Subversion Repositories Kolibri OS

Rev

Rev 5270 | Go to most recent revision | Show entire file | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 5270 Rev 6082
Line -... Line 1...
-
 
1
/*
-
 
2
 *  linux/kernel/time.c
-
 
3
 *
-
 
4
 *  Copyright (C) 1991, 1992  Linus Torvalds
-
 
5
 *
-
 
6
 *  This file contains the interface functions for the various
-
 
7
 *  time related system calls: time, stime, gettimeofday, settimeofday,
-
 
8
 *			       adjtime
-
 
9
 */
-
 
10
/*
-
 
11
 * Modification history kernel/time.c
-
 
12
 *
-
 
13
 * 1993-09-02    Philip Gladstone
-
 
14
 *      Created file with time related functions from sched/core.c and adjtimex()
-
 
15
 * 1993-10-08    Torsten Duwe
-
 
16
 *      adjtime interface update and CMOS clock write code
-
 
17
 * 1995-08-13    Torsten Duwe
-
 
18
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
-
 
19
 * 1999-01-16    Ulrich Windl
-
 
20
 *	Introduced error checking for many cases in adjtimex().
-
 
21
 *	Updated NTP code according to technical memorandum Jan '96
-
 
22
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
-
 
23
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
-
 
24
 *	(Even though the technical memorandum forbids it)
-
 
25
 * 2004-07-14	 Christoph Lameter
-
 
26
 *	Added getnstimeofday to allow the posix timer functions to return
-
 
27
 *	with nanosecond accuracy
-
 
28
 */
-
 
29
 
1
#include 
30
#include 
-
 
31
#include 
-
 
32
#include 
Line 2... Line 33...
2
 
33
 
3
 
34
 
Line 43... Line 74...
43
#define NSEC_PER_MSEC   1000000L
74
#define NSEC_PER_MSEC   1000000L
44
#define USEC_PER_SEC    1000000L
75
#define USEC_PER_SEC    1000000L
45
#define NSEC_PER_SEC    1000000000L
76
#define NSEC_PER_SEC    1000000000L
46
#define FSEC_PER_SEC    1000000000000000LL
77
#define FSEC_PER_SEC    1000000000000000LL
Line -... Line 78...
-
 
78
 
-
 
79
# define USER_HZ        100
-
 
80
/*
47
 
81
 * Convert jiffies to milliseconds and back.
-
 
82
 *
-
 
83
 * Avoid unnecessary multiplications/divisions in the
-
 
84
 * two most common HZ cases:
48
 
85
 */
49
unsigned int jiffies_to_msecs(const unsigned long j)
86
unsigned int jiffies_to_msecs(const unsigned long j)
50
{
87
{
51
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
88
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
52
        return (MSEC_PER_SEC / HZ) * j;
89
	return (MSEC_PER_SEC / HZ) * j;
Line 58... Line 95...
58
# else
95
# else
59
        return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
96
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
60
# endif
97
# endif
61
#endif
98
#endif
62
}
99
}
-
 
100
EXPORT_SYMBOL(jiffies_to_msecs);
Line 63... Line 101...
63
 
101
 
64
unsigned int jiffies_to_usecs(const unsigned long j)
102
unsigned int jiffies_to_usecs(const unsigned long j)
65
{
103
{
66
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
104
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
Line 73... Line 111...
73
# else
111
# else
74
        return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
112
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
75
# endif
113
# endif
76
#endif
114
#endif
77
}
115
}
-
 
116
EXPORT_SYMBOL(jiffies_to_usecs);
Line -... Line 117...
-
 
117
 
-
 
118
/**
-
 
119
 * timespec_trunc - Truncate timespec to a granularity
-
 
120
 * @t: Timespec
-
 
121
 * @gran: Granularity in ns.
-
 
122
 *
-
 
123
 * Truncate a timespec to a granularity. Always rounds down. gran must
-
 
124
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
-
 
125
 */
-
 
126
struct timespec timespec_trunc(struct timespec t, unsigned gran)
-
 
127
{
-
 
128
	/* Avoid division in the common cases 1 ns and 1 s. */
-
 
129
	if (gran == 1) {
-
 
130
		/* nothing */
-
 
131
	} else if (gran == NSEC_PER_SEC) {
-
 
132
		t.tv_nsec = 0;
-
 
133
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
-
 
134
		t.tv_nsec -= t.tv_nsec % gran;
-
 
135
	} else {
-
 
136
		WARN(1, "illegal file time granularity: %u", gran);
-
 
137
	}
-
 
138
	return t;
-
 
139
}
Line 78... Line 140...
78
 
140
EXPORT_SYMBOL(timespec_trunc);
-
 
141
 
-
 
142
/*
79
 
143
 * mktime64 - Converts date to seconds.
80
/*
144
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
81
 * When we convert to jiffies then we interpret incoming values
145
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
-
 
146
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
-
 
147
 *
82
 * the following way:
148
 * [For the Julian calendar (which was used in Russia before 1917,
-
 
149
 * Britain & colonies before 1752, anywhere else before 1582,
83
 *
150
 * and is still in use by some communities) leave out the
84
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
151
 * -year/100+year/400 terms, and add 10.]
-
 
152
 *
-
 
153
 * This algorithm was first published by Gauss (I think).
-
 
154
 */
-
 
155
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
-
 
156
		const unsigned int day, const unsigned int hour,
-
 
157
		const unsigned int min, const unsigned int sec)
-
 
158
{
-
 
159
	unsigned int mon = mon0, year = year0;
-
 
160
 
85
 *
161
	/* 1..12 -> 11,12,1..10 */
-
 
162
	if (0 >= (int) (mon -= 2)) {
-
 
163
		mon += 12;	/* Puts Feb last since it has leap day */
-
 
164
		year -= 1;
-
 
165
	}
-
 
166
 
-
 
167
	return ((((time64_t)
-
 
168
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
-
 
169
		  year*365 - 719499
-
 
170
	    )*24 + hour /* now have hours */
-
 
171
	  )*60 + min /* now have minutes */
-
 
172
	)*60 + sec; /* finally seconds */
-
 
173
}
-
 
174
EXPORT_SYMBOL(mktime64);
-
 
175
 
86
 * - 'too large' values [that would result in larger than
176
/**
-
 
177
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
-
 
178
 *
-
 
179
 * @ts:		pointer to timespec variable to be set
-
 
180
 * @sec:	seconds to set
87
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
181
 * @nsec:	nanoseconds to set
88
 *
182
 *
89
 * - all other values are converted to jiffies by either multiplying
183
 * Set seconds and nanoseconds field of a timespec variable and
90
 *   the input value by a factor or dividing it with a factor
184
 * normalize to the timespec storage format
-
 
185
 *
-
 
186
 * Note: The tv_nsec part is always in the range of
91
 *
187
 *	0 <= tv_nsec < NSEC_PER_SEC
92
 * We must also be careful about 32-bit overflows.
188
 * For negative values only the tv_sec field is negative !
93
 */
189
 */
-
 
190
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
94
unsigned long msecs_to_jiffies(const unsigned int m)
191
{
-
 
192
	while (nsec >= NSEC_PER_SEC) {
-
 
193
		/*
95
{
194
		 * The following asm() prevents the compiler from
96
    /*
195
		 * optimising this loop into a modulo operation. See
-
 
196
		 * also __iter_div_u64_rem() in include/linux/time.h
-
 
197
		 */
-
 
198
		asm("" : "+rm"(nsec));
-
 
199
		nsec -= NSEC_PER_SEC;
97
     * Negative value, means infinite timeout:
200
		++sec;
-
 
201
	}
98
     */
202
	while (nsec < 0) {
-
 
203
		asm("" : "+rm"(nsec));
-
 
204
		nsec += NSEC_PER_SEC;
-
 
205
		--sec;
-
 
206
	}
-
 
207
	ts->tv_sec = sec;
-
 
208
	ts->tv_nsec = nsec;
-
 
209
}
-
 
210
EXPORT_SYMBOL(set_normalized_timespec);
-
 
211
 
-
 
212
/**
-
 
213
 * ns_to_timespec - Convert nanoseconds to timespec
-
 
214
 * @nsec:       the nanoseconds value to be converted
-
 
215
 *
-
 
216
 * Returns the timespec representation of the nsec parameter.
-
 
217
 */
-
 
218
struct timespec ns_to_timespec(const s64 nsec)
-
 
219
{
Line -... Line 220...
-
 
220
	struct timespec ts;
-
 
221
	s32 rem;
-
 
222
 
99
    if ((int)m < 0)
223
	if (!nsec)
-
 
224
		return (struct timespec) {0, 0};
-
 
225
 
-
 
226
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
-
 
227
	if (unlikely(rem < 0)) {
-
 
228
		ts.tv_sec--;
-
 
229
		rem += NSEC_PER_SEC;
-
 
230
	}
-
 
231
	ts.tv_nsec = rem;
-
 
232
 
-
 
233
	return ts;
100
        return MAX_JIFFY_OFFSET;
234
}
101
 
235
EXPORT_SYMBOL(ns_to_timespec);
102
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
236
 
-
 
237
/**
103
    /*
238
 * ns_to_timeval - Convert nanoseconds to timeval
104
     * HZ is equal to or smaller than 1000, and 1000 is a nice
239
 * @nsec:       the nanoseconds value to be converted
-
 
240
 *
-
 
241
 * Returns the timeval representation of the nsec parameter.
-
 
242
 */
-
 
243
struct timeval ns_to_timeval(const s64 nsec)
-
 
244
{
-
 
245
	struct timespec ts = ns_to_timespec(nsec);
-
 
246
	struct timeval tv;
-
 
247
 
-
 
248
	tv.tv_sec = ts.tv_sec;
-
 
249
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
-
 
250
 
-
 
251
	return tv;
-
 
252
}
-
 
253
EXPORT_SYMBOL(ns_to_timeval);
-
 
254
 
-
 
255
#if BITS_PER_LONG == 32
-
 
256
/**
-
 
257
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
-
 
258
 *
-
 
259
 * @ts:		pointer to timespec variable to be set
105
     * round multiple of HZ, divide with the factor between them,
260
 * @sec:	seconds to set
-
 
261
 * @nsec:	nanoseconds to set
-
 
262
 *
-
 
263
 * Set seconds and nanoseconds field of a timespec variable and
106
     * but round upwards:
264
 * normalize to the timespec storage format
-
 
265
 *
-
 
266
 * Note: The tv_nsec part is always in the range of
-
 
267
 *	0 <= tv_nsec < NSEC_PER_SEC
-
 
268
 * For negative values only the tv_sec field is negative !
-
 
269
 */
107
     */
270
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
-
 
271
{
108
    return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
272
	while (nsec >= NSEC_PER_SEC) {
-
 
273
		/*
-
 
274
		 * The following asm() prevents the compiler from
-
 
275
		 * optimising this loop into a modulo operation. See
-
 
276
		 * also __iter_div_u64_rem() in include/linux/time.h
-
 
277
		 */
-
 
278
		asm("" : "+rm"(nsec));
-
 
279
		nsec -= NSEC_PER_SEC;
-
 
280
		++sec;
-
 
281
	}
-
 
282
	while (nsec < 0) {
-
 
283
		asm("" : "+rm"(nsec));
-
 
284
		nsec += NSEC_PER_SEC;
-
 
285
		--sec;
-
 
286
	}
-
 
287
	ts->tv_sec = sec;
-
 
288
	ts->tv_nsec = nsec;
-
 
289
}
-
 
290
EXPORT_SYMBOL(set_normalized_timespec64);
109
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
291
 
110
    /*
292
/**
111
     * HZ is larger than 1000, and HZ is a nice round multiple of
293
 * ns_to_timespec64 - Convert nanoseconds to timespec64
112
     * 1000 - simply multiply with the factor between them.
-
 
113
     *
294
 * @nsec:       the nanoseconds value to be converted
114
     * But first make sure the multiplication result cannot
295
 *
-
 
296
 * Returns the timespec64 representation of the nsec parameter.
115
     * overflow:
297
 */
-
 
298
struct timespec64 ns_to_timespec64(const s64 nsec)
Line -... Line 299...
-
 
299
{
-
 
300
	struct timespec64 ts;
-
 
301
	s32 rem;
-
 
302
 
-
 
303
	if (!nsec)
-
 
304
		return (struct timespec64) {0, 0};
116
     */
305
 
-
 
306
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
-
 
307
	if (unlikely(rem < 0)) {
-
 
308
		ts.tv_sec--;
-
 
309
		rem += NSEC_PER_SEC;
-
 
310
	}
-
 
311
	ts.tv_nsec = rem;
117
    if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
312
 
-
 
313
	return ts;
-
 
314
}
-
 
315
EXPORT_SYMBOL(ns_to_timespec64);
-
 
316
#endif
-
 
317
/**
-
 
318
 * msecs_to_jiffies: - convert milliseconds to jiffies
-
 
319
 * @m:	time in milliseconds
-
 
320
 *
-
 
321
 * conversion is done as follows:
-
 
322
 *
-
 
323
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
-
 
324
 *
-
 
325
 * - 'too large' values [that would result in larger than
-
 
326
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
-
 
327
 *
-
 
328
 * - all other values are converted to jiffies by either multiplying
-
 
329
 *   the input value by a factor or dividing it with a factor and
-
 
330
 *   handling any 32-bit overflows.
-
 
331
 *   for the details see __msecs_to_jiffies()
-
 
332
 *
-
 
333
 * msecs_to_jiffies() checks for the passed in value being a constant
-
 
334
 * via __builtin_constant_p() allowing gcc to eliminate most of the
-
 
335
 * code, __msecs_to_jiffies() is called if the value passed does not
-
 
336
 * allow constant folding and the actual conversion must be done at
-
 
337
 * runtime.
-
 
338
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
118
        return MAX_JIFFY_OFFSET;
339
 * routines found in include/linux/jiffies.h
119
 
340
 */
120
    return m * (HZ / MSEC_PER_SEC);
-
 
121
#else
-
 
122
    /*
341
unsigned long __msecs_to_jiffies(const unsigned int m)
123
     * Generic case - multiply, round and divide. But first
342
{
124
     * check that if we are doing a net multiplication, that
343
	/*
125
     * we wouldn't overflow:
-
 
126
     */
-
 
127
    if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
344
	 * Negative value, means infinite timeout:
128
        return MAX_JIFFY_OFFSET;
-
 
129
 
345
	 */
130
    return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
346
	if ((int)m < 0)
Line 131... Line 347...
131
        >> MSEC_TO_HZ_SHR32;
347
		return MAX_JIFFY_OFFSET;
132
#endif
348
	return _msecs_to_jiffies(m);
133
}
349
}
134
EXPORT_SYMBOL(msecs_to_jiffies);
350
EXPORT_SYMBOL(__msecs_to_jiffies);
135
 
-
 
136
unsigned long usecs_to_jiffies(const unsigned int u)
-
 
137
{
-
 
138
    if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
351
 
139
        return MAX_JIFFY_OFFSET;
-
 
140
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
-
 
141
    return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
-
 
142
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
-
 
143
    return u * (HZ / USEC_PER_SEC);
352
unsigned long __usecs_to_jiffies(const unsigned int u)
144
#else
353
{
Line 145... Line 354...
145
    return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
354
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
146
        >> USEC_TO_HZ_SHR32;
355
		return MAX_JIFFY_OFFSET;
147
#endif
356
	return _usecs_to_jiffies(u);
148
}
357
}
Line 162... Line 371...
162
 *
371
 *
163
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
372
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
164
 * value to a scaled second value.
373
 * value to a scaled second value.
165
 */
374
 */
166
static unsigned long
375
static unsigned long
167
__timespec_to_jiffies(unsigned long sec, long nsec)
376
__timespec64_to_jiffies(u64 sec, long nsec)
168
{
377
{
169
	nsec = nsec + TICK_NSEC - 1;
378
	nsec = nsec + TICK_NSEC - 1;
Line 170... Line 379...
170
 
379
 
171
    if (sec >= MAX_SEC_IN_JIFFIES){
380
	if (sec >= MAX_SEC_IN_JIFFIES){
172
            sec = MAX_SEC_IN_JIFFIES;
381
		sec = MAX_SEC_IN_JIFFIES;
173
            nsec = 0;
382
		nsec = 0;
174
    }
383
	}
175
    return (((u64)sec * SEC_CONVERSION) +
384
	return ((sec * SEC_CONVERSION) +
176
            (((u64)nsec * NSEC_CONVERSION) >>
385
		(((u64)nsec * NSEC_CONVERSION) >>
Line 177... Line 386...
177
             (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
386
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
Line 178... Line 387...
178
 
387
 
179
}
388
}
180
 
389
 
181
unsigned long
390
static unsigned long
182
timespec_to_jiffies(const struct timespec *value)
391
__timespec_to_jiffies(unsigned long sec, long nsec)
Line -... Line 392...
-
 
392
{
-
 
393
	return __timespec64_to_jiffies((u64)sec, nsec);
-
 
394
}
-
 
395
 
-
 
396
unsigned long
183
{
397
timespec64_to_jiffies(const struct timespec64 *value)
Line 184... Line 398...
184
	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
398
{
185
}
399
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
186
 
400
}
187
EXPORT_SYMBOL(timespec_to_jiffies);
401
EXPORT_SYMBOL(timespec64_to_jiffies);
188
 
402
 
189
void
403
void
190
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
404
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
191
{
405
{
192
	/*
406
	/*
193
	 * Convert jiffies to nanoseconds and separate with
407
	 * Convert jiffies to nanoseconds and separate with
194
	 * one divide.
408
	 * one divide.
195
	 */
409
	 */
196
	u32 rem;
410
	u32 rem;
-
 
411
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
-
 
412
				    NSEC_PER_SEC, &rem);
-
 
413
	value->tv_nsec = rem;
-
 
414
}
-
 
415
EXPORT_SYMBOL(jiffies_to_timespec64);
-
 
416
 
-
 
417
/*
-
 
418
 * We could use a similar algorithm to timespec_to_jiffies (with a
-
 
419
 * different multiplier for usec instead of nsec). But this has a
-
 
420
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
-
 
421
 * usec value, since it's not necessarily integral.
-
 
422
 *
-
 
423
 * We could instead round in the intermediate scaled representation
-
 
424
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
-
 
425
 * perilous: the scaling introduces a small positive error, which
-
 
426
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
-
 
427
 * units to the intermediate before shifting) leads to accidental
-
 
428
 * overflow and overestimates.
-
 
429
 *
-
 
430
 * At the cost of one additional multiplication by a constant, just
-
 
431
 * use the timespec implementation.
-
 
432
 */
-
 
433
unsigned long
-
 
434
timeval_to_jiffies(const struct timeval *value)
-
 
435
{
-
 
436
	return __timespec_to_jiffies(value->tv_sec,
-
 
437
				     value->tv_usec * NSEC_PER_USEC);
-
 
438
}
-
 
439
EXPORT_SYMBOL(timeval_to_jiffies);
-
 
440
 
-
 
441
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
-
 
442
{
-
 
443
	/*
-
 
444
	 * Convert jiffies to nanoseconds and separate with
-
 
445
	 * one divide.
-
 
446
	 */
-
 
447
	u32 rem;
-
 
448
 
-
 
449
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
-
 
450
				    NSEC_PER_SEC, &rem);
-
 
451
	value->tv_usec = rem / NSEC_PER_USEC;
-
 
452
}
-
 
453
EXPORT_SYMBOL(jiffies_to_timeval);
-
 
454
 
-
 
455
/*
-
 
456
 * Convert jiffies/jiffies_64 to clock_t and back.
-
 
457
 */
-
 
458
clock_t jiffies_to_clock_t(unsigned long x)
-
 
459
{
-
 
460
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
-
 
461
# if HZ < USER_HZ
-
 
462
	return x * (USER_HZ / HZ);
-
 
463
# else
-
 
464
	return x / (HZ / USER_HZ);
-
 
465
# endif
-
 
466
#else
-
 
467
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
-
 
468
#endif
-
 
469
}
-
 
470
EXPORT_SYMBOL(jiffies_to_clock_t);
-
 
471
 
-
 
472
unsigned long clock_t_to_jiffies(unsigned long x)
-
 
473
{
-
 
474
#if (HZ % USER_HZ)==0
-
 
475
	if (x >= ~0UL / (HZ / USER_HZ))
-
 
476
		return ~0UL;
-
 
477
	return x * (HZ / USER_HZ);
-
 
478
#else
-
 
479
	/* Don't worry about loss of precision here .. */
-
 
480
	if (x >= ~0UL / HZ * USER_HZ)
-
 
481
		return ~0UL;
-
 
482
 
-
 
483
	/* .. but do try to contain it here */
-
 
484
	return div_u64((u64)x * HZ, USER_HZ);
-
 
485
#endif
-
 
486
}
-
 
487
EXPORT_SYMBOL(clock_t_to_jiffies);
-
 
488
 
-
 
489
u64 jiffies_64_to_clock_t(u64 x)
-
 
490
{
-
 
491
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
-
 
492
# if HZ < USER_HZ
-
 
493
	x = div_u64(x * USER_HZ, HZ);
-
 
494
# elif HZ > USER_HZ
-
 
495
	x = div_u64(x, HZ / USER_HZ);
-
 
496
# else
-
 
497
	/* Nothing to do */
-
 
498
# endif
-
 
499
#else
-
 
500
	/*
-
 
501
	 * There are better ways that don't overflow early,
-
 
502
	 * but even this doesn't overflow in hundreds of years
-
 
503
	 * in 64 bits, so..
-
 
504
	 */
-
 
505
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
-
 
506
#endif
-
 
507
	return x;
-
 
508
}
-
 
509
EXPORT_SYMBOL(jiffies_64_to_clock_t);
-
 
510
 
-
 
511
u64 nsec_to_clock_t(u64 x)
-
 
512
{
-
 
513
#if (NSEC_PER_SEC % USER_HZ) == 0
-
 
514
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
-
 
515
#elif (USER_HZ % 512) == 0
-
 
516
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
-
 
517
#else
-
 
518
	/*
-
 
519
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
-
 
520
         * overflow after 64.99 years.
-
 
521
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
-
 
522
         */
-
 
523
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
-
 
524
#endif
-
 
525
}
-
 
526
 
-
 
527
/**
-
 
528
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
-
 
529
 *
-
 
530
 * @n:	nsecs in u64
-
 
531
 *
-
 
532
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
-
 
533
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
-
 
534
 * for scheduler, not for use in device drivers to calculate timeout value.
-
 
535
 *
-
 
536
 * note:
-
 
537
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
-
 
538
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
-
 
539
 */
-
 
540
u64 nsecs_to_jiffies64(u64 n)
-
 
541
{
-
 
542
#if (NSEC_PER_SEC % HZ) == 0
-
 
543
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
-
 
544
	return div_u64(n, NSEC_PER_SEC / HZ);
-
 
545
#elif (HZ % 512) == 0
-
 
546
	/* overflow after 292 years if HZ = 1024 */
-
 
547
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
-
 
548
#else
-
 
549
	/*
-
 
550
	 * Generic case - optimized for cases where HZ is a multiple of 3.
-
 
551
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
-
 
552
	 */
-
 
553
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
-
 
554
#endif
-
 
555
}
-
 
556
EXPORT_SYMBOL(nsecs_to_jiffies64);
-
 
557
 
-
 
558
/**
-
 
559
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
-
 
560
 *
-
 
561
 * @n:	nsecs in u64
-
 
562
 *
-
 
563
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
-
 
564
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
-
 
565
 * for scheduler, not for use in device drivers to calculate timeout value.
-
 
566
 *
-
 
567
 * note:
-
 
568
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
-
 
569
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
-
 
570
 */
-
 
571
unsigned long nsecs_to_jiffies(u64 n)
-
 
572
{
-
 
573
	return (unsigned long)nsecs_to_jiffies64(n);
-
 
574
}
-
 
575
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
-
 
576
 
-
 
577
/*
-
 
578
 * Add two timespec values and do a safety check for overflow.
-
 
579
 * It's assumed that both values are valid (>= 0)
-
 
580
 */
-
 
581
struct timespec timespec_add_safe(const struct timespec lhs,
-
 
582
				  const struct timespec rhs)
-
 
583
{
-
 
584
	struct timespec res;
-
 
585
 
-
 
586
	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
-
 
587
				lhs.tv_nsec + rhs.tv_nsec);
-
 
588
 
Line 197... Line 589...
197
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
589
	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
198
				    NSEC_PER_SEC, &rem);
590
		res.tv_sec = TIME_T_MAX;
199
	value->tv_nsec = rem;
591
 
Line 215... Line 607...
215
                        quotient = -quotient;
607
                        quotient = -quotient;
216
        }
608
        }
217
        return quotient;
609
        return quotient;
218
}
610
}
Line 219... Line -...
219
 
-
 
220
struct timespec ns_to_timespec(const s64 nsec)
-
 
221
{
-
 
222
        struct timespec ts;
-
 
Line 223... Line -...
223
        s32 rem;
-
 
224
 
-
 
Line 225... Line -...
225
        if (!nsec)
-
 
226
                return (struct timespec) {0, 0};
-
 
227
 
-
 
228
        ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
-
 
229
        if (unlikely(rem < 0)) {
-
 
230
                ts.tv_sec--;
-
 
Line 231... Line -...
231
                rem += NSEC_PER_SEC;
-
 
232
        }
611