Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * samplerate conversion for both audio and video
  3.  * Copyright (c) 2000 Fabrice Bellard
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * samplerate conversion for both audio and video
  25.  */
  26.  
  27. #include <string.h>
  28.  
  29. #include "avcodec.h"
  30. #include "audioconvert.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/mem.h"
  33. #include "libavutil/samplefmt.h"
  34.  
  35. #if FF_API_AVCODEC_RESAMPLE
  36.  
  37. #define MAX_CHANNELS 8
  38.  
  39. struct AVResampleContext;
  40.  
  41. static const char *context_to_name(void *ptr)
  42. {
  43.     return "audioresample";
  44. }
  45.  
  46. static const AVOption options[] = {{NULL}};
  47. static const AVClass audioresample_context_class = {
  48.     "ReSampleContext", context_to_name, options, LIBAVUTIL_VERSION_INT
  49. };
  50.  
  51. struct ReSampleContext {
  52.     struct AVResampleContext *resample_context;
  53.     short *temp[MAX_CHANNELS];
  54.     int temp_len;
  55.     float ratio;
  56.     /* channel convert */
  57.     int input_channels, output_channels, filter_channels;
  58.     AVAudioConvert *convert_ctx[2];
  59.     enum AVSampleFormat sample_fmt[2]; ///< input and output sample format
  60.     unsigned sample_size[2];           ///< size of one sample in sample_fmt
  61.     short *buffer[2];                  ///< buffers used for conversion to S16
  62.     unsigned buffer_size[2];           ///< sizes of allocated buffers
  63. };
  64.  
  65. /* n1: number of samples */
  66. static void stereo_to_mono(short *output, short *input, int n1)
  67. {
  68.     short *p, *q;
  69.     int n = n1;
  70.  
  71.     p = input;
  72.     q = output;
  73.     while (n >= 4) {
  74.         q[0] = (p[0] + p[1]) >> 1;
  75.         q[1] = (p[2] + p[3]) >> 1;
  76.         q[2] = (p[4] + p[5]) >> 1;
  77.         q[3] = (p[6] + p[7]) >> 1;
  78.         q += 4;
  79.         p += 8;
  80.         n -= 4;
  81.     }
  82.     while (n > 0) {
  83.         q[0] = (p[0] + p[1]) >> 1;
  84.         q++;
  85.         p += 2;
  86.         n--;
  87.     }
  88. }
  89.  
  90. /* n1: number of samples */
  91. static void mono_to_stereo(short *output, short *input, int n1)
  92. {
  93.     short *p, *q;
  94.     int n = n1;
  95.     int v;
  96.  
  97.     p = input;
  98.     q = output;
  99.     while (n >= 4) {
  100.         v = p[0]; q[0] = v; q[1] = v;
  101.         v = p[1]; q[2] = v; q[3] = v;
  102.         v = p[2]; q[4] = v; q[5] = v;
  103.         v = p[3]; q[6] = v; q[7] = v;
  104.         q += 8;
  105.         p += 4;
  106.         n -= 4;
  107.     }
  108.     while (n > 0) {
  109.         v = p[0]; q[0] = v; q[1] = v;
  110.         q += 2;
  111.         p += 1;
  112.         n--;
  113.     }
  114. }
  115.  
  116. /*
  117. 5.1 to stereo input: [fl, fr, c, lfe, rl, rr]
  118. - Left = front_left + rear_gain * rear_left + center_gain * center
  119. - Right = front_right + rear_gain * rear_right + center_gain * center
  120. Where rear_gain is usually around 0.5-1.0 and
  121.       center_gain is almost always 0.7 (-3 dB)
  122. */
  123. static void surround_to_stereo(short **output, short *input, int channels, int samples)
  124. {
  125.     int i;
  126.     short l, r;
  127.  
  128.     for (i = 0; i < samples; i++) {
  129.         int fl,fr,c,rl,rr;
  130.         fl = input[0];
  131.         fr = input[1];
  132.         c = input[2];
  133.         // lfe = input[3];
  134.         rl = input[4];
  135.         rr = input[5];
  136.  
  137.         l = av_clip_int16(fl + (0.5 * rl) + (0.7 * c));
  138.         r = av_clip_int16(fr + (0.5 * rr) + (0.7 * c));
  139.  
  140.         /* output l & r. */
  141.         *output[0]++ = l;
  142.         *output[1]++ = r;
  143.  
  144.         /* increment input. */
  145.         input += channels;
  146.     }
  147. }
  148.  
  149. static void deinterleave(short **output, short *input, int channels, int samples)
  150. {
  151.     int i, j;
  152.  
  153.     for (i = 0; i < samples; i++) {
  154.         for (j = 0; j < channels; j++) {
  155.             *output[j]++ = *input++;
  156.         }
  157.     }
  158. }
  159.  
  160. static void interleave(short *output, short **input, int channels, int samples)
  161. {
  162.     int i, j;
  163.  
  164.     for (i = 0; i < samples; i++) {
  165.         for (j = 0; j < channels; j++) {
  166.             *output++ = *input[j]++;
  167.         }
  168.     }
  169. }
  170.  
  171. static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
  172. {
  173.     int i;
  174.     short l, r;
  175.  
  176.     for (i = 0; i < n; i++) {
  177.         l = *input1++;
  178.         r = *input2++;
  179.         *output++ = l;                  /* left */
  180.         *output++ = (l / 2) + (r / 2);  /* center */
  181.         *output++ = r;                  /* right */
  182.         *output++ = 0;                  /* left surround */
  183.         *output++ = 0;                  /* right surroud */
  184.         *output++ = 0;                  /* low freq */
  185.     }
  186. }
  187.  
  188. #define SUPPORT_RESAMPLE(ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8) \
  189.     ch8<<7 | ch7<<6 | ch6<<5 | ch5<<4 | ch4<<3 | ch3<<2 | ch2<<1 | ch1<<0
  190.  
  191. static const uint8_t supported_resampling[MAX_CHANNELS] = {
  192.     // output ch:    1  2  3  4  5  6  7  8
  193.     SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 0, 0, 0), // 1 input channel
  194.     SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 1, 0, 0), // 2 input channels
  195.     SUPPORT_RESAMPLE(0, 0, 1, 0, 0, 0, 0, 0), // 3 input channels
  196.     SUPPORT_RESAMPLE(0, 0, 0, 1, 0, 0, 0, 0), // 4 input channels
  197.     SUPPORT_RESAMPLE(0, 0, 0, 0, 1, 0, 0, 0), // 5 input channels
  198.     SUPPORT_RESAMPLE(0, 1, 0, 0, 0, 1, 0, 0), // 6 input channels
  199.     SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 1, 0), // 7 input channels
  200.     SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 0, 1), // 8 input channels
  201. };
  202.  
  203. ReSampleContext *av_audio_resample_init(int output_channels, int input_channels,
  204.                                         int output_rate, int input_rate,
  205.                                         enum AVSampleFormat sample_fmt_out,
  206.                                         enum AVSampleFormat sample_fmt_in,
  207.                                         int filter_length, int log2_phase_count,
  208.                                         int linear, double cutoff)
  209. {
  210.     ReSampleContext *s;
  211.  
  212.     if (input_channels > MAX_CHANNELS) {
  213.         av_log(NULL, AV_LOG_ERROR,
  214.                "Resampling with input channels greater than %d is unsupported.\n",
  215.                MAX_CHANNELS);
  216.         return NULL;
  217.     }
  218.     if (!(supported_resampling[input_channels-1] & (1<<(output_channels-1)))) {
  219.         int i;
  220.         av_log(NULL, AV_LOG_ERROR, "Unsupported audio resampling. Allowed "
  221.                "output channels for %d input channel%s", input_channels,
  222.                input_channels > 1 ? "s:" : ":");
  223.         for (i = 0; i < MAX_CHANNELS; i++)
  224.             if (supported_resampling[input_channels-1] & (1<<i))
  225.                 av_log(NULL, AV_LOG_ERROR, " %d", i + 1);
  226.         av_log(NULL, AV_LOG_ERROR, "\n");
  227.         return NULL;
  228.     }
  229.  
  230.     s = av_mallocz(sizeof(ReSampleContext));
  231.     if (!s) {
  232.         av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n");
  233.         return NULL;
  234.     }
  235.  
  236.     s->ratio = (float)output_rate / (float)input_rate;
  237.  
  238.     s->input_channels = input_channels;
  239.     s->output_channels = output_channels;
  240.  
  241.     s->filter_channels = s->input_channels;
  242.     if (s->output_channels < s->filter_channels)
  243.         s->filter_channels = s->output_channels;
  244.  
  245.     s->sample_fmt[0]  = sample_fmt_in;
  246.     s->sample_fmt[1]  = sample_fmt_out;
  247.     s->sample_size[0] = av_get_bytes_per_sample(s->sample_fmt[0]);
  248.     s->sample_size[1] = av_get_bytes_per_sample(s->sample_fmt[1]);
  249.  
  250.     if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  251.         if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1,
  252.                                                          s->sample_fmt[0], 1, NULL, 0))) {
  253.             av_log(s, AV_LOG_ERROR,
  254.                    "Cannot convert %s sample format to s16 sample format\n",
  255.                    av_get_sample_fmt_name(s->sample_fmt[0]));
  256.             av_free(s);
  257.             return NULL;
  258.         }
  259.     }
  260.  
  261.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  262.         if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1,
  263.                                                          AV_SAMPLE_FMT_S16, 1, NULL, 0))) {
  264.             av_log(s, AV_LOG_ERROR,
  265.                    "Cannot convert s16 sample format to %s sample format\n",
  266.                    av_get_sample_fmt_name(s->sample_fmt[1]));
  267.             av_audio_convert_free(s->convert_ctx[0]);
  268.             av_free(s);
  269.             return NULL;
  270.         }
  271.     }
  272.  
  273.     s->resample_context = av_resample_init(output_rate, input_rate,
  274.                                            filter_length, log2_phase_count,
  275.                                            linear, cutoff);
  276.  
  277.     *(const AVClass**)s->resample_context = &audioresample_context_class;
  278.  
  279.     return s;
  280. }
  281.  
  282. /* resample audio. 'nb_samples' is the number of input samples */
  283. /* XXX: optimize it ! */
  284. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  285. {
  286.     int i, nb_samples1;
  287.     short *bufin[MAX_CHANNELS];
  288.     short *bufout[MAX_CHANNELS];
  289.     short *buftmp2[MAX_CHANNELS], *buftmp3[MAX_CHANNELS];
  290.     short *output_bak = NULL;
  291.     int lenout;
  292.  
  293.     if (s->input_channels == s->output_channels && s->ratio == 1.0 && 0) {
  294.         /* nothing to do */
  295.         memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  296.         return nb_samples;
  297.     }
  298.  
  299.     if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  300.         int istride[1] = { s->sample_size[0] };
  301.         int ostride[1] = { 2 };
  302.         const void *ibuf[1] = { input };
  303.         void       *obuf[1];
  304.         unsigned input_size = nb_samples * s->input_channels * 2;
  305.  
  306.         if (!s->buffer_size[0] || s->buffer_size[0] < input_size) {
  307.             av_free(s->buffer[0]);
  308.             s->buffer_size[0] = input_size;
  309.             s->buffer[0] = av_malloc(s->buffer_size[0]);
  310.             if (!s->buffer[0]) {
  311.                 av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  312.                 return 0;
  313.             }
  314.         }
  315.  
  316.         obuf[0] = s->buffer[0];
  317.  
  318.         if (av_audio_convert(s->convert_ctx[0], obuf, ostride,
  319.                              ibuf, istride, nb_samples * s->input_channels) < 0) {
  320.             av_log(s->resample_context, AV_LOG_ERROR,
  321.                    "Audio sample format conversion failed\n");
  322.             return 0;
  323.         }
  324.  
  325.         input = s->buffer[0];
  326.     }
  327.  
  328.     lenout= 2*s->output_channels*nb_samples * s->ratio + 16;
  329.  
  330.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  331.         int out_size = lenout * av_get_bytes_per_sample(s->sample_fmt[1]) *
  332.                        s->output_channels;
  333.         output_bak = output;
  334.  
  335.         if (!s->buffer_size[1] || s->buffer_size[1] < out_size) {
  336.             av_free(s->buffer[1]);
  337.             s->buffer_size[1] = out_size;
  338.             s->buffer[1] = av_malloc(s->buffer_size[1]);
  339.             if (!s->buffer[1]) {
  340.                 av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  341.                 return 0;
  342.             }
  343.         }
  344.  
  345.         output = s->buffer[1];
  346.     }
  347.  
  348.     /* XXX: move those malloc to resample init code */
  349.     for (i = 0; i < s->filter_channels; i++) {
  350.         bufin[i] = av_malloc((nb_samples + s->temp_len) * sizeof(short));
  351.         memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short));
  352.         buftmp2[i] = bufin[i] + s->temp_len;
  353.         bufout[i] = av_malloc(lenout * sizeof(short));
  354.     }
  355.  
  356.     if (s->input_channels == 2 && s->output_channels == 1) {
  357.         buftmp3[0] = output;
  358.         stereo_to_mono(buftmp2[0], input, nb_samples);
  359.     } else if (s->output_channels >= 2 && s->input_channels == 1) {
  360.         buftmp3[0] = bufout[0];
  361.         memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  362.     } else if (s->input_channels == 6 && s->output_channels ==2) {
  363.         buftmp3[0] = bufout[0];
  364.         buftmp3[1] = bufout[1];
  365.         surround_to_stereo(buftmp2, input, s->input_channels, nb_samples);
  366.     } else if (s->output_channels >= s->input_channels && s->input_channels >= 2) {
  367.         for (i = 0; i < s->input_channels; i++) {
  368.             buftmp3[i] = bufout[i];
  369.         }
  370.         deinterleave(buftmp2, input, s->input_channels, nb_samples);
  371.     } else {
  372.         buftmp3[0] = output;
  373.         memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  374.     }
  375.  
  376.     nb_samples += s->temp_len;
  377.  
  378.     /* resample each channel */
  379.     nb_samples1 = 0; /* avoid warning */
  380.     for (i = 0; i < s->filter_channels; i++) {
  381.         int consumed;
  382.         int is_last = i + 1 == s->filter_channels;
  383.  
  384.         nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i],
  385.                                   &consumed, nb_samples, lenout, is_last);
  386.         s->temp_len = nb_samples - consumed;
  387.         s->temp[i] = av_realloc(s->temp[i], s->temp_len * sizeof(short));
  388.         memcpy(s->temp[i], bufin[i] + consumed, s->temp_len * sizeof(short));
  389.     }
  390.  
  391.     if (s->output_channels == 2 && s->input_channels == 1) {
  392.         mono_to_stereo(output, buftmp3[0], nb_samples1);
  393.     } else if (s->output_channels == 6 && s->input_channels == 2) {
  394.         ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  395.     } else if ((s->output_channels == s->input_channels && s->input_channels >= 2) ||
  396.                (s->output_channels == 2 && s->input_channels == 6)) {
  397.         interleave(output, buftmp3, s->output_channels, nb_samples1);
  398.     }
  399.  
  400.     if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  401.         int istride[1] = { 2 };
  402.         int ostride[1] = { s->sample_size[1] };
  403.         const void *ibuf[1] = { output };
  404.         void       *obuf[1] = { output_bak };
  405.  
  406.         if (av_audio_convert(s->convert_ctx[1], obuf, ostride,
  407.                              ibuf, istride, nb_samples1 * s->output_channels) < 0) {
  408.             av_log(s->resample_context, AV_LOG_ERROR,
  409.                    "Audio sample format conversion failed\n");
  410.             return 0;
  411.         }
  412.     }
  413.  
  414.     for (i = 0; i < s->filter_channels; i++) {
  415.         av_free(bufin[i]);
  416.         av_free(bufout[i]);
  417.     }
  418.  
  419.     return nb_samples1;
  420. }
  421.  
  422. void audio_resample_close(ReSampleContext *s)
  423. {
  424.     int i;
  425.     av_resample_close(s->resample_context);
  426.     for (i = 0; i < s->filter_channels; i++)
  427.         av_freep(&s->temp[i]);
  428.     av_freep(&s->buffer[0]);
  429.     av_freep(&s->buffer[1]);
  430.     av_audio_convert_free(s->convert_ctx[0]);
  431.     av_audio_convert_free(s->convert_ctx[1]);
  432.     av_free(s);
  433. }
  434.  
  435. #endif
  436.