Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2011 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21.  * IN THE SOFTWARE.
  22.  */
  23.  
  24. #include "brw_vec4.h"
  25. #include "brw_cfg.h"
  26.  
  27. extern "C" {
  28. #include "main/macros.h"
  29. #include "main/shaderobj.h"
  30. #include "program/prog_print.h"
  31. #include "program/prog_parameter.h"
  32. }
  33.  
  34. #define MAX_INSTRUCTION (1 << 30)
  35.  
  36. using namespace brw;
  37.  
  38. namespace brw {
  39.  
  40. /**
  41.  * Common helper for constructing swizzles.  When only a subset of
  42.  * channels of a vec4 are used, we don't want to reference the other
  43.  * channels, as that will tell optimization passes that those other
  44.  * channels are used.
  45.  */
  46. unsigned
  47. swizzle_for_size(int size)
  48. {
  49.    static const unsigned size_swizzles[4] = {
  50.       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
  51.       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
  52.       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
  53.       BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
  54.    };
  55.  
  56.    assert((size >= 1) && (size <= 4));
  57.    return size_swizzles[size - 1];
  58. }
  59.  
  60. void
  61. src_reg::init()
  62. {
  63.    memset(this, 0, sizeof(*this));
  64.  
  65.    this->file = BAD_FILE;
  66. }
  67.  
  68. src_reg::src_reg(register_file file, int reg, const glsl_type *type)
  69. {
  70.    init();
  71.  
  72.    this->file = file;
  73.    this->reg = reg;
  74.    if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
  75.       this->swizzle = swizzle_for_size(type->vector_elements);
  76.    else
  77.       this->swizzle = SWIZZLE_XYZW;
  78. }
  79.  
  80. /** Generic unset register constructor. */
  81. src_reg::src_reg()
  82. {
  83.    init();
  84. }
  85.  
  86. src_reg::src_reg(float f)
  87. {
  88.    init();
  89.  
  90.    this->file = IMM;
  91.    this->type = BRW_REGISTER_TYPE_F;
  92.    this->imm.f = f;
  93. }
  94.  
  95. src_reg::src_reg(uint32_t u)
  96. {
  97.    init();
  98.  
  99.    this->file = IMM;
  100.    this->type = BRW_REGISTER_TYPE_UD;
  101.    this->imm.u = u;
  102. }
  103.  
  104. src_reg::src_reg(int32_t i)
  105. {
  106.    init();
  107.  
  108.    this->file = IMM;
  109.    this->type = BRW_REGISTER_TYPE_D;
  110.    this->imm.i = i;
  111. }
  112.  
  113. src_reg::src_reg(dst_reg reg)
  114. {
  115.    init();
  116.  
  117.    this->file = reg.file;
  118.    this->reg = reg.reg;
  119.    this->reg_offset = reg.reg_offset;
  120.    this->type = reg.type;
  121.    this->reladdr = reg.reladdr;
  122.    this->fixed_hw_reg = reg.fixed_hw_reg;
  123.  
  124.    int swizzles[4];
  125.    int next_chan = 0;
  126.    int last = 0;
  127.  
  128.    for (int i = 0; i < 4; i++) {
  129.       if (!(reg.writemask & (1 << i)))
  130.          continue;
  131.  
  132.       swizzles[next_chan++] = last = i;
  133.    }
  134.  
  135.    for (; next_chan < 4; next_chan++) {
  136.       swizzles[next_chan] = last;
  137.    }
  138.  
  139.    this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
  140.                                 swizzles[2], swizzles[3]);
  141. }
  142.  
  143. void
  144. dst_reg::init()
  145. {
  146.    memset(this, 0, sizeof(*this));
  147.    this->file = BAD_FILE;
  148.    this->writemask = WRITEMASK_XYZW;
  149. }
  150.  
  151. dst_reg::dst_reg()
  152. {
  153.    init();
  154. }
  155.  
  156. dst_reg::dst_reg(register_file file, int reg)
  157. {
  158.    init();
  159.  
  160.    this->file = file;
  161.    this->reg = reg;
  162. }
  163.  
  164. dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
  165.                  int writemask)
  166. {
  167.    init();
  168.  
  169.    this->file = file;
  170.    this->reg = reg;
  171.    this->type = brw_type_for_base_type(type);
  172.    this->writemask = writemask;
  173. }
  174.  
  175. dst_reg::dst_reg(struct brw_reg reg)
  176. {
  177.    init();
  178.  
  179.    this->file = HW_REG;
  180.    this->fixed_hw_reg = reg;
  181. }
  182.  
  183. dst_reg::dst_reg(src_reg reg)
  184. {
  185.    init();
  186.  
  187.    this->file = reg.file;
  188.    this->reg = reg.reg;
  189.    this->reg_offset = reg.reg_offset;
  190.    this->type = reg.type;
  191.    /* How should we do writemasking when converting from a src_reg?  It seems
  192.     * pretty obvious that for src.xxxx the caller wants to write to src.x, but
  193.     * what about for src.wx?  Just special-case src.xxxx for now.
  194.     */
  195.    if (reg.swizzle == BRW_SWIZZLE_XXXX)
  196.       this->writemask = WRITEMASK_X;
  197.    else
  198.       this->writemask = WRITEMASK_XYZW;
  199.    this->reladdr = reg.reladdr;
  200.    this->fixed_hw_reg = reg.fixed_hw_reg;
  201. }
  202.  
  203. bool
  204. vec4_instruction::is_send_from_grf()
  205. {
  206.    switch (opcode) {
  207.    case SHADER_OPCODE_SHADER_TIME_ADD:
  208.    case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
  209.       return true;
  210.    default:
  211.       return false;
  212.    }
  213. }
  214.  
  215. bool
  216. vec4_visitor::can_do_source_mods(vec4_instruction *inst)
  217. {
  218.    if (brw->gen == 6 && inst->is_math())
  219.       return false;
  220.  
  221.    if (inst->is_send_from_grf())
  222.       return false;
  223.  
  224.    return true;
  225. }
  226.  
  227. /**
  228.  * Returns how many MRFs an opcode will write over.
  229.  *
  230.  * Note that this is not the 0 or 1 implied writes in an actual gen
  231.  * instruction -- the generate_* functions generate additional MOVs
  232.  * for setup.
  233.  */
  234. int
  235. vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
  236. {
  237.    if (inst->mlen == 0)
  238.       return 0;
  239.  
  240.    switch (inst->opcode) {
  241.    case SHADER_OPCODE_RCP:
  242.    case SHADER_OPCODE_RSQ:
  243.    case SHADER_OPCODE_SQRT:
  244.    case SHADER_OPCODE_EXP2:
  245.    case SHADER_OPCODE_LOG2:
  246.    case SHADER_OPCODE_SIN:
  247.    case SHADER_OPCODE_COS:
  248.       return 1;
  249.    case SHADER_OPCODE_INT_QUOTIENT:
  250.    case SHADER_OPCODE_INT_REMAINDER:
  251.    case SHADER_OPCODE_POW:
  252.       return 2;
  253.    case VS_OPCODE_URB_WRITE:
  254.       return 1;
  255.    case VS_OPCODE_PULL_CONSTANT_LOAD:
  256.       return 2;
  257.    case VS_OPCODE_SCRATCH_READ:
  258.       return 2;
  259.    case VS_OPCODE_SCRATCH_WRITE:
  260.       return 3;
  261.    case SHADER_OPCODE_SHADER_TIME_ADD:
  262.       return 0;
  263.    case SHADER_OPCODE_TEX:
  264.    case SHADER_OPCODE_TXL:
  265.    case SHADER_OPCODE_TXD:
  266.    case SHADER_OPCODE_TXF:
  267.    case SHADER_OPCODE_TXF_MS:
  268.    case SHADER_OPCODE_TXS:
  269.       return inst->header_present ? 1 : 0;
  270.    default:
  271.       assert(!"not reached");
  272.       return inst->mlen;
  273.    }
  274. }
  275.  
  276. bool
  277. src_reg::equals(src_reg *r)
  278. {
  279.    return (file == r->file &&
  280.            reg == r->reg &&
  281.            reg_offset == r->reg_offset &&
  282.            type == r->type &&
  283.            negate == r->negate &&
  284.            abs == r->abs &&
  285.            swizzle == r->swizzle &&
  286.            !reladdr && !r->reladdr &&
  287.            memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
  288.                   sizeof(fixed_hw_reg)) == 0 &&
  289.            imm.u == r->imm.u);
  290. }
  291.  
  292. /**
  293.  * Must be called after calculate_live_intervales() to remove unused
  294.  * writes to registers -- register allocation will fail otherwise
  295.  * because something deffed but not used won't be considered to
  296.  * interfere with other regs.
  297.  */
  298. bool
  299. vec4_visitor::dead_code_eliminate()
  300. {
  301.    bool progress = false;
  302.    int pc = 0;
  303.  
  304.    calculate_live_intervals();
  305.  
  306.    foreach_list_safe(node, &this->instructions) {
  307.       vec4_instruction *inst = (vec4_instruction *)node;
  308.  
  309.       if (inst->dst.file == GRF) {
  310.          assert(this->virtual_grf_end[inst->dst.reg] >= pc);
  311.          if (this->virtual_grf_end[inst->dst.reg] == pc) {
  312.             inst->remove();
  313.             progress = true;
  314.          }
  315.       }
  316.  
  317.       pc++;
  318.    }
  319.  
  320.    if (progress)
  321.       live_intervals_valid = false;
  322.  
  323.    return progress;
  324. }
  325.  
  326. void
  327. vec4_visitor::split_uniform_registers()
  328. {
  329.    /* Prior to this, uniforms have been in an array sized according to
  330.     * the number of vector uniforms present, sparsely filled (so an
  331.     * aggregate results in reg indices being skipped over).  Now we're
  332.     * going to cut those aggregates up so each .reg index is one
  333.     * vector.  The goal is to make elimination of unused uniform
  334.     * components easier later.
  335.     */
  336.    foreach_list(node, &this->instructions) {
  337.       vec4_instruction *inst = (vec4_instruction *)node;
  338.  
  339.       for (int i = 0 ; i < 3; i++) {
  340.          if (inst->src[i].file != UNIFORM)
  341.             continue;
  342.  
  343.          assert(!inst->src[i].reladdr);
  344.  
  345.          inst->src[i].reg += inst->src[i].reg_offset;
  346.          inst->src[i].reg_offset = 0;
  347.       }
  348.    }
  349.  
  350.    /* Update that everything is now vector-sized. */
  351.    for (int i = 0; i < this->uniforms; i++) {
  352.       this->uniform_size[i] = 1;
  353.    }
  354. }
  355.  
  356. void
  357. vec4_visitor::pack_uniform_registers()
  358. {
  359.    bool uniform_used[this->uniforms];
  360.    int new_loc[this->uniforms];
  361.    int new_chan[this->uniforms];
  362.  
  363.    memset(uniform_used, 0, sizeof(uniform_used));
  364.    memset(new_loc, 0, sizeof(new_loc));
  365.    memset(new_chan, 0, sizeof(new_chan));
  366.  
  367.    /* Find which uniform vectors are actually used by the program.  We
  368.     * expect unused vector elements when we've moved array access out
  369.     * to pull constants, and from some GLSL code generators like wine.
  370.     */
  371.    foreach_list(node, &this->instructions) {
  372.       vec4_instruction *inst = (vec4_instruction *)node;
  373.  
  374.       for (int i = 0 ; i < 3; i++) {
  375.          if (inst->src[i].file != UNIFORM)
  376.             continue;
  377.  
  378.          uniform_used[inst->src[i].reg] = true;
  379.       }
  380.    }
  381.  
  382.    int new_uniform_count = 0;
  383.  
  384.    /* Now, figure out a packing of the live uniform vectors into our
  385.     * push constants.
  386.     */
  387.    for (int src = 0; src < uniforms; src++) {
  388.       int size = this->uniform_vector_size[src];
  389.  
  390.       if (!uniform_used[src]) {
  391.          this->uniform_vector_size[src] = 0;
  392.          continue;
  393.       }
  394.  
  395.       int dst;
  396.       /* Find the lowest place we can slot this uniform in. */
  397.       for (dst = 0; dst < src; dst++) {
  398.          if (this->uniform_vector_size[dst] + size <= 4)
  399.             break;
  400.       }
  401.  
  402.       if (src == dst) {
  403.          new_loc[src] = dst;
  404.          new_chan[src] = 0;
  405.       } else {
  406.          new_loc[src] = dst;
  407.          new_chan[src] = this->uniform_vector_size[dst];
  408.  
  409.          /* Move the references to the data */
  410.          for (int j = 0; j < size; j++) {
  411.             prog_data->param[dst * 4 + new_chan[src] + j] =
  412.                prog_data->param[src * 4 + j];
  413.          }
  414.  
  415.          this->uniform_vector_size[dst] += size;
  416.          this->uniform_vector_size[src] = 0;
  417.       }
  418.  
  419.       new_uniform_count = MAX2(new_uniform_count, dst + 1);
  420.    }
  421.  
  422.    this->uniforms = new_uniform_count;
  423.  
  424.    /* Now, update the instructions for our repacked uniforms. */
  425.    foreach_list(node, &this->instructions) {
  426.       vec4_instruction *inst = (vec4_instruction *)node;
  427.  
  428.       for (int i = 0 ; i < 3; i++) {
  429.          int src = inst->src[i].reg;
  430.  
  431.          if (inst->src[i].file != UNIFORM)
  432.             continue;
  433.  
  434.          inst->src[i].reg = new_loc[src];
  435.  
  436.          int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
  437.          int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
  438.          int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
  439.          int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
  440.          inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
  441.       }
  442.    }
  443. }
  444.  
  445. bool
  446. src_reg::is_zero() const
  447. {
  448.    if (file != IMM)
  449.       return false;
  450.  
  451.    if (type == BRW_REGISTER_TYPE_F) {
  452.       return imm.f == 0.0;
  453.    } else {
  454.       return imm.i == 0;
  455.    }
  456. }
  457.  
  458. bool
  459. src_reg::is_one() const
  460. {
  461.    if (file != IMM)
  462.       return false;
  463.  
  464.    if (type == BRW_REGISTER_TYPE_F) {
  465.       return imm.f == 1.0;
  466.    } else {
  467.       return imm.i == 1;
  468.    }
  469. }
  470.  
  471. /**
  472.  * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
  473.  *
  474.  * While GLSL IR also performs this optimization, we end up with it in
  475.  * our instruction stream for a couple of reasons.  One is that we
  476.  * sometimes generate silly instructions, for example in array access
  477.  * where we'll generate "ADD offset, index, base" even if base is 0.
  478.  * The other is that GLSL IR's constant propagation doesn't track the
  479.  * components of aggregates, so some VS patterns (initialize matrix to
  480.  * 0, accumulate in vertex blending factors) end up breaking down to
  481.  * instructions involving 0.
  482.  */
  483. bool
  484. vec4_visitor::opt_algebraic()
  485. {
  486.    bool progress = false;
  487.  
  488.    foreach_list(node, &this->instructions) {
  489.       vec4_instruction *inst = (vec4_instruction *)node;
  490.  
  491.       switch (inst->opcode) {
  492.       case BRW_OPCODE_ADD:
  493.          if (inst->src[1].is_zero()) {
  494.             inst->opcode = BRW_OPCODE_MOV;
  495.             inst->src[1] = src_reg();
  496.             progress = true;
  497.          }
  498.          break;
  499.  
  500.       case BRW_OPCODE_MUL:
  501.          if (inst->src[1].is_zero()) {
  502.             inst->opcode = BRW_OPCODE_MOV;
  503.             switch (inst->src[0].type) {
  504.             case BRW_REGISTER_TYPE_F:
  505.                inst->src[0] = src_reg(0.0f);
  506.                break;
  507.             case BRW_REGISTER_TYPE_D:
  508.                inst->src[0] = src_reg(0);
  509.                break;
  510.             case BRW_REGISTER_TYPE_UD:
  511.                inst->src[0] = src_reg(0u);
  512.                break;
  513.             default:
  514.                assert(!"not reached");
  515.                inst->src[0] = src_reg(0.0f);
  516.                break;
  517.             }
  518.             inst->src[1] = src_reg();
  519.             progress = true;
  520.          } else if (inst->src[1].is_one()) {
  521.             inst->opcode = BRW_OPCODE_MOV;
  522.             inst->src[1] = src_reg();
  523.             progress = true;
  524.          }
  525.          break;
  526.       default:
  527.          break;
  528.       }
  529.    }
  530.  
  531.    if (progress)
  532.       this->live_intervals_valid = false;
  533.  
  534.    return progress;
  535. }
  536.  
  537. /**
  538.  * Only a limited number of hardware registers may be used for push
  539.  * constants, so this turns access to the overflowed constants into
  540.  * pull constants.
  541.  */
  542. void
  543. vec4_visitor::move_push_constants_to_pull_constants()
  544. {
  545.    int pull_constant_loc[this->uniforms];
  546.  
  547.    /* Only allow 32 registers (256 uniform components) as push constants,
  548.     * which is the limit on gen6.
  549.     */
  550.    int max_uniform_components = 32 * 8;
  551.    if (this->uniforms * 4 <= max_uniform_components)
  552.       return;
  553.  
  554.    /* Make some sort of choice as to which uniforms get sent to pull
  555.     * constants.  We could potentially do something clever here like
  556.     * look for the most infrequently used uniform vec4s, but leave
  557.     * that for later.
  558.     */
  559.    for (int i = 0; i < this->uniforms * 4; i += 4) {
  560.       pull_constant_loc[i / 4] = -1;
  561.  
  562.       if (i >= max_uniform_components) {
  563.          const float **values = &prog_data->param[i];
  564.  
  565.          /* Try to find an existing copy of this uniform in the pull
  566.           * constants if it was part of an array access already.
  567.           */
  568.          for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
  569.             int matches;
  570.  
  571.             for (matches = 0; matches < 4; matches++) {
  572.                if (prog_data->pull_param[j + matches] != values[matches])
  573.                   break;
  574.             }
  575.  
  576.             if (matches == 4) {
  577.                pull_constant_loc[i / 4] = j / 4;
  578.                break;
  579.             }
  580.          }
  581.  
  582.          if (pull_constant_loc[i / 4] == -1) {
  583.             assert(prog_data->nr_pull_params % 4 == 0);
  584.             pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
  585.  
  586.             for (int j = 0; j < 4; j++) {
  587.                prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
  588.             }
  589.          }
  590.       }
  591.    }
  592.  
  593.    /* Now actually rewrite usage of the things we've moved to pull
  594.     * constants.
  595.     */
  596.    foreach_list_safe(node, &this->instructions) {
  597.       vec4_instruction *inst = (vec4_instruction *)node;
  598.  
  599.       for (int i = 0 ; i < 3; i++) {
  600.          if (inst->src[i].file != UNIFORM ||
  601.              pull_constant_loc[inst->src[i].reg] == -1)
  602.             continue;
  603.  
  604.          int uniform = inst->src[i].reg;
  605.  
  606.          dst_reg temp = dst_reg(this, glsl_type::vec4_type);
  607.  
  608.          emit_pull_constant_load(inst, temp, inst->src[i],
  609.                                  pull_constant_loc[uniform]);
  610.  
  611.          inst->src[i].file = temp.file;
  612.          inst->src[i].reg = temp.reg;
  613.          inst->src[i].reg_offset = temp.reg_offset;
  614.          inst->src[i].reladdr = NULL;
  615.       }
  616.    }
  617.  
  618.    /* Repack push constants to remove the now-unused ones. */
  619.    pack_uniform_registers();
  620. }
  621.  
  622. /**
  623.  * Sets the dependency control fields on instructions after register
  624.  * allocation and before the generator is run.
  625.  *
  626.  * When you have a sequence of instructions like:
  627.  *
  628.  * DP4 temp.x vertex uniform[0]
  629.  * DP4 temp.y vertex uniform[0]
  630.  * DP4 temp.z vertex uniform[0]
  631.  * DP4 temp.w vertex uniform[0]
  632.  *
  633.  * The hardware doesn't know that it can actually run the later instructions
  634.  * while the previous ones are in flight, producing stalls.  However, we have
  635.  * manual fields we can set in the instructions that let it do so.
  636.  */
  637. void
  638. vec4_visitor::opt_set_dependency_control()
  639. {
  640.    vec4_instruction *last_grf_write[BRW_MAX_GRF];
  641.    uint8_t grf_channels_written[BRW_MAX_GRF];
  642.    vec4_instruction *last_mrf_write[BRW_MAX_GRF];
  643.    uint8_t mrf_channels_written[BRW_MAX_GRF];
  644.  
  645.    cfg_t cfg(this);
  646.  
  647.    assert(prog_data->total_grf ||
  648.           !"Must be called after register allocation");
  649.  
  650.    for (int i = 0; i < cfg.num_blocks; i++) {
  651.       bblock_t *bblock = cfg.blocks[i];
  652.       vec4_instruction *inst;
  653.  
  654.       memset(last_grf_write, 0, sizeof(last_grf_write));
  655.       memset(last_mrf_write, 0, sizeof(last_mrf_write));
  656.  
  657.       for (inst = (vec4_instruction *)bblock->start;
  658.            inst != (vec4_instruction *)bblock->end->next;
  659.            inst = (vec4_instruction *)inst->next) {
  660.          /* If we read from a register that we were doing dependency control
  661.           * on, don't do dependency control across the read.
  662.           */
  663.          for (int i = 0; i < 3; i++) {
  664.             int reg = inst->src[i].reg + inst->src[i].reg_offset;
  665.             if (inst->src[i].file == GRF) {
  666.                last_grf_write[reg] = NULL;
  667.             } else if (inst->src[i].file == HW_REG) {
  668.                memset(last_grf_write, 0, sizeof(last_grf_write));
  669.                break;
  670.             }
  671.             assert(inst->src[i].file != MRF);
  672.          }
  673.  
  674.          /* In the presence of send messages, totally interrupt dependency
  675.           * control.  They're long enough that the chance of dependency
  676.           * control around them just doesn't matter.
  677.           */
  678.          if (inst->mlen) {
  679.             memset(last_grf_write, 0, sizeof(last_grf_write));
  680.             memset(last_mrf_write, 0, sizeof(last_mrf_write));
  681.             continue;
  682.          }
  683.  
  684.          /* It looks like setting dependency control on a predicated
  685.           * instruction hangs the GPU.
  686.           */
  687.          if (inst->predicate) {
  688.             memset(last_grf_write, 0, sizeof(last_grf_write));
  689.             memset(last_mrf_write, 0, sizeof(last_mrf_write));
  690.             continue;
  691.          }
  692.  
  693.          /* Now, see if we can do dependency control for this instruction
  694.           * against a previous one writing to its destination.
  695.           */
  696.          int reg = inst->dst.reg + inst->dst.reg_offset;
  697.          if (inst->dst.file == GRF) {
  698.             if (last_grf_write[reg] &&
  699.                 !(inst->dst.writemask & grf_channels_written[reg])) {
  700.                last_grf_write[reg]->no_dd_clear = true;
  701.                inst->no_dd_check = true;
  702.             } else {
  703.                grf_channels_written[reg] = 0;
  704.             }
  705.  
  706.             last_grf_write[reg] = inst;
  707.             grf_channels_written[reg] |= inst->dst.writemask;
  708.          } else if (inst->dst.file == MRF) {
  709.             if (last_mrf_write[reg] &&
  710.                 !(inst->dst.writemask & mrf_channels_written[reg])) {
  711.                last_mrf_write[reg]->no_dd_clear = true;
  712.                inst->no_dd_check = true;
  713.             } else {
  714.                mrf_channels_written[reg] = 0;
  715.             }
  716.  
  717.             last_mrf_write[reg] = inst;
  718.             mrf_channels_written[reg] |= inst->dst.writemask;
  719.          } else if (inst->dst.reg == HW_REG) {
  720.             if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
  721.                memset(last_grf_write, 0, sizeof(last_grf_write));
  722.             if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
  723.                memset(last_mrf_write, 0, sizeof(last_mrf_write));
  724.          }
  725.       }
  726.    }
  727. }
  728.  
  729. bool
  730. vec4_instruction::can_reswizzle_dst(int dst_writemask,
  731.                                     int swizzle,
  732.                                     int swizzle_mask)
  733. {
  734.    /* If this instruction sets anything not referenced by swizzle, then we'd
  735.     * totally break it when we reswizzle.
  736.     */
  737.    if (dst.writemask & ~swizzle_mask)
  738.       return false;
  739.  
  740.    switch (opcode) {
  741.    case BRW_OPCODE_DP4:
  742.    case BRW_OPCODE_DP3:
  743.    case BRW_OPCODE_DP2:
  744.       return true;
  745.    default:
  746.       /* Check if there happens to be no reswizzling required. */
  747.       for (int c = 0; c < 4; c++) {
  748.          int bit = 1 << BRW_GET_SWZ(swizzle, c);
  749.          /* Skip components of the swizzle not used by the dst. */
  750.          if (!(dst_writemask & (1 << c)))
  751.             continue;
  752.  
  753.          /* We don't do the reswizzling yet, so just sanity check that we
  754.           * don't have to.
  755.           */
  756.          if (bit != (1 << c))
  757.             return false;
  758.       }
  759.       return true;
  760.    }
  761. }
  762.  
  763. /**
  764.  * For any channels in the swizzle's source that were populated by this
  765.  * instruction, rewrite the instruction to put the appropriate result directly
  766.  * in those channels.
  767.  *
  768.  * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
  769.  */
  770. void
  771. vec4_instruction::reswizzle_dst(int dst_writemask, int swizzle)
  772. {
  773.    int new_writemask = 0;
  774.  
  775.    switch (opcode) {
  776.    case BRW_OPCODE_DP4:
  777.    case BRW_OPCODE_DP3:
  778.    case BRW_OPCODE_DP2:
  779.       for (int c = 0; c < 4; c++) {
  780.          int bit = 1 << BRW_GET_SWZ(swizzle, c);
  781.          /* Skip components of the swizzle not used by the dst. */
  782.          if (!(dst_writemask & (1 << c)))
  783.             continue;
  784.          /* If we were populating this component, then populate the
  785.           * corresponding channel of the new dst.
  786.           */
  787.          if (dst.writemask & bit)
  788.             new_writemask |= (1 << c);
  789.       }
  790.       dst.writemask = new_writemask;
  791.       break;
  792.    default:
  793.       for (int c = 0; c < 4; c++) {
  794.          /* Skip components of the swizzle not used by the dst. */
  795.          if (!(dst_writemask & (1 << c)))
  796.             continue;
  797.  
  798.          /* We don't do the reswizzling yet, so just sanity check that we
  799.           * don't have to.
  800.           */
  801.          assert((1 << BRW_GET_SWZ(swizzle, c)) == (1 << c));
  802.       }
  803.       break;
  804.    }
  805. }
  806.  
  807. /*
  808.  * Tries to reduce extra MOV instructions by taking temporary GRFs that get
  809.  * just written and then MOVed into another reg and making the original write
  810.  * of the GRF write directly to the final destination instead.
  811.  */
  812. bool
  813. vec4_visitor::opt_register_coalesce()
  814. {
  815.    bool progress = false;
  816.    int next_ip = 0;
  817.  
  818.    calculate_live_intervals();
  819.  
  820.    foreach_list_safe(node, &this->instructions) {
  821.       vec4_instruction *inst = (vec4_instruction *)node;
  822.  
  823.       int ip = next_ip;
  824.       next_ip++;
  825.  
  826.       if (inst->opcode != BRW_OPCODE_MOV ||
  827.           (inst->dst.file != GRF && inst->dst.file != MRF) ||
  828.           inst->predicate ||
  829.           inst->src[0].file != GRF ||
  830.           inst->dst.type != inst->src[0].type ||
  831.           inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
  832.          continue;
  833.  
  834.       bool to_mrf = (inst->dst.file == MRF);
  835.  
  836.       /* Can't coalesce this GRF if someone else was going to
  837.        * read it later.
  838.        */
  839.       if (this->virtual_grf_end[inst->src[0].reg] > ip)
  840.          continue;
  841.  
  842.       /* We need to check interference with the final destination between this
  843.        * instruction and the earliest instruction involved in writing the GRF
  844.        * we're eliminating.  To do that, keep track of which of our source
  845.        * channels we've seen initialized.
  846.        */
  847.       bool chans_needed[4] = {false, false, false, false};
  848.       int chans_remaining = 0;
  849.       int swizzle_mask = 0;
  850.       for (int i = 0; i < 4; i++) {
  851.          int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
  852.  
  853.          if (!(inst->dst.writemask & (1 << i)))
  854.             continue;
  855.  
  856.          swizzle_mask |= (1 << chan);
  857.  
  858.          if (!chans_needed[chan]) {
  859.             chans_needed[chan] = true;
  860.             chans_remaining++;
  861.          }
  862.       }
  863.  
  864.       /* Now walk up the instruction stream trying to see if we can rewrite
  865.        * everything writing to the temporary to write into the destination
  866.        * instead.
  867.        */
  868.       vec4_instruction *scan_inst;
  869.       for (scan_inst = (vec4_instruction *)inst->prev;
  870.            scan_inst->prev != NULL;
  871.            scan_inst = (vec4_instruction *)scan_inst->prev) {
  872.          if (scan_inst->dst.file == GRF &&
  873.              scan_inst->dst.reg == inst->src[0].reg &&
  874.              scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
  875.             /* Found something writing to the reg we want to coalesce away. */
  876.             if (to_mrf) {
  877.                /* SEND instructions can't have MRF as a destination. */
  878.                if (scan_inst->mlen)
  879.                   break;
  880.  
  881.                if (brw->gen == 6) {
  882.                   /* gen6 math instructions must have the destination be
  883.                    * GRF, so no compute-to-MRF for them.
  884.                    */
  885.                   if (scan_inst->is_math()) {
  886.                      break;
  887.                   }
  888.                }
  889.             }
  890.  
  891.             /* If we can't handle the swizzle, bail. */
  892.             if (!scan_inst->can_reswizzle_dst(inst->dst.writemask,
  893.                                               inst->src[0].swizzle,
  894.                                               swizzle_mask)) {
  895.                break;
  896.             }
  897.  
  898.             /* Mark which channels we found unconditional writes for. */
  899.             if (!scan_inst->predicate) {
  900.                for (int i = 0; i < 4; i++) {
  901.                   if (scan_inst->dst.writemask & (1 << i) &&
  902.                       chans_needed[i]) {
  903.                      chans_needed[i] = false;
  904.                      chans_remaining--;
  905.                   }
  906.                }
  907.             }
  908.  
  909.             if (chans_remaining == 0)
  910.                break;
  911.          }
  912.  
  913.          /* We don't handle flow control here.  Most computation of values
  914.           * that could be coalesced happens just before their use.
  915.           */
  916.          if (scan_inst->opcode == BRW_OPCODE_DO ||
  917.              scan_inst->opcode == BRW_OPCODE_WHILE ||
  918.              scan_inst->opcode == BRW_OPCODE_ELSE ||
  919.              scan_inst->opcode == BRW_OPCODE_ENDIF) {
  920.             break;
  921.          }
  922.  
  923.          /* You can't read from an MRF, so if someone else reads our MRF's
  924.           * source GRF that we wanted to rewrite, that stops us.  If it's a
  925.           * GRF we're trying to coalesce to, we don't actually handle
  926.           * rewriting sources so bail in that case as well.
  927.           */
  928.          bool interfered = false;
  929.          for (int i = 0; i < 3; i++) {
  930.             if (scan_inst->src[i].file == GRF &&
  931.                 scan_inst->src[i].reg == inst->src[0].reg &&
  932.                 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
  933.                interfered = true;
  934.             }
  935.          }
  936.          if (interfered)
  937.             break;
  938.  
  939.          /* If somebody else writes our destination here, we can't coalesce
  940.           * before that.
  941.           */
  942.          if (scan_inst->dst.file == inst->dst.file &&
  943.              scan_inst->dst.reg == inst->dst.reg) {
  944.             break;
  945.          }
  946.  
  947.          /* Check for reads of the register we're trying to coalesce into.  We
  948.           * can't go rewriting instructions above that to put some other value
  949.           * in the register instead.
  950.           */
  951.          if (to_mrf && scan_inst->mlen > 0) {
  952.             if (inst->dst.reg >= scan_inst->base_mrf &&
  953.                 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
  954.                break;
  955.             }
  956.          } else {
  957.             for (int i = 0; i < 3; i++) {
  958.                if (scan_inst->src[i].file == inst->dst.file &&
  959.                    scan_inst->src[i].reg == inst->dst.reg &&
  960.                    scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
  961.                   interfered = true;
  962.                }
  963.             }
  964.             if (interfered)
  965.                break;
  966.          }
  967.       }
  968.  
  969.       if (chans_remaining == 0) {
  970.          /* If we've made it here, we have an MOV we want to coalesce out, and
  971.           * a scan_inst pointing to the earliest instruction involved in
  972.           * computing the value.  Now go rewrite the instruction stream
  973.           * between the two.
  974.           */
  975.  
  976.          while (scan_inst != inst) {
  977.             if (scan_inst->dst.file == GRF &&
  978.                 scan_inst->dst.reg == inst->src[0].reg &&
  979.                 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
  980.                scan_inst->reswizzle_dst(inst->dst.writemask,
  981.                                         inst->src[0].swizzle);
  982.                scan_inst->dst.file = inst->dst.file;
  983.                scan_inst->dst.reg = inst->dst.reg;
  984.                scan_inst->dst.reg_offset = inst->dst.reg_offset;
  985.                scan_inst->saturate |= inst->saturate;
  986.             }
  987.             scan_inst = (vec4_instruction *)scan_inst->next;
  988.          }
  989.          inst->remove();
  990.          progress = true;
  991.       }
  992.    }
  993.  
  994.    if (progress)
  995.       live_intervals_valid = false;
  996.  
  997.    return progress;
  998. }
  999.  
  1000. /**
  1001.  * Splits virtual GRFs requesting more than one contiguous physical register.
  1002.  *
  1003.  * We initially create large virtual GRFs for temporary structures, arrays,
  1004.  * and matrices, so that the dereference visitor functions can add reg_offsets
  1005.  * to work their way down to the actual member being accessed.  But when it
  1006.  * comes to optimization, we'd like to treat each register as individual
  1007.  * storage if possible.
  1008.  *
  1009.  * So far, the only thing that might prevent splitting is a send message from
  1010.  * a GRF on IVB.
  1011.  */
  1012. void
  1013. vec4_visitor::split_virtual_grfs()
  1014. {
  1015.    int num_vars = this->virtual_grf_count;
  1016.    int new_virtual_grf[num_vars];
  1017.    bool split_grf[num_vars];
  1018.  
  1019.    memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
  1020.  
  1021.    /* Try to split anything > 0 sized. */
  1022.    for (int i = 0; i < num_vars; i++) {
  1023.       split_grf[i] = this->virtual_grf_sizes[i] != 1;
  1024.    }
  1025.  
  1026.    /* Check that the instructions are compatible with the registers we're trying
  1027.     * to split.
  1028.     */
  1029.    foreach_list(node, &this->instructions) {
  1030.       vec4_instruction *inst = (vec4_instruction *)node;
  1031.  
  1032.       /* If there's a SEND message loading from a GRF on gen7+, it needs to be
  1033.        * contiguous.
  1034.        */
  1035.       if (inst->is_send_from_grf()) {
  1036.          for (int i = 0; i < 3; i++) {
  1037.             if (inst->src[i].file == GRF) {
  1038.                split_grf[inst->src[i].reg] = false;
  1039.             }
  1040.          }
  1041.       }
  1042.    }
  1043.  
  1044.    /* Allocate new space for split regs.  Note that the virtual
  1045.     * numbers will be contiguous.
  1046.     */
  1047.    for (int i = 0; i < num_vars; i++) {
  1048.       if (!split_grf[i])
  1049.          continue;
  1050.  
  1051.       new_virtual_grf[i] = virtual_grf_alloc(1);
  1052.       for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
  1053.          int reg = virtual_grf_alloc(1);
  1054.          assert(reg == new_virtual_grf[i] + j - 1);
  1055.          (void) reg;
  1056.       }
  1057.       this->virtual_grf_sizes[i] = 1;
  1058.    }
  1059.  
  1060.    foreach_list(node, &this->instructions) {
  1061.       vec4_instruction *inst = (vec4_instruction *)node;
  1062.  
  1063.       if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
  1064.           inst->dst.reg_offset != 0) {
  1065.          inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
  1066.                           inst->dst.reg_offset - 1);
  1067.          inst->dst.reg_offset = 0;
  1068.       }
  1069.       for (int i = 0; i < 3; i++) {
  1070.          if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
  1071.              inst->src[i].reg_offset != 0) {
  1072.             inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
  1073.                                 inst->src[i].reg_offset - 1);
  1074.             inst->src[i].reg_offset = 0;
  1075.          }
  1076.       }
  1077.    }
  1078.    this->live_intervals_valid = false;
  1079. }
  1080.  
  1081. void
  1082. vec4_visitor::dump_instruction(backend_instruction *be_inst)
  1083. {
  1084.    vec4_instruction *inst = (vec4_instruction *)be_inst;
  1085.  
  1086.    printf("%s ", brw_instruction_name(inst->opcode));
  1087.  
  1088.    switch (inst->dst.file) {
  1089.    case GRF:
  1090.       printf("vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
  1091.       break;
  1092.    case MRF:
  1093.       printf("m%d", inst->dst.reg);
  1094.       break;
  1095.    case BAD_FILE:
  1096.       printf("(null)");
  1097.       break;
  1098.    default:
  1099.       printf("???");
  1100.       break;
  1101.    }
  1102.    if (inst->dst.writemask != WRITEMASK_XYZW) {
  1103.       printf(".");
  1104.       if (inst->dst.writemask & 1)
  1105.          printf("x");
  1106.       if (inst->dst.writemask & 2)
  1107.          printf("y");
  1108.       if (inst->dst.writemask & 4)
  1109.          printf("z");
  1110.       if (inst->dst.writemask & 8)
  1111.          printf("w");
  1112.    }
  1113.    printf(", ");
  1114.  
  1115.    for (int i = 0; i < 3; i++) {
  1116.       switch (inst->src[i].file) {
  1117.       case GRF:
  1118.          printf("vgrf%d", inst->src[i].reg);
  1119.          break;
  1120.       case ATTR:
  1121.          printf("attr%d", inst->src[i].reg);
  1122.          break;
  1123.       case UNIFORM:
  1124.          printf("u%d", inst->src[i].reg);
  1125.          break;
  1126.       case IMM:
  1127.          switch (inst->src[i].type) {
  1128.          case BRW_REGISTER_TYPE_F:
  1129.             printf("%fF", inst->src[i].imm.f);
  1130.             break;
  1131.          case BRW_REGISTER_TYPE_D:
  1132.             printf("%dD", inst->src[i].imm.i);
  1133.             break;
  1134.          case BRW_REGISTER_TYPE_UD:
  1135.             printf("%uU", inst->src[i].imm.u);
  1136.             break;
  1137.          default:
  1138.             printf("???");
  1139.             break;
  1140.          }
  1141.          break;
  1142.       case BAD_FILE:
  1143.          printf("(null)");
  1144.          break;
  1145.       default:
  1146.          printf("???");
  1147.          break;
  1148.       }
  1149.  
  1150.       if (inst->src[i].reg_offset)
  1151.          printf(".%d", inst->src[i].reg_offset);
  1152.  
  1153.       static const char *chans[4] = {"x", "y", "z", "w"};
  1154.       printf(".");
  1155.       for (int c = 0; c < 4; c++) {
  1156.          printf("%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
  1157.       }
  1158.  
  1159.       if (i < 3)
  1160.          printf(", ");
  1161.    }
  1162.  
  1163.    printf("\n");
  1164. }
  1165.  
  1166. /**
  1167.  * Replace each register of type ATTR in this->instructions with a reference
  1168.  * to a fixed HW register.
  1169.  */
  1170. void
  1171. vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map)
  1172. {
  1173.    foreach_list(node, &this->instructions) {
  1174.       vec4_instruction *inst = (vec4_instruction *)node;
  1175.  
  1176.       /* We have to support ATTR as a destination for GL_FIXED fixup. */
  1177.       if (inst->dst.file == ATTR) {
  1178.          int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
  1179.  
  1180.          /* All attributes used in the shader need to have been assigned a
  1181.           * hardware register by the caller
  1182.           */
  1183.          assert(grf != 0);
  1184.  
  1185.          struct brw_reg reg = brw_vec8_grf(grf, 0);
  1186.          reg.type = inst->dst.type;
  1187.          reg.dw1.bits.writemask = inst->dst.writemask;
  1188.  
  1189.          inst->dst.file = HW_REG;
  1190.          inst->dst.fixed_hw_reg = reg;
  1191.       }
  1192.  
  1193.       for (int i = 0; i < 3; i++) {
  1194.          if (inst->src[i].file != ATTR)
  1195.             continue;
  1196.  
  1197.          int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
  1198.  
  1199.          /* All attributes used in the shader need to have been assigned a
  1200.           * hardware register by the caller
  1201.           */
  1202.          assert(grf != 0);
  1203.  
  1204.          struct brw_reg reg = brw_vec8_grf(grf, 0);
  1205.          reg.dw1.bits.swizzle = inst->src[i].swizzle;
  1206.          reg.type = inst->src[i].type;
  1207.          if (inst->src[i].abs)
  1208.             reg = brw_abs(reg);
  1209.          if (inst->src[i].negate)
  1210.             reg = negate(reg);
  1211.  
  1212.          inst->src[i].file = HW_REG;
  1213.          inst->src[i].fixed_hw_reg = reg;
  1214.       }
  1215.    }
  1216. }
  1217.  
  1218. int
  1219. vec4_vs_visitor::setup_attributes(int payload_reg)
  1220. {
  1221.    int nr_attributes;
  1222.    int attribute_map[VERT_ATTRIB_MAX + 1];
  1223.    memset(attribute_map, 0, sizeof(attribute_map));
  1224.  
  1225.    nr_attributes = 0;
  1226.    for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
  1227.       if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
  1228.          attribute_map[i] = payload_reg + nr_attributes;
  1229.          nr_attributes++;
  1230.       }
  1231.    }
  1232.  
  1233.    /* VertexID is stored by the VF as the last vertex element, but we
  1234.     * don't represent it with a flag in inputs_read, so we call it
  1235.     * VERT_ATTRIB_MAX.
  1236.     */
  1237.    if (vs_prog_data->uses_vertexid) {
  1238.       attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
  1239.       nr_attributes++;
  1240.    }
  1241.  
  1242.    lower_attributes_to_hw_regs(attribute_map);
  1243.  
  1244.    /* The BSpec says we always have to read at least one thing from
  1245.     * the VF, and it appears that the hardware wedges otherwise.
  1246.     */
  1247.    if (nr_attributes == 0)
  1248.       nr_attributes = 1;
  1249.  
  1250.    prog_data->urb_read_length = (nr_attributes + 1) / 2;
  1251.  
  1252.    unsigned vue_entries =
  1253.       MAX2(nr_attributes, prog_data->vue_map.num_slots);
  1254.  
  1255.    if (brw->gen == 6)
  1256.       prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
  1257.    else
  1258.       prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
  1259.  
  1260.    return payload_reg + nr_attributes;
  1261. }
  1262.  
  1263. int
  1264. vec4_visitor::setup_uniforms(int reg)
  1265. {
  1266.    /* The pre-gen6 VS requires that some push constants get loaded no
  1267.     * matter what, or the GPU would hang.
  1268.     */
  1269.    if (brw->gen < 6 && this->uniforms == 0) {
  1270.       this->uniform_vector_size[this->uniforms] = 1;
  1271.  
  1272.       for (unsigned int i = 0; i < 4; i++) {
  1273.          unsigned int slot = this->uniforms * 4 + i;
  1274.          static float zero = 0.0;
  1275.          prog_data->param[slot] = &zero;
  1276.       }
  1277.  
  1278.       this->uniforms++;
  1279.       reg++;
  1280.    } else {
  1281.       reg += ALIGN(uniforms, 2) / 2;
  1282.    }
  1283.  
  1284.    prog_data->nr_params = this->uniforms * 4;
  1285.  
  1286.    prog_data->curb_read_length = reg - 1;
  1287.  
  1288.    return reg;
  1289. }
  1290.  
  1291. void
  1292. vec4_visitor::setup_payload(void)
  1293. {
  1294.    int reg = 0;
  1295.  
  1296.    /* The payload always contains important data in g0, which contains
  1297.     * the URB handles that are passed on to the URB write at the end
  1298.     * of the thread.  So, we always start push constants at g1.
  1299.     */
  1300.    reg++;
  1301.  
  1302.    reg = setup_uniforms(reg);
  1303.  
  1304.    reg = setup_attributes(reg);
  1305.  
  1306.    this->first_non_payload_grf = reg;
  1307. }
  1308.  
  1309. src_reg
  1310. vec4_visitor::get_timestamp()
  1311. {
  1312.    assert(brw->gen >= 7);
  1313.  
  1314.    src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
  1315.                                 BRW_ARF_TIMESTAMP,
  1316.                                 0,
  1317.                                 BRW_REGISTER_TYPE_UD,
  1318.                                 BRW_VERTICAL_STRIDE_0,
  1319.                                 BRW_WIDTH_4,
  1320.                                 BRW_HORIZONTAL_STRIDE_4,
  1321.                                 BRW_SWIZZLE_XYZW,
  1322.                                 WRITEMASK_XYZW));
  1323.  
  1324.    dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
  1325.  
  1326.    vec4_instruction *mov = emit(MOV(dst, ts));
  1327.    /* We want to read the 3 fields we care about (mostly field 0, but also 2)
  1328.     * even if it's not enabled in the dispatch.
  1329.     */
  1330.    mov->force_writemask_all = true;
  1331.  
  1332.    return src_reg(dst);
  1333. }
  1334.  
  1335. void
  1336. vec4_visitor::emit_shader_time_begin()
  1337. {
  1338.    current_annotation = "shader time start";
  1339.    shader_start_time = get_timestamp();
  1340. }
  1341.  
  1342. void
  1343. vec4_visitor::emit_shader_time_end()
  1344. {
  1345.    current_annotation = "shader time end";
  1346.    src_reg shader_end_time = get_timestamp();
  1347.  
  1348.  
  1349.    /* Check that there weren't any timestamp reset events (assuming these
  1350.     * were the only two timestamp reads that happened).
  1351.     */
  1352.    src_reg reset_end = shader_end_time;
  1353.    reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
  1354.    vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
  1355.    test->conditional_mod = BRW_CONDITIONAL_Z;
  1356.  
  1357.    emit(IF(BRW_PREDICATE_NORMAL));
  1358.  
  1359.    /* Take the current timestamp and get the delta. */
  1360.    shader_start_time.negate = true;
  1361.    dst_reg diff = dst_reg(this, glsl_type::uint_type);
  1362.    emit(ADD(diff, shader_start_time, shader_end_time));
  1363.  
  1364.    /* If there were no instructions between the two timestamp gets, the diff
  1365.     * is 2 cycles.  Remove that overhead, so I can forget about that when
  1366.     * trying to determine the time taken for single instructions.
  1367.     */
  1368.    emit(ADD(diff, src_reg(diff), src_reg(-2u)));
  1369.  
  1370.    emit_shader_time_write(ST_VS, src_reg(diff));
  1371.    emit_shader_time_write(ST_VS_WRITTEN, src_reg(1u));
  1372.    emit(BRW_OPCODE_ELSE);
  1373.    emit_shader_time_write(ST_VS_RESET, src_reg(1u));
  1374.    emit(BRW_OPCODE_ENDIF);
  1375. }
  1376.  
  1377. void
  1378. vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
  1379.                                      src_reg value)
  1380. {
  1381.    int shader_time_index =
  1382.       brw_get_shader_time_index(brw, shader_prog, prog, type);
  1383.  
  1384.    dst_reg dst =
  1385.       dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
  1386.  
  1387.    dst_reg offset = dst;
  1388.    dst_reg time = dst;
  1389.    time.reg_offset++;
  1390.  
  1391.    offset.type = BRW_REGISTER_TYPE_UD;
  1392.    emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
  1393.  
  1394.    time.type = BRW_REGISTER_TYPE_UD;
  1395.    emit(MOV(time, src_reg(value)));
  1396.  
  1397.    emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
  1398. }
  1399.  
  1400. bool
  1401. vec4_visitor::run()
  1402. {
  1403.    sanity_param_count = prog->Parameters->NumParameters;
  1404.  
  1405.    if (INTEL_DEBUG & DEBUG_SHADER_TIME)
  1406.       emit_shader_time_begin();
  1407.  
  1408.    emit_prolog();
  1409.  
  1410.    /* Generate VS IR for main().  (the visitor only descends into
  1411.     * functions called "main").
  1412.     */
  1413.    if (shader) {
  1414.       visit_instructions(shader->ir);
  1415.    } else {
  1416.       emit_program_code();
  1417.    }
  1418.    base_ir = NULL;
  1419.  
  1420.    if (key->userclip_active && !key->uses_clip_distance)
  1421.       setup_uniform_clipplane_values();
  1422.  
  1423.    emit_thread_end();
  1424.  
  1425.    /* Before any optimization, push array accesses out to scratch
  1426.     * space where we need them to be.  This pass may allocate new
  1427.     * virtual GRFs, so we want to do it early.  It also makes sure
  1428.     * that we have reladdr computations available for CSE, since we'll
  1429.     * often do repeated subexpressions for those.
  1430.     */
  1431.    if (shader) {
  1432.       move_grf_array_access_to_scratch();
  1433.       move_uniform_array_access_to_pull_constants();
  1434.    } else {
  1435.       /* The ARB_vertex_program frontend emits pull constant loads directly
  1436.        * rather than using reladdr, so we don't need to walk through all the
  1437.        * instructions looking for things to move.  There isn't anything.
  1438.        *
  1439.        * We do still need to split things to vec4 size.
  1440.        */
  1441.       split_uniform_registers();
  1442.    }
  1443.    pack_uniform_registers();
  1444.    move_push_constants_to_pull_constants();
  1445.    split_virtual_grfs();
  1446.  
  1447.    bool progress;
  1448.    do {
  1449.       progress = false;
  1450.       progress = dead_code_eliminate() || progress;
  1451.       progress = opt_copy_propagation() || progress;
  1452.       progress = opt_algebraic() || progress;
  1453.       progress = opt_register_coalesce() || progress;
  1454.    } while (progress);
  1455.  
  1456.  
  1457.    if (failed)
  1458.       return false;
  1459.  
  1460.    setup_payload();
  1461.  
  1462.    if (false) {
  1463.       /* Debug of register spilling: Go spill everything. */
  1464.       const int grf_count = virtual_grf_count;
  1465.       float spill_costs[virtual_grf_count];
  1466.       bool no_spill[virtual_grf_count];
  1467.       evaluate_spill_costs(spill_costs, no_spill);
  1468.       for (int i = 0; i < grf_count; i++) {
  1469.          if (no_spill[i])
  1470.             continue;
  1471.          spill_reg(i);
  1472.       }
  1473.    }
  1474.  
  1475.    while (!reg_allocate()) {
  1476.       if (failed)
  1477.          break;
  1478.    }
  1479.  
  1480.    opt_schedule_instructions();
  1481.  
  1482.    opt_set_dependency_control();
  1483.  
  1484.    /* If any state parameters were appended, then ParameterValues could have
  1485.     * been realloced, in which case the driver uniform storage set up by
  1486.     * _mesa_associate_uniform_storage() would point to freed memory.  Make
  1487.     * sure that didn't happen.
  1488.     */
  1489.    assert(sanity_param_count == prog->Parameters->NumParameters);
  1490.  
  1491.    return !failed;
  1492. }
  1493.  
  1494. } /* namespace brw */
  1495.  
  1496. extern "C" {
  1497.  
  1498. /**
  1499.  * Compile a vertex shader.
  1500.  *
  1501.  * Returns the final assembly and the program's size.
  1502.  */
  1503. const unsigned *
  1504. brw_vs_emit(struct brw_context *brw,
  1505.             struct gl_shader_program *prog,
  1506.             struct brw_vs_compile *c,
  1507.             struct brw_vs_prog_data *prog_data,
  1508.             void *mem_ctx,
  1509.             unsigned *final_assembly_size)
  1510. {
  1511.    bool start_busy = false;
  1512.    float start_time = 0;
  1513.  
  1514.    if (unlikely(brw->perf_debug)) {
  1515.       start_busy = (brw->batch.last_bo &&
  1516.                     drm_intel_bo_busy(brw->batch.last_bo));
  1517.       start_time = get_time();
  1518.    }
  1519.  
  1520.    struct brw_shader *shader = NULL;
  1521.    if (prog)
  1522.       shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
  1523.  
  1524.    if (unlikely(INTEL_DEBUG & DEBUG_VS)) {
  1525.       if (prog) {
  1526.          printf("GLSL IR for native vertex shader %d:\n", prog->Name);
  1527.          _mesa_print_ir(shader->ir, NULL);
  1528.          printf("\n\n");
  1529.       } else {
  1530.          printf("ARB_vertex_program %d for native vertex shader\n",
  1531.                 c->vp->program.Base.Id);
  1532.          _mesa_print_program(&c->vp->program.Base);
  1533.       }
  1534.    }
  1535.  
  1536.    vec4_vs_visitor v(brw, c, prog_data, prog, shader, mem_ctx);
  1537.    if (!v.run()) {
  1538.       if (prog) {
  1539.          prog->LinkStatus = false;
  1540.          ralloc_strcat(&prog->InfoLog, v.fail_msg);
  1541.       }
  1542.  
  1543.       _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
  1544.                     v.fail_msg);
  1545.  
  1546.       return NULL;
  1547.    }
  1548.  
  1549.    vec4_generator g(brw, prog, &c->vp->program.Base, mem_ctx,
  1550.                     INTEL_DEBUG & DEBUG_VS);
  1551.    const unsigned *generated =g.generate_assembly(&v.instructions,
  1552.                                                   final_assembly_size);
  1553.  
  1554.    if (unlikely(brw->perf_debug) && shader) {
  1555.       if (shader->compiled_once) {
  1556.          brw_vs_debug_recompile(brw, prog, &c->key);
  1557.       }
  1558.       if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
  1559.          perf_debug("VS compile took %.03f ms and stalled the GPU\n",
  1560.                     (get_time() - start_time) * 1000);
  1561.       }
  1562.       shader->compiled_once = true;
  1563.    }
  1564.  
  1565.    return generated;
  1566. }
  1567.  
  1568. } /* extern "C" */
  1569.