data + (y_out * dst_line_stride);
  153.  
  154.     while (y_out < height) {
  155.         memcpy(out_line, in_line, linesize);
  156.         y_out += 2;
  157.         in_line  += cur_line_stride * 2;
  158.         out_line += dst_line_stride * 2;
  159.     }
  160.  
  161.     /* interpolate other lines of the field */
  162.     y_out = s->field != cur->top_field_first;
  163.  
  164.     out_line = dst_data + (y_out * dst_line_stride);
  165.  
  166.     while (y_out < height) {
  167.         /* clear workspace */
  168.         memset(s->work_line, 0, sizeof(*s->work_line) * linesize);
  169.  
  170.         /* get low vertical frequencies from current field */
  171.         for (j = 0; j < n_coef_lf[filter]; j++) {
  172.             y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter];
  173.  
  174.             while (y_in < 0)
  175.                 y_in += 2;
  176.             while (y_in >= height)
  177.                 y_in -= 2;
  178.  
  179.             in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
  180.         }
  181.  
  182.         work_line = s->work_line;
  183.         switch (n_coef_lf[filter]) {
  184.         case 2:
  185.             for (i = 0; i < linesize; i++) {
  186.                 *work_line   += *in_lines_cur[0]++ * coef_lf[filter][0];
  187.                 *work_line++ += *in_lines_cur[1]++ * coef_lf[filter][1];
  188.             }
  189.             break;
  190.         case 4:
  191.             for (i = 0; i < linesize; i++) {
  192.                 *work_line   += *in_lines_cur[0]++ * coef_lf[filter][0];
  193.                 *work_line   += *in_lines_cur[1]++ * coef_lf[filter][1];
  194.                 *work_line   += *in_lines_cur[2]++ * coef_lf[filter][2];
  195.                 *work_line++ += *in_lines_cur[3]++ * coef_lf[filter][3];
  196.             }
  197.         }
  198.  
  199.         /* get high vertical frequencies from adjacent fields */
  200.         for (j = 0; j < n_coef_hf[filter]; j++) {
  201.             y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter];
  202.  
  203.             while (y_in < 0)
  204.                 y_in += 2;
  205.             while (y_in >= height)
  206.                 y_in -= 2;
  207.  
  208.             in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
  209.             in_lines_adj[j] = adj_data + (y_in * adj_line_stride);
  210.         }
  211.  
  212.         work_line = s->work_line;
  213.         switch (n_coef_hf[filter]) {
  214.         case 3:
  215.             for (i = 0; i < linesize; i++) {
  216.                 *work_line   += *in_lines_cur[0]++ * coef_hf[filter][0];
  217.                 *work_line   += *in_lines_adj[0]++ * coef_hf[filter][0];
  218.                 *work_line   += *in_lines_cur[1]++ * coef_hf[filter][1];
  219.                 *work_line   += *in_lines_adj[1]++ * coef_hf[filter][1];
  220.                 *work_line   += *in_lines_cur[2]++ * coef_hf[filter][2];
  221.                 *work_line++ += *in_lines_adj[2]++ * coef_hf[filter][2];
  222.             }
  223.             break;
  224.         case 5:
  225.             for (i = 0; i < linesize; i++) {
  226.                 *work_line   += *in_lines_cur[0]++ * coef_hf[filter][0];
  227.                 *work_line   += *in_lines_adj[0]++ * coef_hf[filter][0];
  228.                 *work_line   += *in_lines_cur[1]++ * coef_hf[filter][1];
  229.                 *work_line   += *in_lines_adj[1]++ * coef_hf[filter][1];
  230.                 *work_line   += *in_lines_cur[2]++ * coef_hf[filter][2];
  231.                 *work_line   += *in_lines_adj[2]++ * coef_hf[filter][2];
  232.                 *work_line   += *in_lines_cur[3]++ * coef_hf[filter][3];
  233.                 *work_line   += *in_lines_adj[3]++ * coef_hf[filter][3];
  234.                 *work_line   += *in_lines_cur[4]++ * coef_hf[filter][4];
  235.                 *work_line++ += *in_lines_adj[4]++ * coef_hf[filter][4];
  236.             }
  237.         }
  238.  
  239.         /* save scaled result to the output frame, scaling down by 256 * 256 */
  240.         work_pixel = s->work_line;
  241.         out_pixel = out_line;
  242.  
  243.         for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
  244.              *out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 256) >> 16;
  245.  
  246.         /* move on to next line */
  247.         y_out += 2;
  248.         out_line += dst_line_stride * 2;
  249.     }
  250. }
  251.  
  252. static int filter(AVFilterContext *ctx, int is_second)
  253. {
  254.     W3FDIFContext *s = ctx->priv;
  255.     AVFilterLink *outlink = ctx->outputs[0];
  256.     AVFrame *out, *adj;
  257.     int plane;
  258.  
  259.     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  260.     if (!out)
  261.         return AVERROR(ENOMEM);
  262.     av_frame_copy_props(out, s->cur);
  263.     out->interlaced_frame = 0;
  264.  
  265.     if (!is_second) {
  266.         if (out->pts != AV_NOPTS_VALUE)
  267.             out->pts *= 2;
  268.     } else {
  269.         int64_t cur_pts  = s->cur->pts;
  270.         int64_t next_pts = s->next->pts;
  271.  
  272.         if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
  273.             out->pts = cur_pts + next_pts;
  274.         } else {
  275.             out->pts = AV_NOPTS_VALUE;
  276.         }
  277.     }
  278.  
  279.     adj = s->field ? s->next : s->prev;
  280.     for (plane = 0; plane < s->nb_planes; plane++)
  281.         deinterlace_plane(ctx, out, s->cur, adj, s->filter, plane);
  282.  
  283.     s->field = !s->field;
  284.  
  285.     return ff_filter_frame(outlink, out);
  286. }
  287.  
  288. static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
  289. {
  290.     AVFilterContext *ctx = inlink->dst;
  291.     W3FDIFContext *s = ctx->priv;
  292.     int ret;
  293.  
  294.     av_frame_free(&s->prev);
  295.     s->prev = s->cur;
  296.     s->cur  = s->next;
  297.     s->next = frame;
  298.  
  299.     if (!s->cur) {
  300.         s->cur = av_frame_clone(s->next);
  301.         if (!s->cur)
  302.             return AVERROR(ENOMEM);
  303.     }
  304.  
  305.     if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) {
  306.         AVFrame *out = av_frame_clone(s->cur);
  307.         if (!out)
  308.             return AVERROR(ENOMEM);
  309.  
  310.         av_frame_free(&s->prev);
  311.         if (out->pts != AV_NOPTS_VALUE)
  312.             out->pts *= 2;
  313.         return ff_filter_frame(ctx->outputs[0], out);
  314.     }
  315.  
  316.     if (!s->prev)
  317.         return 0;
  318.  
  319.     ret = filter(ctx, 0);
  320.     if (ret < 0)
  321.         return ret;
  322.  
  323.     return filter(ctx, 1);
  324. }
  325.  
  326. static int request_frame(AVFilterLink *outlink)
  327. {
  328.     AVFilterContext *ctx = outlink->src;
  329.     W3FDIFContext *s = ctx->priv;
  330.  
  331.     do {
  332.         int ret;
  333.  
  334.         if (s->eof)
  335.             return AVERROR_EOF;
  336.  
  337.         ret = ff_request_frame(ctx->inputs[0]);
  338.  
  339.         if (ret == AVERROR_EOF && s->cur) {
  340.             AVFrame *next = av_frame_clone(s->next);
  341.             if (!next)
  342.                 return AVERROR(ENOMEM);
  343.             next->pts = s->next->pts * 2 - s->cur->pts;
  344.             filter_frame(ctx->inputs[0], next);
  345.             s->eof = 1;
  346.         } else if (ret < 0) {
  347.             return ret;
  348.         }
  349.     } while (!s->cur);
  350.  
  351.     return 0;
  352. }
  353.  
  354. static av_cold void uninit(AVFilterContext *ctx)
  355. {
  356.     W3FDIFContext *s = ctx->priv;
  357.  
  358.     av_frame_free(&s->prev);
  359.     av_frame_free(&s->cur );
  360.     av_frame_free(&s->next);
  361.     av_freep(&s->work_line);
  362. }
  363.  
  364. static const AVFilterPad w3fdif_inputs[] = {
  365.     {
  366.         .name          = "default",
  367.         .type          = AVMEDIA_TYPE_VIDEO,
  368.         .filter_frame  = filter_frame,
  369.         .config_props  = config_input,
  370.     },
  371.     { NULL }
  372. };
  373.  
  374. static const AVFilterPad w3fdif_outputs[] = {
  375.     {
  376.         .name          = "default",
  377.         .type          = AVMEDIA_TYPE_VIDEO,
  378.         .config_props  = config_output,
  379.         .request_frame = request_frame,
  380.     },
  381.     { NULL }
  382. };
  383.  
  384. AVFilter avfilter_vf_w3fdif = {
  385.     .name          = "w3fdif",
  386.     .description   = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."),
  387.     .priv_size     = sizeof(W3FDIFContext),
  388.     .priv_class    = &w3fdif_class,
  389.     .uninit        = uninit,
  390.     .query_formats = query_formats,
  391.     .inputs        = w3fdif_inputs,
  392.     .outputs       = w3fdif_outputs,
  393.     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
  394. };
  395.