Subversion Repositories Kolibri OS

Rev

Rev 6660 | Rev 6937 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 6660 Rev 6935
1
/*
1
/*
2
 * Copyright 2006 Dave Airlie 
2
 * Copyright 2006 Dave Airlie 
3
 * Copyright © 2006-2009 Intel Corporation
3
 * Copyright © 2006-2009 Intel Corporation
4
 *
4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
11
 *
12
 * The above copyright notice and this permission notice (including the next
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
14
 * Software.
15
 *
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22
 * DEALINGS IN THE SOFTWARE.
22
 * DEALINGS IN THE SOFTWARE.
23
 *
23
 *
24
 * Authors:
24
 * Authors:
25
 *	Eric Anholt 
25
 *	Eric Anholt 
26
 *	Jesse Barnes 
26
 *	Jesse Barnes 
27
 */
27
 */
28
 
28
 
29
#include 
29
#include 
30
#include 
30
#include 
31
#include 
31
#include 
32
#include 
32
#include 
33
#include 
33
#include 
34
#include 
34
#include 
35
#include 
35
#include 
36
#include 
36
#include 
37
#include "intel_drv.h"
37
#include "intel_drv.h"
38
#include 
38
#include 
39
#include "i915_drv.h"
39
#include "i915_drv.h"
40
 
40
 
41
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
41
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
42
{
42
{
43
	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
43
	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44
}
44
}
45
 
45
 
46
static void
46
static void
47
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
47
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
48
{
48
{
49
	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
49
	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50
	struct drm_i915_private *dev_priv = dev->dev_private;
50
	struct drm_i915_private *dev_priv = dev->dev_private;
51
	uint32_t enabled_bits;
51
	uint32_t enabled_bits;
52
 
52
 
53
	enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
53
	enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54
 
54
 
55
	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
55
	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56
	     "HDMI port enabled, expecting disabled\n");
56
	     "HDMI port enabled, expecting disabled\n");
57
}
57
}
58
 
58
 
59
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
59
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
60
{
60
{
61
	struct intel_digital_port *intel_dig_port =
61
	struct intel_digital_port *intel_dig_port =
62
		container_of(encoder, struct intel_digital_port, base.base);
62
		container_of(encoder, struct intel_digital_port, base.base);
63
	return &intel_dig_port->hdmi;
63
	return &intel_dig_port->hdmi;
64
}
64
}
65
 
65
 
66
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
66
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
67
{
67
{
68
	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
68
	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69
}
69
}
70
 
70
 
71
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
71
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72
{
72
{
73
	switch (type) {
73
	switch (type) {
74
	case HDMI_INFOFRAME_TYPE_AVI:
74
	case HDMI_INFOFRAME_TYPE_AVI:
75
		return VIDEO_DIP_SELECT_AVI;
75
		return VIDEO_DIP_SELECT_AVI;
76
	case HDMI_INFOFRAME_TYPE_SPD:
76
	case HDMI_INFOFRAME_TYPE_SPD:
77
		return VIDEO_DIP_SELECT_SPD;
77
		return VIDEO_DIP_SELECT_SPD;
78
	case HDMI_INFOFRAME_TYPE_VENDOR:
78
	case HDMI_INFOFRAME_TYPE_VENDOR:
79
		return VIDEO_DIP_SELECT_VENDOR;
79
		return VIDEO_DIP_SELECT_VENDOR;
80
	default:
80
	default:
81
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
81
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82
		return 0;
82
		return 0;
83
	}
83
	}
84
}
84
}
85
 
85
 
86
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
86
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87
{
87
{
88
	switch (type) {
88
	switch (type) {
89
	case HDMI_INFOFRAME_TYPE_AVI:
89
	case HDMI_INFOFRAME_TYPE_AVI:
90
		return VIDEO_DIP_ENABLE_AVI;
90
		return VIDEO_DIP_ENABLE_AVI;
91
	case HDMI_INFOFRAME_TYPE_SPD:
91
	case HDMI_INFOFRAME_TYPE_SPD:
92
		return VIDEO_DIP_ENABLE_SPD;
92
		return VIDEO_DIP_ENABLE_SPD;
93
	case HDMI_INFOFRAME_TYPE_VENDOR:
93
	case HDMI_INFOFRAME_TYPE_VENDOR:
94
		return VIDEO_DIP_ENABLE_VENDOR;
94
		return VIDEO_DIP_ENABLE_VENDOR;
95
	default:
95
	default:
96
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
96
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97
		return 0;
97
		return 0;
98
	}
98
	}
99
}
99
}
100
 
100
 
101
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
101
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102
{
102
{
103
	switch (type) {
103
	switch (type) {
104
	case HDMI_INFOFRAME_TYPE_AVI:
104
	case HDMI_INFOFRAME_TYPE_AVI:
105
		return VIDEO_DIP_ENABLE_AVI_HSW;
105
		return VIDEO_DIP_ENABLE_AVI_HSW;
106
	case HDMI_INFOFRAME_TYPE_SPD:
106
	case HDMI_INFOFRAME_TYPE_SPD:
107
		return VIDEO_DIP_ENABLE_SPD_HSW;
107
		return VIDEO_DIP_ENABLE_SPD_HSW;
108
	case HDMI_INFOFRAME_TYPE_VENDOR:
108
	case HDMI_INFOFRAME_TYPE_VENDOR:
109
		return VIDEO_DIP_ENABLE_VS_HSW;
109
		return VIDEO_DIP_ENABLE_VS_HSW;
110
	default:
110
	default:
111
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
111
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112
		return 0;
112
		return 0;
113
	}
113
	}
114
}
114
}
115
 
115
 
116
static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
116
static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
117
			    enum transcoder cpu_transcoder,
117
			    enum transcoder cpu_transcoder,
118
			    enum hdmi_infoframe_type type,
118
			    enum hdmi_infoframe_type type,
119
			    int i)
119
			    int i)
120
{
120
{
121
	switch (type) {
121
	switch (type) {
122
	case HDMI_INFOFRAME_TYPE_AVI:
122
	case HDMI_INFOFRAME_TYPE_AVI:
123
		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
123
		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
124
	case HDMI_INFOFRAME_TYPE_SPD:
124
	case HDMI_INFOFRAME_TYPE_SPD:
125
		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
125
		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
126
	case HDMI_INFOFRAME_TYPE_VENDOR:
126
	case HDMI_INFOFRAME_TYPE_VENDOR:
127
		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
127
		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
128
	default:
128
	default:
129
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
129
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
130
		return 0;
130
		return 0;
131
	}
131
	}
132
}
132
}
133
 
133
 
134
static void g4x_write_infoframe(struct drm_encoder *encoder,
134
static void g4x_write_infoframe(struct drm_encoder *encoder,
135
				enum hdmi_infoframe_type type,
135
				enum hdmi_infoframe_type type,
136
				const void *frame, ssize_t len)
136
				const void *frame, ssize_t len)
137
{
137
{
138
	const uint32_t *data = frame;
138
	const uint32_t *data = frame;
139
	struct drm_device *dev = encoder->dev;
139
	struct drm_device *dev = encoder->dev;
140
	struct drm_i915_private *dev_priv = dev->dev_private;
140
	struct drm_i915_private *dev_priv = dev->dev_private;
141
	u32 val = I915_READ(VIDEO_DIP_CTL);
141
	u32 val = I915_READ(VIDEO_DIP_CTL);
142
	int i;
142
	int i;
143
 
143
 
144
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
144
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
145
 
145
 
146
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
146
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
147
	val |= g4x_infoframe_index(type);
147
	val |= g4x_infoframe_index(type);
148
 
148
 
149
	val &= ~g4x_infoframe_enable(type);
149
	val &= ~g4x_infoframe_enable(type);
150
 
150
 
151
	I915_WRITE(VIDEO_DIP_CTL, val);
151
	I915_WRITE(VIDEO_DIP_CTL, val);
152
 
152
 
153
	mmiowb();
153
	mmiowb();
154
	for (i = 0; i < len; i += 4) {
154
	for (i = 0; i < len; i += 4) {
155
		I915_WRITE(VIDEO_DIP_DATA, *data);
155
		I915_WRITE(VIDEO_DIP_DATA, *data);
156
		data++;
156
		data++;
157
	}
157
	}
158
	/* Write every possible data byte to force correct ECC calculation. */
158
	/* Write every possible data byte to force correct ECC calculation. */
159
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
159
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
160
		I915_WRITE(VIDEO_DIP_DATA, 0);
160
		I915_WRITE(VIDEO_DIP_DATA, 0);
161
	mmiowb();
161
	mmiowb();
162
 
162
 
163
	val |= g4x_infoframe_enable(type);
163
	val |= g4x_infoframe_enable(type);
164
	val &= ~VIDEO_DIP_FREQ_MASK;
164
	val &= ~VIDEO_DIP_FREQ_MASK;
165
	val |= VIDEO_DIP_FREQ_VSYNC;
165
	val |= VIDEO_DIP_FREQ_VSYNC;
166
 
166
 
167
	I915_WRITE(VIDEO_DIP_CTL, val);
167
	I915_WRITE(VIDEO_DIP_CTL, val);
168
	POSTING_READ(VIDEO_DIP_CTL);
168
	POSTING_READ(VIDEO_DIP_CTL);
169
}
169
}
170
 
170
 
171
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
171
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
172
{
172
{
173
	struct drm_device *dev = encoder->dev;
173
	struct drm_device *dev = encoder->dev;
174
	struct drm_i915_private *dev_priv = dev->dev_private;
174
	struct drm_i915_private *dev_priv = dev->dev_private;
175
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
175
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
176
	u32 val = I915_READ(VIDEO_DIP_CTL);
176
	u32 val = I915_READ(VIDEO_DIP_CTL);
177
 
177
 
178
	if ((val & VIDEO_DIP_ENABLE) == 0)
178
	if ((val & VIDEO_DIP_ENABLE) == 0)
179
		return false;
179
		return false;
180
 
180
 
181
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
181
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
182
		return false;
182
		return false;
183
 
183
 
184
	return val & (VIDEO_DIP_ENABLE_AVI |
184
	return val & (VIDEO_DIP_ENABLE_AVI |
185
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
185
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
186
}
186
}
187
 
187
 
188
static void ibx_write_infoframe(struct drm_encoder *encoder,
188
static void ibx_write_infoframe(struct drm_encoder *encoder,
189
				enum hdmi_infoframe_type type,
189
				enum hdmi_infoframe_type type,
190
				const void *frame, ssize_t len)
190
				const void *frame, ssize_t len)
191
{
191
{
192
	const uint32_t *data = frame;
192
	const uint32_t *data = frame;
193
	struct drm_device *dev = encoder->dev;
193
	struct drm_device *dev = encoder->dev;
194
	struct drm_i915_private *dev_priv = dev->dev_private;
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
195
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
196
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
196
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
197
	u32 val = I915_READ(reg);
197
	u32 val = I915_READ(reg);
198
 
198
 
199
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
199
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
200
 
200
 
201
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
201
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
202
	val |= g4x_infoframe_index(type);
202
	val |= g4x_infoframe_index(type);
203
 
203
 
204
	val &= ~g4x_infoframe_enable(type);
204
	val &= ~g4x_infoframe_enable(type);
205
 
205
 
206
	I915_WRITE(reg, val);
206
	I915_WRITE(reg, val);
207
 
207
 
208
	mmiowb();
208
	mmiowb();
209
	for (i = 0; i < len; i += 4) {
209
	for (i = 0; i < len; i += 4) {
210
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
210
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
211
		data++;
211
		data++;
212
	}
212
	}
213
	/* Write every possible data byte to force correct ECC calculation. */
213
	/* Write every possible data byte to force correct ECC calculation. */
214
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
214
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
215
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
215
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
216
	mmiowb();
216
	mmiowb();
217
 
217
 
218
	val |= g4x_infoframe_enable(type);
218
	val |= g4x_infoframe_enable(type);
219
	val &= ~VIDEO_DIP_FREQ_MASK;
219
	val &= ~VIDEO_DIP_FREQ_MASK;
220
	val |= VIDEO_DIP_FREQ_VSYNC;
220
	val |= VIDEO_DIP_FREQ_VSYNC;
221
 
221
 
222
	I915_WRITE(reg, val);
222
	I915_WRITE(reg, val);
223
	POSTING_READ(reg);
223
	POSTING_READ(reg);
224
}
224
}
225
 
225
 
226
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
226
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
227
{
227
{
228
	struct drm_device *dev = encoder->dev;
228
	struct drm_device *dev = encoder->dev;
229
	struct drm_i915_private *dev_priv = dev->dev_private;
229
	struct drm_i915_private *dev_priv = dev->dev_private;
230
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
230
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
231
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
231
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
232
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
232
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
233
	u32 val = I915_READ(reg);
233
	u32 val = I915_READ(reg);
234
 
234
 
235
	if ((val & VIDEO_DIP_ENABLE) == 0)
235
	if ((val & VIDEO_DIP_ENABLE) == 0)
236
		return false;
236
		return false;
237
 
237
 
238
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
238
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
239
		return false;
239
		return false;
240
 
240
 
241
	return val & (VIDEO_DIP_ENABLE_AVI |
241
	return val & (VIDEO_DIP_ENABLE_AVI |
242
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
242
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
243
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
243
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
244
}
244
}
245
 
245
 
246
static void cpt_write_infoframe(struct drm_encoder *encoder,
246
static void cpt_write_infoframe(struct drm_encoder *encoder,
247
				enum hdmi_infoframe_type type,
247
				enum hdmi_infoframe_type type,
248
				const void *frame, ssize_t len)
248
				const void *frame, ssize_t len)
249
{
249
{
250
	const uint32_t *data = frame;
250
	const uint32_t *data = frame;
251
	struct drm_device *dev = encoder->dev;
251
	struct drm_device *dev = encoder->dev;
252
	struct drm_i915_private *dev_priv = dev->dev_private;
252
	struct drm_i915_private *dev_priv = dev->dev_private;
253
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
253
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
254
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
254
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
255
	u32 val = I915_READ(reg);
255
	u32 val = I915_READ(reg);
256
 
256
 
257
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
257
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
258
 
258
 
259
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
259
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
260
	val |= g4x_infoframe_index(type);
260
	val |= g4x_infoframe_index(type);
261
 
261
 
262
	/* The DIP control register spec says that we need to update the AVI
262
	/* The DIP control register spec says that we need to update the AVI
263
	 * infoframe without clearing its enable bit */
263
	 * infoframe without clearing its enable bit */
264
	if (type != HDMI_INFOFRAME_TYPE_AVI)
264
	if (type != HDMI_INFOFRAME_TYPE_AVI)
265
		val &= ~g4x_infoframe_enable(type);
265
		val &= ~g4x_infoframe_enable(type);
266
 
266
 
267
	I915_WRITE(reg, val);
267
	I915_WRITE(reg, val);
268
 
268
 
269
	mmiowb();
269
	mmiowb();
270
	for (i = 0; i < len; i += 4) {
270
	for (i = 0; i < len; i += 4) {
271
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
271
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
272
		data++;
272
		data++;
273
	}
273
	}
274
	/* Write every possible data byte to force correct ECC calculation. */
274
	/* Write every possible data byte to force correct ECC calculation. */
275
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
275
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
276
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
277
	mmiowb();
277
	mmiowb();
278
 
278
 
279
	val |= g4x_infoframe_enable(type);
279
	val |= g4x_infoframe_enable(type);
280
	val &= ~VIDEO_DIP_FREQ_MASK;
280
	val &= ~VIDEO_DIP_FREQ_MASK;
281
	val |= VIDEO_DIP_FREQ_VSYNC;
281
	val |= VIDEO_DIP_FREQ_VSYNC;
282
 
282
 
283
	I915_WRITE(reg, val);
283
	I915_WRITE(reg, val);
284
	POSTING_READ(reg);
284
	POSTING_READ(reg);
285
}
285
}
286
 
286
 
287
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
287
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
288
{
288
{
289
	struct drm_device *dev = encoder->dev;
289
	struct drm_device *dev = encoder->dev;
290
	struct drm_i915_private *dev_priv = dev->dev_private;
290
	struct drm_i915_private *dev_priv = dev->dev_private;
291
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
291
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
292
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
292
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
293
	u32 val = I915_READ(reg);
293
	u32 val = I915_READ(reg);
294
 
294
 
295
	if ((val & VIDEO_DIP_ENABLE) == 0)
295
	if ((val & VIDEO_DIP_ENABLE) == 0)
296
		return false;
296
		return false;
297
 
297
 
298
	return val & (VIDEO_DIP_ENABLE_AVI |
298
	return val & (VIDEO_DIP_ENABLE_AVI |
299
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
299
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
300
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
300
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
301
}
301
}
302
 
302
 
303
static void vlv_write_infoframe(struct drm_encoder *encoder,
303
static void vlv_write_infoframe(struct drm_encoder *encoder,
304
				enum hdmi_infoframe_type type,
304
				enum hdmi_infoframe_type type,
305
				const void *frame, ssize_t len)
305
				const void *frame, ssize_t len)
306
{
306
{
307
	const uint32_t *data = frame;
307
	const uint32_t *data = frame;
308
	struct drm_device *dev = encoder->dev;
308
	struct drm_device *dev = encoder->dev;
309
	struct drm_i915_private *dev_priv = dev->dev_private;
309
	struct drm_i915_private *dev_priv = dev->dev_private;
310
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
310
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
311
	int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
311
	int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
312
	u32 val = I915_READ(reg);
312
	u32 val = I915_READ(reg);
313
 
313
 
314
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
314
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
315
 
315
 
316
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
316
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
317
	val |= g4x_infoframe_index(type);
317
	val |= g4x_infoframe_index(type);
318
 
318
 
319
	val &= ~g4x_infoframe_enable(type);
319
	val &= ~g4x_infoframe_enable(type);
320
 
320
 
321
	I915_WRITE(reg, val);
321
	I915_WRITE(reg, val);
322
 
322
 
323
	mmiowb();
323
	mmiowb();
324
	for (i = 0; i < len; i += 4) {
324
	for (i = 0; i < len; i += 4) {
325
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
325
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
326
		data++;
326
		data++;
327
	}
327
	}
328
	/* Write every possible data byte to force correct ECC calculation. */
328
	/* Write every possible data byte to force correct ECC calculation. */
329
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
329
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
330
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
330
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
331
	mmiowb();
331
	mmiowb();
332
 
332
 
333
	val |= g4x_infoframe_enable(type);
333
	val |= g4x_infoframe_enable(type);
334
	val &= ~VIDEO_DIP_FREQ_MASK;
334
	val &= ~VIDEO_DIP_FREQ_MASK;
335
	val |= VIDEO_DIP_FREQ_VSYNC;
335
	val |= VIDEO_DIP_FREQ_VSYNC;
336
 
336
 
337
	I915_WRITE(reg, val);
337
	I915_WRITE(reg, val);
338
	POSTING_READ(reg);
338
	POSTING_READ(reg);
339
}
339
}
340
 
340
 
341
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
341
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
342
{
342
{
343
	struct drm_device *dev = encoder->dev;
343
	struct drm_device *dev = encoder->dev;
344
	struct drm_i915_private *dev_priv = dev->dev_private;
344
	struct drm_i915_private *dev_priv = dev->dev_private;
345
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
345
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
346
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
346
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
347
	int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
347
	int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
348
	u32 val = I915_READ(reg);
348
	u32 val = I915_READ(reg);
349
 
349
 
350
	if ((val & VIDEO_DIP_ENABLE) == 0)
350
	if ((val & VIDEO_DIP_ENABLE) == 0)
351
		return false;
351
		return false;
352
 
352
 
353
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
353
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
354
		return false;
354
		return false;
355
 
355
 
356
	return val & (VIDEO_DIP_ENABLE_AVI |
356
	return val & (VIDEO_DIP_ENABLE_AVI |
357
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
357
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
358
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
358
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
359
}
359
}
360
 
360
 
361
static void hsw_write_infoframe(struct drm_encoder *encoder,
361
static void hsw_write_infoframe(struct drm_encoder *encoder,
362
				enum hdmi_infoframe_type type,
362
				enum hdmi_infoframe_type type,
363
				const void *frame, ssize_t len)
363
				const void *frame, ssize_t len)
364
{
364
{
365
	const uint32_t *data = frame;
365
	const uint32_t *data = frame;
366
	struct drm_device *dev = encoder->dev;
366
	struct drm_device *dev = encoder->dev;
367
	struct drm_i915_private *dev_priv = dev->dev_private;
367
	struct drm_i915_private *dev_priv = dev->dev_private;
368
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
368
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
369
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
369
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
370
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
370
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
371
	u32 data_reg;
371
	u32 data_reg;
372
	int i;
372
	int i;
373
	u32 val = I915_READ(ctl_reg);
373
	u32 val = I915_READ(ctl_reg);
374
 
374
 
375
	data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
375
	data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
376
	if (data_reg == 0)
376
	if (data_reg == 0)
377
		return;
377
		return;
378
 
378
 
379
	val &= ~hsw_infoframe_enable(type);
379
	val &= ~hsw_infoframe_enable(type);
380
	I915_WRITE(ctl_reg, val);
380
	I915_WRITE(ctl_reg, val);
381
 
381
 
382
	mmiowb();
382
	mmiowb();
383
	for (i = 0; i < len; i += 4) {
383
	for (i = 0; i < len; i += 4) {
384
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
384
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
385
					    type, i >> 2), *data);
385
					    type, i >> 2), *data);
386
		data++;
386
		data++;
387
	}
387
	}
388
	/* Write every possible data byte to force correct ECC calculation. */
388
	/* Write every possible data byte to force correct ECC calculation. */
389
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
389
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
390
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
390
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
391
					    type, i >> 2), 0);
391
					    type, i >> 2), 0);
392
	mmiowb();
392
	mmiowb();
393
 
393
 
394
	val |= hsw_infoframe_enable(type);
394
	val |= hsw_infoframe_enable(type);
395
	I915_WRITE(ctl_reg, val);
395
	I915_WRITE(ctl_reg, val);
396
	POSTING_READ(ctl_reg);
396
	POSTING_READ(ctl_reg);
397
}
397
}
398
 
398
 
399
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
399
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
400
{
400
{
401
	struct drm_device *dev = encoder->dev;
401
	struct drm_device *dev = encoder->dev;
402
	struct drm_i915_private *dev_priv = dev->dev_private;
402
	struct drm_i915_private *dev_priv = dev->dev_private;
403
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
403
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
404
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
404
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
405
	u32 val = I915_READ(ctl_reg);
405
	u32 val = I915_READ(ctl_reg);
406
 
406
 
407
	return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
407
	return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
408
		      VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
408
		      VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
409
		      VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
409
		      VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
410
}
410
}
411
 
411
 
412
/*
412
/*
413
 * The data we write to the DIP data buffer registers is 1 byte bigger than the
413
 * The data we write to the DIP data buffer registers is 1 byte bigger than the
414
 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
414
 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
415
 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
415
 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
416
 * used for both technologies.
416
 * used for both technologies.
417
 *
417
 *
418
 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
418
 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
419
 * DW1:       DB3       | DB2 | DB1 | DB0
419
 * DW1:       DB3       | DB2 | DB1 | DB0
420
 * DW2:       DB7       | DB6 | DB5 | DB4
420
 * DW2:       DB7       | DB6 | DB5 | DB4
421
 * DW3: ...
421
 * DW3: ...
422
 *
422
 *
423
 * (HB is Header Byte, DB is Data Byte)
423
 * (HB is Header Byte, DB is Data Byte)
424
 *
424
 *
425
 * The hdmi pack() functions don't know about that hardware specific hole so we
425
 * The hdmi pack() functions don't know about that hardware specific hole so we
426
 * trick them by giving an offset into the buffer and moving back the header
426
 * trick them by giving an offset into the buffer and moving back the header
427
 * bytes by one.
427
 * bytes by one.
428
 */
428
 */
429
static void intel_write_infoframe(struct drm_encoder *encoder,
429
static void intel_write_infoframe(struct drm_encoder *encoder,
430
				  union hdmi_infoframe *frame)
430
				  union hdmi_infoframe *frame)
431
{
431
{
432
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
432
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
433
	uint8_t buffer[VIDEO_DIP_DATA_SIZE];
433
	uint8_t buffer[VIDEO_DIP_DATA_SIZE];
434
	ssize_t len;
434
	ssize_t len;
435
 
435
 
436
	/* see comment above for the reason for this offset */
436
	/* see comment above for the reason for this offset */
437
	len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
437
	len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
438
	if (len < 0)
438
	if (len < 0)
439
		return;
439
		return;
440
 
440
 
441
	/* Insert the 'hole' (see big comment above) at position 3 */
441
	/* Insert the 'hole' (see big comment above) at position 3 */
442
	buffer[0] = buffer[1];
442
	buffer[0] = buffer[1];
443
	buffer[1] = buffer[2];
443
	buffer[1] = buffer[2];
444
	buffer[2] = buffer[3];
444
	buffer[2] = buffer[3];
445
	buffer[3] = 0;
445
	buffer[3] = 0;
446
	len++;
446
	len++;
447
 
447
 
448
	intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
448
	intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
449
}
449
}
450
 
450
 
451
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
451
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
452
					 const struct drm_display_mode *adjusted_mode)
452
					 const struct drm_display_mode *adjusted_mode)
453
{
453
{
454
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
454
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
455
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
455
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
456
	union hdmi_infoframe frame;
456
	union hdmi_infoframe frame;
457
	int ret;
457
	int ret;
458
 
458
 
459
	ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
459
	ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
460
						       adjusted_mode);
460
						       adjusted_mode);
461
	if (ret < 0) {
461
	if (ret < 0) {
462
		DRM_ERROR("couldn't fill AVI infoframe\n");
462
		DRM_ERROR("couldn't fill AVI infoframe\n");
463
		return;
463
		return;
464
	}
464
	}
465
 
465
 
466
	if (intel_hdmi->rgb_quant_range_selectable) {
466
	if (intel_hdmi->rgb_quant_range_selectable) {
467
		if (intel_crtc->config->limited_color_range)
467
		if (intel_crtc->config->limited_color_range)
468
			frame.avi.quantization_range =
468
			frame.avi.quantization_range =
469
				HDMI_QUANTIZATION_RANGE_LIMITED;
469
				HDMI_QUANTIZATION_RANGE_LIMITED;
470
		else
470
		else
471
			frame.avi.quantization_range =
471
			frame.avi.quantization_range =
472
				HDMI_QUANTIZATION_RANGE_FULL;
472
				HDMI_QUANTIZATION_RANGE_FULL;
473
	}
473
	}
474
 
474
 
475
	intel_write_infoframe(encoder, &frame);
475
	intel_write_infoframe(encoder, &frame);
476
}
476
}
477
 
477
 
478
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
478
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
479
{
479
{
480
	union hdmi_infoframe frame;
480
	union hdmi_infoframe frame;
481
	int ret;
481
	int ret;
482
 
482
 
483
	ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
483
	ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
484
	if (ret < 0) {
484
	if (ret < 0) {
485
		DRM_ERROR("couldn't fill SPD infoframe\n");
485
		DRM_ERROR("couldn't fill SPD infoframe\n");
486
		return;
486
		return;
487
	}
487
	}
488
 
488
 
489
	frame.spd.sdi = HDMI_SPD_SDI_PC;
489
	frame.spd.sdi = HDMI_SPD_SDI_PC;
490
 
490
 
491
	intel_write_infoframe(encoder, &frame);
491
	intel_write_infoframe(encoder, &frame);
492
}
492
}
493
 
493
 
494
static void
494
static void
495
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
495
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
496
			      const struct drm_display_mode *adjusted_mode)
496
			      const struct drm_display_mode *adjusted_mode)
497
{
497
{
498
	union hdmi_infoframe frame;
498
	union hdmi_infoframe frame;
499
	int ret;
499
	int ret;
500
 
500
 
501
	ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
501
	ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
502
							  adjusted_mode);
502
							  adjusted_mode);
503
	if (ret < 0)
503
	if (ret < 0)
504
		return;
504
		return;
505
 
505
 
506
	intel_write_infoframe(encoder, &frame);
506
	intel_write_infoframe(encoder, &frame);
507
}
507
}
508
 
508
 
509
static void g4x_set_infoframes(struct drm_encoder *encoder,
509
static void g4x_set_infoframes(struct drm_encoder *encoder,
510
			       bool enable,
510
			       bool enable,
511
			       const struct drm_display_mode *adjusted_mode)
511
			       const struct drm_display_mode *adjusted_mode)
512
{
512
{
513
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
513
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
514
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
514
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
515
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
515
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
516
	u32 reg = VIDEO_DIP_CTL;
516
	u32 reg = VIDEO_DIP_CTL;
517
	u32 val = I915_READ(reg);
517
	u32 val = I915_READ(reg);
518
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
518
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
519
 
519
 
520
	assert_hdmi_port_disabled(intel_hdmi);
520
	assert_hdmi_port_disabled(intel_hdmi);
521
 
521
 
522
	/* If the registers were not initialized yet, they might be zeroes,
522
	/* If the registers were not initialized yet, they might be zeroes,
523
	 * which means we're selecting the AVI DIP and we're setting its
523
	 * which means we're selecting the AVI DIP and we're setting its
524
	 * frequency to once. This seems to really confuse the HW and make
524
	 * frequency to once. This seems to really confuse the HW and make
525
	 * things stop working (the register spec says the AVI always needs to
525
	 * things stop working (the register spec says the AVI always needs to
526
	 * be sent every VSync). So here we avoid writing to the register more
526
	 * be sent every VSync). So here we avoid writing to the register more
527
	 * than we need and also explicitly select the AVI DIP and explicitly
527
	 * than we need and also explicitly select the AVI DIP and explicitly
528
	 * set its frequency to every VSync. Avoiding to write it twice seems to
528
	 * set its frequency to every VSync. Avoiding to write it twice seems to
529
	 * be enough to solve the problem, but being defensive shouldn't hurt us
529
	 * be enough to solve the problem, but being defensive shouldn't hurt us
530
	 * either. */
530
	 * either. */
531
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
531
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
532
 
532
 
533
	if (!enable) {
533
	if (!enable) {
534
		if (!(val & VIDEO_DIP_ENABLE))
534
		if (!(val & VIDEO_DIP_ENABLE))
535
			return;
535
			return;
536
		if (port != (val & VIDEO_DIP_PORT_MASK)) {
536
		if (port != (val & VIDEO_DIP_PORT_MASK)) {
537
			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
537
			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
538
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
538
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
539
			return;
539
			return;
540
		}
540
		}
541
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
541
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
542
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
542
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
543
		I915_WRITE(reg, val);
543
		I915_WRITE(reg, val);
544
		POSTING_READ(reg);
544
		POSTING_READ(reg);
545
		return;
545
		return;
546
	}
546
	}
547
 
547
 
548
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
548
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
549
		if (val & VIDEO_DIP_ENABLE) {
549
		if (val & VIDEO_DIP_ENABLE) {
550
			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
550
			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
551
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
551
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
552
			return;
552
			return;
553
		}
553
		}
554
		val &= ~VIDEO_DIP_PORT_MASK;
554
		val &= ~VIDEO_DIP_PORT_MASK;
555
		val |= port;
555
		val |= port;
556
	}
556
	}
557
 
557
 
558
	val |= VIDEO_DIP_ENABLE;
558
	val |= VIDEO_DIP_ENABLE;
559
	val &= ~(VIDEO_DIP_ENABLE_AVI |
559
	val &= ~(VIDEO_DIP_ENABLE_AVI |
560
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
560
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
561
 
561
 
562
	I915_WRITE(reg, val);
562
	I915_WRITE(reg, val);
563
	POSTING_READ(reg);
563
	POSTING_READ(reg);
564
 
564
 
565
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
565
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
566
	intel_hdmi_set_spd_infoframe(encoder);
566
	intel_hdmi_set_spd_infoframe(encoder);
567
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
567
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
568
}
568
}
569
 
569
 
570
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
570
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
571
{
571
{
572
	struct drm_device *dev = encoder->dev;
572
	struct drm_device *dev = encoder->dev;
573
	struct drm_connector *connector;
573
	struct drm_connector *connector;
574
 
574
 
575
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
575
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
576
 
576
 
577
	/*
577
	/*
578
	 * HDMI cloning is only supported on g4x which doesn't
578
	 * HDMI cloning is only supported on g4x which doesn't
579
	 * support deep color or GCP infoframes anyway so no
579
	 * support deep color or GCP infoframes anyway so no
580
	 * need to worry about multiple HDMI sinks here.
580
	 * need to worry about multiple HDMI sinks here.
581
	 */
581
	 */
582
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
582
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
583
		if (connector->encoder == encoder)
583
		if (connector->encoder == encoder)
584
			return connector->display_info.bpc > 8;
584
			return connector->display_info.bpc > 8;
585
 
585
 
586
	return false;
586
	return false;
587
}
587
}
588
 
588
 
589
/*
589
/*
590
 * Determine if default_phase=1 can be indicated in the GCP infoframe.
590
 * Determine if default_phase=1 can be indicated in the GCP infoframe.
591
 *
591
 *
592
 * From HDMI specification 1.4a:
592
 * From HDMI specification 1.4a:
593
 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
593
 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
594
 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
594
 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
595
 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
595
 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
596
 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
596
 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
597
 *   phase of 0
597
 *   phase of 0
598
 */
598
 */
599
static bool gcp_default_phase_possible(int pipe_bpp,
599
static bool gcp_default_phase_possible(int pipe_bpp,
600
				       const struct drm_display_mode *mode)
600
				       const struct drm_display_mode *mode)
601
{
601
{
602
	unsigned int pixels_per_group;
602
	unsigned int pixels_per_group;
603
 
603
 
604
	switch (pipe_bpp) {
604
	switch (pipe_bpp) {
605
	case 30:
605
	case 30:
606
		/* 4 pixels in 5 clocks */
606
		/* 4 pixels in 5 clocks */
607
		pixels_per_group = 4;
607
		pixels_per_group = 4;
608
		break;
608
		break;
609
	case 36:
609
	case 36:
610
		/* 2 pixels in 3 clocks */
610
		/* 2 pixels in 3 clocks */
611
		pixels_per_group = 2;
611
		pixels_per_group = 2;
612
		break;
612
		break;
613
	case 48:
613
	case 48:
614
		/* 1 pixel in 2 clocks */
614
		/* 1 pixel in 2 clocks */
615
		pixels_per_group = 1;
615
		pixels_per_group = 1;
616
		break;
616
		break;
617
	default:
617
	default:
618
		/* phase information not relevant for 8bpc */
618
		/* phase information not relevant for 8bpc */
619
		return false;
619
		return false;
620
	}
620
	}
621
 
621
 
622
	return mode->crtc_hdisplay % pixels_per_group == 0 &&
622
	return mode->crtc_hdisplay % pixels_per_group == 0 &&
623
		mode->crtc_htotal % pixels_per_group == 0 &&
623
		mode->crtc_htotal % pixels_per_group == 0 &&
624
		mode->crtc_hblank_start % pixels_per_group == 0 &&
624
		mode->crtc_hblank_start % pixels_per_group == 0 &&
625
		mode->crtc_hblank_end % pixels_per_group == 0 &&
625
		mode->crtc_hblank_end % pixels_per_group == 0 &&
626
		mode->crtc_hsync_start % pixels_per_group == 0 &&
626
		mode->crtc_hsync_start % pixels_per_group == 0 &&
627
		mode->crtc_hsync_end % pixels_per_group == 0 &&
627
		mode->crtc_hsync_end % pixels_per_group == 0 &&
628
		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
628
		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
629
		 mode->crtc_htotal/2 % pixels_per_group == 0);
629
		 mode->crtc_htotal/2 % pixels_per_group == 0);
630
}
630
}
631
 
631
 
632
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
632
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
633
{
633
{
634
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
634
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
635
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
635
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
636
	u32 reg, val = 0;
636
	u32 reg, val = 0;
637
 
637
 
638
	if (HAS_DDI(dev_priv))
638
	if (HAS_DDI(dev_priv))
639
		reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
639
		reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
640
	else if (IS_VALLEYVIEW(dev_priv))
640
	else if (IS_VALLEYVIEW(dev_priv))
641
		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
641
		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
642
	else if (HAS_PCH_SPLIT(dev_priv->dev))
642
	else if (HAS_PCH_SPLIT(dev_priv->dev))
643
		reg = TVIDEO_DIP_GCP(crtc->pipe);
643
		reg = TVIDEO_DIP_GCP(crtc->pipe);
644
	else
644
	else
645
		return false;
645
		return false;
646
 
646
 
647
	/* Indicate color depth whenever the sink supports deep color */
647
	/* Indicate color depth whenever the sink supports deep color */
648
	if (hdmi_sink_is_deep_color(encoder))
648
	if (hdmi_sink_is_deep_color(encoder))
649
		val |= GCP_COLOR_INDICATION;
649
		val |= GCP_COLOR_INDICATION;
650
 
650
 
651
	/* Enable default_phase whenever the display mode is suitably aligned */
651
	/* Enable default_phase whenever the display mode is suitably aligned */
652
	if (gcp_default_phase_possible(crtc->config->pipe_bpp,
652
	if (gcp_default_phase_possible(crtc->config->pipe_bpp,
653
				       &crtc->config->base.adjusted_mode))
653
				       &crtc->config->base.adjusted_mode))
654
		val |= GCP_DEFAULT_PHASE_ENABLE;
654
		val |= GCP_DEFAULT_PHASE_ENABLE;
655
 
655
 
656
	I915_WRITE(reg, val);
656
	I915_WRITE(reg, val);
657
 
657
 
658
	return val != 0;
658
	return val != 0;
659
}
659
}
660
 
660
 
661
static void ibx_set_infoframes(struct drm_encoder *encoder,
661
static void ibx_set_infoframes(struct drm_encoder *encoder,
662
			       bool enable,
662
			       bool enable,
663
			       const struct drm_display_mode *adjusted_mode)
663
			       const struct drm_display_mode *adjusted_mode)
664
{
664
{
665
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
665
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
666
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
666
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
667
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
667
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
668
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
668
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
669
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
669
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
670
	u32 val = I915_READ(reg);
670
	u32 val = I915_READ(reg);
671
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
671
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
672
 
672
 
673
	assert_hdmi_port_disabled(intel_hdmi);
673
	assert_hdmi_port_disabled(intel_hdmi);
674
 
674
 
675
	/* See the big comment in g4x_set_infoframes() */
675
	/* See the big comment in g4x_set_infoframes() */
676
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
676
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
677
 
677
 
678
	if (!enable) {
678
	if (!enable) {
679
		if (!(val & VIDEO_DIP_ENABLE))
679
		if (!(val & VIDEO_DIP_ENABLE))
680
			return;
680
			return;
681
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
681
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
682
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
682
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
683
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
683
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
684
		I915_WRITE(reg, val);
684
		I915_WRITE(reg, val);
685
		POSTING_READ(reg);
685
		POSTING_READ(reg);
686
		return;
686
		return;
687
	}
687
	}
688
 
688
 
689
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
689
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
690
		WARN(val & VIDEO_DIP_ENABLE,
690
		WARN(val & VIDEO_DIP_ENABLE,
691
		     "DIP already enabled on port %c\n",
691
		     "DIP already enabled on port %c\n",
692
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
692
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
693
		val &= ~VIDEO_DIP_PORT_MASK;
693
		val &= ~VIDEO_DIP_PORT_MASK;
694
		val |= port;
694
		val |= port;
695
	}
695
	}
696
 
696
 
697
	val |= VIDEO_DIP_ENABLE;
697
	val |= VIDEO_DIP_ENABLE;
698
	val &= ~(VIDEO_DIP_ENABLE_AVI |
698
	val &= ~(VIDEO_DIP_ENABLE_AVI |
699
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
699
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
700
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
700
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
701
 
701
 
702
	if (intel_hdmi_set_gcp_infoframe(encoder))
702
	if (intel_hdmi_set_gcp_infoframe(encoder))
703
		val |= VIDEO_DIP_ENABLE_GCP;
703
		val |= VIDEO_DIP_ENABLE_GCP;
704
 
704
 
705
	I915_WRITE(reg, val);
705
	I915_WRITE(reg, val);
706
	POSTING_READ(reg);
706
	POSTING_READ(reg);
707
 
707
 
708
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
708
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
709
	intel_hdmi_set_spd_infoframe(encoder);
709
	intel_hdmi_set_spd_infoframe(encoder);
710
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
710
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
711
}
711
}
712
 
712
 
713
static void cpt_set_infoframes(struct drm_encoder *encoder,
713
static void cpt_set_infoframes(struct drm_encoder *encoder,
714
			       bool enable,
714
			       bool enable,
715
			       const struct drm_display_mode *adjusted_mode)
715
			       const struct drm_display_mode *adjusted_mode)
716
{
716
{
717
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
717
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
718
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
718
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
719
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
719
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
720
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
720
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
721
	u32 val = I915_READ(reg);
721
	u32 val = I915_READ(reg);
722
 
722
 
723
	assert_hdmi_port_disabled(intel_hdmi);
723
	assert_hdmi_port_disabled(intel_hdmi);
724
 
724
 
725
	/* See the big comment in g4x_set_infoframes() */
725
	/* See the big comment in g4x_set_infoframes() */
726
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
726
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
727
 
727
 
728
	if (!enable) {
728
	if (!enable) {
729
		if (!(val & VIDEO_DIP_ENABLE))
729
		if (!(val & VIDEO_DIP_ENABLE))
730
			return;
730
			return;
731
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
731
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
732
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
732
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
733
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
733
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
734
		I915_WRITE(reg, val);
734
		I915_WRITE(reg, val);
735
		POSTING_READ(reg);
735
		POSTING_READ(reg);
736
		return;
736
		return;
737
	}
737
	}
738
 
738
 
739
	/* Set both together, unset both together: see the spec. */
739
	/* Set both together, unset both together: see the spec. */
740
	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
740
	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
741
	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
741
	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
742
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
742
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
743
 
743
 
744
	if (intel_hdmi_set_gcp_infoframe(encoder))
744
	if (intel_hdmi_set_gcp_infoframe(encoder))
745
		val |= VIDEO_DIP_ENABLE_GCP;
745
		val |= VIDEO_DIP_ENABLE_GCP;
746
 
746
 
747
	I915_WRITE(reg, val);
747
	I915_WRITE(reg, val);
748
	POSTING_READ(reg);
748
	POSTING_READ(reg);
749
 
749
 
750
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
750
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
751
	intel_hdmi_set_spd_infoframe(encoder);
751
	intel_hdmi_set_spd_infoframe(encoder);
752
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
752
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
753
}
753
}
754
 
754
 
755
static void vlv_set_infoframes(struct drm_encoder *encoder,
755
static void vlv_set_infoframes(struct drm_encoder *encoder,
756
			       bool enable,
756
			       bool enable,
757
			       const struct drm_display_mode *adjusted_mode)
757
			       const struct drm_display_mode *adjusted_mode)
758
{
758
{
759
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
759
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
760
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
760
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
761
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
761
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
762
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
762
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
763
	u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
763
	u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
764
	u32 val = I915_READ(reg);
764
	u32 val = I915_READ(reg);
765
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
765
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
766
 
766
 
767
	assert_hdmi_port_disabled(intel_hdmi);
767
	assert_hdmi_port_disabled(intel_hdmi);
768
 
768
 
769
	/* See the big comment in g4x_set_infoframes() */
769
	/* See the big comment in g4x_set_infoframes() */
770
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
770
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
771
 
771
 
772
	if (!enable) {
772
	if (!enable) {
773
		if (!(val & VIDEO_DIP_ENABLE))
773
		if (!(val & VIDEO_DIP_ENABLE))
774
			return;
774
			return;
775
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
775
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
776
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
776
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
777
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
777
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
778
		I915_WRITE(reg, val);
778
		I915_WRITE(reg, val);
779
		POSTING_READ(reg);
779
		POSTING_READ(reg);
780
		return;
780
		return;
781
	}
781
	}
782
 
782
 
783
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
783
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
784
		WARN(val & VIDEO_DIP_ENABLE,
784
		WARN(val & VIDEO_DIP_ENABLE,
785
		     "DIP already enabled on port %c\n",
785
		     "DIP already enabled on port %c\n",
786
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
786
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
787
		val &= ~VIDEO_DIP_PORT_MASK;
787
		val &= ~VIDEO_DIP_PORT_MASK;
788
		val |= port;
788
		val |= port;
789
	}
789
	}
790
 
790
 
791
	val |= VIDEO_DIP_ENABLE;
791
	val |= VIDEO_DIP_ENABLE;
792
	val &= ~(VIDEO_DIP_ENABLE_AVI |
792
	val &= ~(VIDEO_DIP_ENABLE_AVI |
793
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
793
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
794
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
794
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
795
 
795
 
796
	if (intel_hdmi_set_gcp_infoframe(encoder))
796
	if (intel_hdmi_set_gcp_infoframe(encoder))
797
		val |= VIDEO_DIP_ENABLE_GCP;
797
		val |= VIDEO_DIP_ENABLE_GCP;
798
 
798
 
799
	I915_WRITE(reg, val);
799
	I915_WRITE(reg, val);
800
	POSTING_READ(reg);
800
	POSTING_READ(reg);
801
 
801
 
802
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
802
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
803
	intel_hdmi_set_spd_infoframe(encoder);
803
	intel_hdmi_set_spd_infoframe(encoder);
804
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
804
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
805
}
805
}
806
 
806
 
807
static void hsw_set_infoframes(struct drm_encoder *encoder,
807
static void hsw_set_infoframes(struct drm_encoder *encoder,
808
			       bool enable,
808
			       bool enable,
809
			       const struct drm_display_mode *adjusted_mode)
809
			       const struct drm_display_mode *adjusted_mode)
810
{
810
{
811
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
811
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
812
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
812
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
813
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
813
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
814
	u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
814
	u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
815
	u32 val = I915_READ(reg);
815
	u32 val = I915_READ(reg);
816
 
816
 
817
	assert_hdmi_port_disabled(intel_hdmi);
817
	assert_hdmi_port_disabled(intel_hdmi);
818
 
818
 
819
	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
819
	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
820
		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
820
		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
821
		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
821
		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
822
 
822
 
823
	if (!enable) {
823
	if (!enable) {
824
		I915_WRITE(reg, val);
824
		I915_WRITE(reg, val);
825
		POSTING_READ(reg);
825
		POSTING_READ(reg);
826
		return;
826
		return;
827
	}
827
	}
828
 
828
 
829
	if (intel_hdmi_set_gcp_infoframe(encoder))
829
	if (intel_hdmi_set_gcp_infoframe(encoder))
830
		val |= VIDEO_DIP_ENABLE_GCP_HSW;
830
		val |= VIDEO_DIP_ENABLE_GCP_HSW;
831
 
831
 
832
	I915_WRITE(reg, val);
832
	I915_WRITE(reg, val);
833
	POSTING_READ(reg);
833
	POSTING_READ(reg);
834
 
834
 
835
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
835
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
836
	intel_hdmi_set_spd_infoframe(encoder);
836
	intel_hdmi_set_spd_infoframe(encoder);
837
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
837
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
838
}
838
}
839
 
839
 
840
static void intel_hdmi_prepare(struct intel_encoder *encoder)
840
static void intel_hdmi_prepare(struct intel_encoder *encoder)
841
{
841
{
842
	struct drm_device *dev = encoder->base.dev;
842
	struct drm_device *dev = encoder->base.dev;
843
	struct drm_i915_private *dev_priv = dev->dev_private;
843
	struct drm_i915_private *dev_priv = dev->dev_private;
844
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
844
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
845
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
845
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
846
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
846
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
847
	u32 hdmi_val;
847
	u32 hdmi_val;
848
 
848
 
849
	hdmi_val = SDVO_ENCODING_HDMI;
849
	hdmi_val = SDVO_ENCODING_HDMI;
850
	if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
850
	if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
851
		hdmi_val |= HDMI_COLOR_RANGE_16_235;
851
		hdmi_val |= HDMI_COLOR_RANGE_16_235;
852
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
852
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
853
		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
853
		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
854
	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
854
	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
855
		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
855
		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
856
 
856
 
857
	if (crtc->config->pipe_bpp > 24)
857
	if (crtc->config->pipe_bpp > 24)
858
		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
858
		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
859
	else
859
	else
860
		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
860
		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
861
 
861
 
862
	if (crtc->config->has_hdmi_sink)
862
	if (crtc->config->has_hdmi_sink)
863
		hdmi_val |= HDMI_MODE_SELECT_HDMI;
863
		hdmi_val |= HDMI_MODE_SELECT_HDMI;
864
 
864
 
865
	if (HAS_PCH_CPT(dev))
865
	if (HAS_PCH_CPT(dev))
866
		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
866
		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
867
	else if (IS_CHERRYVIEW(dev))
867
	else if (IS_CHERRYVIEW(dev))
868
		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
868
		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
869
	else
869
	else
870
		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
870
		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
871
 
871
 
872
	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
872
	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
873
	POSTING_READ(intel_hdmi->hdmi_reg);
873
	POSTING_READ(intel_hdmi->hdmi_reg);
874
}
874
}
875
 
875
 
876
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
876
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
877
				    enum pipe *pipe)
877
				    enum pipe *pipe)
878
{
878
{
879
	struct drm_device *dev = encoder->base.dev;
879
	struct drm_device *dev = encoder->base.dev;
880
	struct drm_i915_private *dev_priv = dev->dev_private;
880
	struct drm_i915_private *dev_priv = dev->dev_private;
881
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
881
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
882
	enum intel_display_power_domain power_domain;
882
	enum intel_display_power_domain power_domain;
883
	u32 tmp;
883
	u32 tmp;
884
 
884
 
885
	power_domain = intel_display_port_power_domain(encoder);
885
	power_domain = intel_display_port_power_domain(encoder);
886
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
886
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
887
		return false;
887
		return false;
888
 
888
 
889
	tmp = I915_READ(intel_hdmi->hdmi_reg);
889
	tmp = I915_READ(intel_hdmi->hdmi_reg);
890
 
890
 
891
	if (!(tmp & SDVO_ENABLE))
891
	if (!(tmp & SDVO_ENABLE))
892
		return false;
892
		return false;
893
 
893
 
894
	if (HAS_PCH_CPT(dev))
894
	if (HAS_PCH_CPT(dev))
895
		*pipe = PORT_TO_PIPE_CPT(tmp);
895
		*pipe = PORT_TO_PIPE_CPT(tmp);
896
	else if (IS_CHERRYVIEW(dev))
896
	else if (IS_CHERRYVIEW(dev))
897
		*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
897
		*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
898
	else
898
	else
899
		*pipe = PORT_TO_PIPE(tmp);
899
		*pipe = PORT_TO_PIPE(tmp);
900
 
900
 
901
	return true;
901
	return true;
902
}
902
}
903
 
903
 
904
static void intel_hdmi_get_config(struct intel_encoder *encoder,
904
static void intel_hdmi_get_config(struct intel_encoder *encoder,
905
				  struct intel_crtc_state *pipe_config)
905
				  struct intel_crtc_state *pipe_config)
906
{
906
{
907
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
907
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
908
	struct drm_device *dev = encoder->base.dev;
908
	struct drm_device *dev = encoder->base.dev;
909
	struct drm_i915_private *dev_priv = dev->dev_private;
909
	struct drm_i915_private *dev_priv = dev->dev_private;
910
	u32 tmp, flags = 0;
910
	u32 tmp, flags = 0;
911
	int dotclock;
911
	int dotclock;
912
 
912
 
913
	tmp = I915_READ(intel_hdmi->hdmi_reg);
913
	tmp = I915_READ(intel_hdmi->hdmi_reg);
914
 
914
 
915
	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
915
	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
916
		flags |= DRM_MODE_FLAG_PHSYNC;
916
		flags |= DRM_MODE_FLAG_PHSYNC;
917
	else
917
	else
918
		flags |= DRM_MODE_FLAG_NHSYNC;
918
		flags |= DRM_MODE_FLAG_NHSYNC;
919
 
919
 
920
	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
920
	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
921
		flags |= DRM_MODE_FLAG_PVSYNC;
921
		flags |= DRM_MODE_FLAG_PVSYNC;
922
	else
922
	else
923
		flags |= DRM_MODE_FLAG_NVSYNC;
923
		flags |= DRM_MODE_FLAG_NVSYNC;
924
 
924
 
925
	if (tmp & HDMI_MODE_SELECT_HDMI)
925
	if (tmp & HDMI_MODE_SELECT_HDMI)
926
		pipe_config->has_hdmi_sink = true;
926
		pipe_config->has_hdmi_sink = true;
927
 
927
 
928
	if (intel_hdmi->infoframe_enabled(&encoder->base))
928
	if (intel_hdmi->infoframe_enabled(&encoder->base))
929
		pipe_config->has_infoframe = true;
929
		pipe_config->has_infoframe = true;
930
 
930
 
931
	if (tmp & SDVO_AUDIO_ENABLE)
931
	if (tmp & SDVO_AUDIO_ENABLE)
932
		pipe_config->has_audio = true;
932
		pipe_config->has_audio = true;
933
 
933
 
934
	if (!HAS_PCH_SPLIT(dev) &&
934
	if (!HAS_PCH_SPLIT(dev) &&
935
	    tmp & HDMI_COLOR_RANGE_16_235)
935
	    tmp & HDMI_COLOR_RANGE_16_235)
936
		pipe_config->limited_color_range = true;
936
		pipe_config->limited_color_range = true;
937
 
937
 
938
	pipe_config->base.adjusted_mode.flags |= flags;
938
	pipe_config->base.adjusted_mode.flags |= flags;
939
 
939
 
940
	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
940
	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
941
		dotclock = pipe_config->port_clock * 2 / 3;
941
		dotclock = pipe_config->port_clock * 2 / 3;
942
	else
942
	else
943
		dotclock = pipe_config->port_clock;
943
		dotclock = pipe_config->port_clock;
944
 
944
 
945
	if (pipe_config->pixel_multiplier)
945
	if (pipe_config->pixel_multiplier)
946
		dotclock /= pipe_config->pixel_multiplier;
946
		dotclock /= pipe_config->pixel_multiplier;
947
 
947
 
948
	if (HAS_PCH_SPLIT(dev_priv->dev))
948
	if (HAS_PCH_SPLIT(dev_priv->dev))
949
		ironlake_check_encoder_dotclock(pipe_config, dotclock);
949
		ironlake_check_encoder_dotclock(pipe_config, dotclock);
950
 
950
 
951
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
951
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
952
}
952
}
953
 
953
 
954
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
954
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
955
{
955
{
956
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
956
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
957
 
957
 
958
	WARN_ON(!crtc->config->has_hdmi_sink);
958
	WARN_ON(!crtc->config->has_hdmi_sink);
959
	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
959
	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
960
			 pipe_name(crtc->pipe));
960
			 pipe_name(crtc->pipe));
961
	intel_audio_codec_enable(encoder);
961
	intel_audio_codec_enable(encoder);
962
}
962
}
963
 
963
 
964
static void g4x_enable_hdmi(struct intel_encoder *encoder)
964
static void g4x_enable_hdmi(struct intel_encoder *encoder)
965
{
965
{
966
	struct drm_device *dev = encoder->base.dev;
966
	struct drm_device *dev = encoder->base.dev;
967
	struct drm_i915_private *dev_priv = dev->dev_private;
967
	struct drm_i915_private *dev_priv = dev->dev_private;
968
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
968
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
969
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
969
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
970
	u32 temp;
970
	u32 temp;
971
 
971
 
972
	temp = I915_READ(intel_hdmi->hdmi_reg);
972
	temp = I915_READ(intel_hdmi->hdmi_reg);
973
 
973
 
974
	temp |= SDVO_ENABLE;
974
	temp |= SDVO_ENABLE;
975
	if (crtc->config->has_audio)
975
	if (crtc->config->has_audio)
976
		temp |= SDVO_AUDIO_ENABLE;
976
		temp |= SDVO_AUDIO_ENABLE;
977
 
977
 
978
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
978
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
979
	POSTING_READ(intel_hdmi->hdmi_reg);
979
	POSTING_READ(intel_hdmi->hdmi_reg);
980
 
980
 
981
	if (crtc->config->has_audio)
981
	if (crtc->config->has_audio)
982
		intel_enable_hdmi_audio(encoder);
982
		intel_enable_hdmi_audio(encoder);
983
}
983
}
984
 
984
 
985
static void ibx_enable_hdmi(struct intel_encoder *encoder)
985
static void ibx_enable_hdmi(struct intel_encoder *encoder)
986
{
986
{
987
	struct drm_device *dev = encoder->base.dev;
987
	struct drm_device *dev = encoder->base.dev;
988
	struct drm_i915_private *dev_priv = dev->dev_private;
988
	struct drm_i915_private *dev_priv = dev->dev_private;
989
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
989
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
990
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
990
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
991
	u32 temp;
991
	u32 temp;
992
 
992
 
993
	temp = I915_READ(intel_hdmi->hdmi_reg);
993
	temp = I915_READ(intel_hdmi->hdmi_reg);
994
 
994
 
995
	temp |= SDVO_ENABLE;
995
	temp |= SDVO_ENABLE;
996
	if (crtc->config->has_audio)
996
	if (crtc->config->has_audio)
997
		temp |= SDVO_AUDIO_ENABLE;
997
		temp |= SDVO_AUDIO_ENABLE;
998
 
998
 
999
	/*
999
	/*
1000
	 * HW workaround, need to write this twice for issue
1000
	 * HW workaround, need to write this twice for issue
1001
	 * that may result in first write getting masked.
1001
	 * that may result in first write getting masked.
1002
	 */
1002
	 */
1003
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1003
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1004
	POSTING_READ(intel_hdmi->hdmi_reg);
1004
	POSTING_READ(intel_hdmi->hdmi_reg);
1005
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1005
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1006
	POSTING_READ(intel_hdmi->hdmi_reg);
1006
	POSTING_READ(intel_hdmi->hdmi_reg);
1007
 
1007
 
1008
	/*
1008
	/*
1009
	 * HW workaround, need to toggle enable bit off and on
1009
	 * HW workaround, need to toggle enable bit off and on
1010
	 * for 12bpc with pixel repeat.
1010
	 * for 12bpc with pixel repeat.
1011
	 *
1011
	 *
1012
	 * FIXME: BSpec says this should be done at the end of
1012
	 * FIXME: BSpec says this should be done at the end of
1013
	 * of the modeset sequence, so not sure if this isn't too soon.
1013
	 * of the modeset sequence, so not sure if this isn't too soon.
1014
	 */
1014
	 */
1015
	if (crtc->config->pipe_bpp > 24 &&
1015
	if (crtc->config->pipe_bpp > 24 &&
1016
	    crtc->config->pixel_multiplier > 1) {
1016
	    crtc->config->pixel_multiplier > 1) {
1017
		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1017
		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1018
		POSTING_READ(intel_hdmi->hdmi_reg);
1018
		POSTING_READ(intel_hdmi->hdmi_reg);
1019
 
1019
 
1020
		/*
1020
		/*
1021
		 * HW workaround, need to write this twice for issue
1021
		 * HW workaround, need to write this twice for issue
1022
		 * that may result in first write getting masked.
1022
		 * that may result in first write getting masked.
1023
		 */
1023
		 */
1024
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1024
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1025
		POSTING_READ(intel_hdmi->hdmi_reg);
1025
		POSTING_READ(intel_hdmi->hdmi_reg);
1026
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1026
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1027
		POSTING_READ(intel_hdmi->hdmi_reg);
1027
		POSTING_READ(intel_hdmi->hdmi_reg);
1028
	}
1028
	}
1029
 
1029
 
1030
	if (crtc->config->has_audio)
1030
	if (crtc->config->has_audio)
1031
		intel_enable_hdmi_audio(encoder);
1031
		intel_enable_hdmi_audio(encoder);
1032
}
1032
}
1033
 
1033
 
1034
static void cpt_enable_hdmi(struct intel_encoder *encoder)
1034
static void cpt_enable_hdmi(struct intel_encoder *encoder)
1035
{
1035
{
1036
	struct drm_device *dev = encoder->base.dev;
1036
	struct drm_device *dev = encoder->base.dev;
1037
	struct drm_i915_private *dev_priv = dev->dev_private;
1037
	struct drm_i915_private *dev_priv = dev->dev_private;
1038
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1038
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1039
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1039
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1040
	enum pipe pipe = crtc->pipe;
1040
	enum pipe pipe = crtc->pipe;
1041
	u32 temp;
1041
	u32 temp;
1042
 
1042
 
1043
	temp = I915_READ(intel_hdmi->hdmi_reg);
1043
	temp = I915_READ(intel_hdmi->hdmi_reg);
1044
 
1044
 
1045
	temp |= SDVO_ENABLE;
1045
	temp |= SDVO_ENABLE;
1046
	if (crtc->config->has_audio)
1046
	if (crtc->config->has_audio)
1047
		temp |= SDVO_AUDIO_ENABLE;
1047
		temp |= SDVO_AUDIO_ENABLE;
1048
 
1048
 
1049
	/*
1049
	/*
1050
	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1050
	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1051
	 *
1051
	 *
1052
	 * The procedure for 12bpc is as follows:
1052
	 * The procedure for 12bpc is as follows:
1053
	 * 1. disable HDMI clock gating
1053
	 * 1. disable HDMI clock gating
1054
	 * 2. enable HDMI with 8bpc
1054
	 * 2. enable HDMI with 8bpc
1055
	 * 3. enable HDMI with 12bpc
1055
	 * 3. enable HDMI with 12bpc
1056
	 * 4. enable HDMI clock gating
1056
	 * 4. enable HDMI clock gating
1057
	 */
1057
	 */
1058
 
1058
 
1059
	if (crtc->config->pipe_bpp > 24) {
1059
	if (crtc->config->pipe_bpp > 24) {
1060
		I915_WRITE(TRANS_CHICKEN1(pipe),
1060
		I915_WRITE(TRANS_CHICKEN1(pipe),
1061
			   I915_READ(TRANS_CHICKEN1(pipe)) |
1061
			   I915_READ(TRANS_CHICKEN1(pipe)) |
1062
			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1062
			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1063
 
1063
 
1064
		temp &= ~SDVO_COLOR_FORMAT_MASK;
1064
		temp &= ~SDVO_COLOR_FORMAT_MASK;
1065
		temp |= SDVO_COLOR_FORMAT_8bpc;
1065
		temp |= SDVO_COLOR_FORMAT_8bpc;
1066
	}
1066
	}
1067
 
1067
 
1068
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1068
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1069
	POSTING_READ(intel_hdmi->hdmi_reg);
1069
	POSTING_READ(intel_hdmi->hdmi_reg);
1070
 
1070
 
1071
	if (crtc->config->pipe_bpp > 24) {
1071
	if (crtc->config->pipe_bpp > 24) {
1072
		temp &= ~SDVO_COLOR_FORMAT_MASK;
1072
		temp &= ~SDVO_COLOR_FORMAT_MASK;
1073
		temp |= HDMI_COLOR_FORMAT_12bpc;
1073
		temp |= HDMI_COLOR_FORMAT_12bpc;
1074
 
1074
 
1075
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1075
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1076
		POSTING_READ(intel_hdmi->hdmi_reg);
1076
		POSTING_READ(intel_hdmi->hdmi_reg);
1077
 
1077
 
1078
		I915_WRITE(TRANS_CHICKEN1(pipe),
1078
		I915_WRITE(TRANS_CHICKEN1(pipe),
1079
			   I915_READ(TRANS_CHICKEN1(pipe)) &
1079
			   I915_READ(TRANS_CHICKEN1(pipe)) &
1080
			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1080
			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1081
	}
1081
	}
1082
 
1082
 
1083
	if (crtc->config->has_audio)
1083
	if (crtc->config->has_audio)
1084
		intel_enable_hdmi_audio(encoder);
1084
		intel_enable_hdmi_audio(encoder);
1085
}
1085
}
1086
 
1086
 
1087
static void vlv_enable_hdmi(struct intel_encoder *encoder)
1087
static void vlv_enable_hdmi(struct intel_encoder *encoder)
1088
{
1088
{
1089
}
1089
}
1090
 
1090
 
1091
static void intel_disable_hdmi(struct intel_encoder *encoder)
1091
static void intel_disable_hdmi(struct intel_encoder *encoder)
1092
{
1092
{
1093
	struct drm_device *dev = encoder->base.dev;
1093
	struct drm_device *dev = encoder->base.dev;
1094
	struct drm_i915_private *dev_priv = dev->dev_private;
1094
	struct drm_i915_private *dev_priv = dev->dev_private;
1095
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1095
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1096
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1096
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1097
	u32 temp;
1097
	u32 temp;
1098
 
1098
 
1099
	temp = I915_READ(intel_hdmi->hdmi_reg);
1099
	temp = I915_READ(intel_hdmi->hdmi_reg);
1100
 
1100
 
1101
	temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1101
	temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1102
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1102
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
1103
	POSTING_READ(intel_hdmi->hdmi_reg);
1103
	POSTING_READ(intel_hdmi->hdmi_reg);
1104
 
1104
 
1105
	/*
1105
	/*
1106
	 * HW workaround for IBX, we need to move the port
1106
	 * HW workaround for IBX, we need to move the port
1107
	 * to transcoder A after disabling it to allow the
1107
	 * to transcoder A after disabling it to allow the
1108
	 * matching DP port to be enabled on transcoder A.
1108
	 * matching DP port to be enabled on transcoder A.
1109
	 */
1109
	 */
1110
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1110
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1111
		temp &= ~SDVO_PIPE_B_SELECT;
1111
		temp &= ~SDVO_PIPE_B_SELECT;
1112
		temp |= SDVO_ENABLE;
1112
		temp |= SDVO_ENABLE;
1113
		/*
1113
		/*
1114
		 * HW workaround, need to write this twice for issue
1114
		 * HW workaround, need to write this twice for issue
1115
		 * that may result in first write getting masked.
1115
		 * that may result in first write getting masked.
1116
		 */
1116
		 */
1117
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1117
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1118
		POSTING_READ(intel_hdmi->hdmi_reg);
1118
		POSTING_READ(intel_hdmi->hdmi_reg);
1119
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1119
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1120
		POSTING_READ(intel_hdmi->hdmi_reg);
1120
		POSTING_READ(intel_hdmi->hdmi_reg);
1121
 
1121
 
1122
		temp &= ~SDVO_ENABLE;
1122
		temp &= ~SDVO_ENABLE;
1123
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1123
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
1124
		POSTING_READ(intel_hdmi->hdmi_reg);
1124
		POSTING_READ(intel_hdmi->hdmi_reg);
1125
	}
1125
	}
1126
 
1126
 
1127
	intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1127
	intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1128
}
1128
}
1129
 
1129
 
1130
static void g4x_disable_hdmi(struct intel_encoder *encoder)
1130
static void g4x_disable_hdmi(struct intel_encoder *encoder)
1131
{
1131
{
1132
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1132
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1133
 
1133
 
1134
	if (crtc->config->has_audio)
1134
	if (crtc->config->has_audio)
1135
		intel_audio_codec_disable(encoder);
1135
		intel_audio_codec_disable(encoder);
1136
 
1136
 
1137
	intel_disable_hdmi(encoder);
1137
	intel_disable_hdmi(encoder);
1138
}
1138
}
1139
 
1139
 
1140
static void pch_disable_hdmi(struct intel_encoder *encoder)
1140
static void pch_disable_hdmi(struct intel_encoder *encoder)
1141
{
1141
{
1142
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1142
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1143
 
1143
 
1144
	if (crtc->config->has_audio)
1144
	if (crtc->config->has_audio)
1145
		intel_audio_codec_disable(encoder);
1145
		intel_audio_codec_disable(encoder);
1146
}
1146
}
1147
 
1147
 
1148
static void pch_post_disable_hdmi(struct intel_encoder *encoder)
1148
static void pch_post_disable_hdmi(struct intel_encoder *encoder)
1149
{
1149
{
1150
	intel_disable_hdmi(encoder);
1150
	intel_disable_hdmi(encoder);
1151
}
1151
}
1152
 
1152
 
1153
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1153
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1154
{
1154
{
1155
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1155
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1156
 
1156
 
1157
	if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1157
	if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1158
		return 165000;
1158
		return 165000;
1159
	else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1159
	else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1160
		return 300000;
1160
		return 300000;
1161
	else
1161
	else
1162
		return 225000;
1162
		return 225000;
1163
}
1163
}
1164
 
1164
 
1165
static enum drm_mode_status
1165
static enum drm_mode_status
1166
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1166
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1167
		      int clock, bool respect_dvi_limit)
1167
		      int clock, bool respect_dvi_limit)
1168
{
1168
{
1169
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1169
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1170
 
1170
 
1171
	if (clock < 25000)
1171
	if (clock < 25000)
1172
		return MODE_CLOCK_LOW;
1172
		return MODE_CLOCK_LOW;
1173
	if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
1173
	if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
1174
		return MODE_CLOCK_HIGH;
1174
		return MODE_CLOCK_HIGH;
1175
 
1175
 
1176
	/* BXT DPLL can't generate 223-240 MHz */
1176
	/* BXT DPLL can't generate 223-240 MHz */
1177
	if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
1177
	if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
1178
		return MODE_CLOCK_RANGE;
1178
		return MODE_CLOCK_RANGE;
1179
 
1179
 
1180
	/* CHV DPLL can't generate 216-240 MHz */
1180
	/* CHV DPLL can't generate 216-240 MHz */
1181
	if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1181
	if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1182
		return MODE_CLOCK_RANGE;
1182
		return MODE_CLOCK_RANGE;
1183
 
1183
 
1184
	return MODE_OK;
1184
	return MODE_OK;
1185
}
1185
}
1186
 
1186
 
1187
static enum drm_mode_status
1187
static enum drm_mode_status
1188
intel_hdmi_mode_valid(struct drm_connector *connector,
1188
intel_hdmi_mode_valid(struct drm_connector *connector,
1189
		      struct drm_display_mode *mode)
1189
		      struct drm_display_mode *mode)
1190
{
1190
{
1191
	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1191
	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1192
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1192
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1193
	enum drm_mode_status status;
1193
	enum drm_mode_status status;
1194
	int clock;
1194
	int clock;
1195
 
1195
 
1196
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1196
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1197
		return MODE_NO_DBLESCAN;
1197
		return MODE_NO_DBLESCAN;
1198
 
1198
 
1199
	clock = mode->clock;
1199
	clock = mode->clock;
1200
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
1200
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
1201
		clock *= 2;
1201
		clock *= 2;
1202
 
1202
 
1203
	/* check if we can do 8bpc */
1203
	/* check if we can do 8bpc */
1204
	status = hdmi_port_clock_valid(hdmi, clock, true);
1204
	status = hdmi_port_clock_valid(hdmi, clock, true);
1205
 
1205
 
1206
	/* if we can't do 8bpc we may still be able to do 12bpc */
1206
	/* if we can't do 8bpc we may still be able to do 12bpc */
1207
	if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
1207
	if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
1208
		status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1208
		status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1209
 
1209
 
1210
	return status;
1210
	return status;
1211
}
1211
}
1212
 
1212
 
1213
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1213
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1214
{
1214
{
1215
	struct drm_device *dev = crtc_state->base.crtc->dev;
1215
	struct drm_device *dev = crtc_state->base.crtc->dev;
1216
	struct drm_atomic_state *state;
1216
	struct drm_atomic_state *state;
1217
	struct intel_encoder *encoder;
1217
	struct intel_encoder *encoder;
1218
	struct drm_connector *connector;
1218
	struct drm_connector *connector;
1219
	struct drm_connector_state *connector_state;
1219
	struct drm_connector_state *connector_state;
1220
	int count = 0, count_hdmi = 0;
1220
	int count = 0, count_hdmi = 0;
1221
	int i;
1221
	int i;
1222
 
1222
 
1223
	if (HAS_GMCH_DISPLAY(dev))
1223
	if (HAS_GMCH_DISPLAY(dev))
1224
		return false;
1224
		return false;
1225
 
1225
 
1226
	state = crtc_state->base.state;
1226
	state = crtc_state->base.state;
1227
 
1227
 
1228
	for_each_connector_in_state(state, connector, connector_state, i) {
1228
	for_each_connector_in_state(state, connector, connector_state, i) {
1229
		if (connector_state->crtc != crtc_state->base.crtc)
1229
		if (connector_state->crtc != crtc_state->base.crtc)
1230
			continue;
1230
			continue;
1231
 
1231
 
1232
		encoder = to_intel_encoder(connector_state->best_encoder);
1232
		encoder = to_intel_encoder(connector_state->best_encoder);
1233
 
1233
 
1234
		count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
1234
		count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
1235
		count++;
1235
		count++;
1236
	}
1236
	}
1237
 
1237
 
1238
	/*
1238
	/*
1239
	 * HDMI 12bpc affects the clocks, so it's only possible
1239
	 * HDMI 12bpc affects the clocks, so it's only possible
1240
	 * when not cloning with other encoder types.
1240
	 * when not cloning with other encoder types.
1241
	 */
1241
	 */
1242
	return count_hdmi > 0 && count_hdmi == count;
1242
	return count_hdmi > 0 && count_hdmi == count;
1243
}
1243
}
1244
 
1244
 
1245
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1245
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1246
			       struct intel_crtc_state *pipe_config)
1246
			       struct intel_crtc_state *pipe_config)
1247
{
1247
{
1248
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1248
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1249
	struct drm_device *dev = encoder->base.dev;
1249
	struct drm_device *dev = encoder->base.dev;
1250
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1250
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1251
	int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
1251
	int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
1252
	int clock_12bpc = clock_8bpc * 3 / 2;
1252
	int clock_12bpc = clock_8bpc * 3 / 2;
1253
	int desired_bpp;
1253
	int desired_bpp;
1254
 
1254
 
1255
	pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
1255
	pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
1256
 
1256
 
1257
	if (pipe_config->has_hdmi_sink)
1257
	if (pipe_config->has_hdmi_sink)
1258
		pipe_config->has_infoframe = true;
1258
		pipe_config->has_infoframe = true;
1259
 
1259
 
1260
	if (intel_hdmi->color_range_auto) {
1260
	if (intel_hdmi->color_range_auto) {
1261
		/* See CEA-861-E - 5.1 Default Encoding Parameters */
1261
		/* See CEA-861-E - 5.1 Default Encoding Parameters */
1262
		pipe_config->limited_color_range =
1262
		pipe_config->limited_color_range =
1263
			pipe_config->has_hdmi_sink &&
1263
			pipe_config->has_hdmi_sink &&
1264
			drm_match_cea_mode(adjusted_mode) > 1;
1264
			drm_match_cea_mode(adjusted_mode) > 1;
1265
	} else {
1265
	} else {
1266
		pipe_config->limited_color_range =
1266
		pipe_config->limited_color_range =
1267
			intel_hdmi->limited_color_range;
1267
			intel_hdmi->limited_color_range;
1268
	}
1268
	}
1269
 
1269
 
1270
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1270
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1271
		pipe_config->pixel_multiplier = 2;
1271
		pipe_config->pixel_multiplier = 2;
1272
		clock_8bpc *= 2;
1272
		clock_8bpc *= 2;
1273
		clock_12bpc *= 2;
1273
		clock_12bpc *= 2;
1274
	}
1274
	}
1275
 
1275
 
1276
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1276
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1277
		pipe_config->has_pch_encoder = true;
1277
		pipe_config->has_pch_encoder = true;
1278
 
1278
 
1279
	if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1279
	if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1280
		pipe_config->has_audio = true;
1280
		pipe_config->has_audio = true;
1281
 
1281
 
1282
	/*
1282
	/*
1283
	 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1283
	 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1284
	 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1284
	 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1285
	 * outputs. We also need to check that the higher clock still fits
1285
	 * outputs. We also need to check that the higher clock still fits
1286
	 * within limits.
1286
	 * within limits.
1287
	 */
1287
	 */
1288
	if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1288
	if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1289
	    hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1289
	    hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1290
	    hdmi_12bpc_possible(pipe_config)) {
1290
	    hdmi_12bpc_possible(pipe_config)) {
1291
		DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1291
		DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1292
		desired_bpp = 12*3;
1292
		desired_bpp = 12*3;
1293
 
1293
 
1294
		/* Need to adjust the port link by 1.5x for 12bpc. */
1294
		/* Need to adjust the port link by 1.5x for 12bpc. */
1295
		pipe_config->port_clock = clock_12bpc;
1295
		pipe_config->port_clock = clock_12bpc;
1296
	} else {
1296
	} else {
1297
		DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1297
		DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1298
		desired_bpp = 8*3;
1298
		desired_bpp = 8*3;
1299
 
1299
 
1300
		pipe_config->port_clock = clock_8bpc;
1300
		pipe_config->port_clock = clock_8bpc;
1301
	}
1301
	}
1302
 
1302
 
1303
	if (!pipe_config->bw_constrained) {
1303
	if (!pipe_config->bw_constrained) {
1304
		DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1304
		DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1305
		pipe_config->pipe_bpp = desired_bpp;
1305
		pipe_config->pipe_bpp = desired_bpp;
1306
	}
1306
	}
1307
 
1307
 
1308
	if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
1308
	if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
1309
				  false) != MODE_OK) {
1309
				  false) != MODE_OK) {
1310
		DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1310
		DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1311
		return false;
1311
		return false;
1312
	}
1312
	}
1313
 
1313
 
1314
	/* Set user selected PAR to incoming mode's member */
1314
	/* Set user selected PAR to incoming mode's member */
1315
	adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
1315
	adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
1316
 
1316
 
1317
	return true;
1317
	return true;
1318
}
1318
}
1319
 
1319
 
1320
static void
1320
static void
1321
intel_hdmi_unset_edid(struct drm_connector *connector)
1321
intel_hdmi_unset_edid(struct drm_connector *connector)
1322
{
1322
{
1323
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1323
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1324
 
1324
 
1325
	intel_hdmi->has_hdmi_sink = false;
1325
	intel_hdmi->has_hdmi_sink = false;
1326
	intel_hdmi->has_audio = false;
1326
	intel_hdmi->has_audio = false;
1327
	intel_hdmi->rgb_quant_range_selectable = false;
1327
	intel_hdmi->rgb_quant_range_selectable = false;
1328
 
1328
 
1329
	kfree(to_intel_connector(connector)->detect_edid);
1329
	kfree(to_intel_connector(connector)->detect_edid);
1330
	to_intel_connector(connector)->detect_edid = NULL;
1330
	to_intel_connector(connector)->detect_edid = NULL;
1331
}
1331
}
1332
 
1332
 
1333
static bool
1333
static bool
1334
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1334
intel_hdmi_set_edid(struct drm_connector *connector)
1335
{
1335
{
1336
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1336
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1337
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1337
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1338
	struct edid *edid = NULL;
1338
	struct edid *edid;
1339
	bool connected = false;
1339
	bool connected = false;
1340
 
1340
 
1341
	intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1341
	intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1342
 
-
 
1343
	if (force)
1342
 
1344
		edid = drm_get_edid(connector,
1343
		edid = drm_get_edid(connector,
1345
				    intel_gmbus_get_adapter(dev_priv,
1344
				    intel_gmbus_get_adapter(dev_priv,
1346
				    intel_hdmi->ddc_bus));
1345
				    intel_hdmi->ddc_bus));
1347
 
1346
 
1348
	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1347
	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1349
 
1348
 
1350
	to_intel_connector(connector)->detect_edid = edid;
1349
	to_intel_connector(connector)->detect_edid = edid;
1351
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1350
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1352
		intel_hdmi->rgb_quant_range_selectable =
1351
		intel_hdmi->rgb_quant_range_selectable =
1353
			drm_rgb_quant_range_selectable(edid);
1352
			drm_rgb_quant_range_selectable(edid);
1354
 
1353
 
1355
		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1354
		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1356
		if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1355
		if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1357
			intel_hdmi->has_audio =
1356
			intel_hdmi->has_audio =
1358
				intel_hdmi->force_audio == HDMI_AUDIO_ON;
1357
				intel_hdmi->force_audio == HDMI_AUDIO_ON;
1359
 
1358
 
1360
		if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1359
		if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1361
			intel_hdmi->has_hdmi_sink =
1360
			intel_hdmi->has_hdmi_sink =
1362
				drm_detect_hdmi_monitor(edid);
1361
				drm_detect_hdmi_monitor(edid);
1363
 
1362
 
1364
		connected = true;
1363
		connected = true;
1365
	}
1364
	}
1366
 
1365
 
1367
	return connected;
1366
	return connected;
1368
}
1367
}
1369
 
1368
 
1370
static enum drm_connector_status
1369
static enum drm_connector_status
1371
intel_hdmi_detect(struct drm_connector *connector, bool force)
1370
intel_hdmi_detect(struct drm_connector *connector, bool force)
1372
{
1371
{
1373
	enum drm_connector_status status;
1372
	enum drm_connector_status status;
1374
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
-
 
1375
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1373
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1376
	bool live_status = false;
-
 
1377
	unsigned int try;
-
 
1378
 
1374
 
1379
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1375
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1380
		      connector->base.id, connector->name);
1376
		      connector->base.id, connector->name);
1381
 
1377
 
1382
	intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1378
	intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1383
 
-
 
1384
	for (try = 0; !live_status && try < 9; try++) {
-
 
1385
		if (try)
-
 
1386
			msleep(10);
-
 
1387
		live_status = intel_digital_port_connected(dev_priv,
-
 
1388
				hdmi_to_dig_port(intel_hdmi));
-
 
1389
	}
-
 
1390
 
-
 
1391
	if (!live_status) {
-
 
1392
		DRM_DEBUG_KMS("HDMI live status down\n");
-
 
1393
		/*
-
 
1394
		 * Live status register is not reliable on all intel platforms.
-
 
1395
		 * So consider live_status only for certain platforms, for
-
 
1396
		 * others, read EDID to determine presence of sink.
-
 
1397
		 */
-
 
1398
		if (INTEL_INFO(dev_priv)->gen < 7 || IS_IVYBRIDGE(dev_priv))
-
 
1399
			live_status = true;
-
 
1400
	}
-
 
1401
 
1379
 
1402
	intel_hdmi_unset_edid(connector);
1380
	intel_hdmi_unset_edid(connector);
1403
 
1381
 
1404
	if (intel_hdmi_set_edid(connector, live_status)) {
1382
	if (intel_hdmi_set_edid(connector)) {
1405
		struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1383
		struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1406
 
1384
 
1407
		hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1385
		hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1408
		status = connector_status_connected;
1386
		status = connector_status_connected;
1409
	} else
1387
	} else
1410
		status = connector_status_disconnected;
1388
		status = connector_status_disconnected;
1411
 
1389
 
1412
	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1390
	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1413
 
1391
 
1414
	return status;
1392
	return status;
1415
}
1393
}
1416
 
1394
 
1417
static void
1395
static void
1418
intel_hdmi_force(struct drm_connector *connector)
1396
intel_hdmi_force(struct drm_connector *connector)
1419
{
1397
{
1420
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1398
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1421
 
1399
 
1422
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1400
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1423
		      connector->base.id, connector->name);
1401
		      connector->base.id, connector->name);
1424
 
1402
 
1425
	intel_hdmi_unset_edid(connector);
1403
	intel_hdmi_unset_edid(connector);
1426
 
1404
 
1427
	if (connector->status != connector_status_connected)
1405
	if (connector->status != connector_status_connected)
1428
		return;
1406
		return;
1429
 
1407
 
1430
	intel_hdmi_set_edid(connector, true);
1408
	intel_hdmi_set_edid(connector);
1431
	hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1409
	hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1432
}
1410
}
1433
 
1411
 
1434
static int intel_hdmi_get_modes(struct drm_connector *connector)
1412
static int intel_hdmi_get_modes(struct drm_connector *connector)
1435
{
1413
{
1436
	struct edid *edid;
1414
	struct edid *edid;
1437
 
1415
 
1438
	edid = to_intel_connector(connector)->detect_edid;
1416
	edid = to_intel_connector(connector)->detect_edid;
1439
	if (edid == NULL)
1417
	if (edid == NULL)
1440
		return 0;
1418
		return 0;
1441
 
1419
 
1442
	return intel_connector_update_modes(connector, edid);
1420
	return intel_connector_update_modes(connector, edid);
1443
}
1421
}
1444
 
1422
 
1445
static bool
1423
static bool
1446
intel_hdmi_detect_audio(struct drm_connector *connector)
1424
intel_hdmi_detect_audio(struct drm_connector *connector)
1447
{
1425
{
1448
	bool has_audio = false;
1426
	bool has_audio = false;
1449
	struct edid *edid;
1427
	struct edid *edid;
1450
 
1428
 
1451
	edid = to_intel_connector(connector)->detect_edid;
1429
	edid = to_intel_connector(connector)->detect_edid;
1452
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1430
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1453
		has_audio = drm_detect_monitor_audio(edid);
1431
		has_audio = drm_detect_monitor_audio(edid);
1454
 
1432
 
1455
	return has_audio;
1433
	return has_audio;
1456
}
1434
}
1457
 
1435
 
1458
static int
1436
static int
1459
intel_hdmi_set_property(struct drm_connector *connector,
1437
intel_hdmi_set_property(struct drm_connector *connector,
1460
			struct drm_property *property,
1438
			struct drm_property *property,
1461
			uint64_t val)
1439
			uint64_t val)
1462
{
1440
{
1463
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1441
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1464
	struct intel_digital_port *intel_dig_port =
1442
	struct intel_digital_port *intel_dig_port =
1465
		hdmi_to_dig_port(intel_hdmi);
1443
		hdmi_to_dig_port(intel_hdmi);
1466
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1444
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1467
	int ret;
1445
	int ret;
1468
 
1446
 
1469
	ret = drm_object_property_set_value(&connector->base, property, val);
1447
	ret = drm_object_property_set_value(&connector->base, property, val);
1470
	if (ret)
1448
	if (ret)
1471
		return ret;
1449
		return ret;
1472
 
1450
 
1473
	if (property == dev_priv->force_audio_property) {
1451
	if (property == dev_priv->force_audio_property) {
1474
		enum hdmi_force_audio i = val;
1452
		enum hdmi_force_audio i = val;
1475
		bool has_audio;
1453
		bool has_audio;
1476
 
1454
 
1477
		if (i == intel_hdmi->force_audio)
1455
		if (i == intel_hdmi->force_audio)
1478
			return 0;
1456
			return 0;
1479
 
1457
 
1480
		intel_hdmi->force_audio = i;
1458
		intel_hdmi->force_audio = i;
1481
 
1459
 
1482
		if (i == HDMI_AUDIO_AUTO)
1460
		if (i == HDMI_AUDIO_AUTO)
1483
			has_audio = intel_hdmi_detect_audio(connector);
1461
			has_audio = intel_hdmi_detect_audio(connector);
1484
		else
1462
		else
1485
			has_audio = (i == HDMI_AUDIO_ON);
1463
			has_audio = (i == HDMI_AUDIO_ON);
1486
 
1464
 
1487
		if (i == HDMI_AUDIO_OFF_DVI)
1465
		if (i == HDMI_AUDIO_OFF_DVI)
1488
			intel_hdmi->has_hdmi_sink = 0;
1466
			intel_hdmi->has_hdmi_sink = 0;
1489
 
1467
 
1490
		intel_hdmi->has_audio = has_audio;
1468
		intel_hdmi->has_audio = has_audio;
1491
		goto done;
1469
		goto done;
1492
	}
1470
	}
1493
 
1471
 
1494
	if (property == dev_priv->broadcast_rgb_property) {
1472
	if (property == dev_priv->broadcast_rgb_property) {
1495
		bool old_auto = intel_hdmi->color_range_auto;
1473
		bool old_auto = intel_hdmi->color_range_auto;
1496
		bool old_range = intel_hdmi->limited_color_range;
1474
		bool old_range = intel_hdmi->limited_color_range;
1497
 
1475
 
1498
		switch (val) {
1476
		switch (val) {
1499
		case INTEL_BROADCAST_RGB_AUTO:
1477
		case INTEL_BROADCAST_RGB_AUTO:
1500
			intel_hdmi->color_range_auto = true;
1478
			intel_hdmi->color_range_auto = true;
1501
			break;
1479
			break;
1502
		case INTEL_BROADCAST_RGB_FULL:
1480
		case INTEL_BROADCAST_RGB_FULL:
1503
			intel_hdmi->color_range_auto = false;
1481
			intel_hdmi->color_range_auto = false;
1504
			intel_hdmi->limited_color_range = false;
1482
			intel_hdmi->limited_color_range = false;
1505
			break;
1483
			break;
1506
		case INTEL_BROADCAST_RGB_LIMITED:
1484
		case INTEL_BROADCAST_RGB_LIMITED:
1507
			intel_hdmi->color_range_auto = false;
1485
			intel_hdmi->color_range_auto = false;
1508
			intel_hdmi->limited_color_range = true;
1486
			intel_hdmi->limited_color_range = true;
1509
			break;
1487
			break;
1510
		default:
1488
		default:
1511
			return -EINVAL;
1489
			return -EINVAL;
1512
		}
1490
		}
1513
 
1491
 
1514
		if (old_auto == intel_hdmi->color_range_auto &&
1492
		if (old_auto == intel_hdmi->color_range_auto &&
1515
		    old_range == intel_hdmi->limited_color_range)
1493
		    old_range == intel_hdmi->limited_color_range)
1516
			return 0;
1494
			return 0;
1517
 
1495
 
1518
		goto done;
1496
		goto done;
1519
	}
1497
	}
1520
 
1498
 
1521
	if (property == connector->dev->mode_config.aspect_ratio_property) {
1499
	if (property == connector->dev->mode_config.aspect_ratio_property) {
1522
		switch (val) {
1500
		switch (val) {
1523
		case DRM_MODE_PICTURE_ASPECT_NONE:
1501
		case DRM_MODE_PICTURE_ASPECT_NONE:
1524
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1502
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1525
			break;
1503
			break;
1526
		case DRM_MODE_PICTURE_ASPECT_4_3:
1504
		case DRM_MODE_PICTURE_ASPECT_4_3:
1527
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1505
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1528
			break;
1506
			break;
1529
		case DRM_MODE_PICTURE_ASPECT_16_9:
1507
		case DRM_MODE_PICTURE_ASPECT_16_9:
1530
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1508
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1531
			break;
1509
			break;
1532
		default:
1510
		default:
1533
			return -EINVAL;
1511
			return -EINVAL;
1534
		}
1512
		}
1535
		goto done;
1513
		goto done;
1536
	}
1514
	}
1537
 
1515
 
1538
	return -EINVAL;
1516
	return -EINVAL;
1539
 
1517
 
1540
done:
1518
done:
1541
	if (intel_dig_port->base.base.crtc)
1519
	if (intel_dig_port->base.base.crtc)
1542
		intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1520
		intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1543
 
1521
 
1544
	return 0;
1522
	return 0;
1545
}
1523
}
1546
 
1524
 
1547
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1525
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1548
{
1526
{
1549
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1527
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1550
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1528
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1551
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1529
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1552
 
1530
 
1553
	intel_hdmi_prepare(encoder);
1531
	intel_hdmi_prepare(encoder);
1554
 
1532
 
1555
	intel_hdmi->set_infoframes(&encoder->base,
1533
	intel_hdmi->set_infoframes(&encoder->base,
1556
				   intel_crtc->config->has_hdmi_sink,
1534
				   intel_crtc->config->has_hdmi_sink,
1557
				   adjusted_mode);
1535
				   adjusted_mode);
1558
}
1536
}
1559
 
1537
 
1560
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1538
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1561
{
1539
{
1562
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1540
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1563
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1541
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1564
	struct drm_device *dev = encoder->base.dev;
1542
	struct drm_device *dev = encoder->base.dev;
1565
	struct drm_i915_private *dev_priv = dev->dev_private;
1543
	struct drm_i915_private *dev_priv = dev->dev_private;
1566
	struct intel_crtc *intel_crtc =
1544
	struct intel_crtc *intel_crtc =
1567
		to_intel_crtc(encoder->base.crtc);
1545
		to_intel_crtc(encoder->base.crtc);
1568
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1546
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1569
	enum dpio_channel port = vlv_dport_to_channel(dport);
1547
	enum dpio_channel port = vlv_dport_to_channel(dport);
1570
	int pipe = intel_crtc->pipe;
1548
	int pipe = intel_crtc->pipe;
1571
	u32 val;
1549
	u32 val;
1572
 
1550
 
1573
	/* Enable clock channels for this port */
1551
	/* Enable clock channels for this port */
1574
	mutex_lock(&dev_priv->sb_lock);
1552
	mutex_lock(&dev_priv->sb_lock);
1575
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1553
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1576
	val = 0;
1554
	val = 0;
1577
	if (pipe)
1555
	if (pipe)
1578
		val |= (1<<21);
1556
		val |= (1<<21);
1579
	else
1557
	else
1580
		val &= ~(1<<21);
1558
		val &= ~(1<<21);
1581
	val |= 0x001000c4;
1559
	val |= 0x001000c4;
1582
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1560
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1583
 
1561
 
1584
	/* HDMI 1.0V-2dB */
1562
	/* HDMI 1.0V-2dB */
1585
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1563
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1586
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1564
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1587
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1565
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1588
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1566
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1589
	vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1567
	vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1590
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1568
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1591
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1569
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1592
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1570
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1593
 
1571
 
1594
	/* Program lane clock */
1572
	/* Program lane clock */
1595
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1573
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1596
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1574
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1597
	mutex_unlock(&dev_priv->sb_lock);
1575
	mutex_unlock(&dev_priv->sb_lock);
1598
 
1576
 
1599
	intel_hdmi->set_infoframes(&encoder->base,
1577
	intel_hdmi->set_infoframes(&encoder->base,
1600
				   intel_crtc->config->has_hdmi_sink,
1578
				   intel_crtc->config->has_hdmi_sink,
1601
				   adjusted_mode);
1579
				   adjusted_mode);
1602
 
1580
 
1603
	g4x_enable_hdmi(encoder);
1581
	g4x_enable_hdmi(encoder);
1604
 
1582
 
1605
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1583
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1606
}
1584
}
1607
 
1585
 
1608
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1586
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1609
{
1587
{
1610
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1588
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1611
	struct drm_device *dev = encoder->base.dev;
1589
	struct drm_device *dev = encoder->base.dev;
1612
	struct drm_i915_private *dev_priv = dev->dev_private;
1590
	struct drm_i915_private *dev_priv = dev->dev_private;
1613
	struct intel_crtc *intel_crtc =
1591
	struct intel_crtc *intel_crtc =
1614
		to_intel_crtc(encoder->base.crtc);
1592
		to_intel_crtc(encoder->base.crtc);
1615
	enum dpio_channel port = vlv_dport_to_channel(dport);
1593
	enum dpio_channel port = vlv_dport_to_channel(dport);
1616
	int pipe = intel_crtc->pipe;
1594
	int pipe = intel_crtc->pipe;
1617
 
1595
 
1618
	intel_hdmi_prepare(encoder);
1596
	intel_hdmi_prepare(encoder);
1619
 
1597
 
1620
	/* Program Tx lane resets to default */
1598
	/* Program Tx lane resets to default */
1621
	mutex_lock(&dev_priv->sb_lock);
1599
	mutex_lock(&dev_priv->sb_lock);
1622
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1600
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1623
			 DPIO_PCS_TX_LANE2_RESET |
1601
			 DPIO_PCS_TX_LANE2_RESET |
1624
			 DPIO_PCS_TX_LANE1_RESET);
1602
			 DPIO_PCS_TX_LANE1_RESET);
1625
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1603
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1626
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1604
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1627
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1605
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1628
			 (1<
1606
			 (1<
1629
			 DPIO_PCS_CLK_SOFT_RESET);
1607
			 DPIO_PCS_CLK_SOFT_RESET);
1630
 
1608
 
1631
	/* Fix up inter-pair skew failure */
1609
	/* Fix up inter-pair skew failure */
1632
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1610
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1633
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1611
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1634
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1612
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1635
 
1613
 
1636
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1614
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1637
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1615
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1638
	mutex_unlock(&dev_priv->sb_lock);
1616
	mutex_unlock(&dev_priv->sb_lock);
1639
}
1617
}
1640
 
1618
 
1641
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
1619
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
1642
				     bool reset)
1620
				     bool reset)
1643
{
1621
{
1644
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1622
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1645
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1623
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1646
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1624
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1647
	enum pipe pipe = crtc->pipe;
1625
	enum pipe pipe = crtc->pipe;
1648
	uint32_t val;
1626
	uint32_t val;
1649
 
1627
 
1650
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1628
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1651
	if (reset)
1629
	if (reset)
1652
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1630
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1653
	else
1631
	else
1654
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1632
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1655
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1633
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1656
 
1634
 
1657
	if (crtc->config->lane_count > 2) {
1635
	if (crtc->config->lane_count > 2) {
1658
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1636
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1659
		if (reset)
1637
		if (reset)
1660
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1638
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1661
		else
1639
		else
1662
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1640
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1663
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1641
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1664
	}
1642
	}
1665
 
1643
 
1666
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1644
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1667
	val |= CHV_PCS_REQ_SOFTRESET_EN;
1645
	val |= CHV_PCS_REQ_SOFTRESET_EN;
1668
	if (reset)
1646
	if (reset)
1669
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
1647
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
1670
	else
1648
	else
1671
		val |= DPIO_PCS_CLK_SOFT_RESET;
1649
		val |= DPIO_PCS_CLK_SOFT_RESET;
1672
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1650
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1673
 
1651
 
1674
	if (crtc->config->lane_count > 2) {
1652
	if (crtc->config->lane_count > 2) {
1675
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1653
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1676
		val |= CHV_PCS_REQ_SOFTRESET_EN;
1654
		val |= CHV_PCS_REQ_SOFTRESET_EN;
1677
		if (reset)
1655
		if (reset)
1678
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
1656
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
1679
		else
1657
		else
1680
			val |= DPIO_PCS_CLK_SOFT_RESET;
1658
			val |= DPIO_PCS_CLK_SOFT_RESET;
1681
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1659
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1682
	}
1660
	}
1683
}
1661
}
1684
 
1662
 
1685
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1663
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1686
{
1664
{
1687
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1665
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1688
	struct drm_device *dev = encoder->base.dev;
1666
	struct drm_device *dev = encoder->base.dev;
1689
	struct drm_i915_private *dev_priv = dev->dev_private;
1667
	struct drm_i915_private *dev_priv = dev->dev_private;
1690
	struct intel_crtc *intel_crtc =
1668
	struct intel_crtc *intel_crtc =
1691
		to_intel_crtc(encoder->base.crtc);
1669
		to_intel_crtc(encoder->base.crtc);
1692
	enum dpio_channel ch = vlv_dport_to_channel(dport);
1670
	enum dpio_channel ch = vlv_dport_to_channel(dport);
1693
	enum pipe pipe = intel_crtc->pipe;
1671
	enum pipe pipe = intel_crtc->pipe;
1694
	u32 val;
1672
	u32 val;
1695
 
1673
 
1696
	intel_hdmi_prepare(encoder);
1674
	intel_hdmi_prepare(encoder);
1697
 
1675
 
1698
	/*
1676
	/*
1699
	 * Must trick the second common lane into life.
1677
	 * Must trick the second common lane into life.
1700
	 * Otherwise we can't even access the PLL.
1678
	 * Otherwise we can't even access the PLL.
1701
	 */
1679
	 */
1702
	if (ch == DPIO_CH0 && pipe == PIPE_B)
1680
	if (ch == DPIO_CH0 && pipe == PIPE_B)
1703
		dport->release_cl2_override =
1681
		dport->release_cl2_override =
1704
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
1682
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
1705
 
1683
 
1706
	chv_phy_powergate_lanes(encoder, true, 0x0);
1684
	chv_phy_powergate_lanes(encoder, true, 0x0);
1707
 
1685
 
1708
	mutex_lock(&dev_priv->sb_lock);
1686
	mutex_lock(&dev_priv->sb_lock);
1709
 
1687
 
1710
	/* Assert data lane reset */
1688
	/* Assert data lane reset */
1711
	chv_data_lane_soft_reset(encoder, true);
1689
	chv_data_lane_soft_reset(encoder, true);
1712
 
1690
 
1713
	/* program left/right clock distribution */
1691
	/* program left/right clock distribution */
1714
	if (pipe != PIPE_B) {
1692
	if (pipe != PIPE_B) {
1715
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1693
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1716
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1694
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1717
		if (ch == DPIO_CH0)
1695
		if (ch == DPIO_CH0)
1718
			val |= CHV_BUFLEFTENA1_FORCE;
1696
			val |= CHV_BUFLEFTENA1_FORCE;
1719
		if (ch == DPIO_CH1)
1697
		if (ch == DPIO_CH1)
1720
			val |= CHV_BUFRIGHTENA1_FORCE;
1698
			val |= CHV_BUFRIGHTENA1_FORCE;
1721
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1699
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1722
	} else {
1700
	} else {
1723
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1701
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1724
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1702
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1725
		if (ch == DPIO_CH0)
1703
		if (ch == DPIO_CH0)
1726
			val |= CHV_BUFLEFTENA2_FORCE;
1704
			val |= CHV_BUFLEFTENA2_FORCE;
1727
		if (ch == DPIO_CH1)
1705
		if (ch == DPIO_CH1)
1728
			val |= CHV_BUFRIGHTENA2_FORCE;
1706
			val |= CHV_BUFRIGHTENA2_FORCE;
1729
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1707
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1730
	}
1708
	}
1731
 
1709
 
1732
	/* program clock channel usage */
1710
	/* program clock channel usage */
1733
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1711
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1734
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1712
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1735
	if (pipe != PIPE_B)
1713
	if (pipe != PIPE_B)
1736
		val &= ~CHV_PCS_USEDCLKCHANNEL;
1714
		val &= ~CHV_PCS_USEDCLKCHANNEL;
1737
	else
1715
	else
1738
		val |= CHV_PCS_USEDCLKCHANNEL;
1716
		val |= CHV_PCS_USEDCLKCHANNEL;
1739
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1717
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1740
 
1718
 
1741
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1719
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1742
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1720
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1743
	if (pipe != PIPE_B)
1721
	if (pipe != PIPE_B)
1744
		val &= ~CHV_PCS_USEDCLKCHANNEL;
1722
		val &= ~CHV_PCS_USEDCLKCHANNEL;
1745
	else
1723
	else
1746
		val |= CHV_PCS_USEDCLKCHANNEL;
1724
		val |= CHV_PCS_USEDCLKCHANNEL;
1747
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1725
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1748
 
1726
 
1749
	/*
1727
	/*
1750
	 * This a a bit weird since generally CL
1728
	 * This a a bit weird since generally CL
1751
	 * matches the pipe, but here we need to
1729
	 * matches the pipe, but here we need to
1752
	 * pick the CL based on the port.
1730
	 * pick the CL based on the port.
1753
	 */
1731
	 */
1754
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1732
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1755
	if (pipe != PIPE_B)
1733
	if (pipe != PIPE_B)
1756
		val &= ~CHV_CMN_USEDCLKCHANNEL;
1734
		val &= ~CHV_CMN_USEDCLKCHANNEL;
1757
	else
1735
	else
1758
		val |= CHV_CMN_USEDCLKCHANNEL;
1736
		val |= CHV_CMN_USEDCLKCHANNEL;
1759
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1737
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1760
 
1738
 
1761
	mutex_unlock(&dev_priv->sb_lock);
1739
	mutex_unlock(&dev_priv->sb_lock);
1762
}
1740
}
1763
 
1741
 
1764
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
1742
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
1765
{
1743
{
1766
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1744
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1767
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
1745
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
1768
	u32 val;
1746
	u32 val;
1769
 
1747
 
1770
	mutex_lock(&dev_priv->sb_lock);
1748
	mutex_lock(&dev_priv->sb_lock);
1771
 
1749
 
1772
	/* disable left/right clock distribution */
1750
	/* disable left/right clock distribution */
1773
	if (pipe != PIPE_B) {
1751
	if (pipe != PIPE_B) {
1774
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1752
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1775
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1753
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1776
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1754
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1777
	} else {
1755
	} else {
1778
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1756
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1779
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1757
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1780
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1758
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1781
	}
1759
	}
1782
 
1760
 
1783
	mutex_unlock(&dev_priv->sb_lock);
1761
	mutex_unlock(&dev_priv->sb_lock);
1784
 
1762
 
1785
	/*
1763
	/*
1786
	 * Leave the power down bit cleared for at least one
1764
	 * Leave the power down bit cleared for at least one
1787
	 * lane so that chv_powergate_phy_ch() will power
1765
	 * lane so that chv_powergate_phy_ch() will power
1788
	 * on something when the channel is otherwise unused.
1766
	 * on something when the channel is otherwise unused.
1789
	 * When the port is off and the override is removed
1767
	 * When the port is off and the override is removed
1790
	 * the lanes power down anyway, so otherwise it doesn't
1768
	 * the lanes power down anyway, so otherwise it doesn't
1791
	 * really matter what the state of power down bits is
1769
	 * really matter what the state of power down bits is
1792
	 * after this.
1770
	 * after this.
1793
	 */
1771
	 */
1794
	chv_phy_powergate_lanes(encoder, false, 0x0);
1772
	chv_phy_powergate_lanes(encoder, false, 0x0);
1795
}
1773
}
1796
 
1774
 
1797
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1775
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1798
{
1776
{
1799
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1777
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1800
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1778
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1801
	struct intel_crtc *intel_crtc =
1779
	struct intel_crtc *intel_crtc =
1802
		to_intel_crtc(encoder->base.crtc);
1780
		to_intel_crtc(encoder->base.crtc);
1803
	enum dpio_channel port = vlv_dport_to_channel(dport);
1781
	enum dpio_channel port = vlv_dport_to_channel(dport);
1804
	int pipe = intel_crtc->pipe;
1782
	int pipe = intel_crtc->pipe;
1805
 
1783
 
1806
	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
1784
	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
1807
	mutex_lock(&dev_priv->sb_lock);
1785
	mutex_lock(&dev_priv->sb_lock);
1808
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1786
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1809
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1787
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1810
	mutex_unlock(&dev_priv->sb_lock);
1788
	mutex_unlock(&dev_priv->sb_lock);
1811
}
1789
}
1812
 
1790
 
1813
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1791
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1814
{
1792
{
1815
	struct drm_device *dev = encoder->base.dev;
1793
	struct drm_device *dev = encoder->base.dev;
1816
	struct drm_i915_private *dev_priv = dev->dev_private;
1794
	struct drm_i915_private *dev_priv = dev->dev_private;
1817
 
1795
 
1818
	mutex_lock(&dev_priv->sb_lock);
1796
	mutex_lock(&dev_priv->sb_lock);
1819
 
1797
 
1820
	/* Assert data lane reset */
1798
	/* Assert data lane reset */
1821
	chv_data_lane_soft_reset(encoder, true);
1799
	chv_data_lane_soft_reset(encoder, true);
1822
 
1800
 
1823
	mutex_unlock(&dev_priv->sb_lock);
1801
	mutex_unlock(&dev_priv->sb_lock);
1824
}
1802
}
1825
 
1803
 
1826
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1804
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1827
{
1805
{
1828
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1806
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1829
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1807
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1830
	struct drm_device *dev = encoder->base.dev;
1808
	struct drm_device *dev = encoder->base.dev;
1831
	struct drm_i915_private *dev_priv = dev->dev_private;
1809
	struct drm_i915_private *dev_priv = dev->dev_private;
1832
	struct intel_crtc *intel_crtc =
1810
	struct intel_crtc *intel_crtc =
1833
		to_intel_crtc(encoder->base.crtc);
1811
		to_intel_crtc(encoder->base.crtc);
1834
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1812
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1835
	enum dpio_channel ch = vlv_dport_to_channel(dport);
1813
	enum dpio_channel ch = vlv_dport_to_channel(dport);
1836
	int pipe = intel_crtc->pipe;
1814
	int pipe = intel_crtc->pipe;
1837
	int data, i, stagger;
1815
	int data, i, stagger;
1838
	u32 val;
1816
	u32 val;
1839
 
1817
 
1840
	mutex_lock(&dev_priv->sb_lock);
1818
	mutex_lock(&dev_priv->sb_lock);
1841
 
1819
 
1842
	/* allow hardware to manage TX FIFO reset source */
1820
	/* allow hardware to manage TX FIFO reset source */
1843
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1821
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1844
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1822
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1845
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1823
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1846
 
1824
 
1847
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1825
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1848
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1826
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1849
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1827
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1850
 
1828
 
1851
	/* Program Tx latency optimal setting */
1829
	/* Program Tx latency optimal setting */
1852
	for (i = 0; i < 4; i++) {
1830
	for (i = 0; i < 4; i++) {
1853
		/* Set the upar bit */
1831
		/* Set the upar bit */
1854
		data = (i == 1) ? 0x0 : 0x1;
1832
		data = (i == 1) ? 0x0 : 0x1;
1855
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1833
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1856
				data << DPIO_UPAR_SHIFT);
1834
				data << DPIO_UPAR_SHIFT);
1857
	}
1835
	}
1858
 
1836
 
1859
	/* Data lane stagger programming */
1837
	/* Data lane stagger programming */
1860
	if (intel_crtc->config->port_clock > 270000)
1838
	if (intel_crtc->config->port_clock > 270000)
1861
		stagger = 0x18;
1839
		stagger = 0x18;
1862
	else if (intel_crtc->config->port_clock > 135000)
1840
	else if (intel_crtc->config->port_clock > 135000)
1863
		stagger = 0xd;
1841
		stagger = 0xd;
1864
	else if (intel_crtc->config->port_clock > 67500)
1842
	else if (intel_crtc->config->port_clock > 67500)
1865
		stagger = 0x7;
1843
		stagger = 0x7;
1866
	else if (intel_crtc->config->port_clock > 33750)
1844
	else if (intel_crtc->config->port_clock > 33750)
1867
		stagger = 0x4;
1845
		stagger = 0x4;
1868
	else
1846
	else
1869
		stagger = 0x2;
1847
		stagger = 0x2;
1870
 
1848
 
1871
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1849
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1872
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
1850
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
1873
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1851
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1874
 
1852
 
1875
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1853
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1876
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
1854
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
1877
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1855
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1878
 
1856
 
1879
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
1857
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
1880
		       DPIO_LANESTAGGER_STRAP(stagger) |
1858
		       DPIO_LANESTAGGER_STRAP(stagger) |
1881
		       DPIO_LANESTAGGER_STRAP_OVRD |
1859
		       DPIO_LANESTAGGER_STRAP_OVRD |
1882
		       DPIO_TX1_STAGGER_MASK(0x1f) |
1860
		       DPIO_TX1_STAGGER_MASK(0x1f) |
1883
		       DPIO_TX1_STAGGER_MULT(6) |
1861
		       DPIO_TX1_STAGGER_MULT(6) |
1884
		       DPIO_TX2_STAGGER_MULT(0));
1862
		       DPIO_TX2_STAGGER_MULT(0));
1885
 
1863
 
1886
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
1864
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
1887
		       DPIO_LANESTAGGER_STRAP(stagger) |
1865
		       DPIO_LANESTAGGER_STRAP(stagger) |
1888
		       DPIO_LANESTAGGER_STRAP_OVRD |
1866
		       DPIO_LANESTAGGER_STRAP_OVRD |
1889
		       DPIO_TX1_STAGGER_MASK(0x1f) |
1867
		       DPIO_TX1_STAGGER_MASK(0x1f) |
1890
		       DPIO_TX1_STAGGER_MULT(7) |
1868
		       DPIO_TX1_STAGGER_MULT(7) |
1891
		       DPIO_TX2_STAGGER_MULT(5));
1869
		       DPIO_TX2_STAGGER_MULT(5));
1892
 
1870
 
1893
	/* Deassert data lane reset */
1871
	/* Deassert data lane reset */
1894
	chv_data_lane_soft_reset(encoder, false);
1872
	chv_data_lane_soft_reset(encoder, false);
1895
 
1873
 
1896
	/* Clear calc init */
1874
	/* Clear calc init */
1897
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1875
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1898
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1876
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1899
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1877
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1900
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1878
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1901
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1879
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1902
 
1880
 
1903
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1881
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1904
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1882
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1905
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1883
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1906
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1884
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1907
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1885
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1908
 
1886
 
1909
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1887
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1910
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1888
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1911
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1889
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1912
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1890
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1913
 
1891
 
1914
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1892
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1915
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1893
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1916
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1894
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1917
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1895
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1918
 
1896
 
1919
	/* FIXME: Program the support xxx V-dB */
1897
	/* FIXME: Program the support xxx V-dB */
1920
	/* Use 800mV-0dB */
1898
	/* Use 800mV-0dB */
1921
	for (i = 0; i < 4; i++) {
1899
	for (i = 0; i < 4; i++) {
1922
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1900
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1923
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1901
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1924
		val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1902
		val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1925
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1903
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1926
	}
1904
	}
1927
 
1905
 
1928
	for (i = 0; i < 4; i++) {
1906
	for (i = 0; i < 4; i++) {
1929
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1907
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1930
 
1908
 
1931
		val &= ~DPIO_SWING_MARGIN000_MASK;
1909
		val &= ~DPIO_SWING_MARGIN000_MASK;
1932
		val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1910
		val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1933
 
1911
 
1934
		/*
1912
		/*
1935
		 * Supposedly this value shouldn't matter when unique transition
1913
		 * Supposedly this value shouldn't matter when unique transition
1936
		 * scale is disabled, but in fact it does matter. Let's just
1914
		 * scale is disabled, but in fact it does matter. Let's just
1937
		 * always program the same value and hope it's OK.
1915
		 * always program the same value and hope it's OK.
1938
		 */
1916
		 */
1939
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
1917
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
1940
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
1918
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
1941
 
1919
 
1942
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1920
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1943
	}
1921
	}
1944
 
1922
 
1945
	/*
1923
	/*
1946
	 * The document said it needs to set bit 27 for ch0 and bit 26
1924
	 * The document said it needs to set bit 27 for ch0 and bit 26
1947
	 * for ch1. Might be a typo in the doc.
1925
	 * for ch1. Might be a typo in the doc.
1948
	 * For now, for this unique transition scale selection, set bit
1926
	 * For now, for this unique transition scale selection, set bit
1949
	 * 27 for ch0 and ch1.
1927
	 * 27 for ch0 and ch1.
1950
	 */
1928
	 */
1951
	for (i = 0; i < 4; i++) {
1929
	for (i = 0; i < 4; i++) {
1952
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1930
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1953
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1931
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1954
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1932
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1955
	}
1933
	}
1956
 
1934
 
1957
	/* Start swing calculation */
1935
	/* Start swing calculation */
1958
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1936
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1959
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1937
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1960
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1938
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1961
 
1939
 
1962
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1940
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1963
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1941
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1964
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1942
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1965
 
1943
 
1966
	mutex_unlock(&dev_priv->sb_lock);
1944
	mutex_unlock(&dev_priv->sb_lock);
1967
 
1945
 
1968
	intel_hdmi->set_infoframes(&encoder->base,
1946
	intel_hdmi->set_infoframes(&encoder->base,
1969
				   intel_crtc->config->has_hdmi_sink,
1947
				   intel_crtc->config->has_hdmi_sink,
1970
				   adjusted_mode);
1948
				   adjusted_mode);
1971
 
1949
 
1972
	g4x_enable_hdmi(encoder);
1950
	g4x_enable_hdmi(encoder);
1973
 
1951
 
1974
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1952
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1975
 
1953
 
1976
	/* Second common lane will stay alive on its own now */
1954
	/* Second common lane will stay alive on its own now */
1977
	if (dport->release_cl2_override) {
1955
	if (dport->release_cl2_override) {
1978
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1956
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1979
		dport->release_cl2_override = false;
1957
		dport->release_cl2_override = false;
1980
	}
1958
	}
1981
}
1959
}
1982
 
1960
 
1983
static void intel_hdmi_destroy(struct drm_connector *connector)
1961
static void intel_hdmi_destroy(struct drm_connector *connector)
1984
{
1962
{
1985
	kfree(to_intel_connector(connector)->detect_edid);
1963
	kfree(to_intel_connector(connector)->detect_edid);
1986
	drm_connector_cleanup(connector);
1964
	drm_connector_cleanup(connector);
1987
	kfree(connector);
1965
	kfree(connector);
1988
}
1966
}
1989
 
1967
 
1990
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1968
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1991
	.dpms = drm_atomic_helper_connector_dpms,
1969
	.dpms = drm_atomic_helper_connector_dpms,
1992
	.detect = intel_hdmi_detect,
1970
	.detect = intel_hdmi_detect,
1993
	.force = intel_hdmi_force,
1971
	.force = intel_hdmi_force,
1994
	.fill_modes = drm_helper_probe_single_connector_modes,
1972
	.fill_modes = drm_helper_probe_single_connector_modes,
1995
	.set_property = intel_hdmi_set_property,
1973
	.set_property = intel_hdmi_set_property,
1996
	.atomic_get_property = intel_connector_atomic_get_property,
1974
	.atomic_get_property = intel_connector_atomic_get_property,
1997
	.destroy = intel_hdmi_destroy,
1975
	.destroy = intel_hdmi_destroy,
1998
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1976
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1999
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1977
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
2000
};
1978
};
2001
 
1979
 
2002
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1980
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2003
	.get_modes = intel_hdmi_get_modes,
1981
	.get_modes = intel_hdmi_get_modes,
2004
	.mode_valid = intel_hdmi_mode_valid,
1982
	.mode_valid = intel_hdmi_mode_valid,
2005
	.best_encoder = intel_best_encoder,
1983
	.best_encoder = intel_best_encoder,
2006
};
1984
};
2007
 
1985
 
2008
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1986
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
2009
	.destroy = intel_encoder_destroy,
1987
	.destroy = intel_encoder_destroy,
2010
};
1988
};
2011
 
1989
 
2012
static void
1990
static void
2013
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1991
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2014
{
1992
{
2015
	intel_attach_force_audio_property(connector);
1993
	intel_attach_force_audio_property(connector);
2016
	intel_attach_broadcast_rgb_property(connector);
1994
	intel_attach_broadcast_rgb_property(connector);
2017
	intel_hdmi->color_range_auto = true;
1995
	intel_hdmi->color_range_auto = true;
2018
	intel_attach_aspect_ratio_property(connector);
1996
	intel_attach_aspect_ratio_property(connector);
2019
	intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1997
	intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2020
}
1998
}
-
 
1999
 
-
 
2000
static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv,
-
 
2001
			     enum port port)
-
 
2002
{
-
 
2003
	const struct ddi_vbt_port_info *info =
-
 
2004
		&dev_priv->vbt.ddi_port_info[port];
-
 
2005
	u8 ddc_pin;
-
 
2006
 
-
 
2007
	if (info->alternate_ddc_pin) {
-
 
2008
		DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
-
 
2009
			      info->alternate_ddc_pin, port_name(port));
-
 
2010
		return info->alternate_ddc_pin;
-
 
2011
	}
-
 
2012
 
-
 
2013
	switch (port) {
-
 
2014
	case PORT_B:
-
 
2015
		if (IS_BROXTON(dev_priv))
-
 
2016
			ddc_pin = GMBUS_PIN_1_BXT;
-
 
2017
		else
-
 
2018
			ddc_pin = GMBUS_PIN_DPB;
-
 
2019
		break;
-
 
2020
	case PORT_C:
-
 
2021
		if (IS_BROXTON(dev_priv))
-
 
2022
			ddc_pin = GMBUS_PIN_2_BXT;
-
 
2023
		else
-
 
2024
			ddc_pin = GMBUS_PIN_DPC;
-
 
2025
		break;
-
 
2026
	case PORT_D:
-
 
2027
		if (IS_CHERRYVIEW(dev_priv))
-
 
2028
			ddc_pin = GMBUS_PIN_DPD_CHV;
-
 
2029
		else
-
 
2030
			ddc_pin = GMBUS_PIN_DPD;
-
 
2031
		break;
-
 
2032
	default:
-
 
2033
		MISSING_CASE(port);
-
 
2034
		ddc_pin = GMBUS_PIN_DPB;
-
 
2035
		break;
-
 
2036
	}
-
 
2037
 
-
 
2038
	DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
-
 
2039
		      ddc_pin, port_name(port));
-
 
2040
 
-
 
2041
	return ddc_pin;
-
 
2042
}
2021
 
2043
 
2022
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
2044
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
2023
			       struct intel_connector *intel_connector)
2045
			       struct intel_connector *intel_connector)
2024
{
2046
{
2025
	struct drm_connector *connector = &intel_connector->base;
2047
	struct drm_connector *connector = &intel_connector->base;
2026
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
2048
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
2027
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2049
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2028
	struct drm_device *dev = intel_encoder->base.dev;
2050
	struct drm_device *dev = intel_encoder->base.dev;
2029
	struct drm_i915_private *dev_priv = dev->dev_private;
2051
	struct drm_i915_private *dev_priv = dev->dev_private;
2030
	enum port port = intel_dig_port->port;
2052
	enum port port = intel_dig_port->port;
2031
	uint8_t alternate_ddc_pin;
-
 
2032
 
2053
 
2033
	DRM_DEBUG_KMS("Adding HDMI connector on port %c\n",
2054
	DRM_DEBUG_KMS("Adding HDMI connector on port %c\n",
2034
		      port_name(port));
2055
		      port_name(port));
2035
 
2056
 
2036
	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2057
	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2037
			   DRM_MODE_CONNECTOR_HDMIA);
2058
			   DRM_MODE_CONNECTOR_HDMIA);
2038
	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2059
	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2039
 
2060
 
2040
	connector->interlace_allowed = 1;
2061
	connector->interlace_allowed = 1;
2041
	connector->doublescan_allowed = 0;
2062
	connector->doublescan_allowed = 0;
2042
	connector->stereo_allowed = 1;
2063
	connector->stereo_allowed = 1;
-
 
2064
 
-
 
2065
	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port);
2043
 
2066
 
2044
	switch (port) {
2067
	switch (port) {
2045
	case PORT_B:
-
 
2046
		if (IS_BROXTON(dev_priv))
-
 
2047
			intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
-
 
2048
		else
-
 
2049
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2068
	case PORT_B:
2050
		/*
2069
		/*
2051
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2070
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2052
		 * interrupts to check the external panel connection.
2071
		 * interrupts to check the external panel connection.
2053
		 */
2072
		 */
2054
		if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
2073
		if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
2055
			intel_encoder->hpd_pin = HPD_PORT_A;
2074
			intel_encoder->hpd_pin = HPD_PORT_A;
2056
		else
2075
		else
2057
			intel_encoder->hpd_pin = HPD_PORT_B;
2076
			intel_encoder->hpd_pin = HPD_PORT_B;
2058
		break;
2077
		break;
2059
	case PORT_C:
2078
	case PORT_C:
2060
		if (IS_BROXTON(dev_priv))
-
 
2061
			intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
-
 
2062
		else
-
 
2063
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
-
 
2064
		intel_encoder->hpd_pin = HPD_PORT_C;
2079
		intel_encoder->hpd_pin = HPD_PORT_C;
2065
		break;
2080
		break;
2066
	case PORT_D:
2081
	case PORT_D:
2067
		if (WARN_ON(IS_BROXTON(dev_priv)))
-
 
2068
			intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
-
 
2069
		else if (IS_CHERRYVIEW(dev_priv))
-
 
2070
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
-
 
2071
		else
-
 
2072
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
-
 
2073
		intel_encoder->hpd_pin = HPD_PORT_D;
2082
		intel_encoder->hpd_pin = HPD_PORT_D;
2074
		break;
2083
		break;
2075
	case PORT_E:
2084
	case PORT_E:
2076
		/* On SKL PORT E doesn't have seperate GMBUS pin
-
 
2077
		 *  We rely on VBT to set a proper alternate GMBUS pin. */
-
 
2078
		alternate_ddc_pin =
-
 
2079
			dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
-
 
2080
		switch (alternate_ddc_pin) {
-
 
2081
		case DDC_PIN_B:
-
 
2082
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
-
 
2083
			break;
-
 
2084
		case DDC_PIN_C:
-
 
2085
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
-
 
2086
			break;
-
 
2087
		case DDC_PIN_D:
-
 
2088
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
-
 
2089
			break;
-
 
2090
		default:
-
 
2091
			MISSING_CASE(alternate_ddc_pin);
-
 
2092
		}
-
 
2093
		intel_encoder->hpd_pin = HPD_PORT_E;
2085
		intel_encoder->hpd_pin = HPD_PORT_E;
2094
		break;
2086
		break;
2095
	case PORT_A:
-
 
2096
		intel_encoder->hpd_pin = HPD_PORT_A;
-
 
2097
		/* Internal port only for eDP. */
-
 
2098
	default:
2087
	default:
-
 
2088
		MISSING_CASE(port);
2099
		BUG();
2089
		return;
2100
	}
2090
	}
2101
 
2091
 
2102
	if (IS_VALLEYVIEW(dev)) {
2092
	if (IS_VALLEYVIEW(dev)) {
2103
		intel_hdmi->write_infoframe = vlv_write_infoframe;
2093
		intel_hdmi->write_infoframe = vlv_write_infoframe;
2104
		intel_hdmi->set_infoframes = vlv_set_infoframes;
2094
		intel_hdmi->set_infoframes = vlv_set_infoframes;
2105
		intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2095
		intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2106
	} else if (IS_G4X(dev)) {
2096
	} else if (IS_G4X(dev)) {
2107
		intel_hdmi->write_infoframe = g4x_write_infoframe;
2097
		intel_hdmi->write_infoframe = g4x_write_infoframe;
2108
		intel_hdmi->set_infoframes = g4x_set_infoframes;
2098
		intel_hdmi->set_infoframes = g4x_set_infoframes;
2109
		intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2099
		intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2110
	} else if (HAS_DDI(dev)) {
2100
	} else if (HAS_DDI(dev)) {
2111
		intel_hdmi->write_infoframe = hsw_write_infoframe;
2101
		intel_hdmi->write_infoframe = hsw_write_infoframe;
2112
		intel_hdmi->set_infoframes = hsw_set_infoframes;
2102
		intel_hdmi->set_infoframes = hsw_set_infoframes;
2113
		intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2103
		intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2114
	} else if (HAS_PCH_IBX(dev)) {
2104
	} else if (HAS_PCH_IBX(dev)) {
2115
		intel_hdmi->write_infoframe = ibx_write_infoframe;
2105
		intel_hdmi->write_infoframe = ibx_write_infoframe;
2116
		intel_hdmi->set_infoframes = ibx_set_infoframes;
2106
		intel_hdmi->set_infoframes = ibx_set_infoframes;
2117
		intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2107
		intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2118
	} else {
2108
	} else {
2119
		intel_hdmi->write_infoframe = cpt_write_infoframe;
2109
		intel_hdmi->write_infoframe = cpt_write_infoframe;
2120
		intel_hdmi->set_infoframes = cpt_set_infoframes;
2110
		intel_hdmi->set_infoframes = cpt_set_infoframes;
2121
		intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2111
		intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2122
	}
2112
	}
2123
 
2113
 
2124
	if (HAS_DDI(dev))
2114
	if (HAS_DDI(dev))
2125
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2115
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2126
	else
2116
	else
2127
		intel_connector->get_hw_state = intel_connector_get_hw_state;
2117
		intel_connector->get_hw_state = intel_connector_get_hw_state;
2128
	intel_connector->unregister = intel_connector_unregister;
2118
	intel_connector->unregister = intel_connector_unregister;
2129
 
2119
 
2130
	intel_hdmi_add_properties(intel_hdmi, connector);
2120
	intel_hdmi_add_properties(intel_hdmi, connector);
2131
 
2121
 
2132
	intel_connector_attach_encoder(intel_connector, intel_encoder);
2122
	intel_connector_attach_encoder(intel_connector, intel_encoder);
2133
	drm_connector_register(connector);
2123
	drm_connector_register(connector);
2134
	intel_hdmi->attached_connector = intel_connector;
2124
	intel_hdmi->attached_connector = intel_connector;
2135
 
2125
 
2136
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2126
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2137
	 * 0xd.  Failure to do so will result in spurious interrupts being
2127
	 * 0xd.  Failure to do so will result in spurious interrupts being
2138
	 * generated on the port when a cable is not attached.
2128
	 * generated on the port when a cable is not attached.
2139
	 */
2129
	 */
2140
	if (IS_G4X(dev) && !IS_GM45(dev)) {
2130
	if (IS_G4X(dev) && !IS_GM45(dev)) {
2141
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2131
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2142
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2132
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2143
	}
2133
	}
2144
}
2134
}
2145
 
2135
 
2146
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2136
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2147
{
2137
{
2148
	struct intel_digital_port *intel_dig_port;
2138
	struct intel_digital_port *intel_dig_port;
2149
	struct intel_encoder *intel_encoder;
2139
	struct intel_encoder *intel_encoder;
2150
	struct intel_connector *intel_connector;
2140
	struct intel_connector *intel_connector;
2151
 
2141
 
2152
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2142
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2153
	if (!intel_dig_port)
2143
	if (!intel_dig_port)
2154
		return;
2144
		return;
2155
 
2145
 
2156
	intel_connector = intel_connector_alloc();
2146
	intel_connector = intel_connector_alloc();
2157
	if (!intel_connector) {
2147
	if (!intel_connector) {
2158
		kfree(intel_dig_port);
2148
		kfree(intel_dig_port);
2159
		return;
2149
		return;
2160
	}
2150
	}
2161
 
2151
 
2162
	intel_encoder = &intel_dig_port->base;
2152
	intel_encoder = &intel_dig_port->base;
2163
 
2153
 
2164
	drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
2154
	drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
2165
			 DRM_MODE_ENCODER_TMDS);
2155
			 DRM_MODE_ENCODER_TMDS);
2166
 
2156
 
2167
	intel_encoder->compute_config = intel_hdmi_compute_config;
2157
	intel_encoder->compute_config = intel_hdmi_compute_config;
2168
	if (HAS_PCH_SPLIT(dev)) {
2158
	if (HAS_PCH_SPLIT(dev)) {
2169
		intel_encoder->disable = pch_disable_hdmi;
2159
		intel_encoder->disable = pch_disable_hdmi;
2170
		intel_encoder->post_disable = pch_post_disable_hdmi;
2160
		intel_encoder->post_disable = pch_post_disable_hdmi;
2171
	} else {
2161
	} else {
2172
		intel_encoder->disable = g4x_disable_hdmi;
2162
		intel_encoder->disable = g4x_disable_hdmi;
2173
	}
2163
	}
2174
	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2164
	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2175
	intel_encoder->get_config = intel_hdmi_get_config;
2165
	intel_encoder->get_config = intel_hdmi_get_config;
2176
	if (IS_CHERRYVIEW(dev)) {
2166
	if (IS_CHERRYVIEW(dev)) {
2177
		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2167
		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2178
		intel_encoder->pre_enable = chv_hdmi_pre_enable;
2168
		intel_encoder->pre_enable = chv_hdmi_pre_enable;
2179
		intel_encoder->enable = vlv_enable_hdmi;
2169
		intel_encoder->enable = vlv_enable_hdmi;
2180
		intel_encoder->post_disable = chv_hdmi_post_disable;
2170
		intel_encoder->post_disable = chv_hdmi_post_disable;
2181
		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2171
		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2182
	} else if (IS_VALLEYVIEW(dev)) {
2172
	} else if (IS_VALLEYVIEW(dev)) {
2183
		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
2173
		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
2184
		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2174
		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2185
		intel_encoder->enable = vlv_enable_hdmi;
2175
		intel_encoder->enable = vlv_enable_hdmi;
2186
		intel_encoder->post_disable = vlv_hdmi_post_disable;
2176
		intel_encoder->post_disable = vlv_hdmi_post_disable;
2187
	} else {
2177
	} else {
2188
		intel_encoder->pre_enable = intel_hdmi_pre_enable;
2178
		intel_encoder->pre_enable = intel_hdmi_pre_enable;
2189
		if (HAS_PCH_CPT(dev))
2179
		if (HAS_PCH_CPT(dev))
2190
			intel_encoder->enable = cpt_enable_hdmi;
2180
			intel_encoder->enable = cpt_enable_hdmi;
2191
		else if (HAS_PCH_IBX(dev))
2181
		else if (HAS_PCH_IBX(dev))
2192
			intel_encoder->enable = ibx_enable_hdmi;
2182
			intel_encoder->enable = ibx_enable_hdmi;
2193
		else
2183
		else
2194
			intel_encoder->enable = g4x_enable_hdmi;
2184
			intel_encoder->enable = g4x_enable_hdmi;
2195
	}
2185
	}
2196
 
2186
 
2197
	intel_encoder->type = INTEL_OUTPUT_HDMI;
2187
	intel_encoder->type = INTEL_OUTPUT_HDMI;
2198
	if (IS_CHERRYVIEW(dev)) {
2188
	if (IS_CHERRYVIEW(dev)) {
2199
		if (port == PORT_D)
2189
		if (port == PORT_D)
2200
			intel_encoder->crtc_mask = 1 << 2;
2190
			intel_encoder->crtc_mask = 1 << 2;
2201
		else
2191
		else
2202
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2192
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2203
	} else {
2193
	} else {
2204
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2194
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2205
	}
2195
	}
2206
	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2196
	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2207
	/*
2197
	/*
2208
	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2198
	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2209
	 * to work on real hardware. And since g4x can send infoframes to
2199
	 * to work on real hardware. And since g4x can send infoframes to
2210
	 * only one port anyway, nothing is lost by allowing it.
2200
	 * only one port anyway, nothing is lost by allowing it.
2211
	 */
2201
	 */
2212
	if (IS_G4X(dev))
2202
	if (IS_G4X(dev))
2213
		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2203
		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2214
 
2204
 
2215
	intel_dig_port->port = port;
2205
	intel_dig_port->port = port;
2216
	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2206
	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2217
	intel_dig_port->dp.output_reg = 0;
2207
	intel_dig_port->dp.output_reg = 0;
2218
 
2208
 
2219
	intel_hdmi_init_connector(intel_dig_port, intel_connector);
2209
	intel_hdmi_init_connector(intel_dig_port, intel_connector);
2220
}
2210
}
2221
>
2211
>
2222
>
2212
>
2223
>
2213
>
2224
>
2214
>