Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * ATRAC1 compatible decoder
  3.  * Copyright (c) 2009 Maxim Poliakovski
  4.  * Copyright (c) 2009 Benjamin Larsson
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. /**
  24.  * @file
  25.  * ATRAC1 compatible decoder.
  26.  * This decoder handles raw ATRAC1 data and probably SDDS data.
  27.  */
  28.  
  29. /* Many thanks to Tim Craig for all the help! */
  30.  
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34.  
  35. #include "libavutil/float_dsp.h"
  36. #include "avcodec.h"
  37. #include "get_bits.h"
  38. #include "fft.h"
  39. #include "internal.h"
  40. #include "sinewin.h"
  41.  
  42. #include "atrac.h"
  43. #include "atrac1data.h"
  44.  
  45. #define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
  46. #define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
  47. #define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
  48. #define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
  49. #define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
  50. #define AT1_MAX_CHANNELS 2
  51.  
  52. #define AT1_QMF_BANDS    3
  53. #define IDX_LOW_BAND     0
  54. #define IDX_MID_BAND     1
  55. #define IDX_HIGH_BAND    2
  56.  
  57. /**
  58.  * Sound unit struct, one unit is used per channel
  59.  */
  60. typedef struct {
  61.     int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
  62.     int                 num_bfus;                           ///< number of Block Floating Units
  63.     float*              spectrum[2];
  64.     DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
  65.     DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
  66.     DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
  67.     DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
  68.     DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23];    ///< delay line for the last stacked QMF filter
  69. } AT1SUCtx;
  70.  
  71. /**
  72.  * The atrac1 context, holds all needed parameters for decoding
  73.  */
  74. typedef struct {
  75.     AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
  76.     DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
  77.  
  78.     DECLARE_ALIGNED(32, float,  low)[256];
  79.     DECLARE_ALIGNED(32, float,  mid)[256];
  80.     DECLARE_ALIGNED(32, float, high)[512];
  81.     float*              bands[3];
  82.     FFTContext          mdct_ctx[3];
  83.     AVFloatDSPContext   fdsp;
  84. } AT1Ctx;
  85.  
  86. /** size of the transform in samples in the long mode for each QMF band */
  87. static const uint16_t samples_per_band[3] = {128, 128, 256};
  88. static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
  89.  
  90.  
  91. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  92.                       int rev_spec)
  93. {
  94.     FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  95.     int transf_size = 1 << nbits;
  96.  
  97.     if (rev_spec) {
  98.         int i;
  99.         for (i = 0; i < transf_size / 2; i++)
  100.             FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  101.     }
  102.     mdct_context->imdct_half(mdct_context, out, spec);
  103. }
  104.  
  105.  
  106. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  107. {
  108.     int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  109.     unsigned int start_pos, ref_pos = 0, pos = 0;
  110.  
  111.     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  112.         float *prev_buf;
  113.         int j;
  114.  
  115.         band_samples = samples_per_band[band_num];
  116.         log2_block_count = su->log2_block_count[band_num];
  117.  
  118.         /* number of mdct blocks in the current QMF band: 1 - for long mode */
  119.         /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  120.         num_blocks = 1 << log2_block_count;
  121.  
  122.         if (num_blocks == 1) {
  123.             /* mdct block size in samples: 128 (long mode, low & mid bands), */
  124.             /* 256 (long mode, high band) and 32 (short mode, all bands) */
  125.             block_size = band_samples >> log2_block_count;
  126.  
  127.             /* calc transform size in bits according to the block_size_mode */
  128.             nbits = mdct_long_nbits[band_num] - log2_block_count;
  129.  
  130.             if (nbits != 5 && nbits != 7 && nbits != 8)
  131.                 return AVERROR_INVALIDDATA;
  132.         } else {
  133.             block_size = 32;
  134.             nbits = 5;
  135.         }
  136.  
  137.         start_pos = 0;
  138.         prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  139.         for (j=0; j < num_blocks; j++) {
  140.             at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
  141.  
  142.             /* overlap and window */
  143.             q->fdsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  144.                                        &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
  145.  
  146.             prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  147.             start_pos += block_size;
  148.             pos += block_size;
  149.         }
  150.  
  151.         if (num_blocks == 1)
  152.             memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  153.  
  154.         ref_pos += band_samples;
  155.     }
  156.  
  157.     /* Swap buffers so the mdct overlap works */
  158.     FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  159.  
  160.     return 0;
  161. }
  162.  
  163. /**
  164.  * Parse the block size mode byte
  165.  */
  166.  
  167. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  168. {
  169.     int log2_block_count_tmp, i;
  170.  
  171.     for (i = 0; i < 2; i++) {
  172.         /* low and mid band */
  173.         log2_block_count_tmp = get_bits(gb, 2);
  174.         if (log2_block_count_tmp & 1)
  175.             return AVERROR_INVALIDDATA;
  176.         log2_block_cnt[i] = 2 - log2_block_count_tmp;
  177.     }
  178.  
  179.     /* high band */
  180.     log2_block_count_tmp = get_bits(gb, 2);
  181.     if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  182.         return AVERROR_INVALIDDATA;
  183.     log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  184.  
  185.     skip_bits(gb, 2);
  186.     return 0;
  187. }
  188.  
  189.  
  190. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  191.                               float spec[AT1_SU_SAMPLES])
  192. {
  193.     int bits_used, band_num, bfu_num, i;
  194.     uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
  195.     uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
  196.  
  197.     /* parse the info byte (2nd byte) telling how much BFUs were coded */
  198.     su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  199.  
  200.     /* calc number of consumed bits:
  201.         num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  202.         + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  203.     bits_used = su->num_bfus * 10 + 32 +
  204.                 bfu_amount_tab2[get_bits(gb, 2)] +
  205.                 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  206.  
  207.     /* get word length index (idwl) for each BFU */
  208.     for (i = 0; i < su->num_bfus; i++)
  209.         idwls[i] = get_bits(gb, 4);
  210.  
  211.     /* get scalefactor index (idsf) for each BFU */
  212.     for (i = 0; i < su->num_bfus; i++)
  213.         idsfs[i] = get_bits(gb, 6);
  214.  
  215.     /* zero idwl/idsf for empty BFUs */
  216.     for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  217.         idwls[i] = idsfs[i] = 0;
  218.  
  219.     /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  220.     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  221.         for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  222.             int pos;
  223.  
  224.             int num_specs = specs_per_bfu[bfu_num];
  225.             int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
  226.             float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
  227.             bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  228.  
  229.             /* check for bitstream overflow */
  230.             if (bits_used > AT1_SU_MAX_BITS)
  231.                 return AVERROR_INVALIDDATA;
  232.  
  233.             /* get the position of the 1st spec according to the block size mode */
  234.             pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  235.  
  236.             if (word_len) {
  237.                 float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  238.  
  239.                 for (i = 0; i < num_specs; i++) {
  240.                     /* read in a quantized spec and convert it to
  241.                      * signed int and then inverse quantization
  242.                      */
  243.                     spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  244.                 }
  245.             } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
  246.                 memset(&spec[pos], 0, num_specs * sizeof(float));
  247.             }
  248.         }
  249.     }
  250.  
  251.     return 0;
  252. }
  253.  
  254.  
  255. static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  256. {
  257.     float temp[256];
  258.     float iqmf_temp[512 + 46];
  259.  
  260.     /* combine low and middle bands */
  261.     ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  262.  
  263.     /* delay the signal of the high band by 23 samples */
  264.     memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  23);
  265.     memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float) * 256);
  266.  
  267.     /* combine (low + middle) and high bands */
  268.     ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  269. }
  270.  
  271.  
  272. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  273.                                int *got_frame_ptr, AVPacket *avpkt)
  274. {
  275.     AVFrame *frame     = data;
  276.     const uint8_t *buf = avpkt->data;
  277.     int buf_size       = avpkt->size;
  278.     AT1Ctx *q          = avctx->priv_data;
  279.     int ch, ret;
  280.     GetBitContext gb;
  281.  
  282.  
  283.     if (buf_size < 212 * avctx->channels) {
  284.         av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
  285.         return AVERROR_INVALIDDATA;
  286.     }
  287.  
  288.     /* get output buffer */
  289.     frame->nb_samples = AT1_SU_SAMPLES;
  290.     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  291.         return ret;
  292.  
  293.     for (ch = 0; ch < avctx->channels; ch++) {
  294.         AT1SUCtx* su = &q->SUs[ch];
  295.  
  296.         init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  297.  
  298.         /* parse block_size_mode, 1st byte */
  299.         ret = at1_parse_bsm(&gb, su->log2_block_count);
  300.         if (ret < 0)
  301.             return ret;
  302.  
  303.         ret = at1_unpack_dequant(&gb, su, q->spec);
  304.         if (ret < 0)
  305.             return ret;
  306.  
  307.         ret = at1_imdct_block(su, q);
  308.         if (ret < 0)
  309.             return ret;
  310.         at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
  311.     }
  312.  
  313.     *got_frame_ptr = 1;
  314.  
  315.     return avctx->block_align;
  316. }
  317.  
  318.  
  319. static av_cold int atrac1_decode_end(AVCodecContext * avctx)
  320. {
  321.     AT1Ctx *q = avctx->priv_data;
  322.  
  323.     ff_mdct_end(&q->mdct_ctx[0]);
  324.     ff_mdct_end(&q->mdct_ctx[1]);
  325.     ff_mdct_end(&q->mdct_ctx[2]);
  326.  
  327.     return 0;
  328. }
  329.  
  330.  
  331. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  332. {
  333.     AT1Ctx *q = avctx->priv_data;
  334.     int ret;
  335.  
  336.     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  337.  
  338.     if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
  339.         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
  340.                avctx->channels);
  341.         return AVERROR(EINVAL);
  342.     }
  343.  
  344.     if (avctx->block_align <= 0) {
  345.         av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
  346.         return AVERROR_PATCHWELCOME;
  347.     }
  348.  
  349.     /* Init the mdct transforms */
  350.     if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
  351.         (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
  352.         (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
  353.         av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  354.         atrac1_decode_end(avctx);
  355.         return ret;
  356.     }
  357.  
  358.     ff_init_ff_sine_windows(5);
  359.  
  360.     ff_atrac_generate_tables();
  361.  
  362.     avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  363.  
  364.     q->bands[0] = q->low;
  365.     q->bands[1] = q->mid;
  366.     q->bands[2] = q->high;
  367.  
  368.     /* Prepare the mdct overlap buffers */
  369.     q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  370.     q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  371.     q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  372.     q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  373.  
  374.     return 0;
  375. }
  376.  
  377.  
  378. AVCodec ff_atrac1_decoder = {
  379.     .name           = "atrac1",
  380.     .long_name      = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
  381.     .type           = AVMEDIA_TYPE_AUDIO,
  382.     .id             = AV_CODEC_ID_ATRAC1,
  383.     .priv_data_size = sizeof(AT1Ctx),
  384.     .init           = atrac1_decode_init,
  385.     .close          = atrac1_decode_end,
  386.     .decode         = atrac1_decode_frame,
  387.     .capabilities   = CODEC_CAP_DR1,
  388.     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  389.                                                       AV_SAMPLE_FMT_NONE },
  390. };
  391.