Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Mesa 3-D graphics library
  3.  *
  4.  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the "Software"),
  8.  * to deal in the Software without restriction, including without limitation
  9.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10.  * and/or sell copies of the Software, and to permit persons to whom the
  11.  * Software is furnished to do so, subject to the following conditions:
  12.  *
  13.  * The above copyright notice and this permission notice shall be included
  14.  * in all copies or substantial portions of the Software.
  15.  *
  16.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  17.  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20.  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21.  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22.  * OTHER DEALINGS IN THE SOFTWARE.
  23.  */
  24.  
  25.  
  26. #include "main/glheader.h"
  27. #include "main/colormac.h"
  28. #include "main/feedback.h"
  29. #include "main/light.h"
  30. #include "main/macros.h"
  31. #include "main/simple_list.h"
  32. #include "main/mtypes.h"
  33.  
  34. #include "math/m_matrix.h"
  35. #include "tnl/tnl.h"
  36.  
  37.  
  38.  
  39. /**
  40.  * Clip a point against the view volume.
  41.  *
  42.  * \param v vertex vector describing the point to clip.
  43.  *
  44.  * \return zero if outside view volume, or one if inside.
  45.  */
  46. static GLuint
  47. viewclip_point_xy( const GLfloat v[] )
  48. {
  49.    if (   v[0] > v[3] || v[0] < -v[3]
  50.        || v[1] > v[3] || v[1] < -v[3] ) {
  51.       return 0;
  52.    }
  53.    else {
  54.       return 1;
  55.    }
  56. }
  57.  
  58.  
  59. /**
  60.  * Clip a point against the far/near Z clipping planes.
  61.  *
  62.  * \param v vertex vector describing the point to clip.
  63.  *
  64.  * \return zero if outside view volume, or one if inside.
  65.  */
  66. static GLuint
  67. viewclip_point_z( const GLfloat v[] )
  68. {
  69.    if (v[2] > v[3] || v[2] < -v[3] ) {
  70.       return 0;
  71.    }
  72.    else {
  73.       return 1;
  74.    }
  75. }
  76.  
  77.  
  78. /**
  79.  * Clip a point against the user clipping planes.
  80.  *
  81.  * \param ctx GL context.
  82.  * \param v vertex vector describing the point to clip.
  83.  *
  84.  * \return zero if the point was clipped, or one otherwise.
  85.  */
  86. static GLuint
  87. userclip_point( struct gl_context *ctx, const GLfloat v[] )
  88. {
  89.    GLuint p;
  90.  
  91.    for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
  92.       if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
  93.          GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
  94.                      + v[1] * ctx->Transform._ClipUserPlane[p][1]
  95.                      + v[2] * ctx->Transform._ClipUserPlane[p][2]
  96.                      + v[3] * ctx->Transform._ClipUserPlane[p][3];
  97.          if (dot < 0.0F) {
  98.             return 0;
  99.          }
  100.       }
  101.    }
  102.  
  103.    return 1;
  104. }
  105.  
  106.  
  107. /**
  108.  * Compute lighting for the raster position.  RGB modes computed.
  109.  * \param ctx the context
  110.  * \param vertex vertex location
  111.  * \param normal normal vector
  112.  * \param Rcolor returned color
  113.  * \param Rspec returned specular color (if separate specular enabled)
  114.  */
  115. static void
  116. shade_rastpos(struct gl_context *ctx,
  117.               const GLfloat vertex[4],
  118.               const GLfloat normal[3],
  119.               GLfloat Rcolor[4],
  120.               GLfloat Rspec[4])
  121. {
  122.    /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
  123.    const struct gl_light *light;
  124.    GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
  125.  
  126.    COPY_3V(diffuseColor, base[0]);
  127.    diffuseColor[3] = CLAMP(
  128.       ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
  129.    ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
  130.  
  131.    foreach (light, &ctx->Light.EnabledList) {
  132.       GLfloat attenuation = 1.0;
  133.       GLfloat VP[3]; /* vector from vertex to light pos */
  134.       GLfloat n_dot_VP;
  135.       GLfloat diffuseContrib[3], specularContrib[3];
  136.  
  137.       if (!(light->_Flags & LIGHT_POSITIONAL)) {
  138.          /* light at infinity */
  139.          COPY_3V(VP, light->_VP_inf_norm);
  140.          attenuation = light->_VP_inf_spot_attenuation;
  141.       }
  142.       else {
  143.          /* local/positional light */
  144.          GLfloat d;
  145.  
  146.          /* VP = vector from vertex pos to light[i].pos */
  147.          SUB_3V(VP, light->_Position, vertex);
  148.          /* d = length(VP) */
  149.          d = (GLfloat) LEN_3FV( VP );
  150.          if (d > 1.0e-6) {
  151.             /* normalize VP */
  152.             GLfloat invd = 1.0F / d;
  153.             SELF_SCALE_SCALAR_3V(VP, invd);
  154.          }
  155.  
  156.          /* atti */
  157.          attenuation = 1.0F / (light->ConstantAttenuation + d *
  158.                                (light->LinearAttenuation + d *
  159.                                 light->QuadraticAttenuation));
  160.  
  161.          if (light->_Flags & LIGHT_SPOT) {
  162.             GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
  163.  
  164.             if (PV_dot_dir<light->_CosCutoff) {
  165.                continue;
  166.             }
  167.             else {
  168.                GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
  169.                attenuation *= spot;
  170.             }
  171.          }
  172.       }
  173.  
  174.       if (attenuation < 1e-3)
  175.          continue;
  176.  
  177.       n_dot_VP = DOT3( normal, VP );
  178.  
  179.       if (n_dot_VP < 0.0F) {
  180.          ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
  181.          continue;
  182.       }
  183.  
  184.       /* Ambient + diffuse */
  185.       COPY_3V(diffuseContrib, light->_MatAmbient[0]);
  186.       ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
  187.  
  188.       /* Specular */
  189.       {
  190.          const GLfloat *h;
  191.          GLfloat n_dot_h;
  192.  
  193.          ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
  194.  
  195.          if (ctx->Light.Model.LocalViewer) {
  196.             GLfloat v[3];
  197.             COPY_3V(v, vertex);
  198.             NORMALIZE_3FV(v);
  199.             SUB_3V(VP, VP, v);
  200.             NORMALIZE_3FV(VP);
  201.             h = VP;
  202.          }
  203.          else if (light->_Flags & LIGHT_POSITIONAL) {
  204.             ACC_3V(VP, ctx->_EyeZDir);
  205.             NORMALIZE_3FV(VP);
  206.             h = VP;
  207.          }
  208.          else {
  209.             h = light->_h_inf_norm;
  210.          }
  211.  
  212.          n_dot_h = DOT3(normal, h);
  213.  
  214.          if (n_dot_h > 0.0F) {
  215.             GLfloat shine;
  216.             GLfloat spec_coef;
  217.  
  218.             shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
  219.             spec_coef = powf(n_dot_h, shine);
  220.  
  221.             if (spec_coef > 1.0e-10) {
  222.                if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
  223.                   ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
  224.                                        light->_MatSpecular[0]);
  225.                }
  226.                else {
  227.                   ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
  228.                                        light->_MatSpecular[0]);
  229.                }
  230.             }
  231.          }
  232.       }
  233.  
  234.       ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
  235.       ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
  236.    }
  237.  
  238.    Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
  239.    Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
  240.    Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
  241.    Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
  242.    Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
  243.    Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
  244.    Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
  245.    Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
  246. }
  247.  
  248.  
  249. /**
  250.  * Do texgen needed for glRasterPos.
  251.  * \param ctx  rendering context
  252.  * \param vObj  object-space vertex coordinate
  253.  * \param vEye  eye-space vertex coordinate
  254.  * \param normal  vertex normal
  255.  * \param unit  texture unit number
  256.  * \param texcoord  incoming texcoord and resulting texcoord
  257.  */
  258. static void
  259. compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
  260.                const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
  261. {
  262.    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
  263.  
  264.    /* always compute sphere map terms, just in case */
  265.    GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
  266.    COPY_3V(u, vEye);
  267.    NORMALIZE_3FV(u);
  268.    two_nu = 2.0F * DOT3(normal, u);
  269.    rx = u[0] - normal[0] * two_nu;
  270.    ry = u[1] - normal[1] * two_nu;
  271.    rz = u[2] - normal[2] * two_nu;
  272.    m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
  273.    if (m > 0.0F)
  274.       mInv = 0.5F * INV_SQRTF(m);
  275.    else
  276.       mInv = 0.0F;
  277.  
  278.    if (texUnit->TexGenEnabled & S_BIT) {
  279.       switch (texUnit->GenS.Mode) {
  280.          case GL_OBJECT_LINEAR:
  281.             texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
  282.             break;
  283.          case GL_EYE_LINEAR:
  284.             texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
  285.             break;
  286.          case GL_SPHERE_MAP:
  287.             texcoord[0] = rx * mInv + 0.5F;
  288.             break;
  289.          case GL_REFLECTION_MAP:
  290.             texcoord[0] = rx;
  291.             break;
  292.          case GL_NORMAL_MAP:
  293.             texcoord[0] = normal[0];
  294.             break;
  295.          default:
  296.             _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
  297.             return;
  298.       }
  299.    }
  300.  
  301.    if (texUnit->TexGenEnabled & T_BIT) {
  302.       switch (texUnit->GenT.Mode) {
  303.          case GL_OBJECT_LINEAR:
  304.             texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
  305.             break;
  306.          case GL_EYE_LINEAR:
  307.             texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
  308.             break;
  309.          case GL_SPHERE_MAP:
  310.             texcoord[1] = ry * mInv + 0.5F;
  311.             break;
  312.          case GL_REFLECTION_MAP:
  313.             texcoord[1] = ry;
  314.             break;
  315.          case GL_NORMAL_MAP:
  316.             texcoord[1] = normal[1];
  317.             break;
  318.          default:
  319.             _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
  320.             return;
  321.       }
  322.    }
  323.  
  324.    if (texUnit->TexGenEnabled & R_BIT) {
  325.       switch (texUnit->GenR.Mode) {
  326.          case GL_OBJECT_LINEAR:
  327.             texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
  328.             break;
  329.          case GL_EYE_LINEAR:
  330.             texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
  331.             break;
  332.          case GL_REFLECTION_MAP:
  333.             texcoord[2] = rz;
  334.             break;
  335.          case GL_NORMAL_MAP:
  336.             texcoord[2] = normal[2];
  337.             break;
  338.          default:
  339.             _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
  340.             return;
  341.       }
  342.    }
  343.  
  344.    if (texUnit->TexGenEnabled & Q_BIT) {
  345.       switch (texUnit->GenQ.Mode) {
  346.          case GL_OBJECT_LINEAR:
  347.             texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
  348.             break;
  349.          case GL_EYE_LINEAR:
  350.             texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
  351.             break;
  352.          default:
  353.             _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
  354.             return;
  355.       }
  356.    }
  357. }
  358.  
  359.  
  360. /**
  361.  * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
  362.  * XXX some of this code (such as viewport xform, clip testing and setting
  363.  * of ctx->Current.Raster* fields) could get lifted up into the
  364.  * main/rasterpos.c code.
  365.  *
  366.  * \param vObj  vertex position in object space
  367.  */
  368. void
  369. _tnl_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
  370. {
  371.    if (ctx->VertexProgram._Enabled) {
  372.       /* XXX implement this */
  373.       _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
  374.       return;
  375.    }
  376.    else {
  377.       GLfloat eye[4], clip[4], ndc[3], d;
  378.       GLfloat *norm, eyenorm[3];
  379.       GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
  380.  
  381.       /* apply modelview matrix:  eye = MV * obj */
  382.       TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
  383.       /* apply projection matrix:  clip = Proj * eye */
  384.       TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
  385.  
  386.       /* clip to view volume. */
  387.       if (!ctx->Transform.DepthClamp) {
  388.          if (viewclip_point_z(clip) == 0) {
  389.             ctx->Current.RasterPosValid = GL_FALSE;
  390.             return;
  391.          }
  392.       }
  393.       if (!ctx->Transform.RasterPositionUnclipped) {
  394.          if (viewclip_point_xy(clip) == 0) {
  395.             ctx->Current.RasterPosValid = GL_FALSE;
  396.             return;
  397.          }
  398.       }
  399.  
  400.       /* clip to user clipping planes */
  401.       if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
  402.          ctx->Current.RasterPosValid = GL_FALSE;
  403.          return;
  404.       }
  405.  
  406.       /* ndc = clip / W */
  407.       d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
  408.       ndc[0] = clip[0] * d;
  409.       ndc[1] = clip[1] * d;
  410.       ndc[2] = clip[2] * d;
  411.       /* wincoord = viewport_mapping(ndc) */
  412.       ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
  413.                                    + ctx->Viewport._WindowMap.m[MAT_TX]);
  414.       ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
  415.                                    + ctx->Viewport._WindowMap.m[MAT_TY]);
  416.       ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
  417.                                    + ctx->Viewport._WindowMap.m[MAT_TZ])
  418.                                   / ctx->DrawBuffer->_DepthMaxF;
  419.       ctx->Current.RasterPos[3] = clip[3];
  420.  
  421.       if (ctx->Transform.DepthClamp) {
  422.          ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
  423.                                            ctx->Viewport.Near,
  424.                                            ctx->Viewport.Far);
  425.       }
  426.  
  427.       /* compute raster distance */
  428.       if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
  429.          ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
  430.       else
  431.          ctx->Current.RasterDistance =
  432.                         sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
  433.  
  434.       /* compute transformed normal vector (for lighting or texgen) */
  435.       if (ctx->_NeedEyeCoords) {
  436.          const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
  437.          TRANSFORM_NORMAL( eyenorm, objnorm, inv );
  438.          norm = eyenorm;
  439.       }
  440.       else {
  441.          norm = objnorm;
  442.       }
  443.  
  444.       /* update raster color */
  445.       if (ctx->Light.Enabled) {
  446.          /* lighting */
  447.          shade_rastpos( ctx, vObj, norm,
  448.                         ctx->Current.RasterColor,
  449.                         ctx->Current.RasterSecondaryColor );
  450.       }
  451.       else {
  452.          /* use current color */
  453.          COPY_4FV(ctx->Current.RasterColor,
  454.                   ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
  455.          COPY_4FV(ctx->Current.RasterSecondaryColor,
  456.                   ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
  457.       }
  458.  
  459.       /* texture coords */
  460.       {
  461.          GLuint u;
  462.          for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
  463.             GLfloat tc[4];
  464.             COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
  465.             if (ctx->Texture.Unit[u].TexGenEnabled) {
  466.                compute_texgen(ctx, vObj, eye, norm, u, tc);
  467.             }
  468.             TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
  469.                             ctx->TextureMatrixStack[u].Top->m, tc);
  470.          }
  471.       }
  472.  
  473.       ctx->Current.RasterPosValid = GL_TRUE;
  474.    }
  475.  
  476.    if (ctx->RenderMode == GL_SELECT) {
  477.       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
  478.    }
  479. }
  480.