Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) CMU 1993 Computer Science, Speech Group
  3.  *                        Chengxiang Lu and Alex Hauptmann
  4.  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  5.  * Copyright (c) 2009 Kenan Gillet
  6.  * Copyright (c) 2010 Martin Storsjo
  7.  *
  8.  * This file is part of FFmpeg.
  9.  *
  10.  * FFmpeg is free software; you can redistribute it and/or
  11.  * modify it under the terms of the GNU Lesser General Public
  12.  * License as published by the Free Software Foundation; either
  13.  * version 2.1 of the License, or (at your option) any later version.
  14.  *
  15.  * FFmpeg is distributed in the hope that it will be useful,
  16.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18.  * Lesser General Public License for more details.
  19.  *
  20.  * You should have received a copy of the GNU Lesser General Public
  21.  * License along with FFmpeg; if not, write to the Free Software
  22.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23.  */
  24.  
  25. /**
  26.  * @file
  27.  * G.722 ADPCM audio encoder
  28.  */
  29.  
  30. #include "libavutil/avassert.h"
  31. #include "avcodec.h"
  32. #include "internal.h"
  33. #include "g722.h"
  34. #include "libavutil/common.h"
  35.  
  36. #define FREEZE_INTERVAL 128
  37.  
  38. /* This is an arbitrary value. Allowing insanely large values leads to strange
  39.    problems, so we limit it to a reasonable value */
  40. #define MAX_FRAME_SIZE 32768
  41.  
  42. /* We clip the value of avctx->trellis to prevent data type overflows and
  43.    undefined behavior. Using larger values is insanely slow anyway. */
  44. #define MIN_TRELLIS 0
  45. #define MAX_TRELLIS 16
  46.  
  47. static av_cold int g722_encode_close(AVCodecContext *avctx)
  48. {
  49.     G722Context *c = avctx->priv_data;
  50.     int i;
  51.     for (i = 0; i < 2; i++) {
  52.         av_freep(&c->paths[i]);
  53.         av_freep(&c->node_buf[i]);
  54.         av_freep(&c->nodep_buf[i]);
  55.     }
  56.     return 0;
  57. }
  58.  
  59. static av_cold int g722_encode_init(AVCodecContext * avctx)
  60. {
  61.     G722Context *c = avctx->priv_data;
  62.     int ret;
  63.  
  64.     if (avctx->channels != 1) {
  65.         av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
  66.         return AVERROR_INVALIDDATA;
  67.     }
  68.  
  69.     c->band[0].scale_factor = 8;
  70.     c->band[1].scale_factor = 2;
  71.     c->prev_samples_pos = 22;
  72.  
  73.     if (avctx->trellis) {
  74.         int frontier = 1 << avctx->trellis;
  75.         int max_paths = frontier * FREEZE_INTERVAL;
  76.         int i;
  77.         for (i = 0; i < 2; i++) {
  78.             c->paths[i] = av_mallocz_array(max_paths, sizeof(**c->paths));
  79.             c->node_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->node_buf));
  80.             c->nodep_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->nodep_buf));
  81.             if (!c->paths[i] || !c->node_buf[i] || !c->nodep_buf[i]) {
  82.                 ret = AVERROR(ENOMEM);
  83.                 goto error;
  84.             }
  85.         }
  86.     }
  87.  
  88.     if (avctx->frame_size) {
  89.         /* validate frame size */
  90.         if (avctx->frame_size & 1 || avctx->frame_size > MAX_FRAME_SIZE) {
  91.             int new_frame_size;
  92.  
  93.             if (avctx->frame_size == 1)
  94.                 new_frame_size = 2;
  95.             else if (avctx->frame_size > MAX_FRAME_SIZE)
  96.                 new_frame_size = MAX_FRAME_SIZE;
  97.             else
  98.                 new_frame_size = avctx->frame_size - 1;
  99.  
  100.             av_log(avctx, AV_LOG_WARNING, "Requested frame size is not "
  101.                    "allowed. Using %d instead of %d\n", new_frame_size,
  102.                    avctx->frame_size);
  103.             avctx->frame_size = new_frame_size;
  104.         }
  105.     } else {
  106.         /* This is arbitrary. We use 320 because it's 20ms @ 16kHz, which is
  107.            a common packet size for VoIP applications */
  108.         avctx->frame_size = 320;
  109.     }
  110.     avctx->initial_padding = 22;
  111.  
  112.     if (avctx->trellis) {
  113.         /* validate trellis */
  114.         if (avctx->trellis < MIN_TRELLIS || avctx->trellis > MAX_TRELLIS) {
  115.             int new_trellis = av_clip(avctx->trellis, MIN_TRELLIS, MAX_TRELLIS);
  116.             av_log(avctx, AV_LOG_WARNING, "Requested trellis value is not "
  117.                    "allowed. Using %d instead of %d\n", new_trellis,
  118.                    avctx->trellis);
  119.             avctx->trellis = new_trellis;
  120.         }
  121.     }
  122.  
  123.     ff_g722dsp_init(&c->dsp);
  124.  
  125.     return 0;
  126. error:
  127.     g722_encode_close(avctx);
  128.     return ret;
  129. }
  130.  
  131. static const int16_t low_quant[33] = {
  132.       35,   72,  110,  150,  190,  233,  276,  323,
  133.      370,  422,  473,  530,  587,  650,  714,  786,
  134.      858,  940, 1023, 1121, 1219, 1339, 1458, 1612,
  135.     1765, 1980, 2195, 2557, 2919
  136. };
  137.  
  138. static inline void filter_samples(G722Context *c, const int16_t *samples,
  139.                                   int *xlow, int *xhigh)
  140. {
  141.     int xout[2];
  142.     c->prev_samples[c->prev_samples_pos++] = samples[0];
  143.     c->prev_samples[c->prev_samples_pos++] = samples[1];
  144.     c->dsp.apply_qmf(c->prev_samples + c->prev_samples_pos - 24, xout);
  145.     *xlow  = xout[0] + xout[1] >> 14;
  146.     *xhigh = xout[0] - xout[1] >> 14;
  147.     if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
  148.         memmove(c->prev_samples,
  149.                 c->prev_samples + c->prev_samples_pos - 22,
  150.                 22 * sizeof(c->prev_samples[0]));
  151.         c->prev_samples_pos = 22;
  152.     }
  153. }
  154.  
  155. static inline int encode_high(const struct G722Band *state, int xhigh)
  156. {
  157.     int diff = av_clip_int16(xhigh - state->s_predictor);
  158.     int pred = 141 * state->scale_factor >> 8;
  159.            /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
  160.     return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
  161. }
  162.  
  163. static inline int encode_low(const struct G722Band* state, int xlow)
  164. {
  165.     int diff  = av_clip_int16(xlow - state->s_predictor);
  166.            /* = diff >= 0 ? diff : -(diff + 1) */
  167.     int limit = diff ^ (diff >> (sizeof(diff)*8-1));
  168.     int i = 0;
  169.     limit = limit + 1 << 10;
  170.     if (limit > low_quant[8] * state->scale_factor)
  171.         i = 9;
  172.     while (i < 29 && limit > low_quant[i] * state->scale_factor)
  173.         i++;
  174.     return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
  175. }
  176.  
  177. static void g722_encode_trellis(G722Context *c, int trellis,
  178.                                 uint8_t *dst, int nb_samples,
  179.                                 const int16_t *samples)
  180. {
  181.     int i, j, k;
  182.     int frontier = 1 << trellis;
  183.     struct TrellisNode **nodes[2];
  184.     struct TrellisNode **nodes_next[2];
  185.     int pathn[2] = {0, 0}, froze = -1;
  186.     struct TrellisPath *p[2];
  187.  
  188.     for (i = 0; i < 2; i++) {
  189.         nodes[i] = c->nodep_buf[i];
  190.         nodes_next[i] = c->nodep_buf[i] + frontier;
  191.         memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf[i]));
  192.         nodes[i][0] = c->node_buf[i] + frontier;
  193.         nodes[i][0]->ssd = 0;
  194.         nodes[i][0]->path = 0;
  195.         nodes[i][0]->state = c->band[i];
  196.     }
  197.  
  198.     for (i = 0; i < nb_samples >> 1; i++) {
  199.         int xlow, xhigh;
  200.         struct TrellisNode *next[2];
  201.         int heap_pos[2] = {0, 0};
  202.  
  203.         for (j = 0; j < 2; j++) {
  204.             next[j] = c->node_buf[j] + frontier*(i & 1);
  205.             memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
  206.         }
  207.  
  208.         filter_samples(c, &samples[2*i], &xlow, &xhigh);
  209.  
  210.         for (j = 0; j < frontier && nodes[0][j]; j++) {
  211.             /* Only k >> 2 affects the future adaptive state, therefore testing
  212.              * small steps that don't change k >> 2 is useless, the original
  213.              * value from encode_low is better than them. Since we step k
  214.              * in steps of 4, make sure range is a multiple of 4, so that
  215.              * we don't miss the original value from encode_low. */
  216.             int range = j < frontier/2 ? 4 : 0;
  217.             struct TrellisNode *cur_node = nodes[0][j];
  218.  
  219.             int ilow = encode_low(&cur_node->state, xlow);
  220.  
  221.             for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
  222.                 int decoded, dec_diff, pos;
  223.                 uint32_t ssd;
  224.                 struct TrellisNode* node;
  225.  
  226.                 if (k < 0)
  227.                     continue;
  228.  
  229.                 decoded = av_clip_intp2((cur_node->state.scale_factor *
  230.                                   ff_g722_low_inv_quant6[k] >> 10)
  231.                                 + cur_node->state.s_predictor, 14);
  232.                 dec_diff = xlow - decoded;
  233.  
  234. #define STORE_NODE(index, UPDATE, VALUE)\
  235.                 ssd = cur_node->ssd + dec_diff*dec_diff;\
  236.                 /* Check for wraparound. Using 64 bit ssd counters would \
  237.                  * be simpler, but is slower on x86 32 bit. */\
  238.                 if (ssd < cur_node->ssd)\
  239.                     continue;\
  240.                 if (heap_pos[index] < frontier) {\
  241.                     pos = heap_pos[index]++;\
  242.                     av_assert2(pathn[index] < FREEZE_INTERVAL * frontier);\
  243.                     node = nodes_next[index][pos] = next[index]++;\
  244.                     node->path = pathn[index]++;\
  245.                 } else {\
  246.                     /* Try to replace one of the leaf nodes with the new \
  247.                      * one, but not always testing the same leaf position */\
  248.                     pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
  249.                     if (ssd >= nodes_next[index][pos]->ssd)\
  250.                         continue;\
  251.                     heap_pos[index]++;\
  252.                     node = nodes_next[index][pos];\
  253.                 }\
  254.                 node->ssd = ssd;\
  255.                 node->state = cur_node->state;\
  256.                 UPDATE;\
  257.                 c->paths[index][node->path].value = VALUE;\
  258.                 c->paths[index][node->path].prev = cur_node->path;\
  259.                 /* Sift the newly inserted node up in the heap to restore \
  260.                  * the heap property */\
  261.                 while (pos > 0) {\
  262.                     int parent = (pos - 1) >> 1;\
  263.                     if (nodes_next[index][parent]->ssd <= ssd)\
  264.                         break;\
  265.                     FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
  266.                                                 nodes_next[index][pos]);\
  267.                     pos = parent;\
  268.                 }
  269.                 STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k);
  270.             }
  271.         }
  272.  
  273.         for (j = 0; j < frontier && nodes[1][j]; j++) {
  274.             int ihigh;
  275.             struct TrellisNode *cur_node = nodes[1][j];
  276.  
  277.             /* We don't try to get any initial guess for ihigh via
  278.              * encode_high - since there's only 4 possible values, test
  279.              * them all. Testing all of these gives a much, much larger
  280.              * gain than testing a larger range around ilow. */
  281.             for (ihigh = 0; ihigh < 4; ihigh++) {
  282.                 int dhigh, decoded, dec_diff, pos;
  283.                 uint32_t ssd;
  284.                 struct TrellisNode* node;
  285.  
  286.                 dhigh = cur_node->state.scale_factor *
  287.                         ff_g722_high_inv_quant[ihigh] >> 10;
  288.                 decoded = av_clip_intp2(dhigh + cur_node->state.s_predictor, 14);
  289.                 dec_diff = xhigh - decoded;
  290.  
  291.                 STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh);
  292.             }
  293.         }
  294.  
  295.         for (j = 0; j < 2; j++) {
  296.             FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
  297.  
  298.             if (nodes[j][0]->ssd > (1 << 16)) {
  299.                 for (k = 1; k < frontier && nodes[j][k]; k++)
  300.                     nodes[j][k]->ssd -= nodes[j][0]->ssd;
  301.                 nodes[j][0]->ssd = 0;
  302.             }
  303.         }
  304.  
  305.         if (i == froze + FREEZE_INTERVAL) {
  306.             p[0] = &c->paths[0][nodes[0][0]->path];
  307.             p[1] = &c->paths[1][nodes[1][0]->path];
  308.             for (j = i; j > froze; j--) {
  309.                 dst[j] = p[1]->value << 6 | p[0]->value;
  310.                 p[0] = &c->paths[0][p[0]->prev];
  311.                 p[1] = &c->paths[1][p[1]->prev];
  312.             }
  313.             froze = i;
  314.             pathn[0] = pathn[1] = 0;
  315.             memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
  316.             memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
  317.         }
  318.     }
  319.  
  320.     p[0] = &c->paths[0][nodes[0][0]->path];
  321.     p[1] = &c->paths[1][nodes[1][0]->path];
  322.     for (j = i; j > froze; j--) {
  323.         dst[j] = p[1]->value << 6 | p[0]->value;
  324.         p[0] = &c->paths[0][p[0]->prev];
  325.         p[1] = &c->paths[1][p[1]->prev];
  326.     }
  327.     c->band[0] = nodes[0][0]->state;
  328.     c->band[1] = nodes[1][0]->state;
  329. }
  330.  
  331. static av_always_inline void encode_byte(G722Context *c, uint8_t *dst,
  332.                                          const int16_t *samples)
  333. {
  334.     int xlow, xhigh, ilow, ihigh;
  335.     filter_samples(c, samples, &xlow, &xhigh);
  336.     ihigh = encode_high(&c->band[1], xhigh);
  337.     ilow  = encode_low (&c->band[0], xlow);
  338.     ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor *
  339.                                 ff_g722_high_inv_quant[ihigh] >> 10, ihigh);
  340.     ff_g722_update_low_predictor(&c->band[0], ilow >> 2);
  341.     *dst = ihigh << 6 | ilow;
  342. }
  343.  
  344. static void g722_encode_no_trellis(G722Context *c,
  345.                                    uint8_t *dst, int nb_samples,
  346.                                    const int16_t *samples)
  347. {
  348.     int i;
  349.     for (i = 0; i < nb_samples; i += 2)
  350.         encode_byte(c, dst++, &samples[i]);
  351. }
  352.  
  353. static int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  354.                              const AVFrame *frame, int *got_packet_ptr)
  355. {
  356.     G722Context *c = avctx->priv_data;
  357.     const int16_t *samples = (const int16_t *)frame->data[0];
  358.     int nb_samples, out_size, ret;
  359.  
  360.     out_size = (frame->nb_samples + 1) / 2;
  361.     if ((ret = ff_alloc_packet2(avctx, avpkt, out_size, 0)) < 0)
  362.         return ret;
  363.  
  364.     nb_samples = frame->nb_samples - (frame->nb_samples & 1);
  365.  
  366.     if (avctx->trellis)
  367.         g722_encode_trellis(c, avctx->trellis, avpkt->data, nb_samples, samples);
  368.     else
  369.         g722_encode_no_trellis(c, avpkt->data, nb_samples, samples);
  370.  
  371.     /* handle last frame with odd frame_size */
  372.     if (nb_samples < frame->nb_samples) {
  373.         int16_t last_samples[2] = { samples[nb_samples], samples[nb_samples] };
  374.         encode_byte(c, &avpkt->data[nb_samples >> 1], last_samples);
  375.     }
  376.  
  377.     if (frame->pts != AV_NOPTS_VALUE)
  378.         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
  379.     *got_packet_ptr = 1;
  380.     return 0;
  381. }
  382.  
  383. AVCodec ff_adpcm_g722_encoder = {
  384.     .name           = "g722",
  385.     .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
  386.     .type           = AVMEDIA_TYPE_AUDIO,
  387.     .id             = AV_CODEC_ID_ADPCM_G722,
  388.     .priv_data_size = sizeof(G722Context),
  389.     .init           = g722_encode_init,
  390.     .close          = g722_encode_close,
  391.     .encode2        = g722_encode_frame,
  392.     .capabilities   = AV_CODEC_CAP_SMALL_LAST_FRAME,
  393.     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  394.                                                      AV_SAMPLE_FMT_NONE },
  395. };
  396.