Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2010 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  */
  23.  
  24. /**
  25.  * \file lower_instructions.cpp
  26.  *
  27.  * Many GPUs lack native instructions for certain expression operations, and
  28.  * must replace them with some other expression tree.  This pass lowers some
  29.  * of the most common cases, allowing the lowering code to be implemented once
  30.  * rather than in each driver backend.
  31.  *
  32.  * Currently supported transformations:
  33.  * - SUB_TO_ADD_NEG
  34.  * - DIV_TO_MUL_RCP
  35.  * - INT_DIV_TO_MUL_RCP
  36.  * - EXP_TO_EXP2
  37.  * - POW_TO_EXP2
  38.  * - LOG_TO_LOG2
  39.  * - MOD_TO_FRACT
  40.  * - LRP_TO_ARITH
  41.  * - BITFIELD_INSERT_TO_BFM_BFI
  42.  *
  43.  * SUB_TO_ADD_NEG:
  44.  * ---------------
  45.  * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
  46.  *
  47.  * This simplifies expression reassociation, and for many backends
  48.  * there is no subtract operation separate from adding the negation.
  49.  * For backends with native subtract operations, they will probably
  50.  * want to recognize add(op0, neg(op1)) or the other way around to
  51.  * produce a subtract anyway.
  52.  *
  53.  * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
  54.  * --------------------------------------
  55.  * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
  56.  *
  57.  * Many GPUs don't have a divide instruction (945 and 965 included),
  58.  * but they do have an RCP instruction to compute an approximate
  59.  * reciprocal.  By breaking the operation down, constant reciprocals
  60.  * can get constant folded.
  61.  *
  62.  * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
  63.  * handles the integer case, converting to and from floating point so that
  64.  * RCP is possible.
  65.  *
  66.  * EXP_TO_EXP2 and LOG_TO_LOG2:
  67.  * ----------------------------
  68.  * Many GPUs don't have a base e log or exponent instruction, but they
  69.  * do have base 2 versions, so this pass converts exp and log to exp2
  70.  * and log2 operations.
  71.  *
  72.  * POW_TO_EXP2:
  73.  * -----------
  74.  * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
  75.  * x**y to 2**(y * log2(x)).
  76.  *
  77.  * MOD_TO_FRACT:
  78.  * -------------
  79.  * Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1))
  80.  *
  81.  * Many GPUs don't have a MOD instruction (945 and 965 included), and
  82.  * if we have to break it down like this anyway, it gives an
  83.  * opportunity to do things like constant fold the (1.0 / op1) easily.
  84.  *
  85.  * LRP_TO_ARITH:
  86.  * -------------
  87.  * Converts ir_triop_lrp to (op0 * (1.0f - op2)) + (op1 * op2).
  88.  *
  89.  * BITFIELD_INSERT_TO_BFM_BFI:
  90.  * ---------------------------
  91.  * Breaks ir_quadop_bitfield_insert into ir_binop_bfm (bitfield mask) and
  92.  * ir_triop_bfi (bitfield insert).
  93.  *
  94.  * Many GPUs implement the bitfieldInsert() built-in from ARB_gpu_shader_5
  95.  * with a pair of instructions.
  96.  *
  97.  */
  98.  
  99. #include "main/core.h" /* for M_LOG2E */
  100. #include "glsl_types.h"
  101. #include "ir.h"
  102. #include "ir_builder.h"
  103. #include "ir_optimization.h"
  104.  
  105. using namespace ir_builder;
  106.  
  107. class lower_instructions_visitor : public ir_hierarchical_visitor {
  108. public:
  109.    lower_instructions_visitor(unsigned lower)
  110.       : progress(false), lower(lower) { }
  111.  
  112.    ir_visitor_status visit_leave(ir_expression *);
  113.  
  114.    bool progress;
  115.  
  116. private:
  117.    unsigned lower; /** Bitfield of which operations to lower */
  118.  
  119.    void sub_to_add_neg(ir_expression *);
  120.    void div_to_mul_rcp(ir_expression *);
  121.    void int_div_to_mul_rcp(ir_expression *);
  122.    void mod_to_fract(ir_expression *);
  123.    void exp_to_exp2(ir_expression *);
  124.    void pow_to_exp2(ir_expression *);
  125.    void log_to_log2(ir_expression *);
  126.    void lrp_to_arith(ir_expression *);
  127.    void bitfield_insert_to_bfm_bfi(ir_expression *);
  128. };
  129.  
  130. /**
  131.  * Determine if a particular type of lowering should occur
  132.  */
  133. #define lowering(x) (this->lower & x)
  134.  
  135. bool
  136. lower_instructions(exec_list *instructions, unsigned what_to_lower)
  137. {
  138.    lower_instructions_visitor v(what_to_lower);
  139.  
  140.    visit_list_elements(&v, instructions);
  141.    return v.progress;
  142. }
  143.  
  144. void
  145. lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
  146. {
  147.    ir->operation = ir_binop_add;
  148.    ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
  149.                                            ir->operands[1], NULL);
  150.    this->progress = true;
  151. }
  152.  
  153. void
  154. lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
  155. {
  156.    assert(ir->operands[1]->type->is_float());
  157.  
  158.    /* New expression for the 1.0 / op1 */
  159.    ir_rvalue *expr;
  160.    expr = new(ir) ir_expression(ir_unop_rcp,
  161.                                 ir->operands[1]->type,
  162.                                 ir->operands[1]);
  163.  
  164.    /* op0 / op1 -> op0 * (1.0 / op1) */
  165.    ir->operation = ir_binop_mul;
  166.    ir->operands[1] = expr;
  167.  
  168.    this->progress = true;
  169. }
  170.  
  171. void
  172. lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
  173. {
  174.    assert(ir->operands[1]->type->is_integer());
  175.  
  176.    /* Be careful with integer division -- we need to do it as a
  177.     * float and re-truncate, since rcp(n > 1) of an integer would
  178.     * just be 0.
  179.     */
  180.    ir_rvalue *op0, *op1;
  181.    const struct glsl_type *vec_type;
  182.  
  183.    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
  184.                                       ir->operands[1]->type->vector_elements,
  185.                                       ir->operands[1]->type->matrix_columns);
  186.  
  187.    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
  188.       op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
  189.    else
  190.       op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
  191.  
  192.    op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
  193.  
  194.    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
  195.                                       ir->operands[0]->type->vector_elements,
  196.                                       ir->operands[0]->type->matrix_columns);
  197.  
  198.    if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
  199.       op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
  200.    else
  201.       op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
  202.  
  203.    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
  204.                                       ir->type->vector_elements,
  205.                                       ir->type->matrix_columns);
  206.  
  207.    op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
  208.  
  209.    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
  210.       ir->operation = ir_unop_f2i;
  211.       ir->operands[0] = op0;
  212.    } else {
  213.       ir->operation = ir_unop_i2u;
  214.       ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
  215.    }
  216.    ir->operands[1] = NULL;
  217.  
  218.    this->progress = true;
  219. }
  220.  
  221. void
  222. lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
  223. {
  224.    ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
  225.  
  226.    ir->operation = ir_unop_exp2;
  227.    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
  228.                                            ir->operands[0], log2_e);
  229.    this->progress = true;
  230. }
  231.  
  232. void
  233. lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
  234. {
  235.    ir_expression *const log2_x =
  236.       new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
  237.                             ir->operands[0]);
  238.  
  239.    ir->operation = ir_unop_exp2;
  240.    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
  241.                                            ir->operands[1], log2_x);
  242.    ir->operands[1] = NULL;
  243.    this->progress = true;
  244. }
  245.  
  246. void
  247. lower_instructions_visitor::log_to_log2(ir_expression *ir)
  248. {
  249.    ir->operation = ir_binop_mul;
  250.    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
  251.                                            ir->operands[0], NULL);
  252.    ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
  253.    this->progress = true;
  254. }
  255.  
  256. void
  257. lower_instructions_visitor::mod_to_fract(ir_expression *ir)
  258. {
  259.    ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b",
  260.                                            ir_var_temporary);
  261.    this->base_ir->insert_before(temp);
  262.  
  263.    ir_assignment *const assign =
  264.       new(ir) ir_assignment(new(ir) ir_dereference_variable(temp),
  265.                             ir->operands[1], NULL);
  266.  
  267.    this->base_ir->insert_before(assign);
  268.  
  269.    ir_expression *const div_expr =
  270.       new(ir) ir_expression(ir_binop_div, ir->operands[0]->type,
  271.                             ir->operands[0],
  272.                             new(ir) ir_dereference_variable(temp));
  273.  
  274.    /* Don't generate new IR that would need to be lowered in an additional
  275.     * pass.
  276.     */
  277.    if (lowering(DIV_TO_MUL_RCP))
  278.       div_to_mul_rcp(div_expr);
  279.  
  280.    ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract,
  281.                                            ir->operands[0]->type,
  282.                                            div_expr,
  283.                                            NULL);
  284.  
  285.    ir->operation = ir_binop_mul;
  286.    ir->operands[0] = new(ir) ir_dereference_variable(temp);
  287.    ir->operands[1] = expr;
  288.    this->progress = true;
  289. }
  290.  
  291. void
  292. lower_instructions_visitor::lrp_to_arith(ir_expression *ir)
  293. {
  294.    /* (lrp x y a) -> x*(1-a) + y*a */
  295.  
  296.    /* Save op2 */
  297.    ir_variable *temp = new(ir) ir_variable(ir->operands[2]->type, "lrp_factor",
  298.                                            ir_var_temporary);
  299.    this->base_ir->insert_before(temp);
  300.    this->base_ir->insert_before(assign(temp, ir->operands[2]));
  301.  
  302.    ir_constant *one = new(ir) ir_constant(1.0f);
  303.  
  304.    ir->operation = ir_binop_add;
  305.    ir->operands[0] = mul(ir->operands[0], sub(one, temp));
  306.    ir->operands[1] = mul(ir->operands[1], temp);
  307.    ir->operands[2] = NULL;
  308.  
  309.    this->progress = true;
  310. }
  311.  
  312. void
  313. lower_instructions_visitor::bitfield_insert_to_bfm_bfi(ir_expression *ir)
  314. {
  315.    /* Translates
  316.     *    ir_quadop_bitfield_insert base insert offset bits
  317.     * into
  318.     *    ir_triop_bfi (ir_binop_bfm bits offset) insert base
  319.     */
  320.  
  321.    ir_rvalue *base_expr = ir->operands[0];
  322.  
  323.    ir->operation = ir_triop_bfi;
  324.    ir->operands[0] = new(ir) ir_expression(ir_binop_bfm,
  325.                                            ir->type->get_base_type(),
  326.                                            ir->operands[3],
  327.                                            ir->operands[2]);
  328.    /* ir->operands[1] is still the value to insert. */
  329.    ir->operands[2] = base_expr;
  330.    ir->operands[3] = NULL;
  331.  
  332.    this->progress = true;
  333. }
  334.  
  335. ir_visitor_status
  336. lower_instructions_visitor::visit_leave(ir_expression *ir)
  337. {
  338.    switch (ir->operation) {
  339.    case ir_binop_sub:
  340.       if (lowering(SUB_TO_ADD_NEG))
  341.          sub_to_add_neg(ir);
  342.       break;
  343.  
  344.    case ir_binop_div:
  345.       if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
  346.          int_div_to_mul_rcp(ir);
  347.       else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
  348.          div_to_mul_rcp(ir);
  349.       break;
  350.  
  351.    case ir_unop_exp:
  352.       if (lowering(EXP_TO_EXP2))
  353.          exp_to_exp2(ir);
  354.       break;
  355.  
  356.    case ir_unop_log:
  357.       if (lowering(LOG_TO_LOG2))
  358.          log_to_log2(ir);
  359.       break;
  360.  
  361.    case ir_binop_mod:
  362.       if (lowering(MOD_TO_FRACT) && ir->type->is_float())
  363.          mod_to_fract(ir);
  364.       break;
  365.  
  366.    case ir_binop_pow:
  367.       if (lowering(POW_TO_EXP2))
  368.          pow_to_exp2(ir);
  369.       break;
  370.  
  371.    case ir_triop_lrp:
  372.       if (lowering(LRP_TO_ARITH))
  373.          lrp_to_arith(ir);
  374.       break;
  375.  
  376.    case ir_quadop_bitfield_insert:
  377.       if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
  378.          bitfield_insert_to_bfm_bfi(ir);
  379.       break;
  380.  
  381.    default:
  382.       return visit_continue;
  383.    }
  384.  
  385.    return visit_continue;
  386. }
  387.