Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2015 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21.  * IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *    Jason Ekstrand (jason@jlekstrand.net)
  25.  *
  26.  */
  27.  
  28. #include "nir.h"
  29.  
  30. /*
  31.  * Implements a pass that lowers vector phi nodes to scalar phi nodes when
  32.  * we don't think it will hurt anything.
  33.  */
  34.  
  35. struct lower_phis_to_scalar_state {
  36.    void *mem_ctx;
  37.    void *dead_ctx;
  38.  
  39.    /* Hash table marking which phi nodes are scalarizable.  The key is
  40.     * pointers to phi instructions and the entry is either NULL for not
  41.     * scalarizable or non-null for scalarizable.
  42.     */
  43.    struct hash_table *phi_table;
  44. };
  45.  
  46. static bool
  47. should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state);
  48.  
  49. static bool
  50. is_phi_src_scalarizable(nir_phi_src *src,
  51.                         struct lower_phis_to_scalar_state *state)
  52. {
  53.    /* Don't know what to do with non-ssa sources */
  54.    if (!src->src.is_ssa)
  55.       return false;
  56.  
  57.    nir_instr *src_instr = src->src.ssa->parent_instr;
  58.    switch (src_instr->type) {
  59.    case nir_instr_type_alu: {
  60.       nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
  61.  
  62.       /* ALU operations with output_size == 0 should be scalarized.  We
  63.        * will also see a bunch of vecN operations from scalarizing ALU
  64.        * operations and, since they can easily be copy-propagated, they
  65.        * are ok too.
  66.        */
  67.       return nir_op_infos[src_alu->op].output_size == 0 ||
  68.              src_alu->op == nir_op_vec2 ||
  69.              src_alu->op == nir_op_vec3 ||
  70.              src_alu->op == nir_op_vec4;
  71.    }
  72.  
  73.    case nir_instr_type_phi:
  74.       /* A phi is scalarizable if we're going to lower it */
  75.       return should_lower_phi(nir_instr_as_phi(src_instr), state);
  76.  
  77.    case nir_instr_type_load_const:
  78.       /* These are trivially scalarizable */
  79.       return true;
  80.  
  81.    case nir_instr_type_intrinsic: {
  82.       nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
  83.  
  84.       switch (src_intrin->intrinsic) {
  85.       case nir_intrinsic_load_var:
  86.          return src_intrin->variables[0]->var->data.mode == nir_var_shader_in ||
  87.                 src_intrin->variables[0]->var->data.mode == nir_var_uniform;
  88.  
  89.       case nir_intrinsic_interp_var_at_centroid:
  90.       case nir_intrinsic_interp_var_at_sample:
  91.       case nir_intrinsic_interp_var_at_offset:
  92.       case nir_intrinsic_load_uniform:
  93.       case nir_intrinsic_load_uniform_indirect:
  94.       case nir_intrinsic_load_ubo:
  95.       case nir_intrinsic_load_ubo_indirect:
  96.       case nir_intrinsic_load_input:
  97.       case nir_intrinsic_load_input_indirect:
  98.          return true;
  99.       default:
  100.          break;
  101.       }
  102.    }
  103.  
  104.    default:
  105.       /* We can't scalarize this type of instruction */
  106.       return false;
  107.    }
  108. }
  109.  
  110. /**
  111.  * Determines if the given phi node should be lowered.  The only phi nodes
  112.  * we will scalarize at the moment are those where all of the sources are
  113.  * scalarizable.
  114.  *
  115.  * The reason for this comes down to coalescing.  Since phi sources can't
  116.  * swizzle, swizzles on phis have to be resolved by inserting a mov right
  117.  * before the phi.  The choice then becomes between movs to pick off
  118.  * components for a scalar phi or potentially movs to recombine components
  119.  * for a vector phi.  The problem is that the movs generated to pick off
  120.  * the components are almost uncoalescable.  We can't coalesce them in NIR
  121.  * because we need them to pick off components and we can't coalesce them
  122.  * in the backend because the source register is a vector and the
  123.  * destination is a scalar that may be used at other places in the program.
  124.  * On the other hand, if we have a bunch of scalars going into a vector
  125.  * phi, the situation is much better.  In this case, if the SSA def is
  126.  * generated in the predecessor block to the corresponding phi source, the
  127.  * backend code will be an ALU op into a temporary and then a mov into the
  128.  * given vector component;  this move can almost certainly be coalesced
  129.  * away.
  130.  */
  131. static bool
  132. should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state)
  133. {
  134.    /* Already scalar */
  135.    if (phi->dest.ssa.num_components == 1)
  136.       return false;
  137.  
  138.    struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi);
  139.    if (entry)
  140.       return entry->data != NULL;
  141.  
  142.    /* Insert an entry and mark it as scalarizable for now. That way
  143.     * we don't recurse forever and a cycle in the dependence graph
  144.     * won't automatically make us fail to scalarize.
  145.     */
  146.    entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1);
  147.  
  148.    bool scalarizable = true;
  149.  
  150.    nir_foreach_phi_src(phi, src) {
  151.       scalarizable = is_phi_src_scalarizable(src, state);
  152.       if (!scalarizable)
  153.          break;
  154.    }
  155.  
  156.    entry->data = (void *)(intptr_t)scalarizable;
  157.  
  158.    return scalarizable;
  159. }
  160.  
  161. static bool
  162. lower_phis_to_scalar_block(nir_block *block, void *void_state)
  163. {
  164.    struct lower_phis_to_scalar_state *state = void_state;
  165.  
  166.    /* Find the last phi node in the block */
  167.    nir_phi_instr *last_phi = NULL;
  168.    nir_foreach_instr(block, instr) {
  169.       if (instr->type != nir_instr_type_phi)
  170.          break;
  171.  
  172.       last_phi = nir_instr_as_phi(instr);
  173.    }
  174.  
  175.    /* We have to handle the phi nodes in their own pass due to the way
  176.     * we're modifying the linked list of instructions.
  177.     */
  178.    nir_foreach_instr_safe(block, instr) {
  179.       if (instr->type != nir_instr_type_phi)
  180.          break;
  181.  
  182.       nir_phi_instr *phi = nir_instr_as_phi(instr);
  183.  
  184.       if (!should_lower_phi(phi, state))
  185.          continue;
  186.  
  187.       /* Create a vecN operation to combine the results.  Most of these
  188.        * will be redundant, but copy propagation should clean them up for
  189.        * us.  No need to add the complexity here.
  190.        */
  191.       nir_op vec_op;
  192.       switch (phi->dest.ssa.num_components) {
  193.       case 2: vec_op = nir_op_vec2; break;
  194.       case 3: vec_op = nir_op_vec3; break;
  195.       case 4: vec_op = nir_op_vec4; break;
  196.       default: unreachable("Invalid number of components");
  197.       }
  198.  
  199.       nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op);
  200.       nir_ssa_dest_init(&vec->instr, &vec->dest.dest,
  201.                         phi->dest.ssa.num_components, NULL);
  202.       vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
  203.  
  204.       for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) {
  205.          nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx);
  206.          nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1, NULL);
  207.  
  208.          vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa);
  209.  
  210.          nir_foreach_phi_src(phi, src) {
  211.             /* We need to insert a mov to grab the i'th component of src */
  212.             nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
  213.                                                       nir_op_imov);
  214.             nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, NULL);
  215.             mov->dest.write_mask = 1;
  216.             nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx);
  217.             mov->src[0].swizzle[0] = i;
  218.  
  219.             /* Insert at the end of the predecessor but before the jump */
  220.             nir_instr *pred_last_instr = nir_block_last_instr(src->pred);
  221.             if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump)
  222.                nir_instr_insert_before(pred_last_instr, &mov->instr);
  223.             else
  224.                nir_instr_insert_after_block(src->pred, &mov->instr);
  225.  
  226.             nir_phi_src *new_src = ralloc(new_phi, nir_phi_src);
  227.             new_src->pred = src->pred;
  228.             new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa);
  229.  
  230.             exec_list_push_tail(&new_phi->srcs, &new_src->node);
  231.          }
  232.  
  233.          nir_instr_insert_before(&phi->instr, &new_phi->instr);
  234.       }
  235.  
  236.       nir_instr_insert_after(&last_phi->instr, &vec->instr);
  237.  
  238.       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
  239.                                nir_src_for_ssa(&vec->dest.dest.ssa),
  240.                                state->mem_ctx);
  241.  
  242.       ralloc_steal(state->dead_ctx, phi);
  243.       nir_instr_remove(&phi->instr);
  244.  
  245.       /* We're using the safe iterator and inserting all the newly
  246.        * scalarized phi nodes before their non-scalarized version so that's
  247.        * ok.  However, we are also inserting vec operations after all of
  248.        * the last phi node so once we get here, we can't trust even the
  249.        * safe iterator to stop properly.  We have to break manually.
  250.        */
  251.       if (instr == &last_phi->instr)
  252.          break;
  253.    }
  254.  
  255.    return true;
  256. }
  257.  
  258. static void
  259. lower_phis_to_scalar_impl(nir_function_impl *impl)
  260. {
  261.    struct lower_phis_to_scalar_state state;
  262.  
  263.    state.mem_ctx = ralloc_parent(impl);
  264.    state.dead_ctx = ralloc_context(NULL);
  265.    state.phi_table = _mesa_hash_table_create(state.dead_ctx, _mesa_hash_pointer,
  266.                                              _mesa_key_pointer_equal);
  267.  
  268.    nir_foreach_block(impl, lower_phis_to_scalar_block, &state);
  269.  
  270.    nir_metadata_preserve(impl, nir_metadata_block_index |
  271.                                nir_metadata_dominance);
  272.  
  273.    ralloc_free(state.dead_ctx);
  274. }
  275.  
  276. /** A pass that lowers vector phi nodes to scalar
  277.  *
  278.  * This pass loops through the blocks and lowers looks for vector phi nodes
  279.  * it can lower to scalar phi nodes.  Not all phi nodes are lowered.  For
  280.  * instance, if one of the sources is a non-scalarizable vector, then we
  281.  * don't bother lowering because that would generate hard-to-coalesce movs.
  282.  */
  283. void
  284. nir_lower_phis_to_scalar(nir_shader *shader)
  285. {
  286.    nir_foreach_overload(shader, overload) {
  287.       if (overload->impl)
  288.          lower_phis_to_scalar_impl(overload->impl);
  289.    }
  290. }
  291.