Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2011 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  */
  23.  
  24. /**
  25.  * \file lower_varyings_to_packed.cpp
  26.  *
  27.  * This lowering pass generates GLSL code that manually packs varyings into
  28.  * vec4 slots, for the benefit of back-ends that don't support packed varyings
  29.  * natively.
  30.  *
  31.  * For example, the following shader:
  32.  *
  33.  *   out mat3x2 foo;  // location=4, location_frac=0
  34.  *   out vec3 bar[2]; // location=5, location_frac=2
  35.  *
  36.  *   main()
  37.  *   {
  38.  *     ...
  39.  *   }
  40.  *
  41.  * Is rewritten to:
  42.  *
  43.  *   mat3x2 foo;
  44.  *   vec3 bar[2];
  45.  *   out vec4 packed4; // location=4, location_frac=0
  46.  *   out vec4 packed5; // location=5, location_frac=0
  47.  *   out vec4 packed6; // location=6, location_frac=0
  48.  *
  49.  *   main()
  50.  *   {
  51.  *     ...
  52.  *     packed4.xy = foo[0];
  53.  *     packed4.zw = foo[1];
  54.  *     packed5.xy = foo[2];
  55.  *     packed5.zw = bar[0].xy;
  56.  *     packed6.x = bar[0].z;
  57.  *     packed6.yzw = bar[1];
  58.  *   }
  59.  *
  60.  * This lowering pass properly handles "double parking" of a varying vector
  61.  * across two varying slots.  For example, in the code above, two of the
  62.  * components of bar[0] are stored in packed5, and the remaining component is
  63.  * stored in packed6.
  64.  *
  65.  * Note that in theory, the extra instructions may cause some loss of
  66.  * performance.  However, hopefully in most cases the performance loss will
  67.  * either be absorbed by a later optimization pass, or it will be offset by
  68.  * memory bandwidth savings (because fewer varyings are used).
  69.  *
  70.  * This lowering pass also packs flat floats, ints, and uints together, by
  71.  * using ivec4 as the base type of flat "varyings", and using appropriate
  72.  * casts to convert floats and uints into ints.
  73.  *
  74.  * This lowering pass also handles varyings whose type is a struct or an array
  75.  * of struct.  Structs are packed in order and with no gaps, so there may be a
  76.  * performance penalty due to structure elements being double-parked.
  77.  *
  78.  * Lowering of geometry shader inputs is slightly more complex, since geometry
  79.  * inputs are always arrays, so we need to lower arrays to arrays.  For
  80.  * example, the following input:
  81.  *
  82.  *   in struct Foo {
  83.  *     float f;
  84.  *     vec3 v;
  85.  *     vec2 a[2];
  86.  *   } arr[3];         // location=4, location_frac=0
  87.  *
  88.  * Would get lowered like this if it occurred in a fragment shader:
  89.  *
  90.  *   struct Foo {
  91.  *     float f;
  92.  *     vec3 v;
  93.  *     vec2 a[2];
  94.  *   } arr[3];
  95.  *   in vec4 packed4;  // location=4, location_frac=0
  96.  *   in vec4 packed5;  // location=5, location_frac=0
  97.  *   in vec4 packed6;  // location=6, location_frac=0
  98.  *   in vec4 packed7;  // location=7, location_frac=0
  99.  *   in vec4 packed8;  // location=8, location_frac=0
  100.  *   in vec4 packed9;  // location=9, location_frac=0
  101.  *
  102.  *   main()
  103.  *   {
  104.  *     arr[0].f = packed4.x;
  105.  *     arr[0].v = packed4.yzw;
  106.  *     arr[0].a[0] = packed5.xy;
  107.  *     arr[0].a[1] = packed5.zw;
  108.  *     arr[1].f = packed6.x;
  109.  *     arr[1].v = packed6.yzw;
  110.  *     arr[1].a[0] = packed7.xy;
  111.  *     arr[1].a[1] = packed7.zw;
  112.  *     arr[2].f = packed8.x;
  113.  *     arr[2].v = packed8.yzw;
  114.  *     arr[2].a[0] = packed9.xy;
  115.  *     arr[2].a[1] = packed9.zw;
  116.  *     ...
  117.  *   }
  118.  *
  119.  * But it would get lowered like this if it occurred in a geometry shader:
  120.  *
  121.  *   struct Foo {
  122.  *     float f;
  123.  *     vec3 v;
  124.  *     vec2 a[2];
  125.  *   } arr[3];
  126.  *   in vec4 packed4[3];  // location=4, location_frac=0
  127.  *   in vec4 packed5[3];  // location=5, location_frac=0
  128.  *
  129.  *   main()
  130.  *   {
  131.  *     arr[0].f = packed4[0].x;
  132.  *     arr[0].v = packed4[0].yzw;
  133.  *     arr[0].a[0] = packed5[0].xy;
  134.  *     arr[0].a[1] = packed5[0].zw;
  135.  *     arr[1].f = packed4[1].x;
  136.  *     arr[1].v = packed4[1].yzw;
  137.  *     arr[1].a[0] = packed5[1].xy;
  138.  *     arr[1].a[1] = packed5[1].zw;
  139.  *     arr[2].f = packed4[2].x;
  140.  *     arr[2].v = packed4[2].yzw;
  141.  *     arr[2].a[0] = packed5[2].xy;
  142.  *     arr[2].a[1] = packed5[2].zw;
  143.  *     ...
  144.  *   }
  145.  */
  146.  
  147. #include "glsl_symbol_table.h"
  148. #include "ir.h"
  149. #include "ir_builder.h"
  150. #include "ir_optimization.h"
  151. #include "program/prog_instruction.h"
  152.  
  153. using namespace ir_builder;
  154.  
  155. namespace {
  156.  
  157. /**
  158.  * Visitor that performs varying packing.  For each varying declared in the
  159.  * shader, this visitor determines whether it needs to be packed.  If so, it
  160.  * demotes it to an ordinary global, creates new packed varyings, and
  161.  * generates assignments to convert between the original varying and the
  162.  * packed varying.
  163.  */
  164. class lower_packed_varyings_visitor
  165. {
  166. public:
  167.    lower_packed_varyings_visitor(void *mem_ctx, unsigned locations_used,
  168.                                  ir_variable_mode mode,
  169.                                  unsigned gs_input_vertices,
  170.                                  exec_list *out_instructions,
  171.                                  exec_list *out_variables);
  172.  
  173.    void run(exec_list *instructions);
  174.  
  175. private:
  176.    void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
  177.    void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
  178.    unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
  179.                          ir_variable *unpacked_var, const char *name,
  180.                          bool gs_input_toplevel, unsigned vertex_index);
  181.    unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
  182.                             unsigned fine_location,
  183.                             ir_variable *unpacked_var, const char *name,
  184.                             bool gs_input_toplevel, unsigned vertex_index);
  185.    ir_dereference *get_packed_varying_deref(unsigned location,
  186.                                             ir_variable *unpacked_var,
  187.                                             const char *name,
  188.                                             unsigned vertex_index);
  189.    bool needs_lowering(ir_variable *var);
  190.  
  191.    /**
  192.     * Memory context used to allocate new instructions for the shader.
  193.     */
  194.    void * const mem_ctx;
  195.  
  196.    /**
  197.     * Number of generic varying slots which are used by this shader.  This is
  198.     * used to allocate temporary intermediate data structures.  If any varying
  199.     * used by this shader has a location greater than or equal to
  200.     * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
  201.     */
  202.    const unsigned locations_used;
  203.  
  204.    /**
  205.     * Array of pointers to the packed varyings that have been created for each
  206.     * generic varying slot.  NULL entries in this array indicate varying slots
  207.     * for which a packed varying has not been created yet.
  208.     */
  209.    ir_variable **packed_varyings;
  210.  
  211.    /**
  212.     * Type of varying which is being lowered in this pass (either
  213.     * ir_var_shader_in or ir_var_shader_out).
  214.     */
  215.    const ir_variable_mode mode;
  216.  
  217.    /**
  218.     * If we are currently lowering geometry shader inputs, the number of input
  219.     * vertices the geometry shader accepts.  Otherwise zero.
  220.     */
  221.    const unsigned gs_input_vertices;
  222.  
  223.    /**
  224.     * Exec list into which the visitor should insert the packing instructions.
  225.     * Caller provides this list; it should insert the instructions into the
  226.     * appropriate place in the shader once the visitor has finished running.
  227.     */
  228.    exec_list *out_instructions;
  229.  
  230.    /**
  231.     * Exec list into which the visitor should insert any new variables.
  232.     */
  233.    exec_list *out_variables;
  234. };
  235.  
  236. } /* anonymous namespace */
  237.  
  238. lower_packed_varyings_visitor::lower_packed_varyings_visitor(
  239.       void *mem_ctx, unsigned locations_used, ir_variable_mode mode,
  240.       unsigned gs_input_vertices, exec_list *out_instructions,
  241.       exec_list *out_variables)
  242.    : mem_ctx(mem_ctx),
  243.      locations_used(locations_used),
  244.      packed_varyings((ir_variable **)
  245.                      rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
  246.                                         locations_used)),
  247.      mode(mode),
  248.      gs_input_vertices(gs_input_vertices),
  249.      out_instructions(out_instructions),
  250.      out_variables(out_variables)
  251. {
  252. }
  253.  
  254. void
  255. lower_packed_varyings_visitor::run(exec_list *instructions)
  256. {
  257.    foreach_in_list(ir_instruction, node, instructions) {
  258.       ir_variable *var = node->as_variable();
  259.       if (var == NULL)
  260.          continue;
  261.  
  262.       if (var->data.mode != this->mode ||
  263.           var->data.location < VARYING_SLOT_VAR0 ||
  264.           !this->needs_lowering(var))
  265.          continue;
  266.  
  267.       /* This lowering pass is only capable of packing floats and ints
  268.        * together when their interpolation mode is "flat".  Therefore, to be
  269.        * safe, caller should ensure that integral varyings always use flat
  270.        * interpolation, even when this is not required by GLSL.
  271.        */
  272.       assert(var->data.interpolation == INTERP_QUALIFIER_FLAT ||
  273.              !var->type->contains_integer());
  274.  
  275.       /* Change the old varying into an ordinary global. */
  276.       assert(var->data.mode != ir_var_temporary);
  277.       var->data.mode = ir_var_auto;
  278.  
  279.       /* Create a reference to the old varying. */
  280.       ir_dereference_variable *deref
  281.          = new(this->mem_ctx) ir_dereference_variable(var);
  282.  
  283.       /* Recursively pack or unpack it. */
  284.       this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
  285.                          var->name, this->gs_input_vertices != 0, 0);
  286.    }
  287. }
  288.  
  289. #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
  290.  
  291. /**
  292.  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
  293.  * bitcasts if necessary to match up types.
  294.  *
  295.  * This function is called when packing varyings.
  296.  */
  297. void
  298. lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
  299.                                                    ir_rvalue *rhs)
  300. {
  301.    if (lhs->type->base_type != rhs->type->base_type) {
  302.       /* Since we only mix types in flat varyings, and we always store flat
  303.        * varyings as type ivec4, we need only produce conversions from (uint
  304.        * or float) to int.
  305.        */
  306.       assert(lhs->type->base_type == GLSL_TYPE_INT);
  307.       switch (rhs->type->base_type) {
  308.       case GLSL_TYPE_UINT:
  309.          rhs = new(this->mem_ctx)
  310.             ir_expression(ir_unop_u2i, lhs->type, rhs);
  311.          break;
  312.       case GLSL_TYPE_FLOAT:
  313.          rhs = new(this->mem_ctx)
  314.             ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
  315.          break;
  316.       case GLSL_TYPE_DOUBLE:
  317.          assert(rhs->type->vector_elements <= 2);
  318.          if (rhs->type->vector_elements == 2) {
  319.             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
  320.  
  321.             assert(lhs->type->vector_elements == 4);
  322.             this->out_variables->push_tail(t);
  323.             this->out_instructions->push_tail(
  324.                   assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
  325.             this->out_instructions->push_tail(
  326.                   assign(t,  u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
  327.             rhs = deref(t).val;
  328.          } else {
  329.             rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
  330.          }
  331.          break;
  332.       default:
  333.          assert(!"Unexpected type conversion while lowering varyings");
  334.          break;
  335.       }
  336.    }
  337.    this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
  338. }
  339.  
  340.  
  341. /**
  342.  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
  343.  * bitcasts if necessary to match up types.
  344.  *
  345.  * This function is called when unpacking varyings.
  346.  */
  347. void
  348. lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
  349.                                                      ir_rvalue *rhs)
  350. {
  351.    if (lhs->type->base_type != rhs->type->base_type) {
  352.       /* Since we only mix types in flat varyings, and we always store flat
  353.        * varyings as type ivec4, we need only produce conversions from int to
  354.        * (uint or float).
  355.        */
  356.       assert(rhs->type->base_type == GLSL_TYPE_INT);
  357.       switch (lhs->type->base_type) {
  358.       case GLSL_TYPE_UINT:
  359.          rhs = new(this->mem_ctx)
  360.             ir_expression(ir_unop_i2u, lhs->type, rhs);
  361.          break;
  362.       case GLSL_TYPE_FLOAT:
  363.          rhs = new(this->mem_ctx)
  364.             ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
  365.          break;
  366.       case GLSL_TYPE_DOUBLE:
  367.          assert(lhs->type->vector_elements <= 2);
  368.          if (lhs->type->vector_elements == 2) {
  369.             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
  370.             assert(rhs->type->vector_elements == 4);
  371.             this->out_variables->push_tail(t);
  372.             this->out_instructions->push_tail(
  373.                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
  374.             this->out_instructions->push_tail(
  375.                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
  376.             rhs = deref(t).val;
  377.          } else {
  378.             rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
  379.          }
  380.          break;
  381.       default:
  382.          assert(!"Unexpected type conversion while lowering varyings");
  383.          break;
  384.       }
  385.    }
  386.    this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
  387. }
  388.  
  389.  
  390. /**
  391.  * Recursively pack or unpack the given varying (or portion of a varying) by
  392.  * traversing all of its constituent vectors.
  393.  *
  394.  * \param fine_location is the location where the first constituent vector
  395.  * should be packed--the word "fine" indicates that this location is expressed
  396.  * in multiples of a float, rather than multiples of a vec4 as is used
  397.  * elsewhere in Mesa.
  398.  *
  399.  * \param gs_input_toplevel should be set to true if we are lowering geometry
  400.  * shader inputs, and we are currently lowering the whole input variable
  401.  * (i.e. we are lowering the array whose index selects the vertex).
  402.  *
  403.  * \param vertex_index: if we are lowering geometry shader inputs, and the
  404.  * level of the array that we are currently lowering is *not* the top level,
  405.  * then this indicates which vertex we are currently lowering.  Otherwise it
  406.  * is ignored.
  407.  *
  408.  * \return the location where the next constituent vector (after this one)
  409.  * should be packed.
  410.  */
  411. unsigned
  412. lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
  413.                                             unsigned fine_location,
  414.                                             ir_variable *unpacked_var,
  415.                                             const char *name,
  416.                                             bool gs_input_toplevel,
  417.                                             unsigned vertex_index)
  418. {
  419.    unsigned dmul = rvalue->type->is_double() ? 2 : 1;
  420.    /* When gs_input_toplevel is set, we should be looking at a geometry shader
  421.     * input array.
  422.     */
  423.    assert(!gs_input_toplevel || rvalue->type->is_array());
  424.  
  425.    if (rvalue->type->is_record()) {
  426.       for (unsigned i = 0; i < rvalue->type->length; i++) {
  427.          if (i != 0)
  428.             rvalue = rvalue->clone(this->mem_ctx, NULL);
  429.          const char *field_name = rvalue->type->fields.structure[i].name;
  430.          ir_dereference_record *dereference_record = new(this->mem_ctx)
  431.             ir_dereference_record(rvalue, field_name);
  432.          char *deref_name
  433.             = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
  434.          fine_location = this->lower_rvalue(dereference_record, fine_location,
  435.                                             unpacked_var, deref_name, false,
  436.                                             vertex_index);
  437.       }
  438.       return fine_location;
  439.    } else if (rvalue->type->is_array()) {
  440.       /* Arrays are packed/unpacked by considering each array element in
  441.        * sequence.
  442.        */
  443.       return this->lower_arraylike(rvalue, rvalue->type->array_size(),
  444.                                    fine_location, unpacked_var, name,
  445.                                    gs_input_toplevel, vertex_index);
  446.    } else if (rvalue->type->is_matrix()) {
  447.       /* Matrices are packed/unpacked by considering each column vector in
  448.        * sequence.
  449.        */
  450.       return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
  451.                                    fine_location, unpacked_var, name,
  452.                                    false, vertex_index);
  453.    } else if (rvalue->type->vector_elements * dmul +
  454.               fine_location % 4 > 4) {
  455.       /* This vector is going to be "double parked" across two varying slots,
  456.        * so handle it as two separate assignments. For doubles, a dvec3/dvec4
  457.        * can end up being spread over 3 slots. However the second splitting
  458.        * will happen later, here we just always want to split into 2.
  459.        */
  460.       unsigned left_components, right_components;
  461.       unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
  462.       unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
  463.       char left_swizzle_name[4] = { 0, 0, 0, 0 };
  464.       char right_swizzle_name[4] = { 0, 0, 0, 0 };
  465.  
  466.       left_components = 4 - fine_location % 4;
  467.       if (rvalue->type->is_double()) {
  468.          /* We might actually end up with 0 left components! */
  469.          left_components /= 2;
  470.       }
  471.       right_components = rvalue->type->vector_elements - left_components;
  472.  
  473.       for (unsigned i = 0; i < left_components; i++) {
  474.          left_swizzle_values[i] = i;
  475.          left_swizzle_name[i] = "xyzw"[i];
  476.       }
  477.       for (unsigned i = 0; i < right_components; i++) {
  478.          right_swizzle_values[i] = i + left_components;
  479.          right_swizzle_name[i] = "xyzw"[i + left_components];
  480.       }
  481.       ir_swizzle *left_swizzle = new(this->mem_ctx)
  482.          ir_swizzle(rvalue, left_swizzle_values, left_components);
  483.       ir_swizzle *right_swizzle = new(this->mem_ctx)
  484.          ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
  485.                     right_components);
  486.       char *left_name
  487.          = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
  488.       char *right_name
  489.          = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
  490.       if (left_components)
  491.          fine_location = this->lower_rvalue(left_swizzle, fine_location,
  492.                                             unpacked_var, left_name, false,
  493.                                             vertex_index);
  494.       else
  495.          /* Top up the fine location to the next slot */
  496.          fine_location++;
  497.       return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
  498.                                 right_name, false, vertex_index);
  499.    } else {
  500.       /* No special handling is necessary; pack the rvalue into the
  501.        * varying.
  502.        */
  503.       unsigned swizzle_values[4] = { 0, 0, 0, 0 };
  504.       unsigned components = rvalue->type->vector_elements * dmul;
  505.       unsigned location = fine_location / 4;
  506.       unsigned location_frac = fine_location % 4;
  507.       for (unsigned i = 0; i < components; ++i)
  508.          swizzle_values[i] = i + location_frac;
  509.       ir_dereference *packed_deref =
  510.          this->get_packed_varying_deref(location, unpacked_var, name,
  511.                                         vertex_index);
  512.       ir_swizzle *swizzle = new(this->mem_ctx)
  513.          ir_swizzle(packed_deref, swizzle_values, components);
  514.       if (this->mode == ir_var_shader_out) {
  515.          this->bitwise_assign_pack(swizzle, rvalue);
  516.       } else {
  517.          this->bitwise_assign_unpack(rvalue, swizzle);
  518.       }
  519.       return fine_location + components;
  520.    }
  521. }
  522.  
  523. /**
  524.  * Recursively pack or unpack a varying for which we need to iterate over its
  525.  * constituent elements, accessing each one using an ir_dereference_array.
  526.  * This takes care of both arrays and matrices, since ir_dereference_array
  527.  * treats a matrix like an array of its column vectors.
  528.  *
  529.  * \param gs_input_toplevel should be set to true if we are lowering geometry
  530.  * shader inputs, and we are currently lowering the whole input variable
  531.  * (i.e. we are lowering the array whose index selects the vertex).
  532.  *
  533.  * \param vertex_index: if we are lowering geometry shader inputs, and the
  534.  * level of the array that we are currently lowering is *not* the top level,
  535.  * then this indicates which vertex we are currently lowering.  Otherwise it
  536.  * is ignored.
  537.  */
  538. unsigned
  539. lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
  540.                                                unsigned array_size,
  541.                                                unsigned fine_location,
  542.                                                ir_variable *unpacked_var,
  543.                                                const char *name,
  544.                                                bool gs_input_toplevel,
  545.                                                unsigned vertex_index)
  546. {
  547.    for (unsigned i = 0; i < array_size; i++) {
  548.       if (i != 0)
  549.          rvalue = rvalue->clone(this->mem_ctx, NULL);
  550.       ir_constant *constant = new(this->mem_ctx) ir_constant(i);
  551.       ir_dereference_array *dereference_array = new(this->mem_ctx)
  552.          ir_dereference_array(rvalue, constant);
  553.       if (gs_input_toplevel) {
  554.          /* Geometry shader inputs are a special case.  Instead of storing
  555.           * each element of the array at a different location, all elements
  556.           * are at the same location, but with a different vertex index.
  557.           */
  558.          (void) this->lower_rvalue(dereference_array, fine_location,
  559.                                    unpacked_var, name, false, i);
  560.       } else {
  561.          char *subscripted_name
  562.             = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
  563.          fine_location =
  564.             this->lower_rvalue(dereference_array, fine_location,
  565.                                unpacked_var, subscripted_name,
  566.                                false, vertex_index);
  567.       }
  568.    }
  569.    return fine_location;
  570. }
  571.  
  572. /**
  573.  * Retrieve the packed varying corresponding to the given varying location.
  574.  * If no packed varying has been created for the given varying location yet,
  575.  * create it and add it to the shader before returning it.
  576.  *
  577.  * The newly created varying inherits its interpolation parameters from \c
  578.  * unpacked_var.  Its base type is ivec4 if we are lowering a flat varying,
  579.  * vec4 otherwise.
  580.  *
  581.  * \param vertex_index: if we are lowering geometry shader inputs, then this
  582.  * indicates which vertex we are currently lowering.  Otherwise it is ignored.
  583.  */
  584. ir_dereference *
  585. lower_packed_varyings_visitor::get_packed_varying_deref(
  586.       unsigned location, ir_variable *unpacked_var, const char *name,
  587.       unsigned vertex_index)
  588. {
  589.    unsigned slot = location - VARYING_SLOT_VAR0;
  590.    assert(slot < locations_used);
  591.    if (this->packed_varyings[slot] == NULL) {
  592.       char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
  593.       const glsl_type *packed_type;
  594.       if (unpacked_var->data.interpolation == INTERP_QUALIFIER_FLAT)
  595.          packed_type = glsl_type::ivec4_type;
  596.       else
  597.          packed_type = glsl_type::vec4_type;
  598.       if (this->gs_input_vertices != 0) {
  599.          packed_type =
  600.             glsl_type::get_array_instance(packed_type,
  601.                                           this->gs_input_vertices);
  602.       }
  603.       ir_variable *packed_var = new(this->mem_ctx)
  604.          ir_variable(packed_type, packed_name, this->mode);
  605.       if (this->gs_input_vertices != 0) {
  606.          /* Prevent update_array_sizes() from messing with the size of the
  607.           * array.
  608.           */
  609.          packed_var->data.max_array_access = this->gs_input_vertices - 1;
  610.       }
  611.       packed_var->data.centroid = unpacked_var->data.centroid;
  612.       packed_var->data.sample = unpacked_var->data.sample;
  613.       packed_var->data.interpolation = unpacked_var->data.interpolation;
  614.       packed_var->data.location = location;
  615.       unpacked_var->insert_before(packed_var);
  616.       this->packed_varyings[slot] = packed_var;
  617.    } else {
  618.       /* For geometry shader inputs, only update the packed variable name the
  619.        * first time we visit each component.
  620.        */
  621.       if (this->gs_input_vertices == 0 || vertex_index == 0) {
  622.          ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name,
  623.                                 ",%s", name);
  624.       }
  625.    }
  626.  
  627.    ir_dereference *deref = new(this->mem_ctx)
  628.       ir_dereference_variable(this->packed_varyings[slot]);
  629.    if (this->gs_input_vertices != 0) {
  630.       /* When lowering GS inputs, the packed variable is an array, so we need
  631.        * to dereference it using vertex_index.
  632.        */
  633.       ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
  634.       deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
  635.    }
  636.    return deref;
  637. }
  638.  
  639. bool
  640. lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
  641. {
  642.    /* Things composed of vec4's and varyings with explicitly assigned
  643.     * locations don't need lowering.  Everything else does.
  644.     */
  645.    if (var->data.explicit_location)
  646.       return false;
  647.  
  648.    const glsl_type *type = var->type->without_array();
  649.    if (type->vector_elements == 4 && !type->is_double())
  650.       return false;
  651.    return true;
  652. }
  653.  
  654.  
  655. /**
  656.  * Visitor that splices varying packing code before every use of EmitVertex()
  657.  * in a geometry shader.
  658.  */
  659. class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
  660. {
  661. public:
  662.    explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
  663.                                              const exec_list *instructions);
  664.  
  665.    virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
  666.  
  667. private:
  668.    /**
  669.     * Memory context used to allocate new instructions for the shader.
  670.     */
  671.    void * const mem_ctx;
  672.  
  673.    /**
  674.     * Instructions that should be spliced into place before each EmitVertex()
  675.     * call.
  676.     */
  677.    const exec_list *instructions;
  678. };
  679.  
  680.  
  681. lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
  682.       void *mem_ctx, const exec_list *instructions)
  683.    : mem_ctx(mem_ctx), instructions(instructions)
  684. {
  685. }
  686.  
  687.  
  688. ir_visitor_status
  689. lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
  690. {
  691.    foreach_in_list(ir_instruction, ir, this->instructions) {
  692.       ev->insert_before(ir->clone(this->mem_ctx, NULL));
  693.    }
  694.    return visit_continue;
  695. }
  696.  
  697.  
  698. void
  699. lower_packed_varyings(void *mem_ctx, unsigned locations_used,
  700.                       ir_variable_mode mode, unsigned gs_input_vertices,
  701.                       gl_shader *shader)
  702. {
  703.    exec_list *instructions = shader->ir;
  704.    ir_function *main_func = shader->symbols->get_function("main");
  705.    exec_list void_parameters;
  706.    ir_function_signature *main_func_sig
  707.       = main_func->matching_signature(NULL, &void_parameters, false);
  708.    exec_list new_instructions, new_variables;
  709.    lower_packed_varyings_visitor visitor(mem_ctx, locations_used, mode,
  710.                                          gs_input_vertices,
  711.                                          &new_instructions,
  712.                                          &new_variables);
  713.    visitor.run(instructions);
  714.    if (mode == ir_var_shader_out) {
  715.       if (shader->Stage == MESA_SHADER_GEOMETRY) {
  716.          /* For geometry shaders, outputs need to be lowered before each call
  717.           * to EmitVertex()
  718.           */
  719.          lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
  720.  
  721.          /* Add all the variables in first. */
  722.          main_func_sig->body.head->insert_before(&new_variables);
  723.  
  724.          /* Now update all the EmitVertex instances */
  725.          splicer.run(instructions);
  726.       } else {
  727.          /* For other shader types, outputs need to be lowered at the end of
  728.           * main()
  729.           */
  730.          main_func_sig->body.append_list(&new_variables);
  731.          main_func_sig->body.append_list(&new_instructions);
  732.       }
  733.    } else {
  734.       /* Shader inputs need to be lowered at the beginning of main() */
  735.       main_func_sig->body.head->insert_before(&new_instructions);
  736.       main_func_sig->body.head->insert_before(&new_variables);
  737.    }
  738. }
  739.