Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright 2011 Christoph Bumiller
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice shall be included in
  12.  * all copies or substantial portions of the Software.
  13.  *
  14.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18.  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19.  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20.  * OTHER DEALINGS IN THE SOFTWARE.
  21.  */
  22.  
  23. #include "nv50_ir_target_nv50.h"
  24.  
  25. namespace nv50_ir {
  26.  
  27. Target *getTargetNV50(unsigned int chipset)
  28. {
  29.    return new TargetNV50(chipset);
  30. }
  31.  
  32. TargetNV50::TargetNV50(unsigned int card) : Target(true, false)
  33. {
  34.    chipset = card;
  35.  
  36.    wposMask = 0;
  37.    for (unsigned int i = 0; i <= SV_LAST; ++i)
  38.       sysvalLocation[i] = ~0;
  39.  
  40.    initOpInfo();
  41. }
  42.  
  43. #if 0
  44. // BULTINS / LIBRARY FUNCTIONS:
  45.  
  46. // TODO
  47. static const uint32_t nvc0_builtin_code[] =
  48. {
  49. };
  50.  
  51. static const uint16_t nvc0_builtin_offsets[NV50_BUILTIN_COUNT] =
  52. {
  53. };
  54. #endif
  55.  
  56. void
  57. TargetNV50::getBuiltinCode(const uint32_t **code, uint32_t *size) const
  58. {
  59.    *code = NULL;
  60.    *size = 0;
  61. }
  62.  
  63. uint32_t
  64. TargetNV50::getBuiltinOffset(int builtin) const
  65. {
  66.    return 0;
  67. }
  68.  
  69. struct opProperties
  70. {
  71.    operation op;
  72.    unsigned int mNeg    : 4;
  73.    unsigned int mAbs    : 4;
  74.    unsigned int mNot    : 4;
  75.    unsigned int mSat    : 4;
  76.    unsigned int fConst  : 3;
  77.    unsigned int fShared : 3;
  78.    unsigned int fAttrib : 3;
  79.    unsigned int fImm    : 3;
  80. };
  81.  
  82. static const struct opProperties _initProps[] =
  83. {
  84.    //           neg  abs  not  sat  c[]  s[], a[], imm
  85.    { OP_ADD,    0x3, 0x0, 0x0, 0x8, 0x2, 0x1, 0x1, 0x2 },
  86.    { OP_SUB,    0x3, 0x0, 0x0, 0x0, 0x2, 0x1, 0x1, 0x2 },
  87.    { OP_MUL,    0x3, 0x0, 0x0, 0x0, 0x2, 0x1, 0x1, 0x2 },
  88.    { OP_MAX,    0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
  89.    { OP_MIN,    0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
  90.    { OP_MAD,    0x7, 0x0, 0x0, 0x0, 0x6, 0x1, 0x1, 0x0 }, // special constraint
  91.    { OP_ABS,    0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 },
  92.    { OP_NEG,    0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 },
  93.    { OP_CVT,    0x1, 0x1, 0x0, 0x8, 0x0, 0x1, 0x1, 0x0 },
  94.    { OP_AND,    0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
  95.    { OP_OR,     0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
  96.    { OP_XOR,    0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
  97.    { OP_SHL,    0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
  98.    { OP_SHR,    0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
  99.    { OP_SET,    0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
  100.    { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  101.    { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  102.    { OP_LG2,    0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  103.    { OP_RCP,    0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  104.    { OP_RSQ,    0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  105.    { OP_DFDX,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  106.    { OP_DFDY,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
  107. };
  108.  
  109. void TargetNV50::initOpInfo()
  110. {
  111.    unsigned int i, j;
  112.  
  113.    static const uint32_t commutative[(OP_LAST + 31) / 32] =
  114.    {
  115.       // ADD,MAD,MUL,AND,OR,XOR,MAX,MIN
  116.       0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
  117.    };
  118.    static const uint32_t shortForm[(OP_LAST + 31) / 32] =
  119.    {
  120.       // MOV,ADD,SUB,MUL,SAD,L/PINTERP,RCP,TEX,TXF
  121.       0x00010e40, 0x00000040, 0x00000498, 0x00000000
  122.    };
  123.    static const operation noDestList[] =
  124.    {
  125.       OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
  126.       OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
  127.       OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
  128.       OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
  129.       OP_SUREDB, OP_BAR
  130.    };
  131.    static const operation noPredList[] =
  132.    {
  133.       OP_CALL, OP_PREBREAK, OP_PRERET, OP_QUADON, OP_QUADPOP, OP_JOINAT
  134.    };
  135.  
  136.    for (i = 0; i < DATA_FILE_COUNT; ++i)
  137.       nativeFileMap[i] = (DataFile)i;
  138.    nativeFileMap[FILE_PREDICATE] = FILE_FLAGS;
  139.  
  140.    for (i = 0; i < OP_LAST; ++i) {
  141.       opInfo[i].variants = NULL;
  142.       opInfo[i].op = (operation)i;
  143.       opInfo[i].srcTypes = 1 << (int)TYPE_F32;
  144.       opInfo[i].dstTypes = 1 << (int)TYPE_F32;
  145.       opInfo[i].immdBits = 0xffffffff;
  146.       opInfo[i].srcNr = operationSrcNr[i];
  147.  
  148.       for (j = 0; j < opInfo[i].srcNr; ++j) {
  149.          opInfo[i].srcMods[j] = 0;
  150.          opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
  151.       }
  152.       opInfo[i].dstMods = 0;
  153.       opInfo[i].dstFiles = 1 << (int)FILE_GPR;
  154.  
  155.       opInfo[i].hasDest = 1;
  156.       opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
  157.       opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
  158.       opInfo[i].pseudo = (i < OP_MOV);
  159.       opInfo[i].predicate = !opInfo[i].pseudo;
  160.       opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
  161.       opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
  162.    }
  163.    for (i = 0; i < sizeof(noDestList) / sizeof(noDestList[0]); ++i)
  164.       opInfo[noDestList[i]].hasDest = 0;
  165.    for (i = 0; i < sizeof(noPredList) / sizeof(noPredList[0]); ++i)
  166.       opInfo[noPredList[i]].predicate = 0;
  167.  
  168.    for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
  169.       const struct opProperties *prop = &_initProps[i];
  170.  
  171.       for (int s = 0; s < 3; ++s) {
  172.          if (prop->mNeg & (1 << s))
  173.             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
  174.          if (prop->mAbs & (1 << s))
  175.             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
  176.          if (prop->mNot & (1 << s))
  177.             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
  178.          if (prop->fConst & (1 << s))
  179.             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
  180.          if (prop->fShared & (1 << s))
  181.             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_SHARED;
  182.          if (prop->fAttrib & (1 << s))
  183.             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_SHADER_INPUT;
  184.          if (prop->fImm & (1 << s))
  185.             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
  186.       }
  187.       if (prop->mSat & 8)
  188.          opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
  189.    }
  190. }
  191.  
  192. unsigned int
  193. TargetNV50::getFileSize(DataFile file) const
  194. {
  195.    switch (file) {
  196.    case FILE_NULL:          return 0;
  197.    case FILE_GPR:           return 256; // in 16-bit units **
  198.    case FILE_PREDICATE:     return 0;
  199.    case FILE_FLAGS:         return 4;
  200.    case FILE_ADDRESS:       return 4;
  201.    case FILE_IMMEDIATE:     return 0;
  202.    case FILE_MEMORY_CONST:  return 65536;
  203.    case FILE_SHADER_INPUT:  return 0x200;
  204.    case FILE_SHADER_OUTPUT: return 0x200;
  205.    case FILE_MEMORY_GLOBAL: return 0xffffffff;
  206.    case FILE_MEMORY_SHARED: return 16 << 10;
  207.    case FILE_MEMORY_LOCAL:  return 48 << 10;
  208.    case FILE_SYSTEM_VALUE:  return 16;
  209.    default:
  210.       assert(!"invalid file");
  211.       return 0;
  212.    }
  213.    // ** only first 128 units encodable for 16-bit regs
  214. }
  215.  
  216. unsigned int
  217. TargetNV50::getFileUnit(DataFile file) const
  218. {
  219.    if (file == FILE_GPR || file == FILE_ADDRESS)
  220.       return 1;
  221.    if (file == FILE_SYSTEM_VALUE)
  222.       return 2;
  223.    return 0;
  224. }
  225.  
  226. uint32_t
  227. TargetNV50::getSVAddress(DataFile shaderFile, const Symbol *sym) const
  228. {
  229.    switch (sym->reg.data.sv.sv) {
  230.    case SV_FACE:
  231.       return 0x3fc;
  232.    case SV_POSITION:
  233.    {
  234.       uint32_t addr = sysvalLocation[sym->reg.data.sv.sv];
  235.       for (int c = 0; c < sym->reg.data.sv.index; ++c)
  236.          if (wposMask & (1 << c))
  237.             addr += 4;
  238.       return addr;
  239.    }
  240.    case SV_NCTAID:
  241.       return 0x8 + 2 * sym->reg.data.sv.index;
  242.    case SV_CTAID:
  243.       return 0xc + 2 * sym->reg.data.sv.index;
  244.    case SV_NTID:
  245.       return 0x2 + 2 * sym->reg.data.sv.index;
  246.    case SV_TID:
  247.       return 0;
  248.    default:
  249.       return sysvalLocation[sym->reg.data.sv.sv];
  250.    }
  251. }
  252.  
  253. // long:  rrr, arr, rcr, acr, rrc, arc, gcr, grr
  254. // short: rr, ar, rc, gr
  255. // immd:  ri, gi
  256. bool
  257. TargetNV50::insnCanLoad(const Instruction *i, int s,
  258.                         const Instruction *ld) const
  259. {
  260.    DataFile sf = ld->src(0).getFile();
  261.  
  262.    if (sf == FILE_IMMEDIATE && (i->predSrc >= 0 || i->flagsDef >= 0))
  263.       return false;
  264.    if (s >= opInfo[i->op].srcNr)
  265.       return false;
  266.    if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
  267.       return false;
  268.    if (s == 2 && i->src(1).getFile() != FILE_GPR)
  269.       return false;
  270.  
  271.    // NOTE: don't rely on flagsDef
  272.    for (int d = 0; i->defExists(d); ++d)
  273.       if (i->def(d).getFile() == FILE_FLAGS)
  274.          return false;
  275.  
  276.    unsigned mode = 0;
  277.  
  278.    for (int z = 0; z < Target::operationSrcNr[i->op]; ++z) {
  279.       DataFile zf = (z == s) ? sf : i->src(z).getFile();
  280.       switch (zf) {
  281.       case FILE_GPR:
  282.          break;
  283.       case FILE_MEMORY_SHARED:
  284.       case FILE_SHADER_INPUT:
  285.          mode |= 1 << (z * 2);
  286.          break;
  287.       case FILE_MEMORY_CONST:
  288.          mode |= 2 << (z * 2);
  289.          break;
  290.       case FILE_IMMEDIATE:
  291.          mode |= 3 << (z * 2);
  292.       default:
  293.          break;
  294.       }
  295.    }
  296.  
  297.    switch (mode) {
  298.    case 0x00:
  299.    case 0x01:
  300.    case 0x03:
  301.    case 0x08:
  302.    case 0x09:
  303.    case 0x0c:
  304.    case 0x20:
  305.    case 0x21:
  306.       break;
  307.    case 0x0d:
  308.       if (ld->bb->getProgram()->getType() != Program::TYPE_GEOMETRY)
  309.          return false;
  310.    default:
  311.       return false;
  312.    }
  313.  
  314.    uint8_t ldSize;
  315.  
  316.    if ((i->op == OP_MUL || i->op == OP_MAD) && !isFloatType(i->dType)) {
  317.       // 32-bit MUL will be split into 16-bit MULs
  318.       if (ld->src(0).isIndirect(0))
  319.          return false;
  320.       if (sf == FILE_IMMEDIATE)
  321.          return false;
  322.       ldSize = 2;
  323.    } else {
  324.       ldSize = typeSizeof(ld->dType);
  325.    }
  326.  
  327.    if (sf == FILE_IMMEDIATE)
  328.       return true;
  329.  
  330.  
  331.    // Check if memory access is encodable:
  332.  
  333.    if (ldSize < 4 && sf == FILE_SHADER_INPUT) // no < 4-byte aligned a[] access
  334.       return false;
  335.    if (ld->getSrc(0)->reg.data.offset > (int32_t)(127 * ldSize))
  336.       return false;
  337.  
  338.    if (ld->src(0).isIndirect(0)) {
  339.       for (int z = 0; i->srcExists(z); ++z)
  340.          if (i->src(z).isIndirect(0))
  341.             return false;
  342.  
  343.       // s[] access only possible in CP, $aX always applies
  344.       if (sf == FILE_MEMORY_SHARED)
  345.          return true;
  346.       if (!ld->bb) // can't check type ...
  347.          return false;
  348.       Program::Type pt = ld->bb->getProgram()->getType();
  349.  
  350.       // $aX applies to c[] only in VP, FP, GP if p[] is not accessed
  351.       if (pt == Program::TYPE_COMPUTE)
  352.          return false;
  353.       if (pt == Program::TYPE_GEOMETRY) {
  354.          if (sf == FILE_MEMORY_CONST)
  355.             return i->src(s).getFile() != FILE_SHADER_INPUT;
  356.          return sf == FILE_SHADER_INPUT;
  357.       }
  358.       return sf == FILE_MEMORY_CONST;
  359.    }
  360.    return true;
  361. }
  362.  
  363. bool
  364. TargetNV50::isAccessSupported(DataFile file, DataType ty) const
  365. {
  366.    if (ty == TYPE_B96 || ty == TYPE_NONE)
  367.       return false;
  368.    if (typeSizeof(ty) > 4)
  369.       return (file == FILE_MEMORY_LOCAL) || (file == FILE_MEMORY_GLOBAL);
  370.    return true;
  371. }
  372.  
  373. bool
  374. TargetNV50::isOpSupported(operation op, DataType ty) const
  375. {
  376.    if (ty == TYPE_F64 && chipset < 0xa0)
  377.       return false;
  378.  
  379.    switch (op) {
  380.    case OP_PRERET:
  381.       return chipset >= 0xa0;
  382.    case OP_TXG:
  383.       return chipset >= 0xa3;
  384.    case OP_POW:
  385.    case OP_SQRT:
  386.    case OP_DIV:
  387.    case OP_MOD:
  388.    case OP_SET_AND:
  389.    case OP_SET_OR:
  390.    case OP_SET_XOR:
  391.    case OP_SLCT:
  392.    case OP_SELP:
  393.    case OP_POPCNT:
  394.    case OP_INSBF:
  395.    case OP_EXTBF:
  396.    case OP_EXIT: // want exit modifier instead (on NOP if required)
  397.    case OP_MEMBAR:
  398.       return false;
  399.    case OP_SAD:
  400.       return ty == TYPE_S32;
  401.    default:
  402.       return true;
  403.    }
  404. }
  405.  
  406. bool
  407. TargetNV50::isModSupported(const Instruction *insn, int s, Modifier mod) const
  408. {
  409.    if (!isFloatType(insn->dType)) {
  410.       switch (insn->op) {
  411.       case OP_ABS:
  412.       case OP_NEG:
  413.       case OP_CVT:
  414.       case OP_CEIL:
  415.       case OP_FLOOR:
  416.       case OP_TRUNC:
  417.       case OP_AND:
  418.       case OP_OR:
  419.       case OP_XOR:
  420.          break;
  421.       case OP_ADD:
  422.          if (insn->src(s ? 0 : 1).mod.neg())
  423.             return false;
  424.          break;
  425.       case OP_SUB:
  426.          if (s == 0)
  427.             return insn->src(1).mod.neg() ? false : true;
  428.          break;
  429.       case OP_SET:
  430.          if (insn->sType != TYPE_F32)
  431.             return false;
  432.          break;
  433.       default:
  434.          return false;
  435.       }
  436.    }
  437.    if (s > 3)
  438.       return false;
  439.    return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
  440. }
  441.  
  442. bool
  443. TargetNV50::mayPredicate(const Instruction *insn, const Value *pred) const
  444. {
  445.    if (insn->getPredicate() || insn->flagsSrc >= 0)
  446.       return false;
  447.    for (int s = 0; insn->srcExists(s); ++s)
  448.       if (insn->src(s).getFile() == FILE_IMMEDIATE)
  449.          return false;
  450.    return opInfo[insn->op].predicate;
  451. }
  452.  
  453. bool
  454. TargetNV50::isSatSupported(const Instruction *insn) const
  455. {
  456.    if (insn->op == OP_CVT)
  457.       return true;
  458.    if (insn->dType != TYPE_F32)
  459.       return false;
  460.    return opInfo[insn->op].dstMods & NV50_IR_MOD_SAT;
  461. }
  462.  
  463. int TargetNV50::getLatency(const Instruction *i) const
  464. {
  465.    // TODO: tune these values
  466.    if (i->op == OP_LOAD) {
  467.       switch (i->src(0).getFile()) {
  468.       case FILE_MEMORY_LOCAL:
  469.       case FILE_MEMORY_GLOBAL:
  470.          return 100; // really 400 to 800
  471.       default:
  472.          return 22;
  473.       }
  474.    }
  475.    return 22;
  476. }
  477.  
  478. // These are "inverse" throughput values, i.e. the number of cycles required
  479. // to issue a specific instruction for a full warp (32 threads).
  480. //
  481. // Assuming we have more than 1 warp in flight, a higher issue latency results
  482. // in a lower result latency since the MP will have spent more time with other
  483. // warps.
  484. // This also helps to determine the number of cycles between instructions in
  485. // a single warp.
  486. //
  487. int TargetNV50::getThroughput(const Instruction *i) const
  488. {
  489.    // TODO: tune these values
  490.    if (i->dType == TYPE_F32) {
  491.       switch (i->op) {
  492.       case OP_RCP:
  493.       case OP_RSQ:
  494.       case OP_LG2:
  495.       case OP_SIN:
  496.       case OP_COS:
  497.       case OP_PRESIN:
  498.       case OP_PREEX2:
  499.          return 16;
  500.       default:
  501.          return 4;
  502.       }
  503.    } else
  504.    if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
  505.       return 4;
  506.    } else
  507.    if (i->dType == TYPE_F64) {
  508.       return 32;
  509.    } else {
  510.       return 1;
  511.    }
  512. }
  513.  
  514. static void
  515. recordLocation(uint16_t *locs, uint8_t *masks,
  516.                const struct nv50_ir_varying *var)
  517. {
  518.    uint16_t addr = var->slot[0] * 4;
  519.  
  520.    switch (var->sn) {
  521.    case TGSI_SEMANTIC_POSITION: locs[SV_POSITION] = addr; break;
  522.    case TGSI_SEMANTIC_INSTANCEID: locs[SV_INSTANCE_ID] = addr; break;
  523.    case TGSI_SEMANTIC_VERTEXID: locs[SV_VERTEX_ID] = addr; break;
  524.    case TGSI_SEMANTIC_PRIMID: locs[SV_PRIMITIVE_ID] = addr; break;
  525.    case NV50_SEMANTIC_LAYER: locs[SV_LAYER] = addr; break;
  526.    case NV50_SEMANTIC_VIEWPORTINDEX: locs[SV_VIEWPORT_INDEX] = addr; break;
  527.    default:
  528.       break;
  529.    }
  530.    if (var->sn == TGSI_SEMANTIC_POSITION && masks)
  531.       masks[0] = var->mask;
  532. }
  533.  
  534. void
  535. TargetNV50::parseDriverInfo(const struct nv50_ir_prog_info *info)
  536. {
  537.    unsigned int i;
  538.    for (i = 0; i < info->numOutputs; ++i)
  539.       recordLocation(sysvalLocation, NULL, &info->out[i]);
  540.    for (i = 0; i < info->numInputs; ++i)
  541.       recordLocation(sysvalLocation, &wposMask, &info->in[i]);
  542.    for (i = 0; i < info->numSysVals; ++i)
  543.       recordLocation(sysvalLocation, NULL, &info->sv[i]);
  544.  
  545.    if (sysvalLocation[SV_POSITION] >= 0x200) {
  546.       // not assigned by driver, but we need it internally
  547.       wposMask = 0x8;
  548.       sysvalLocation[SV_POSITION] = 0;
  549.    }
  550. }
  551.  
  552. } // namespace nv50_ir
  553.