Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Mesa 3-D graphics library
  3.  *
  4.  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the "Software"),
  8.  * to deal in the Software without restriction, including without limitation
  9.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10.  * and/or sell copies of the Software, and to permit persons to whom the
  11.  * Software is furnished to do so, subject to the following conditions:
  12.  *
  13.  * The above copyright notice and this permission notice shall be included
  14.  * in all copies or substantial portions of the Software.
  15.  *
  16.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  17.  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20.  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21.  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22.  * OTHER DEALINGS IN THE SOFTWARE.
  23.  */
  24.  
  25.  
  26. /*
  27.  * Antialiased Triangle rasterizers
  28.  */
  29.  
  30.  
  31. #include "main/glheader.h"
  32. #include "main/context.h"
  33. #include "main/colormac.h"
  34. #include "main/macros.h"
  35. #include "main/imports.h"
  36. #include "main/state.h"
  37. #include "s_aatriangle.h"
  38. #include "s_context.h"
  39. #include "s_span.h"
  40.  
  41.  
  42. /*
  43.  * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
  44.  * vertices and the given Z values.
  45.  * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
  46.  */
  47. static inline void
  48. compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
  49.               GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
  50. {
  51.    const GLfloat px = v1[0] - v0[0];
  52.    const GLfloat py = v1[1] - v0[1];
  53.    const GLfloat pz = z1 - z0;
  54.  
  55.    const GLfloat qx = v2[0] - v0[0];
  56.    const GLfloat qy = v2[1] - v0[1];
  57.    const GLfloat qz = z2 - z0;
  58.  
  59.    /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
  60.    const GLfloat a = py * qz - pz * qy;
  61.    const GLfloat b = pz * qx - px * qz;
  62.    const GLfloat c = px * qy - py * qx;
  63.    /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
  64.       on the distance of plane from origin and arbitrary "w" parallel
  65.       to the plane. */
  66.    /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
  67.       which is equal to "-d" below. */
  68.    const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
  69.  
  70.    plane[0] = a;
  71.    plane[1] = b;
  72.    plane[2] = c;
  73.    plane[3] = d;
  74. }
  75.  
  76.  
  77. /*
  78.  * Compute coefficients of a plane with a constant Z value.
  79.  */
  80. static inline void
  81. constant_plane(GLfloat value, GLfloat plane[4])
  82. {
  83.    plane[0] = 0.0;
  84.    plane[1] = 0.0;
  85.    plane[2] = -1.0;
  86.    plane[3] = value;
  87. }
  88.  
  89. #define CONSTANT_PLANE(VALUE, PLANE)    \
  90. do {                                    \
  91.    PLANE[0] = 0.0F;                     \
  92.    PLANE[1] = 0.0F;                     \
  93.    PLANE[2] = -1.0F;                    \
  94.    PLANE[3] = VALUE;                    \
  95. } while (0)
  96.  
  97.  
  98.  
  99. /*
  100.  * Solve plane equation for Z at (X,Y).
  101.  */
  102. static inline GLfloat
  103. solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
  104. {
  105.    ASSERT(plane[2] != 0.0F);
  106.    return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
  107. }
  108.  
  109.  
  110. #define SOLVE_PLANE(X, Y, PLANE) \
  111.    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
  112.  
  113.  
  114. /*
  115.  * Return 1 / solve_plane().
  116.  */
  117. static inline GLfloat
  118. solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
  119. {
  120.    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
  121.    if (denom == 0.0F)
  122.       return 0.0F;
  123.    else
  124.       return -plane[2] / denom;
  125. }
  126.  
  127.  
  128. /*
  129.  * Solve plane and return clamped GLchan value.
  130.  */
  131. static inline GLchan
  132. solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
  133. {
  134.    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
  135. #if CHAN_TYPE == GL_FLOAT
  136.    return CLAMP(z, 0.0F, CHAN_MAXF);
  137. #else
  138.    if (z < 0)
  139.       return 0;
  140.    else if (z > CHAN_MAX)
  141.       return CHAN_MAX;
  142.    return (GLchan) IROUND_POS(z);
  143. #endif
  144. }
  145.  
  146.  
  147. static inline GLfloat
  148. plane_dx(const GLfloat plane[4])
  149. {
  150.    return -plane[0] / plane[2];
  151. }
  152.  
  153. static inline GLfloat
  154. plane_dy(const GLfloat plane[4])
  155. {
  156.    return -plane[1] / plane[2];
  157. }
  158.  
  159.  
  160.  
  161. /*
  162.  * Compute how much (area) of the given pixel is inside the triangle.
  163.  * Vertices MUST be specified in counter-clockwise order.
  164.  * Return:  coverage in [0, 1].
  165.  */
  166. static GLfloat
  167. compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
  168.                   const GLfloat v2[3], GLint winx, GLint winy)
  169. {
  170.    /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
  171.     * Contributed by Ray Tice.
  172.     *
  173.     * Jitter sample positions -
  174.     * - average should be .5 in x & y for each column
  175.     * - each of the 16 rows and columns should be used once
  176.     * - the rectangle formed by the first four points
  177.     *   should contain the other points
  178.     * - the distrubition should be fairly even in any given direction
  179.     *
  180.     * The pattern drawn below isn't optimal, but it's better than a regular
  181.     * grid.  In the drawing, the center of each subpixel is surrounded by
  182.     * four dots.  The "x" marks the jittered position relative to the
  183.     * subpixel center.
  184.     */
  185. #define POS(a, b) (0.5+a*4+b)/16
  186.    static const GLfloat samples[16][2] = {
  187.       /* start with the four corners */
  188.       { POS(0, 2), POS(0, 0) },
  189.       { POS(3, 3), POS(0, 2) },
  190.       { POS(0, 0), POS(3, 1) },
  191.       { POS(3, 1), POS(3, 3) },
  192.       /* continue with interior samples */
  193.       { POS(1, 1), POS(0, 1) },
  194.       { POS(2, 0), POS(0, 3) },
  195.       { POS(0, 3), POS(1, 3) },
  196.       { POS(1, 2), POS(1, 0) },
  197.       { POS(2, 3), POS(1, 2) },
  198.       { POS(3, 2), POS(1, 1) },
  199.       { POS(0, 1), POS(2, 2) },
  200.       { POS(1, 0), POS(2, 1) },
  201.       { POS(2, 1), POS(2, 3) },
  202.       { POS(3, 0), POS(2, 0) },
  203.       { POS(1, 3), POS(3, 0) },
  204.       { POS(2, 2), POS(3, 2) }
  205.    };
  206.  
  207.    const GLfloat x = (GLfloat) winx;
  208.    const GLfloat y = (GLfloat) winy;
  209.    const GLfloat dx0 = v1[0] - v0[0];
  210.    const GLfloat dy0 = v1[1] - v0[1];
  211.    const GLfloat dx1 = v2[0] - v1[0];
  212.    const GLfloat dy1 = v2[1] - v1[1];
  213.    const GLfloat dx2 = v0[0] - v2[0];
  214.    const GLfloat dy2 = v0[1] - v2[1];
  215.    GLint stop = 4, i;
  216.    GLfloat insideCount = 16.0F;
  217.  
  218.    ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
  219.  
  220.    for (i = 0; i < stop; i++) {
  221.       const GLfloat sx = x + samples[i][0];
  222.       const GLfloat sy = y + samples[i][1];
  223.       /* cross product determines if sample is inside or outside each edge */
  224.       GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
  225.       /* Check if the sample is exactly on an edge.  If so, let cross be a
  226.        * positive or negative value depending on the direction of the edge.
  227.        */
  228.       if (cross == 0.0F)
  229.          cross = dx0 + dy0;
  230.       if (cross < 0.0F) {
  231.          /* sample point is outside first edge */
  232.          insideCount -= 1.0F;
  233.          stop = 16;
  234.       }
  235.       else {
  236.          /* sample point is inside first edge */
  237.          cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
  238.          if (cross == 0.0F)
  239.             cross = dx1 + dy1;
  240.          if (cross < 0.0F) {
  241.             /* sample point is outside second edge */
  242.             insideCount -= 1.0F;
  243.             stop = 16;
  244.          }
  245.          else {
  246.             /* sample point is inside first and second edges */
  247.             cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));
  248.             if (cross == 0.0F)
  249.                cross = dx2 + dy2;
  250.             if (cross < 0.0F) {
  251.                /* sample point is outside third edge */
  252.                insideCount -= 1.0F;
  253.                stop = 16;
  254.             }
  255.          }
  256.       }
  257.    }
  258.    if (stop == 4)
  259.       return 1.0F;
  260.    else
  261.       return insideCount * (1.0F / 16.0F);
  262. }
  263.  
  264.  
  265.  
  266. static void
  267. rgba_aa_tri(struct gl_context *ctx,
  268.             const SWvertex *v0,
  269.             const SWvertex *v1,
  270.             const SWvertex *v2)
  271. {
  272. #define DO_Z
  273. #include "s_aatritemp.h"
  274. }
  275.  
  276.  
  277. static void
  278. general_aa_tri(struct gl_context *ctx,
  279.                const SWvertex *v0,
  280.                const SWvertex *v1,
  281.                const SWvertex *v2)
  282. {
  283. #define DO_Z
  284. #define DO_ATTRIBS
  285. #include "s_aatritemp.h"
  286. }
  287.  
  288.  
  289.  
  290. /*
  291.  * Examine GL state and set swrast->Triangle to an
  292.  * appropriate antialiased triangle rasterizer function.
  293.  */
  294. void
  295. _swrast_set_aa_triangle_function(struct gl_context *ctx)
  296. {
  297.    SWcontext *swrast = SWRAST_CONTEXT(ctx);
  298.  
  299.    ASSERT(ctx->Polygon.SmoothFlag);
  300.  
  301.    if (ctx->Texture._EnabledCoordUnits != 0
  302.        || _swrast_use_fragment_program(ctx)
  303.        || swrast->_FogEnabled
  304.        || _mesa_need_secondary_color(ctx)) {
  305.       SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
  306.    }
  307.    else {
  308.       SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
  309.    }
  310.  
  311.    ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
  312. }
  313.