Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AC-3 encoder float/fixed template
  3.  * Copyright (c) 2000 Fabrice Bellard
  4.  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
  5.  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
  6.  *
  7.  * This file is part of FFmpeg.
  8.  *
  9.  * FFmpeg is free software; you can redistribute it and/or
  10.  * modify it under the terms of the GNU Lesser General Public
  11.  * License as published by the Free Software Foundation; either
  12.  * version 2.1 of the License, or (at your option) any later version.
  13.  *
  14.  * FFmpeg is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17.  * Lesser General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU Lesser General Public
  20.  * License along with FFmpeg; if not, write to the Free Software
  21.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22.  */
  23.  
  24. /**
  25.  * @file
  26.  * AC-3 encoder float/fixed template
  27.  */
  28.  
  29. #include <stdint.h>
  30.  
  31. #include "libavutil/internal.h"
  32.  
  33. /* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
  34.  
  35. static void scale_coefficients(AC3EncodeContext *s);
  36.  
  37. static void apply_window(void *dsp, SampleType *output,
  38.                          const SampleType *input, const SampleType *window,
  39.                          unsigned int len);
  40.  
  41. static int normalize_samples(AC3EncodeContext *s);
  42.  
  43. static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);
  44.  
  45. static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
  46.  
  47. static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
  48.                                  const CoefType *coef0, const CoefType *coef1,
  49.                                  int len);
  50.  
  51. int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
  52. {
  53.     int ch;
  54.  
  55.     FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
  56.                      sizeof(*s->windowed_samples), alloc_fail);
  57.     FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
  58.                      alloc_fail);
  59.     for (ch = 0; ch < s->channels; ch++) {
  60.         FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
  61.                           (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
  62.                           alloc_fail);
  63.     }
  64.  
  65.     return 0;
  66. alloc_fail:
  67.     return AVERROR(ENOMEM);
  68. }
  69.  
  70.  
  71. /*
  72.  * Copy input samples.
  73.  * Channels are reordered from FFmpeg's default order to AC-3 order.
  74.  */
  75. static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
  76. {
  77.     int ch;
  78.  
  79.     /* copy and remap input samples */
  80.     for (ch = 0; ch < s->channels; ch++) {
  81.         /* copy last 256 samples of previous frame to the start of the current frame */
  82.         memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
  83.                AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
  84.  
  85.         /* copy new samples for current frame */
  86.         memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
  87.                samples[s->channel_map[ch]],
  88.                AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
  89.     }
  90. }
  91.  
  92.  
  93. /*
  94.  * Apply the MDCT to input samples to generate frequency coefficients.
  95.  * This applies the KBD window and normalizes the input to reduce precision
  96.  * loss due to fixed-point calculations.
  97.  */
  98. static void apply_mdct(AC3EncodeContext *s)
  99. {
  100.     int blk, ch;
  101.  
  102.     for (ch = 0; ch < s->channels; ch++) {
  103.         for (blk = 0; blk < s->num_blocks; blk++) {
  104.             AC3Block *block = &s->blocks[blk];
  105.             const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
  106.  
  107. #if CONFIG_AC3ENC_FLOAT
  108.             apply_window(&s->fdsp, s->windowed_samples, input_samples,
  109.                          s->mdct_window, AC3_WINDOW_SIZE);
  110. #else
  111.             apply_window(&s->dsp, s->windowed_samples, input_samples,
  112.                          s->mdct_window, AC3_WINDOW_SIZE);
  113. #endif
  114.  
  115.             if (s->fixed_point)
  116.                 block->coeff_shift[ch+1] = normalize_samples(s);
  117.  
  118.             s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
  119.                                s->windowed_samples);
  120.         }
  121.     }
  122. }
  123.  
  124.  
  125. /*
  126.  * Calculate coupling channel and coupling coordinates.
  127.  */
  128. static void apply_channel_coupling(AC3EncodeContext *s)
  129. {
  130.     LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
  131. #if CONFIG_AC3ENC_FLOAT
  132.     LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
  133. #else
  134.     int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
  135. #endif
  136.     int av_uninit(blk), ch, bnd, i, j;
  137.     CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
  138.     int cpl_start, num_cpl_coefs;
  139.  
  140.     memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
  141. #if CONFIG_AC3ENC_FLOAT
  142.     memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
  143. #endif
  144.  
  145.     /* align start to 16-byte boundary. align length to multiple of 32.
  146.         note: coupling start bin % 4 will always be 1 */
  147.     cpl_start     = s->start_freq[CPL_CH] - 1;
  148.     num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
  149.     cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
  150.  
  151.     /* calculate coupling channel from fbw channels */
  152.     for (blk = 0; blk < s->num_blocks; blk++) {
  153.         AC3Block *block = &s->blocks[blk];
  154.         CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
  155.         if (!block->cpl_in_use)
  156.             continue;
  157.         memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
  158.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  159.             CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
  160.             if (!block->channel_in_cpl[ch])
  161.                 continue;
  162.             for (i = 0; i < num_cpl_coefs; i++)
  163.                 cpl_coef[i] += ch_coef[i];
  164.         }
  165.  
  166.         /* coefficients must be clipped in order to be encoded */
  167.         clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
  168.     }
  169.  
  170.     /* calculate energy in each band in coupling channel and each fbw channel */
  171.     /* TODO: possibly use SIMD to speed up energy calculation */
  172.     bnd = 0;
  173.     i = s->start_freq[CPL_CH];
  174.     while (i < s->cpl_end_freq) {
  175.         int band_size = s->cpl_band_sizes[bnd];
  176.         for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
  177.             for (blk = 0; blk < s->num_blocks; blk++) {
  178.                 AC3Block *block = &s->blocks[blk];
  179.                 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
  180.                     continue;
  181.                 for (j = 0; j < band_size; j++) {
  182.                     CoefType v = block->mdct_coef[ch][i+j];
  183.                     MAC_COEF(energy[blk][ch][bnd], v, v);
  184.                 }
  185.             }
  186.         }
  187.         i += band_size;
  188.         bnd++;
  189.     }
  190.  
  191.     /* calculate coupling coordinates for all blocks for all channels */
  192.     for (blk = 0; blk < s->num_blocks; blk++) {
  193.         AC3Block *block  = &s->blocks[blk];
  194.         if (!block->cpl_in_use)
  195.             continue;
  196.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  197.             if (!block->channel_in_cpl[ch])
  198.                 continue;
  199.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  200.                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
  201.                                                           energy[blk][CPL_CH][bnd]);
  202.             }
  203.         }
  204.     }
  205.  
  206.     /* determine which blocks to send new coupling coordinates for */
  207.     for (blk = 0; blk < s->num_blocks; blk++) {
  208.         AC3Block *block  = &s->blocks[blk];
  209.         AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
  210.  
  211.         memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
  212.  
  213.         if (block->cpl_in_use) {
  214.             /* send new coordinates if this is the first block, if previous
  215.              * block did not use coupling but this block does, the channels
  216.              * using coupling has changed from the previous block, or the
  217.              * coordinate difference from the last block for any channel is
  218.              * greater than a threshold value. */
  219.             if (blk == 0 || !block0->cpl_in_use) {
  220.                 for (ch = 1; ch <= s->fbw_channels; ch++)
  221.                     block->new_cpl_coords[ch] = 1;
  222.             } else {
  223.                 for (ch = 1; ch <= s->fbw_channels; ch++) {
  224.                     if (!block->channel_in_cpl[ch])
  225.                         continue;
  226.                     if (!block0->channel_in_cpl[ch]) {
  227.                         block->new_cpl_coords[ch] = 1;
  228.                     } else {
  229.                         CoefSumType coord_diff = 0;
  230.                         for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  231.                             coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
  232.                                                 cpl_coords[blk  ][ch][bnd]);
  233.                         }
  234.                         coord_diff /= s->num_cpl_bands;
  235.                         if (coord_diff > NEW_CPL_COORD_THRESHOLD)
  236.                             block->new_cpl_coords[ch] = 1;
  237.                     }
  238.                 }
  239.             }
  240.         }
  241.     }
  242.  
  243.     /* calculate final coupling coordinates, taking into account reusing of
  244.        coordinates in successive blocks */
  245.     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  246.         blk = 0;
  247.         while (blk < s->num_blocks) {
  248.             int av_uninit(blk1);
  249.             AC3Block *block  = &s->blocks[blk];
  250.  
  251.             if (!block->cpl_in_use) {
  252.                 blk++;
  253.                 continue;
  254.             }
  255.  
  256.             for (ch = 1; ch <= s->fbw_channels; ch++) {
  257.                 CoefSumType energy_ch, energy_cpl;
  258.                 if (!block->channel_in_cpl[ch])
  259.                     continue;
  260.                 energy_cpl = energy[blk][CPL_CH][bnd];
  261.                 energy_ch = energy[blk][ch][bnd];
  262.                 blk1 = blk+1;
  263.                 while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
  264.                     if (s->blocks[blk1].cpl_in_use) {
  265.                         energy_cpl += energy[blk1][CPL_CH][bnd];
  266.                         energy_ch += energy[blk1][ch][bnd];
  267.                     }
  268.                     blk1++;
  269.                 }
  270.                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
  271.             }
  272.             blk = blk1;
  273.         }
  274.     }
  275.  
  276.     /* calculate exponents/mantissas for coupling coordinates */
  277.     for (blk = 0; blk < s->num_blocks; blk++) {
  278.         AC3Block *block = &s->blocks[blk];
  279.         if (!block->cpl_in_use)
  280.             continue;
  281.  
  282. #if CONFIG_AC3ENC_FLOAT
  283.         s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
  284.                                    cpl_coords[blk][1],
  285.                                    s->fbw_channels * 16);
  286. #endif
  287.         s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
  288.                                     fixed_cpl_coords[blk][1],
  289.                                     s->fbw_channels * 16);
  290.  
  291.         for (ch = 1; ch <= s->fbw_channels; ch++) {
  292.             int bnd, min_exp, max_exp, master_exp;
  293.  
  294.             if (!block->new_cpl_coords[ch])
  295.                 continue;
  296.  
  297.             /* determine master exponent */
  298.             min_exp = max_exp = block->cpl_coord_exp[ch][0];
  299.             for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
  300.                 int exp = block->cpl_coord_exp[ch][bnd];
  301.                 min_exp = FFMIN(exp, min_exp);
  302.                 max_exp = FFMAX(exp, max_exp);
  303.             }
  304.             master_exp = ((max_exp - 15) + 2) / 3;
  305.             master_exp = FFMAX(master_exp, 0);
  306.             while (min_exp < master_exp * 3)
  307.                 master_exp--;
  308.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  309.                 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
  310.                                                         master_exp * 3, 0, 15);
  311.             }
  312.             block->cpl_master_exp[ch] = master_exp;
  313.  
  314.             /* quantize mantissas */
  315.             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  316.                 int cpl_exp  = block->cpl_coord_exp[ch][bnd];
  317.                 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
  318.                 if (cpl_exp == 15)
  319.                     cpl_mant >>= 1;
  320.                 else
  321.                     cpl_mant -= 16;
  322.  
  323.                 block->cpl_coord_mant[ch][bnd] = cpl_mant;
  324.             }
  325.         }
  326.     }
  327.  
  328.     if (CONFIG_EAC3_ENCODER && s->eac3)
  329.         ff_eac3_set_cpl_states(s);
  330. }
  331.  
  332.  
  333. /*
  334.  * Determine rematrixing flags for each block and band.
  335.  */
  336. static void compute_rematrixing_strategy(AC3EncodeContext *s)
  337. {
  338.     int nb_coefs;
  339.     int blk, bnd;
  340.     AC3Block *block, *block0 = NULL;
  341.  
  342.     if (s->channel_mode != AC3_CHMODE_STEREO)
  343.         return;
  344.  
  345.     for (blk = 0; blk < s->num_blocks; blk++) {
  346.         block = &s->blocks[blk];
  347.         block->new_rematrixing_strategy = !blk;
  348.  
  349.         block->num_rematrixing_bands = 4;
  350.         if (block->cpl_in_use) {
  351.             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
  352.             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
  353.             if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
  354.                 block->new_rematrixing_strategy = 1;
  355.         }
  356.         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
  357.  
  358.         if (!s->rematrixing_enabled) {
  359.             block0 = block;
  360.             continue;
  361.         }
  362.  
  363.         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
  364.             /* calculate sum of squared coeffs for one band in one block */
  365.             int start = ff_ac3_rematrix_band_tab[bnd];
  366.             int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
  367.             CoefSumType sum[4];
  368.             sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
  369.                                  block->mdct_coef[2] + start, end - start);
  370.  
  371.             /* compare sums to determine if rematrixing will be used for this band */
  372.             if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
  373.                 block->rematrixing_flags[bnd] = 1;
  374.             else
  375.                 block->rematrixing_flags[bnd] = 0;
  376.  
  377.             /* determine if new rematrixing flags will be sent */
  378.             if (blk &&
  379.                 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
  380.                 block->new_rematrixing_strategy = 1;
  381.             }
  382.         }
  383.         block0 = block;
  384.     }
  385. }
  386.  
  387.  
  388. int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
  389.                            const AVFrame *frame, int *got_packet_ptr)
  390. {
  391.     AC3EncodeContext *s = avctx->priv_data;
  392.     int ret;
  393.  
  394.     if (s->options.allow_per_frame_metadata) {
  395.         ret = ff_ac3_validate_metadata(s);
  396.         if (ret)
  397.             return ret;
  398.     }
  399.  
  400.     if (s->bit_alloc.sr_code == 1 || s->eac3)
  401.         ff_ac3_adjust_frame_size(s);
  402.  
  403.     copy_input_samples(s, (SampleType **)frame->extended_data);
  404.  
  405.     apply_mdct(s);
  406.  
  407.     if (s->fixed_point)
  408.         scale_coefficients(s);
  409.  
  410.     clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
  411.                       AC3_MAX_COEFS * s->num_blocks * s->channels);
  412.  
  413.     s->cpl_on = s->cpl_enabled;
  414.     ff_ac3_compute_coupling_strategy(s);
  415.  
  416.     if (s->cpl_on)
  417.         apply_channel_coupling(s);
  418.  
  419.     compute_rematrixing_strategy(s);
  420.  
  421.     if (!s->fixed_point)
  422.         scale_coefficients(s);
  423.  
  424.     ff_ac3_apply_rematrixing(s);
  425.  
  426.     ff_ac3_process_exponents(s);
  427.  
  428.     ret = ff_ac3_compute_bit_allocation(s);
  429.     if (ret) {
  430.         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  431.         return ret;
  432.     }
  433.  
  434.     ff_ac3_group_exponents(s);
  435.  
  436.     ff_ac3_quantize_mantissas(s);
  437.  
  438.     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size)) < 0)
  439.         return ret;
  440.     ff_ac3_output_frame(s, avpkt->data);
  441.  
  442.     if (frame->pts != AV_NOPTS_VALUE)
  443.         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  444.  
  445.     *got_packet_ptr = 1;
  446.     return 0;
  447. }
  448.