Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2009,2012 Intel Corporation
  3.  * Copyright © 1988-2004 Keith Packard and Bart Massey.
  4.  *
  5.  * Permission is hereby granted, free of charge, to any person obtaining a
  6.  * copy of this software and associated documentation files (the "Software"),
  7.  * to deal in the Software without restriction, including without limitation
  8.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9.  * and/or sell copies of the Software, and to permit persons to whom the
  10.  * Software is furnished to do so, subject to the following conditions:
  11.  *
  12.  * The above copyright notice and this permission notice (including the next
  13.  * paragraph) shall be included in all copies or substantial portions of the
  14.  * Software.
  15.  *
  16.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22.  * IN THE SOFTWARE.
  23.  *
  24.  * Except as contained in this notice, the names of the authors
  25.  * or their institutions shall not be used in advertising or
  26.  * otherwise to promote the sale, use or other dealings in this
  27.  * Software without prior written authorization from the
  28.  * authors.
  29.  *
  30.  * Authors:
  31.  *    Eric Anholt <eric@anholt.net>
  32.  *    Keith Packard <keithp@keithp.com>
  33.  */
  34.  
  35. /**
  36.  * Implements an open-addressing, linear-reprobing hash table.
  37.  *
  38.  * For more information, see:
  39.  *
  40.  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
  41.  */
  42.  
  43. #include <stdlib.h>
  44. #include <string.h>
  45. #include <assert.h>
  46.  
  47. #include "hash_table.h"
  48. #include "ralloc.h"
  49. #include "macros.h"
  50.  
  51. static const uint32_t deleted_key_value;
  52.  
  53. /**
  54.  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
  55.  * p and p-2 are both prime.  These tables are sized to have an extra 10%
  56.  * free to avoid exponential performance degradation as the hash table fills
  57.  */
  58. static const struct {
  59.    uint32_t max_entries, size, rehash;
  60. } hash_sizes[] = {
  61.    { 2,                 5,              3         },
  62.    { 4,                 7,              5         },
  63.    { 8,                 13,             11        },
  64.    { 16,                19,             17        },
  65.    { 32,                43,             41        },
  66.    { 64,                73,             71        },
  67.    { 128,               151,            149       },
  68.    { 256,               283,            281       },
  69.    { 512,               571,            569       },
  70.    { 1024,              1153,           1151      },
  71.    { 2048,              2269,           2267      },
  72.    { 4096,              4519,           4517      },
  73.    { 8192,              9013,           9011      },
  74.    { 16384,             18043,          18041     },
  75.    { 32768,             36109,          36107     },
  76.    { 65536,             72091,          72089     },
  77.    { 131072,            144409,         144407    },
  78.    { 262144,            288361,         288359    },
  79.    { 524288,            576883,         576881    },
  80.    { 1048576,           1153459,        1153457   },
  81.    { 2097152,           2307163,        2307161   },
  82.    { 4194304,           4613893,        4613891   },
  83.    { 8388608,           9227641,        9227639   },
  84.    { 16777216,          18455029,       18455027  },
  85.    { 33554432,          36911011,       36911009  },
  86.    { 67108864,          73819861,       73819859  },
  87.    { 134217728,         147639589,      147639587 },
  88.    { 268435456,         295279081,      295279079 },
  89.    { 536870912,         590559793,      590559791 },
  90.    { 1073741824,        1181116273,     1181116271},
  91.    { 2147483648ul,      2362232233ul,   2362232231ul}
  92. };
  93.  
  94. static int
  95. entry_is_free(const struct hash_entry *entry)
  96. {
  97.    return entry->key == NULL;
  98. }
  99.  
  100. static int
  101. entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
  102. {
  103.    return entry->key == ht->deleted_key;
  104. }
  105.  
  106. static int
  107. entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
  108. {
  109.    return entry->key != NULL && entry->key != ht->deleted_key;
  110. }
  111.  
  112. struct hash_table *
  113. _mesa_hash_table_create(void *mem_ctx,
  114.                         uint32_t (*key_hash_function)(const void *key),
  115.                         bool (*key_equals_function)(const void *a,
  116.                                                     const void *b))
  117. {
  118.    struct hash_table *ht;
  119.  
  120.    ht = ralloc(mem_ctx, struct hash_table);
  121.    if (ht == NULL)
  122.       return NULL;
  123.  
  124.    ht->size_index = 0;
  125.    ht->size = hash_sizes[ht->size_index].size;
  126.    ht->rehash = hash_sizes[ht->size_index].rehash;
  127.    ht->max_entries = hash_sizes[ht->size_index].max_entries;
  128.    ht->key_hash_function = key_hash_function;
  129.    ht->key_equals_function = key_equals_function;
  130.    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
  131.    ht->entries = 0;
  132.    ht->deleted_entries = 0;
  133.    ht->deleted_key = &deleted_key_value;
  134.  
  135.    if (ht->table == NULL) {
  136.       ralloc_free(ht);
  137.       return NULL;
  138.    }
  139.  
  140.    return ht;
  141. }
  142.  
  143. /**
  144.  * Frees the given hash table.
  145.  *
  146.  * If delete_function is passed, it gets called on each entry present before
  147.  * freeing.
  148.  */
  149. void
  150. _mesa_hash_table_destroy(struct hash_table *ht,
  151.                          void (*delete_function)(struct hash_entry *entry))
  152. {
  153.    if (!ht)
  154.       return;
  155.  
  156.    if (delete_function) {
  157.       struct hash_entry *entry;
  158.  
  159.       hash_table_foreach(ht, entry) {
  160.          delete_function(entry);
  161.       }
  162.    }
  163.    ralloc_free(ht);
  164. }
  165.  
  166. /** Sets the value of the key pointer used for deleted entries in the table.
  167.  *
  168.  * The assumption is that usually keys are actual pointers, so we use a
  169.  * default value of a pointer to an arbitrary piece of storage in the library.
  170.  * But in some cases a consumer wants to store some other sort of value in the
  171.  * table, like a uint32_t, in which case that pointer may conflict with one of
  172.  * their valid keys.  This lets that user select a safe value.
  173.  *
  174.  * This must be called before any keys are actually deleted from the table.
  175.  */
  176. void
  177. _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
  178. {
  179.    ht->deleted_key = deleted_key;
  180. }
  181.  
  182. static struct hash_entry *
  183. hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
  184. {
  185.    uint32_t start_hash_address = hash % ht->size;
  186.    uint32_t hash_address = start_hash_address;
  187.  
  188.    do {
  189.       uint32_t double_hash;
  190.  
  191.       struct hash_entry *entry = ht->table + hash_address;
  192.  
  193.       if (entry_is_free(entry)) {
  194.          return NULL;
  195.       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
  196.          if (ht->key_equals_function(key, entry->key)) {
  197.             return entry;
  198.          }
  199.       }
  200.  
  201.       double_hash = 1 + hash % ht->rehash;
  202.  
  203.       hash_address = (hash_address + double_hash) % ht->size;
  204.    } while (hash_address != start_hash_address);
  205.  
  206.    return NULL;
  207. }
  208.  
  209. /**
  210.  * Finds a hash table entry with the given key and hash of that key.
  211.  *
  212.  * Returns NULL if no entry is found.  Note that the data pointer may be
  213.  * modified by the user.
  214.  */
  215. struct hash_entry *
  216. _mesa_hash_table_search(struct hash_table *ht, const void *key)
  217. {
  218.    assert(ht->key_hash_function);
  219.    return hash_table_search(ht, ht->key_hash_function(key), key);
  220. }
  221.  
  222. struct hash_entry *
  223. _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
  224.                                   const void *key)
  225. {
  226.    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
  227.    return hash_table_search(ht, hash, key);
  228. }
  229.  
  230. static struct hash_entry *
  231. hash_table_insert(struct hash_table *ht, uint32_t hash,
  232.                   const void *key, void *data);
  233.  
  234. static void
  235. _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
  236. {
  237.    struct hash_table old_ht;
  238.    struct hash_entry *table, *entry;
  239.  
  240.    if (new_size_index >= ARRAY_SIZE(hash_sizes))
  241.       return;
  242.  
  243.    table = rzalloc_array(ht, struct hash_entry,
  244.                          hash_sizes[new_size_index].size);
  245.    if (table == NULL)
  246.       return;
  247.  
  248.    old_ht = *ht;
  249.  
  250.    ht->table = table;
  251.    ht->size_index = new_size_index;
  252.    ht->size = hash_sizes[ht->size_index].size;
  253.    ht->rehash = hash_sizes[ht->size_index].rehash;
  254.    ht->max_entries = hash_sizes[ht->size_index].max_entries;
  255.    ht->entries = 0;
  256.    ht->deleted_entries = 0;
  257.  
  258.    hash_table_foreach(&old_ht, entry) {
  259.       hash_table_insert(ht, entry->hash, entry->key, entry->data);
  260.    }
  261.  
  262.    ralloc_free(old_ht.table);
  263. }
  264.  
  265. static struct hash_entry *
  266. hash_table_insert(struct hash_table *ht, uint32_t hash,
  267.                   const void *key, void *data)
  268. {
  269.    uint32_t start_hash_address, hash_address;
  270.    struct hash_entry *available_entry = NULL;
  271.  
  272.    if (ht->entries >= ht->max_entries) {
  273.       _mesa_hash_table_rehash(ht, ht->size_index + 1);
  274.    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
  275.       _mesa_hash_table_rehash(ht, ht->size_index);
  276.    }
  277.  
  278.    start_hash_address = hash % ht->size;
  279.    hash_address = start_hash_address;
  280.    do {
  281.       struct hash_entry *entry = ht->table + hash_address;
  282.       uint32_t double_hash;
  283.  
  284.       if (!entry_is_present(ht, entry)) {
  285.          /* Stash the first available entry we find */
  286.          if (available_entry == NULL)
  287.             available_entry = entry;
  288.          if (entry_is_free(entry))
  289.             break;
  290.       }
  291.  
  292.       /* Implement replacement when another insert happens
  293.        * with a matching key.  This is a relatively common
  294.        * feature of hash tables, with the alternative
  295.        * generally being "insert the new value as well, and
  296.        * return it first when the key is searched for".
  297.        *
  298.        * Note that the hash table doesn't have a delete
  299.        * callback.  If freeing of old data pointers is
  300.        * required to avoid memory leaks, perform a search
  301.        * before inserting.
  302.        */
  303.       if (entry->hash == hash &&
  304.           ht->key_equals_function(key, entry->key)) {
  305.          entry->key = key;
  306.          entry->data = data;
  307.          return entry;
  308.       }
  309.  
  310.  
  311.       double_hash = 1 + hash % ht->rehash;
  312.  
  313.       hash_address = (hash_address + double_hash) % ht->size;
  314.    } while (hash_address != start_hash_address);
  315.  
  316.    if (available_entry) {
  317.       if (entry_is_deleted(ht, available_entry))
  318.          ht->deleted_entries--;
  319.       available_entry->hash = hash;
  320.       available_entry->key = key;
  321.       available_entry->data = data;
  322.       ht->entries++;
  323.       return available_entry;
  324.    }
  325.  
  326.    /* We could hit here if a required resize failed. An unchecked-malloc
  327.     * application could ignore this result.
  328.     */
  329.    return NULL;
  330. }
  331.  
  332. /**
  333.  * Inserts the key with the given hash into the table.
  334.  *
  335.  * Note that insertion may rearrange the table on a resize or rehash,
  336.  * so previously found hash_entries are no longer valid after this function.
  337.  */
  338. struct hash_entry *
  339. _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
  340. {
  341.    assert(ht->key_hash_function);
  342.    return hash_table_insert(ht, ht->key_hash_function(key), key, data);
  343. }
  344.  
  345. struct hash_entry *
  346. _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
  347.                                    const void *key, void *data)
  348. {
  349.    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
  350.    return hash_table_insert(ht, hash, key, data);
  351. }
  352.  
  353. /**
  354.  * This function deletes the given hash table entry.
  355.  *
  356.  * Note that deletion doesn't otherwise modify the table, so an iteration over
  357.  * the table deleting entries is safe.
  358.  */
  359. void
  360. _mesa_hash_table_remove(struct hash_table *ht,
  361.                         struct hash_entry *entry)
  362. {
  363.    if (!entry)
  364.       return;
  365.  
  366.    entry->key = ht->deleted_key;
  367.    ht->entries--;
  368.    ht->deleted_entries++;
  369. }
  370.  
  371. /**
  372.  * This function is an iterator over the hash table.
  373.  *
  374.  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
  375.  * an iteration over the table is O(table_size) not O(entries).
  376.  */
  377. struct hash_entry *
  378. _mesa_hash_table_next_entry(struct hash_table *ht,
  379.                             struct hash_entry *entry)
  380. {
  381.    if (entry == NULL)
  382.       entry = ht->table;
  383.    else
  384.       entry = entry + 1;
  385.  
  386.    for (; entry != ht->table + ht->size; entry++) {
  387.       if (entry_is_present(ht, entry)) {
  388.          return entry;
  389.       }
  390.    }
  391.  
  392.    return NULL;
  393. }
  394.  
  395. /**
  396.  * Returns a random entry from the hash table.
  397.  *
  398.  * This may be useful in implementing random replacement (as opposed
  399.  * to just removing everything) in caches based on this hash table
  400.  * implementation.  @predicate may be used to filter entries, or may
  401.  * be set to NULL for no filtering.
  402.  */
  403. struct hash_entry *
  404. _mesa_hash_table_random_entry(struct hash_table *ht,
  405.                               bool (*predicate)(struct hash_entry *entry))
  406. {
  407.    struct hash_entry *entry;
  408.    uint32_t i = rand() % ht->size;
  409.  
  410.    if (ht->entries == 0)
  411.       return NULL;
  412.  
  413.    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
  414.       if (entry_is_present(ht, entry) &&
  415.           (!predicate || predicate(entry))) {
  416.          return entry;
  417.       }
  418.    }
  419.  
  420.    for (entry = ht->table; entry != ht->table + i; entry++) {
  421.       if (entry_is_present(ht, entry) &&
  422.           (!predicate || predicate(entry))) {
  423.          return entry;
  424.       }
  425.    }
  426.  
  427.    return NULL;
  428. }
  429.  
  430.  
  431. /**
  432.  * Quick FNV-1a hash implementation based on:
  433.  * http://www.isthe.com/chongo/tech/comp/fnv/
  434.  *
  435.  * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
  436.  * to be quite good, and it probably beats FNV.  But FNV has the advantage
  437.  * that it involves almost no code.  For an improvement on both, see Paul
  438.  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
  439.  */
  440. uint32_t
  441. _mesa_hash_data(const void *data, size_t size)
  442. {
  443.    return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
  444.                                           data, size);
  445. }
  446.  
  447. /** FNV-1a string hash implementation */
  448. uint32_t
  449. _mesa_hash_string(const char *key)
  450. {
  451.    uint32_t hash = _mesa_fnv32_1a_offset_bias;
  452.  
  453.    while (*key != 0) {
  454.       hash = _mesa_fnv32_1a_accumulate(hash, *key);
  455.       key++;
  456.    }
  457.  
  458.    return hash;
  459. }
  460.  
  461. /**
  462.  * String compare function for use as the comparison callback in
  463.  * _mesa_hash_table_create().
  464.  */
  465. bool
  466. _mesa_key_string_equal(const void *a, const void *b)
  467. {
  468.    return strcmp(a, b) == 0;
  469. }
  470.  
  471. bool
  472. _mesa_key_pointer_equal(const void *a, const void *b)
  473. {
  474.    return a == b;
  475. }
  476.