Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
  3.  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
  4.  develop this 3D driver.
  5.  
  6.  Permission is hereby granted, free of charge, to any person obtaining
  7.  a copy of this software and associated documentation files (the
  8.  "Software"), to deal in the Software without restriction, including
  9.  without limitation the rights to use, copy, modify, merge, publish,
  10.  distribute, sublicense, and/or sell copies of the Software, and to
  11.  permit persons to whom the Software is furnished to do so, subject to
  12.  the following conditions:
  13.  
  14.  The above copyright notice and this permission notice (including the
  15.  next paragraph) shall be included in all copies or substantial
  16.  portions of the Software.
  17.  
  18.  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  19.  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  20.  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  21.  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
  22.  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  23.  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  24.  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  25.  
  26.  **********************************************************************/
  27.  /*
  28.   * Authors:
  29.   *   Keith Whitwell <keith@tungstengraphics.com>
  30.   */
  31.  
  32.  
  33. #include "main/glheader.h"
  34. #include "main/macros.h"
  35. #include "main/enums.h"
  36.  
  37. #include "program/program.h"
  38. #include "intel_batchbuffer.h"
  39.  
  40. #include "brw_defines.h"
  41. #include "brw_context.h"
  42. #include "brw_eu.h"
  43. #include "brw_gs.h"
  44.  
  45. /**
  46.  * Allocate registers for GS.
  47.  *
  48.  * If sol_program is true, then:
  49.  *
  50.  * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
  51.  *   1 needs to be set aside to hold the streamed vertex buffer indices.
  52.  *
  53.  * - The thread will need to use the destination_indices register.
  54.  */
  55. static void brw_gs_alloc_regs( struct brw_gs_compile *c,
  56.                                GLuint nr_verts,
  57.                                bool sol_program )
  58. {
  59.    GLuint i = 0,j;
  60.  
  61.    /* Register usage is static, precompute here:
  62.     */
  63.    c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
  64.  
  65.    /* Streamed vertex buffer indices */
  66.    if (sol_program)
  67.       c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
  68.  
  69.    /* Payload vertices plus space for more generated vertices:
  70.     */
  71.    for (j = 0; j < nr_verts; j++) {
  72.       c->reg.vertex[j] = brw_vec4_grf(i, 0);
  73.       i += c->nr_regs;
  74.    }
  75.  
  76.    c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
  77.    c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
  78.  
  79.    if (sol_program) {
  80.       c->reg.destination_indices =
  81.          retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
  82.    }
  83.  
  84.    c->prog_data.urb_read_length = c->nr_regs;
  85.    c->prog_data.total_grf = i;
  86. }
  87.  
  88.  
  89. /**
  90.  * Set up the initial value of c->reg.header register based on c->reg.R0.
  91.  *
  92.  * The following information is passed to the GS thread in R0, and needs to be
  93.  * included in the first URB_WRITE or FF_SYNC message sent by the GS:
  94.  *
  95.  * - DWORD 0 [31:0] handle info (Gen4 only)
  96.  * - DWORD 5 [7:0] FFTID
  97.  * - DWORD 6 [31:0] Debug info
  98.  * - DWORD 7 [31:0] Debug info
  99.  *
  100.  * This function sets up the above data by copying by copying the contents of
  101.  * R0 to the header register.
  102.  */
  103. static void brw_gs_initialize_header(struct brw_gs_compile *c)
  104. {
  105.    struct brw_compile *p = &c->func;
  106.    brw_MOV(p, c->reg.header, c->reg.R0);
  107. }
  108.  
  109. /**
  110.  * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
  111.  *
  112.  * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
  113.  * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
  114.  * need to be able to update on a per-vertex basis.
  115.  */
  116. static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c,
  117.                                         unsigned dw2)
  118. {
  119.    struct brw_compile *p = &c->func;
  120.    brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
  121. }
  122.  
  123. /**
  124.  * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
  125.  *
  126.  * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
  127.  * of DWORD 2.  URB_WRITE messages need the primitive type in bits 6:2 of
  128.  * DWORD 2.  So this function extracts the primitive type field, bitshifts it
  129.  * appropriately, and stores it in c->reg.header.
  130.  */
  131. static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c)
  132. {
  133.    struct brw_compile *p = &c->func;
  134.    brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
  135.            brw_imm_ud(0x1f));
  136.    brw_SHL(p, get_element_ud(c->reg.header, 2),
  137.            get_element_ud(c->reg.header, 2), brw_imm_ud(2));
  138. }
  139.  
  140. /**
  141.  * Apply an additive offset to DWORD 2 of c->reg.header.
  142.  *
  143.  * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
  144.  * for each vertex.
  145.  */
  146. static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset)
  147. {
  148.    struct brw_compile *p = &c->func;
  149.    brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
  150.            brw_imm_d(offset));
  151. }
  152.  
  153.  
  154. /**
  155.  * Emit a vertex using the URB_WRITE message.  Use the contents of
  156.  * c->reg.header for the message header, and the registers starting at \c vert
  157.  * for the vertex data.
  158.  *
  159.  * If \c last is true, then this is the last vertex, so no further URB space
  160.  * should be allocated, and this message should end the thread.
  161.  *
  162.  * If \c last is false, then a new URB entry will be allocated, and its handle
  163.  * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
  164.  * message.
  165.  */
  166. static void brw_gs_emit_vue(struct brw_gs_compile *c,
  167.                             struct brw_reg vert,
  168.                             bool last)
  169. {
  170.    struct brw_compile *p = &c->func;
  171.    bool allocate = !last;
  172.  
  173.    /* Copy the vertex from vertn into m1..mN+1:
  174.     */
  175.    brw_copy8(p, brw_message_reg(1), vert, c->nr_regs);
  176.  
  177.    /* Send each vertex as a seperate write to the urb.  This is
  178.     * different to the concept in brw_sf_emit.c, where subsequent
  179.     * writes are used to build up a single urb entry.  Each of these
  180.     * writes instantiates a seperate urb entry, and a new one must be
  181.     * allocated each time.
  182.     */
  183.    brw_urb_WRITE(p,
  184.                  allocate ? c->reg.temp
  185.                           : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
  186.                  0,
  187.                  c->reg.header,
  188.                  allocate,
  189.                  1,             /* used */
  190.                  c->nr_regs + 1, /* msg length */
  191.                  allocate ? 1 : 0, /* response length */
  192.                  allocate ? 0 : 1, /* eot */
  193.                  1,             /* writes_complete */
  194.                  0,             /* urb offset */
  195.                  BRW_URB_SWIZZLE_NONE);
  196.  
  197.    if (allocate) {
  198.       brw_MOV(p, get_element_ud(c->reg.header, 0),
  199.               get_element_ud(c->reg.temp, 0));
  200.    }
  201. }
  202.  
  203. /**
  204.  * Send an FF_SYNC message to ensure that all previously spawned GS threads
  205.  * have finished sending primitives down the pipeline, and to allocate a URB
  206.  * entry for the first output vertex.  Only needed on Ironlake+.
  207.  *
  208.  * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
  209.  * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
  210.  * the allocated URB entry (which will be needed by the URB_WRITE meesage that
  211.  * follows).
  212.  */
  213. static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim)
  214. {
  215.    struct brw_compile *p = &c->func;
  216.  
  217.    brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
  218.    brw_ff_sync(p,
  219.                c->reg.temp,
  220.                0,
  221.                c->reg.header,
  222.                1, /* allocate */
  223.                1, /* response length */
  224.                0 /* eot */);
  225.    brw_MOV(p, get_element_ud(c->reg.header, 0),
  226.            get_element_ud(c->reg.temp, 0));
  227. }
  228.  
  229.  
  230. void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
  231. {
  232.    struct brw_context *brw = c->func.brw;
  233.  
  234.    brw_gs_alloc_regs(c, 4, false);
  235.    brw_gs_initialize_header(c);
  236.    /* Use polygons for correct edgeflag behaviour. Note that vertex 3
  237.     * is the PV for quads, but vertex 0 for polygons:
  238.     */
  239.    if (brw->gen == 5)
  240.       brw_gs_ff_sync(c, 1);
  241.    brw_gs_overwrite_header_dw2(
  242.       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  243.           | URB_WRITE_PRIM_START));
  244.    if (key->pv_first) {
  245.       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
  246.       brw_gs_overwrite_header_dw2(
  247.          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
  248.       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
  249.       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
  250.       brw_gs_overwrite_header_dw2(
  251.          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  252.              | URB_WRITE_PRIM_END));
  253.       brw_gs_emit_vue(c, c->reg.vertex[3], 1);
  254.    }
  255.    else {
  256.       brw_gs_emit_vue(c, c->reg.vertex[3], 0);
  257.       brw_gs_overwrite_header_dw2(
  258.          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
  259.       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
  260.       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
  261.       brw_gs_overwrite_header_dw2(
  262.          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  263.              | URB_WRITE_PRIM_END));
  264.       brw_gs_emit_vue(c, c->reg.vertex[2], 1);
  265.    }
  266. }
  267.  
  268. void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
  269. {
  270.    struct brw_context *brw = c->func.brw;
  271.  
  272.    brw_gs_alloc_regs(c, 4, false);
  273.    brw_gs_initialize_header(c);
  274.    
  275.    if (brw->gen == 5)
  276.       brw_gs_ff_sync(c, 1);
  277.    brw_gs_overwrite_header_dw2(
  278.       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  279.           | URB_WRITE_PRIM_START));
  280.    if (key->pv_first) {
  281.       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
  282.       brw_gs_overwrite_header_dw2(
  283.          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
  284.       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
  285.       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
  286.       brw_gs_overwrite_header_dw2(
  287.          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  288.              | URB_WRITE_PRIM_END));
  289.       brw_gs_emit_vue(c, c->reg.vertex[3], 1);
  290.    }
  291.    else {
  292.       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
  293.       brw_gs_overwrite_header_dw2(
  294.          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
  295.       brw_gs_emit_vue(c, c->reg.vertex[3], 0);
  296.       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
  297.       brw_gs_overwrite_header_dw2(
  298.          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
  299.              | URB_WRITE_PRIM_END));
  300.       brw_gs_emit_vue(c, c->reg.vertex[1], 1);
  301.    }
  302. }
  303.  
  304. void brw_gs_lines( struct brw_gs_compile *c )
  305. {
  306.    struct brw_context *brw = c->func.brw;
  307.  
  308.    brw_gs_alloc_regs(c, 2, false);
  309.    brw_gs_initialize_header(c);
  310.  
  311.    if (brw->gen == 5)
  312.       brw_gs_ff_sync(c, 1);
  313.    brw_gs_overwrite_header_dw2(
  314.       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
  315.           | URB_WRITE_PRIM_START));
  316.    brw_gs_emit_vue(c, c->reg.vertex[0], 0);
  317.    brw_gs_overwrite_header_dw2(
  318.       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
  319.           | URB_WRITE_PRIM_END));
  320.    brw_gs_emit_vue(c, c->reg.vertex[1], 1);
  321. }
  322.  
  323. /**
  324.  * Generate the geometry shader program used on Gen6 to perform stream output
  325.  * (transform feedback).
  326.  */
  327. void
  328. gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key,
  329.                  unsigned num_verts, bool check_edge_flags)
  330. {
  331.    struct brw_compile *p = &c->func;
  332.    c->prog_data.svbi_postincrement_value = num_verts;
  333.  
  334.    brw_gs_alloc_regs(c, num_verts, true);
  335.    brw_gs_initialize_header(c);
  336.  
  337.    if (key->num_transform_feedback_bindings > 0) {
  338.       unsigned vertex, binding;
  339.       struct brw_reg destination_indices_uw =
  340.          vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
  341.  
  342.       /* Note: since we use the binding table to keep track of buffer offsets
  343.        * and stride, the GS doesn't need to keep track of a separate pointer
  344.        * into each buffer; it uses a single pointer which increments by 1 for
  345.        * each vertex.  So we use SVBI0 for this pointer, regardless of whether
  346.        * transform feedback is in interleaved or separate attribs mode.
  347.        *
  348.        * Make sure that the buffers have enough room for all the vertices.
  349.        */
  350.       brw_ADD(p, get_element_ud(c->reg.temp, 0),
  351.                  get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
  352.       brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
  353.                  get_element_ud(c->reg.temp, 0),
  354.                  get_element_ud(c->reg.SVBI, 4));
  355.       brw_IF(p, BRW_EXECUTE_1);
  356.  
  357.       /* Compute the destination indices to write to.  Usually we use SVBI[0]
  358.        * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
  359.        * vertices come down the pipeline in reversed winding order, so we need
  360.        * to flip the order when writing to the transform feedback buffer.  To
  361.        * ensure that flatshading accuracy is preserved, we need to write them
  362.        * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
  363.        * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
  364.        * the last provoking vertex convention.
  365.        *
  366.        * Note: since brw_imm_v can only be used in instructions in
  367.        * packed-word execution mode, and SVBI is a double-word, we need to
  368.        * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
  369.        * or (1, 0, 2)) to the destination_indices register, and then add SVBI
  370.        * using a separate instruction.  Also, since the immediate constant is
  371.        * expressed as packed words, and we need to load double-words into
  372.        * destination_indices, we need to intersperse zeros to fill the upper
  373.        * halves of each double-word.
  374.        */
  375.       brw_MOV(p, destination_indices_uw,
  376.               brw_imm_v(0x00020100)); /* (0, 1, 2) */
  377.       if (num_verts == 3) {
  378.          /* Get primitive type into temp register. */
  379.          brw_AND(p, get_element_ud(c->reg.temp, 0),
  380.                  get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
  381.  
  382.          /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
  383.           * an 8-wide comparison so that the conditional MOV that follows
  384.           * moves all 8 words correctly.
  385.           */
  386.          brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
  387.                  get_element_ud(c->reg.temp, 0),
  388.                  brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
  389.  
  390.          /* If so, then overwrite destination_indices_uw with the appropriate
  391.           * reordering.
  392.           */
  393.          brw_MOV(p, destination_indices_uw,
  394.                  brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
  395.                                          : 0x00020001)); /* (1, 0, 2) */
  396.          brw_set_predicate_control(p, BRW_PREDICATE_NONE);
  397.       }
  398.       brw_ADD(p, c->reg.destination_indices,
  399.               c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
  400.  
  401.       /* For each vertex, generate code to output each varying using the
  402.        * appropriate binding table entry.
  403.        */
  404.       for (vertex = 0; vertex < num_verts; ++vertex) {
  405.          /* Set up the correct destination index for this vertex */
  406.          brw_MOV(p, get_element_ud(c->reg.header, 5),
  407.                  get_element_ud(c->reg.destination_indices, vertex));
  408.  
  409.          for (binding = 0; binding < key->num_transform_feedback_bindings;
  410.               ++binding) {
  411.             unsigned char varying =
  412.                key->transform_feedback_bindings[binding];
  413.             unsigned char slot = c->vue_map.varying_to_slot[varying];
  414.             /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
  415.              *
  416.              *   "Prior to End of Thread with a URB_WRITE, the kernel must
  417.              *   ensure that all writes are complete by sending the final
  418.              *   write as a committed write."
  419.              */
  420.             bool final_write =
  421.                binding == key->num_transform_feedback_bindings - 1 &&
  422.                vertex == num_verts - 1;
  423.             struct brw_reg vertex_slot = c->reg.vertex[vertex];
  424.             vertex_slot.nr += slot / 2;
  425.             vertex_slot.subnr = (slot % 2) * 16;
  426.             /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
  427.             vertex_slot.dw1.bits.swizzle = varying == VARYING_SLOT_PSIZ
  428.                ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
  429.             brw_set_access_mode(p, BRW_ALIGN_16);
  430.             brw_MOV(p, stride(c->reg.header, 4, 4, 1),
  431.                     retype(vertex_slot, BRW_REGISTER_TYPE_UD));
  432.             brw_set_access_mode(p, BRW_ALIGN_1);
  433.             brw_svb_write(p,
  434.                           final_write ? c->reg.temp : brw_null_reg(), /* dest */
  435.                           1, /* msg_reg_nr */
  436.                           c->reg.header, /* src0 */
  437.                           SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */
  438.                           final_write); /* send_commit_msg */
  439.          }
  440.       }
  441.       brw_ENDIF(p);
  442.  
  443.       /* Now, reinitialize the header register from R0 to restore the parts of
  444.        * the register that we overwrote while streaming out transform feedback
  445.        * data.
  446.        */
  447.       brw_gs_initialize_header(c);
  448.  
  449.       /* Finally, wait for the write commit to occur so that we can proceed to
  450.        * other things safely.
  451.        *
  452.        * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
  453.        *
  454.        *   The write commit does not modify the destination register, but
  455.        *   merely clears the dependency associated with the destination
  456.        *   register. Thus, a simple “mov” instruction using the register as a
  457.        *   source is sufficient to wait for the write commit to occur.
  458.        */
  459.       brw_MOV(p, c->reg.temp, c->reg.temp);
  460.    }
  461.  
  462.    brw_gs_ff_sync(c, 1);
  463.  
  464.    brw_gs_overwrite_header_dw2_from_r0(c);
  465.    switch (num_verts) {
  466.    case 1:
  467.       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
  468.       brw_gs_emit_vue(c, c->reg.vertex[0], true);
  469.       break;
  470.    case 2:
  471.       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
  472.       brw_gs_emit_vue(c, c->reg.vertex[0], false);
  473.       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
  474.       brw_gs_emit_vue(c, c->reg.vertex[1], true);
  475.       break;
  476.    case 3:
  477.       if (check_edge_flags) {
  478.          /* Only emit vertices 0 and 1 if this is the first triangle of the
  479.           * polygon.  Otherwise they are redundant.
  480.           */
  481.          brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
  482.          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
  483.                  get_element_ud(c->reg.R0, 2),
  484.                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
  485.          brw_IF(p, BRW_EXECUTE_1);
  486.       }
  487.       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
  488.       brw_gs_emit_vue(c, c->reg.vertex[0], false);
  489.       brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
  490.       brw_gs_emit_vue(c, c->reg.vertex[1], false);
  491.       if (check_edge_flags) {
  492.          brw_ENDIF(p);
  493.          /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
  494.           * of the polygon.  Otherwise leave the primitive incomplete because
  495.           * there are more polygon vertices coming.
  496.           */
  497.          brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
  498.          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
  499.                  get_element_ud(c->reg.R0, 2),
  500.                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
  501.          brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
  502.       }
  503.       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
  504.       brw_set_predicate_control(p, BRW_PREDICATE_NONE);
  505.       brw_gs_emit_vue(c, c->reg.vertex[2], true);
  506.       break;
  507.    }
  508. }
  509.