Subversion Repositories Kolibri OS

Rev

Rev 4104 | Rev 4539 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4104 Rev 4126
1
/*
1
/*
2
 * Copyright © 2010 Daniel Vetter
2
 * Copyright © 2010 Daniel Vetter
3
 *
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
10
 *
11
 * The above copyright notice and this permission notice (including the next
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
13
 * Software.
14
 *
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
21
 * IN THE SOFTWARE.
22
 *
22
 *
23
 */
23
 */
24
 
24
 
25
 
25
 
26
#define AGP_NORMAL_MEMORY 0
26
#define AGP_NORMAL_MEMORY 0
27
 
27
 
28
#define AGP_USER_TYPES (1 << 16)
28
#define AGP_USER_TYPES (1 << 16)
29
#define AGP_USER_MEMORY (AGP_USER_TYPES)
29
#define AGP_USER_MEMORY (AGP_USER_TYPES)
30
#define AGP_USER_CACHED_MEMORY (AGP_USER_TYPES + 1)
30
#define AGP_USER_CACHED_MEMORY (AGP_USER_TYPES + 1)
31
 
31
 
32
#include 
32
#include 
33
#include 
33
#include 
34
#include "i915_drv.h"
34
#include "i915_drv.h"
35
#include "i915_trace.h"
35
#include "i915_trace.h"
36
#include "intel_drv.h"
36
#include "intel_drv.h"
37
 
37
 
38
#define GEN6_PPGTT_PD_ENTRIES 512
38
#define GEN6_PPGTT_PD_ENTRIES 512
39
#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
39
#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
40
 
40
 
41
/* PPGTT stuff */
41
/* PPGTT stuff */
42
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
42
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
43
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
43
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
44
 
44
 
45
#define GEN6_PDE_VALID			(1 << 0)
45
#define GEN6_PDE_VALID			(1 << 0)
46
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
46
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
47
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
47
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
48
 
48
 
49
#define GEN6_PTE_VALID			(1 << 0)
49
#define GEN6_PTE_VALID			(1 << 0)
50
#define GEN6_PTE_UNCACHED		(1 << 1)
50
#define GEN6_PTE_UNCACHED		(1 << 1)
51
#define HSW_PTE_UNCACHED		(0)
51
#define HSW_PTE_UNCACHED		(0)
52
#define GEN6_PTE_CACHE_LLC		(2 << 1)
52
#define GEN6_PTE_CACHE_LLC		(2 << 1)
53
#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
53
#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
54
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
54
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
55
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
55
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
56
 
56
 
57
/* Cacheability Control is a 4-bit value. The low three bits are stored in *
57
/* Cacheability Control is a 4-bit value. The low three bits are stored in *
58
 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
58
 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
59
 */
59
 */
60
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
60
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
61
					 (((bits) & 0x8) << (11 - 3)))
61
					 (((bits) & 0x8) << (11 - 3)))
62
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
62
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
63
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
63
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
64
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
64
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
65
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
65
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
66
 
66
 
67
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
67
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
68
				     enum i915_cache_level level)
68
				     enum i915_cache_level level)
69
{
69
{
70
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
70
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
71
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
71
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
72
 
72
 
73
	switch (level) {
73
	switch (level) {
74
	case I915_CACHE_L3_LLC:
74
	case I915_CACHE_L3_LLC:
75
	case I915_CACHE_LLC:
75
	case I915_CACHE_LLC:
76
		pte |= GEN6_PTE_CACHE_LLC;
76
		pte |= GEN6_PTE_CACHE_LLC;
77
		break;
77
		break;
78
	case I915_CACHE_NONE:
78
	case I915_CACHE_NONE:
79
		pte |= GEN6_PTE_UNCACHED;
79
		pte |= GEN6_PTE_UNCACHED;
80
		break;
80
		break;
81
	default:
81
	default:
82
		WARN_ON(1);
82
		WARN_ON(1);
83
	}
83
	}
84
 
84
 
85
	return pte;
85
	return pte;
86
}
86
}
87
 
87
 
88
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
88
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
89
				   enum i915_cache_level level)
89
				   enum i915_cache_level level)
90
{
90
{
91
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
91
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
92
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
92
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
93
 
93
 
94
	switch (level) {
94
	switch (level) {
95
	case I915_CACHE_L3_LLC:
95
	case I915_CACHE_L3_LLC:
96
		pte |= GEN7_PTE_CACHE_L3_LLC;
96
		pte |= GEN7_PTE_CACHE_L3_LLC;
97
		break;
97
		break;
98
	case I915_CACHE_LLC:
98
	case I915_CACHE_LLC:
99
		pte |= GEN6_PTE_CACHE_LLC;
99
		pte |= GEN6_PTE_CACHE_LLC;
100
		break;
100
		break;
101
	case I915_CACHE_NONE:
101
	case I915_CACHE_NONE:
102
			pte |= GEN6_PTE_UNCACHED;
102
			pte |= GEN6_PTE_UNCACHED;
103
		break;
103
		break;
104
	default:
104
	default:
105
		WARN_ON(1);
105
		WARN_ON(1);
106
	}
106
	}
107
 
107
 
108
	return pte;
108
	return pte;
109
}
109
}
110
 
110
 
111
#define BYT_PTE_WRITEABLE		(1 << 1)
111
#define BYT_PTE_WRITEABLE		(1 << 1)
112
#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
112
#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
113
 
113
 
114
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
114
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
115
				     enum i915_cache_level level)
115
				     enum i915_cache_level level)
116
{
116
{
117
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
117
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
118
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
118
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
119
 
119
 
120
	/* Mark the page as writeable.  Other platforms don't have a
120
	/* Mark the page as writeable.  Other platforms don't have a
121
	 * setting for read-only/writable, so this matches that behavior.
121
	 * setting for read-only/writable, so this matches that behavior.
122
	 */
122
	 */
123
	pte |= BYT_PTE_WRITEABLE;
123
	pte |= BYT_PTE_WRITEABLE;
124
 
124
 
125
	if (level != I915_CACHE_NONE)
125
	if (level != I915_CACHE_NONE)
126
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
126
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
127
 
127
 
128
	return pte;
128
	return pte;
129
}
129
}
130
 
130
 
131
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
131
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
132
				     enum i915_cache_level level)
132
				     enum i915_cache_level level)
133
{
133
{
134
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
134
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
135
	pte |= HSW_PTE_ADDR_ENCODE(addr);
135
	pte |= HSW_PTE_ADDR_ENCODE(addr);
136
 
136
 
137
	if (level != I915_CACHE_NONE)
137
	if (level != I915_CACHE_NONE)
138
		pte |= HSW_WB_LLC_AGE3;
138
		pte |= HSW_WB_LLC_AGE3;
139
 
139
 
140
	return pte;
140
	return pte;
141
}
141
}
142
 
142
 
143
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
143
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
144
				      enum i915_cache_level level)
144
				      enum i915_cache_level level)
145
{
145
{
146
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
146
	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
147
	pte |= HSW_PTE_ADDR_ENCODE(addr);
147
	pte |= HSW_PTE_ADDR_ENCODE(addr);
148
 
148
 
149
	switch (level) {
149
	switch (level) {
150
	case I915_CACHE_NONE:
150
	case I915_CACHE_NONE:
151
		break;
151
		break;
152
	case I915_CACHE_WT:
152
	case I915_CACHE_WT:
153
		pte |= HSW_WT_ELLC_LLC_AGE0;
153
		pte |= HSW_WT_ELLC_LLC_AGE0;
154
		break;
154
		break;
155
	default:
155
	default:
156
		pte |= HSW_WB_ELLC_LLC_AGE0;
156
		pte |= HSW_WB_ELLC_LLC_AGE0;
157
		break;
157
		break;
158
	}
158
	}
159
 
159
 
160
	return pte;
160
	return pte;
161
}
161
}
162
 
162
 
163
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
163
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
164
{
164
{
165
	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
165
	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
166
	gen6_gtt_pte_t __iomem *pd_addr;
166
	gen6_gtt_pte_t __iomem *pd_addr;
167
	uint32_t pd_entry;
167
	uint32_t pd_entry;
168
	int i;
168
	int i;
169
 
169
 
170
	WARN_ON(ppgtt->pd_offset & 0x3f);
170
	WARN_ON(ppgtt->pd_offset & 0x3f);
171
	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
171
	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
172
		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
172
		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
173
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
173
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
174
		dma_addr_t pt_addr;
174
		dma_addr_t pt_addr;
175
 
175
 
176
		pt_addr = ppgtt->pt_dma_addr[i];
176
		pt_addr = ppgtt->pt_dma_addr[i];
177
		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
177
		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
178
		pd_entry |= GEN6_PDE_VALID;
178
		pd_entry |= GEN6_PDE_VALID;
179
 
179
 
180
		writel(pd_entry, pd_addr + i);
180
		writel(pd_entry, pd_addr + i);
181
	}
181
	}
182
	readl(pd_addr);
182
	readl(pd_addr);
183
}
183
}
184
 
184
 
185
static int gen6_ppgtt_enable(struct drm_device *dev)
185
static int gen6_ppgtt_enable(struct drm_device *dev)
186
{
186
{
187
	drm_i915_private_t *dev_priv = dev->dev_private;
187
	drm_i915_private_t *dev_priv = dev->dev_private;
188
	uint32_t pd_offset;
188
	uint32_t pd_offset;
189
	struct intel_ring_buffer *ring;
189
	struct intel_ring_buffer *ring;
190
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
190
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
191
	int i;
191
	int i;
192
 
192
 
193
	BUG_ON(ppgtt->pd_offset & 0x3f);
193
	BUG_ON(ppgtt->pd_offset & 0x3f);
194
 
194
 
195
	gen6_write_pdes(ppgtt);
195
	gen6_write_pdes(ppgtt);
196
 
196
 
197
	pd_offset = ppgtt->pd_offset;
197
	pd_offset = ppgtt->pd_offset;
198
	pd_offset /= 64; /* in cachelines, */
198
	pd_offset /= 64; /* in cachelines, */
199
	pd_offset <<= 16;
199
	pd_offset <<= 16;
200
 
200
 
201
	if (INTEL_INFO(dev)->gen == 6) {
201
	if (INTEL_INFO(dev)->gen == 6) {
202
		uint32_t ecochk, gab_ctl, ecobits;
202
		uint32_t ecochk, gab_ctl, ecobits;
203
 
203
 
204
		ecobits = I915_READ(GAC_ECO_BITS);
204
		ecobits = I915_READ(GAC_ECO_BITS);
205
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
205
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
206
					 ECOBITS_PPGTT_CACHE64B);
206
					 ECOBITS_PPGTT_CACHE64B);
207
 
207
 
208
		gab_ctl = I915_READ(GAB_CTL);
208
		gab_ctl = I915_READ(GAB_CTL);
209
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
209
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
210
 
210
 
211
		ecochk = I915_READ(GAM_ECOCHK);
211
		ecochk = I915_READ(GAM_ECOCHK);
212
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
212
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
213
				       ECOCHK_PPGTT_CACHE64B);
213
				       ECOCHK_PPGTT_CACHE64B);
214
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
214
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
215
	} else if (INTEL_INFO(dev)->gen >= 7) {
215
	} else if (INTEL_INFO(dev)->gen >= 7) {
216
		uint32_t ecochk, ecobits;
216
		uint32_t ecochk, ecobits;
217
 
217
 
218
		ecobits = I915_READ(GAC_ECO_BITS);
218
		ecobits = I915_READ(GAC_ECO_BITS);
219
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
219
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
220
 
220
 
221
		ecochk = I915_READ(GAM_ECOCHK);
221
		ecochk = I915_READ(GAM_ECOCHK);
222
		if (IS_HASWELL(dev)) {
222
		if (IS_HASWELL(dev)) {
223
			ecochk |= ECOCHK_PPGTT_WB_HSW;
223
			ecochk |= ECOCHK_PPGTT_WB_HSW;
224
		} else {
224
		} else {
225
			ecochk |= ECOCHK_PPGTT_LLC_IVB;
225
			ecochk |= ECOCHK_PPGTT_LLC_IVB;
226
			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
226
			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
227
		}
227
		}
228
		I915_WRITE(GAM_ECOCHK, ecochk);
228
		I915_WRITE(GAM_ECOCHK, ecochk);
229
		/* GFX_MODE is per-ring on gen7+ */
229
		/* GFX_MODE is per-ring on gen7+ */
230
	}
230
	}
231
 
231
 
232
	for_each_ring(ring, dev_priv, i) {
232
	for_each_ring(ring, dev_priv, i) {
233
		if (INTEL_INFO(dev)->gen >= 7)
233
		if (INTEL_INFO(dev)->gen >= 7)
234
			I915_WRITE(RING_MODE_GEN7(ring),
234
			I915_WRITE(RING_MODE_GEN7(ring),
235
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
235
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
236
 
236
 
237
		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
237
		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
238
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
238
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
239
	}
239
	}
240
	return 0;
240
	return 0;
241
}
241
}
242
 
242
 
243
/* PPGTT support for Sandybdrige/Gen6 and later */
243
/* PPGTT support for Sandybdrige/Gen6 and later */
244
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
244
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
245
				   unsigned first_entry,
245
				   unsigned first_entry,
246
				   unsigned num_entries)
246
				   unsigned num_entries)
247
{
247
{
248
	struct i915_hw_ppgtt *ppgtt =
248
	struct i915_hw_ppgtt *ppgtt =
249
		container_of(vm, struct i915_hw_ppgtt, base);
249
		container_of(vm, struct i915_hw_ppgtt, base);
250
	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
250
	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
251
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
251
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
252
	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
252
	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
253
	unsigned last_pte, i;
253
	unsigned last_pte, i;
254
 
254
 
255
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
255
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
256
 
256
 
257
    pt_vaddr = AllocKernelSpace(4096);
257
    pt_vaddr = AllocKernelSpace(4096);
258
 
258
 
259
    if(pt_vaddr == NULL)
259
    if(pt_vaddr == NULL)
260
        return;
260
        return;
261
 
261
 
262
	while (num_entries) {
262
	while (num_entries) {
263
            last_pte = first_pte + num_entries;
263
            last_pte = first_pte + num_entries;
264
            if (last_pte > I915_PPGTT_PT_ENTRIES)
264
            if (last_pte > I915_PPGTT_PT_ENTRIES)
265
                last_pte = I915_PPGTT_PT_ENTRIES;
265
                last_pte = I915_PPGTT_PT_ENTRIES;
266
 
266
 
267
            MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
267
            MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
268
 
268
 
269
            for (i = first_pte; i < last_pte; i++)
269
            for (i = first_pte; i < last_pte; i++)
270
                pt_vaddr[i] = scratch_pte;
270
                pt_vaddr[i] = scratch_pte;
271
 
271
 
272
            num_entries -= last_pte - first_pte;
272
            num_entries -= last_pte - first_pte;
273
            first_pte = 0;
273
            first_pte = 0;
274
            act_pt++;
274
            act_pt++;
275
    };
275
    };
276
 
276
 
277
    FreeKernelSpace(pt_vaddr);
277
    FreeKernelSpace(pt_vaddr);
278
}
278
}
279
 
279
 
280
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
280
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
281
				      struct sg_table *pages,
281
				      struct sg_table *pages,
282
				      unsigned first_entry,
282
				      unsigned first_entry,
283
				      enum i915_cache_level cache_level)
283
				      enum i915_cache_level cache_level)
284
{
284
{
285
	struct i915_hw_ppgtt *ppgtt =
285
	struct i915_hw_ppgtt *ppgtt =
286
		container_of(vm, struct i915_hw_ppgtt, base);
286
		container_of(vm, struct i915_hw_ppgtt, base);
287
	gen6_gtt_pte_t *pt_vaddr;
287
	gen6_gtt_pte_t *pt_vaddr;
288
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
288
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
289
	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
289
	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
290
	struct sg_page_iter sg_iter;
290
	struct sg_page_iter sg_iter;
291
	dma_addr_t page_addr;
291
	dma_addr_t page_addr;
292
 
292
 
293
 
293
 
294
    pt_vaddr = AllocKernelSpace(4096);
294
    pt_vaddr = AllocKernelSpace(4096);
295
 
295
 
296
    if(pt_vaddr == NULL)
296
    if(pt_vaddr == NULL)
297
        return;
297
        return;
298
 
298
 
299
    MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
299
    MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
300
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
300
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
301
		dma_addr_t page_addr;
301
		dma_addr_t page_addr;
302
 
302
 
303
		page_addr = sg_page_iter_dma_address(&sg_iter);
303
		page_addr = sg_page_iter_dma_address(&sg_iter);
304
		pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level);
304
		pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level);
305
		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
305
		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
306
			act_pt++;
306
			act_pt++;
307
    		MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
307
    		MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
308
			act_pte = 0;
308
			act_pte = 0;
309
 
309
 
310
			}
310
			}
311
		}
311
		}
312
    FreeKernelSpace(pt_vaddr);
312
    FreeKernelSpace(pt_vaddr);
313
}
313
}
314
 
314
 
315
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
315
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
316
{
316
{
317
	struct i915_hw_ppgtt *ppgtt =
317
	struct i915_hw_ppgtt *ppgtt =
318
		container_of(vm, struct i915_hw_ppgtt, base);
318
		container_of(vm, struct i915_hw_ppgtt, base);
319
	int i;
319
	int i;
320
 
320
 
321
	drm_mm_takedown(&ppgtt->base.mm);
321
	drm_mm_takedown(&ppgtt->base.mm);
322
 
322
 
323
	if (ppgtt->pt_dma_addr) {
323
	if (ppgtt->pt_dma_addr) {
324
		for (i = 0; i < ppgtt->num_pd_entries; i++)
324
		for (i = 0; i < ppgtt->num_pd_entries; i++)
325
			pci_unmap_page(ppgtt->base.dev->pdev,
325
			pci_unmap_page(ppgtt->base.dev->pdev,
326
				       ppgtt->pt_dma_addr[i],
326
				       ppgtt->pt_dma_addr[i],
327
				       4096, PCI_DMA_BIDIRECTIONAL);
327
				       4096, PCI_DMA_BIDIRECTIONAL);
328
	}
328
	}
329
 
329
 
330
	kfree(ppgtt->pt_dma_addr);
330
	kfree(ppgtt->pt_dma_addr);
331
	for (i = 0; i < ppgtt->num_pd_entries; i++)
331
	for (i = 0; i < ppgtt->num_pd_entries; i++)
332
		__free_page(ppgtt->pt_pages[i]);
332
		__free_page(ppgtt->pt_pages[i]);
333
	kfree(ppgtt->pt_pages);
333
	kfree(ppgtt->pt_pages);
334
	kfree(ppgtt);
334
	kfree(ppgtt);
335
}
335
}
336
 
336
 
337
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
337
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
338
{
338
{
339
	struct drm_device *dev = ppgtt->base.dev;
339
	struct drm_device *dev = ppgtt->base.dev;
340
	struct drm_i915_private *dev_priv = dev->dev_private;
340
	struct drm_i915_private *dev_priv = dev->dev_private;
341
	unsigned first_pd_entry_in_global_pt;
341
	unsigned first_pd_entry_in_global_pt;
342
	int i;
342
	int i;
343
	int ret = -ENOMEM;
343
	int ret = -ENOMEM;
344
 
344
 
345
	/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
345
	/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
346
	 * entries. For aliasing ppgtt support we just steal them at the end for
346
	 * entries. For aliasing ppgtt support we just steal them at the end for
347
	 * now. */
347
	 * now. */
348
       first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
348
       first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
349
 
349
 
350
	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
350
	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
351
	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
351
	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
352
	ppgtt->enable = gen6_ppgtt_enable;
352
	ppgtt->enable = gen6_ppgtt_enable;
353
	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
353
	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
354
	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
354
	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
355
	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
355
	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
356
	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
356
	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
357
	ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
357
	ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
358
				  GFP_KERNEL);
358
				  GFP_KERNEL);
359
	if (!ppgtt->pt_pages)
359
	if (!ppgtt->pt_pages)
360
		return -ENOMEM;
360
		return -ENOMEM;
361
 
361
 
362
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
362
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
363
		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
363
		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
364
		if (!ppgtt->pt_pages[i])
364
		if (!ppgtt->pt_pages[i])
365
			goto err_pt_alloc;
365
			goto err_pt_alloc;
366
	}
366
	}
367
 
367
 
368
	ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
368
	ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
369
					     GFP_KERNEL);
369
					     GFP_KERNEL);
370
    if (!ppgtt->pt_dma_addr)
370
    if (!ppgtt->pt_dma_addr)
371
        goto err_pt_alloc;
371
        goto err_pt_alloc;
372
 
372
 
373
    for (i = 0; i < ppgtt->num_pd_entries; i++) {
373
    for (i = 0; i < ppgtt->num_pd_entries; i++) {
374
        dma_addr_t pt_addr;
374
        dma_addr_t pt_addr;
375
 
375
 
376
		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
376
		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
377
					       PCI_DMA_BIDIRECTIONAL);
377
					       PCI_DMA_BIDIRECTIONAL);
378
 
378
 
379
        ppgtt->pt_dma_addr[i] = pt_addr;
379
        ppgtt->pt_dma_addr[i] = pt_addr;
380
    }
380
    }
381
 
381
 
382
	ppgtt->base.clear_range(&ppgtt->base, 0,
382
	ppgtt->base.clear_range(&ppgtt->base, 0,
383
			       ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
383
			       ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
384
 
384
 
385
	ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
385
	ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
386
 
386
 
387
	return 0;
387
	return 0;
388
 
388
 
389
err_pd_pin:
389
err_pd_pin:
390
	if (ppgtt->pt_dma_addr) {
390
	if (ppgtt->pt_dma_addr) {
391
		for (i--; i >= 0; i--)
391
		for (i--; i >= 0; i--)
392
			pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
392
			pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
393
				       4096, PCI_DMA_BIDIRECTIONAL);
393
				       4096, PCI_DMA_BIDIRECTIONAL);
394
	}
394
	}
395
err_pt_alloc:
395
err_pt_alloc:
396
	kfree(ppgtt->pt_dma_addr);
396
	kfree(ppgtt->pt_dma_addr);
397
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
397
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
398
		if (ppgtt->pt_pages[i])
398
		if (ppgtt->pt_pages[i])
399
			__free_page(ppgtt->pt_pages[i]);
399
			__free_page(ppgtt->pt_pages[i]);
400
	}
400
	}
401
	kfree(ppgtt->pt_pages);
401
	kfree(ppgtt->pt_pages);
402
 
402
 
403
	return ret;
403
	return ret;
404
}
404
}
405
 
405
 
406
static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
406
static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
407
{
407
{
408
	struct drm_i915_private *dev_priv = dev->dev_private;
408
	struct drm_i915_private *dev_priv = dev->dev_private;
409
	struct i915_hw_ppgtt *ppgtt;
409
	struct i915_hw_ppgtt *ppgtt;
410
	int ret;
410
	int ret;
411
 
411
 
412
	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
412
	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
413
	if (!ppgtt)
413
	if (!ppgtt)
414
		return -ENOMEM;
414
		return -ENOMEM;
415
 
415
 
416
	ppgtt->base.dev = dev;
416
	ppgtt->base.dev = dev;
417
 
417
 
418
	if (INTEL_INFO(dev)->gen < 8)
418
	if (INTEL_INFO(dev)->gen < 8)
419
	ret = gen6_ppgtt_init(ppgtt);
419
	ret = gen6_ppgtt_init(ppgtt);
420
	else
420
	else
421
		BUG();
421
		BUG();
422
 
422
 
423
	if (ret)
423
	if (ret)
424
        kfree(ppgtt);
424
        kfree(ppgtt);
425
	else {
425
	else {
426
		dev_priv->mm.aliasing_ppgtt = ppgtt;
426
		dev_priv->mm.aliasing_ppgtt = ppgtt;
427
		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
427
		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
428
			    ppgtt->base.total);
428
			    ppgtt->base.total);
429
	}
429
	}
430
 
430
 
431
	return ret;
431
	return ret;
432
}
432
}
433
 
433
 
434
void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
434
void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
435
{
435
{
436
	struct drm_i915_private *dev_priv = dev->dev_private;
436
	struct drm_i915_private *dev_priv = dev->dev_private;
437
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
437
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
438
 
438
 
439
	if (!ppgtt)
439
	if (!ppgtt)
440
		return;
440
		return;
441
 
441
 
442
	ppgtt->base.cleanup(&ppgtt->base);
442
	ppgtt->base.cleanup(&ppgtt->base);
443
	dev_priv->mm.aliasing_ppgtt = NULL;
443
	dev_priv->mm.aliasing_ppgtt = NULL;
444
}
444
}
445
 
445
 
446
void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
446
void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
447
			    struct drm_i915_gem_object *obj,
447
			    struct drm_i915_gem_object *obj,
448
			    enum i915_cache_level cache_level)
448
			    enum i915_cache_level cache_level)
449
{
449
{
450
	ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
450
	ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
451
				   i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
451
				   i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
452
				     cache_level);
452
				     cache_level);
453
}
453
}
454
 
454
 
455
void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
455
void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
456
			      struct drm_i915_gem_object *obj)
456
			      struct drm_i915_gem_object *obj)
457
{
457
{
458
	ppgtt->base.clear_range(&ppgtt->base,
458
	ppgtt->base.clear_range(&ppgtt->base,
459
				i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
459
				i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
460
			       obj->base.size >> PAGE_SHIFT);
460
			       obj->base.size >> PAGE_SHIFT);
461
}
461
}
462
 
462
 
463
extern int intel_iommu_gfx_mapped;
463
extern int intel_iommu_gfx_mapped;
464
/* Certain Gen5 chipsets require require idling the GPU before
464
/* Certain Gen5 chipsets require require idling the GPU before
465
 * unmapping anything from the GTT when VT-d is enabled.
465
 * unmapping anything from the GTT when VT-d is enabled.
466
 */
466
 */
467
static inline bool needs_idle_maps(struct drm_device *dev)
467
static inline bool needs_idle_maps(struct drm_device *dev)
468
{
468
{
469
#ifdef CONFIG_INTEL_IOMMU
469
#ifdef CONFIG_INTEL_IOMMU
470
	/* Query intel_iommu to see if we need the workaround. Presumably that
470
	/* Query intel_iommu to see if we need the workaround. Presumably that
471
	 * was loaded first.
471
	 * was loaded first.
472
	 */
472
	 */
473
	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
473
	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
474
		return true;
474
		return true;
475
#endif
475
#endif
476
	return false;
476
	return false;
477
}
477
}
478
 
478
 
479
static bool do_idling(struct drm_i915_private *dev_priv)
479
static bool do_idling(struct drm_i915_private *dev_priv)
480
{
480
{
481
	bool ret = dev_priv->mm.interruptible;
481
	bool ret = dev_priv->mm.interruptible;
482
 
482
 
483
	if (unlikely(dev_priv->gtt.do_idle_maps)) {
483
	if (unlikely(dev_priv->gtt.do_idle_maps)) {
484
		dev_priv->mm.interruptible = false;
484
		dev_priv->mm.interruptible = false;
485
		if (i915_gpu_idle(dev_priv->dev)) {
485
		if (i915_gpu_idle(dev_priv->dev)) {
486
			DRM_ERROR("Couldn't idle GPU\n");
486
			DRM_ERROR("Couldn't idle GPU\n");
487
			/* Wait a bit, in hopes it avoids the hang */
487
			/* Wait a bit, in hopes it avoids the hang */
488
			udelay(10);
488
			udelay(10);
489
		}
489
		}
490
	}
490
	}
491
 
491
 
492
	return ret;
492
	return ret;
493
}
493
}
494
 
494
 
495
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
495
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
496
{
496
{
497
	if (unlikely(dev_priv->gtt.do_idle_maps))
497
	if (unlikely(dev_priv->gtt.do_idle_maps))
498
		dev_priv->mm.interruptible = interruptible;
498
		dev_priv->mm.interruptible = interruptible;
499
}
499
}
500
 
500
 
501
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
501
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
502
{
502
{
503
	struct drm_i915_private *dev_priv = dev->dev_private;
503
	struct drm_i915_private *dev_priv = dev->dev_private;
504
	struct drm_i915_gem_object *obj;
504
	struct drm_i915_gem_object *obj;
505
 
505
 
506
	/* First fill our portion of the GTT with scratch pages */
506
	/* First fill our portion of the GTT with scratch pages */
507
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
507
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
508
				       dev_priv->gtt.base.start / PAGE_SIZE,
508
				       dev_priv->gtt.base.start / PAGE_SIZE,
509
				       dev_priv->gtt.base.total / PAGE_SIZE);
509
				       dev_priv->gtt.base.total / PAGE_SIZE);
510
 
510
 
511
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
511
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
512
		i915_gem_clflush_object(obj, obj->pin_display);
512
		i915_gem_clflush_object(obj, obj->pin_display);
513
		i915_gem_gtt_bind_object(obj, obj->cache_level);
513
		i915_gem_gtt_bind_object(obj, obj->cache_level);
514
	}
514
	}
515
 
515
 
516
	i915_gem_chipset_flush(dev);
516
	i915_gem_chipset_flush(dev);
517
}
517
}
518
 
518
 
519
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
519
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
520
{
520
{
521
	if (obj->has_dma_mapping)
521
	if (obj->has_dma_mapping)
522
		return 0;
522
		return 0;
523
 
523
 
524
	if (!dma_map_sg(&obj->base.dev->pdev->dev,
524
	if (!dma_map_sg(&obj->base.dev->pdev->dev,
525
			obj->pages->sgl, obj->pages->nents,
525
			obj->pages->sgl, obj->pages->nents,
526
			PCI_DMA_BIDIRECTIONAL))
526
			PCI_DMA_BIDIRECTIONAL))
527
		return -ENOSPC;
527
		return -ENOSPC;
528
 
528
 
529
	return 0;
529
	return 0;
530
}
530
}
531
 
531
 
532
/*
532
/*
533
 * Binds an object into the global gtt with the specified cache level. The object
533
 * Binds an object into the global gtt with the specified cache level. The object
534
 * will be accessible to the GPU via commands whose operands reference offsets
534
 * will be accessible to the GPU via commands whose operands reference offsets
535
 * within the global GTT as well as accessible by the GPU through the GMADR
535
 * within the global GTT as well as accessible by the GPU through the GMADR
536
 * mapped BAR (dev_priv->mm.gtt->gtt).
536
 * mapped BAR (dev_priv->mm.gtt->gtt).
537
 */
537
 */
538
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
538
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
539
				     struct sg_table *st,
539
				     struct sg_table *st,
540
				     unsigned int first_entry,
540
				     unsigned int first_entry,
541
				  enum i915_cache_level level)
541
				  enum i915_cache_level level)
542
{
542
{
543
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
543
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
544
	gen6_gtt_pte_t __iomem *gtt_entries =
544
	gen6_gtt_pte_t __iomem *gtt_entries =
545
		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
545
		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
546
	int i = 0;
546
	int i = 0;
547
	struct sg_page_iter sg_iter;
547
	struct sg_page_iter sg_iter;
548
	dma_addr_t addr;
548
	dma_addr_t addr;
549
 
549
 
550
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
550
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
551
		addr = sg_page_iter_dma_address(&sg_iter);
551
		addr = sg_page_iter_dma_address(&sg_iter);
552
		iowrite32(vm->pte_encode(addr, level), >t_entries[i]);
552
		iowrite32(vm->pte_encode(addr, level), >t_entries[i]);
553
			i++;
553
			i++;
554
		}
554
		}
555
 
555
 
556
	/* XXX: This serves as a posting read to make sure that the PTE has
556
	/* XXX: This serves as a posting read to make sure that the PTE has
557
	 * actually been updated. There is some concern that even though
557
	 * actually been updated. There is some concern that even though
558
	 * registers and PTEs are within the same BAR that they are potentially
558
	 * registers and PTEs are within the same BAR that they are potentially
559
	 * of NUMA access patterns. Therefore, even with the way we assume
559
	 * of NUMA access patterns. Therefore, even with the way we assume
560
	 * hardware should work, we must keep this posting read for paranoia.
560
	 * hardware should work, we must keep this posting read for paranoia.
561
	 */
561
	 */
562
	if (i != 0)
562
	if (i != 0)
563
		WARN_ON(readl(>t_entries[i-1]) !=
563
		WARN_ON(readl(>t_entries[i-1]) !=
564
			vm->pte_encode(addr, level));
564
			vm->pte_encode(addr, level));
565
 
565
 
566
	/* This next bit makes the above posting read even more important. We
566
	/* This next bit makes the above posting read even more important. We
567
	 * want to flush the TLBs only after we're certain all the PTE updates
567
	 * want to flush the TLBs only after we're certain all the PTE updates
568
	 * have finished.
568
	 * have finished.
569
	 */
569
	 */
570
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
570
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
571
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
571
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
572
}
572
}
573
 
573
 
574
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
574
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
575
				  unsigned int first_entry,
575
				  unsigned int first_entry,
576
				  unsigned int num_entries)
576
				  unsigned int num_entries)
577
{
577
{
578
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
578
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
579
	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
579
	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
580
		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
580
		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
581
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
581
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
582
	int i;
582
	int i;
583
 
583
 
584
//   if (WARN(num_entries > max_entries,
584
	if (WARN(num_entries > max_entries,
585
//        "First entry = %d; Num entries = %d (max=%d)\n",
585
		 "First entry = %d; Num entries = %d (max=%d)\n",
586
//        first_entry, num_entries, max_entries))
-
 
587
   if (num_entries > max_entries)
586
		 first_entry, num_entries, max_entries))
588
        num_entries = max_entries;
587
        num_entries = max_entries;
589
 
588
 
590
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
589
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
591
	for (i = 0; i < num_entries; i++)
590
	for (i = 0; i < num_entries; i++)
592
		iowrite32(scratch_pte, >t_base[i]);
591
		iowrite32(scratch_pte, >t_base[i]);
593
	readl(gtt_base);
592
	readl(gtt_base);
594
}
593
}
595
 
594
 
596
 
595
 
597
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
596
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
598
				     struct sg_table *st,
597
				     struct sg_table *st,
599
				     unsigned int pg_start,
598
				     unsigned int pg_start,
600
				     enum i915_cache_level cache_level)
599
				     enum i915_cache_level cache_level)
601
{
600
{
602
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
601
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
603
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
602
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
604
 
603
 
605
	intel_gtt_insert_sg_entries(st, pg_start, flags);
604
	intel_gtt_insert_sg_entries(st, pg_start, flags);
606
 
605
 
607
}
606
}
608
 
607
 
609
static void i915_ggtt_clear_range(struct i915_address_space *vm,
608
static void i915_ggtt_clear_range(struct i915_address_space *vm,
610
				  unsigned int first_entry,
609
				  unsigned int first_entry,
611
				  unsigned int num_entries)
610
				  unsigned int num_entries)
612
{
611
{
613
	intel_gtt_clear_range(first_entry, num_entries);
612
	intel_gtt_clear_range(first_entry, num_entries);
614
}
613
}
615
 
614
 
616
 
615
 
617
void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
616
void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
618
				enum i915_cache_level cache_level)
617
				enum i915_cache_level cache_level)
619
{
618
{
620
	struct drm_device *dev = obj->base.dev;
619
	struct drm_device *dev = obj->base.dev;
621
	struct drm_i915_private *dev_priv = dev->dev_private;
620
	struct drm_i915_private *dev_priv = dev->dev_private;
622
	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
621
	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
623
 
622
 
624
	dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
623
	dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
625
					  entry,
624
					  entry,
626
					 cache_level);
625
					 cache_level);
627
 
626
 
628
	obj->has_global_gtt_mapping = 1;
627
	obj->has_global_gtt_mapping = 1;
629
}
628
}
630
 
629
 
631
void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
630
void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
632
{
631
{
633
	struct drm_device *dev = obj->base.dev;
632
	struct drm_device *dev = obj->base.dev;
634
	struct drm_i915_private *dev_priv = dev->dev_private;
633
	struct drm_i915_private *dev_priv = dev->dev_private;
635
	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
634
	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
636
 
635
 
637
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
636
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
638
				       entry,
637
				       entry,
639
			      obj->base.size >> PAGE_SHIFT);
638
			      obj->base.size >> PAGE_SHIFT);
640
 
639
 
641
	obj->has_global_gtt_mapping = 0;
640
	obj->has_global_gtt_mapping = 0;
642
}
641
}
643
 
642
 
644
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
643
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
645
{
644
{
646
	struct drm_device *dev = obj->base.dev;
645
	struct drm_device *dev = obj->base.dev;
647
	struct drm_i915_private *dev_priv = dev->dev_private;
646
	struct drm_i915_private *dev_priv = dev->dev_private;
648
	bool interruptible;
647
	bool interruptible;
649
 
648
 
650
	interruptible = do_idling(dev_priv);
649
	interruptible = do_idling(dev_priv);
651
 
650
 
652
	if (!obj->has_dma_mapping)
651
	if (!obj->has_dma_mapping)
653
		dma_unmap_sg(&dev->pdev->dev,
652
		dma_unmap_sg(&dev->pdev->dev,
654
			     obj->pages->sgl, obj->pages->nents,
653
			     obj->pages->sgl, obj->pages->nents,
655
			     PCI_DMA_BIDIRECTIONAL);
654
			     PCI_DMA_BIDIRECTIONAL);
656
 
655
 
657
	undo_idling(dev_priv, interruptible);
656
	undo_idling(dev_priv, interruptible);
658
}
657
}
659
 
658
 
660
static void i915_gtt_color_adjust(struct drm_mm_node *node,
659
static void i915_gtt_color_adjust(struct drm_mm_node *node,
661
				  unsigned long color,
660
				  unsigned long color,
662
				  unsigned long *start,
661
				  unsigned long *start,
663
				  unsigned long *end)
662
				  unsigned long *end)
664
{
663
{
665
	if (node->color != color)
664
	if (node->color != color)
666
		*start += 4096;
665
		*start += 4096;
667
 
666
 
668
	if (!list_empty(&node->node_list)) {
667
	if (!list_empty(&node->node_list)) {
669
		node = list_entry(node->node_list.next,
668
		node = list_entry(node->node_list.next,
670
				  struct drm_mm_node,
669
				  struct drm_mm_node,
671
				  node_list);
670
				  node_list);
672
		if (node->allocated && node->color != color)
671
		if (node->allocated && node->color != color)
673
			*end -= 4096;
672
			*end -= 4096;
674
	}
673
	}
675
}
674
}
676
void i915_gem_setup_global_gtt(struct drm_device *dev,
675
void i915_gem_setup_global_gtt(struct drm_device *dev,
677
			      unsigned long start,
676
			      unsigned long start,
678
			      unsigned long mappable_end,
677
			      unsigned long mappable_end,
679
			      unsigned long end)
678
			      unsigned long end)
680
{
679
{
681
	/* Let GEM Manage all of the aperture.
680
	/* Let GEM Manage all of the aperture.
682
	 *
681
	 *
683
	 * However, leave one page at the end still bound to the scratch page.
682
	 * However, leave one page at the end still bound to the scratch page.
684
	 * There are a number of places where the hardware apparently prefetches
683
	 * There are a number of places where the hardware apparently prefetches
685
	 * past the end of the object, and we've seen multiple hangs with the
684
	 * past the end of the object, and we've seen multiple hangs with the
686
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
685
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
687
	 * aperture.  One page should be enough to keep any prefetching inside
686
	 * aperture.  One page should be enough to keep any prefetching inside
688
	 * of the aperture.
687
	 * of the aperture.
689
	 */
688
	 */
690
	struct drm_i915_private *dev_priv = dev->dev_private;
689
	struct drm_i915_private *dev_priv = dev->dev_private;
691
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
690
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
692
	struct drm_mm_node *entry;
691
	struct drm_mm_node *entry;
693
	struct drm_i915_gem_object *obj;
692
	struct drm_i915_gem_object *obj;
694
	unsigned long hole_start, hole_end;
693
	unsigned long hole_start, hole_end;
695
 
694
 
696
	BUG_ON(mappable_end > end);
695
	BUG_ON(mappable_end > end);
697
 
696
 
698
	/* Subtract the guard page ... */
697
	/* Subtract the guard page ... */
699
	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
698
	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
700
	if (!HAS_LLC(dev))
699
	if (!HAS_LLC(dev))
701
		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
700
		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
702
 
701
 
703
	/* Mark any preallocated objects as occupied */
702
	/* Mark any preallocated objects as occupied */
704
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
703
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
705
		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
704
		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
706
		int ret;
705
		int ret;
707
		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
706
		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
708
			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
707
			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
709
 
708
 
710
		WARN_ON(i915_gem_obj_ggtt_bound(obj));
709
		WARN_ON(i915_gem_obj_ggtt_bound(obj));
711
		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
710
		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
712
		if (ret)
711
		if (ret)
713
			DRM_DEBUG_KMS("Reservation failed\n");
712
			DRM_DEBUG_KMS("Reservation failed\n");
714
		obj->has_global_gtt_mapping = 1;
713
		obj->has_global_gtt_mapping = 1;
715
		list_add(&vma->vma_link, &obj->vma_list);
714
		list_add(&vma->vma_link, &obj->vma_list);
716
	}
715
	}
717
 
716
 
718
	dev_priv->gtt.base.start = start;
717
	dev_priv->gtt.base.start = start;
719
	dev_priv->gtt.base.total = end - start;
718
	dev_priv->gtt.base.total = end - start;
720
 
719
 
721
	/* Clear any non-preallocated blocks */
720
	/* Clear any non-preallocated blocks */
722
	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
721
	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
723
		const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
722
		const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
724
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
723
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
725
			      hole_start, hole_end);
724
			      hole_start, hole_end);
726
		ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count);
725
		ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count);
727
	}
726
	}
728
 
727
 
729
	/* And finally clear the reserved guard page */
728
	/* And finally clear the reserved guard page */
730
	ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1);
729
	ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1);
731
}
730
}
732
 
731
 
733
static bool
732
static bool
734
intel_enable_ppgtt(struct drm_device *dev)
733
intel_enable_ppgtt(struct drm_device *dev)
735
{
734
{
736
	if (i915_enable_ppgtt >= 0)
735
	if (i915_enable_ppgtt >= 0)
737
		return i915_enable_ppgtt;
736
		return i915_enable_ppgtt;
738
 
737
 
739
#ifdef CONFIG_INTEL_IOMMU
738
#ifdef CONFIG_INTEL_IOMMU
740
	/* Disable ppgtt on SNB if VT-d is on. */
739
	/* Disable ppgtt on SNB if VT-d is on. */
741
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
740
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
742
		return false;
741
		return false;
743
#endif
742
#endif
744
 
743
 
745
	return true;
744
	return true;
746
}
745
}
747
 
746
 
748
void i915_gem_init_global_gtt(struct drm_device *dev)
747
void i915_gem_init_global_gtt(struct drm_device *dev)
749
{
748
{
750
	struct drm_i915_private *dev_priv = dev->dev_private;
749
	struct drm_i915_private *dev_priv = dev->dev_private;
751
	unsigned long gtt_size, mappable_size;
750
	unsigned long gtt_size, mappable_size;
752
 
751
 
753
	gtt_size = dev_priv->gtt.base.total;
752
	gtt_size = dev_priv->gtt.base.total;
754
	mappable_size = dev_priv->gtt.mappable_end;
753
	mappable_size = dev_priv->gtt.mappable_end;
755
 
754
 
756
#if 0
755
#if 0
757
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
756
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
758
		int ret;
757
		int ret;
759
 
758
 
760
		if (INTEL_INFO(dev)->gen <= 7) {
759
		if (INTEL_INFO(dev)->gen <= 7) {
761
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
760
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
762
		 * aperture accordingly when using aliasing ppgtt. */
761
		 * aperture accordingly when using aliasing ppgtt. */
763
			gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
762
			gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
764
		}
763
		}
765
 
764
 
766
        i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size-LFB_SIZE);
765
        i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size-LFB_SIZE);
767
 
766
 
768
		ret = i915_gem_init_aliasing_ppgtt(dev);
767
		ret = i915_gem_init_aliasing_ppgtt(dev);
769
		if (!ret)
768
		if (!ret)
770
			return;
769
			return;
771
 
770
 
772
		DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
771
		DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
773
		drm_mm_takedown(&dev_priv->gtt.base.mm);
772
		drm_mm_takedown(&dev_priv->gtt.base.mm);
774
		gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
773
		gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
775
}
774
}
776
#endif
775
#endif
777
 
776
 
778
    i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size-LFB_SIZE);
777
    i915_gem_setup_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size-LFB_SIZE);
779
}
778
}
780
 
779
 
781
static int setup_scratch_page(struct drm_device *dev)
780
static int setup_scratch_page(struct drm_device *dev)
782
{
781
{
783
	struct drm_i915_private *dev_priv = dev->dev_private;
782
	struct drm_i915_private *dev_priv = dev->dev_private;
784
	struct page *page;
783
	struct page *page;
785
	dma_addr_t dma_addr;
784
	dma_addr_t dma_addr;
786
 
785
 
787
	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
786
	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
788
	if (page == NULL)
787
	if (page == NULL)
789
		return -ENOMEM;
788
		return -ENOMEM;
790
    get_page(page);
789
    get_page(page);
791
	set_pages_uc(page, 1);
790
	set_pages_uc(page, 1);
792
 
791
 
793
#ifdef CONFIG_INTEL_IOMMU
792
#ifdef CONFIG_INTEL_IOMMU
794
	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
793
	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
795
				PCI_DMA_BIDIRECTIONAL);
794
				PCI_DMA_BIDIRECTIONAL);
796
	if (pci_dma_mapping_error(dev->pdev, dma_addr))
795
	if (pci_dma_mapping_error(dev->pdev, dma_addr))
797
		return -EINVAL;
796
		return -EINVAL;
798
#else
797
#else
799
	dma_addr = page_to_phys(page);
798
	dma_addr = page_to_phys(page);
800
#endif
799
#endif
801
	dev_priv->gtt.base.scratch.page = page;
800
	dev_priv->gtt.base.scratch.page = page;
802
	dev_priv->gtt.base.scratch.addr = dma_addr;
801
	dev_priv->gtt.base.scratch.addr = dma_addr;
803
 
802
 
804
	return 0;
803
	return 0;
805
}
804
}
806
 
805
 
807
static void teardown_scratch_page(struct drm_device *dev)
806
static void teardown_scratch_page(struct drm_device *dev)
808
{
807
{
809
	struct drm_i915_private *dev_priv = dev->dev_private;
808
	struct drm_i915_private *dev_priv = dev->dev_private;
810
	struct page *page = dev_priv->gtt.base.scratch.page;
809
	struct page *page = dev_priv->gtt.base.scratch.page;
811
 
810
 
812
	set_pages_wb(page, 1);
811
	set_pages_wb(page, 1);
813
	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
812
	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
814
		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
813
		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
815
	put_page(page);
814
	put_page(page);
816
	__free_page(page);
815
	__free_page(page);
817
}
816
}
818
 
817
 
819
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
818
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
820
{
819
{
821
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
820
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
822
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
821
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
823
	return snb_gmch_ctl << 20;
822
	return snb_gmch_ctl << 20;
824
}
823
}
825
 
824
 
826
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
825
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
827
{
826
{
828
	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
827
	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
829
	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
828
	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
830
	return snb_gmch_ctl << 25; /* 32 MB units */
829
	return snb_gmch_ctl << 25; /* 32 MB units */
831
}
830
}
832
 
831
 
833
static int gen6_gmch_probe(struct drm_device *dev,
832
static int gen6_gmch_probe(struct drm_device *dev,
834
			   size_t *gtt_total,
833
			   size_t *gtt_total,
835
			   size_t *stolen,
834
			   size_t *stolen,
836
			   phys_addr_t *mappable_base,
835
			   phys_addr_t *mappable_base,
837
			   unsigned long *mappable_end)
836
			   unsigned long *mappable_end)
838
{
837
{
839
	struct drm_i915_private *dev_priv = dev->dev_private;
838
	struct drm_i915_private *dev_priv = dev->dev_private;
840
	phys_addr_t gtt_bus_addr;
839
	phys_addr_t gtt_bus_addr;
841
	unsigned int gtt_size;
840
	unsigned int gtt_size;
842
	u16 snb_gmch_ctl;
841
	u16 snb_gmch_ctl;
843
	int ret;
842
	int ret;
844
 
843
 
845
	*mappable_base = pci_resource_start(dev->pdev, 2);
844
	*mappable_base = pci_resource_start(dev->pdev, 2);
846
	*mappable_end = pci_resource_len(dev->pdev, 2);
845
	*mappable_end = pci_resource_len(dev->pdev, 2);
847
 
846
 
848
	/* 64/512MB is the current min/max we actually know of, but this is just
847
	/* 64/512MB is the current min/max we actually know of, but this is just
849
	 * a coarse sanity check.
848
	 * a coarse sanity check.
850
	 */
849
	 */
851
	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
850
	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
852
		DRM_ERROR("Unknown GMADR size (%lx)\n",
851
		DRM_ERROR("Unknown GMADR size (%lx)\n",
853
			  dev_priv->gtt.mappable_end);
852
			  dev_priv->gtt.mappable_end);
854
		return -ENXIO;
853
		return -ENXIO;
855
		}
854
		}
856
 
855
 
857
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
856
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
858
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
857
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
859
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
858
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
860
	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
859
	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
861
 
860
 
862
	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
861
	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
863
	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
862
	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
864
 
863
 
865
	/* For Modern GENs the PTEs and register space are split in the BAR */
864
	/* For Modern GENs the PTEs and register space are split in the BAR */
866
	gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
865
	gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
867
		(pci_resource_len(dev->pdev, 0) / 2);
866
		(pci_resource_len(dev->pdev, 0) / 2);
868
 
867
 
869
	dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
868
	dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
870
	if (!dev_priv->gtt.gsm) {
869
	if (!dev_priv->gtt.gsm) {
871
		DRM_ERROR("Failed to map the gtt page table\n");
870
		DRM_ERROR("Failed to map the gtt page table\n");
872
		return -ENOMEM;
871
		return -ENOMEM;
873
	}
872
	}
874
 
873
 
875
	ret = setup_scratch_page(dev);
874
	ret = setup_scratch_page(dev);
876
	if (ret)
875
	if (ret)
877
		DRM_ERROR("Scratch setup failed\n");
876
		DRM_ERROR("Scratch setup failed\n");
878
 
877
 
879
	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
878
	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
880
	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
879
	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
881
 
880
 
882
	return ret;
881
	return ret;
883
}
882
}
884
 
883
 
885
static void gen6_gmch_remove(struct i915_address_space *vm)
884
static void gen6_gmch_remove(struct i915_address_space *vm)
886
{
885
{
887
 
886
 
888
	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
887
	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
889
	iounmap(gtt->gsm);
888
	iounmap(gtt->gsm);
890
	teardown_scratch_page(vm->dev);
889
	teardown_scratch_page(vm->dev);
891
}
890
}
892
 
891
 
893
static int i915_gmch_probe(struct drm_device *dev,
892
static int i915_gmch_probe(struct drm_device *dev,
894
			   size_t *gtt_total,
893
			   size_t *gtt_total,
895
			   size_t *stolen,
894
			   size_t *stolen,
896
			   phys_addr_t *mappable_base,
895
			   phys_addr_t *mappable_base,
897
			   unsigned long *mappable_end)
896
			   unsigned long *mappable_end)
898
{
897
{
899
	struct drm_i915_private *dev_priv = dev->dev_private;
898
	struct drm_i915_private *dev_priv = dev->dev_private;
900
	int ret;
899
	int ret;
901
 
900
 
902
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
901
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
903
	if (!ret) {
902
	if (!ret) {
904
		DRM_ERROR("failed to set up gmch\n");
903
		DRM_ERROR("failed to set up gmch\n");
905
		return -EIO;
904
		return -EIO;
906
	}
905
	}
907
 
906
 
908
	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
907
	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
909
 
908
 
910
	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
909
	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
911
	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
910
	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
912
	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
911
	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
913
 
912
 
914
	return 0;
913
	return 0;
915
}
914
}
916
 
915
 
917
static void i915_gmch_remove(struct i915_address_space *vm)
916
static void i915_gmch_remove(struct i915_address_space *vm)
918
{
917
{
919
//   intel_gmch_remove();
918
//   intel_gmch_remove();
920
}
919
}
921
 
920
 
922
int i915_gem_gtt_init(struct drm_device *dev)
921
int i915_gem_gtt_init(struct drm_device *dev)
923
{
922
{
924
	struct drm_i915_private *dev_priv = dev->dev_private;
923
	struct drm_i915_private *dev_priv = dev->dev_private;
925
	struct i915_gtt *gtt = &dev_priv->gtt;
924
	struct i915_gtt *gtt = &dev_priv->gtt;
926
	int ret;
925
	int ret;
927
 
926
 
928
	if (INTEL_INFO(dev)->gen <= 5) {
927
	if (INTEL_INFO(dev)->gen <= 5) {
929
		gtt->gtt_probe = i915_gmch_probe;
928
		gtt->gtt_probe = i915_gmch_probe;
930
		gtt->base.cleanup = i915_gmch_remove;
929
		gtt->base.cleanup = i915_gmch_remove;
931
	} else {
930
	} else {
932
		gtt->gtt_probe = gen6_gmch_probe;
931
		gtt->gtt_probe = gen6_gmch_probe;
933
		gtt->base.cleanup = gen6_gmch_remove;
932
		gtt->base.cleanup = gen6_gmch_remove;
934
		if (IS_HASWELL(dev) && dev_priv->ellc_size)
933
		if (IS_HASWELL(dev) && dev_priv->ellc_size)
935
			gtt->base.pte_encode = iris_pte_encode;
934
			gtt->base.pte_encode = iris_pte_encode;
936
		else if (IS_HASWELL(dev))
935
		else if (IS_HASWELL(dev))
937
			gtt->base.pte_encode = hsw_pte_encode;
936
			gtt->base.pte_encode = hsw_pte_encode;
938
		else if (IS_VALLEYVIEW(dev))
937
		else if (IS_VALLEYVIEW(dev))
939
			gtt->base.pte_encode = byt_pte_encode;
938
			gtt->base.pte_encode = byt_pte_encode;
940
		else if (INTEL_INFO(dev)->gen >= 7)
939
		else if (INTEL_INFO(dev)->gen >= 7)
941
			gtt->base.pte_encode = ivb_pte_encode;
940
			gtt->base.pte_encode = ivb_pte_encode;
942
		else
941
		else
943
			gtt->base.pte_encode = snb_pte_encode;
942
			gtt->base.pte_encode = snb_pte_encode;
944
	}
943
	}
945
 
944
 
946
	ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
945
	ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
947
			     >t->mappable_base, >t->mappable_end);
946
			     >t->mappable_base, >t->mappable_end);
948
	if (ret)
947
	if (ret)
949
		return ret;
948
		return ret;
950
 
949
 
951
	gtt->base.dev = dev;
950
	gtt->base.dev = dev;
952
 
951
 
953
	/* GMADR is the PCI mmio aperture into the global GTT. */
952
	/* GMADR is the PCI mmio aperture into the global GTT. */
954
	DRM_INFO("Memory usable by graphics device = %zdM\n",
953
	DRM_INFO("Memory usable by graphics device = %zdM\n",
955
		 gtt->base.total >> 20);
954
		 gtt->base.total >> 20);
956
	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
955
	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
957
	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
956
	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
958
 
957
 
959
	return 0;
958
	return 0;
960
}
959
}
961
 
960
 
962
struct scatterlist *sg_next(struct scatterlist *sg)
961
struct scatterlist *sg_next(struct scatterlist *sg)
963
{
962
{
964
    if (sg_is_last(sg))
963
    if (sg_is_last(sg))
965
        return NULL;
964
        return NULL;
966
 
965
 
967
    sg++;
966
    sg++;
968
    if (unlikely(sg_is_chain(sg)))
967
    if (unlikely(sg_is_chain(sg)))
969
            sg = sg_chain_ptr(sg);
968
            sg = sg_chain_ptr(sg);
970
 
969
 
971
    return sg;
970
    return sg;
972
}
971
}
973
 
972
 
974
 
973
 
975
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
974
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
976
                     sg_free_fn *free_fn)
975
                     sg_free_fn *free_fn)
977
{
976
{
978
    struct scatterlist *sgl, *next;
977
    struct scatterlist *sgl, *next;
979
 
978
 
980
    if (unlikely(!table->sgl))
979
    if (unlikely(!table->sgl))
981
            return;
980
            return;
982
 
981
 
983
    sgl = table->sgl;
982
    sgl = table->sgl;
984
    while (table->orig_nents) {
983
    while (table->orig_nents) {
985
        unsigned int alloc_size = table->orig_nents;
984
        unsigned int alloc_size = table->orig_nents;
986
        unsigned int sg_size;
985
        unsigned int sg_size;
987
 
986
 
988
        /*
987
        /*
989
         * If we have more than max_ents segments left,
988
         * If we have more than max_ents segments left,
990
         * then assign 'next' to the sg table after the current one.
989
         * then assign 'next' to the sg table after the current one.
991
         * sg_size is then one less than alloc size, since the last
990
         * sg_size is then one less than alloc size, since the last
992
         * element is the chain pointer.
991
         * element is the chain pointer.
993
         */
992
         */
994
        if (alloc_size > max_ents) {
993
        if (alloc_size > max_ents) {
995
                next = sg_chain_ptr(&sgl[max_ents - 1]);
994
                next = sg_chain_ptr(&sgl[max_ents - 1]);
996
                alloc_size = max_ents;
995
                alloc_size = max_ents;
997
                sg_size = alloc_size - 1;
996
                sg_size = alloc_size - 1;
998
        } else {
997
        } else {
999
                sg_size = alloc_size;
998
                sg_size = alloc_size;
1000
                next = NULL;
999
                next = NULL;
1001
        }
1000
        }
1002
 
1001
 
1003
        table->orig_nents -= sg_size;
1002
        table->orig_nents -= sg_size;
1004
        kfree(sgl);
1003
        kfree(sgl);
1005
        sgl = next;
1004
        sgl = next;
1006
    }
1005
    }
1007
 
1006
 
1008
    table->sgl = NULL;
1007
    table->sgl = NULL;
1009
}
1008
}
1010
 
1009
 
1011
void sg_free_table(struct sg_table *table)
1010
void sg_free_table(struct sg_table *table)
1012
{
1011
{
1013
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
1012
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
1014
}
1013
}
1015
 
1014
 
1016
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
1015
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
1017
{
1016
{
1018
    struct scatterlist *sg, *prv;
1017
    struct scatterlist *sg, *prv;
1019
    unsigned int left;
1018
    unsigned int left;
1020
    unsigned int max_ents = SG_MAX_SINGLE_ALLOC;
1019
    unsigned int max_ents = SG_MAX_SINGLE_ALLOC;
1021
 
1020
 
1022
#ifndef ARCH_HAS_SG_CHAIN
1021
#ifndef ARCH_HAS_SG_CHAIN
1023
    BUG_ON(nents > max_ents);
1022
    BUG_ON(nents > max_ents);
1024
#endif
1023
#endif
1025
 
1024
 
1026
    memset(table, 0, sizeof(*table));
1025
    memset(table, 0, sizeof(*table));
1027
 
1026
 
1028
    left = nents;
1027
    left = nents;
1029
    prv = NULL;
1028
    prv = NULL;
1030
    do {
1029
    do {
1031
        unsigned int sg_size, alloc_size = left;
1030
        unsigned int sg_size, alloc_size = left;
1032
 
1031
 
1033
        if (alloc_size > max_ents) {
1032
        if (alloc_size > max_ents) {
1034
                alloc_size = max_ents;
1033
                alloc_size = max_ents;
1035
                sg_size = alloc_size - 1;
1034
                sg_size = alloc_size - 1;
1036
        } else
1035
        } else
1037
                sg_size = alloc_size;
1036
                sg_size = alloc_size;
1038
 
1037
 
1039
        left -= sg_size;
1038
        left -= sg_size;
1040
 
1039
 
1041
        sg = kmalloc(alloc_size * sizeof(struct scatterlist), gfp_mask);
1040
        sg = kmalloc(alloc_size * sizeof(struct scatterlist), gfp_mask);
1042
        if (unlikely(!sg)) {
1041
        if (unlikely(!sg)) {
1043
                /*
1042
                /*
1044
                 * Adjust entry count to reflect that the last
1043
                 * Adjust entry count to reflect that the last
1045
                 * entry of the previous table won't be used for
1044
                 * entry of the previous table won't be used for
1046
                 * linkage.  Without this, sg_kfree() may get
1045
                 * linkage.  Without this, sg_kfree() may get
1047
                 * confused.
1046
                 * confused.
1048
                 */
1047
                 */
1049
                if (prv)
1048
                if (prv)
1050
                        table->nents = ++table->orig_nents;
1049
                        table->nents = ++table->orig_nents;
1051
 
1050
 
1052
                goto err;
1051
                goto err;
1053
        }
1052
        }
1054
 
1053
 
1055
        sg_init_table(sg, alloc_size);
1054
        sg_init_table(sg, alloc_size);
1056
        table->nents = table->orig_nents += sg_size;
1055
        table->nents = table->orig_nents += sg_size;
1057
 
1056
 
1058
        /*
1057
        /*
1059
         * If this is the first mapping, assign the sg table header.
1058
         * If this is the first mapping, assign the sg table header.
1060
         * If this is not the first mapping, chain previous part.
1059
         * If this is not the first mapping, chain previous part.
1061
         */
1060
         */
1062
        if (prv)
1061
        if (prv)
1063
                sg_chain(prv, max_ents, sg);
1062
                sg_chain(prv, max_ents, sg);
1064
        else
1063
        else
1065
                table->sgl = sg;
1064
                table->sgl = sg;
1066
 
1065
 
1067
        /*
1066
        /*
1068
         * If no more entries after this one, mark the end
1067
         * If no more entries after this one, mark the end
1069
         */
1068
         */
1070
        if (!left)
1069
        if (!left)
1071
                sg_mark_end(&sg[sg_size - 1]);
1070
                sg_mark_end(&sg[sg_size - 1]);
1072
 
1071
 
1073
        prv = sg;
1072
        prv = sg;
1074
    } while (left);
1073
    } while (left);
1075
 
1074
 
1076
    return 0;
1075
    return 0;
1077
 
1076
 
1078
err:
1077
err:
1079
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
1078
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
1080
 
1079
 
1081
    return -ENOMEM;
1080
    return -ENOMEM;
1082
}
1081
}
1083
 
1082
 
1084
 
1083
 
1085
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
1084
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
1086
{
1085
{
1087
    memset(sgl, 0, sizeof(*sgl) * nents);
1086
    memset(sgl, 0, sizeof(*sgl) * nents);
1088
#ifdef CONFIG_DEBUG_SG
1087
#ifdef CONFIG_DEBUG_SG
1089
    {
1088
    {
1090
            unsigned int i;
1089
            unsigned int i;
1091
            for (i = 0; i < nents; i++)
1090
            for (i = 0; i < nents; i++)
1092
                    sgl[i].sg_magic = SG_MAGIC;
1091
                    sgl[i].sg_magic = SG_MAGIC;
1093
    }
1092
    }
1094
#endif
1093
#endif
1095
    sg_mark_end(&sgl[nents - 1]);
1094
    sg_mark_end(&sgl[nents - 1]);
1096
}
1095
}
1097
 
1096
 
1098
 
1097
 
1099
void __sg_page_iter_start(struct sg_page_iter *piter,
1098
void __sg_page_iter_start(struct sg_page_iter *piter,
1100
              struct scatterlist *sglist, unsigned int nents,
1099
              struct scatterlist *sglist, unsigned int nents,
1101
              unsigned long pgoffset)
1100
              unsigned long pgoffset)
1102
{
1101
{
1103
    piter->__pg_advance = 0;
1102
    piter->__pg_advance = 0;
1104
    piter->__nents = nents;
1103
    piter->__nents = nents;
1105
 
1104
 
1106
    piter->sg = sglist;
1105
    piter->sg = sglist;
1107
    piter->sg_pgoffset = pgoffset;
1106
    piter->sg_pgoffset = pgoffset;
1108
}
1107
}
1109
 
1108
 
1110
static int sg_page_count(struct scatterlist *sg)
1109
static int sg_page_count(struct scatterlist *sg)
1111
{
1110
{
1112
    return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
1111
    return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
1113
}
1112
}
1114
 
1113
 
1115
bool __sg_page_iter_next(struct sg_page_iter *piter)
1114
bool __sg_page_iter_next(struct sg_page_iter *piter)
1116
{
1115
{
1117
    if (!piter->__nents || !piter->sg)
1116
    if (!piter->__nents || !piter->sg)
1118
        return false;
1117
        return false;
1119
 
1118
 
1120
    piter->sg_pgoffset += piter->__pg_advance;
1119
    piter->sg_pgoffset += piter->__pg_advance;
1121
    piter->__pg_advance = 1;
1120
    piter->__pg_advance = 1;
1122
 
1121
 
1123
    while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
1122
    while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
1124
        piter->sg_pgoffset -= sg_page_count(piter->sg);
1123
        piter->sg_pgoffset -= sg_page_count(piter->sg);
1125
        piter->sg = sg_next(piter->sg);
1124
        piter->sg = sg_next(piter->sg);
1126
        if (!--piter->__nents || !piter->sg)
1125
        if (!--piter->__nents || !piter->sg)
1127
            return false;
1126
            return false;
1128
    }
1127
    }
1129
 
1128
 
1130
    return true;
1129
    return true;
1131
}
1130
}
1132
EXPORT_SYMBOL(__sg_page_iter_next);
1131
EXPORT_SYMBOL(__sg_page_iter_next);