Subversion Repositories Kolibri OS

Rev

Rev 4371 | Rev 4560 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4371 Rev 4539
1
/*
1
/*
2
 * Copyright © 2008-2010 Intel Corporation
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
10
 *
11
 * The above copyright notice and this permission notice (including the next
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
13
 * Software.
14
 *
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
21
 * IN THE SOFTWARE.
22
 *
22
 *
23
 * Authors:
23
 * Authors:
24
 *    Eric Anholt 
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
26
 *    Xiang Hai hao
27
 *
27
 *
28
 */
28
 */
29
 
29
 
30
#include 
30
#include 
31
#include "i915_drv.h"
31
#include "i915_drv.h"
32
#include 
32
#include 
33
#include "i915_trace.h"
33
#include "i915_trace.h"
34
#include "intel_drv.h"
34
#include "intel_drv.h"
35
 
35
 
36
static inline int ring_space(struct intel_ring_buffer *ring)
36
static inline int ring_space(struct intel_ring_buffer *ring)
37
{
37
{
38
	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
38
	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39
	if (space < 0)
39
	if (space < 0)
40
		space += ring->size;
40
		space += ring->size;
41
	return space;
41
	return space;
42
}
42
}
43
 
43
 
44
static int
44
static int
45
gen2_render_ring_flush(struct intel_ring_buffer *ring,
45
gen2_render_ring_flush(struct intel_ring_buffer *ring,
46
		       u32	invalidate_domains,
46
		       u32	invalidate_domains,
47
		       u32	flush_domains)
47
		       u32	flush_domains)
48
{
48
{
49
	u32 cmd;
49
	u32 cmd;
50
	int ret;
50
	int ret;
51
 
51
 
52
	cmd = MI_FLUSH;
52
	cmd = MI_FLUSH;
53
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
53
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
54
		cmd |= MI_NO_WRITE_FLUSH;
54
		cmd |= MI_NO_WRITE_FLUSH;
55
 
55
 
56
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
56
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
57
		cmd |= MI_READ_FLUSH;
57
		cmd |= MI_READ_FLUSH;
58
 
58
 
59
	ret = intel_ring_begin(ring, 2);
59
	ret = intel_ring_begin(ring, 2);
60
	if (ret)
60
	if (ret)
61
		return ret;
61
		return ret;
62
 
62
 
63
	intel_ring_emit(ring, cmd);
63
	intel_ring_emit(ring, cmd);
64
	intel_ring_emit(ring, MI_NOOP);
64
	intel_ring_emit(ring, MI_NOOP);
65
	intel_ring_advance(ring);
65
	intel_ring_advance(ring);
66
 
66
 
67
	return 0;
67
	return 0;
68
}
68
}
69
 
69
 
70
static int
70
static int
71
gen4_render_ring_flush(struct intel_ring_buffer *ring,
71
gen4_render_ring_flush(struct intel_ring_buffer *ring,
72
		  u32	invalidate_domains,
72
		  u32	invalidate_domains,
73
		  u32	flush_domains)
73
		  u32	flush_domains)
74
{
74
{
75
	struct drm_device *dev = ring->dev;
75
	struct drm_device *dev = ring->dev;
76
	u32 cmd;
76
	u32 cmd;
77
	int ret;
77
	int ret;
78
 
78
 
79
	/*
79
	/*
80
	 * read/write caches:
80
	 * read/write caches:
81
	 *
81
	 *
82
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
82
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
83
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
83
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
84
	 * also flushed at 2d versus 3d pipeline switches.
84
	 * also flushed at 2d versus 3d pipeline switches.
85
	 *
85
	 *
86
	 * read-only caches:
86
	 * read-only caches:
87
	 *
87
	 *
88
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
88
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
89
	 * MI_READ_FLUSH is set, and is always flushed on 965.
89
	 * MI_READ_FLUSH is set, and is always flushed on 965.
90
	 *
90
	 *
91
	 * I915_GEM_DOMAIN_COMMAND may not exist?
91
	 * I915_GEM_DOMAIN_COMMAND may not exist?
92
	 *
92
	 *
93
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
93
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
94
	 * invalidated when MI_EXE_FLUSH is set.
94
	 * invalidated when MI_EXE_FLUSH is set.
95
	 *
95
	 *
96
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
96
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
97
	 * invalidated with every MI_FLUSH.
97
	 * invalidated with every MI_FLUSH.
98
	 *
98
	 *
99
	 * TLBs:
99
	 * TLBs:
100
	 *
100
	 *
101
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
101
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
102
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
102
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
103
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
103
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
104
	 * are flushed at any MI_FLUSH.
104
	 * are flushed at any MI_FLUSH.
105
	 */
105
	 */
106
 
106
 
107
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
107
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
108
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
108
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
109
		cmd &= ~MI_NO_WRITE_FLUSH;
109
		cmd &= ~MI_NO_WRITE_FLUSH;
110
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
110
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
111
		cmd |= MI_EXE_FLUSH;
111
		cmd |= MI_EXE_FLUSH;
112
 
112
 
113
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
113
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
114
	    (IS_G4X(dev) || IS_GEN5(dev)))
114
	    (IS_G4X(dev) || IS_GEN5(dev)))
115
		cmd |= MI_INVALIDATE_ISP;
115
		cmd |= MI_INVALIDATE_ISP;
116
 
116
 
117
	ret = intel_ring_begin(ring, 2);
117
	ret = intel_ring_begin(ring, 2);
118
	if (ret)
118
	if (ret)
119
		return ret;
119
		return ret;
120
 
120
 
121
	intel_ring_emit(ring, cmd);
121
	intel_ring_emit(ring, cmd);
122
	intel_ring_emit(ring, MI_NOOP);
122
	intel_ring_emit(ring, MI_NOOP);
123
	intel_ring_advance(ring);
123
	intel_ring_advance(ring);
124
 
124
 
125
	return 0;
125
	return 0;
126
}
126
}
127
 
127
 
128
/**
128
/**
129
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
129
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
130
 * implementing two workarounds on gen6.  From section 1.4.7.1
130
 * implementing two workarounds on gen6.  From section 1.4.7.1
131
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
131
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
132
 *
132
 *
133
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
133
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
134
 * produced by non-pipelined state commands), software needs to first
134
 * produced by non-pipelined state commands), software needs to first
135
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
135
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
136
 * 0.
136
 * 0.
137
 *
137
 *
138
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
138
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
139
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
139
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
140
 *
140
 *
141
 * And the workaround for these two requires this workaround first:
141
 * And the workaround for these two requires this workaround first:
142
 *
142
 *
143
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
143
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
144
 * BEFORE the pipe-control with a post-sync op and no write-cache
144
 * BEFORE the pipe-control with a post-sync op and no write-cache
145
 * flushes.
145
 * flushes.
146
 *
146
 *
147
 * And this last workaround is tricky because of the requirements on
147
 * And this last workaround is tricky because of the requirements on
148
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
148
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
149
 * volume 2 part 1:
149
 * volume 2 part 1:
150
 *
150
 *
151
 *     "1 of the following must also be set:
151
 *     "1 of the following must also be set:
152
 *      - Render Target Cache Flush Enable ([12] of DW1)
152
 *      - Render Target Cache Flush Enable ([12] of DW1)
153
 *      - Depth Cache Flush Enable ([0] of DW1)
153
 *      - Depth Cache Flush Enable ([0] of DW1)
154
 *      - Stall at Pixel Scoreboard ([1] of DW1)
154
 *      - Stall at Pixel Scoreboard ([1] of DW1)
155
 *      - Depth Stall ([13] of DW1)
155
 *      - Depth Stall ([13] of DW1)
156
 *      - Post-Sync Operation ([13] of DW1)
156
 *      - Post-Sync Operation ([13] of DW1)
157
 *      - Notify Enable ([8] of DW1)"
157
 *      - Notify Enable ([8] of DW1)"
158
 *
158
 *
159
 * The cache flushes require the workaround flush that triggered this
159
 * The cache flushes require the workaround flush that triggered this
160
 * one, so we can't use it.  Depth stall would trigger the same.
160
 * one, so we can't use it.  Depth stall would trigger the same.
161
 * Post-sync nonzero is what triggered this second workaround, so we
161
 * Post-sync nonzero is what triggered this second workaround, so we
162
 * can't use that one either.  Notify enable is IRQs, which aren't
162
 * can't use that one either.  Notify enable is IRQs, which aren't
163
 * really our business.  That leaves only stall at scoreboard.
163
 * really our business.  That leaves only stall at scoreboard.
164
 */
164
 */
165
static int
165
static int
166
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
166
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
167
{
167
{
168
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
168
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
169
	int ret;
169
	int ret;
170
 
170
 
171
 
171
 
172
	ret = intel_ring_begin(ring, 6);
172
	ret = intel_ring_begin(ring, 6);
173
	if (ret)
173
	if (ret)
174
		return ret;
174
		return ret;
175
 
175
 
176
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
176
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
177
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
177
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
178
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
178
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
179
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
179
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
180
	intel_ring_emit(ring, 0); /* low dword */
180
	intel_ring_emit(ring, 0); /* low dword */
181
	intel_ring_emit(ring, 0); /* high dword */
181
	intel_ring_emit(ring, 0); /* high dword */
182
	intel_ring_emit(ring, MI_NOOP);
182
	intel_ring_emit(ring, MI_NOOP);
183
	intel_ring_advance(ring);
183
	intel_ring_advance(ring);
184
 
184
 
185
	ret = intel_ring_begin(ring, 6);
185
	ret = intel_ring_begin(ring, 6);
186
	if (ret)
186
	if (ret)
187
		return ret;
187
		return ret;
188
 
188
 
189
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
189
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
190
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
190
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
191
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
192
	intel_ring_emit(ring, 0);
192
	intel_ring_emit(ring, 0);
193
	intel_ring_emit(ring, 0);
193
	intel_ring_emit(ring, 0);
194
	intel_ring_emit(ring, MI_NOOP);
194
	intel_ring_emit(ring, MI_NOOP);
195
	intel_ring_advance(ring);
195
	intel_ring_advance(ring);
196
 
196
 
197
	return 0;
197
	return 0;
198
}
198
}
199
 
199
 
200
static int
200
static int
201
gen6_render_ring_flush(struct intel_ring_buffer *ring,
201
gen6_render_ring_flush(struct intel_ring_buffer *ring,
202
                         u32 invalidate_domains, u32 flush_domains)
202
                         u32 invalidate_domains, u32 flush_domains)
203
{
203
{
204
	u32 flags = 0;
204
	u32 flags = 0;
205
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
205
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
206
	int ret;
206
	int ret;
207
 
207
 
208
	/* Force SNB workarounds for PIPE_CONTROL flushes */
208
	/* Force SNB workarounds for PIPE_CONTROL flushes */
209
	ret = intel_emit_post_sync_nonzero_flush(ring);
209
	ret = intel_emit_post_sync_nonzero_flush(ring);
210
	if (ret)
210
	if (ret)
211
		return ret;
211
		return ret;
212
 
212
 
213
	/* Just flush everything.  Experiments have shown that reducing the
213
	/* Just flush everything.  Experiments have shown that reducing the
214
	 * number of bits based on the write domains has little performance
214
	 * number of bits based on the write domains has little performance
215
	 * impact.
215
	 * impact.
216
	 */
216
	 */
217
	if (flush_domains) {
217
	if (flush_domains) {
218
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
218
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
219
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
219
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
220
		/*
220
		/*
221
		 * Ensure that any following seqno writes only happen
221
		 * Ensure that any following seqno writes only happen
222
		 * when the render cache is indeed flushed.
222
		 * when the render cache is indeed flushed.
223
		 */
223
		 */
224
		flags |= PIPE_CONTROL_CS_STALL;
224
		flags |= PIPE_CONTROL_CS_STALL;
225
	}
225
	}
226
	if (invalidate_domains) {
226
	if (invalidate_domains) {
227
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
227
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
228
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
228
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
229
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
229
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
230
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
230
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
231
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
231
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
232
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
232
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
233
		/*
233
		/*
234
		 * TLB invalidate requires a post-sync write.
234
		 * TLB invalidate requires a post-sync write.
235
		 */
235
		 */
236
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
236
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
237
	}
237
	}
238
 
238
 
239
	ret = intel_ring_begin(ring, 4);
239
	ret = intel_ring_begin(ring, 4);
240
	if (ret)
240
	if (ret)
241
		return ret;
241
		return ret;
242
 
242
 
243
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
243
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
244
	intel_ring_emit(ring, flags);
244
	intel_ring_emit(ring, flags);
245
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
245
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
246
	intel_ring_emit(ring, 0);
246
	intel_ring_emit(ring, 0);
247
	intel_ring_advance(ring);
247
	intel_ring_advance(ring);
248
 
248
 
249
	return 0;
249
	return 0;
250
}
250
}
251
 
251
 
252
static int
252
static int
253
gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
253
gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
254
{
254
{
255
	int ret;
255
	int ret;
256
 
256
 
257
	ret = intel_ring_begin(ring, 4);
257
	ret = intel_ring_begin(ring, 4);
258
	if (ret)
258
	if (ret)
259
		return ret;
259
		return ret;
260
 
260
 
261
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
261
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
262
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
262
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
263
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
263
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
264
	intel_ring_emit(ring, 0);
264
	intel_ring_emit(ring, 0);
265
	intel_ring_emit(ring, 0);
265
	intel_ring_emit(ring, 0);
266
	intel_ring_advance(ring);
266
	intel_ring_advance(ring);
267
 
267
 
268
	return 0;
268
	return 0;
269
}
269
}
270
 
270
 
271
static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
271
static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
272
{
272
{
273
	int ret;
273
	int ret;
274
 
274
 
275
	if (!ring->fbc_dirty)
275
	if (!ring->fbc_dirty)
276
		return 0;
276
		return 0;
277
 
277
 
278
	ret = intel_ring_begin(ring, 4);
278
	ret = intel_ring_begin(ring, 4);
279
	if (ret)
279
	if (ret)
280
		return ret;
280
		return ret;
281
	intel_ring_emit(ring, MI_NOOP);
281
	intel_ring_emit(ring, MI_NOOP);
282
	/* WaFbcNukeOn3DBlt:ivb/hsw */
282
	/* WaFbcNukeOn3DBlt:ivb/hsw */
283
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
283
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
284
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
284
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
285
	intel_ring_emit(ring, value);
285
	intel_ring_emit(ring, value);
286
	intel_ring_advance(ring);
286
	intel_ring_advance(ring);
287
 
287
 
288
	ring->fbc_dirty = false;
288
	ring->fbc_dirty = false;
289
	return 0;
289
	return 0;
290
}
290
}
291
 
291
 
292
static int
292
static int
293
gen7_render_ring_flush(struct intel_ring_buffer *ring,
293
gen7_render_ring_flush(struct intel_ring_buffer *ring,
294
		       u32 invalidate_domains, u32 flush_domains)
294
		       u32 invalidate_domains, u32 flush_domains)
295
{
295
{
296
	u32 flags = 0;
296
	u32 flags = 0;
297
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
297
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
298
	int ret;
298
	int ret;
299
 
299
 
300
	/*
300
	/*
301
	 * Ensure that any following seqno writes only happen when the render
301
	 * Ensure that any following seqno writes only happen when the render
302
	 * cache is indeed flushed.
302
	 * cache is indeed flushed.
303
	 *
303
	 *
304
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
304
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
305
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
305
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
306
	 * don't try to be clever and just set it unconditionally.
306
	 * don't try to be clever and just set it unconditionally.
307
	 */
307
	 */
308
	flags |= PIPE_CONTROL_CS_STALL;
308
	flags |= PIPE_CONTROL_CS_STALL;
309
 
309
 
310
	/* Just flush everything.  Experiments have shown that reducing the
310
	/* Just flush everything.  Experiments have shown that reducing the
311
	 * number of bits based on the write domains has little performance
311
	 * number of bits based on the write domains has little performance
312
	 * impact.
312
	 * impact.
313
	 */
313
	 */
314
	if (flush_domains) {
314
	if (flush_domains) {
315
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
315
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
316
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
316
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
317
	}
317
	}
318
	if (invalidate_domains) {
318
	if (invalidate_domains) {
319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
320
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
320
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
321
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
321
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
322
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
322
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
323
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
323
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
324
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
324
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
325
		/*
325
		/*
326
		 * TLB invalidate requires a post-sync write.
326
		 * TLB invalidate requires a post-sync write.
327
		 */
327
		 */
328
		flags |= PIPE_CONTROL_QW_WRITE;
328
		flags |= PIPE_CONTROL_QW_WRITE;
329
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
329
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
330
 
330
 
331
		/* Workaround: we must issue a pipe_control with CS-stall bit
331
		/* Workaround: we must issue a pipe_control with CS-stall bit
332
		 * set before a pipe_control command that has the state cache
332
		 * set before a pipe_control command that has the state cache
333
		 * invalidate bit set. */
333
		 * invalidate bit set. */
334
		gen7_render_ring_cs_stall_wa(ring);
334
		gen7_render_ring_cs_stall_wa(ring);
335
	}
335
	}
336
 
336
 
337
	ret = intel_ring_begin(ring, 4);
337
	ret = intel_ring_begin(ring, 4);
338
	if (ret)
338
	if (ret)
339
		return ret;
339
		return ret;
340
 
340
 
341
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
341
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
342
	intel_ring_emit(ring, flags);
342
	intel_ring_emit(ring, flags);
343
	intel_ring_emit(ring, scratch_addr);
343
	intel_ring_emit(ring, scratch_addr);
344
	intel_ring_emit(ring, 0);
344
	intel_ring_emit(ring, 0);
345
	intel_ring_advance(ring);
345
	intel_ring_advance(ring);
346
 
346
 
347
	if (flush_domains)
347
	if (flush_domains)
348
		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
348
		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
349
 
349
 
350
	return 0;
350
	return 0;
351
}
351
}
352
 
352
 
353
static void ring_write_tail(struct intel_ring_buffer *ring,
353
static void ring_write_tail(struct intel_ring_buffer *ring,
354
			    u32 value)
354
			    u32 value)
355
{
355
{
356
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
356
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
357
	I915_WRITE_TAIL(ring, value);
357
	I915_WRITE_TAIL(ring, value);
358
}
358
}
359
 
359
 
360
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
360
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
361
{
361
{
362
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
362
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
363
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
363
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
364
			RING_ACTHD(ring->mmio_base) : ACTHD;
364
			RING_ACTHD(ring->mmio_base) : ACTHD;
365
 
365
 
366
	return I915_READ(acthd_reg);
366
	return I915_READ(acthd_reg);
367
}
367
}
368
 
368
 
369
static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
369
static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
370
{
370
{
371
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
371
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
372
	u32 addr;
372
	u32 addr;
373
 
373
 
374
	addr = dev_priv->status_page_dmah->busaddr;
374
	addr = dev_priv->status_page_dmah->busaddr;
375
	if (INTEL_INFO(ring->dev)->gen >= 4)
375
	if (INTEL_INFO(ring->dev)->gen >= 4)
376
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
376
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
377
	I915_WRITE(HWS_PGA, addr);
377
	I915_WRITE(HWS_PGA, addr);
378
}
378
}
379
 
379
 
380
static int init_ring_common(struct intel_ring_buffer *ring)
380
static int init_ring_common(struct intel_ring_buffer *ring)
381
{
381
{
382
	struct drm_device *dev = ring->dev;
382
	struct drm_device *dev = ring->dev;
383
	drm_i915_private_t *dev_priv = dev->dev_private;
383
	drm_i915_private_t *dev_priv = dev->dev_private;
384
	struct drm_i915_gem_object *obj = ring->obj;
384
	struct drm_i915_gem_object *obj = ring->obj;
385
	int ret = 0;
385
	int ret = 0;
386
	u32 head;
386
	u32 head;
387
 
387
 
388
	if (HAS_FORCE_WAKE(dev))
388
	if (HAS_FORCE_WAKE(dev))
389
		gen6_gt_force_wake_get(dev_priv);
389
		gen6_gt_force_wake_get(dev_priv);
390
 
390
 
391
	if (I915_NEED_GFX_HWS(dev))
391
	if (I915_NEED_GFX_HWS(dev))
392
		intel_ring_setup_status_page(ring);
392
		intel_ring_setup_status_page(ring);
393
	else
393
	else
394
		ring_setup_phys_status_page(ring);
394
		ring_setup_phys_status_page(ring);
395
 
395
 
396
	/* Stop the ring if it's running. */
396
	/* Stop the ring if it's running. */
397
	I915_WRITE_CTL(ring, 0);
397
	I915_WRITE_CTL(ring, 0);
398
	I915_WRITE_HEAD(ring, 0);
398
	I915_WRITE_HEAD(ring, 0);
399
	ring->write_tail(ring, 0);
399
	ring->write_tail(ring, 0);
400
 
400
 
401
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
401
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
402
 
402
 
403
	/* G45 ring initialization fails to reset head to zero */
403
	/* G45 ring initialization fails to reset head to zero */
404
	if (head != 0) {
404
	if (head != 0) {
405
		DRM_DEBUG_KMS("%s head not reset to zero "
405
		DRM_DEBUG_KMS("%s head not reset to zero "
406
			      "ctl %08x head %08x tail %08x start %08x\n",
406
			      "ctl %08x head %08x tail %08x start %08x\n",
407
			      ring->name,
407
			      ring->name,
408
			      I915_READ_CTL(ring),
408
			      I915_READ_CTL(ring),
409
			      I915_READ_HEAD(ring),
409
			      I915_READ_HEAD(ring),
410
			      I915_READ_TAIL(ring),
410
			      I915_READ_TAIL(ring),
411
			      I915_READ_START(ring));
411
			      I915_READ_START(ring));
412
 
412
 
413
		I915_WRITE_HEAD(ring, 0);
413
		I915_WRITE_HEAD(ring, 0);
414
 
414
 
415
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
415
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
416
			DRM_ERROR("failed to set %s head to zero "
416
			DRM_ERROR("failed to set %s head to zero "
417
				  "ctl %08x head %08x tail %08x start %08x\n",
417
				  "ctl %08x head %08x tail %08x start %08x\n",
418
				  ring->name,
418
				  ring->name,
419
				  I915_READ_CTL(ring),
419
				  I915_READ_CTL(ring),
420
				  I915_READ_HEAD(ring),
420
				  I915_READ_HEAD(ring),
421
				  I915_READ_TAIL(ring),
421
				  I915_READ_TAIL(ring),
422
				  I915_READ_START(ring));
422
				  I915_READ_START(ring));
423
		}
423
		}
424
	}
424
	}
425
 
425
 
426
	/* Initialize the ring. This must happen _after_ we've cleared the ring
426
	/* Initialize the ring. This must happen _after_ we've cleared the ring
427
	 * registers with the above sequence (the readback of the HEAD registers
427
	 * registers with the above sequence (the readback of the HEAD registers
428
	 * also enforces ordering), otherwise the hw might lose the new ring
428
	 * also enforces ordering), otherwise the hw might lose the new ring
429
	 * register values. */
429
	 * register values. */
430
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
430
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
431
	I915_WRITE_CTL(ring,
431
	I915_WRITE_CTL(ring,
432
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
432
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
433
			| RING_VALID);
433
			| RING_VALID);
434
 
434
 
435
	/* If the head is still not zero, the ring is dead */
435
	/* If the head is still not zero, the ring is dead */
436
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
436
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
437
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
437
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
438
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
438
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
439
		DRM_ERROR("%s initialization failed "
439
		DRM_ERROR("%s initialization failed "
440
				"ctl %08x head %08x tail %08x start %08x\n",
440
				"ctl %08x head %08x tail %08x start %08x\n",
441
				ring->name,
441
				ring->name,
442
				I915_READ_CTL(ring),
442
				I915_READ_CTL(ring),
443
				I915_READ_HEAD(ring),
443
				I915_READ_HEAD(ring),
444
				I915_READ_TAIL(ring),
444
				I915_READ_TAIL(ring),
445
				I915_READ_START(ring));
445
				I915_READ_START(ring));
446
		ret = -EIO;
446
		ret = -EIO;
447
		goto out;
447
		goto out;
448
	}
448
	}
449
 
449
 
450
		ring->head = I915_READ_HEAD(ring);
450
		ring->head = I915_READ_HEAD(ring);
451
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
451
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
452
		ring->space = ring_space(ring);
452
		ring->space = ring_space(ring);
453
		ring->last_retired_head = -1;
453
		ring->last_retired_head = -1;
454
 
454
 
455
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
455
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
456
 
456
 
457
out:
457
out:
458
	if (HAS_FORCE_WAKE(dev))
458
	if (HAS_FORCE_WAKE(dev))
459
		gen6_gt_force_wake_put(dev_priv);
459
		gen6_gt_force_wake_put(dev_priv);
460
 
460
 
461
	return ret;
461
	return ret;
462
}
462
}
463
 
463
 
464
static int
464
static int
465
init_pipe_control(struct intel_ring_buffer *ring)
465
init_pipe_control(struct intel_ring_buffer *ring)
466
{
466
{
467
	int ret;
467
	int ret;
468
 
468
 
469
	if (ring->scratch.obj)
469
	if (ring->scratch.obj)
470
		return 0;
470
		return 0;
471
 
471
 
472
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
472
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
473
	if (ring->scratch.obj == NULL) {
473
	if (ring->scratch.obj == NULL) {
474
		DRM_ERROR("Failed to allocate seqno page\n");
474
		DRM_ERROR("Failed to allocate seqno page\n");
475
		ret = -ENOMEM;
475
		ret = -ENOMEM;
476
		goto err;
476
		goto err;
477
	}
477
	}
478
 
478
 
479
	i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
479
	i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
480
 
480
 
481
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
481
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
482
	if (ret)
482
	if (ret)
483
		goto err_unref;
483
		goto err_unref;
484
 
484
 
485
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
485
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
486
	ring->scratch.cpu_page = (void*)MapIoMem((addr_t)sg_page(ring->scratch.obj->pages->sgl),4096, PG_SW);
486
    ring->scratch.cpu_page = (void*)MapIoMem((addr_t)sg_page(ring->scratch.obj->pages->sgl),4096, PG_SW|0x100);
487
	if (ring->scratch.cpu_page == NULL) {
487
	if (ring->scratch.cpu_page == NULL) {
488
		ret = -ENOMEM;
488
		ret = -ENOMEM;
489
		goto err_unpin;
489
		goto err_unpin;
490
	}
490
	}
491
 
491
 
492
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
492
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
493
			 ring->name, ring->scratch.gtt_offset);
493
			 ring->name, ring->scratch.gtt_offset);
494
	return 0;
494
	return 0;
495
 
495
 
496
err_unpin:
496
err_unpin:
497
	i915_gem_object_unpin(ring->scratch.obj);
497
	i915_gem_object_unpin(ring->scratch.obj);
498
err_unref:
498
err_unref:
499
	drm_gem_object_unreference(&ring->scratch.obj->base);
499
	drm_gem_object_unreference(&ring->scratch.obj->base);
500
err:
500
err:
501
	return ret;
501
	return ret;
502
}
502
}
503
 
503
 
504
static int init_render_ring(struct intel_ring_buffer *ring)
504
static int init_render_ring(struct intel_ring_buffer *ring)
505
{
505
{
506
	struct drm_device *dev = ring->dev;
506
	struct drm_device *dev = ring->dev;
507
	struct drm_i915_private *dev_priv = dev->dev_private;
507
	struct drm_i915_private *dev_priv = dev->dev_private;
508
	int ret = init_ring_common(ring);
508
	int ret = init_ring_common(ring);
509
 
509
 
510
	if (INTEL_INFO(dev)->gen > 3)
510
	if (INTEL_INFO(dev)->gen > 3)
511
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
511
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
512
 
512
 
513
	/* We need to disable the AsyncFlip performance optimisations in order
513
	/* We need to disable the AsyncFlip performance optimisations in order
514
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
514
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
515
	 * programmed to '1' on all products.
515
	 * programmed to '1' on all products.
516
	 *
516
	 *
517
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
517
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
518
	 */
518
	 */
519
	if (INTEL_INFO(dev)->gen >= 6)
519
	if (INTEL_INFO(dev)->gen >= 6)
520
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
520
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
521
 
521
 
522
	/* Required for the hardware to program scanline values for waiting */
522
	/* Required for the hardware to program scanline values for waiting */
523
	if (INTEL_INFO(dev)->gen == 6)
523
	if (INTEL_INFO(dev)->gen == 6)
524
		I915_WRITE(GFX_MODE,
524
		I915_WRITE(GFX_MODE,
525
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
525
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
526
 
526
 
527
		if (IS_GEN7(dev))
527
		if (IS_GEN7(dev))
528
			I915_WRITE(GFX_MODE_GEN7,
528
			I915_WRITE(GFX_MODE_GEN7,
529
				   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
529
				   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
530
				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
530
				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
531
 
531
 
532
	if (INTEL_INFO(dev)->gen >= 5) {
532
	if (INTEL_INFO(dev)->gen >= 5) {
533
		ret = init_pipe_control(ring);
533
		ret = init_pipe_control(ring);
534
		if (ret)
534
		if (ret)
535
			return ret;
535
			return ret;
536
	}
536
	}
537
 
537
 
538
	if (IS_GEN6(dev)) {
538
	if (IS_GEN6(dev)) {
539
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
539
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
540
		 * "If this bit is set, STCunit will have LRA as replacement
540
		 * "If this bit is set, STCunit will have LRA as replacement
541
		 *  policy. [...] This bit must be reset.  LRA replacement
541
		 *  policy. [...] This bit must be reset.  LRA replacement
542
		 *  policy is not supported."
542
		 *  policy is not supported."
543
		 */
543
		 */
544
		I915_WRITE(CACHE_MODE_0,
544
		I915_WRITE(CACHE_MODE_0,
545
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
545
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
546
 
546
 
547
		/* This is not explicitly set for GEN6, so read the register.
547
		/* This is not explicitly set for GEN6, so read the register.
548
		 * see intel_ring_mi_set_context() for why we care.
548
		 * see intel_ring_mi_set_context() for why we care.
549
		 * TODO: consider explicitly setting the bit for GEN5
549
		 * TODO: consider explicitly setting the bit for GEN5
550
		 */
550
		 */
551
		ring->itlb_before_ctx_switch =
551
		ring->itlb_before_ctx_switch =
552
			!!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
552
			!!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
553
	}
553
	}
554
 
554
 
555
	if (INTEL_INFO(dev)->gen >= 6)
555
	if (INTEL_INFO(dev)->gen >= 6)
556
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
556
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
557
 
557
 
558
	if (HAS_L3_GPU_CACHE(dev))
558
	if (HAS_L3_GPU_CACHE(dev))
559
		I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
559
		I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
560
 
560
 
561
	return ret;
561
	return ret;
562
}
562
}
563
 
563
 
564
static void render_ring_cleanup(struct intel_ring_buffer *ring)
564
static void render_ring_cleanup(struct intel_ring_buffer *ring)
565
{
565
{
566
	struct drm_device *dev = ring->dev;
566
	struct drm_device *dev = ring->dev;
567
 
567
 
568
	if (ring->scratch.obj == NULL)
568
	if (ring->scratch.obj == NULL)
569
		return;
569
		return;
570
 
570
 
571
	if (INTEL_INFO(dev)->gen >= 5) {
571
	if (INTEL_INFO(dev)->gen >= 5) {
572
//       kunmap(sg_page(ring->scratch.obj->pages->sgl));
572
//       kunmap(sg_page(ring->scratch.obj->pages->sgl));
573
		i915_gem_object_unpin(ring->scratch.obj);
573
		i915_gem_object_unpin(ring->scratch.obj);
574
	}
574
	}
575
 
575
 
576
	drm_gem_object_unreference(&ring->scratch.obj->base);
576
	drm_gem_object_unreference(&ring->scratch.obj->base);
577
	ring->scratch.obj = NULL;
577
	ring->scratch.obj = NULL;
578
}
578
}
579
 
579
 
580
static void
580
static void
581
update_mboxes(struct intel_ring_buffer *ring,
581
update_mboxes(struct intel_ring_buffer *ring,
582
	    u32 mmio_offset)
582
	    u32 mmio_offset)
583
{
583
{
584
/* NB: In order to be able to do semaphore MBOX updates for varying number
584
/* NB: In order to be able to do semaphore MBOX updates for varying number
585
 * of rings, it's easiest if we round up each individual update to a
585
 * of rings, it's easiest if we round up each individual update to a
586
 * multiple of 2 (since ring updates must always be a multiple of 2)
586
 * multiple of 2 (since ring updates must always be a multiple of 2)
587
 * even though the actual update only requires 3 dwords.
587
 * even though the actual update only requires 3 dwords.
588
 */
588
 */
589
#define MBOX_UPDATE_DWORDS 4
589
#define MBOX_UPDATE_DWORDS 4
590
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
590
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
591
	intel_ring_emit(ring, mmio_offset);
591
	intel_ring_emit(ring, mmio_offset);
592
	intel_ring_emit(ring, ring->outstanding_lazy_request);
592
	intel_ring_emit(ring, ring->outstanding_lazy_request);
593
	intel_ring_emit(ring, MI_NOOP);
593
	intel_ring_emit(ring, MI_NOOP);
594
}
594
}
595
 
595
 
596
/**
596
/**
597
 * gen6_add_request - Update the semaphore mailbox registers
597
 * gen6_add_request - Update the semaphore mailbox registers
598
 *
598
 *
599
 * @ring - ring that is adding a request
599
 * @ring - ring that is adding a request
600
 * @seqno - return seqno stuck into the ring
600
 * @seqno - return seqno stuck into the ring
601
 *
601
 *
602
 * Update the mailbox registers in the *other* rings with the current seqno.
602
 * Update the mailbox registers in the *other* rings with the current seqno.
603
 * This acts like a signal in the canonical semaphore.
603
 * This acts like a signal in the canonical semaphore.
604
 */
604
 */
605
static int
605
static int
606
gen6_add_request(struct intel_ring_buffer *ring)
606
gen6_add_request(struct intel_ring_buffer *ring)
607
{
607
{
608
	struct drm_device *dev = ring->dev;
608
	struct drm_device *dev = ring->dev;
609
	struct drm_i915_private *dev_priv = dev->dev_private;
609
	struct drm_i915_private *dev_priv = dev->dev_private;
610
	struct intel_ring_buffer *useless;
610
	struct intel_ring_buffer *useless;
611
	int i, ret;
611
	int i, ret;
612
 
612
 
613
	ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
613
	ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
614
				      MBOX_UPDATE_DWORDS) +
614
				      MBOX_UPDATE_DWORDS) +
615
				      4);
615
				      4);
616
	if (ret)
616
	if (ret)
617
		return ret;
617
		return ret;
618
#undef MBOX_UPDATE_DWORDS
618
#undef MBOX_UPDATE_DWORDS
619
 
619
 
620
	for_each_ring(useless, dev_priv, i) {
620
	for_each_ring(useless, dev_priv, i) {
621
		u32 mbox_reg = ring->signal_mbox[i];
621
		u32 mbox_reg = ring->signal_mbox[i];
622
		if (mbox_reg != GEN6_NOSYNC)
622
		if (mbox_reg != GEN6_NOSYNC)
623
			update_mboxes(ring, mbox_reg);
623
			update_mboxes(ring, mbox_reg);
624
	}
624
	}
625
 
625
 
626
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
626
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
627
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
627
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
628
	intel_ring_emit(ring, ring->outstanding_lazy_request);
628
	intel_ring_emit(ring, ring->outstanding_lazy_request);
629
	intel_ring_emit(ring, MI_USER_INTERRUPT);
629
	intel_ring_emit(ring, MI_USER_INTERRUPT);
630
	intel_ring_advance(ring);
630
	intel_ring_advance(ring);
631
 
631
 
632
	return 0;
632
	return 0;
633
}
633
}
634
 
634
 
635
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
635
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
636
					      u32 seqno)
636
					      u32 seqno)
637
{
637
{
638
	struct drm_i915_private *dev_priv = dev->dev_private;
638
	struct drm_i915_private *dev_priv = dev->dev_private;
639
	return dev_priv->last_seqno < seqno;
639
	return dev_priv->last_seqno < seqno;
640
}
640
}
641
 
641
 
642
/**
642
/**
643
 * intel_ring_sync - sync the waiter to the signaller on seqno
643
 * intel_ring_sync - sync the waiter to the signaller on seqno
644
 *
644
 *
645
 * @waiter - ring that is waiting
645
 * @waiter - ring that is waiting
646
 * @signaller - ring which has, or will signal
646
 * @signaller - ring which has, or will signal
647
 * @seqno - seqno which the waiter will block on
647
 * @seqno - seqno which the waiter will block on
648
 */
648
 */
649
static int
649
static int
650
gen6_ring_sync(struct intel_ring_buffer *waiter,
650
gen6_ring_sync(struct intel_ring_buffer *waiter,
651
		struct intel_ring_buffer *signaller,
651
		struct intel_ring_buffer *signaller,
652
		u32 seqno)
652
		u32 seqno)
653
{
653
{
654
	int ret;
654
	int ret;
655
	u32 dw1 = MI_SEMAPHORE_MBOX |
655
	u32 dw1 = MI_SEMAPHORE_MBOX |
656
		  MI_SEMAPHORE_COMPARE |
656
		  MI_SEMAPHORE_COMPARE |
657
		  MI_SEMAPHORE_REGISTER;
657
		  MI_SEMAPHORE_REGISTER;
658
 
658
 
659
	/* Throughout all of the GEM code, seqno passed implies our current
659
	/* Throughout all of the GEM code, seqno passed implies our current
660
	 * seqno is >= the last seqno executed. However for hardware the
660
	 * seqno is >= the last seqno executed. However for hardware the
661
	 * comparison is strictly greater than.
661
	 * comparison is strictly greater than.
662
	 */
662
	 */
663
	seqno -= 1;
663
	seqno -= 1;
664
 
664
 
665
	WARN_ON(signaller->semaphore_register[waiter->id] ==
665
	WARN_ON(signaller->semaphore_register[waiter->id] ==
666
		MI_SEMAPHORE_SYNC_INVALID);
666
		MI_SEMAPHORE_SYNC_INVALID);
667
 
667
 
668
	ret = intel_ring_begin(waiter, 4);
668
	ret = intel_ring_begin(waiter, 4);
669
	if (ret)
669
	if (ret)
670
		return ret;
670
		return ret;
671
 
671
 
672
	/* If seqno wrap happened, omit the wait with no-ops */
672
	/* If seqno wrap happened, omit the wait with no-ops */
673
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
673
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
674
	intel_ring_emit(waiter,
674
	intel_ring_emit(waiter,
675
				dw1 |
675
				dw1 |
676
				signaller->semaphore_register[waiter->id]);
676
				signaller->semaphore_register[waiter->id]);
677
	intel_ring_emit(waiter, seqno);
677
	intel_ring_emit(waiter, seqno);
678
	intel_ring_emit(waiter, 0);
678
	intel_ring_emit(waiter, 0);
679
	intel_ring_emit(waiter, MI_NOOP);
679
	intel_ring_emit(waiter, MI_NOOP);
680
	} else {
680
	} else {
681
		intel_ring_emit(waiter, MI_NOOP);
681
		intel_ring_emit(waiter, MI_NOOP);
682
		intel_ring_emit(waiter, MI_NOOP);
682
		intel_ring_emit(waiter, MI_NOOP);
683
		intel_ring_emit(waiter, MI_NOOP);
683
		intel_ring_emit(waiter, MI_NOOP);
684
		intel_ring_emit(waiter, MI_NOOP);
684
		intel_ring_emit(waiter, MI_NOOP);
685
	}
685
	}
686
	intel_ring_advance(waiter);
686
	intel_ring_advance(waiter);
687
 
687
 
688
	return 0;
688
	return 0;
689
}
689
}
690
 
690
 
691
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
691
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
692
do {									\
692
do {									\
693
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
693
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
694
		 PIPE_CONTROL_DEPTH_STALL);				\
694
		 PIPE_CONTROL_DEPTH_STALL);				\
695
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
695
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
696
	intel_ring_emit(ring__, 0);							\
696
	intel_ring_emit(ring__, 0);							\
697
	intel_ring_emit(ring__, 0);							\
697
	intel_ring_emit(ring__, 0);							\
698
} while (0)
698
} while (0)
699
 
699
 
700
static int
700
static int
701
pc_render_add_request(struct intel_ring_buffer *ring)
701
pc_render_add_request(struct intel_ring_buffer *ring)
702
{
702
{
703
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
703
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
704
	int ret;
704
	int ret;
705
 
705
 
706
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
706
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
707
	 * incoherent with writes to memory, i.e. completely fubar,
707
	 * incoherent with writes to memory, i.e. completely fubar,
708
	 * so we need to use PIPE_NOTIFY instead.
708
	 * so we need to use PIPE_NOTIFY instead.
709
	 *
709
	 *
710
	 * However, we also need to workaround the qword write
710
	 * However, we also need to workaround the qword write
711
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
711
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
712
	 * memory before requesting an interrupt.
712
	 * memory before requesting an interrupt.
713
	 */
713
	 */
714
	ret = intel_ring_begin(ring, 32);
714
	ret = intel_ring_begin(ring, 32);
715
	if (ret)
715
	if (ret)
716
		return ret;
716
		return ret;
717
 
717
 
718
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
718
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
719
			PIPE_CONTROL_WRITE_FLUSH |
719
			PIPE_CONTROL_WRITE_FLUSH |
720
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
720
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
721
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
721
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
722
	intel_ring_emit(ring, ring->outstanding_lazy_request);
722
	intel_ring_emit(ring, ring->outstanding_lazy_request);
723
	intel_ring_emit(ring, 0);
723
	intel_ring_emit(ring, 0);
724
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
724
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
725
	scratch_addr += 128; /* write to separate cachelines */
725
	scratch_addr += 128; /* write to separate cachelines */
726
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
726
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
727
	scratch_addr += 128;
727
	scratch_addr += 128;
728
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
728
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
729
	scratch_addr += 128;
729
	scratch_addr += 128;
730
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
730
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
731
	scratch_addr += 128;
731
	scratch_addr += 128;
732
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
732
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
733
	scratch_addr += 128;
733
	scratch_addr += 128;
734
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
734
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
735
 
735
 
736
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
736
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
737
			PIPE_CONTROL_WRITE_FLUSH |
737
			PIPE_CONTROL_WRITE_FLUSH |
738
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
738
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
739
			PIPE_CONTROL_NOTIFY);
739
			PIPE_CONTROL_NOTIFY);
740
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
740
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
741
	intel_ring_emit(ring, ring->outstanding_lazy_request);
741
	intel_ring_emit(ring, ring->outstanding_lazy_request);
742
	intel_ring_emit(ring, 0);
742
	intel_ring_emit(ring, 0);
743
	intel_ring_advance(ring);
743
	intel_ring_advance(ring);
744
 
744
 
745
	return 0;
745
	return 0;
746
}
746
}
747
 
747
 
748
static u32
748
static u32
749
gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
749
gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
750
{
750
{
751
	/* Workaround to force correct ordering between irq and seqno writes on
751
	/* Workaround to force correct ordering between irq and seqno writes on
752
	 * ivb (and maybe also on snb) by reading from a CS register (like
752
	 * ivb (and maybe also on snb) by reading from a CS register (like
753
	 * ACTHD) before reading the status page. */
753
	 * ACTHD) before reading the status page. */
754
	if (!lazy_coherency)
754
	if (!lazy_coherency)
755
		intel_ring_get_active_head(ring);
755
		intel_ring_get_active_head(ring);
756
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
756
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
757
}
757
}
758
 
758
 
759
static u32
759
static u32
760
ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
760
ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
761
{
761
{
762
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
762
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
763
}
763
}
764
 
764
 
765
static void
765
static void
766
ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
766
ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
767
{
767
{
768
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
768
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
769
}
769
}
770
 
770
 
771
static u32
771
static u32
772
pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
772
pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
773
{
773
{
774
	return ring->scratch.cpu_page[0];
774
	return ring->scratch.cpu_page[0];
775
}
775
}
776
 
776
 
777
static void
777
static void
778
pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
778
pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
779
{
779
{
780
	ring->scratch.cpu_page[0] = seqno;
780
	ring->scratch.cpu_page[0] = seqno;
781
}
781
}
782
 
782
 
783
static bool
783
static bool
784
gen5_ring_get_irq(struct intel_ring_buffer *ring)
784
gen5_ring_get_irq(struct intel_ring_buffer *ring)
785
{
785
{
786
	struct drm_device *dev = ring->dev;
786
	struct drm_device *dev = ring->dev;
787
	drm_i915_private_t *dev_priv = dev->dev_private;
787
	drm_i915_private_t *dev_priv = dev->dev_private;
788
	unsigned long flags;
788
	unsigned long flags;
789
 
789
 
790
	if (!dev->irq_enabled)
790
	if (!dev->irq_enabled)
791
		return false;
791
		return false;
792
 
792
 
793
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
793
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
794
	if (ring->irq_refcount++ == 0)
794
	if (ring->irq_refcount++ == 0)
795
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
795
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
796
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
796
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
797
 
797
 
798
	return true;
798
	return true;
799
}
799
}
800
 
800
 
801
static void
801
static void
802
gen5_ring_put_irq(struct intel_ring_buffer *ring)
802
gen5_ring_put_irq(struct intel_ring_buffer *ring)
803
{
803
{
804
	struct drm_device *dev = ring->dev;
804
	struct drm_device *dev = ring->dev;
805
	drm_i915_private_t *dev_priv = dev->dev_private;
805
	drm_i915_private_t *dev_priv = dev->dev_private;
806
	unsigned long flags;
806
	unsigned long flags;
807
 
807
 
808
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
808
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
809
	if (--ring->irq_refcount == 0)
809
	if (--ring->irq_refcount == 0)
810
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
810
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
811
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
811
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
812
}
812
}
813
 
813
 
814
static bool
814
static bool
815
i9xx_ring_get_irq(struct intel_ring_buffer *ring)
815
i9xx_ring_get_irq(struct intel_ring_buffer *ring)
816
{
816
{
817
	struct drm_device *dev = ring->dev;
817
	struct drm_device *dev = ring->dev;
818
	drm_i915_private_t *dev_priv = dev->dev_private;
818
	drm_i915_private_t *dev_priv = dev->dev_private;
819
	unsigned long flags;
819
	unsigned long flags;
820
 
820
 
821
	if (!dev->irq_enabled)
821
	if (!dev->irq_enabled)
822
		return false;
822
		return false;
823
 
823
 
824
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
824
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
825
	if (ring->irq_refcount++ == 0) {
825
	if (ring->irq_refcount++ == 0) {
826
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
826
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
827
	I915_WRITE(IMR, dev_priv->irq_mask);
827
	I915_WRITE(IMR, dev_priv->irq_mask);
828
	POSTING_READ(IMR);
828
	POSTING_READ(IMR);
829
	}
829
	}
830
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
830
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
831
 
831
 
832
	return true;
832
	return true;
833
}
833
}
834
 
834
 
835
static void
835
static void
836
i9xx_ring_put_irq(struct intel_ring_buffer *ring)
836
i9xx_ring_put_irq(struct intel_ring_buffer *ring)
837
{
837
{
838
	struct drm_device *dev = ring->dev;
838
	struct drm_device *dev = ring->dev;
839
	drm_i915_private_t *dev_priv = dev->dev_private;
839
	drm_i915_private_t *dev_priv = dev->dev_private;
840
	unsigned long flags;
840
	unsigned long flags;
841
 
841
 
842
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
842
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
843
	if (--ring->irq_refcount == 0) {
843
	if (--ring->irq_refcount == 0) {
844
		dev_priv->irq_mask |= ring->irq_enable_mask;
844
		dev_priv->irq_mask |= ring->irq_enable_mask;
845
	I915_WRITE(IMR, dev_priv->irq_mask);
845
	I915_WRITE(IMR, dev_priv->irq_mask);
846
	POSTING_READ(IMR);
846
	POSTING_READ(IMR);
847
	}
847
	}
848
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
848
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
849
}
849
}
850
 
850
 
851
static bool
851
static bool
852
i8xx_ring_get_irq(struct intel_ring_buffer *ring)
852
i8xx_ring_get_irq(struct intel_ring_buffer *ring)
853
{
853
{
854
	struct drm_device *dev = ring->dev;
854
	struct drm_device *dev = ring->dev;
855
	drm_i915_private_t *dev_priv = dev->dev_private;
855
	drm_i915_private_t *dev_priv = dev->dev_private;
856
	unsigned long flags;
856
	unsigned long flags;
857
 
857
 
858
	if (!dev->irq_enabled)
858
	if (!dev->irq_enabled)
859
		return false;
859
		return false;
860
 
860
 
861
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
861
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
862
	if (ring->irq_refcount++ == 0) {
862
	if (ring->irq_refcount++ == 0) {
863
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
863
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
864
		I915_WRITE16(IMR, dev_priv->irq_mask);
864
		I915_WRITE16(IMR, dev_priv->irq_mask);
865
		POSTING_READ16(IMR);
865
		POSTING_READ16(IMR);
866
	}
866
	}
867
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
867
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
868
 
868
 
869
	return true;
869
	return true;
870
}
870
}
871
 
871
 
872
static void
872
static void
873
i8xx_ring_put_irq(struct intel_ring_buffer *ring)
873
i8xx_ring_put_irq(struct intel_ring_buffer *ring)
874
{
874
{
875
	struct drm_device *dev = ring->dev;
875
	struct drm_device *dev = ring->dev;
876
	drm_i915_private_t *dev_priv = dev->dev_private;
876
	drm_i915_private_t *dev_priv = dev->dev_private;
877
	unsigned long flags;
877
	unsigned long flags;
878
 
878
 
879
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
879
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
880
	if (--ring->irq_refcount == 0) {
880
	if (--ring->irq_refcount == 0) {
881
		dev_priv->irq_mask |= ring->irq_enable_mask;
881
		dev_priv->irq_mask |= ring->irq_enable_mask;
882
		I915_WRITE16(IMR, dev_priv->irq_mask);
882
		I915_WRITE16(IMR, dev_priv->irq_mask);
883
		POSTING_READ16(IMR);
883
		POSTING_READ16(IMR);
884
	}
884
	}
885
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
885
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
886
}
886
}
887
 
887
 
888
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
888
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
889
{
889
{
890
	struct drm_device *dev = ring->dev;
890
	struct drm_device *dev = ring->dev;
891
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
891
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
892
	u32 mmio = 0;
892
	u32 mmio = 0;
893
 
893
 
894
	/* The ring status page addresses are no longer next to the rest of
894
	/* The ring status page addresses are no longer next to the rest of
895
	 * the ring registers as of gen7.
895
	 * the ring registers as of gen7.
896
	 */
896
	 */
897
	if (IS_GEN7(dev)) {
897
	if (IS_GEN7(dev)) {
898
		switch (ring->id) {
898
		switch (ring->id) {
899
		case RCS:
899
		case RCS:
900
			mmio = RENDER_HWS_PGA_GEN7;
900
			mmio = RENDER_HWS_PGA_GEN7;
901
			break;
901
			break;
902
		case BCS:
902
		case BCS:
903
			mmio = BLT_HWS_PGA_GEN7;
903
			mmio = BLT_HWS_PGA_GEN7;
904
			break;
904
			break;
905
		case VCS:
905
		case VCS:
906
			mmio = BSD_HWS_PGA_GEN7;
906
			mmio = BSD_HWS_PGA_GEN7;
907
			break;
907
			break;
908
		case VECS:
908
		case VECS:
909
			mmio = VEBOX_HWS_PGA_GEN7;
909
			mmio = VEBOX_HWS_PGA_GEN7;
910
			break;
910
			break;
911
		}
911
		}
912
	} else if (IS_GEN6(ring->dev)) {
912
	} else if (IS_GEN6(ring->dev)) {
913
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
913
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
914
	} else {
914
	} else {
915
		mmio = RING_HWS_PGA(ring->mmio_base);
915
		mmio = RING_HWS_PGA(ring->mmio_base);
916
	}
916
	}
917
 
917
 
918
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
918
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
919
	POSTING_READ(mmio);
919
	POSTING_READ(mmio);
920
 
920
 
921
	/* Flush the TLB for this page */
921
	/* Flush the TLB for this page */
922
	if (INTEL_INFO(dev)->gen >= 6) {
922
	if (INTEL_INFO(dev)->gen >= 6) {
923
		u32 reg = RING_INSTPM(ring->mmio_base);
923
		u32 reg = RING_INSTPM(ring->mmio_base);
924
		I915_WRITE(reg,
924
		I915_WRITE(reg,
925
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
925
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
926
					      INSTPM_SYNC_FLUSH));
926
					      INSTPM_SYNC_FLUSH));
927
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
927
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
928
			     1000))
928
			     1000))
929
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
929
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
930
				  ring->name);
930
				  ring->name);
931
	}
931
	}
932
}
932
}
933
 
933
 
934
static int
934
static int
935
bsd_ring_flush(struct intel_ring_buffer *ring,
935
bsd_ring_flush(struct intel_ring_buffer *ring,
936
	       u32     invalidate_domains,
936
	       u32     invalidate_domains,
937
	       u32     flush_domains)
937
	       u32     flush_domains)
938
{
938
{
939
	int ret;
939
	int ret;
940
 
940
 
941
	ret = intel_ring_begin(ring, 2);
941
	ret = intel_ring_begin(ring, 2);
942
	if (ret)
942
	if (ret)
943
		return ret;
943
		return ret;
944
 
944
 
945
	intel_ring_emit(ring, MI_FLUSH);
945
	intel_ring_emit(ring, MI_FLUSH);
946
	intel_ring_emit(ring, MI_NOOP);
946
	intel_ring_emit(ring, MI_NOOP);
947
	intel_ring_advance(ring);
947
	intel_ring_advance(ring);
948
	return 0;
948
	return 0;
949
}
949
}
950
 
950
 
951
static int
951
static int
952
i9xx_add_request(struct intel_ring_buffer *ring)
952
i9xx_add_request(struct intel_ring_buffer *ring)
953
{
953
{
954
	int ret;
954
	int ret;
955
 
955
 
956
	ret = intel_ring_begin(ring, 4);
956
	ret = intel_ring_begin(ring, 4);
957
	if (ret)
957
	if (ret)
958
		return ret;
958
		return ret;
959
 
959
 
960
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
960
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
961
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
961
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
962
	intel_ring_emit(ring, ring->outstanding_lazy_request);
962
	intel_ring_emit(ring, ring->outstanding_lazy_request);
963
	intel_ring_emit(ring, MI_USER_INTERRUPT);
963
	intel_ring_emit(ring, MI_USER_INTERRUPT);
964
	intel_ring_advance(ring);
964
	intel_ring_advance(ring);
965
 
965
 
966
	return 0;
966
	return 0;
967
}
967
}
968
 
968
 
969
static bool
969
static bool
970
gen6_ring_get_irq(struct intel_ring_buffer *ring)
970
gen6_ring_get_irq(struct intel_ring_buffer *ring)
971
{
971
{
972
	struct drm_device *dev = ring->dev;
972
	struct drm_device *dev = ring->dev;
973
	drm_i915_private_t *dev_priv = dev->dev_private;
973
	drm_i915_private_t *dev_priv = dev->dev_private;
974
	unsigned long flags;
974
	unsigned long flags;
975
 
975
 
976
	if (!dev->irq_enabled)
976
	if (!dev->irq_enabled)
977
	       return false;
977
	       return false;
978
 
978
 
979
	/* It looks like we need to prevent the gt from suspending while waiting
979
	/* It looks like we need to prevent the gt from suspending while waiting
980
	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
980
	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
981
	 * blt/bsd rings on ivb. */
981
	 * blt/bsd rings on ivb. */
982
		gen6_gt_force_wake_get(dev_priv);
982
		gen6_gt_force_wake_get(dev_priv);
983
 
983
 
984
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
984
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
985
	if (ring->irq_refcount++ == 0) {
985
	if (ring->irq_refcount++ == 0) {
986
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
986
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
987
			I915_WRITE_IMR(ring,
987
			I915_WRITE_IMR(ring,
988
				       ~(ring->irq_enable_mask |
988
				       ~(ring->irq_enable_mask |
989
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
989
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
990
		else
990
		else
991
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
991
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
992
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
992
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
993
	}
993
	}
994
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
994
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
995
 
995
 
996
    return true;
996
    return true;
997
}
997
}
998
 
998
 
999
static void
999
static void
1000
gen6_ring_put_irq(struct intel_ring_buffer *ring)
1000
gen6_ring_put_irq(struct intel_ring_buffer *ring)
1001
{
1001
{
1002
	struct drm_device *dev = ring->dev;
1002
	struct drm_device *dev = ring->dev;
1003
	drm_i915_private_t *dev_priv = dev->dev_private;
1003
	drm_i915_private_t *dev_priv = dev->dev_private;
1004
	unsigned long flags;
1004
	unsigned long flags;
1005
 
1005
 
1006
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1006
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1007
	if (--ring->irq_refcount == 0) {
1007
	if (--ring->irq_refcount == 0) {
1008
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1008
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1009
			I915_WRITE_IMR(ring,
1009
			I915_WRITE_IMR(ring,
1010
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1010
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1011
		else
1011
		else
1012
			I915_WRITE_IMR(ring, ~0);
1012
			I915_WRITE_IMR(ring, ~0);
1013
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1013
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1014
	}
1014
	}
1015
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1015
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1016
 
1016
 
1017
		gen6_gt_force_wake_put(dev_priv);
1017
		gen6_gt_force_wake_put(dev_priv);
1018
}
1018
}
1019
 
1019
 
1020
static bool
1020
static bool
1021
hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1021
hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1022
{
1022
{
1023
	struct drm_device *dev = ring->dev;
1023
	struct drm_device *dev = ring->dev;
1024
	struct drm_i915_private *dev_priv = dev->dev_private;
1024
	struct drm_i915_private *dev_priv = dev->dev_private;
1025
	unsigned long flags;
1025
	unsigned long flags;
1026
 
1026
 
1027
	if (!dev->irq_enabled)
1027
	if (!dev->irq_enabled)
1028
		return false;
1028
		return false;
1029
 
1029
 
1030
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1030
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1031
	if (ring->irq_refcount++ == 0) {
1031
	if (ring->irq_refcount++ == 0) {
1032
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1032
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1033
		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1033
		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1034
	}
1034
	}
1035
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1035
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1036
 
1036
 
1037
	return true;
1037
	return true;
1038
}
1038
}
1039
 
1039
 
1040
static void
1040
static void
1041
hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1041
hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1042
{
1042
{
1043
	struct drm_device *dev = ring->dev;
1043
	struct drm_device *dev = ring->dev;
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	unsigned long flags;
1045
	unsigned long flags;
1046
 
1046
 
1047
	if (!dev->irq_enabled)
1047
	if (!dev->irq_enabled)
1048
		return;
1048
		return;
1049
 
1049
 
1050
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1050
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1051
	if (--ring->irq_refcount == 0) {
1051
	if (--ring->irq_refcount == 0) {
1052
		I915_WRITE_IMR(ring, ~0);
1052
		I915_WRITE_IMR(ring, ~0);
1053
		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1053
		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1054
	}
1054
	}
1055
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1055
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1056
}
1056
}
1057
 
1057
 
1058
static int
1058
static int
1059
i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1059
i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1060
			 u32 offset, u32 length,
1060
			 u32 offset, u32 length,
1061
			 unsigned flags)
1061
			 unsigned flags)
1062
{
1062
{
1063
	int ret;
1063
	int ret;
1064
 
1064
 
1065
	ret = intel_ring_begin(ring, 2);
1065
	ret = intel_ring_begin(ring, 2);
1066
	if (ret)
1066
	if (ret)
1067
		return ret;
1067
		return ret;
1068
 
1068
 
1069
	intel_ring_emit(ring,
1069
	intel_ring_emit(ring,
1070
			MI_BATCH_BUFFER_START |
1070
			MI_BATCH_BUFFER_START |
1071
			MI_BATCH_GTT |
1071
			MI_BATCH_GTT |
1072
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1072
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1073
	intel_ring_emit(ring, offset);
1073
	intel_ring_emit(ring, offset);
1074
	intel_ring_advance(ring);
1074
	intel_ring_advance(ring);
1075
 
1075
 
1076
	return 0;
1076
	return 0;
1077
}
1077
}
1078
 
1078
 
1079
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1079
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1080
#define I830_BATCH_LIMIT (256*1024)
1080
#define I830_BATCH_LIMIT (256*1024)
1081
static int
1081
static int
1082
i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1082
i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1083
				u32 offset, u32 len,
1083
				u32 offset, u32 len,
1084
				unsigned flags)
1084
				unsigned flags)
1085
{
1085
{
1086
	int ret;
1086
	int ret;
1087
 
1087
 
1088
	if (flags & I915_DISPATCH_PINNED) {
1088
	if (flags & I915_DISPATCH_PINNED) {
1089
		ret = intel_ring_begin(ring, 4);
1089
		ret = intel_ring_begin(ring, 4);
1090
		if (ret)
1090
		if (ret)
1091
			return ret;
1091
			return ret;
1092
 
1092
 
1093
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1093
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1094
		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1094
		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1095
		intel_ring_emit(ring, offset + len - 8);
1095
		intel_ring_emit(ring, offset + len - 8);
1096
		intel_ring_emit(ring, MI_NOOP);
1096
		intel_ring_emit(ring, MI_NOOP);
1097
		intel_ring_advance(ring);
1097
		intel_ring_advance(ring);
1098
	} else {
1098
	} else {
1099
		u32 cs_offset = ring->scratch.gtt_offset;
1099
		u32 cs_offset = ring->scratch.gtt_offset;
1100
 
1100
 
1101
		if (len > I830_BATCH_LIMIT)
1101
		if (len > I830_BATCH_LIMIT)
1102
			return -ENOSPC;
1102
			return -ENOSPC;
1103
 
1103
 
1104
		ret = intel_ring_begin(ring, 9+3);
1104
		ret = intel_ring_begin(ring, 9+3);
1105
		if (ret)
1105
		if (ret)
1106
			return ret;
1106
			return ret;
1107
		/* Blit the batch (which has now all relocs applied) to the stable batch
1107
		/* Blit the batch (which has now all relocs applied) to the stable batch
1108
		 * scratch bo area (so that the CS never stumbles over its tlb
1108
		 * scratch bo area (so that the CS never stumbles over its tlb
1109
		 * invalidation bug) ... */
1109
		 * invalidation bug) ... */
1110
		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1110
		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1111
				XY_SRC_COPY_BLT_WRITE_ALPHA |
1111
				XY_SRC_COPY_BLT_WRITE_ALPHA |
1112
				XY_SRC_COPY_BLT_WRITE_RGB);
1112
				XY_SRC_COPY_BLT_WRITE_RGB);
1113
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1113
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1114
		intel_ring_emit(ring, 0);
1114
		intel_ring_emit(ring, 0);
1115
		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1115
		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1116
		intel_ring_emit(ring, cs_offset);
1116
		intel_ring_emit(ring, cs_offset);
1117
		intel_ring_emit(ring, 0);
1117
		intel_ring_emit(ring, 0);
1118
		intel_ring_emit(ring, 4096);
1118
		intel_ring_emit(ring, 4096);
1119
		intel_ring_emit(ring, offset);
1119
		intel_ring_emit(ring, offset);
1120
		intel_ring_emit(ring, MI_FLUSH);
1120
		intel_ring_emit(ring, MI_FLUSH);
1121
 
1121
 
1122
		/* ... and execute it. */
1122
		/* ... and execute it. */
1123
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1123
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1124
		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1124
		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1125
		intel_ring_emit(ring, cs_offset + len - 8);
1125
		intel_ring_emit(ring, cs_offset + len - 8);
1126
	intel_ring_advance(ring);
1126
	intel_ring_advance(ring);
1127
	}
1127
	}
1128
 
1128
 
1129
	return 0;
1129
	return 0;
1130
}
1130
}
1131
 
1131
 
1132
static int
1132
static int
1133
i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1133
i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1134
			 u32 offset, u32 len,
1134
			 u32 offset, u32 len,
1135
			 unsigned flags)
1135
			 unsigned flags)
1136
{
1136
{
1137
	int ret;
1137
	int ret;
1138
 
1138
 
1139
		ret = intel_ring_begin(ring, 2);
1139
		ret = intel_ring_begin(ring, 2);
1140
		if (ret)
1140
		if (ret)
1141
			return ret;
1141
			return ret;
1142
 
1142
 
1143
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1143
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1144
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1144
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1145
	intel_ring_advance(ring);
1145
	intel_ring_advance(ring);
1146
 
1146
 
1147
	return 0;
1147
	return 0;
1148
}
1148
}
1149
 
1149
 
1150
static void cleanup_status_page(struct intel_ring_buffer *ring)
1150
static void cleanup_status_page(struct intel_ring_buffer *ring)
1151
{
1151
{
1152
	struct drm_i915_gem_object *obj;
1152
	struct drm_i915_gem_object *obj;
1153
 
1153
 
1154
	obj = ring->status_page.obj;
1154
	obj = ring->status_page.obj;
1155
	if (obj == NULL)
1155
	if (obj == NULL)
1156
		return;
1156
		return;
1157
 
1157
 
1158
//   kunmap(sg_page(obj->pages->sgl));
1158
//   kunmap(sg_page(obj->pages->sgl));
1159
    i915_gem_object_unpin(obj);
1159
    i915_gem_object_unpin(obj);
1160
	drm_gem_object_unreference(&obj->base);
1160
	drm_gem_object_unreference(&obj->base);
1161
	ring->status_page.obj = NULL;
1161
	ring->status_page.obj = NULL;
1162
}
1162
}
1163
 
1163
 
1164
static int init_status_page(struct intel_ring_buffer *ring)
1164
static int init_status_page(struct intel_ring_buffer *ring)
1165
{
1165
{
1166
	struct drm_device *dev = ring->dev;
1166
	struct drm_device *dev = ring->dev;
1167
	struct drm_i915_gem_object *obj;
1167
	struct drm_i915_gem_object *obj;
1168
	int ret;
1168
	int ret;
1169
 
1169
 
1170
	obj = i915_gem_alloc_object(dev, 4096);
1170
	obj = i915_gem_alloc_object(dev, 4096);
1171
	if (obj == NULL) {
1171
	if (obj == NULL) {
1172
		DRM_ERROR("Failed to allocate status page\n");
1172
		DRM_ERROR("Failed to allocate status page\n");
1173
		ret = -ENOMEM;
1173
		ret = -ENOMEM;
1174
		goto err;
1174
		goto err;
1175
	}
1175
	}
1176
 
1176
 
1177
	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1177
	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1178
 
1178
 
1179
	ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1179
	ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1180
	if (ret != 0) {
1180
	if (ret != 0) {
1181
		goto err_unref;
1181
		goto err_unref;
1182
	}
1182
	}
1183
 
1183
 
1184
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1184
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1185
    ring->status_page.page_addr = (void*)MapIoMem((addr_t)sg_page(obj->pages->sgl),4096,PG_SW);
1185
    ring->status_page.page_addr = (void*)MapIoMem((addr_t)sg_page(obj->pages->sgl),4096,PG_SW|0x100);
1186
	if (ring->status_page.page_addr == NULL) {
1186
	if (ring->status_page.page_addr == NULL) {
1187
		ret = -ENOMEM;
1187
		ret = -ENOMEM;
1188
		goto err_unpin;
1188
		goto err_unpin;
1189
	}
1189
	}
1190
	ring->status_page.obj = obj;
1190
	ring->status_page.obj = obj;
1191
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1191
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1192
 
1192
 
1193
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1193
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1194
			ring->name, ring->status_page.gfx_addr);
1194
			ring->name, ring->status_page.gfx_addr);
1195
 
1195
 
1196
	return 0;
1196
	return 0;
1197
 
1197
 
1198
err_unpin:
1198
err_unpin:
1199
	i915_gem_object_unpin(obj);
1199
	i915_gem_object_unpin(obj);
1200
err_unref:
1200
err_unref:
1201
	drm_gem_object_unreference(&obj->base);
1201
	drm_gem_object_unreference(&obj->base);
1202
err:
1202
err:
1203
	return ret;
1203
	return ret;
1204
}
1204
}
1205
 
1205
 
1206
static int init_phys_status_page(struct intel_ring_buffer *ring)
1206
static int init_phys_status_page(struct intel_ring_buffer *ring)
1207
{
1207
{
1208
    struct drm_i915_private *dev_priv = ring->dev->dev_private;
1208
    struct drm_i915_private *dev_priv = ring->dev->dev_private;
1209
 
1209
 
1210
    if (!dev_priv->status_page_dmah) {
1210
    if (!dev_priv->status_page_dmah) {
1211
        dev_priv->status_page_dmah =
1211
        dev_priv->status_page_dmah =
1212
            drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1212
            drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1213
        if (!dev_priv->status_page_dmah)
1213
        if (!dev_priv->status_page_dmah)
1214
            return -ENOMEM;
1214
            return -ENOMEM;
1215
    }
1215
    }
1216
 
1216
 
1217
    ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1217
    ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1218
    memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1218
    memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1219
 
1219
 
1220
    return 0;
1220
    return 0;
1221
}
1221
}
1222
 
1222
 
1223
static int intel_init_ring_buffer(struct drm_device *dev,
1223
static int intel_init_ring_buffer(struct drm_device *dev,
1224
			   struct intel_ring_buffer *ring)
1224
			   struct intel_ring_buffer *ring)
1225
{
1225
{
1226
	struct drm_i915_gem_object *obj;
1226
	struct drm_i915_gem_object *obj;
1227
	struct drm_i915_private *dev_priv = dev->dev_private;
1227
	struct drm_i915_private *dev_priv = dev->dev_private;
1228
	int ret;
1228
	int ret;
1229
 
1229
 
1230
	ring->dev = dev;
1230
	ring->dev = dev;
1231
	INIT_LIST_HEAD(&ring->active_list);
1231
	INIT_LIST_HEAD(&ring->active_list);
1232
	INIT_LIST_HEAD(&ring->request_list);
1232
	INIT_LIST_HEAD(&ring->request_list);
1233
	ring->size = 32 * PAGE_SIZE;
1233
	ring->size = 32 * PAGE_SIZE;
1234
	memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1234
	memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1235
 
1235
 
1236
	init_waitqueue_head(&ring->irq_queue);
1236
	init_waitqueue_head(&ring->irq_queue);
1237
 
1237
 
1238
	if (I915_NEED_GFX_HWS(dev)) {
1238
	if (I915_NEED_GFX_HWS(dev)) {
1239
       ret = init_status_page(ring);
1239
       ret = init_status_page(ring);
1240
       if (ret)
1240
       if (ret)
1241
           return ret;
1241
           return ret;
1242
	} else {
1242
	} else {
1243
		BUG_ON(ring->id != RCS);
1243
		BUG_ON(ring->id != RCS);
1244
		ret = init_phys_status_page(ring);
1244
		ret = init_phys_status_page(ring);
1245
		if (ret)
1245
		if (ret)
1246
			return ret;
1246
			return ret;
1247
	}
1247
	}
1248
 
1248
 
1249
	obj = NULL;
1249
	obj = NULL;
1250
	if (!HAS_LLC(dev))
1250
	if (!HAS_LLC(dev))
1251
		obj = i915_gem_object_create_stolen(dev, ring->size);
1251
		obj = i915_gem_object_create_stolen(dev, ring->size);
1252
	if (obj == NULL)
1252
	if (obj == NULL)
1253
    obj = i915_gem_alloc_object(dev, ring->size);
1253
    obj = i915_gem_alloc_object(dev, ring->size);
1254
	if (obj == NULL) {
1254
	if (obj == NULL) {
1255
		DRM_ERROR("Failed to allocate ringbuffer\n");
1255
		DRM_ERROR("Failed to allocate ringbuffer\n");
1256
		ret = -ENOMEM;
1256
		ret = -ENOMEM;
1257
		goto err_hws;
1257
		goto err_hws;
1258
	}
1258
	}
1259
 
1259
 
1260
	ring->obj = obj;
1260
	ring->obj = obj;
1261
 
1261
 
1262
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1262
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1263
	if (ret)
1263
	if (ret)
1264
		goto err_unref;
1264
		goto err_unref;
1265
 
1265
 
1266
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1266
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1267
	if (ret)
1267
	if (ret)
1268
		goto err_unpin;
1268
		goto err_unpin;
1269
 
1269
 
1270
	ring->virtual_start =
1270
	ring->virtual_start =
1271
		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1271
		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1272
			   ring->size);
1272
			   ring->size);
1273
	if (ring->virtual_start == NULL) {
1273
	if (ring->virtual_start == NULL) {
1274
		DRM_ERROR("Failed to map ringbuffer.\n");
1274
		DRM_ERROR("Failed to map ringbuffer.\n");
1275
		ret = -EINVAL;
1275
		ret = -EINVAL;
1276
		goto err_unpin;
1276
		goto err_unpin;
1277
	}
1277
	}
1278
 
1278
 
1279
	ret = ring->init(ring);
1279
	ret = ring->init(ring);
1280
	if (ret)
1280
	if (ret)
1281
		goto err_unmap;
1281
		goto err_unmap;
1282
 
1282
 
1283
	/* Workaround an erratum on the i830 which causes a hang if
1283
	/* Workaround an erratum on the i830 which causes a hang if
1284
	 * the TAIL pointer points to within the last 2 cachelines
1284
	 * the TAIL pointer points to within the last 2 cachelines
1285
	 * of the buffer.
1285
	 * of the buffer.
1286
	 */
1286
	 */
1287
	ring->effective_size = ring->size;
1287
	ring->effective_size = ring->size;
1288
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1288
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1289
		ring->effective_size -= 128;
1289
		ring->effective_size -= 128;
1290
 
1290
 
1291
	return 0;
1291
	return 0;
1292
 
1292
 
1293
err_unmap:
1293
err_unmap:
1294
	iounmap(ring->virtual_start);
1294
	iounmap(ring->virtual_start);
1295
err_unpin:
1295
err_unpin:
1296
	i915_gem_object_unpin(obj);
1296
	i915_gem_object_unpin(obj);
1297
err_unref:
1297
err_unref:
1298
	drm_gem_object_unreference(&obj->base);
1298
	drm_gem_object_unreference(&obj->base);
1299
	ring->obj = NULL;
1299
	ring->obj = NULL;
1300
err_hws:
1300
err_hws:
1301
//   cleanup_status_page(ring);
1301
//   cleanup_status_page(ring);
1302
	return ret;
1302
	return ret;
1303
}
1303
}
1304
 
1304
 
1305
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1305
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1306
{
1306
{
1307
	struct drm_i915_private *dev_priv;
1307
	struct drm_i915_private *dev_priv;
1308
	int ret;
1308
	int ret;
1309
 
1309
 
1310
	if (ring->obj == NULL)
1310
	if (ring->obj == NULL)
1311
		return;
1311
		return;
1312
 
1312
 
1313
	/* Disable the ring buffer. The ring must be idle at this point */
1313
	/* Disable the ring buffer. The ring must be idle at this point */
1314
	dev_priv = ring->dev->dev_private;
1314
	dev_priv = ring->dev->dev_private;
1315
	ret = intel_ring_idle(ring);
1315
	ret = intel_ring_idle(ring);
1316
	if (ret)
1316
	if (ret)
1317
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1317
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1318
			  ring->name, ret);
1318
			  ring->name, ret);
1319
 
1319
 
1320
	I915_WRITE_CTL(ring, 0);
1320
	I915_WRITE_CTL(ring, 0);
1321
 
1321
 
1322
	iounmap(ring->virtual_start);
1322
	iounmap(ring->virtual_start);
1323
 
1323
 
1324
    i915_gem_object_unpin(ring->obj);
1324
    i915_gem_object_unpin(ring->obj);
1325
	drm_gem_object_unreference(&ring->obj->base);
1325
	drm_gem_object_unreference(&ring->obj->base);
1326
	ring->obj = NULL;
1326
	ring->obj = NULL;
1327
 
1327
 
1328
	if (ring->cleanup)
1328
	if (ring->cleanup)
1329
		ring->cleanup(ring);
1329
		ring->cleanup(ring);
1330
 
1330
 
1331
//   cleanup_status_page(ring);
1331
//   cleanup_status_page(ring);
1332
}
1332
}
1333
 
1333
 
1334
static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1334
static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1335
{
1335
{
1336
	int ret;
1336
	int ret;
1337
 
1337
 
1338
	ret = i915_wait_seqno(ring, seqno);
1338
	ret = i915_wait_seqno(ring, seqno);
1339
	if (!ret)
1339
	if (!ret)
1340
		i915_gem_retire_requests_ring(ring);
1340
		i915_gem_retire_requests_ring(ring);
1341
 
1341
 
1342
	return ret;
1342
	return ret;
1343
}
1343
}
1344
 
1344
 
1345
static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1345
static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1346
{
1346
{
1347
	struct drm_i915_gem_request *request;
1347
	struct drm_i915_gem_request *request;
1348
	u32 seqno = 0;
1348
	u32 seqno = 0;
1349
	int ret;
1349
	int ret;
1350
 
1350
 
1351
	i915_gem_retire_requests_ring(ring);
1351
	i915_gem_retire_requests_ring(ring);
1352
 
1352
 
1353
	if (ring->last_retired_head != -1) {
1353
	if (ring->last_retired_head != -1) {
1354
		ring->head = ring->last_retired_head;
1354
		ring->head = ring->last_retired_head;
1355
		ring->last_retired_head = -1;
1355
		ring->last_retired_head = -1;
1356
		ring->space = ring_space(ring);
1356
		ring->space = ring_space(ring);
1357
		if (ring->space >= n)
1357
		if (ring->space >= n)
1358
			return 0;
1358
			return 0;
1359
	}
1359
	}
1360
 
1360
 
1361
	list_for_each_entry(request, &ring->request_list, list) {
1361
	list_for_each_entry(request, &ring->request_list, list) {
1362
		int space;
1362
		int space;
1363
 
1363
 
1364
		if (request->tail == -1)
1364
		if (request->tail == -1)
1365
			continue;
1365
			continue;
1366
 
1366
 
1367
		space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1367
		space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1368
		if (space < 0)
1368
		if (space < 0)
1369
			space += ring->size;
1369
			space += ring->size;
1370
		if (space >= n) {
1370
		if (space >= n) {
1371
			seqno = request->seqno;
1371
			seqno = request->seqno;
1372
			break;
1372
			break;
1373
		}
1373
		}
1374
 
1374
 
1375
		/* Consume this request in case we need more space than
1375
		/* Consume this request in case we need more space than
1376
		 * is available and so need to prevent a race between
1376
		 * is available and so need to prevent a race between
1377
		 * updating last_retired_head and direct reads of
1377
		 * updating last_retired_head and direct reads of
1378
		 * I915_RING_HEAD. It also provides a nice sanity check.
1378
		 * I915_RING_HEAD. It also provides a nice sanity check.
1379
		 */
1379
		 */
1380
		request->tail = -1;
1380
		request->tail = -1;
1381
	}
1381
	}
1382
 
1382
 
1383
	if (seqno == 0)
1383
	if (seqno == 0)
1384
		return -ENOSPC;
1384
		return -ENOSPC;
1385
 
1385
 
1386
	ret = intel_ring_wait_seqno(ring, seqno);
1386
	ret = intel_ring_wait_seqno(ring, seqno);
1387
	if (ret)
1387
	if (ret)
1388
		return ret;
1388
		return ret;
1389
 
1389
 
1390
	if (WARN_ON(ring->last_retired_head == -1))
1390
	if (WARN_ON(ring->last_retired_head == -1))
1391
		return -ENOSPC;
1391
		return -ENOSPC;
1392
 
1392
 
1393
	ring->head = ring->last_retired_head;
1393
	ring->head = ring->last_retired_head;
1394
	ring->last_retired_head = -1;
1394
	ring->last_retired_head = -1;
1395
	ring->space = ring_space(ring);
1395
	ring->space = ring_space(ring);
1396
	if (WARN_ON(ring->space < n))
1396
	if (WARN_ON(ring->space < n))
1397
		return -ENOSPC;
1397
		return -ENOSPC;
1398
 
1398
 
1399
	return 0;
1399
	return 0;
1400
}
1400
}
1401
 
1401
 
1402
static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1402
static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1403
{
1403
{
1404
	struct drm_device *dev = ring->dev;
1404
	struct drm_device *dev = ring->dev;
1405
	struct drm_i915_private *dev_priv = dev->dev_private;
1405
	struct drm_i915_private *dev_priv = dev->dev_private;
1406
	unsigned long end;
1406
	unsigned long end;
1407
	int ret;
1407
	int ret;
1408
 
1408
 
1409
	ret = intel_ring_wait_request(ring, n);
1409
	ret = intel_ring_wait_request(ring, n);
1410
	if (ret != -ENOSPC)
1410
	if (ret != -ENOSPC)
1411
		return ret;
1411
		return ret;
1412
 
1412
 
1413
	trace_i915_ring_wait_begin(ring);
1413
	trace_i915_ring_wait_begin(ring);
1414
	/* With GEM the hangcheck timer should kick us out of the loop,
1414
	/* With GEM the hangcheck timer should kick us out of the loop,
1415
	 * leaving it early runs the risk of corrupting GEM state (due
1415
	 * leaving it early runs the risk of corrupting GEM state (due
1416
	 * to running on almost untested codepaths). But on resume
1416
	 * to running on almost untested codepaths). But on resume
1417
	 * timers don't work yet, so prevent a complete hang in that
1417
	 * timers don't work yet, so prevent a complete hang in that
1418
	 * case by choosing an insanely large timeout. */
1418
	 * case by choosing an insanely large timeout. */
1419
	end = GetTimerTicks() + 60 * HZ;
1419
	end = GetTimerTicks() + 60 * HZ;
1420
 
1420
 
1421
	do {
1421
	do {
1422
		ring->head = I915_READ_HEAD(ring);
1422
		ring->head = I915_READ_HEAD(ring);
1423
		ring->space = ring_space(ring);
1423
		ring->space = ring_space(ring);
1424
		if (ring->space >= n) {
1424
		if (ring->space >= n) {
1425
			trace_i915_ring_wait_end(ring);
1425
			trace_i915_ring_wait_end(ring);
1426
			return 0;
1426
			return 0;
1427
		}
1427
		}
1428
 
1428
 
1429
		msleep(1);
1429
		msleep(1);
1430
 
1430
 
1431
		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1431
		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1432
					   dev_priv->mm.interruptible);
1432
					   dev_priv->mm.interruptible);
1433
		if (ret)
1433
		if (ret)
1434
			return ret;
1434
			return ret;
1435
    } while (!time_after(GetTimerTicks(), end));
1435
    } while (!time_after(GetTimerTicks(), end));
1436
	trace_i915_ring_wait_end(ring);
1436
	trace_i915_ring_wait_end(ring);
1437
	return -EBUSY;
1437
	return -EBUSY;
1438
}
1438
}
1439
 
1439
 
1440
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1440
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1441
{
1441
{
1442
	uint32_t __iomem *virt;
1442
	uint32_t __iomem *virt;
1443
	int rem = ring->size - ring->tail;
1443
	int rem = ring->size - ring->tail;
1444
 
1444
 
1445
	if (ring->space < rem) {
1445
	if (ring->space < rem) {
1446
		int ret = ring_wait_for_space(ring, rem);
1446
		int ret = ring_wait_for_space(ring, rem);
1447
		if (ret)
1447
		if (ret)
1448
			return ret;
1448
			return ret;
1449
	}
1449
	}
1450
 
1450
 
1451
	virt = ring->virtual_start + ring->tail;
1451
	virt = ring->virtual_start + ring->tail;
1452
	rem /= 4;
1452
	rem /= 4;
1453
	while (rem--)
1453
	while (rem--)
1454
		iowrite32(MI_NOOP, virt++);
1454
		iowrite32(MI_NOOP, virt++);
1455
 
1455
 
1456
	ring->tail = 0;
1456
	ring->tail = 0;
1457
	ring->space = ring_space(ring);
1457
	ring->space = ring_space(ring);
1458
 
1458
 
1459
	return 0;
1459
	return 0;
1460
}
1460
}
1461
 
1461
 
1462
int intel_ring_idle(struct intel_ring_buffer *ring)
1462
int intel_ring_idle(struct intel_ring_buffer *ring)
1463
{
1463
{
1464
	u32 seqno;
1464
	u32 seqno;
1465
	int ret;
1465
	int ret;
1466
 
1466
 
1467
	/* We need to add any requests required to flush the objects and ring */
1467
	/* We need to add any requests required to flush the objects and ring */
1468
	if (ring->outstanding_lazy_request) {
1468
	if (ring->outstanding_lazy_request) {
1469
		ret = i915_add_request(ring, NULL);
1469
		ret = i915_add_request(ring, NULL);
1470
		if (ret)
1470
		if (ret)
1471
			return ret;
1471
			return ret;
1472
	}
1472
	}
1473
 
1473
 
1474
	/* Wait upon the last request to be completed */
1474
	/* Wait upon the last request to be completed */
1475
	if (list_empty(&ring->request_list))
1475
	if (list_empty(&ring->request_list))
1476
		return 0;
1476
		return 0;
1477
 
1477
 
1478
	seqno = list_entry(ring->request_list.prev,
1478
	seqno = list_entry(ring->request_list.prev,
1479
			   struct drm_i915_gem_request,
1479
			   struct drm_i915_gem_request,
1480
			   list)->seqno;
1480
			   list)->seqno;
1481
 
1481
 
1482
	return i915_wait_seqno(ring, seqno);
1482
	return i915_wait_seqno(ring, seqno);
1483
}
1483
}
1484
 
1484
 
1485
static int
1485
static int
1486
intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1486
intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1487
{
1487
{
1488
	if (ring->outstanding_lazy_request)
1488
	if (ring->outstanding_lazy_request)
1489
		return 0;
1489
		return 0;
1490
 
1490
 
1491
	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1491
	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1492
}
1492
}
1493
 
1493
 
1494
static int __intel_ring_begin(struct intel_ring_buffer *ring,
1494
static int __intel_ring_begin(struct intel_ring_buffer *ring,
1495
			      int bytes)
1495
			      int bytes)
1496
{
1496
{
1497
	int ret;
1497
	int ret;
1498
 
1498
 
1499
	if (unlikely(ring->tail + bytes > ring->effective_size)) {
1499
	if (unlikely(ring->tail + bytes > ring->effective_size)) {
1500
		ret = intel_wrap_ring_buffer(ring);
1500
		ret = intel_wrap_ring_buffer(ring);
1501
		if (unlikely(ret))
1501
		if (unlikely(ret))
1502
			return ret;
1502
			return ret;
1503
	}
1503
	}
1504
 
1504
 
1505
	if (unlikely(ring->space < bytes)) {
1505
	if (unlikely(ring->space < bytes)) {
1506
		ret = ring_wait_for_space(ring, bytes);
1506
		ret = ring_wait_for_space(ring, bytes);
1507
		if (unlikely(ret))
1507
		if (unlikely(ret))
1508
			return ret;
1508
			return ret;
1509
	}
1509
	}
1510
 
1510
 
1511
	ring->space -= bytes;
1511
	ring->space -= bytes;
1512
	return 0;
1512
	return 0;
1513
}
1513
}
1514
 
1514
 
1515
int intel_ring_begin(struct intel_ring_buffer *ring,
1515
int intel_ring_begin(struct intel_ring_buffer *ring,
1516
		     int num_dwords)
1516
		     int num_dwords)
1517
{
1517
{
1518
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1518
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1519
	int ret;
1519
	int ret;
1520
 
1520
 
1521
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1521
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1522
				   dev_priv->mm.interruptible);
1522
				   dev_priv->mm.interruptible);
1523
	if (ret)
1523
	if (ret)
1524
		return ret;
1524
		return ret;
1525
 
1525
 
1526
	/* Preallocate the olr before touching the ring */
1526
	/* Preallocate the olr before touching the ring */
1527
	ret = intel_ring_alloc_seqno(ring);
1527
	ret = intel_ring_alloc_seqno(ring);
1528
	if (ret)
1528
	if (ret)
1529
		return ret;
1529
		return ret;
1530
 
1530
 
1531
	return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1531
	return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1532
}
1532
}
1533
 
1533
 
1534
void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1534
void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1535
{
1535
{
1536
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1536
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1537
 
1537
 
1538
	BUG_ON(ring->outstanding_lazy_request);
1538
	BUG_ON(ring->outstanding_lazy_request);
1539
 
1539
 
1540
	if (INTEL_INFO(ring->dev)->gen >= 6) {
1540
	if (INTEL_INFO(ring->dev)->gen >= 6) {
1541
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1541
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1542
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1542
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1543
		if (HAS_VEBOX(ring->dev))
1543
		if (HAS_VEBOX(ring->dev))
1544
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1544
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1545
	}
1545
	}
1546
 
1546
 
1547
	ring->set_seqno(ring, seqno);
1547
	ring->set_seqno(ring, seqno);
1548
	ring->hangcheck.seqno = seqno;
1548
	ring->hangcheck.seqno = seqno;
1549
}
1549
}
1550
 
1550
 
1551
void intel_ring_advance(struct intel_ring_buffer *ring)
1551
void intel_ring_advance(struct intel_ring_buffer *ring)
1552
{
1552
{
1553
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1553
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1554
 
1554
 
1555
	ring->tail &= ring->size - 1;
1555
	ring->tail &= ring->size - 1;
1556
	if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1556
	if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1557
		return;
1557
		return;
1558
	ring->write_tail(ring, ring->tail);
1558
	ring->write_tail(ring, ring->tail);
1559
}
1559
}
1560
 
1560
 
1561
 
1561
 
1562
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1562
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1563
				     u32 value)
1563
				     u32 value)
1564
{
1564
{
1565
       drm_i915_private_t *dev_priv = ring->dev->dev_private;
1565
       drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
 
1566
 
1567
       /* Every tail move must follow the sequence below */
1567
       /* Every tail move must follow the sequence below */
1568
 
1568
 
1569
	/* Disable notification that the ring is IDLE. The GT
1569
	/* Disable notification that the ring is IDLE. The GT
1570
	 * will then assume that it is busy and bring it out of rc6.
1570
	 * will then assume that it is busy and bring it out of rc6.
1571
	 */
1571
	 */
1572
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1572
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1573
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1573
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1574
 
1574
 
1575
	/* Clear the context id. Here be magic! */
1575
	/* Clear the context id. Here be magic! */
1576
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1576
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1577
 
1577
 
1578
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1578
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1579
       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1579
       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1580
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1580
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1581
                       50))
1581
                       50))
1582
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1582
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1583
 
1583
 
1584
	/* Now that the ring is fully powered up, update the tail */
1584
	/* Now that the ring is fully powered up, update the tail */
1585
       I915_WRITE_TAIL(ring, value);
1585
       I915_WRITE_TAIL(ring, value);
1586
	POSTING_READ(RING_TAIL(ring->mmio_base));
1586
	POSTING_READ(RING_TAIL(ring->mmio_base));
1587
 
1587
 
1588
	/* Let the ring send IDLE messages to the GT again,
1588
	/* Let the ring send IDLE messages to the GT again,
1589
	 * and so let it sleep to conserve power when idle.
1589
	 * and so let it sleep to conserve power when idle.
1590
	 */
1590
	 */
1591
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1591
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1592
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1592
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1593
}
1593
}
1594
 
1594
 
1595
static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1595
static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1596
			   u32 invalidate, u32 flush)
1596
			   u32 invalidate, u32 flush)
1597
{
1597
{
1598
	uint32_t cmd;
1598
	uint32_t cmd;
1599
	int ret;
1599
	int ret;
1600
 
1600
 
1601
	ret = intel_ring_begin(ring, 4);
1601
	ret = intel_ring_begin(ring, 4);
1602
	if (ret)
1602
	if (ret)
1603
		return ret;
1603
		return ret;
1604
 
1604
 
1605
	cmd = MI_FLUSH_DW;
1605
	cmd = MI_FLUSH_DW;
1606
	/*
1606
	/*
1607
	 * Bspec vol 1c.5 - video engine command streamer:
1607
	 * Bspec vol 1c.5 - video engine command streamer:
1608
	 * "If ENABLED, all TLBs will be invalidated once the flush
1608
	 * "If ENABLED, all TLBs will be invalidated once the flush
1609
	 * operation is complete. This bit is only valid when the
1609
	 * operation is complete. This bit is only valid when the
1610
	 * Post-Sync Operation field is a value of 1h or 3h."
1610
	 * Post-Sync Operation field is a value of 1h or 3h."
1611
	 */
1611
	 */
1612
	if (invalidate & I915_GEM_GPU_DOMAINS)
1612
	if (invalidate & I915_GEM_GPU_DOMAINS)
1613
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1613
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1614
			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1614
			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1615
	intel_ring_emit(ring, cmd);
1615
	intel_ring_emit(ring, cmd);
1616
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1616
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1617
	intel_ring_emit(ring, 0);
1617
	intel_ring_emit(ring, 0);
1618
	intel_ring_emit(ring, MI_NOOP);
1618
	intel_ring_emit(ring, MI_NOOP);
1619
	intel_ring_advance(ring);
1619
	intel_ring_advance(ring);
1620
	return 0;
1620
	return 0;
1621
}
1621
}
1622
 
1622
 
1623
static int
1623
static int
1624
hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1624
hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1625
			      u32 offset, u32 len,
1625
			      u32 offset, u32 len,
1626
			      unsigned flags)
1626
			      unsigned flags)
1627
{
1627
{
1628
	int ret;
1628
	int ret;
1629
 
1629
 
1630
	ret = intel_ring_begin(ring, 2);
1630
	ret = intel_ring_begin(ring, 2);
1631
	if (ret)
1631
	if (ret)
1632
		return ret;
1632
		return ret;
1633
 
1633
 
1634
	intel_ring_emit(ring,
1634
	intel_ring_emit(ring,
1635
			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1635
			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1636
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1636
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1637
	/* bit0-7 is the length on GEN6+ */
1637
	/* bit0-7 is the length on GEN6+ */
1638
	intel_ring_emit(ring, offset);
1638
	intel_ring_emit(ring, offset);
1639
	intel_ring_advance(ring);
1639
	intel_ring_advance(ring);
1640
 
1640
 
1641
	return 0;
1641
	return 0;
1642
}
1642
}
1643
 
1643
 
1644
static int
1644
static int
1645
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1645
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1646
			      u32 offset, u32 len,
1646
			      u32 offset, u32 len,
1647
			      unsigned flags)
1647
			      unsigned flags)
1648
{
1648
{
1649
       int ret;
1649
       int ret;
1650
 
1650
 
1651
       ret = intel_ring_begin(ring, 2);
1651
       ret = intel_ring_begin(ring, 2);
1652
       if (ret)
1652
       if (ret)
1653
	       return ret;
1653
	       return ret;
1654
 
1654
 
1655
	intel_ring_emit(ring,
1655
	intel_ring_emit(ring,
1656
			MI_BATCH_BUFFER_START |
1656
			MI_BATCH_BUFFER_START |
1657
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1657
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1658
       /* bit0-7 is the length on GEN6+ */
1658
       /* bit0-7 is the length on GEN6+ */
1659
       intel_ring_emit(ring, offset);
1659
       intel_ring_emit(ring, offset);
1660
       intel_ring_advance(ring);
1660
       intel_ring_advance(ring);
1661
 
1661
 
1662
       return 0;
1662
       return 0;
1663
}
1663
}
1664
 
1664
 
1665
/* Blitter support (SandyBridge+) */
1665
/* Blitter support (SandyBridge+) */
1666
 
1666
 
1667
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1667
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1668
			  u32 invalidate, u32 flush)
1668
			  u32 invalidate, u32 flush)
1669
{
1669
{
1670
	struct drm_device *dev = ring->dev;
1670
	struct drm_device *dev = ring->dev;
1671
	uint32_t cmd;
1671
	uint32_t cmd;
1672
	int ret;
1672
	int ret;
1673
 
1673
 
1674
	ret = intel_ring_begin(ring, 4);
1674
	ret = intel_ring_begin(ring, 4);
1675
	if (ret)
1675
	if (ret)
1676
		return ret;
1676
		return ret;
1677
 
1677
 
1678
	cmd = MI_FLUSH_DW;
1678
	cmd = MI_FLUSH_DW;
1679
	/*
1679
	/*
1680
	 * Bspec vol 1c.3 - blitter engine command streamer:
1680
	 * Bspec vol 1c.3 - blitter engine command streamer:
1681
	 * "If ENABLED, all TLBs will be invalidated once the flush
1681
	 * "If ENABLED, all TLBs will be invalidated once the flush
1682
	 * operation is complete. This bit is only valid when the
1682
	 * operation is complete. This bit is only valid when the
1683
	 * Post-Sync Operation field is a value of 1h or 3h."
1683
	 * Post-Sync Operation field is a value of 1h or 3h."
1684
	 */
1684
	 */
1685
	if (invalidate & I915_GEM_DOMAIN_RENDER)
1685
	if (invalidate & I915_GEM_DOMAIN_RENDER)
1686
		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1686
		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1687
			MI_FLUSH_DW_OP_STOREDW;
1687
			MI_FLUSH_DW_OP_STOREDW;
1688
	intel_ring_emit(ring, cmd);
1688
	intel_ring_emit(ring, cmd);
1689
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1689
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1690
	intel_ring_emit(ring, 0);
1690
	intel_ring_emit(ring, 0);
1691
	intel_ring_emit(ring, MI_NOOP);
1691
	intel_ring_emit(ring, MI_NOOP);
1692
	intel_ring_advance(ring);
1692
	intel_ring_advance(ring);
1693
 
1693
 
1694
	if (IS_GEN7(dev) && flush)
1694
	if (IS_GEN7(dev) && flush)
1695
		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1695
		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1696
 
1696
 
1697
	return 0;
1697
	return 0;
1698
}
1698
}
1699
 
1699
 
1700
int intel_init_render_ring_buffer(struct drm_device *dev)
1700
int intel_init_render_ring_buffer(struct drm_device *dev)
1701
{
1701
{
1702
	drm_i915_private_t *dev_priv = dev->dev_private;
1702
	drm_i915_private_t *dev_priv = dev->dev_private;
1703
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1703
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1704
 
1704
 
1705
	ring->name = "render ring";
1705
	ring->name = "render ring";
1706
	ring->id = RCS;
1706
	ring->id = RCS;
1707
	ring->mmio_base = RENDER_RING_BASE;
1707
	ring->mmio_base = RENDER_RING_BASE;
1708
 
1708
 
1709
	if (INTEL_INFO(dev)->gen >= 6) {
1709
	if (INTEL_INFO(dev)->gen >= 6) {
1710
       ring->add_request = gen6_add_request;
1710
       ring->add_request = gen6_add_request;
1711
		ring->flush = gen7_render_ring_flush;
1711
		ring->flush = gen7_render_ring_flush;
1712
		if (INTEL_INFO(dev)->gen == 6)
1712
		if (INTEL_INFO(dev)->gen == 6)
1713
		ring->flush = gen6_render_ring_flush;
1713
		ring->flush = gen6_render_ring_flush;
1714
		ring->irq_get = gen6_ring_get_irq;
1714
		ring->irq_get = gen6_ring_get_irq;
1715
		ring->irq_put = gen6_ring_put_irq;
1715
		ring->irq_put = gen6_ring_put_irq;
1716
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1716
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1717
		ring->get_seqno = gen6_ring_get_seqno;
1717
		ring->get_seqno = gen6_ring_get_seqno;
1718
		ring->set_seqno = ring_set_seqno;
1718
		ring->set_seqno = ring_set_seqno;
1719
		ring->sync_to = gen6_ring_sync;
1719
		ring->sync_to = gen6_ring_sync;
1720
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1720
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1721
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1721
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1722
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1722
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1723
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1723
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1724
		ring->signal_mbox[RCS] = GEN6_NOSYNC;
1724
		ring->signal_mbox[RCS] = GEN6_NOSYNC;
1725
		ring->signal_mbox[VCS] = GEN6_VRSYNC;
1725
		ring->signal_mbox[VCS] = GEN6_VRSYNC;
1726
		ring->signal_mbox[BCS] = GEN6_BRSYNC;
1726
		ring->signal_mbox[BCS] = GEN6_BRSYNC;
1727
		ring->signal_mbox[VECS] = GEN6_VERSYNC;
1727
		ring->signal_mbox[VECS] = GEN6_VERSYNC;
1728
	} else if (IS_GEN5(dev)) {
1728
	} else if (IS_GEN5(dev)) {
1729
       ring->add_request = pc_render_add_request;
1729
       ring->add_request = pc_render_add_request;
1730
		ring->flush = gen4_render_ring_flush;
1730
		ring->flush = gen4_render_ring_flush;
1731
		ring->get_seqno = pc_render_get_seqno;
1731
		ring->get_seqno = pc_render_get_seqno;
1732
		ring->set_seqno = pc_render_set_seqno;
1732
		ring->set_seqno = pc_render_set_seqno;
1733
		ring->irq_get = gen5_ring_get_irq;
1733
		ring->irq_get = gen5_ring_get_irq;
1734
		ring->irq_put = gen5_ring_put_irq;
1734
		ring->irq_put = gen5_ring_put_irq;
1735
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1735
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1736
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1736
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1737
	} else {
1737
	} else {
1738
		ring->add_request = i9xx_add_request;
1738
		ring->add_request = i9xx_add_request;
1739
		if (INTEL_INFO(dev)->gen < 4)
1739
		if (INTEL_INFO(dev)->gen < 4)
1740
			ring->flush = gen2_render_ring_flush;
1740
			ring->flush = gen2_render_ring_flush;
1741
		else
1741
		else
1742
			ring->flush = gen4_render_ring_flush;
1742
			ring->flush = gen4_render_ring_flush;
1743
		ring->get_seqno = ring_get_seqno;
1743
		ring->get_seqno = ring_get_seqno;
1744
		ring->set_seqno = ring_set_seqno;
1744
		ring->set_seqno = ring_set_seqno;
1745
		if (IS_GEN2(dev)) {
1745
		if (IS_GEN2(dev)) {
1746
			ring->irq_get = i8xx_ring_get_irq;
1746
			ring->irq_get = i8xx_ring_get_irq;
1747
			ring->irq_put = i8xx_ring_put_irq;
1747
			ring->irq_put = i8xx_ring_put_irq;
1748
		} else {
1748
		} else {
1749
			ring->irq_get = i9xx_ring_get_irq;
1749
			ring->irq_get = i9xx_ring_get_irq;
1750
			ring->irq_put = i9xx_ring_put_irq;
1750
			ring->irq_put = i9xx_ring_put_irq;
1751
		}
1751
		}
1752
		ring->irq_enable_mask = I915_USER_INTERRUPT;
1752
		ring->irq_enable_mask = I915_USER_INTERRUPT;
1753
	}
1753
	}
1754
	ring->write_tail = ring_write_tail;
1754
	ring->write_tail = ring_write_tail;
1755
	if (IS_HASWELL(dev))
1755
	if (IS_HASWELL(dev))
1756
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1756
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1757
	else if (INTEL_INFO(dev)->gen >= 6)
1757
	else if (INTEL_INFO(dev)->gen >= 6)
1758
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1758
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1759
	else if (INTEL_INFO(dev)->gen >= 4)
1759
	else if (INTEL_INFO(dev)->gen >= 4)
1760
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1760
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1761
	else if (IS_I830(dev) || IS_845G(dev))
1761
	else if (IS_I830(dev) || IS_845G(dev))
1762
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1762
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1763
	else
1763
	else
1764
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1764
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1765
	ring->init = init_render_ring;
1765
	ring->init = init_render_ring;
1766
	ring->cleanup = render_ring_cleanup;
1766
	ring->cleanup = render_ring_cleanup;
1767
 
1767
 
1768
	/* Workaround batchbuffer to combat CS tlb bug. */
1768
	/* Workaround batchbuffer to combat CS tlb bug. */
1769
	if (HAS_BROKEN_CS_TLB(dev)) {
1769
	if (HAS_BROKEN_CS_TLB(dev)) {
1770
		struct drm_i915_gem_object *obj;
1770
		struct drm_i915_gem_object *obj;
1771
		int ret;
1771
		int ret;
1772
 
1772
 
1773
		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1773
		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1774
		if (obj == NULL) {
1774
		if (obj == NULL) {
1775
			DRM_ERROR("Failed to allocate batch bo\n");
1775
			DRM_ERROR("Failed to allocate batch bo\n");
1776
			return -ENOMEM;
1776
			return -ENOMEM;
1777
		}
1777
		}
1778
 
1778
 
1779
		ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1779
		ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1780
		if (ret != 0) {
1780
		if (ret != 0) {
1781
			drm_gem_object_unreference(&obj->base);
1781
			drm_gem_object_unreference(&obj->base);
1782
			DRM_ERROR("Failed to ping batch bo\n");
1782
			DRM_ERROR("Failed to ping batch bo\n");
1783
			return ret;
1783
			return ret;
1784
		}
1784
		}
1785
 
1785
 
1786
		ring->scratch.obj = obj;
1786
		ring->scratch.obj = obj;
1787
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1787
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1788
	}
1788
	}
1789
 
1789
 
1790
	return intel_init_ring_buffer(dev, ring);
1790
	return intel_init_ring_buffer(dev, ring);
1791
}
1791
}
1792
 
1792
 
1793
#if 0
1793
#if 0
1794
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1794
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1795
{
1795
{
1796
	drm_i915_private_t *dev_priv = dev->dev_private;
1796
	drm_i915_private_t *dev_priv = dev->dev_private;
1797
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1797
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1798
	int ret;
1798
	int ret;
1799
 
1799
 
1800
	ring->name = "render ring";
1800
	ring->name = "render ring";
1801
	ring->id = RCS;
1801
	ring->id = RCS;
1802
	ring->mmio_base = RENDER_RING_BASE;
1802
	ring->mmio_base = RENDER_RING_BASE;
1803
 
1803
 
1804
	if (INTEL_INFO(dev)->gen >= 6) {
1804
	if (INTEL_INFO(dev)->gen >= 6) {
1805
		/* non-kms not supported on gen6+ */
1805
		/* non-kms not supported on gen6+ */
1806
		return -ENODEV;
1806
		return -ENODEV;
1807
	}
1807
	}
1808
 
1808
 
1809
	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
1809
	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
1810
	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1810
	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1811
	 * the special gen5 functions. */
1811
	 * the special gen5 functions. */
1812
	ring->add_request = i9xx_add_request;
1812
	ring->add_request = i9xx_add_request;
1813
	if (INTEL_INFO(dev)->gen < 4)
1813
	if (INTEL_INFO(dev)->gen < 4)
1814
		ring->flush = gen2_render_ring_flush;
1814
		ring->flush = gen2_render_ring_flush;
1815
	else
1815
	else
1816
		ring->flush = gen4_render_ring_flush;
1816
		ring->flush = gen4_render_ring_flush;
1817
	ring->get_seqno = ring_get_seqno;
1817
	ring->get_seqno = ring_get_seqno;
1818
	ring->set_seqno = ring_set_seqno;
1818
	ring->set_seqno = ring_set_seqno;
1819
	if (IS_GEN2(dev)) {
1819
	if (IS_GEN2(dev)) {
1820
		ring->irq_get = i8xx_ring_get_irq;
1820
		ring->irq_get = i8xx_ring_get_irq;
1821
		ring->irq_put = i8xx_ring_put_irq;
1821
		ring->irq_put = i8xx_ring_put_irq;
1822
	} else {
1822
	} else {
1823
		ring->irq_get = i9xx_ring_get_irq;
1823
		ring->irq_get = i9xx_ring_get_irq;
1824
		ring->irq_put = i9xx_ring_put_irq;
1824
		ring->irq_put = i9xx_ring_put_irq;
1825
	}
1825
	}
1826
	ring->irq_enable_mask = I915_USER_INTERRUPT;
1826
	ring->irq_enable_mask = I915_USER_INTERRUPT;
1827
	ring->write_tail = ring_write_tail;
1827
	ring->write_tail = ring_write_tail;
1828
	if (INTEL_INFO(dev)->gen >= 4)
1828
	if (INTEL_INFO(dev)->gen >= 4)
1829
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1829
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1830
	else if (IS_I830(dev) || IS_845G(dev))
1830
	else if (IS_I830(dev) || IS_845G(dev))
1831
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1831
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1832
	else
1832
	else
1833
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1833
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1834
	ring->init = init_render_ring;
1834
	ring->init = init_render_ring;
1835
	ring->cleanup = render_ring_cleanup;
1835
	ring->cleanup = render_ring_cleanup;
1836
 
1836
 
1837
	ring->dev = dev;
1837
	ring->dev = dev;
1838
	INIT_LIST_HEAD(&ring->active_list);
1838
	INIT_LIST_HEAD(&ring->active_list);
1839
	INIT_LIST_HEAD(&ring->request_list);
1839
	INIT_LIST_HEAD(&ring->request_list);
1840
 
1840
 
1841
	ring->size = size;
1841
	ring->size = size;
1842
	ring->effective_size = ring->size;
1842
	ring->effective_size = ring->size;
1843
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1843
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1844
		ring->effective_size -= 128;
1844
		ring->effective_size -= 128;
1845
 
1845
 
1846
	ring->virtual_start = ioremap_wc(start, size);
1846
	ring->virtual_start = ioremap_wc(start, size);
1847
	if (ring->virtual_start == NULL) {
1847
	if (ring->virtual_start == NULL) {
1848
		DRM_ERROR("can not ioremap virtual address for"
1848
		DRM_ERROR("can not ioremap virtual address for"
1849
			  " ring buffer\n");
1849
			  " ring buffer\n");
1850
		return -ENOMEM;
1850
		return -ENOMEM;
1851
	}
1851
	}
1852
 
1852
 
1853
	if (!I915_NEED_GFX_HWS(dev)) {
1853
	if (!I915_NEED_GFX_HWS(dev)) {
1854
		ret = init_phys_status_page(ring);
1854
		ret = init_phys_status_page(ring);
1855
		if (ret)
1855
		if (ret)
1856
			return ret;
1856
			return ret;
1857
	}
1857
	}
1858
 
1858
 
1859
	return 0;
1859
	return 0;
1860
}
1860
}
1861
#endif
1861
#endif
1862
 
1862
 
1863
int intel_init_bsd_ring_buffer(struct drm_device *dev)
1863
int intel_init_bsd_ring_buffer(struct drm_device *dev)
1864
{
1864
{
1865
	drm_i915_private_t *dev_priv = dev->dev_private;
1865
	drm_i915_private_t *dev_priv = dev->dev_private;
1866
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1866
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1867
 
1867
 
1868
	ring->name = "bsd ring";
1868
	ring->name = "bsd ring";
1869
	ring->id = VCS;
1869
	ring->id = VCS;
1870
 
1870
 
1871
	ring->write_tail = ring_write_tail;
1871
	ring->write_tail = ring_write_tail;
1872
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1872
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1873
		ring->mmio_base = GEN6_BSD_RING_BASE;
1873
		ring->mmio_base = GEN6_BSD_RING_BASE;
1874
		/* gen6 bsd needs a special wa for tail updates */
1874
		/* gen6 bsd needs a special wa for tail updates */
1875
		if (IS_GEN6(dev))
1875
		if (IS_GEN6(dev))
1876
			ring->write_tail = gen6_bsd_ring_write_tail;
1876
			ring->write_tail = gen6_bsd_ring_write_tail;
1877
		ring->flush = gen6_bsd_ring_flush;
1877
		ring->flush = gen6_bsd_ring_flush;
1878
		ring->add_request = gen6_add_request;
1878
		ring->add_request = gen6_add_request;
1879
		ring->get_seqno = gen6_ring_get_seqno;
1879
		ring->get_seqno = gen6_ring_get_seqno;
1880
		ring->set_seqno = ring_set_seqno;
1880
		ring->set_seqno = ring_set_seqno;
1881
		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1881
		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1882
		ring->irq_get = gen6_ring_get_irq;
1882
		ring->irq_get = gen6_ring_get_irq;
1883
		ring->irq_put = gen6_ring_put_irq;
1883
		ring->irq_put = gen6_ring_put_irq;
1884
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1884
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1885
		ring->sync_to = gen6_ring_sync;
1885
		ring->sync_to = gen6_ring_sync;
1886
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1886
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1887
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1887
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1888
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1888
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1889
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1889
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1890
		ring->signal_mbox[RCS] = GEN6_RVSYNC;
1890
		ring->signal_mbox[RCS] = GEN6_RVSYNC;
1891
		ring->signal_mbox[VCS] = GEN6_NOSYNC;
1891
		ring->signal_mbox[VCS] = GEN6_NOSYNC;
1892
		ring->signal_mbox[BCS] = GEN6_BVSYNC;
1892
		ring->signal_mbox[BCS] = GEN6_BVSYNC;
1893
		ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1893
		ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1894
	} else {
1894
	} else {
1895
		ring->mmio_base = BSD_RING_BASE;
1895
		ring->mmio_base = BSD_RING_BASE;
1896
		ring->flush = bsd_ring_flush;
1896
		ring->flush = bsd_ring_flush;
1897
		ring->add_request = i9xx_add_request;
1897
		ring->add_request = i9xx_add_request;
1898
		ring->get_seqno = ring_get_seqno;
1898
		ring->get_seqno = ring_get_seqno;
1899
		ring->set_seqno = ring_set_seqno;
1899
		ring->set_seqno = ring_set_seqno;
1900
		if (IS_GEN5(dev)) {
1900
		if (IS_GEN5(dev)) {
1901
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1901
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1902
			ring->irq_get = gen5_ring_get_irq;
1902
			ring->irq_get = gen5_ring_get_irq;
1903
			ring->irq_put = gen5_ring_put_irq;
1903
			ring->irq_put = gen5_ring_put_irq;
1904
		} else {
1904
		} else {
1905
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1905
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1906
			ring->irq_get = i9xx_ring_get_irq;
1906
			ring->irq_get = i9xx_ring_get_irq;
1907
			ring->irq_put = i9xx_ring_put_irq;
1907
			ring->irq_put = i9xx_ring_put_irq;
1908
		}
1908
		}
1909
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1909
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1910
	}
1910
	}
1911
	ring->init = init_ring_common;
1911
	ring->init = init_ring_common;
1912
 
1912
 
1913
	return intel_init_ring_buffer(dev, ring);
1913
	return intel_init_ring_buffer(dev, ring);
1914
}
1914
}
1915
 
1915
 
1916
int intel_init_blt_ring_buffer(struct drm_device *dev)
1916
int intel_init_blt_ring_buffer(struct drm_device *dev)
1917
{
1917
{
1918
	drm_i915_private_t *dev_priv = dev->dev_private;
1918
	drm_i915_private_t *dev_priv = dev->dev_private;
1919
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1919
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1920
 
1920
 
1921
	ring->name = "blitter ring";
1921
	ring->name = "blitter ring";
1922
	ring->id = BCS;
1922
	ring->id = BCS;
1923
 
1923
 
1924
	ring->mmio_base = BLT_RING_BASE;
1924
	ring->mmio_base = BLT_RING_BASE;
1925
	ring->write_tail = ring_write_tail;
1925
	ring->write_tail = ring_write_tail;
1926
	ring->flush = gen6_ring_flush;
1926
	ring->flush = gen6_ring_flush;
1927
	ring->add_request = gen6_add_request;
1927
	ring->add_request = gen6_add_request;
1928
	ring->get_seqno = gen6_ring_get_seqno;
1928
	ring->get_seqno = gen6_ring_get_seqno;
1929
	ring->set_seqno = ring_set_seqno;
1929
	ring->set_seqno = ring_set_seqno;
1930
	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1930
	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1931
	ring->irq_get = gen6_ring_get_irq;
1931
	ring->irq_get = gen6_ring_get_irq;
1932
	ring->irq_put = gen6_ring_put_irq;
1932
	ring->irq_put = gen6_ring_put_irq;
1933
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1933
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934
	ring->sync_to = gen6_ring_sync;
1934
	ring->sync_to = gen6_ring_sync;
1935
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1935
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1936
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1936
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1937
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1937
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1938
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1938
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1939
	ring->signal_mbox[RCS] = GEN6_RBSYNC;
1939
	ring->signal_mbox[RCS] = GEN6_RBSYNC;
1940
	ring->signal_mbox[VCS] = GEN6_VBSYNC;
1940
	ring->signal_mbox[VCS] = GEN6_VBSYNC;
1941
	ring->signal_mbox[BCS] = GEN6_NOSYNC;
1941
	ring->signal_mbox[BCS] = GEN6_NOSYNC;
1942
	ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1942
	ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1943
	ring->init = init_ring_common;
1943
	ring->init = init_ring_common;
1944
 
1944
 
1945
	return intel_init_ring_buffer(dev, ring);
1945
	return intel_init_ring_buffer(dev, ring);
1946
}
1946
}
1947
 
1947
 
1948
int intel_init_vebox_ring_buffer(struct drm_device *dev)
1948
int intel_init_vebox_ring_buffer(struct drm_device *dev)
1949
{
1949
{
1950
	drm_i915_private_t *dev_priv = dev->dev_private;
1950
	drm_i915_private_t *dev_priv = dev->dev_private;
1951
	struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1951
	struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1952
 
1952
 
1953
	ring->name = "video enhancement ring";
1953
	ring->name = "video enhancement ring";
1954
	ring->id = VECS;
1954
	ring->id = VECS;
1955
 
1955
 
1956
	ring->mmio_base = VEBOX_RING_BASE;
1956
	ring->mmio_base = VEBOX_RING_BASE;
1957
	ring->write_tail = ring_write_tail;
1957
	ring->write_tail = ring_write_tail;
1958
	ring->flush = gen6_ring_flush;
1958
	ring->flush = gen6_ring_flush;
1959
	ring->add_request = gen6_add_request;
1959
	ring->add_request = gen6_add_request;
1960
	ring->get_seqno = gen6_ring_get_seqno;
1960
	ring->get_seqno = gen6_ring_get_seqno;
1961
	ring->set_seqno = ring_set_seqno;
1961
	ring->set_seqno = ring_set_seqno;
1962
	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1962
	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1963
	ring->irq_get = hsw_vebox_get_irq;
1963
	ring->irq_get = hsw_vebox_get_irq;
1964
	ring->irq_put = hsw_vebox_put_irq;
1964
	ring->irq_put = hsw_vebox_put_irq;
1965
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1965
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1966
	ring->sync_to = gen6_ring_sync;
1966
	ring->sync_to = gen6_ring_sync;
1967
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
1967
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
1968
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
1968
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
1969
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
1969
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
1970
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
1970
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
1971
	ring->signal_mbox[RCS] = GEN6_RVESYNC;
1971
	ring->signal_mbox[RCS] = GEN6_RVESYNC;
1972
	ring->signal_mbox[VCS] = GEN6_VVESYNC;
1972
	ring->signal_mbox[VCS] = GEN6_VVESYNC;
1973
	ring->signal_mbox[BCS] = GEN6_BVESYNC;
1973
	ring->signal_mbox[BCS] = GEN6_BVESYNC;
1974
	ring->signal_mbox[VECS] = GEN6_NOSYNC;
1974
	ring->signal_mbox[VECS] = GEN6_NOSYNC;
1975
	ring->init = init_ring_common;
1975
	ring->init = init_ring_common;
1976
 
1976
 
1977
	return intel_init_ring_buffer(dev, ring);
1977
	return intel_init_ring_buffer(dev, ring);
1978
}
1978
}
1979
 
1979
 
1980
int
1980
int
1981
intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1981
intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1982
{
1982
{
1983
	int ret;
1983
	int ret;
1984
 
1984
 
1985
	if (!ring->gpu_caches_dirty)
1985
	if (!ring->gpu_caches_dirty)
1986
		return 0;
1986
		return 0;
1987
 
1987
 
1988
	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1988
	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1989
	if (ret)
1989
	if (ret)
1990
		return ret;
1990
		return ret;
1991
 
1991
 
1992
	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1992
	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1993
 
1993
 
1994
	ring->gpu_caches_dirty = false;
1994
	ring->gpu_caches_dirty = false;
1995
	return 0;
1995
	return 0;
1996
}
1996
}
1997
 
1997
 
1998
int
1998
int
1999
intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1999
intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2000
{
2000
{
2001
	uint32_t flush_domains;
2001
	uint32_t flush_domains;
2002
	int ret;
2002
	int ret;
2003
 
2003
 
2004
	flush_domains = 0;
2004
	flush_domains = 0;
2005
	if (ring->gpu_caches_dirty)
2005
	if (ring->gpu_caches_dirty)
2006
		flush_domains = I915_GEM_GPU_DOMAINS;
2006
		flush_domains = I915_GEM_GPU_DOMAINS;
2007
 
2007
 
2008
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2008
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2009
	if (ret)
2009
	if (ret)
2010
		return ret;
2010
		return ret;
2011
 
2011
 
2012
	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2012
	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2013
 
2013
 
2014
	ring->gpu_caches_dirty = false;
2014
	ring->gpu_caches_dirty = false;
2015
	return 0;
2015
	return 0;
2016
}
2016
}