Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * G.722 ADPCM audio encoder/decoder
  3.  *
  4.  * Copyright (c) CMU 1993 Computer Science, Speech Group
  5.  *                        Chengxiang Lu and Alex Hauptmann
  6.  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  7.  * Copyright (c) 2009 Kenan Gillet
  8.  * Copyright (c) 2010 Martin Storsjo
  9.  *
  10.  * This file is part of FFmpeg.
  11.  *
  12.  * FFmpeg is free software; you can redistribute it and/or
  13.  * modify it under the terms of the GNU Lesser General Public
  14.  * License as published by the Free Software Foundation; either
  15.  * version 2.1 of the License, or (at your option) any later version.
  16.  *
  17.  * FFmpeg is distributed in the hope that it will be useful,
  18.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20.  * Lesser General Public License for more details.
  21.  *
  22.  * You should have received a copy of the GNU Lesser General Public
  23.  * License along with FFmpeg; if not, write to the Free Software
  24.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25.  */
  26.  
  27. /**
  28.  * @file
  29.  * G.722 ADPCM audio codec
  30.  *
  31.  * This G.722 decoder is a bit-exact implementation of the ITU G.722
  32.  * specification for all three specified bitrates - 64000bps, 56000bps
  33.  * and 48000bps. It passes the ITU tests.
  34.  *
  35.  * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
  36.  *       respectively of each byte are ignored.
  37.  */
  38.  
  39. #include "mathops.h"
  40. #include "g722.h"
  41.  
  42. static const int8_t sign_lookup[2] = { -1, 1 };
  43.  
  44. static const int16_t inv_log2_table[32] = {
  45.     2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
  46.     2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
  47.     2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
  48.     3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
  49. };
  50. static const int16_t high_log_factor_step[2] = { 798, -214 };
  51. const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
  52. /**
  53.  * low_log_factor_step[index] == wl[rl42[index]]
  54.  */
  55. static const int16_t low_log_factor_step[16] = {
  56.      -60, 3042, 1198, 538, 334, 172,  58, -30,
  57.     3042, 1198,  538, 334, 172,  58, -30, -60
  58. };
  59. const int16_t ff_g722_low_inv_quant4[16] = {
  60.        0, -2557, -1612, -1121,  -786,  -530,  -323,  -150,
  61.     2557,  1612,  1121,   786,   530,   323,   150,     0
  62. };
  63. const int16_t ff_g722_low_inv_quant6[64] = {
  64.      -17,   -17,   -17,   -17, -3101, -2738, -2376, -2088,
  65.    -1873, -1689, -1535, -1399, -1279, -1170, -1072,  -982,
  66.     -899,  -822,  -750,  -682,  -618,  -558,  -501,  -447,
  67.     -396,  -347,  -300,  -254,  -211,  -170,  -130,   -91,
  68.     3101,  2738,  2376,  2088,  1873,  1689,  1535,  1399,
  69.     1279,  1170,  1072,   982,   899,   822,   750,   682,
  70.      618,   558,   501,   447,   396,   347,   300,   254,
  71.      211,   170,   130,    91,    54,    17,   -54,   -17
  72. };
  73.  
  74. /**
  75.  * quadrature mirror filter (QMF) coefficients
  76.  *
  77.  * ITU-T G.722 Table 11
  78.  */
  79. static const int16_t qmf_coeffs[12] = {
  80.     3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
  81. };
  82.  
  83.  
  84. /**
  85.  * adaptive predictor
  86.  *
  87.  * @param cur_diff the dequantized and scaled delta calculated from the
  88.  *                 current codeword
  89.  */
  90. static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
  91. {
  92.     int sg[2], limit, i, cur_qtzd_reconst;
  93.  
  94.     const int cur_part_reconst = band->s_zero + cur_diff < 0;
  95.  
  96.     sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
  97.     sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
  98.     band->part_reconst_mem[1] = band->part_reconst_mem[0];
  99.     band->part_reconst_mem[0] = cur_part_reconst;
  100.  
  101.     band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
  102.                                 (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
  103.  
  104.     limit = 15360 - band->pole_mem[1];
  105.     band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
  106.  
  107.  
  108.     if (cur_diff) {
  109.         for (i = 0; i < 6; i++)
  110.             band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
  111.                                 ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
  112.     } else
  113.         for (i = 0; i < 6; i++)
  114.             band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
  115.  
  116.     for (i = 5; i > 0; i--)
  117.         band->diff_mem[i] = band->diff_mem[i-1];
  118.     band->diff_mem[0] = av_clip_int16(cur_diff << 1);
  119.  
  120.     band->s_zero = 0;
  121.     for (i = 5; i >= 0; i--)
  122.         band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
  123.  
  124.  
  125.     cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
  126.     band->s_predictor = av_clip_int16(band->s_zero +
  127.                                       (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
  128.                                       (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
  129.     band->prev_qtzd_reconst = cur_qtzd_reconst;
  130. }
  131.  
  132. static inline int linear_scale_factor(const int log_factor)
  133. {
  134.     const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
  135.     const int shift = log_factor >> 11;
  136.     return shift < 0 ? wd1 >> -shift : wd1 << shift;
  137. }
  138.  
  139. void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
  140. {
  141.     do_adaptive_prediction(band,
  142.                            band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
  143.  
  144.     // quantizer adaptation
  145.     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
  146.                                  low_log_factor_step[ilow], 0, 18432);
  147.     band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
  148. }
  149.  
  150. void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
  151.                                   const int ihigh)
  152. {
  153.     do_adaptive_prediction(band, dhigh);
  154.  
  155.     // quantizer adaptation
  156.     band->log_factor   = av_clip((band->log_factor * 127 >> 7) +
  157.                                  high_log_factor_step[ihigh&1], 0, 22528);
  158.     band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
  159. }
  160.  
  161. void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
  162. {
  163.     int i;
  164.  
  165.     *xout1 = 0;
  166.     *xout2 = 0;
  167.     for (i = 0; i < 12; i++) {
  168.         MAC16(*xout2, prev_samples[2*i  ], qmf_coeffs[i   ]);
  169.         MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);
  170.     }
  171. }
  172.