Subversion Repositories Kolibri OS

Compare Revisions

No changes between revisions

Regard whitespace Rev 1896 → Rev 1897

/programs/develop/libraries/cairo/Makefile
8,9 → 8,9
 
DEFINES = -DHAVE_CONFIG_H -DCAIRO_NO_MUTEX -U_WIN32 -U_MSC_VER -U__WIN32__
 
INCLUDES = -I../pixman -I../newlib/include -I../newlib/include/sys
INCLUDES = -I../newlib/include -I../pixman -I../zlib -I../libpng
 
SOURCES = \
CAIRO_SOURCES = \
cairo-analysis-surface.c \
cairo-arc.c \
cairo-array.c \
55,7 → 55,9
cairo-path-in-fill.c \
cairo-path-stroke.c \
cairo-pattern.c \
cairo-pdf-operators.c \
cairo-pen.c \
cairo-png.c \
cairo-polygon.c \
cairo-rectangle.c \
cairo-rectangular-scan-converter.c \
73,6 → 75,7
cairo-surface-snapshot.c \
cairo-surface-subsurface.c \
cairo-surface-wrapper.c \
cairo-svg-surface.c \
cairo-tor-scan-converter.c \
cairo-toy-font-face.c \
cairo-traps.c \
83,8 → 86,18
$(NULL)
 
CAIRO_FONT = \
cairo-cff-subset.c \
cairo-scaled-font-subsets.c \
cairo-truetype-subset.c \
cairo-type1-fallback.c \
cairo-type1-subset.c \
cairo-type3-glyph-surface.c \
$(NULL)
 
 
SOURCES= $(CAIRO_SOURCES) $(CAIRO_FONT)
 
OBJECTS = $(patsubst %.c, src/%.o, $(SOURCES))
 
 
/programs/develop/libraries/cairo/config.h
24,11 → 24,13
/* Define to 1 to enable cairo's cairo-script-interpreter feature */
//#define CAIRO_HAS_INTERPRETER 1
 
#define CAIRO_NO_MUTEX 1
 
/* Define to 1 to enable cairo's pthread feature */
//#define CAIRO_HAS_PTHREAD 1
/* #undef CAIRO_HAS_PTHREAD */
 
/* Define to 1 if we have full pthread support */
//#define CAIRO_HAS_REAL_PTHREAD 1
/* #undef CAIRO_HAS_REAL_PTHREAD */
 
/* Define to 1 if libspectre is available */
/* #undef CAIRO_HAS_SPECTRE */
40,7 → 42,7
/* #undef CAIRO_HAS_TEST_SURFACES */
 
/* Define to 1 to enable cairo's cairo-trace feature */
//#define CAIRO_HAS_TRACE 1
/* #undef CAIRO_HAS_TRACE */
 
/* Define to 1 to disable certain code paths that rely heavily on double
precision floating-point calculation */
73,7 → 75,7
#define HAVE_DLFCN_H 1
 
/* Define to 1 if you have the `drand48' function. */
//#define HAVE_DRAND48 1
#define HAVE_DRAND48 1
 
/* Define to 1 if you have the `FcFini' function. */
/* #undef HAVE_FCFINI */
173,7 → 175,7
//#define HAVE_SCHED_H 1
 
/* Define to 1 if you have the <setjmp.h> header file. */
//#define HAVE_SETJMP_H 1
#define HAVE_SETJMP_H 1
 
/* Define to 1 if you have the <signal.h> header file. */
//#define HAVE_SIGNAL_H 1
342,7 → 344,7
#define X_DISPLAY_MISSING 1
 
/* Number of bits in a file offset, on hosts where this is settable. */
#define _FILE_OFFSET_BITS 64
/* #undef _FILE_OFFSET_BITS */
 
/* Define for large files, on AIX-style hosts. */
/* #undef _LARGE_FILES */
362,5 → 364,3
#ifndef __cplusplus
/* #undef inline */
#endif
 
 
/programs/develop/libraries/cairo/src/cairo-cff-subset.c
0,0 → 1,2271
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2006 Adrian Johnson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Adrian Johnson.
*
* Contributor(s):
* Adrian Johnson <ajohnson@redneon.com>
* Eugeniy Meshcheryakov <eugen@debian.org>
*/
 
/*
* Useful links:
* http://www.adobe.com/devnet/font/pdfs/5176.CFF.pdf
*/
 
#define _BSD_SOURCE /* for snprintf(), strdup() */
#include "cairoint.h"
#include "cairo-error-private.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-truetype-subset-private.h"
#include <string.h>
 
/* CFF Dict Operators. If the high byte is 0 the command is encoded
* with a single byte. */
#define BASEFONTNAME_OP 0x0c16
#define CIDCOUNT_OP 0x0c22
#define CHARSET_OP 0x000f
#define CHARSTRINGS_OP 0x0011
#define COPYRIGHT_OP 0x0c00
#define ENCODING_OP 0x0010
#define FAMILYNAME_OP 0x0003
#define FDARRAY_OP 0x0c24
#define FDSELECT_OP 0x0c25
#define FONTBBOX_OP 0x0005
#define FONTNAME_OP 0x0c26
#define FULLNAME_OP 0x0002
#define LOCAL_SUB_OP 0x0013
#define NOTICE_OP 0x0001
#define POSTSCRIPT_OP 0x0c15
#define PRIVATE_OP 0x0012
#define ROS_OP 0x0c1e
#define UNIQUEID_OP 0x000d
#define VERSION_OP 0x0000
#define WEIGHT_OP 0x0004
#define XUID_OP 0x000e
 
#define NUM_STD_STRINGS 391
 
typedef struct _cff_header {
uint8_t major;
uint8_t minor;
uint8_t header_size;
uint8_t offset_size;
} cff_header_t;
 
typedef struct _cff_index_element {
cairo_bool_t is_copy;
unsigned char *data;
int length;
} cff_index_element_t;
 
typedef struct _cff_dict_operator {
cairo_hash_entry_t base;
 
unsigned short operator;
unsigned char *operand;
int operand_length;
int operand_offset;
} cff_dict_operator_t;
 
typedef struct _cairo_cff_font {
 
cairo_scaled_font_subset_t *scaled_font_subset;
const cairo_scaled_font_backend_t *backend;
 
/* Font Data */
unsigned char *data;
unsigned long data_length;
unsigned char *current_ptr;
unsigned char *data_end;
cff_header_t *header;
char *font_name;
char *ps_name;
cairo_hash_table_t *top_dict;
cairo_hash_table_t *private_dict;
cairo_array_t strings_index;
cairo_array_t charstrings_index;
cairo_array_t global_sub_index;
cairo_array_t local_sub_index;
int num_glyphs;
cairo_bool_t is_cid;
int units_per_em;
 
/* CID Font Data */
int *fdselect;
unsigned int num_fontdicts;
cairo_hash_table_t **fd_dict;
cairo_hash_table_t **fd_private_dict;
cairo_array_t *fd_local_sub_index;
 
/* Subsetted Font Data */
char *subset_font_name;
cairo_array_t charstrings_subset_index;
cairo_array_t strings_subset_index;
int *fdselect_subset;
unsigned int num_subset_fontdicts;
int *fd_subset_map;
int *private_dict_offset;
cairo_array_t output;
 
/* Subset Metrics */
int *widths;
int x_min, y_min, x_max, y_max;
int ascent, descent;
 
} cairo_cff_font_t;
 
/* Encoded integer using maximum sized encoding. This is required for
* operands that are later modified after encoding. */
static unsigned char *
encode_integer_max (unsigned char *p, int i)
{
*p++ = 29;
*p++ = i >> 24;
*p++ = (i >> 16) & 0xff;
*p++ = (i >> 8) & 0xff;
*p++ = i & 0xff;
return p;
}
 
static unsigned char *
encode_integer (unsigned char *p, int i)
{
if (i >= -107 && i <= 107) {
*p++ = i + 139;
} else if (i >= 108 && i <= 1131) {
i -= 108;
*p++ = (i >> 8)+ 247;
*p++ = i & 0xff;
} else if (i >= -1131 && i <= -108) {
i = -i - 108;
*p++ = (i >> 8)+ 251;
*p++ = i & 0xff;
} else if (i >= -32768 && i <= 32767) {
*p++ = 28;
*p++ = (i >> 8) & 0xff;
*p++ = i & 0xff;
} else {
p = encode_integer_max (p, i);
}
return p;
}
 
static unsigned char *
decode_integer (unsigned char *p, int *integer)
{
if (*p == 28) {
*integer = (int)(p[1]<<8 | p[2]);
p += 3;
} else if (*p == 29) {
*integer = (int)((p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4]);
p += 5;
} else if (*p >= 32 && *p <= 246) {
*integer = *p++ - 139;
} else if (*p <= 250) {
*integer = (p[0] - 247) * 256 + p[1] + 108;
p += 2;
} else if (*p <= 254) {
*integer = -(p[0] - 251) * 256 - p[1] - 108;
p += 2;
} else {
*integer = 0;
p += 1;
}
return p;
}
 
static unsigned char *
decode_operator (unsigned char *p, unsigned short *operator)
{
unsigned short op = 0;
 
op = *p++;
if (op == 12) {
op <<= 8;
op |= *p++;
}
*operator = op;
return p;
}
 
/* return 0 if not an operand */
static int
operand_length (unsigned char *p)
{
unsigned char *begin = p;
 
if (*p == 28)
return 3;
 
if (*p == 29)
return 5;
 
if (*p >= 32 && *p <= 246)
return 1;
 
if (*p >= 247 && *p <= 254)
return 2;
 
if (*p == 30) {
while ((*p & 0x0f) != 0x0f)
p++;
return p - begin + 1;
}
 
return 0;
}
 
static unsigned char *
encode_index_offset (unsigned char *p, int offset_size, unsigned long offset)
{
while (--offset_size >= 0) {
p[offset_size] = (unsigned char) (offset & 0xff);
offset >>= 8;
}
return p + offset_size;
}
 
static unsigned long
decode_index_offset(unsigned char *p, int off_size)
{
unsigned long offset = 0;
 
while (off_size-- > 0)
offset = offset*256 + *p++;
return offset;
}
 
static void
cff_index_init (cairo_array_t *index)
{
_cairo_array_init (index, sizeof (cff_index_element_t));
}
 
static cairo_int_status_t
cff_index_read (cairo_array_t *index, unsigned char **ptr, unsigned char *end_ptr)
{
cff_index_element_t element;
unsigned char *data, *p;
cairo_status_t status;
int offset_size, count, start, i;
int end = 0;
 
p = *ptr;
if (p + 2 > end_ptr)
return CAIRO_INT_STATUS_UNSUPPORTED;
count = be16_to_cpu( *((uint16_t *)p) );
p += 2;
if (count > 0) {
offset_size = *p++;
if (p + (count + 1)*offset_size > end_ptr)
return CAIRO_INT_STATUS_UNSUPPORTED;
data = p + offset_size*(count + 1) - 1;
start = decode_index_offset (p, offset_size);
p += offset_size;
for (i = 0; i < count; i++) {
end = decode_index_offset (p, offset_size);
p += offset_size;
if (p > end_ptr)
return CAIRO_INT_STATUS_UNSUPPORTED;
element.length = end - start;
element.is_copy = FALSE;
element.data = data + start;
status = _cairo_array_append (index, &element);
if (unlikely (status))
return status;
start = end;
}
p = data + end;
}
*ptr = p;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cff_index_write (cairo_array_t *index, cairo_array_t *output)
{
int offset_size;
int offset;
int num_elem;
int i;
cff_index_element_t *element;
uint16_t count;
unsigned char buf[5];
cairo_status_t status;
 
num_elem = _cairo_array_num_elements (index);
count = cpu_to_be16 ((uint16_t) num_elem);
status = _cairo_array_append_multiple (output, &count, 2);
if (unlikely (status))
return status;
 
if (num_elem == 0)
return CAIRO_STATUS_SUCCESS;
 
/* Find maximum offset to determine offset size */
offset = 1;
for (i = 0; i < num_elem; i++) {
element = _cairo_array_index (index, i);
offset += element->length;
}
if (offset < 0x100)
offset_size = 1;
else if (offset < 0x10000)
offset_size = 2;
else if (offset < 0x1000000)
offset_size = 3;
else
offset_size = 4;
 
buf[0] = (unsigned char) offset_size;
status = _cairo_array_append (output, buf);
if (unlikely (status))
return status;
 
offset = 1;
encode_index_offset (buf, offset_size, offset);
status = _cairo_array_append_multiple (output, buf, offset_size);
if (unlikely (status))
return status;
 
for (i = 0; i < num_elem; i++) {
element = _cairo_array_index (index, i);
offset += element->length;
encode_index_offset (buf, offset_size, offset);
status = _cairo_array_append_multiple (output, buf, offset_size);
if (unlikely (status))
return status;
}
 
for (i = 0; i < num_elem; i++) {
element = _cairo_array_index (index, i);
status = _cairo_array_append_multiple (output,
element->data,
element->length);
if (unlikely (status))
return status;
}
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cff_index_append (cairo_array_t *index, unsigned char *object , int length)
{
cff_index_element_t element;
 
element.length = length;
element.is_copy = FALSE;
element.data = object;
 
return _cairo_array_append (index, &element);
}
 
static cairo_status_t
cff_index_append_copy (cairo_array_t *index,
const unsigned char *object,
unsigned int length)
{
cff_index_element_t element;
cairo_status_t status;
 
element.length = length;
element.is_copy = TRUE;
element.data = malloc (element.length);
if (unlikely (element.data == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
memcpy (element.data, object, element.length);
 
status = _cairo_array_append (index, &element);
if (unlikely (status)) {
free (element.data);
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
cff_index_fini (cairo_array_t *index)
{
cff_index_element_t *element;
int i;
 
for (i = 0; i < _cairo_array_num_elements (index); i++) {
element = _cairo_array_index (index, i);
if (element->is_copy)
free (element->data);
}
_cairo_array_fini (index);
}
 
static cairo_bool_t
_cairo_cff_dict_equal (const void *key_a, const void *key_b)
{
const cff_dict_operator_t *op_a = key_a;
const cff_dict_operator_t *op_b = key_b;
 
return op_a->operator == op_b->operator;
}
 
static cairo_status_t
cff_dict_init (cairo_hash_table_t **dict)
{
*dict = _cairo_hash_table_create (_cairo_cff_dict_equal);
if (unlikely (*dict == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
_cairo_dict_init_key (cff_dict_operator_t *key, int operator)
{
key->base.hash = (unsigned long) operator;
key->operator = operator;
}
 
static cairo_status_t
cff_dict_create_operator (int operator,
unsigned char *operand,
int size,
cff_dict_operator_t **out)
{
cff_dict_operator_t *op;
 
op = malloc (sizeof (cff_dict_operator_t));
if (unlikely (op == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
_cairo_dict_init_key (op, operator);
op->operand = malloc (size);
if (unlikely (op->operand == NULL)) {
free (op);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
 
memcpy (op->operand, operand, size);
op->operand_length = size;
op->operand_offset = -1;
 
*out = op;
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cff_dict_read (cairo_hash_table_t *dict, unsigned char *p, int dict_size)
{
unsigned char *end;
cairo_array_t operands;
cff_dict_operator_t *op;
unsigned short operator;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
int size;
 
end = p + dict_size;
_cairo_array_init (&operands, 1);
while (p < end) {
size = operand_length (p);
if (size != 0) {
status = _cairo_array_append_multiple (&operands, p, size);
if (unlikely (status))
goto fail;
 
p += size;
} else {
p = decode_operator (p, &operator);
status = cff_dict_create_operator (operator,
_cairo_array_index (&operands, 0),
_cairo_array_num_elements (&operands),
&op);
if (unlikely (status))
goto fail;
 
status = _cairo_hash_table_insert (dict, &op->base);
if (unlikely (status))
goto fail;
 
_cairo_array_truncate (&operands, 0);
}
}
 
fail:
_cairo_array_fini (&operands);
 
return status;
}
 
static void
cff_dict_remove (cairo_hash_table_t *dict, unsigned short operator)
{
cff_dict_operator_t key, *op;
 
_cairo_dict_init_key (&key, operator);
op = _cairo_hash_table_lookup (dict, &key.base);
if (op != NULL) {
free (op->operand);
_cairo_hash_table_remove (dict, (cairo_hash_entry_t *) op);
free (op);
}
}
 
static unsigned char *
cff_dict_get_operands (cairo_hash_table_t *dict,
unsigned short operator,
int *size)
{
cff_dict_operator_t key, *op;
 
_cairo_dict_init_key (&key, operator);
op = _cairo_hash_table_lookup (dict, &key.base);
if (op != NULL) {
*size = op->operand_length;
return op->operand;
}
 
return NULL;
}
 
static cairo_status_t
cff_dict_set_operands (cairo_hash_table_t *dict,
unsigned short operator,
unsigned char *operand,
int size)
{
cff_dict_operator_t key, *op;
cairo_status_t status;
 
_cairo_dict_init_key (&key, operator);
op = _cairo_hash_table_lookup (dict, &key.base);
if (op != NULL) {
free (op->operand);
op->operand = malloc (size);
if (unlikely (op->operand == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
memcpy (op->operand, operand, size);
op->operand_length = size;
}
else
{
status = cff_dict_create_operator (operator, operand, size, &op);
if (unlikely (status))
return status;
 
status = _cairo_hash_table_insert (dict, &op->base);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static int
cff_dict_get_location (cairo_hash_table_t *dict,
unsigned short operator,
int *size)
{
cff_dict_operator_t key, *op;
 
_cairo_dict_init_key (&key, operator);
op = _cairo_hash_table_lookup (dict, &key.base);
if (op != NULL) {
*size = op->operand_length;
return op->operand_offset;
}
 
return -1;
}
 
typedef struct _dict_write_info {
cairo_array_t *output;
cairo_status_t status;
} dict_write_info_t;
 
static void
cairo_dict_write_operator (cff_dict_operator_t *op, dict_write_info_t *write_info)
{
unsigned char data;
 
op->operand_offset = _cairo_array_num_elements (write_info->output);
write_info->status = _cairo_array_append_multiple (write_info->output, op->operand, op->operand_length);
if (write_info->status)
return;
 
if (op->operator & 0xff00) {
data = op->operator >> 8;
write_info->status = _cairo_array_append (write_info->output, &data);
if (write_info->status)
return;
}
data = op->operator & 0xff;
write_info->status = _cairo_array_append (write_info->output, &data);
}
 
static void
_cairo_dict_collect (void *entry, void *closure)
{
dict_write_info_t *write_info = closure;
cff_dict_operator_t *op = entry;
 
if (write_info->status)
return;
 
/* The ROS operator is handled separately in cff_dict_write() */
if (op->operator != ROS_OP)
cairo_dict_write_operator (op, write_info);
}
 
static cairo_status_t
cff_dict_write (cairo_hash_table_t *dict, cairo_array_t *output)
{
dict_write_info_t write_info;
cff_dict_operator_t key, *op;
 
write_info.output = output;
write_info.status = CAIRO_STATUS_SUCCESS;
 
/* The CFF specification requires that the Top Dict of CID fonts
* begin with the ROS operator. */
_cairo_dict_init_key (&key, ROS_OP);
op = _cairo_hash_table_lookup (dict, &key.base);
if (op != NULL)
cairo_dict_write_operator (op, &write_info);
 
_cairo_hash_table_foreach (dict, _cairo_dict_collect, &write_info);
 
return write_info.status;
}
 
static void
_cff_dict_entry_pluck (void *_entry, void *dict)
{
cff_dict_operator_t *entry = _entry;
 
_cairo_hash_table_remove (dict, &entry->base);
free (entry->operand);
free (entry);
}
 
static void
cff_dict_fini (cairo_hash_table_t *dict)
{
_cairo_hash_table_foreach (dict, _cff_dict_entry_pluck, dict);
_cairo_hash_table_destroy (dict);
}
 
static cairo_int_status_t
cairo_cff_font_read_header (cairo_cff_font_t *font)
{
if (font->data_length < sizeof (cff_header_t))
return CAIRO_INT_STATUS_UNSUPPORTED;
 
font->header = (cff_header_t *) font->data;
font->current_ptr = font->data + font->header->header_size;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_cff_font_read_name (cairo_cff_font_t *font)
{
cairo_array_t index;
cairo_int_status_t status;
 
/* The original font name is not used in the subset. Read the name
* index to skip over it. */
cff_index_init (&index);
status = cff_index_read (&index, &font->current_ptr, font->data_end);
cff_index_fini (&index);
 
return status;
}
 
static cairo_int_status_t
cairo_cff_font_read_private_dict (cairo_cff_font_t *font,
cairo_hash_table_t *private_dict,
cairo_array_t *local_sub_index,
unsigned char *ptr,
int size)
{
cairo_int_status_t status;
unsigned char buf[10];
unsigned char *end_buf;
int offset;
int i;
unsigned char *operand;
unsigned char *p;
 
status = cff_dict_read (private_dict, ptr, size);
if (unlikely (status))
return status;
 
operand = cff_dict_get_operands (private_dict, LOCAL_SUB_OP, &i);
if (operand) {
decode_integer (operand, &offset);
p = ptr + offset;
status = cff_index_read (local_sub_index, &p, font->data_end);
if (unlikely (status))
return status;
 
/* Use maximum sized encoding to reserve space for later modification. */
end_buf = encode_integer_max (buf, 0);
status = cff_dict_set_operands (private_dict, LOCAL_SUB_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_cff_font_read_fdselect (cairo_cff_font_t *font, unsigned char *p)
{
int type, num_ranges, first, last, fd, i, j;
 
font->fdselect = calloc (font->num_glyphs, sizeof (int));
if (unlikely (font->fdselect == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
type = *p++;
if (type == 0)
{
for (i = 0; i < font->num_glyphs; i++)
font->fdselect[i] = *p++;
} else if (type == 3) {
num_ranges = be16_to_cpu( *((uint16_t *)p) );
p += 2;
for (i = 0; i < num_ranges; i++)
{
first = be16_to_cpu( *((uint16_t *)p) );
p += 2;
fd = *p++;
last = be16_to_cpu( *((uint16_t *)p) );
for (j = first; j < last; j++)
font->fdselect[j] = fd;
}
} else {
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_cff_font_read_cid_fontdict (cairo_cff_font_t *font, unsigned char *ptr)
{
cairo_array_t index;
cff_index_element_t *element;
unsigned int i;
int size;
unsigned char *operand;
int offset;
cairo_int_status_t status;
unsigned char buf[100];
unsigned char *end_buf;
 
cff_index_init (&index);
status = cff_index_read (&index, &ptr, font->data_end);
if (unlikely (status))
goto fail;
 
font->num_fontdicts = _cairo_array_num_elements (&index);
 
font->fd_dict = calloc (sizeof (cairo_hash_table_t *), font->num_fontdicts);
if (unlikely (font->fd_dict == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
 
font->fd_private_dict = calloc (sizeof (cairo_hash_table_t *), font->num_fontdicts);
if (unlikely (font->fd_private_dict == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
 
font->fd_local_sub_index = calloc (sizeof (cairo_array_t), font->num_fontdicts);
if (unlikely (font->fd_local_sub_index == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
 
for (i = 0; i < font->num_fontdicts; i++) {
status = cff_dict_init (&font->fd_dict[i]);
if (unlikely (status))
goto fail;
 
element = _cairo_array_index (&index, i);
status = cff_dict_read (font->fd_dict[i], element->data, element->length);
if (unlikely (status))
goto fail;
 
operand = cff_dict_get_operands (font->fd_dict[i], PRIVATE_OP, &size);
if (operand == NULL) {
status = CAIRO_INT_STATUS_UNSUPPORTED;
goto fail;
}
operand = decode_integer (operand, &size);
decode_integer (operand, &offset);
status = cff_dict_init (&font->fd_private_dict[i]);
if (unlikely (status))
goto fail;
 
cff_index_init (&font->fd_local_sub_index[i]);
status = cairo_cff_font_read_private_dict (font,
font->fd_private_dict[i],
&font->fd_local_sub_index[i],
font->data + offset,
size);
if (unlikely (status))
goto fail;
 
/* Set integer operand to max value to use max size encoding to reserve
* space for any value later */
end_buf = encode_integer_max (buf, 0);
end_buf = encode_integer_max (end_buf, 0);
status = cff_dict_set_operands (font->fd_dict[i], PRIVATE_OP, buf, end_buf - buf);
if (unlikely (status))
goto fail;
}
 
return CAIRO_STATUS_SUCCESS;
 
fail:
cff_index_fini (&index);
 
return status;
}
 
static cairo_int_status_t
cairo_cff_font_read_top_dict (cairo_cff_font_t *font)
{
cairo_array_t index;
cff_index_element_t *element;
unsigned char buf[20];
unsigned char *end_buf;
unsigned char *operand;
cairo_int_status_t status;
unsigned char *p;
int size;
int offset;
 
cff_index_init (&index);
status = cff_index_read (&index, &font->current_ptr, font->data_end);
if (unlikely (status))
goto fail;
 
element = _cairo_array_index (&index, 0);
status = cff_dict_read (font->top_dict, element->data, element->length);
if (unlikely (status))
goto fail;
 
if (cff_dict_get_operands (font->top_dict, ROS_OP, &size) != NULL)
font->is_cid = TRUE;
else
font->is_cid = FALSE;
 
operand = cff_dict_get_operands (font->top_dict, CHARSTRINGS_OP, &size);
decode_integer (operand, &offset);
p = font->data + offset;
status = cff_index_read (&font->charstrings_index, &p, font->data_end);
if (unlikely (status))
goto fail;
font->num_glyphs = _cairo_array_num_elements (&font->charstrings_index);
 
if (font->is_cid) {
operand = cff_dict_get_operands (font->top_dict, FDSELECT_OP, &size);
decode_integer (operand, &offset);
status = cairo_cff_font_read_fdselect (font, font->data + offset);
if (unlikely (status))
goto fail;
 
operand = cff_dict_get_operands (font->top_dict, FDARRAY_OP, &size);
decode_integer (operand, &offset);
status = cairo_cff_font_read_cid_fontdict (font, font->data + offset);
if (unlikely (status))
goto fail;
} else {
operand = cff_dict_get_operands (font->top_dict, PRIVATE_OP, &size);
operand = decode_integer (operand, &size);
decode_integer (operand, &offset);
status = cairo_cff_font_read_private_dict (font,
font->private_dict,
&font->local_sub_index,
font->data + offset,
size);
if (unlikely (status))
goto fail;
}
 
/* Use maximum sized encoding to reserve space for later modification. */
end_buf = encode_integer_max (buf, 0);
status = cff_dict_set_operands (font->top_dict,
CHARSTRINGS_OP, buf, end_buf - buf);
if (unlikely (status))
goto fail;
 
status = cff_dict_set_operands (font->top_dict,
FDSELECT_OP, buf, end_buf - buf);
if (unlikely (status))
goto fail;
 
status = cff_dict_set_operands (font->top_dict,
FDARRAY_OP, buf, end_buf - buf);
if (unlikely (status))
goto fail;
 
status = cff_dict_set_operands (font->top_dict,
CHARSET_OP, buf, end_buf - buf);
if (unlikely (status))
goto fail;
 
cff_dict_remove (font->top_dict, ENCODING_OP);
cff_dict_remove (font->top_dict, PRIVATE_OP);
 
/* Remove the unique identifier operators as the subsetted font is
* not the same is the original font. */
cff_dict_remove (font->top_dict, UNIQUEID_OP);
cff_dict_remove (font->top_dict, XUID_OP);
 
fail:
cff_index_fini (&index);
 
return status;
}
 
static cairo_int_status_t
cairo_cff_font_read_strings (cairo_cff_font_t *font)
{
return cff_index_read (&font->strings_index, &font->current_ptr, font->data_end);
}
 
static cairo_int_status_t
cairo_cff_font_read_global_subroutines (cairo_cff_font_t *font)
{
return cff_index_read (&font->global_sub_index, &font->current_ptr, font->data_end);
}
 
typedef cairo_int_status_t
(*font_read_t) (cairo_cff_font_t *font);
 
static const font_read_t font_read_funcs[] = {
cairo_cff_font_read_header,
cairo_cff_font_read_name,
cairo_cff_font_read_top_dict,
cairo_cff_font_read_strings,
cairo_cff_font_read_global_subroutines,
};
 
static cairo_int_status_t
cairo_cff_font_read_font (cairo_cff_font_t *font)
{
cairo_int_status_t status;
unsigned int i;
 
for (i = 0; i < ARRAY_LENGTH (font_read_funcs); i++) {
status = font_read_funcs[i] (font);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_set_ros_strings (cairo_cff_font_t *font)
{
cairo_status_t status;
unsigned char buf[30];
unsigned char *p;
int sid1, sid2;
const char *registry = "Adobe";
const char *ordering = "Identity";
 
sid1 = NUM_STD_STRINGS + _cairo_array_num_elements (&font->strings_subset_index);
status = cff_index_append_copy (&font->strings_subset_index,
(unsigned char *)registry,
strlen(registry));
if (unlikely (status))
return status;
 
sid2 = NUM_STD_STRINGS + _cairo_array_num_elements (&font->strings_subset_index);
status = cff_index_append_copy (&font->strings_subset_index,
(unsigned char *)ordering,
strlen(ordering));
if (unlikely (status))
return status;
 
p = encode_integer (buf, sid1);
p = encode_integer (p, sid2);
p = encode_integer (p, 0);
status = cff_dict_set_operands (font->top_dict, ROS_OP, buf, p - buf);
if (unlikely (status))
return status;
 
p = encode_integer (buf, font->scaled_font_subset->num_glyphs);
status = cff_dict_set_operands (font->top_dict, CIDCOUNT_OP, buf, p - buf);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_subset_dict_string(cairo_cff_font_t *font,
cairo_hash_table_t *dict,
int operator)
{
int size;
unsigned char *p;
int sid;
unsigned char buf[100];
cff_index_element_t *element;
cairo_status_t status;
 
p = cff_dict_get_operands (dict, operator, &size);
if (!p)
return CAIRO_STATUS_SUCCESS;
 
decode_integer (p, &sid);
if (sid < NUM_STD_STRINGS)
return CAIRO_STATUS_SUCCESS;
 
element = _cairo_array_index (&font->strings_index, sid - NUM_STD_STRINGS);
sid = NUM_STD_STRINGS + _cairo_array_num_elements (&font->strings_subset_index);
status = cff_index_append (&font->strings_subset_index, element->data, element->length);
if (unlikely (status))
return status;
 
p = encode_integer (buf, sid);
status = cff_dict_set_operands (dict, operator, buf, p - buf);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
 
static const int dict_strings[] = {
VERSION_OP,
NOTICE_OP,
COPYRIGHT_OP,
FULLNAME_OP,
FAMILYNAME_OP,
WEIGHT_OP,
POSTSCRIPT_OP,
BASEFONTNAME_OP,
FONTNAME_OP,
};
 
static cairo_status_t
cairo_cff_font_subset_dict_strings (cairo_cff_font_t *font,
cairo_hash_table_t *dict)
{
cairo_status_t status;
unsigned int i;
 
for (i = 0; i < ARRAY_LENGTH (dict_strings); i++) {
status = cairo_cff_font_subset_dict_string (font, dict, dict_strings[i]);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_subset_charstrings (cairo_cff_font_t *font)
{
cff_index_element_t *element;
unsigned int i;
cairo_status_t status;
 
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
element = _cairo_array_index (&font->charstrings_index,
font->scaled_font_subset->glyphs[i]);
status = cff_index_append (&font->charstrings_subset_index,
element->data,
element->length);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_subset_fontdict (cairo_cff_font_t *font)
{
unsigned int i;
int fd;
int *reverse_map;
 
font->fdselect_subset = calloc (font->scaled_font_subset->num_glyphs,
sizeof (int));
if (unlikely (font->fdselect_subset == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->fd_subset_map = calloc (font->num_fontdicts, sizeof (int));
if (unlikely (font->fd_subset_map == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->private_dict_offset = calloc (font->num_fontdicts, sizeof (int));
if (unlikely (font->private_dict_offset == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
reverse_map = calloc (font->num_fontdicts, sizeof (int));
if (unlikely (reverse_map == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
for (i = 0; i < font->num_fontdicts; i++)
reverse_map[i] = -1;
 
font->num_subset_fontdicts = 0;
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
fd = font->fdselect[font->scaled_font_subset->glyphs[i]];
if (reverse_map[fd] < 0) {
font->fd_subset_map[font->num_subset_fontdicts] = fd;
reverse_map[fd] = font->num_subset_fontdicts++;
}
font->fdselect_subset[i] = reverse_map[fd];
}
 
free (reverse_map);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_create_cid_fontdict (cairo_cff_font_t *font)
{
unsigned char buf[100];
unsigned char *end_buf;
cairo_status_t status;
 
font->num_fontdicts = 1;
font->fd_dict = malloc (sizeof (cairo_hash_table_t *));
if (unlikely (font->fd_dict == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
if (cff_dict_init (&font->fd_dict[0])) {
free (font->fd_dict);
font->fd_dict = NULL;
font->num_fontdicts = 0;
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
 
font->fd_subset_map = malloc (sizeof (int));
if (unlikely (font->fd_subset_map == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->private_dict_offset = malloc (sizeof (int));
if (unlikely (font->private_dict_offset == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->fd_subset_map[0] = 0;
font->num_subset_fontdicts = 1;
 
/* Set integer operand to max value to use max size encoding to reserve
* space for any value later */
end_buf = encode_integer_max (buf, 0);
end_buf = encode_integer_max (end_buf, 0);
status = cff_dict_set_operands (font->fd_dict[0], PRIVATE_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_subset_strings (cairo_cff_font_t *font)
{
cairo_status_t status;
unsigned int i;
 
status = cairo_cff_font_subset_dict_strings (font, font->top_dict);
if (unlikely (status))
return status;
 
if (font->is_cid) {
for (i = 0; i < font->num_subset_fontdicts; i++) {
status = cairo_cff_font_subset_dict_strings (font, font->fd_dict[font->fd_subset_map[i]]);
if (unlikely (status))
return status;
 
status = cairo_cff_font_subset_dict_strings (font, font->fd_private_dict[font->fd_subset_map[i]]);
if (unlikely (status))
return status;
}
} else {
status = cairo_cff_font_subset_dict_strings (font, font->private_dict);
}
 
return status;
}
 
static cairo_status_t
cairo_cff_font_subset_font (cairo_cff_font_t *font)
{
cairo_status_t status;
 
status = cairo_cff_font_set_ros_strings (font);
if (unlikely (status))
return status;
 
status = cairo_cff_font_subset_charstrings (font);
if (unlikely (status))
return status;
 
if (font->is_cid)
status = cairo_cff_font_subset_fontdict (font);
else
status = cairo_cff_font_create_cid_fontdict (font);
if (unlikely (status))
return status;
 
status = cairo_cff_font_subset_strings (font);
if (unlikely (status))
return status;
 
return status;
}
 
/* Set the operand of the specified operator in the (already written)
* top dict to point to the current position in the output
* array. Operands updated with this function must have previously
* been encoded with the 5-byte (max) integer encoding. */
static void
cairo_cff_font_set_topdict_operator_to_cur_pos (cairo_cff_font_t *font,
int operator)
{
int cur_pos;
int offset;
int size;
unsigned char buf[10];
unsigned char *buf_end;
unsigned char *op_ptr;
 
cur_pos = _cairo_array_num_elements (&font->output);
buf_end = encode_integer_max (buf, cur_pos);
offset = cff_dict_get_location (font->top_dict, operator, &size);
assert (offset > 0);
op_ptr = _cairo_array_index (&font->output, offset);
memcpy (op_ptr, buf, buf_end - buf);
}
 
static cairo_status_t
cairo_cff_font_write_header (cairo_cff_font_t *font)
{
return _cairo_array_append_multiple (&font->output,
font->header,
font->header->header_size);
}
 
static cairo_status_t
cairo_cff_font_write_name (cairo_cff_font_t *font)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
cairo_array_t index;
 
cff_index_init (&index);
 
status = cff_index_append_copy (&index,
(unsigned char *) font->subset_font_name,
strlen(font->subset_font_name));
if (unlikely (status))
goto FAIL;
 
status = cff_index_write (&index, &font->output);
if (unlikely (status))
goto FAIL;
 
FAIL:
cff_index_fini (&index);
 
return status;
}
 
static cairo_status_t
cairo_cff_font_write_top_dict (cairo_cff_font_t *font)
{
uint16_t count;
unsigned char buf[10];
unsigned char *p;
int offset_index;
int dict_start, dict_size;
int offset_size = 4;
cairo_status_t status;
 
/* Write an index containing the top dict */
 
count = cpu_to_be16 (1);
status = _cairo_array_append_multiple (&font->output, &count, 2);
if (unlikely (status))
return status;
buf[0] = offset_size;
status = _cairo_array_append (&font->output, buf);
if (unlikely (status))
return status;
encode_index_offset (buf, offset_size, 1);
status = _cairo_array_append_multiple (&font->output, buf, offset_size);
if (unlikely (status))
return status;
 
/* Reserve space for last element of offset array and update after
* dict is written */
offset_index = _cairo_array_num_elements (&font->output);
status = _cairo_array_append_multiple (&font->output, buf, offset_size);
if (unlikely (status))
return status;
 
dict_start = _cairo_array_num_elements (&font->output);
status = cff_dict_write (font->top_dict, &font->output);
if (unlikely (status))
return status;
dict_size = _cairo_array_num_elements (&font->output) - dict_start;
 
encode_index_offset (buf, offset_size, dict_size + 1);
p = _cairo_array_index (&font->output, offset_index);
memcpy (p, buf, offset_size);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_write_strings (cairo_cff_font_t *font)
{
return cff_index_write (&font->strings_subset_index, &font->output);
}
 
static cairo_status_t
cairo_cff_font_write_global_subrs (cairo_cff_font_t *font)
{
return cff_index_write (&font->global_sub_index, &font->output);
}
 
static cairo_status_t
cairo_cff_font_write_fdselect (cairo_cff_font_t *font)
{
unsigned char data;
unsigned int i;
cairo_int_status_t status;
 
cairo_cff_font_set_topdict_operator_to_cur_pos (font, FDSELECT_OP);
 
if (font->is_cid) {
data = 0;
status = _cairo_array_append (&font->output, &data);
if (unlikely (status))
return status;
 
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
data = font->fdselect_subset[i];
status = _cairo_array_append (&font->output, &data);
if (unlikely (status))
return status;
}
} else {
unsigned char byte;
uint16_t word;
 
status = _cairo_array_grow_by (&font->output, 9);
if (unlikely (status))
return status;
 
byte = 3;
status = _cairo_array_append (&font->output, &byte);
assert (status == CAIRO_STATUS_SUCCESS);
 
word = cpu_to_be16 (1);
status = _cairo_array_append_multiple (&font->output, &word, 2);
assert (status == CAIRO_STATUS_SUCCESS);
 
word = cpu_to_be16 (0);
status = _cairo_array_append_multiple (&font->output, &word, 2);
assert (status == CAIRO_STATUS_SUCCESS);
 
byte = 0;
status = _cairo_array_append (&font->output, &byte);
assert (status == CAIRO_STATUS_SUCCESS);
 
word = cpu_to_be16 (font->scaled_font_subset->num_glyphs);
status = _cairo_array_append_multiple (&font->output, &word, 2);
assert (status == CAIRO_STATUS_SUCCESS);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_write_charset (cairo_cff_font_t *font)
{
unsigned char byte;
uint16_t word;
cairo_status_t status;
 
cairo_cff_font_set_topdict_operator_to_cur_pos (font, CHARSET_OP);
status = _cairo_array_grow_by (&font->output, 5);
if (unlikely (status))
return status;
 
byte = 2;
status = _cairo_array_append (&font->output, &byte);
assert (status == CAIRO_STATUS_SUCCESS);
 
word = cpu_to_be16 (1);
status = _cairo_array_append_multiple (&font->output, &word, 2);
assert (status == CAIRO_STATUS_SUCCESS);
 
word = cpu_to_be16 (font->scaled_font_subset->num_glyphs - 2);
status = _cairo_array_append_multiple (&font->output, &word, 2);
assert (status == CAIRO_STATUS_SUCCESS);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_write_charstrings (cairo_cff_font_t *font)
{
cairo_cff_font_set_topdict_operator_to_cur_pos (font, CHARSTRINGS_OP);
 
return cff_index_write (&font->charstrings_subset_index, &font->output);
}
 
static cairo_status_t
cairo_cff_font_write_cid_fontdict (cairo_cff_font_t *font)
{
unsigned int i;
cairo_int_status_t status;
uint32_t *offset_array;
int offset_base;
uint16_t count;
uint8_t offset_size = 4;
 
cairo_cff_font_set_topdict_operator_to_cur_pos (font, FDARRAY_OP);
count = cpu_to_be16 (font->num_subset_fontdicts);
status = _cairo_array_append_multiple (&font->output, &count, sizeof (uint16_t));
if (unlikely (status))
return status;
status = _cairo_array_append (&font->output, &offset_size);
if (unlikely (status))
return status;
status = _cairo_array_allocate (&font->output,
(font->num_subset_fontdicts + 1)*offset_size,
(void **) &offset_array);
if (unlikely (status))
return status;
offset_base = _cairo_array_num_elements (&font->output) - 1;
*offset_array++ = cpu_to_be32(1);
for (i = 0; i < font->num_subset_fontdicts; i++) {
status = cff_dict_write (font->fd_dict[font->fd_subset_map[i]],
&font->output);
if (unlikely (status))
return status;
*offset_array++ = cpu_to_be32(_cairo_array_num_elements (&font->output) - offset_base);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_write_private_dict (cairo_cff_font_t *font,
int dict_num,
cairo_hash_table_t *parent_dict,
cairo_hash_table_t *private_dict)
{
int offset;
int size;
unsigned char buf[10];
unsigned char *buf_end;
unsigned char *p;
cairo_status_t status;
 
/* Write private dict and update offset and size in top dict */
font->private_dict_offset[dict_num] = _cairo_array_num_elements (&font->output);
status = cff_dict_write (private_dict, &font->output);
if (unlikely (status))
return status;
 
size = _cairo_array_num_elements (&font->output) - font->private_dict_offset[dict_num];
/* private entry has two operands - size and offset */
buf_end = encode_integer_max (buf, size);
buf_end = encode_integer_max (buf_end, font->private_dict_offset[dict_num]);
offset = cff_dict_get_location (parent_dict, PRIVATE_OP, &size);
assert (offset > 0);
p = _cairo_array_index (&font->output, offset);
memcpy (p, buf, buf_end - buf);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_cff_font_write_local_sub (cairo_cff_font_t *font,
int dict_num,
cairo_hash_table_t *private_dict,
cairo_array_t *local_sub_index)
{
int offset;
int size;
unsigned char buf[10];
unsigned char *buf_end;
unsigned char *p;
cairo_status_t status;
 
if (_cairo_array_num_elements (local_sub_index) > 0) {
/* Write local subroutines and update offset in private
* dict. Local subroutines offset is relative to start of
* private dict */
offset = _cairo_array_num_elements (&font->output) - font->private_dict_offset[dict_num];
buf_end = encode_integer_max (buf, offset);
offset = cff_dict_get_location (private_dict, LOCAL_SUB_OP, &size);
assert (offset > 0);
p = _cairo_array_index (&font->output, offset);
memcpy (p, buf, buf_end - buf);
status = cff_index_write (local_sub_index, &font->output);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
 
static cairo_status_t
cairo_cff_font_write_cid_private_dict_and_local_sub (cairo_cff_font_t *font)
{
unsigned int i;
cairo_int_status_t status;
 
if (font->is_cid) {
for (i = 0; i < font->num_subset_fontdicts; i++) {
status = cairo_cff_font_write_private_dict (
font,
i,
font->fd_dict[font->fd_subset_map[i]],
font->fd_private_dict[font->fd_subset_map[i]]);
if (unlikely (status))
return status;
}
 
for (i = 0; i < font->num_subset_fontdicts; i++) {
status = cairo_cff_font_write_local_sub (
font,
i,
font->fd_private_dict[font->fd_subset_map[i]],
&font->fd_local_sub_index[font->fd_subset_map[i]]);
if (unlikely (status))
return status;
}
} else {
status = cairo_cff_font_write_private_dict (font,
0,
font->fd_dict[0],
font->private_dict);
if (unlikely (status))
return status;
 
status = cairo_cff_font_write_local_sub (font,
0,
font->private_dict,
&font->local_sub_index);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
typedef cairo_status_t
(*font_write_t) (cairo_cff_font_t *font);
 
static const font_write_t font_write_funcs[] = {
cairo_cff_font_write_header,
cairo_cff_font_write_name,
cairo_cff_font_write_top_dict,
cairo_cff_font_write_strings,
cairo_cff_font_write_global_subrs,
cairo_cff_font_write_charset,
cairo_cff_font_write_fdselect,
cairo_cff_font_write_charstrings,
cairo_cff_font_write_cid_fontdict,
cairo_cff_font_write_cid_private_dict_and_local_sub,
};
 
static cairo_status_t
cairo_cff_font_write_subset (cairo_cff_font_t *font)
{
cairo_int_status_t status;
unsigned int i;
 
for (i = 0; i < ARRAY_LENGTH (font_write_funcs); i++) {
status = font_write_funcs[i] (font);
if (unlikely (status))
return status;
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_cff_font_generate (cairo_cff_font_t *font,
const char **data,
unsigned long *length)
{
cairo_int_status_t status;
 
status = cairo_cff_font_read_font (font);
if (unlikely (status))
return status;
 
status = cairo_cff_font_subset_font (font);
if (unlikely (status))
return status;
 
status = cairo_cff_font_write_subset (font);
if (unlikely (status))
return status;
 
*data = _cairo_array_index (&font->output, 0);
*length = _cairo_array_num_elements (&font->output);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_cff_font_create_set_widths (cairo_cff_font_t *font)
{
unsigned long size;
unsigned long long_entry_size;
unsigned long short_entry_size;
unsigned int i;
tt_hhea_t hhea;
int num_hmetrics;
unsigned char buf[10];
int glyph_index;
cairo_int_status_t status;
 
size = sizeof (tt_hhea_t);
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hhea, 0,
(unsigned char*) &hhea, &size);
if (unlikely (status))
return status;
num_hmetrics = be16_to_cpu (hhea.num_hmetrics);
 
for (i = 1; i < font->scaled_font_subset->num_glyphs; i++) {
glyph_index = font->scaled_font_subset->glyphs[i];
long_entry_size = 2 * sizeof (int16_t);
short_entry_size = sizeof (int16_t);
if (glyph_index < num_hmetrics) {
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hmtx,
glyph_index * long_entry_size,
buf, &short_entry_size);
if (unlikely (status))
return status;
}
else
{
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hmtx,
(num_hmetrics - 1) * long_entry_size,
buf, &short_entry_size);
if (unlikely (status))
return status;
}
font->widths[i] = be16_to_cpu (*((int16_t*)buf));
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_cff_font_create (cairo_scaled_font_subset_t *scaled_font_subset,
cairo_cff_font_t **font_return,
const char *subset_name)
{
const cairo_scaled_font_backend_t *backend;
cairo_status_t status;
cairo_cff_font_t *font;
tt_head_t head;
tt_hhea_t hhea;
unsigned long size, data_length;
 
backend = scaled_font_subset->scaled_font->backend;
if (!backend->load_truetype_table)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
data_length = 0;
status = backend->load_truetype_table( scaled_font_subset->scaled_font,
TT_TAG_CFF, 0, NULL, &data_length);
if (unlikely (status))
return status;
 
size = sizeof (tt_head_t);
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_head, 0,
(unsigned char *) &head, &size);
if (unlikely (status))
return status;
 
size = sizeof (tt_hhea_t);
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_hhea, 0,
(unsigned char *) &hhea, &size);
if (unlikely (status))
return status;
 
size = 0;
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_hmtx, 0, NULL, &size);
if (unlikely (status))
return status;
 
font = malloc (sizeof (cairo_cff_font_t));
if (unlikely (font == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->backend = backend;
font->scaled_font_subset = scaled_font_subset;
 
_cairo_array_init (&font->output, sizeof (char));
status = _cairo_array_grow_by (&font->output, 4096);
if (unlikely (status))
goto fail2;
 
font->subset_font_name = strdup (subset_name);
if (unlikely (font->subset_font_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
font->x_min = (int16_t) be16_to_cpu (head.x_min);
font->y_min = (int16_t) be16_to_cpu (head.y_min);
font->x_max = (int16_t) be16_to_cpu (head.x_max);
font->y_max = (int16_t) be16_to_cpu (head.y_max);
font->ascent = (int16_t) be16_to_cpu (hhea.ascender);
font->descent = (int16_t) be16_to_cpu (hhea.descender);
font->units_per_em = (int16_t) be16_to_cpu (head.units_per_em);
if (font->units_per_em == 0)
font->units_per_em = 1000;
 
font->font_name = NULL;
status = _cairo_truetype_read_font_name (scaled_font_subset->scaled_font,
&font->ps_name,
&font->font_name);
if (_cairo_status_is_error (status))
goto fail3;
 
/* If the PS name is not found, create a CairoFont-x-y name. */
if (font->ps_name == NULL) {
font->ps_name = malloc (30);
if (unlikely (font->ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
 
snprintf(font->ps_name, 30, "CairoFont-%u-%u",
scaled_font_subset->font_id,
scaled_font_subset->subset_id);
}
 
font->widths = calloc (font->scaled_font_subset->num_glyphs, sizeof (int));
if (unlikely (font->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail4;
}
 
status = cairo_cff_font_create_set_widths (font);
if (unlikely (status))
goto fail5;
 
font->data_length = data_length;
font->data = malloc (data_length);
if (unlikely (font->data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail5;
}
status = font->backend->load_truetype_table ( font->scaled_font_subset->scaled_font,
TT_TAG_CFF, 0, font->data,
&font->data_length);
if (unlikely (status))
goto fail6;
 
font->data_end = font->data + font->data_length;
 
status = cff_dict_init (&font->top_dict);
if (unlikely (status))
goto fail6;
 
status = cff_dict_init (&font->private_dict);
if (unlikely (status))
goto fail7;
 
cff_index_init (&font->strings_index);
cff_index_init (&font->charstrings_index);
cff_index_init (&font->global_sub_index);
cff_index_init (&font->local_sub_index);
cff_index_init (&font->charstrings_subset_index);
cff_index_init (&font->strings_subset_index);
font->fdselect = NULL;
font->fd_dict = NULL;
font->fd_private_dict = NULL;
font->fd_local_sub_index = NULL;
font->fdselect_subset = NULL;
font->fd_subset_map = NULL;
font->private_dict_offset = NULL;
 
*font_return = font;
 
return CAIRO_STATUS_SUCCESS;
 
fail7:
_cairo_hash_table_destroy (font->top_dict);
fail6:
free (font->data);
fail5:
free (font->widths);
fail4:
if (font->font_name)
free (font->font_name);
fail3:
free (font->subset_font_name);
fail2:
_cairo_array_fini (&font->output);
free (font);
 
return status;
}
 
static void
cairo_cff_font_destroy (cairo_cff_font_t *font)
{
unsigned int i;
 
free (font->widths);
if (font->font_name)
free (font->font_name);
free (font->ps_name);
free (font->subset_font_name);
_cairo_array_fini (&font->output);
cff_dict_fini (font->top_dict);
cff_dict_fini (font->private_dict);
cff_index_fini (&font->strings_index);
cff_index_fini (&font->charstrings_index);
cff_index_fini (&font->global_sub_index);
cff_index_fini (&font->local_sub_index);
cff_index_fini (&font->charstrings_subset_index);
cff_index_fini (&font->strings_subset_index);
 
/* If we bailed out early as a result of an error some of the
* following cairo_cff_font_t members may still be NULL */
if (font->fd_dict) {
for (i = 0; i < font->num_fontdicts; i++) {
if (font->fd_dict[i])
cff_dict_fini (font->fd_dict[i]);
}
free (font->fd_dict);
}
if (font->fd_subset_map)
free (font->fd_subset_map);
if (font->private_dict_offset)
free (font->private_dict_offset);
 
if (font->is_cid) {
if (font->fdselect)
free (font->fdselect);
if (font->fdselect_subset)
free (font->fdselect_subset);
if (font->fd_private_dict) {
for (i = 0; i < font->num_fontdicts; i++) {
if (font->fd_private_dict[i])
cff_dict_fini (font->fd_private_dict[i]);
}
free (font->fd_private_dict);
}
if (font->fd_local_sub_index) {
for (i = 0; i < font->num_fontdicts; i++)
cff_index_fini (&font->fd_local_sub_index[i]);
free (font->fd_local_sub_index);
}
}
 
if (font->data)
free (font->data);
 
free (font);
}
 
cairo_status_t
_cairo_cff_subset_init (cairo_cff_subset_t *cff_subset,
const char *subset_name,
cairo_scaled_font_subset_t *font_subset)
{
cairo_cff_font_t *font = NULL; /* squelch bogus compiler warning */
cairo_status_t status;
const char *data = NULL; /* squelch bogus compiler warning */
unsigned long length = 0; /* squelch bogus compiler warning */
unsigned int i;
 
status = _cairo_cff_font_create (font_subset, &font, subset_name);
if (unlikely (status))
return status;
 
status = cairo_cff_font_generate (font, &data, &length);
if (unlikely (status))
goto fail1;
 
cff_subset->ps_name = strdup (font->ps_name);
if (unlikely (cff_subset->ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
if (font->font_name) {
cff_subset->font_name = strdup (font->font_name);
if (cff_subset->font_name == NULL) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
} else {
cff_subset->font_name = NULL;
}
 
cff_subset->widths = calloc (sizeof (double), font->scaled_font_subset->num_glyphs);
if (unlikely (cff_subset->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++)
cff_subset->widths[i] = (double)font->widths[i]/font->units_per_em;
 
cff_subset->x_min = (double)font->x_min/font->units_per_em;
cff_subset->y_min = (double)font->y_min/font->units_per_em;
cff_subset->x_max = (double)font->x_max/font->units_per_em;
cff_subset->y_max = (double)font->y_max/font->units_per_em;
cff_subset->ascent = (double)font->ascent/font->units_per_em;
cff_subset->descent = (double)font->descent/font->units_per_em;
 
cff_subset->data = malloc (length);
if (unlikely (cff_subset->data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail4;
}
 
memcpy (cff_subset->data, data, length);
cff_subset->data_length = length;
 
cairo_cff_font_destroy (font);
 
return CAIRO_STATUS_SUCCESS;
 
fail4:
free (cff_subset->widths);
fail3:
if (cff_subset->font_name)
free (cff_subset->font_name);
fail2:
free (cff_subset->ps_name);
fail1:
cairo_cff_font_destroy (font);
 
return status;
}
 
void
_cairo_cff_subset_fini (cairo_cff_subset_t *subset)
{
free (subset->ps_name);
if (subset->font_name)
free (subset->font_name);
free (subset->widths);
free (subset->data);
}
 
static cairo_int_status_t
_cairo_cff_font_fallback_create (cairo_scaled_font_subset_t *scaled_font_subset,
cairo_cff_font_t **font_return,
const char *subset_name)
{
cairo_status_t status;
cairo_cff_font_t *font;
 
font = malloc (sizeof (cairo_cff_font_t));
if (unlikely (font == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->backend = NULL;
font->scaled_font_subset = scaled_font_subset;
 
_cairo_array_init (&font->output, sizeof (char));
status = _cairo_array_grow_by (&font->output, 4096);
if (unlikely (status))
goto fail1;
 
font->subset_font_name = strdup (subset_name);
if (unlikely (font->subset_font_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
font->ps_name = strdup (subset_name);
if (unlikely (font->ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
font->font_name = NULL;
 
font->x_min = 0;
font->y_min = 0;
font->x_max = 0;
font->y_max = 0;
font->ascent = 0;
font->descent = 0;
 
font->widths = calloc (font->scaled_font_subset->num_glyphs, sizeof (int));
if (unlikely (font->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
 
font->data_length = 0;
font->data = NULL;
font->data_end = NULL;
 
status = cff_dict_init (&font->top_dict);
if (unlikely (status))
goto fail4;
 
status = cff_dict_init (&font->private_dict);
if (unlikely (status))
goto fail5;
 
cff_index_init (&font->strings_index);
cff_index_init (&font->charstrings_index);
cff_index_init (&font->global_sub_index);
cff_index_init (&font->local_sub_index);
cff_index_init (&font->charstrings_subset_index);
cff_index_init (&font->strings_subset_index);
font->fdselect = NULL;
font->fd_dict = NULL;
font->fd_private_dict = NULL;
font->fd_local_sub_index = NULL;
font->fdselect_subset = NULL;
font->fd_subset_map = NULL;
font->private_dict_offset = NULL;
 
*font_return = font;
 
return CAIRO_STATUS_SUCCESS;
 
fail5:
_cairo_hash_table_destroy (font->top_dict);
fail4:
free (font->widths);
fail3:
if (font->font_name)
free (font->font_name);
free (font->ps_name);
fail2:
free (font->subset_font_name);
fail1:
_cairo_array_fini (&font->output);
free (font);
return status;
}
 
static cairo_int_status_t
cairo_cff_font_fallback_generate (cairo_cff_font_t *font,
cairo_type2_charstrings_t *type2_subset,
const char **data,
unsigned long *length)
{
cairo_int_status_t status;
cff_header_t header;
cairo_array_t *charstring;
unsigned char buf[40];
unsigned char *end_buf;
unsigned int i;
 
/* Create header */
header.major = 1;
header.minor = 0;
header.header_size = 4;
header.offset_size = 4;
font->header = &header;
 
/* Create Top Dict */
font->is_cid = FALSE;
end_buf = encode_integer (buf, type2_subset->x_min);
end_buf = encode_integer (end_buf, type2_subset->y_min);
end_buf = encode_integer (end_buf, type2_subset->x_max);
end_buf = encode_integer (end_buf, type2_subset->y_max);
status = cff_dict_set_operands (font->top_dict,
FONTBBOX_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
end_buf = encode_integer_max (buf, 0);
status = cff_dict_set_operands (font->top_dict,
CHARSTRINGS_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
status = cff_dict_set_operands (font->top_dict,
FDSELECT_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
status = cff_dict_set_operands (font->top_dict,
FDARRAY_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
status = cff_dict_set_operands (font->top_dict,
CHARSET_OP, buf, end_buf - buf);
if (unlikely (status))
return status;
 
status = cairo_cff_font_set_ros_strings (font);
if (unlikely (status))
return status;
 
/* Create CID FD dictionary */
status = cairo_cff_font_create_cid_fontdict (font);
if (unlikely (status))
return status;
 
/* Create charstrings */
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
charstring = _cairo_array_index(&type2_subset->charstrings, i);
 
status = cff_index_append (&font->charstrings_subset_index,
_cairo_array_index (charstring, 0),
_cairo_array_num_elements (charstring));
 
if (unlikely (status))
return status;
}
 
status = cairo_cff_font_write_subset (font);
if (unlikely (status))
return status;
 
*data = _cairo_array_index (&font->output, 0);
*length = _cairo_array_num_elements (&font->output);
 
return CAIRO_STATUS_SUCCESS;
}
 
cairo_status_t
_cairo_cff_fallback_init (cairo_cff_subset_t *cff_subset,
const char *subset_name,
cairo_scaled_font_subset_t *font_subset)
{
cairo_cff_font_t *font = NULL; /* squelch bogus compiler warning */
cairo_status_t status;
const char *data = NULL; /* squelch bogus compiler warning */
unsigned long length = 0; /* squelch bogus compiler warning */
unsigned int i;
cairo_type2_charstrings_t type2_subset;
 
status = _cairo_cff_font_fallback_create (font_subset, &font, subset_name);
if (unlikely (status))
return status;
 
status = _cairo_type2_charstrings_init (&type2_subset, font_subset);
if (unlikely (status))
goto fail1;
 
status = cairo_cff_font_fallback_generate (font, &type2_subset, &data, &length);
if (unlikely (status))
goto fail2;
 
cff_subset->font_name = NULL;
cff_subset->ps_name = strdup (font->ps_name);
if (unlikely (cff_subset->ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
 
cff_subset->widths = calloc (sizeof (double), font->scaled_font_subset->num_glyphs);
if (unlikely (cff_subset->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
 
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++)
cff_subset->widths[i] = (double)type2_subset.widths[i]/1000;
 
cff_subset->x_min = (double)type2_subset.x_min/1000;
cff_subset->y_min = (double)type2_subset.y_min/1000;
cff_subset->x_max = (double)type2_subset.x_max/1000;
cff_subset->y_max = (double)type2_subset.y_max/1000;
cff_subset->ascent = (double)type2_subset.y_max/1000;
cff_subset->descent = (double)type2_subset.y_min/1000;
 
cff_subset->data = malloc (length);
if (unlikely (cff_subset->data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail4;
}
 
memcpy (cff_subset->data, data, length);
cff_subset->data_length = length;
cff_subset->data_length = length;
 
_cairo_type2_charstrings_fini (&type2_subset);
cairo_cff_font_destroy (font);
 
return CAIRO_STATUS_SUCCESS;
 
fail4:
free (cff_subset->widths);
fail3:
free (cff_subset->ps_name);
fail2:
_cairo_type2_charstrings_fini (&type2_subset);
fail1:
cairo_cff_font_destroy (font);
 
return status;
}
 
void
_cairo_cff_fallback_fini (cairo_cff_subset_t *subset)
{
free (subset->ps_name);
free (subset->widths);
free (subset->data);
}
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/cairo/src/cairo-pdf-operators.c
0,0 → 1,1475
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2004 Red Hat, Inc
* Copyright © 2006 Red Hat, Inc
* Copyright © 2007, 2008 Adrian Johnson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Kristian Høgsberg <krh@redhat.com>
* Carl Worth <cworth@cworth.org>
* Adrian Johnson <ajohnson@redneon.com>
*/
 
#include "cairoint.h"
 
#if CAIRO_HAS_PDF_OPERATORS
 
#include "cairo-error-private.h"
#include "cairo-pdf-operators-private.h"
#include "cairo-path-fixed-private.h"
#include "cairo-output-stream-private.h"
#include "cairo-scaled-font-subsets-private.h"
 
static cairo_status_t
_cairo_pdf_operators_end_text (cairo_pdf_operators_t *pdf_operators);
 
 
void
_cairo_pdf_operators_init (cairo_pdf_operators_t *pdf_operators,
cairo_output_stream_t *stream,
cairo_matrix_t *cairo_to_pdf,
cairo_scaled_font_subsets_t *font_subsets)
{
pdf_operators->stream = stream;
pdf_operators->cairo_to_pdf = *cairo_to_pdf;
pdf_operators->font_subsets = font_subsets;
pdf_operators->use_font_subset = NULL;
pdf_operators->use_font_subset_closure = NULL;
pdf_operators->in_text_object = FALSE;
pdf_operators->num_glyphs = 0;
pdf_operators->has_line_style = FALSE;
pdf_operators->use_actual_text = FALSE;
}
 
cairo_status_t
_cairo_pdf_operators_fini (cairo_pdf_operators_t *pdf_operators)
{
return _cairo_pdf_operators_flush (pdf_operators);
}
 
void
_cairo_pdf_operators_set_font_subsets_callback (cairo_pdf_operators_t *pdf_operators,
cairo_pdf_operators_use_font_subset_t use_font_subset,
void *closure)
{
pdf_operators->use_font_subset = use_font_subset;
pdf_operators->use_font_subset_closure = closure;
}
 
/* Change the output stream to a different stream.
* _cairo_pdf_operators_flush() should always be called before calling
* this function.
*/
void
_cairo_pdf_operators_set_stream (cairo_pdf_operators_t *pdf_operators,
cairo_output_stream_t *stream)
{
pdf_operators->stream = stream;
pdf_operators->has_line_style = FALSE;
}
 
void
_cairo_pdf_operators_set_cairo_to_pdf_matrix (cairo_pdf_operators_t *pdf_operators,
cairo_matrix_t *cairo_to_pdf)
{
pdf_operators->cairo_to_pdf = *cairo_to_pdf;
pdf_operators->has_line_style = FALSE;
}
 
cairo_private void
_cairo_pdf_operators_enable_actual_text (cairo_pdf_operators_t *pdf_operators,
cairo_bool_t enable)
{
pdf_operators->use_actual_text = enable;
}
 
/* Finish writing out any pending commands to the stream. This
* function must be called by the surface before emitting anything
* into the PDF stream.
*
* pdf_operators may leave the emitted PDF for some operations
* unfinished in case subsequent operations can be merged. This
* function will finish off any incomplete operation so the stream
* will be in a state where the surface may emit its own PDF
* operations (eg changing patterns).
*
*/
cairo_status_t
_cairo_pdf_operators_flush (cairo_pdf_operators_t *pdf_operators)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
 
if (pdf_operators->in_text_object)
status = _cairo_pdf_operators_end_text (pdf_operators);
 
return status;
}
 
/* Reset the known graphics state of the PDF consumer. ie no
* assumptions will be made about the state. The next time a
* particular graphics state is required (eg line width) the state
* operator is always emitted and then remembered for subsequent
* operatations.
*
* This should be called when starting a new stream or after emitting
* the 'Q' operator (where pdf-operators functions were called inside
* the q/Q pair).
*/
void
_cairo_pdf_operators_reset (cairo_pdf_operators_t *pdf_operators)
{
pdf_operators->has_line_style = FALSE;
}
 
/* A word wrap stream can be used as a filter to do word wrapping on
* top of an existing output stream. The word wrapping is quite
* simple, using isspace to determine characters that separate
* words. Any word that will cause the column count exceed the given
* max_column will have a '\n' character emitted before it.
*
* The stream is careful to maintain integrity for words that cross
* the boundary from one call to write to the next.
*
* Note: This stream does not guarantee that the output will never
* exceed max_column. In particular, if a single word is larger than
* max_column it will not be broken up.
*/
typedef struct _word_wrap_stream {
cairo_output_stream_t base;
cairo_output_stream_t *output;
int max_column;
int column;
cairo_bool_t last_write_was_space;
cairo_bool_t in_hexstring;
cairo_bool_t empty_hexstring;
} word_wrap_stream_t;
 
static int
_count_word_up_to (const unsigned char *s, int length)
{
int word = 0;
 
while (length--) {
if (! (_cairo_isspace (*s) || *s == '<')) {
s++;
word++;
} else {
return word;
}
}
 
return word;
}
 
 
/* Count up to either the end of the ASCII hexstring or the number
* of columns remaining.
*/
static int
_count_hexstring_up_to (const unsigned char *s, int length, int columns)
{
int word = 0;
 
while (length--) {
if (*s++ != '>')
word++;
else
return word;
 
columns--;
if (columns < 0 && word > 1)
return word;
}
 
return word;
}
 
static cairo_status_t
_word_wrap_stream_write (cairo_output_stream_t *base,
const unsigned char *data,
unsigned int length)
{
word_wrap_stream_t *stream = (word_wrap_stream_t *) base;
cairo_bool_t newline;
int word;
 
while (length) {
if (*data == '<') {
stream->in_hexstring = TRUE;
stream->empty_hexstring = TRUE;
stream->last_write_was_space = FALSE;
data++;
length--;
_cairo_output_stream_printf (stream->output, "<");
stream->column++;
} else if (*data == '>') {
stream->in_hexstring = FALSE;
stream->last_write_was_space = FALSE;
data++;
length--;
_cairo_output_stream_printf (stream->output, ">");
stream->column++;
} else if (_cairo_isspace (*data)) {
newline = (*data == '\n' || *data == '\r');
if (! newline && stream->column >= stream->max_column) {
_cairo_output_stream_printf (stream->output, "\n");
stream->column = 0;
}
_cairo_output_stream_write (stream->output, data, 1);
data++;
length--;
if (newline) {
stream->column = 0;
}
else
stream->column++;
stream->last_write_was_space = TRUE;
} else {
if (stream->in_hexstring) {
word = _count_hexstring_up_to (data, length,
MAX (stream->max_column - stream->column, 0));
} else {
word = _count_word_up_to (data, length);
}
/* Don't wrap if this word is a continuation of a non hex
* string word from a previous call to write. */
if (stream->column + word >= stream->max_column) {
if (stream->last_write_was_space ||
(stream->in_hexstring && !stream->empty_hexstring))
{
_cairo_output_stream_printf (stream->output, "\n");
stream->column = 0;
}
}
_cairo_output_stream_write (stream->output, data, word);
data += word;
length -= word;
stream->column += word;
stream->last_write_was_space = FALSE;
if (stream->in_hexstring)
stream->empty_hexstring = FALSE;
}
}
 
return _cairo_output_stream_get_status (stream->output);
}
 
static cairo_status_t
_word_wrap_stream_close (cairo_output_stream_t *base)
{
word_wrap_stream_t *stream = (word_wrap_stream_t *) base;
 
return _cairo_output_stream_get_status (stream->output);
}
 
static cairo_output_stream_t *
_word_wrap_stream_create (cairo_output_stream_t *output, int max_column)
{
word_wrap_stream_t *stream;
 
if (output->status)
return _cairo_output_stream_create_in_error (output->status);
 
stream = malloc (sizeof (word_wrap_stream_t));
if (unlikely (stream == NULL)) {
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
return (cairo_output_stream_t *) &_cairo_output_stream_nil;
}
 
_cairo_output_stream_init (&stream->base,
_word_wrap_stream_write,
NULL,
_word_wrap_stream_close);
stream->output = output;
stream->max_column = max_column;
stream->column = 0;
stream->last_write_was_space = FALSE;
stream->in_hexstring = FALSE;
stream->empty_hexstring = TRUE;
 
return &stream->base;
}
 
typedef struct _pdf_path_info {
cairo_output_stream_t *output;
cairo_matrix_t *path_transform;
cairo_line_cap_t line_cap;
cairo_point_t last_move_to_point;
cairo_bool_t has_sub_path;
} pdf_path_info_t;
 
static cairo_status_t
_cairo_pdf_path_move_to (void *closure,
const cairo_point_t *point)
{
pdf_path_info_t *info = closure;
double x = _cairo_fixed_to_double (point->x);
double y = _cairo_fixed_to_double (point->y);
 
info->last_move_to_point = *point;
info->has_sub_path = FALSE;
cairo_matrix_transform_point (info->path_transform, &x, &y);
_cairo_output_stream_printf (info->output,
"%g %g m ", x, y);
 
return _cairo_output_stream_get_status (info->output);
}
 
static cairo_status_t
_cairo_pdf_path_line_to (void *closure,
const cairo_point_t *point)
{
pdf_path_info_t *info = closure;
double x = _cairo_fixed_to_double (point->x);
double y = _cairo_fixed_to_double (point->y);
 
if (info->line_cap != CAIRO_LINE_CAP_ROUND &&
! info->has_sub_path &&
point->x == info->last_move_to_point.x &&
point->y == info->last_move_to_point.y)
{
return CAIRO_STATUS_SUCCESS;
}
 
info->has_sub_path = TRUE;
cairo_matrix_transform_point (info->path_transform, &x, &y);
_cairo_output_stream_printf (info->output,
"%g %g l ", x, y);
 
return _cairo_output_stream_get_status (info->output);
}
 
static cairo_status_t
_cairo_pdf_path_curve_to (void *closure,
const cairo_point_t *b,
const cairo_point_t *c,
const cairo_point_t *d)
{
pdf_path_info_t *info = closure;
double bx = _cairo_fixed_to_double (b->x);
double by = _cairo_fixed_to_double (b->y);
double cx = _cairo_fixed_to_double (c->x);
double cy = _cairo_fixed_to_double (c->y);
double dx = _cairo_fixed_to_double (d->x);
double dy = _cairo_fixed_to_double (d->y);
 
info->has_sub_path = TRUE;
cairo_matrix_transform_point (info->path_transform, &bx, &by);
cairo_matrix_transform_point (info->path_transform, &cx, &cy);
cairo_matrix_transform_point (info->path_transform, &dx, &dy);
_cairo_output_stream_printf (info->output,
"%g %g %g %g %g %g c ",
bx, by, cx, cy, dx, dy);
return _cairo_output_stream_get_status (info->output);
}
 
static cairo_status_t
_cairo_pdf_path_close_path (void *closure)
{
pdf_path_info_t *info = closure;
 
if (info->line_cap != CAIRO_LINE_CAP_ROUND &&
! info->has_sub_path)
{
return CAIRO_STATUS_SUCCESS;
}
 
_cairo_output_stream_printf (info->output,
"h\n");
 
return _cairo_output_stream_get_status (info->output);
}
 
static cairo_status_t
_cairo_pdf_path_rectangle (pdf_path_info_t *info, cairo_box_t *box)
{
double x1 = _cairo_fixed_to_double (box->p1.x);
double y1 = _cairo_fixed_to_double (box->p1.y);
double x2 = _cairo_fixed_to_double (box->p2.x);
double y2 = _cairo_fixed_to_double (box->p2.y);
 
cairo_matrix_transform_point (info->path_transform, &x1, &y1);
cairo_matrix_transform_point (info->path_transform, &x2, &y2);
_cairo_output_stream_printf (info->output,
"%g %g %g %g re ",
x1, y1, x2 - x1, y2 - y1);
 
return _cairo_output_stream_get_status (info->output);
}
 
/* The line cap value is needed to workaround the fact that PostScript
* and PDF semantics for stroking degenerate sub-paths do not match
* cairo semantics. (PostScript draws something for any line cap
* value, while cairo draws something only for round caps).
*
* When using this function to emit a path to be filled, rather than
* stroked, simply pass %CAIRO_LINE_CAP_ROUND which will guarantee that
* the stroke workaround will not modify the path being emitted.
*/
static cairo_status_t
_cairo_pdf_operators_emit_path (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
cairo_matrix_t *path_transform,
cairo_line_cap_t line_cap)
{
cairo_output_stream_t *word_wrap;
cairo_status_t status, status2;
pdf_path_info_t info;
cairo_box_t box;
 
word_wrap = _word_wrap_stream_create (pdf_operators->stream, 72);
status = _cairo_output_stream_get_status (word_wrap);
if (unlikely (status))
return _cairo_output_stream_destroy (word_wrap);
 
info.output = word_wrap;
info.path_transform = path_transform;
info.line_cap = line_cap;
if (_cairo_path_fixed_is_rectangle (path, &box)) {
status = _cairo_pdf_path_rectangle (&info, &box);
} else {
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_pdf_path_move_to,
_cairo_pdf_path_line_to,
_cairo_pdf_path_curve_to,
_cairo_pdf_path_close_path,
&info);
}
 
status2 = _cairo_output_stream_destroy (word_wrap);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
return status;
}
 
cairo_int_status_t
_cairo_pdf_operators_clip (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule)
{
const char *pdf_operator;
cairo_status_t status;
 
if (pdf_operators->in_text_object) {
status = _cairo_pdf_operators_end_text (pdf_operators);
if (unlikely (status))
return status;
}
 
if (! path->has_current_point) {
/* construct an empty path */
_cairo_output_stream_printf (pdf_operators->stream, "0 0 m ");
} else {
status = _cairo_pdf_operators_emit_path (pdf_operators,
path,
&pdf_operators->cairo_to_pdf,
CAIRO_LINE_CAP_ROUND);
if (unlikely (status))
return status;
}
 
switch (fill_rule) {
default:
ASSERT_NOT_REACHED;
case CAIRO_FILL_RULE_WINDING:
pdf_operator = "W";
break;
case CAIRO_FILL_RULE_EVEN_ODD:
pdf_operator = "W*";
break;
}
 
_cairo_output_stream_printf (pdf_operators->stream,
"%s n\n",
pdf_operator);
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
static int
_cairo_pdf_line_cap (cairo_line_cap_t cap)
{
switch (cap) {
case CAIRO_LINE_CAP_BUTT:
return 0;
case CAIRO_LINE_CAP_ROUND:
return 1;
case CAIRO_LINE_CAP_SQUARE:
return 2;
default:
ASSERT_NOT_REACHED;
return 0;
}
}
 
static int
_cairo_pdf_line_join (cairo_line_join_t join)
{
switch (join) {
case CAIRO_LINE_JOIN_MITER:
return 0;
case CAIRO_LINE_JOIN_ROUND:
return 1;
case CAIRO_LINE_JOIN_BEVEL:
return 2;
default:
ASSERT_NOT_REACHED;
return 0;
}
}
 
cairo_int_status_t
_cairo_pdf_operators_emit_stroke_style (cairo_pdf_operators_t *pdf_operators,
const cairo_stroke_style_t *style,
double scale)
{
double *dash = style->dash;
int num_dashes = style->num_dashes;
double dash_offset = style->dash_offset;
double line_width = style->line_width * scale;
 
/* PostScript has "special needs" when it comes to zero-length
* dash segments with butt caps. It apparently (at least
* according to ghostscript) draws hairlines for this
* case. That's not what the cairo semantics want, so we first
* touch up the array to eliminate any 0.0 values that will
* result in "on" segments.
*/
if (num_dashes && style->line_cap == CAIRO_LINE_CAP_BUTT) {
int i;
 
/* If there's an odd number of dash values they will each get
* interpreted as both on and off. So we first explicitly
* expand the array to remove the duplicate usage so that we
* can modify some of the values.
*/
if (num_dashes % 2) {
dash = _cairo_malloc_abc (num_dashes, 2, sizeof (double));
if (unlikely (dash == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
memcpy (dash, style->dash, num_dashes * sizeof (double));
memcpy (dash + num_dashes, style->dash, num_dashes * sizeof (double));
 
num_dashes *= 2;
}
 
for (i = 0; i < num_dashes; i += 2) {
if (dash[i] == 0.0) {
/* Do not modify the dashes in-place, as we may need to also
* replay this stroke to an image fallback.
*/
if (dash == style->dash) {
dash = _cairo_malloc_ab (num_dashes, sizeof (double));
if (unlikely (dash == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
memcpy (dash, style->dash, num_dashes * sizeof (double));
}
 
/* If we're at the front of the list, we first rotate
* two elements from the end of the list to the front
* of the list before folding away the 0.0. Or, if
* there are only two dash elements, then there is
* nothing at all to draw.
*/
if (i == 0) {
double last_two[2];
 
if (num_dashes == 2) {
free (dash);
return CAIRO_INT_STATUS_NOTHING_TO_DO;
}
 
/* The cases of num_dashes == 0, 1, or 3 elements
* cannot exist, so the rotation of 2 elements
* will always be safe */
memcpy (last_two, dash + num_dashes - 2, sizeof (last_two));
memmove (dash + 2, dash, (num_dashes - 2) * sizeof (double));
memcpy (dash, last_two, sizeof (last_two));
dash_offset += dash[0] + dash[1];
i = 2;
}
dash[i-1] += dash[i+1];
num_dashes -= 2;
memmove (dash + i, dash + i + 2, (num_dashes - i) * sizeof (double));
/* If we might have just rotated, it's possible that
* we rotated a 0.0 value to the front of the list.
* Set i to -2 so it will get incremented to 0. */
if (i == 2)
i = -2;
}
}
}
 
if (!pdf_operators->has_line_style || pdf_operators->line_width != line_width) {
_cairo_output_stream_printf (pdf_operators->stream,
"%f w\n",
line_width);
pdf_operators->line_width = line_width;
}
 
if (!pdf_operators->has_line_style || pdf_operators->line_cap != style->line_cap) {
_cairo_output_stream_printf (pdf_operators->stream,
"%d J\n",
_cairo_pdf_line_cap (style->line_cap));
pdf_operators->line_cap = style->line_cap;
}
 
if (!pdf_operators->has_line_style || pdf_operators->line_join != style->line_join) {
_cairo_output_stream_printf (pdf_operators->stream,
"%d j\n",
_cairo_pdf_line_join (style->line_join));
pdf_operators->line_join = style->line_join;
}
 
if (num_dashes) {
int d;
 
_cairo_output_stream_printf (pdf_operators->stream, "[");
for (d = 0; d < num_dashes; d++)
_cairo_output_stream_printf (pdf_operators->stream, " %f", dash[d] * scale);
_cairo_output_stream_printf (pdf_operators->stream, "] %f d\n",
dash_offset * scale);
pdf_operators->has_dashes = TRUE;
} else if (!pdf_operators->has_line_style || pdf_operators->has_dashes) {
_cairo_output_stream_printf (pdf_operators->stream, "[] 0.0 d\n");
pdf_operators->has_dashes = FALSE;
}
if (dash != style->dash)
free (dash);
 
if (!pdf_operators->has_line_style || pdf_operators->miter_limit != style->miter_limit) {
_cairo_output_stream_printf (pdf_operators->stream,
"%f M ",
style->miter_limit < 1.0 ? 1.0 : style->miter_limit);
pdf_operators->miter_limit = style->miter_limit;
}
pdf_operators->has_line_style = TRUE;
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
/* Scale the matrix so the largest absolute value of the non
* translation components is 1.0. Return the scale required to restore
* the matrix to the original values.
*
* eg the matrix [ 100 0 0 50 20 10 ]
*
* is rescaled to [ 1 0 0 0.5 0.2 0.1 ]
* and the scale returned is 100
*/
static void
_cairo_matrix_factor_out_scale (cairo_matrix_t *m, double *scale)
{
double s;
 
s = fabs (m->xx);
if (fabs (m->xy) > s)
s = fabs (m->xy);
if (fabs (m->yx) > s)
s = fabs (m->yx);
if (fabs (m->yy) > s)
s = fabs (m->yy);
*scale = s;
s = 1.0/s;
cairo_matrix_scale (m, s, s);
}
 
static cairo_int_status_t
_cairo_pdf_operators_emit_stroke (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
const cairo_stroke_style_t *style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
const char *pdf_operator)
{
cairo_status_t status;
cairo_matrix_t m, path_transform;
cairo_bool_t has_ctm = TRUE;
double scale = 1.0;
 
if (pdf_operators->in_text_object) {
status = _cairo_pdf_operators_end_text (pdf_operators);
if (unlikely (status))
return status;
}
 
/* Optimize away the stroke ctm when it does not affect the
* stroke. There are other ctm cases that could be optimized
* however this is the most common.
*/
if (fabs(ctm->xx) == 1.0 && fabs(ctm->yy) == 1.0 &&
fabs(ctm->xy) == 0.0 && fabs(ctm->yx) == 0.0)
{
has_ctm = FALSE;
}
 
/* The PDF CTM is transformed to the user space CTM when stroking
* so the corect pen shape will be used. This also requires that
* the path be transformed to user space when emitted. The
* conversion of path coordinates to user space may cause rounding
* errors. For example the device space point (1.234, 3.142) when
* transformed to a user space CTM of [100 0 0 100 0 0] will be
* emitted as (0.012, 0.031).
*
* To avoid the rounding problem we scale the user space CTM
* matrix so that all the non translation components of the matrix
* are <= 1. The line width and and dashes are scaled by the
* inverse of the scale applied to the CTM. This maintains the
* shape of the stroke pen while keeping the user space CTM within
* the range that maximizes the precision of the emitted path.
*/
if (has_ctm) {
m = *ctm;
/* Zero out the translation since it does not affect the pen
* shape however it may cause unnecessary digits to be emitted.
*/
m.x0 = 0.0;
m.y0 = 0.0;
_cairo_matrix_factor_out_scale (&m, &scale);
path_transform = m;
status = cairo_matrix_invert (&path_transform);
if (unlikely (status))
return status;
 
cairo_matrix_multiply (&m, &m, &pdf_operators->cairo_to_pdf);
}
 
status = _cairo_pdf_operators_emit_stroke_style (pdf_operators, style, scale);
if (status == CAIRO_INT_STATUS_NOTHING_TO_DO)
return CAIRO_STATUS_SUCCESS;
if (unlikely (status))
return status;
 
if (has_ctm) {
_cairo_output_stream_printf (pdf_operators->stream,
"q %f %f %f %f %f %f cm\n",
m.xx, m.yx, m.xy, m.yy,
m.x0, m.y0);
} else {
path_transform = pdf_operators->cairo_to_pdf;
}
 
status = _cairo_pdf_operators_emit_path (pdf_operators,
path,
&path_transform,
style->line_cap);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (pdf_operators->stream, "%s", pdf_operator);
if (has_ctm)
_cairo_output_stream_printf (pdf_operators->stream, " Q");
 
_cairo_output_stream_printf (pdf_operators->stream, "\n");
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
cairo_int_status_t
_cairo_pdf_operators_stroke (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
const cairo_stroke_style_t *style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse)
{
return _cairo_pdf_operators_emit_stroke (pdf_operators,
path,
style,
ctm,
ctm_inverse,
"S");
}
 
cairo_int_status_t
_cairo_pdf_operators_fill (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule)
{
const char *pdf_operator;
cairo_status_t status;
 
if (pdf_operators->in_text_object) {
status = _cairo_pdf_operators_end_text (pdf_operators);
if (unlikely (status))
return status;
}
 
status = _cairo_pdf_operators_emit_path (pdf_operators,
path,
&pdf_operators->cairo_to_pdf,
CAIRO_LINE_CAP_ROUND);
if (unlikely (status))
return status;
 
switch (fill_rule) {
default:
ASSERT_NOT_REACHED;
case CAIRO_FILL_RULE_WINDING:
pdf_operator = "f";
break;
case CAIRO_FILL_RULE_EVEN_ODD:
pdf_operator = "f*";
break;
}
 
_cairo_output_stream_printf (pdf_operators->stream,
"%s\n",
pdf_operator);
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
cairo_int_status_t
_cairo_pdf_operators_fill_stroke (cairo_pdf_operators_t *pdf_operators,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
const cairo_stroke_style_t *style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse)
{
const char *operator;
 
switch (fill_rule) {
default:
ASSERT_NOT_REACHED;
case CAIRO_FILL_RULE_WINDING:
operator = "B";
break;
case CAIRO_FILL_RULE_EVEN_ODD:
operator = "B*";
break;
}
 
return _cairo_pdf_operators_emit_stroke (pdf_operators,
path,
style,
ctm,
ctm_inverse,
operator);
}
 
#define GLYPH_POSITION_TOLERANCE 0.001
 
/* Emit the string of glyphs using the 'Tj' operator. This requires
* that the glyphs are positioned at their natural glyph advances. */
static cairo_status_t
_cairo_pdf_operators_emit_glyph_string (cairo_pdf_operators_t *pdf_operators,
cairo_output_stream_t *stream)
{
int i;
 
_cairo_output_stream_printf (stream, "<");
for (i = 0; i < pdf_operators->num_glyphs; i++) {
_cairo_output_stream_printf (stream,
"%0*x",
pdf_operators->hex_width,
pdf_operators->glyphs[i].glyph_index);
pdf_operators->cur_x += pdf_operators->glyphs[i].x_advance;
}
_cairo_output_stream_printf (stream, ">Tj\n");
 
return _cairo_output_stream_get_status (stream);
}
 
/* Emit the string of glyphs using the 'TJ' operator.
*
* The TJ operator takes an array of strings of glyphs. Each string of
* glyphs is displayed using the glyph advances of each glyph to
* position the glyphs. A relative adjustment to the glyph advance may
* be specified by including the adjustment between two strings. The
* adjustment is in units of text space * -1000.
*/
static cairo_status_t
_cairo_pdf_operators_emit_glyph_string_with_positioning (
cairo_pdf_operators_t *pdf_operators,
cairo_output_stream_t *stream)
{
int i;
 
_cairo_output_stream_printf (stream, "[<");
for (i = 0; i < pdf_operators->num_glyphs; i++) {
if (pdf_operators->glyphs[i].x_position != pdf_operators->cur_x)
{
double delta = pdf_operators->glyphs[i].x_position - pdf_operators->cur_x;
int rounded_delta;
 
delta = -1000.0*delta;
/* As the delta is in 1/1000 of a unit of text space,
* rounding to an integer should still provide sufficient
* precision. We round the delta before adding to Tm_x so
* that we keep track of the accumulated rounding error in
* the PDF interpreter and compensate for it when
* calculating subsequent deltas.
*/
rounded_delta = _cairo_lround (delta);
if (rounded_delta != 0) {
_cairo_output_stream_printf (stream,
">%d<",
rounded_delta);
}
 
/* Convert the rounded delta back to text
* space before adding to the current text
* position. */
delta = rounded_delta/-1000.0;
pdf_operators->cur_x += delta;
}
 
_cairo_output_stream_printf (stream,
"%0*x",
pdf_operators->hex_width,
pdf_operators->glyphs[i].glyph_index);
pdf_operators->cur_x += pdf_operators->glyphs[i].x_advance;
}
_cairo_output_stream_printf (stream, ">]TJ\n");
 
return _cairo_output_stream_get_status (stream);
}
 
static cairo_status_t
_cairo_pdf_operators_flush_glyphs (cairo_pdf_operators_t *pdf_operators)
{
cairo_output_stream_t *word_wrap_stream;
cairo_status_t status, status2;
int i;
double x;
 
if (pdf_operators->num_glyphs == 0)
return CAIRO_STATUS_SUCCESS;
 
word_wrap_stream = _word_wrap_stream_create (pdf_operators->stream, 72);
status = _cairo_output_stream_get_status (word_wrap_stream);
if (unlikely (status))
return _cairo_output_stream_destroy (word_wrap_stream);
 
/* Check if glyph advance used to position every glyph */
x = pdf_operators->cur_x;
for (i = 0; i < pdf_operators->num_glyphs; i++) {
if (fabs(pdf_operators->glyphs[i].x_position - x) > GLYPH_POSITION_TOLERANCE)
break;
x += pdf_operators->glyphs[i].x_advance;
}
if (i == pdf_operators->num_glyphs) {
status = _cairo_pdf_operators_emit_glyph_string (pdf_operators,
word_wrap_stream);
} else {
status = _cairo_pdf_operators_emit_glyph_string_with_positioning (
pdf_operators, word_wrap_stream);
}
 
pdf_operators->num_glyphs = 0;
pdf_operators->glyph_buf_x_pos = pdf_operators->cur_x;
status2 = _cairo_output_stream_destroy (word_wrap_stream);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
return status;
}
 
static cairo_status_t
_cairo_pdf_operators_add_glyph (cairo_pdf_operators_t *pdf_operators,
cairo_scaled_font_subsets_glyph_t *glyph,
double x_position)
{
double x, y;
 
x = glyph->x_advance;
y = glyph->y_advance;
if (glyph->is_scaled)
cairo_matrix_transform_distance (&pdf_operators->font_matrix_inverse, &x, &y);
 
pdf_operators->glyphs[pdf_operators->num_glyphs].x_position = x_position;
pdf_operators->glyphs[pdf_operators->num_glyphs].glyph_index = glyph->subset_glyph_index;
pdf_operators->glyphs[pdf_operators->num_glyphs].x_advance = x;
pdf_operators->glyph_buf_x_pos += x;
pdf_operators->num_glyphs++;
if (pdf_operators->num_glyphs == PDF_GLYPH_BUFFER_SIZE)
return _cairo_pdf_operators_flush_glyphs (pdf_operators);
 
return CAIRO_STATUS_SUCCESS;
}
 
/* Use 'Tm' operator to set the PDF text matrix. */
static cairo_status_t
_cairo_pdf_operators_set_text_matrix (cairo_pdf_operators_t *pdf_operators,
cairo_matrix_t *matrix)
{
cairo_matrix_t inverse;
cairo_status_t status;
 
/* We require the matrix to be invertable. */
inverse = *matrix;
status = cairo_matrix_invert (&inverse);
if (unlikely (status))
return status;
 
pdf_operators->text_matrix = *matrix;
pdf_operators->cur_x = 0;
pdf_operators->cur_y = 0;
pdf_operators->glyph_buf_x_pos = 0;
_cairo_output_stream_printf (pdf_operators->stream,
"%f %f %f %f %f %f Tm\n",
pdf_operators->text_matrix.xx,
pdf_operators->text_matrix.yx,
pdf_operators->text_matrix.xy,
pdf_operators->text_matrix.yy,
pdf_operators->text_matrix.x0,
pdf_operators->text_matrix.y0);
 
pdf_operators->cairo_to_pdftext = *matrix;
status = cairo_matrix_invert (&pdf_operators->cairo_to_pdftext);
assert (status == CAIRO_STATUS_SUCCESS);
cairo_matrix_multiply (&pdf_operators->cairo_to_pdftext,
&pdf_operators->cairo_to_pdf,
&pdf_operators->cairo_to_pdftext);
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
#define TEXT_MATRIX_TOLERANCE 1e-6
 
/* Set the translation components of the PDF text matrix to x, y. The
* 'Td' operator is used to transform the text matrix.
*/
static cairo_status_t
_cairo_pdf_operators_set_text_position (cairo_pdf_operators_t *pdf_operators,
double x,
double y)
{
cairo_matrix_t translate, inverse;
cairo_status_t status;
 
/* The Td operator transforms the text_matrix with:
*
* text_matrix' = T x text_matrix
*
* where T is a translation matrix with the translation components
* set to the Td operands tx and ty.
*/
inverse = pdf_operators->text_matrix;
status = cairo_matrix_invert (&inverse);
assert (status == CAIRO_STATUS_SUCCESS);
pdf_operators->text_matrix.x0 = x;
pdf_operators->text_matrix.y0 = y;
cairo_matrix_multiply (&translate, &pdf_operators->text_matrix, &inverse);
if (fabs(translate.x0) < TEXT_MATRIX_TOLERANCE)
translate.x0 = 0.0;
if (fabs(translate.y0) < TEXT_MATRIX_TOLERANCE)
translate.y0 = 0.0;
_cairo_output_stream_printf (pdf_operators->stream,
"%f %f Td\n",
translate.x0,
translate.y0);
pdf_operators->cur_x = 0;
pdf_operators->cur_y = 0;
pdf_operators->glyph_buf_x_pos = 0;
 
pdf_operators->cairo_to_pdftext = pdf_operators->text_matrix;
status = cairo_matrix_invert (&pdf_operators->cairo_to_pdftext);
assert (status == CAIRO_STATUS_SUCCESS);
cairo_matrix_multiply (&pdf_operators->cairo_to_pdftext,
&pdf_operators->cairo_to_pdf,
&pdf_operators->cairo_to_pdftext);
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
/* Select the font using the 'Tf' operator. The font size is set to 1
* as we use the 'Tm' operator to set the font scale.
*/
static cairo_status_t
_cairo_pdf_operators_set_font_subset (cairo_pdf_operators_t *pdf_operators,
cairo_scaled_font_subsets_glyph_t *subset_glyph)
{
cairo_status_t status;
 
_cairo_output_stream_printf (pdf_operators->stream,
"/f-%d-%d 1 Tf\n",
subset_glyph->font_id,
subset_glyph->subset_id);
if (pdf_operators->use_font_subset) {
status = pdf_operators->use_font_subset (subset_glyph->font_id,
subset_glyph->subset_id,
pdf_operators->use_font_subset_closure);
if (unlikely (status))
return status;
}
pdf_operators->font_id = subset_glyph->font_id;
pdf_operators->subset_id = subset_glyph->subset_id;
 
if (subset_glyph->is_composite)
pdf_operators->hex_width = 4;
else
pdf_operators->hex_width = 2;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_pdf_operators_begin_text (cairo_pdf_operators_t *pdf_operators)
{
_cairo_output_stream_printf (pdf_operators->stream, "BT\n");
 
pdf_operators->in_text_object = TRUE;
pdf_operators->num_glyphs = 0;
pdf_operators->glyph_buf_x_pos = 0;
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
static cairo_status_t
_cairo_pdf_operators_end_text (cairo_pdf_operators_t *pdf_operators)
{
cairo_status_t status;
 
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (pdf_operators->stream, "ET\n");
 
pdf_operators->in_text_object = FALSE;
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
/* Compare the scale components of two matrices. The translation
* components are ignored. */
static cairo_bool_t
_cairo_matrix_scale_equal (cairo_matrix_t *a, cairo_matrix_t *b)
{
return (a->xx == b->xx &&
a->xy == b->xy &&
a->yx == b->yx &&
a->yy == b->yy);
}
 
static cairo_status_t
_cairo_pdf_operators_begin_actualtext (cairo_pdf_operators_t *pdf_operators,
const char *utf8,
int utf8_len)
{
uint16_t *utf16;
int utf16_len;
cairo_status_t status;
int i;
 
_cairo_output_stream_printf (pdf_operators->stream, "/Span << /ActualText <feff");
if (utf8_len) {
status = _cairo_utf8_to_utf16 (utf8, utf8_len, &utf16, &utf16_len);
if (unlikely (status))
return status;
 
for (i = 0; i < utf16_len; i++) {
_cairo_output_stream_printf (pdf_operators->stream,
"%04x", (int) (utf16[i]));
}
free (utf16);
}
_cairo_output_stream_printf (pdf_operators->stream, "> >> BDC\n");
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
static cairo_status_t
_cairo_pdf_operators_end_actualtext (cairo_pdf_operators_t *pdf_operators)
{
_cairo_output_stream_printf (pdf_operators->stream, "EMC\n");
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
static cairo_status_t
_cairo_pdf_operators_emit_glyph (cairo_pdf_operators_t *pdf_operators,
cairo_glyph_t *glyph,
cairo_scaled_font_subsets_glyph_t *subset_glyph)
{
double x, y;
cairo_status_t status;
 
if (pdf_operators->is_new_text_object ||
pdf_operators->font_id != subset_glyph->font_id ||
pdf_operators->subset_id != subset_glyph->subset_id)
{
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
status = _cairo_pdf_operators_set_font_subset (pdf_operators, subset_glyph);
if (unlikely (status))
return status;
 
pdf_operators->is_new_text_object = FALSE;
}
 
x = glyph->x;
y = glyph->y;
cairo_matrix_transform_point (&pdf_operators->cairo_to_pdftext, &x, &y);
 
/* The TJ operator for displaying text strings can only set
* the horizontal position of the glyphs. If the y position
* (in text space) changes, use the Td operator to change the
* current position to the next glyph. We also use the Td
* operator to move the current position if the horizontal
* position changes by more than 10 (in text space
* units). This is becauses the horizontal glyph positioning
* in the TJ operator is intended for kerning and there may be
* PDF consumers that do not handle very large position
* adjustments in TJ.
*/
if (fabs(x - pdf_operators->glyph_buf_x_pos) > 10 ||
fabs(y - pdf_operators->cur_y) > GLYPH_POSITION_TOLERANCE)
{
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
x = glyph->x;
y = glyph->y;
cairo_matrix_transform_point (&pdf_operators->cairo_to_pdf, &x, &y);
status = _cairo_pdf_operators_set_text_position (pdf_operators, x, y);
if (unlikely (status))
return status;
 
x = 0.0;
y = 0.0;
}
 
status = _cairo_pdf_operators_add_glyph (pdf_operators,
subset_glyph,
x);
return status;
}
 
/* A utf8_len of -1 indicates no unicode text. A utf8_len = 0 is an
* empty string.
*/
static cairo_int_status_t
_cairo_pdf_operators_emit_cluster (cairo_pdf_operators_t *pdf_operators,
const char *utf8,
int utf8_len,
cairo_glyph_t *glyphs,
int num_glyphs,
cairo_text_cluster_flags_t cluster_flags,
cairo_scaled_font_t *scaled_font)
{
cairo_scaled_font_subsets_glyph_t subset_glyph;
cairo_glyph_t *cur_glyph;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
int i;
 
/* If the cluster maps 1 glyph to 1 or more unicode characters, we
* first try _map_glyph() with the unicode string to see if it can
* use toUnicode to map our glyph to the unicode. This will fail
* if the glyph is already mapped to a different unicode string.
*
* We also go through this path if no unicode mapping was
* supplied (utf8_len < 0).
*
* Mapping a glyph to a zero length unicode string requires the
* use of ActualText.
*/
if (num_glyphs == 1 && utf8_len != 0) {
status = _cairo_scaled_font_subsets_map_glyph (pdf_operators->font_subsets,
scaled_font,
glyphs->index,
utf8,
utf8_len,
&subset_glyph);
if (unlikely (status))
return status;
 
if (subset_glyph.utf8_is_mapped || utf8_len < 0) {
status = _cairo_pdf_operators_emit_glyph (pdf_operators,
glyphs,
&subset_glyph);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
}
 
if (pdf_operators->use_actual_text) {
/* Fallback to using ActualText to map zero or more glyphs to a
* unicode string. */
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
status = _cairo_pdf_operators_begin_actualtext (pdf_operators, utf8, utf8_len);
if (unlikely (status))
return status;
}
 
cur_glyph = glyphs;
/* XXX
* If no glyphs, we should put *something* here for the text to be selectable. */
for (i = 0; i < num_glyphs; i++) {
status = _cairo_scaled_font_subsets_map_glyph (pdf_operators->font_subsets,
scaled_font,
cur_glyph->index,
NULL, -1,
&subset_glyph);
if (unlikely (status))
return status;
 
status = _cairo_pdf_operators_emit_glyph (pdf_operators,
cur_glyph,
&subset_glyph);
if (unlikely (status))
return status;
 
if ((cluster_flags & CAIRO_TEXT_CLUSTER_FLAG_BACKWARD))
cur_glyph--;
else
cur_glyph++;
}
 
if (pdf_operators->use_actual_text) {
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
status = _cairo_pdf_operators_end_actualtext (pdf_operators);
}
 
return status;
}
 
cairo_int_status_t
_cairo_pdf_operators_show_text_glyphs (cairo_pdf_operators_t *pdf_operators,
const char *utf8,
int utf8_len,
cairo_glyph_t *glyphs,
int num_glyphs,
const cairo_text_cluster_t *clusters,
int num_clusters,
cairo_text_cluster_flags_t cluster_flags,
cairo_scaled_font_t *scaled_font)
{
cairo_status_t status;
int i;
cairo_matrix_t text_matrix, invert_y_axis;
double x, y;
const char *cur_text;
cairo_glyph_t *cur_glyph;
 
pdf_operators->font_matrix_inverse = scaled_font->font_matrix;
status = cairo_matrix_invert (&pdf_operators->font_matrix_inverse);
if (status == CAIRO_STATUS_INVALID_MATRIX)
return CAIRO_STATUS_SUCCESS;
assert (status == CAIRO_STATUS_SUCCESS);
 
pdf_operators->is_new_text_object = FALSE;
if (pdf_operators->in_text_object == FALSE) {
status = _cairo_pdf_operators_begin_text (pdf_operators);
if (unlikely (status))
return status;
 
/* Force Tm and Tf to be emitted when starting a new text
* object.*/
pdf_operators->is_new_text_object = TRUE;
}
 
cairo_matrix_init_scale (&invert_y_axis, 1, -1);
text_matrix = scaled_font->scale;
 
/* Invert y axis in font space */
cairo_matrix_multiply (&text_matrix, &text_matrix, &invert_y_axis);
 
/* Invert y axis in device space */
cairo_matrix_multiply (&text_matrix, &invert_y_axis, &text_matrix);
 
if (pdf_operators->is_new_text_object ||
! _cairo_matrix_scale_equal (&pdf_operators->text_matrix, &text_matrix))
{
status = _cairo_pdf_operators_flush_glyphs (pdf_operators);
if (unlikely (status))
return status;
 
x = glyphs[0].x;
y = glyphs[0].y;
cairo_matrix_transform_point (&pdf_operators->cairo_to_pdf, &x, &y);
text_matrix.x0 = x;
text_matrix.y0 = y;
status = _cairo_pdf_operators_set_text_matrix (pdf_operators, &text_matrix);
if (status == CAIRO_STATUS_INVALID_MATRIX)
return CAIRO_STATUS_SUCCESS;
if (unlikely (status))
return status;
}
 
if (num_clusters > 0) {
cur_text = utf8;
if ((cluster_flags & CAIRO_TEXT_CLUSTER_FLAG_BACKWARD))
cur_glyph = glyphs + num_glyphs;
else
cur_glyph = glyphs;
for (i = 0; i < num_clusters; i++) {
if ((cluster_flags & CAIRO_TEXT_CLUSTER_FLAG_BACKWARD))
cur_glyph -= clusters[i].num_glyphs;
status = _cairo_pdf_operators_emit_cluster (pdf_operators,
cur_text,
clusters[i].num_bytes,
cur_glyph,
clusters[i].num_glyphs,
cluster_flags,
scaled_font);
if (unlikely (status))
return status;
 
cur_text += clusters[i].num_bytes;
if (!(cluster_flags & CAIRO_TEXT_CLUSTER_FLAG_BACKWARD))
cur_glyph += clusters[i].num_glyphs;
}
} else {
for (i = 0; i < num_glyphs; i++) {
status = _cairo_pdf_operators_emit_cluster (pdf_operators,
NULL,
-1, /* no unicode string available */
&glyphs[i],
1,
FALSE,
scaled_font);
if (unlikely (status))
return status;
}
}
 
return _cairo_output_stream_get_status (pdf_operators->stream);
}
 
#endif /* CAIRO_HAS_PDF_OPERATORS */
/programs/develop/libraries/cairo/src/cairo-png.c
0,0 → 1,798
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2003 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Kristian Høgsberg <krh@redhat.com>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
 
#include "cairoint.h"
 
#include "cairo-error-private.h"
#include "cairo-output-stream-private.h"
 
#include <stdio.h>
#include <errno.h>
#include <png.h>
 
/**
* SECTION:cairo-png
* @Title: PNG Support
* @Short_Description: Reading and writing PNG images
* @See_Also: #cairo_surface_t
*
* The PNG functions allow reading PNG images into image surfaces, and writing
* any surface to a PNG file.
*/
 
/**
* CAIRO_HAS_PNG_FUNCTIONS:
*
* Defined if the PNG functions are available.
* This macro can be used to conditionally compile code using the cairo
* PNG functions.
*/
 
struct png_read_closure_t {
cairo_read_func_t read_func;
void *closure;
cairo_output_stream_t *png_data;
};
 
 
/* Unpremultiplies data and converts native endian ARGB => RGBA bytes */
static void
unpremultiply_data (png_structp png, png_row_infop row_info, png_bytep data)
{
unsigned int i;
 
for (i = 0; i < row_info->rowbytes; i += 4) {
uint8_t *b = &data[i];
uint32_t pixel;
uint8_t alpha;
 
memcpy (&pixel, b, sizeof (uint32_t));
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0) {
b[0] = b[1] = b[2] = b[3] = 0;
} else {
b[0] = (((pixel & 0xff0000) >> 16) * 255 + alpha / 2) / alpha;
b[1] = (((pixel & 0x00ff00) >> 8) * 255 + alpha / 2) / alpha;
b[2] = (((pixel & 0x0000ff) >> 0) * 255 + alpha / 2) / alpha;
b[3] = alpha;
}
}
}
 
/* Converts native endian xRGB => RGBx bytes */
static void
convert_data_to_bytes (png_structp png, png_row_infop row_info, png_bytep data)
{
unsigned int i;
 
for (i = 0; i < row_info->rowbytes; i += 4) {
uint8_t *b = &data[i];
uint32_t pixel;
 
memcpy (&pixel, b, sizeof (uint32_t));
 
b[0] = (pixel & 0xff0000) >> 16;
b[1] = (pixel & 0x00ff00) >> 8;
b[2] = (pixel & 0x0000ff) >> 0;
b[3] = 0;
}
}
 
/* Use a couple of simple error callbacks that do not print anything to
* stderr and rely on the user to check for errors via the #cairo_status_t
* return.
*/
static void
png_simple_error_callback (png_structp png,
png_const_charp error_msg)
{
cairo_status_t *error = png_get_error_ptr (png);
 
/* default to the most likely error */
if (*error == CAIRO_STATUS_SUCCESS)
*error = _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
#ifdef PNG_SETJMP_SUPPORTED
longjmp (png_jmpbuf (png), 1);
#endif
 
/* if we get here, then we have to choice but to abort ... */
}
 
static void
png_simple_warning_callback (png_structp png,
png_const_charp error_msg)
{
cairo_status_t *error = png_get_error_ptr (png);
 
/* default to the most likely error */
if (*error == CAIRO_STATUS_SUCCESS)
*error = _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
/* png does not expect to abort and will try to tidy up after a warning */
}
 
 
/* Starting with libpng-1.2.30, we must explicitly specify an output_flush_fn.
* Otherwise, we will segfault if we are writing to a stream. */
static void
png_simple_output_flush_fn (png_structp png_ptr)
{
}
 
static cairo_status_t
write_png (cairo_surface_t *surface,
png_rw_ptr write_func,
void *closure)
{
int i;
cairo_status_t status;
cairo_image_surface_t *image;
cairo_image_surface_t * volatile clone;
void *image_extra;
png_struct *png;
png_info *info;
png_byte **volatile rows = NULL;
png_color_16 white;
int png_color_type;
int depth;
 
status = _cairo_surface_acquire_source_image (surface,
&image,
&image_extra);
 
if (status == CAIRO_INT_STATUS_UNSUPPORTED)
return _cairo_error (CAIRO_STATUS_SURFACE_TYPE_MISMATCH);
else if (unlikely (status))
return status;
 
/* PNG complains about "Image width or height is zero in IHDR" */
if (image->width == 0 || image->height == 0) {
status = _cairo_error (CAIRO_STATUS_WRITE_ERROR);
goto BAIL1;
}
 
/* Handle the various fallback formats (e.g. low bit-depth XServers)
* by coercing them to a simpler format using pixman.
*/
clone = _cairo_image_surface_coerce (image);
status = clone->base.status;
if (unlikely (status))
goto BAIL1;
 
rows = _cairo_malloc_ab (clone->height, sizeof (png_byte*));
if (unlikely (rows == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto BAIL2;
}
 
for (i = 0; i < clone->height; i++)
rows[i] = (png_byte *) clone->data + i * clone->stride;
 
png = png_create_write_struct (PNG_LIBPNG_VER_STRING, &status,
png_simple_error_callback,
png_simple_warning_callback);
if (unlikely (png == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto BAIL3;
}
 
info = png_create_info_struct (png);
if (unlikely (info == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto BAIL4;
}
 
#ifdef PNG_SETJMP_SUPPORTED
if (setjmp (png_jmpbuf (png)))
goto BAIL4;
#endif
 
png_set_write_fn (png, closure, write_func, png_simple_output_flush_fn);
 
switch (clone->format) {
case CAIRO_FORMAT_ARGB32:
depth = 8;
if (_cairo_image_analyze_transparency (clone) == CAIRO_IMAGE_IS_OPAQUE)
png_color_type = PNG_COLOR_TYPE_RGB;
else
png_color_type = PNG_COLOR_TYPE_RGB_ALPHA;
break;
case CAIRO_FORMAT_RGB24:
depth = 8;
png_color_type = PNG_COLOR_TYPE_RGB;
break;
case CAIRO_FORMAT_A8:
depth = 8;
png_color_type = PNG_COLOR_TYPE_GRAY;
break;
case CAIRO_FORMAT_A1:
depth = 1;
png_color_type = PNG_COLOR_TYPE_GRAY;
#ifndef WORDS_BIGENDIAN
png_set_packswap (png);
#endif
break;
case CAIRO_FORMAT_INVALID:
case CAIRO_FORMAT_RGB16_565:
default:
status = _cairo_error (CAIRO_STATUS_INVALID_FORMAT);
goto BAIL4;
}
 
png_set_IHDR (png, info,
clone->width,
clone->height, depth,
png_color_type,
PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
 
white.gray = (1 << depth) - 1;
white.red = white.blue = white.green = white.gray;
png_set_bKGD (png, info, &white);
 
if (0) { /* XXX extract meta-data from surface (i.e. creation date) */
png_time pt;
 
png_convert_from_time_t (&pt, time (NULL));
png_set_tIME (png, info, &pt);
}
 
/* We have to call png_write_info() before setting up the write
* transformation, since it stores data internally in 'png'
* that is needed for the write transformation functions to work.
*/
png_write_info (png, info);
 
if (png_color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
png_set_write_user_transform_fn (png, unpremultiply_data);
} else if (png_color_type == PNG_COLOR_TYPE_RGB) {
png_set_write_user_transform_fn (png, convert_data_to_bytes);
png_set_filler (png, 0, PNG_FILLER_AFTER);
}
 
png_write_image (png, rows);
png_write_end (png, info);
 
BAIL4:
png_destroy_write_struct (&png, &info);
BAIL3:
free (rows);
BAIL2:
cairo_surface_destroy (&clone->base);
BAIL1:
_cairo_surface_release_source_image (surface, image, image_extra);
 
return status;
}
 
static void
stdio_write_func (png_structp png, png_bytep data, png_size_t size)
{
FILE *fp;
 
fp = png_get_io_ptr (png);
while (size) {
size_t ret = fwrite (data, 1, size, fp);
size -= ret;
data += ret;
if (size && ferror (fp)) {
cairo_status_t *error = png_get_error_ptr (png);
if (*error == CAIRO_STATUS_SUCCESS)
*error = _cairo_error (CAIRO_STATUS_WRITE_ERROR);
png_error (png, NULL);
}
}
}
 
/**
* cairo_surface_write_to_png:
* @surface: a #cairo_surface_t with pixel contents
* @filename: the name of a file to write to
*
* Writes the contents of @surface to a new file @filename as a PNG
* image.
*
* Return value: %CAIRO_STATUS_SUCCESS if the PNG file was written
* successfully. Otherwise, %CAIRO_STATUS_NO_MEMORY if memory could not
* be allocated for the operation or
* %CAIRO_STATUS_SURFACE_TYPE_MISMATCH if the surface does not have
* pixel contents, or %CAIRO_STATUS_WRITE_ERROR if an I/O error occurs
* while attempting to write the file.
**/
cairo_status_t
cairo_surface_write_to_png (cairo_surface_t *surface,
const char *filename)
{
FILE *fp;
cairo_status_t status;
 
if (surface->status)
return surface->status;
 
if (surface->finished)
return _cairo_error (CAIRO_STATUS_SURFACE_FINISHED);
 
fp = fopen (filename, "wb");
if (fp == NULL) {
switch (errno) {
case ENOMEM:
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
default:
return _cairo_error (CAIRO_STATUS_WRITE_ERROR);
}
}
 
status = write_png (surface, stdio_write_func, fp);
 
if (fclose (fp) && status == CAIRO_STATUS_SUCCESS)
status = _cairo_error (CAIRO_STATUS_WRITE_ERROR);
 
return status;
}
 
struct png_write_closure_t {
cairo_write_func_t write_func;
void *closure;
};
 
static void
stream_write_func (png_structp png, png_bytep data, png_size_t size)
{
cairo_status_t status;
struct png_write_closure_t *png_closure;
 
png_closure = png_get_io_ptr (png);
status = png_closure->write_func (png_closure->closure, data, size);
if (unlikely (status)) {
cairo_status_t *error = png_get_error_ptr (png);
if (*error == CAIRO_STATUS_SUCCESS)
*error = status;
png_error (png, NULL);
}
}
 
/**
* cairo_surface_write_to_png_stream:
* @surface: a #cairo_surface_t with pixel contents
* @write_func: a #cairo_write_func_t
* @closure: closure data for the write function
*
* Writes the image surface to the write function.
*
* Return value: %CAIRO_STATUS_SUCCESS if the PNG file was written
* successfully. Otherwise, %CAIRO_STATUS_NO_MEMORY is returned if
* memory could not be allocated for the operation,
* %CAIRO_STATUS_SURFACE_TYPE_MISMATCH if the surface does not have
* pixel contents.
**/
cairo_status_t
cairo_surface_write_to_png_stream (cairo_surface_t *surface,
cairo_write_func_t write_func,
void *closure)
{
struct png_write_closure_t png_closure;
 
if (surface->status)
return surface->status;
 
if (surface->finished)
return _cairo_error (CAIRO_STATUS_SURFACE_FINISHED);
 
png_closure.write_func = write_func;
png_closure.closure = closure;
 
return write_png (surface, stream_write_func, &png_closure);
}
slim_hidden_def (cairo_surface_write_to_png_stream);
 
static inline int
multiply_alpha (int alpha, int color)
{
int temp = (alpha * color) + 0x80;
return ((temp + (temp >> 8)) >> 8);
}
 
/* Premultiplies data and converts RGBA bytes => native endian */
static void
premultiply_data (png_structp png,
png_row_infop row_info,
png_bytep data)
{
unsigned int i;
 
for (i = 0; i < row_info->rowbytes; i += 4) {
uint8_t *base = &data[i];
uint8_t alpha = base[3];
uint32_t p;
 
if (alpha == 0) {
p = 0;
} else {
uint8_t red = base[0];
uint8_t green = base[1];
uint8_t blue = base[2];
 
if (alpha != 0xff) {
red = multiply_alpha (alpha, red);
green = multiply_alpha (alpha, green);
blue = multiply_alpha (alpha, blue);
}
p = (alpha << 24) | (red << 16) | (green << 8) | (blue << 0);
}
memcpy (base, &p, sizeof (uint32_t));
}
}
 
/* Converts RGBx bytes to native endian xRGB */
static void
convert_bytes_to_data (png_structp png, png_row_infop row_info, png_bytep data)
{
unsigned int i;
 
for (i = 0; i < row_info->rowbytes; i += 4) {
uint8_t *base = &data[i];
uint8_t red = base[0];
uint8_t green = base[1];
uint8_t blue = base[2];
uint32_t pixel;
 
pixel = (0xff << 24) | (red << 16) | (green << 8) | (blue << 0);
memcpy (base, &pixel, sizeof (uint32_t));
}
}
 
static cairo_status_t
stdio_read_func (void *closure, unsigned char *data, unsigned int size)
{
FILE *file = closure;
 
while (size) {
size_t ret;
 
ret = fread (data, 1, size, file);
size -= ret;
data += ret;
 
if (size && (feof (file) || ferror (file)))
return _cairo_error (CAIRO_STATUS_READ_ERROR);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
stream_read_func (png_structp png, png_bytep data, png_size_t size)
{
cairo_status_t status;
struct png_read_closure_t *png_closure;
 
png_closure = png_get_io_ptr (png);
status = png_closure->read_func (png_closure->closure, data, size);
if (unlikely (status)) {
cairo_status_t *error = png_get_error_ptr (png);
if (*error == CAIRO_STATUS_SUCCESS)
*error = status;
png_error (png, NULL);
}
 
_cairo_output_stream_write (png_closure->png_data, data, size);
}
 
static cairo_surface_t *
read_png (struct png_read_closure_t *png_closure)
{
cairo_surface_t *surface;
png_struct *png = NULL;
png_info *info;
png_byte *data = NULL;
png_byte **row_pointers = NULL;
png_uint_32 png_width, png_height;
int depth, color_type, interlace, stride;
unsigned int i;
cairo_format_t format;
cairo_status_t status;
unsigned char *mime_data;
unsigned long mime_data_length;
 
png_closure->png_data = _cairo_memory_stream_create ();
 
/* XXX: Perhaps we'll want some other error handlers? */
png = png_create_read_struct (PNG_LIBPNG_VER_STRING,
&status,
png_simple_error_callback,
png_simple_warning_callback);
if (unlikely (png == NULL)) {
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
goto BAIL;
}
 
info = png_create_info_struct (png);
if (unlikely (info == NULL)) {
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
goto BAIL;
}
 
png_set_read_fn (png, png_closure, stream_read_func);
 
status = CAIRO_STATUS_SUCCESS;
#ifdef PNG_SETJMP_SUPPORTED
if (setjmp (png_jmpbuf (png))) {
surface = _cairo_surface_create_in_error (status);
goto BAIL;
}
#endif
 
png_read_info (png, info);
 
png_get_IHDR (png, info,
&png_width, &png_height, &depth,
&color_type, &interlace, NULL, NULL);
if (unlikely (status)) { /* catch any early warnings */
surface = _cairo_surface_create_in_error (status);
goto BAIL;
}
 
/* convert palette/gray image to rgb */
if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb (png);
 
/* expand gray bit depth if needed */
if (color_type == PNG_COLOR_TYPE_GRAY) {
#if PNG_LIBPNG_VER >= 10209
png_set_expand_gray_1_2_4_to_8 (png);
#else
png_set_gray_1_2_4_to_8 (png);
#endif
}
 
/* transform transparency to alpha */
if (png_get_valid (png, info, PNG_INFO_tRNS))
png_set_tRNS_to_alpha (png);
 
if (depth == 16)
png_set_strip_16 (png);
 
if (depth < 8)
png_set_packing (png);
 
/* convert grayscale to RGB */
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
png_set_gray_to_rgb (png);
}
 
if (interlace != PNG_INTERLACE_NONE)
png_set_interlace_handling (png);
 
png_set_filler (png, 0xff, PNG_FILLER_AFTER);
 
/* recheck header after setting EXPAND options */
png_read_update_info (png, info);
png_get_IHDR (png, info,
&png_width, &png_height, &depth,
&color_type, &interlace, NULL, NULL);
if (depth != 8 ||
! (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA))
{
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_READ_ERROR));
goto BAIL;
}
 
switch (color_type) {
default:
ASSERT_NOT_REACHED;
/* fall-through just in case ;-) */
 
case PNG_COLOR_TYPE_RGB_ALPHA:
format = CAIRO_FORMAT_ARGB32;
png_set_read_user_transform_fn (png, premultiply_data);
break;
 
case PNG_COLOR_TYPE_RGB:
format = CAIRO_FORMAT_RGB24;
png_set_read_user_transform_fn (png, convert_bytes_to_data);
break;
}
 
stride = cairo_format_stride_for_width (format, png_width);
if (stride < 0) {
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_INVALID_STRIDE));
goto BAIL;
}
 
data = _cairo_malloc_ab (png_height, stride);
if (unlikely (data == NULL)) {
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
goto BAIL;
}
 
row_pointers = _cairo_malloc_ab (png_height, sizeof (char *));
if (unlikely (row_pointers == NULL)) {
surface = _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
goto BAIL;
}
 
for (i = 0; i < png_height; i++)
row_pointers[i] = &data[i * stride];
 
png_read_image (png, row_pointers);
png_read_end (png, info);
 
if (unlikely (status)) { /* catch any late warnings - probably hit an error already */
surface = _cairo_surface_create_in_error (status);
goto BAIL;
}
 
surface = cairo_image_surface_create_for_data (data, format,
png_width, png_height,
stride);
if (surface->status)
goto BAIL;
 
_cairo_image_surface_assume_ownership_of_data ((cairo_image_surface_t*)surface);
data = NULL;
 
_cairo_debug_check_image_surface_is_defined (surface);
 
status = _cairo_memory_stream_destroy (png_closure->png_data,
&mime_data,
&mime_data_length);
png_closure->png_data = NULL;
if (unlikely (status)) {
cairo_surface_destroy (surface);
surface = _cairo_surface_create_in_error (status);
goto BAIL;
}
 
status = cairo_surface_set_mime_data (surface,
CAIRO_MIME_TYPE_PNG,
mime_data,
mime_data_length,
free,
mime_data);
if (unlikely (status)) {
free (mime_data);
cairo_surface_destroy (surface);
surface = _cairo_surface_create_in_error (status);
goto BAIL;
}
 
BAIL:
if (row_pointers != NULL)
free (row_pointers);
if (data != NULL)
free (data);
if (png != NULL)
png_destroy_read_struct (&png, &info, NULL);
if (png_closure->png_data != NULL) {
cairo_status_t status_ignored;
 
status_ignored = _cairo_output_stream_destroy (png_closure->png_data);
}
 
return surface;
}
 
/**
* cairo_image_surface_create_from_png:
* @filename: name of PNG file to load
*
* Creates a new image surface and initializes the contents to the
* given PNG file.
*
* Return value: a new #cairo_surface_t initialized with the contents
* of the PNG file, or a "nil" surface if any error occurred. A nil
* surface can be checked for with cairo_surface_status(surface) which
* may return one of the following values:
*
* %CAIRO_STATUS_NO_MEMORY
* %CAIRO_STATUS_FILE_NOT_FOUND
* %CAIRO_STATUS_READ_ERROR
*
* Alternatively, you can allow errors to propagate through the drawing
* operations and check the status on the context upon completion
* using cairo_status().
**/
cairo_surface_t *
cairo_image_surface_create_from_png (const char *filename)
{
struct png_read_closure_t png_closure;
cairo_surface_t *surface;
 
png_closure.closure = fopen (filename, "rb");
if (png_closure.closure == NULL) {
cairo_status_t status;
switch (errno) {
case ENOMEM:
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
break;
case ENOENT:
status = _cairo_error (CAIRO_STATUS_FILE_NOT_FOUND);
break;
default:
status = _cairo_error (CAIRO_STATUS_READ_ERROR);
break;
}
return _cairo_surface_create_in_error (status);
}
 
png_closure.read_func = stdio_read_func;
 
surface = read_png (&png_closure);
 
fclose (png_closure.closure);
 
return surface;
}
 
/**
* cairo_image_surface_create_from_png_stream:
* @read_func: function called to read the data of the file
* @closure: data to pass to @read_func.
*
* Creates a new image surface from PNG data read incrementally
* via the @read_func function.
*
* Return value: a new #cairo_surface_t initialized with the contents
* of the PNG file or a "nil" surface if the data read is not a valid PNG image
* or memory could not be allocated for the operation. A nil
* surface can be checked for with cairo_surface_status(surface) which
* may return one of the following values:
*
* %CAIRO_STATUS_NO_MEMORY
* %CAIRO_STATUS_READ_ERROR
*
* Alternatively, you can allow errors to propagate through the drawing
* operations and check the status on the context upon completion
* using cairo_status().
**/
cairo_surface_t *
cairo_image_surface_create_from_png_stream (cairo_read_func_t read_func,
void *closure)
{
struct png_read_closure_t png_closure;
 
png_closure.read_func = read_func;
png_closure.closure = closure;
 
return read_png (&png_closure);
}
/programs/develop/libraries/cairo/src/cairo-scaled-font-subsets.c
0,0 → 1,1091
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2003 University of Southern California
* Copyright © 2005 Red Hat, Inc
* Copyright © 2006 Keith Packard
* Copyright © 2006 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Kristian Høgsberg <krh@redhat.com>
* Keith Packard <keithp@keithp.com>
* Adrian Johnson <ajohnson@redneon.com>
*/
 
#define _BSD_SOURCE /* for snprintf(), strdup() */
#include "cairoint.h"
#include "cairo-error-private.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-user-font-private.h"
 
#define MAX_GLYPHS_PER_SIMPLE_FONT 256
#define MAX_GLYPHS_PER_COMPOSITE_FONT 65536
 
typedef enum {
CAIRO_SUBSETS_SCALED,
CAIRO_SUBSETS_SIMPLE,
CAIRO_SUBSETS_COMPOSITE
} cairo_subsets_type_t;
 
typedef enum {
CAIRO_SUBSETS_FOREACH_UNSCALED,
CAIRO_SUBSETS_FOREACH_SCALED,
CAIRO_SUBSETS_FOREACH_USER
} cairo_subsets_foreach_type_t;
 
typedef struct _cairo_sub_font {
cairo_hash_entry_t base;
 
cairo_bool_t is_scaled;
cairo_bool_t is_composite;
cairo_bool_t is_user;
cairo_scaled_font_subsets_t *parent;
cairo_scaled_font_t *scaled_font;
unsigned int font_id;
 
int current_subset;
int num_glyphs_in_current_subset;
int max_glyphs_per_subset;
 
cairo_hash_table_t *sub_font_glyphs;
struct _cairo_sub_font *next;
} cairo_sub_font_t;
 
struct _cairo_scaled_font_subsets {
cairo_subsets_type_t type;
 
int max_glyphs_per_unscaled_subset_used;
cairo_hash_table_t *unscaled_sub_fonts;
cairo_sub_font_t *unscaled_sub_fonts_list;
cairo_sub_font_t *unscaled_sub_fonts_list_end;
 
int max_glyphs_per_scaled_subset_used;
cairo_hash_table_t *scaled_sub_fonts;
cairo_sub_font_t *scaled_sub_fonts_list;
cairo_sub_font_t *scaled_sub_fonts_list_end;
 
int num_sub_fonts;
};
 
typedef struct _cairo_sub_font_glyph {
cairo_hash_entry_t base;
 
unsigned int subset_id;
unsigned int subset_glyph_index;
double x_advance;
double y_advance;
 
cairo_bool_t is_mapped;
uint32_t unicode;
char *utf8;
int utf8_len;
} cairo_sub_font_glyph_t;
 
typedef struct _cairo_sub_font_collection {
unsigned long *glyphs; /* scaled_font_glyph_index */
char **utf8;
unsigned int glyphs_size;
unsigned int max_glyph;
unsigned int num_glyphs;
 
unsigned int subset_id;
 
cairo_status_t status;
cairo_scaled_font_subset_callback_func_t font_subset_callback;
void *font_subset_callback_closure;
} cairo_sub_font_collection_t;
 
typedef struct _cairo_string_entry {
cairo_hash_entry_t base;
char *string;
} cairo_string_entry_t;
 
static cairo_status_t
_cairo_sub_font_map_glyph (cairo_sub_font_t *sub_font,
unsigned long scaled_font_glyph_index,
const char * utf8,
int utf8_len,
cairo_scaled_font_subsets_glyph_t *subset_glyph);
 
static void
_cairo_sub_font_glyph_init_key (cairo_sub_font_glyph_t *sub_font_glyph,
unsigned long scaled_font_glyph_index)
{
sub_font_glyph->base.hash = scaled_font_glyph_index;
}
 
static cairo_bool_t
_cairo_sub_font_glyphs_equal (const void *key_a, const void *key_b)
{
const cairo_sub_font_glyph_t *sub_font_glyph_a = key_a;
const cairo_sub_font_glyph_t *sub_font_glyph_b = key_b;
 
return sub_font_glyph_a->base.hash == sub_font_glyph_b->base.hash;
}
 
static cairo_sub_font_glyph_t *
_cairo_sub_font_glyph_create (unsigned long scaled_font_glyph_index,
unsigned int subset_id,
unsigned int subset_glyph_index,
double x_advance,
double y_advance)
{
cairo_sub_font_glyph_t *sub_font_glyph;
 
sub_font_glyph = malloc (sizeof (cairo_sub_font_glyph_t));
if (unlikely (sub_font_glyph == NULL)) {
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
return NULL;
}
 
_cairo_sub_font_glyph_init_key (sub_font_glyph, scaled_font_glyph_index);
sub_font_glyph->subset_id = subset_id;
sub_font_glyph->subset_glyph_index = subset_glyph_index;
sub_font_glyph->x_advance = x_advance;
sub_font_glyph->y_advance = y_advance;
sub_font_glyph->is_mapped = FALSE;
sub_font_glyph->unicode = -1;
sub_font_glyph->utf8 = NULL;
sub_font_glyph->utf8_len = 0;
 
return sub_font_glyph;
}
 
static void
_cairo_sub_font_glyph_destroy (cairo_sub_font_glyph_t *sub_font_glyph)
{
if (sub_font_glyph->utf8 != NULL)
free (sub_font_glyph->utf8);
 
free (sub_font_glyph);
}
 
static void
_cairo_sub_font_glyph_pluck (void *entry, void *closure)
{
cairo_sub_font_glyph_t *sub_font_glyph = entry;
cairo_hash_table_t *sub_font_glyphs = closure;
 
_cairo_hash_table_remove (sub_font_glyphs, &sub_font_glyph->base);
_cairo_sub_font_glyph_destroy (sub_font_glyph);
}
 
static void
_cairo_sub_font_glyph_collect (void *entry, void *closure)
{
cairo_sub_font_glyph_t *sub_font_glyph = entry;
cairo_sub_font_collection_t *collection = closure;
unsigned long scaled_font_glyph_index;
unsigned int subset_glyph_index;
 
if (sub_font_glyph->subset_id != collection->subset_id)
return;
 
scaled_font_glyph_index = sub_font_glyph->base.hash;
subset_glyph_index = sub_font_glyph->subset_glyph_index;
 
/* Ensure we don't exceed the allocated bounds. */
assert (subset_glyph_index < collection->glyphs_size);
 
collection->glyphs[subset_glyph_index] = scaled_font_glyph_index;
collection->utf8[subset_glyph_index] = sub_font_glyph->utf8;
if (subset_glyph_index > collection->max_glyph)
collection->max_glyph = subset_glyph_index;
 
collection->num_glyphs++;
}
 
static cairo_bool_t
_cairo_sub_fonts_equal (const void *key_a, const void *key_b)
{
const cairo_sub_font_t *sub_font_a = key_a;
const cairo_sub_font_t *sub_font_b = key_b;
cairo_scaled_font_t *a = sub_font_a->scaled_font;
cairo_scaled_font_t *b = sub_font_b->scaled_font;
 
if (sub_font_a->is_scaled)
return a == b;
else
return a->font_face == b->font_face || a->original_font_face == b->original_font_face;
}
 
static void
_cairo_sub_font_init_key (cairo_sub_font_t *sub_font,
cairo_scaled_font_t *scaled_font)
{
if (sub_font->is_scaled)
{
sub_font->base.hash = (unsigned long) scaled_font;
sub_font->scaled_font = scaled_font;
}
else
{
sub_font->base.hash = (unsigned long) scaled_font->font_face;
sub_font->scaled_font = scaled_font;
}
}
 
static cairo_status_t
_cairo_sub_font_create (cairo_scaled_font_subsets_t *parent,
cairo_scaled_font_t *scaled_font,
unsigned int font_id,
int max_glyphs_per_subset,
cairo_bool_t is_scaled,
cairo_bool_t is_composite,
cairo_sub_font_t **sub_font_out)
{
cairo_sub_font_t *sub_font;
cairo_status_t status;
cairo_scaled_font_subsets_glyph_t subset_glyph;
 
sub_font = malloc (sizeof (cairo_sub_font_t));
if (unlikely (sub_font == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
sub_font->is_scaled = is_scaled;
sub_font->is_composite = is_composite;
sub_font->is_user = _cairo_font_face_is_user (scaled_font->font_face);
_cairo_sub_font_init_key (sub_font, scaled_font);
 
sub_font->parent = parent;
sub_font->scaled_font = scaled_font;
sub_font->font_id = font_id;
 
sub_font->current_subset = 0;
sub_font->num_glyphs_in_current_subset = 0;
sub_font->max_glyphs_per_subset = max_glyphs_per_subset;
 
sub_font->sub_font_glyphs = _cairo_hash_table_create (_cairo_sub_font_glyphs_equal);
if (unlikely (sub_font->sub_font_glyphs == NULL)) {
free (sub_font);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
sub_font->next = NULL;
 
/* Reserve first glyph in subset for the .notdef glyph except for
* Type 3 fonts */
if (! is_scaled) {
status = _cairo_sub_font_map_glyph (sub_font, 0, NULL, -1, &subset_glyph);
if (unlikely (status)) {
_cairo_hash_table_destroy (sub_font->sub_font_glyphs);
free (sub_font);
return status;
}
}
 
*sub_font_out = sub_font;
return CAIRO_STATUS_SUCCESS;
}
 
static void
_cairo_sub_font_destroy (cairo_sub_font_t *sub_font)
{
_cairo_hash_table_foreach (sub_font->sub_font_glyphs,
_cairo_sub_font_glyph_pluck,
sub_font->sub_font_glyphs);
_cairo_hash_table_destroy (sub_font->sub_font_glyphs);
cairo_scaled_font_destroy (sub_font->scaled_font);
free (sub_font);
}
 
static void
_cairo_sub_font_pluck (void *entry, void *closure)
{
cairo_sub_font_t *sub_font = entry;
cairo_hash_table_t *sub_fonts = closure;
 
_cairo_hash_table_remove (sub_fonts, &sub_font->base);
_cairo_sub_font_destroy (sub_font);
}
 
static cairo_status_t
_cairo_sub_font_glyph_lookup_unicode (cairo_sub_font_glyph_t *sub_font_glyph,
cairo_scaled_font_t *scaled_font,
unsigned long scaled_font_glyph_index)
{
uint32_t unicode;
char buf[8];
int len;
cairo_status_t status;
 
/* Do a reverse lookup on the glyph index. unicode is -1 if the
* index could not be mapped to a unicode character. */
unicode = -1;
status = _cairo_truetype_index_to_ucs4 (scaled_font,
scaled_font_glyph_index,
&unicode);
if (_cairo_status_is_error (status))
return status;
 
if (unicode == (uint32_t)-1 && scaled_font->backend->index_to_ucs4) {
status = scaled_font->backend->index_to_ucs4 (scaled_font,
scaled_font_glyph_index,
&unicode);
if (unlikely (status))
return status;
}
 
sub_font_glyph->unicode = unicode;
sub_font_glyph->utf8 = NULL;
sub_font_glyph->utf8_len = 0;
if (unicode != (uint32_t) -1) {
len = _cairo_ucs4_to_utf8 (unicode, buf);
if (len > 0) {
sub_font_glyph->utf8 = malloc (len + 1);
if (unlikely (sub_font_glyph->utf8 == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
memcpy (sub_font_glyph->utf8, buf, len);
sub_font_glyph->utf8[len] = 0;
sub_font_glyph->utf8_len = len;
}
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_sub_font_glyph_map_to_unicode (cairo_sub_font_glyph_t *sub_font_glyph,
const char *utf8,
int utf8_len,
cairo_bool_t *is_mapped)
{
*is_mapped = FALSE;
 
if (utf8_len < 0)
return CAIRO_STATUS_SUCCESS;
 
if (utf8 != NULL && utf8_len != 0 && utf8[utf8_len - 1] == '\0')
utf8_len--;
 
if (utf8 != NULL && utf8_len != 0) {
if (sub_font_glyph->utf8 != NULL) {
if (utf8_len == sub_font_glyph->utf8_len &&
memcmp (utf8, sub_font_glyph->utf8, utf8_len) == 0)
{
/* Requested utf8 mapping matches the existing mapping */
*is_mapped = TRUE;
}
} else {
/* No existing mapping. Use the requested mapping */
sub_font_glyph->utf8 = malloc (utf8_len + 1);
if (unlikely (sub_font_glyph->utf8 == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
memcpy (sub_font_glyph->utf8, utf8, utf8_len);
sub_font_glyph->utf8[utf8_len] = 0;
sub_font_glyph->utf8_len = utf8_len;
*is_mapped = TRUE;
}
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_sub_font_lookup_glyph (cairo_sub_font_t *sub_font,
unsigned long scaled_font_glyph_index,
const char *utf8,
int utf8_len,
cairo_scaled_font_subsets_glyph_t *subset_glyph)
{
cairo_sub_font_glyph_t key, *sub_font_glyph;
cairo_int_status_t status;
 
_cairo_sub_font_glyph_init_key (&key, scaled_font_glyph_index);
sub_font_glyph = _cairo_hash_table_lookup (sub_font->sub_font_glyphs,
&key.base);
if (sub_font_glyph != NULL) {
subset_glyph->font_id = sub_font->font_id;
subset_glyph->subset_id = sub_font_glyph->subset_id;
subset_glyph->subset_glyph_index = sub_font_glyph->subset_glyph_index;
subset_glyph->is_scaled = sub_font->is_scaled;
subset_glyph->is_composite = sub_font->is_composite;
subset_glyph->x_advance = sub_font_glyph->x_advance;
subset_glyph->y_advance = sub_font_glyph->y_advance;
status = _cairo_sub_font_glyph_map_to_unicode (sub_font_glyph,
utf8, utf8_len,
&subset_glyph->utf8_is_mapped);
subset_glyph->unicode = sub_font_glyph->unicode;
 
return status;
}
 
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
static cairo_status_t
_cairo_sub_font_map_glyph (cairo_sub_font_t *sub_font,
unsigned long scaled_font_glyph_index,
const char *utf8,
int utf8_len,
cairo_scaled_font_subsets_glyph_t *subset_glyph)
{
cairo_sub_font_glyph_t key, *sub_font_glyph;
cairo_status_t status;
 
_cairo_sub_font_glyph_init_key (&key, scaled_font_glyph_index);
sub_font_glyph = _cairo_hash_table_lookup (sub_font->sub_font_glyphs,
&key.base);
if (sub_font_glyph == NULL) {
cairo_scaled_glyph_t *scaled_glyph;
 
if (sub_font->num_glyphs_in_current_subset == sub_font->max_glyphs_per_subset)
{
cairo_scaled_font_subsets_glyph_t tmp_subset_glyph;
 
sub_font->current_subset++;
sub_font->num_glyphs_in_current_subset = 0;
 
/* Reserve first glyph in subset for the .notdef glyph
* except for Type 3 fonts */
if (! _cairo_font_face_is_user (sub_font->scaled_font->font_face)) {
status = _cairo_sub_font_map_glyph (sub_font, 0, NULL, -1, &tmp_subset_glyph);
if (unlikely (status))
return status;
}
}
 
_cairo_scaled_font_freeze_cache (sub_font->scaled_font);
status = _cairo_scaled_glyph_lookup (sub_font->scaled_font,
scaled_font_glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS,
&scaled_glyph);
assert (status != CAIRO_INT_STATUS_UNSUPPORTED);
if (unlikely (status)) {
_cairo_scaled_font_thaw_cache (sub_font->scaled_font);
return status;
}
 
sub_font_glyph = _cairo_sub_font_glyph_create (scaled_font_glyph_index,
sub_font->current_subset,
sub_font->num_glyphs_in_current_subset,
scaled_glyph->metrics.x_advance,
scaled_glyph->metrics.y_advance);
_cairo_scaled_font_thaw_cache (sub_font->scaled_font);
 
if (unlikely (sub_font_glyph == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
status = _cairo_sub_font_glyph_lookup_unicode (sub_font_glyph,
sub_font->scaled_font,
scaled_font_glyph_index);
if (unlikely (status)) {
_cairo_sub_font_glyph_destroy (sub_font_glyph);
return status;
}
 
status = _cairo_hash_table_insert (sub_font->sub_font_glyphs, &sub_font_glyph->base);
if (unlikely (status)) {
_cairo_sub_font_glyph_destroy (sub_font_glyph);
return status;
}
 
sub_font->num_glyphs_in_current_subset++;
 
if (sub_font->is_scaled) {
if (sub_font->num_glyphs_in_current_subset > sub_font->parent->max_glyphs_per_scaled_subset_used)
sub_font->parent->max_glyphs_per_scaled_subset_used = sub_font->num_glyphs_in_current_subset;
} else {
if (sub_font->num_glyphs_in_current_subset > sub_font->parent->max_glyphs_per_unscaled_subset_used)
sub_font->parent->max_glyphs_per_unscaled_subset_used = sub_font->num_glyphs_in_current_subset;
}
}
 
subset_glyph->font_id = sub_font->font_id;
subset_glyph->subset_id = sub_font_glyph->subset_id;
subset_glyph->subset_glyph_index = sub_font_glyph->subset_glyph_index;
subset_glyph->is_scaled = sub_font->is_scaled;
subset_glyph->is_composite = sub_font->is_composite;
subset_glyph->x_advance = sub_font_glyph->x_advance;
subset_glyph->y_advance = sub_font_glyph->y_advance;
status = _cairo_sub_font_glyph_map_to_unicode (sub_font_glyph,
utf8, utf8_len,
&subset_glyph->utf8_is_mapped);
subset_glyph->unicode = sub_font_glyph->unicode;
 
return status;
}
 
static void
_cairo_sub_font_collect (void *entry, void *closure)
{
cairo_sub_font_t *sub_font = entry;
cairo_sub_font_collection_t *collection = closure;
cairo_scaled_font_subset_t subset;
int i;
unsigned int j;
 
if (collection->status)
return;
 
collection->status = sub_font->scaled_font->status;
if (collection->status)
return;
 
for (i = 0; i <= sub_font->current_subset; i++) {
collection->subset_id = i;
collection->num_glyphs = 0;
collection->max_glyph = 0;
 
_cairo_hash_table_foreach (sub_font->sub_font_glyphs,
_cairo_sub_font_glyph_collect, collection);
if (collection->status)
break;
if (collection->num_glyphs == 0)
continue;
 
/* Ensure the resulting array has no uninitialized holes */
assert (collection->num_glyphs == collection->max_glyph + 1);
 
subset.scaled_font = sub_font->scaled_font;
subset.is_composite = sub_font->is_composite;
subset.is_scaled = sub_font->is_scaled;
subset.font_id = sub_font->font_id;
subset.subset_id = i;
subset.glyphs = collection->glyphs;
subset.utf8 = collection->utf8;
subset.num_glyphs = collection->num_glyphs;
subset.glyph_names = NULL;
/* No need to check for out of memory here. If to_unicode is NULL, the PDF
* surface does not emit an ToUnicode stream */
subset.to_unicode = _cairo_malloc_ab (collection->num_glyphs, sizeof (unsigned long));
if (subset.to_unicode) {
for (j = 0; j < collection->num_glyphs; j++) {
/* default unicode character required when mapping fails */
subset.to_unicode[j] = 0xfffd;
}
}
collection->status = (collection->font_subset_callback) (&subset,
collection->font_subset_callback_closure);
 
if (subset.to_unicode != NULL)
free (subset.to_unicode);
 
if (subset.glyph_names != NULL) {
for (j = 0; j < collection->num_glyphs; j++)
free (subset.glyph_names[j]);
free (subset.glyph_names);
}
 
if (collection->status)
break;
}
}
 
static cairo_scaled_font_subsets_t *
_cairo_scaled_font_subsets_create_internal (cairo_subsets_type_t type)
{
cairo_scaled_font_subsets_t *subsets;
 
subsets = malloc (sizeof (cairo_scaled_font_subsets_t));
if (unlikely (subsets == NULL)) {
_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
return NULL;
}
 
subsets->type = type;
subsets->max_glyphs_per_unscaled_subset_used = 0;
subsets->max_glyphs_per_scaled_subset_used = 0;
subsets->num_sub_fonts = 0;
 
subsets->unscaled_sub_fonts = _cairo_hash_table_create (_cairo_sub_fonts_equal);
if (! subsets->unscaled_sub_fonts) {
free (subsets);
return NULL;
}
subsets->unscaled_sub_fonts_list = NULL;
subsets->unscaled_sub_fonts_list_end = NULL;
 
subsets->scaled_sub_fonts = _cairo_hash_table_create (_cairo_sub_fonts_equal);
if (! subsets->scaled_sub_fonts) {
_cairo_hash_table_destroy (subsets->unscaled_sub_fonts);
free (subsets);
return NULL;
}
subsets->scaled_sub_fonts_list = NULL;
subsets->scaled_sub_fonts_list_end = NULL;
 
return subsets;
}
 
cairo_scaled_font_subsets_t *
_cairo_scaled_font_subsets_create_scaled (void)
{
return _cairo_scaled_font_subsets_create_internal (CAIRO_SUBSETS_SCALED);
}
 
cairo_scaled_font_subsets_t *
_cairo_scaled_font_subsets_create_simple (void)
{
return _cairo_scaled_font_subsets_create_internal (CAIRO_SUBSETS_SIMPLE);
}
 
cairo_scaled_font_subsets_t *
_cairo_scaled_font_subsets_create_composite (void)
{
return _cairo_scaled_font_subsets_create_internal (CAIRO_SUBSETS_COMPOSITE);
}
 
void
_cairo_scaled_font_subsets_destroy (cairo_scaled_font_subsets_t *subsets)
{
_cairo_hash_table_foreach (subsets->scaled_sub_fonts, _cairo_sub_font_pluck, subsets->scaled_sub_fonts);
_cairo_hash_table_destroy (subsets->scaled_sub_fonts);
 
_cairo_hash_table_foreach (subsets->unscaled_sub_fonts, _cairo_sub_font_pluck, subsets->unscaled_sub_fonts);
_cairo_hash_table_destroy (subsets->unscaled_sub_fonts);
 
free (subsets);
}
 
cairo_status_t
_cairo_scaled_font_subsets_map_glyph (cairo_scaled_font_subsets_t *subsets,
cairo_scaled_font_t *scaled_font,
unsigned long scaled_font_glyph_index,
const char * utf8,
int utf8_len,
cairo_scaled_font_subsets_glyph_t *subset_glyph)
{
cairo_sub_font_t key, *sub_font;
cairo_scaled_glyph_t *scaled_glyph;
cairo_font_face_t *font_face;
cairo_matrix_t identity;
cairo_font_options_t font_options;
cairo_scaled_font_t *unscaled_font;
cairo_status_t status;
int max_glyphs;
cairo_bool_t type1_font;
 
/* Lookup glyph in unscaled subsets */
if (subsets->type != CAIRO_SUBSETS_SCALED) {
key.is_scaled = FALSE;
_cairo_sub_font_init_key (&key, scaled_font);
sub_font = _cairo_hash_table_lookup (subsets->unscaled_sub_fonts,
&key.base);
if (sub_font != NULL) {
status = _cairo_sub_font_lookup_glyph (sub_font,
scaled_font_glyph_index,
utf8, utf8_len,
subset_glyph);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
}
}
 
/* Lookup glyph in scaled subsets */
key.is_scaled = TRUE;
_cairo_sub_font_init_key (&key, scaled_font);
sub_font = _cairo_hash_table_lookup (subsets->scaled_sub_fonts,
&key.base);
if (sub_font != NULL) {
status = _cairo_sub_font_lookup_glyph (sub_font,
scaled_font_glyph_index,
utf8, utf8_len,
subset_glyph);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
}
 
/* Glyph not found. Determine whether the glyph is outline or
* bitmap and add to the appropriate subset.
*
* glyph_index 0 (the .notdef glyph) is a special case. Some fonts
* will return CAIRO_INT_STATUS_UNSUPPORTED when doing a
* _scaled_glyph_lookup(_GLYPH_INFO_PATH). Type1-fallback creates
* empty glyphs in this case so we can put the glyph in a unscaled
* subset. */
if (scaled_font_glyph_index == 0 ||
_cairo_font_face_is_user (scaled_font->font_face)) {
status = CAIRO_STATUS_SUCCESS;
} else {
_cairo_scaled_font_freeze_cache (scaled_font);
status = _cairo_scaled_glyph_lookup (scaled_font,
scaled_font_glyph_index,
CAIRO_SCALED_GLYPH_INFO_PATH,
&scaled_glyph);
_cairo_scaled_font_thaw_cache (scaled_font);
}
if (_cairo_status_is_error (status))
return status;
 
if (status == CAIRO_STATUS_SUCCESS &&
subsets->type != CAIRO_SUBSETS_SCALED &&
! _cairo_font_face_is_user (scaled_font->font_face))
{
/* Path available. Add to unscaled subset. */
key.is_scaled = FALSE;
_cairo_sub_font_init_key (&key, scaled_font);
sub_font = _cairo_hash_table_lookup (subsets->unscaled_sub_fonts,
&key.base);
if (sub_font == NULL) {
font_face = cairo_scaled_font_get_font_face (scaled_font);
cairo_matrix_init_identity (&identity);
_cairo_font_options_init_default (&font_options);
cairo_font_options_set_hint_style (&font_options, CAIRO_HINT_STYLE_NONE);
cairo_font_options_set_hint_metrics (&font_options, CAIRO_HINT_METRICS_OFF);
unscaled_font = cairo_scaled_font_create (font_face,
&identity,
&identity,
&font_options);
if (unlikely (unscaled_font->status))
return unscaled_font->status;
 
subset_glyph->is_scaled = FALSE;
type1_font = FALSE;
#if CAIRO_HAS_FT_FONT
type1_font = _cairo_type1_scaled_font_is_type1 (unscaled_font);
#endif
if (subsets->type == CAIRO_SUBSETS_COMPOSITE && !type1_font) {
max_glyphs = MAX_GLYPHS_PER_COMPOSITE_FONT;
subset_glyph->is_composite = TRUE;
} else {
max_glyphs = MAX_GLYPHS_PER_SIMPLE_FONT;
subset_glyph->is_composite = FALSE;
}
 
status = _cairo_sub_font_create (subsets,
unscaled_font,
subsets->num_sub_fonts,
max_glyphs,
subset_glyph->is_scaled,
subset_glyph->is_composite,
&sub_font);
 
if (unlikely (status)) {
cairo_scaled_font_destroy (unscaled_font);
return status;
}
 
status = _cairo_hash_table_insert (subsets->unscaled_sub_fonts,
&sub_font->base);
 
if (unlikely (status)) {
_cairo_sub_font_destroy (sub_font);
return status;
}
if (!subsets->unscaled_sub_fonts_list)
subsets->unscaled_sub_fonts_list = sub_font;
else
subsets->unscaled_sub_fonts_list_end->next = sub_font;
subsets->unscaled_sub_fonts_list_end = sub_font;
subsets->num_sub_fonts++;
}
} else {
/* No path available. Add to scaled subset. */
key.is_scaled = TRUE;
_cairo_sub_font_init_key (&key, scaled_font);
sub_font = _cairo_hash_table_lookup (subsets->scaled_sub_fonts,
&key.base);
if (sub_font == NULL) {
subset_glyph->is_scaled = TRUE;
subset_glyph->is_composite = FALSE;
if (subsets->type == CAIRO_SUBSETS_SCALED)
max_glyphs = INT_MAX;
else
max_glyphs = MAX_GLYPHS_PER_SIMPLE_FONT;
 
status = _cairo_sub_font_create (subsets,
cairo_scaled_font_reference (scaled_font),
subsets->num_sub_fonts,
max_glyphs,
subset_glyph->is_scaled,
subset_glyph->is_composite,
&sub_font);
if (unlikely (status)) {
cairo_scaled_font_destroy (scaled_font);
return status;
}
 
status = _cairo_hash_table_insert (subsets->scaled_sub_fonts,
&sub_font->base);
if (unlikely (status)) {
_cairo_sub_font_destroy (sub_font);
return status;
}
if (!subsets->scaled_sub_fonts_list)
subsets->scaled_sub_fonts_list = sub_font;
else
subsets->scaled_sub_fonts_list_end->next = sub_font;
subsets->scaled_sub_fonts_list_end = sub_font;
subsets->num_sub_fonts++;
}
}
 
return _cairo_sub_font_map_glyph (sub_font,
scaled_font_glyph_index,
utf8, utf8_len,
subset_glyph);
}
 
static cairo_status_t
_cairo_scaled_font_subsets_foreach_internal (cairo_scaled_font_subsets_t *font_subsets,
cairo_scaled_font_subset_callback_func_t font_subset_callback,
void *closure,
cairo_subsets_foreach_type_t type)
{
cairo_sub_font_collection_t collection;
cairo_sub_font_t *sub_font;
cairo_bool_t is_scaled, is_user;
 
is_scaled = FALSE;
is_user = FALSE;
 
if (type == CAIRO_SUBSETS_FOREACH_USER)
is_user = TRUE;
 
if (type == CAIRO_SUBSETS_FOREACH_SCALED ||
type == CAIRO_SUBSETS_FOREACH_USER)
{
is_scaled = TRUE;
}
 
if (is_scaled)
collection.glyphs_size = font_subsets->max_glyphs_per_scaled_subset_used;
else
collection.glyphs_size = font_subsets->max_glyphs_per_unscaled_subset_used;
 
if (! collection.glyphs_size)
return CAIRO_STATUS_SUCCESS;
 
collection.glyphs = _cairo_malloc_ab (collection.glyphs_size, sizeof(unsigned long));
collection.utf8 = _cairo_malloc_ab (collection.glyphs_size, sizeof(char *));
if (unlikely (collection.glyphs == NULL || collection.utf8 == NULL)) {
if (collection.glyphs != NULL)
free (collection.glyphs);
if (collection.utf8 != NULL)
free (collection.utf8);
 
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
 
collection.font_subset_callback = font_subset_callback;
collection.font_subset_callback_closure = closure;
collection.status = CAIRO_STATUS_SUCCESS;
 
if (is_scaled)
sub_font = font_subsets->scaled_sub_fonts_list;
else
sub_font = font_subsets->unscaled_sub_fonts_list;
 
while (sub_font) {
if (sub_font->is_user == is_user)
_cairo_sub_font_collect (sub_font, &collection);
 
sub_font = sub_font->next;
}
free (collection.utf8);
free (collection.glyphs);
 
return collection.status;
}
 
cairo_status_t
_cairo_scaled_font_subsets_foreach_scaled (cairo_scaled_font_subsets_t *font_subsets,
cairo_scaled_font_subset_callback_func_t font_subset_callback,
void *closure)
{
return _cairo_scaled_font_subsets_foreach_internal (font_subsets,
font_subset_callback,
closure,
CAIRO_SUBSETS_FOREACH_SCALED);
}
 
cairo_status_t
_cairo_scaled_font_subsets_foreach_unscaled (cairo_scaled_font_subsets_t *font_subsets,
cairo_scaled_font_subset_callback_func_t font_subset_callback,
void *closure)
{
return _cairo_scaled_font_subsets_foreach_internal (font_subsets,
font_subset_callback,
closure,
CAIRO_SUBSETS_FOREACH_UNSCALED);
}
 
cairo_status_t
_cairo_scaled_font_subsets_foreach_user (cairo_scaled_font_subsets_t *font_subsets,
cairo_scaled_font_subset_callback_func_t font_subset_callback,
void *closure)
{
return _cairo_scaled_font_subsets_foreach_internal (font_subsets,
font_subset_callback,
closure,
CAIRO_SUBSETS_FOREACH_USER);
}
 
static cairo_bool_t
_cairo_string_equal (const void *key_a, const void *key_b)
{
const cairo_string_entry_t *a = key_a;
const cairo_string_entry_t *b = key_b;
 
if (strcmp (a->string, b->string) == 0)
return TRUE;
else
return FALSE;
}
 
static void
_cairo_string_init_key (cairo_string_entry_t *key, char *s)
{
unsigned long sum = 0;
unsigned int i;
 
for (i = 0; i < strlen(s); i++)
sum += s[i];
key->base.hash = sum;
key->string = s;
}
 
static cairo_status_t
create_string_entry (char *s, cairo_string_entry_t **entry)
{
*entry = malloc (sizeof (cairo_string_entry_t));
if (unlikely (*entry == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
_cairo_string_init_key (*entry, s);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
_pluck_entry (void *entry, void *closure)
{
_cairo_hash_table_remove (closure, entry);
free (entry);
}
 
cairo_int_status_t
_cairo_scaled_font_subset_create_glyph_names (cairo_scaled_font_subset_t *subset)
{
unsigned int i;
cairo_hash_table_t *names;
cairo_string_entry_t key, *entry;
char buf[30];
char *utf8;
uint16_t *utf16;
int utf16_len;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
 
names = _cairo_hash_table_create (_cairo_string_equal);
if (unlikely (names == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
subset->glyph_names = calloc (subset->num_glyphs, sizeof (char *));
if (unlikely (subset->glyph_names == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto CLEANUP_HASH;
}
 
i = 0;
if (! subset->is_scaled) {
subset->glyph_names[0] = strdup (".notdef");
if (unlikely (subset->glyph_names[0] == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto CLEANUP_HASH;
}
 
status = create_string_entry (subset->glyph_names[0], &entry);
if (unlikely (status))
goto CLEANUP_HASH;
 
status = _cairo_hash_table_insert (names, &entry->base);
if (unlikely (status)) {
free (entry);
goto CLEANUP_HASH;
}
i++;
}
 
for (; i < subset->num_glyphs; i++) {
utf8 = subset->utf8[i];
utf16 = NULL;
utf16_len = 0;
if (utf8 && *utf8) {
status = _cairo_utf8_to_utf16 (utf8, -1, &utf16, &utf16_len);
if (unlikely (status))
goto CLEANUP_HASH;
}
 
if (utf16_len == 1) {
snprintf (buf, sizeof (buf), "uni%04X", (int) utf16[0]);
_cairo_string_init_key (&key, buf);
entry = _cairo_hash_table_lookup (names, &key.base);
if (entry != NULL)
snprintf (buf, sizeof (buf), "g%d", i);
} else {
snprintf (buf, sizeof (buf), "g%d", i);
}
if (utf16)
free (utf16);
 
subset->glyph_names[i] = strdup (buf);
if (unlikely (subset->glyph_names[i] == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto CLEANUP_HASH;
}
 
status = create_string_entry (subset->glyph_names[i], &entry);
if (unlikely (status))
goto CLEANUP_HASH;
 
status = _cairo_hash_table_insert (names, &entry->base);
if (unlikely (status)) {
free (entry);
goto CLEANUP_HASH;
}
}
 
CLEANUP_HASH:
_cairo_hash_table_foreach (names, _pluck_entry, names);
_cairo_hash_table_destroy (names);
 
if (likely (status == CAIRO_STATUS_SUCCESS))
return CAIRO_STATUS_SUCCESS;
 
if (subset->glyph_names != NULL) {
for (i = 0; i < subset->num_glyphs; i++) {
if (subset->glyph_names[i] != NULL)
free (subset->glyph_names[i]);
}
 
free (subset->glyph_names);
subset->glyph_names = NULL;
}
 
return status;
}
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/cairo/src/cairo-svg-surface.c
0,0 → 1,2848
/* vim: set sw=4 sts=4: -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2004 Red Hat, Inc
* Copyright © 2005-2007 Emmanuel Pacaud <emmanuel.pacaud@free.fr>
* Copyright © 2006 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Kristian Høgsberg <krh@redhat.com>
* Emmanuel Pacaud <emmanuel.pacaud@free.fr>
* Carl Worth <cworth@cworth.org>
*/
 
#define _BSD_SOURCE /* for snprintf() */
#include "cairoint.h"
#include "cairo-svg.h"
#include "cairo-analysis-surface-private.h"
#include "cairo-error-private.h"
#include "cairo-image-info-private.h"
#include "cairo-recording-surface-private.h"
#include "cairo-output-stream-private.h"
#include "cairo-path-fixed-private.h"
#include "cairo-paginated-private.h"
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-surface-clipper-private.h"
#include "cairo-svg-surface-private.h"
 
/**
* SECTION:cairo-svg
* @Title: SVG Surfaces
* @Short_Description: Rendering SVG documents
* @See_Also: #cairo_surface_t
*
* The SVG surface is used to render cairo graphics to
* SVG files and is a multi-page vector surface backend.
*/
 
/**
* CAIRO_HAS_SVG_SURFACE:
*
* Defined if the SVG surface backend is available.
* This macro can be used to conditionally compile backend-specific code.
*/
 
typedef struct cairo_svg_page cairo_svg_page_t;
 
static const int invalid_pattern_id = -1;
 
static const cairo_svg_version_t _cairo_svg_versions[] =
{
CAIRO_SVG_VERSION_1_1,
CAIRO_SVG_VERSION_1_2
};
 
#define CAIRO_SVG_VERSION_LAST ARRAY_LENGTH (_cairo_svg_versions)
 
static void
_cairo_svg_surface_emit_path (cairo_output_stream_t *output,
cairo_path_fixed_t *path,
const cairo_matrix_t *ctm_inverse);
 
static cairo_bool_t
_cairo_svg_version_has_page_set_support (cairo_svg_version_t version)
{
return version > CAIRO_SVG_VERSION_1_1;
}
 
static const char * _cairo_svg_version_strings[CAIRO_SVG_VERSION_LAST] =
{
"SVG 1.1",
"SVG 1.2"
};
 
static const char * _cairo_svg_internal_version_strings[CAIRO_SVG_VERSION_LAST] =
{
"1.1",
"1.2"
};
 
struct cairo_svg_page {
unsigned int surface_id;
unsigned int clip_level;
cairo_output_stream_t *xml_node;
};
 
struct cairo_svg_document {
cairo_output_stream_t *output_stream;
unsigned long refcount;
cairo_surface_t *owner;
cairo_bool_t finished;
 
double width;
double height;
 
cairo_output_stream_t *xml_node_defs;
cairo_output_stream_t *xml_node_glyphs;
 
unsigned int linear_pattern_id;
unsigned int radial_pattern_id;
unsigned int pattern_id;
unsigned int filter_id;
unsigned int clip_id;
unsigned int mask_id;
 
cairo_bool_t alpha_filter;
 
cairo_svg_version_t svg_version;
 
cairo_scaled_font_subsets_t *font_subsets;
};
 
static cairo_status_t
_cairo_svg_document_create (cairo_output_stream_t *stream,
double width,
double height,
cairo_svg_version_t version,
cairo_svg_document_t **document_out);
 
static cairo_status_t
_cairo_svg_document_destroy (cairo_svg_document_t *document);
 
static cairo_status_t
_cairo_svg_document_finish (cairo_svg_document_t *document);
 
static cairo_svg_document_t *
_cairo_svg_document_reference (cairo_svg_document_t *document);
 
static unsigned int
_cairo_svg_document_allocate_mask_id (cairo_svg_document_t *document);
 
static cairo_surface_t *
_cairo_svg_surface_create_for_document (cairo_svg_document_t *document,
cairo_content_t content,
double width,
double height);
static cairo_surface_t *
_cairo_svg_surface_create_for_stream_internal (cairo_output_stream_t *stream,
double width,
double height,
cairo_svg_version_t version);
 
static const cairo_surface_backend_t cairo_svg_surface_backend;
static const cairo_paginated_surface_backend_t cairo_svg_surface_paginated_backend;
 
/**
* cairo_svg_surface_create_for_stream:
* @write_func: a #cairo_write_func_t to accept the output data, may be %NULL
* to indicate a no-op @write_func. With a no-op @write_func,
* the surface may be queried or used as a source without
* generating any temporary files.
* @closure: the closure argument for @write_func
* @width_in_points: width of the surface, in points (1 point == 1/72.0 inch)
* @height_in_points: height of the surface, in points (1 point == 1/72.0 inch)
*
* Creates a SVG surface of the specified size in points to be written
* incrementally to the stream represented by @write_func and @closure.
*
* Return value: a pointer to the newly created surface. The caller
* owns the surface and should call cairo_surface_destroy() when done
* with it.
*
* This function always returns a valid pointer, but it will return a
* pointer to a "nil" surface if an error such as out of memory
* occurs. You can use cairo_surface_status() to check for this.
*
* Since: 1.2
*/
cairo_surface_t *
cairo_svg_surface_create_for_stream (cairo_write_func_t write_func,
void *closure,
double width,
double height)
{
cairo_output_stream_t *stream;
 
stream = _cairo_output_stream_create (write_func, NULL, closure);
if (_cairo_output_stream_get_status (stream))
return _cairo_surface_create_in_error (_cairo_output_stream_destroy (stream));
 
return _cairo_svg_surface_create_for_stream_internal (stream, width, height, CAIRO_SVG_VERSION_1_1);
}
 
/**
* cairo_svg_surface_create:
* @filename: a filename for the SVG output (must be writable), %NULL may be
* used to specify no output. This will generate a SVG surface that
* may be queried and used as a source, without generating a
* temporary file.
* @width_in_points: width of the surface, in points (1 point == 1/72.0 inch)
* @height_in_points: height of the surface, in points (1 point == 1/72.0 inch)
*
* Creates a SVG surface of the specified size in points to be written
* to @filename.
*
* The SVG surface backend recognizes the following MIME types for the
* data attached to a surface (see cairo_surface_set_mime_data()) when
* it is used as a source pattern for drawing on this surface:
* %CAIRO_MIME_TYPE_JPEG, %CAIRO_MIME_TYPE_PNG,
* %CAIRO_MIME_TYPE_URI. If any of them is specified, the SVG backend
* emits a href with the content of MIME data instead of a surface
* snapshot (PNG, Base64-encoded) in the corresponding image tag.
*
* The unofficial MIME type %CAIRO_MIME_TYPE_URI is examined
* first. If present, the URI is emitted as is: assuring the
* correctness of URI is left to the client code.
*
* If %CAIRO_MIME_TYPE_URI is not present, but %CAIRO_MIME_TYPE_JPEG
* or %CAIRO_MIME_TYPE_PNG is specified, the corresponding data is
* Base64-encoded and emitted.
*
* Return value: a pointer to the newly created surface. The caller
* owns the surface and should call cairo_surface_destroy() when done
* with it.
*
* This function always returns a valid pointer, but it will return a
* pointer to a "nil" surface if an error such as out of memory
* occurs. You can use cairo_surface_status() to check for this.
*
* Since: 1.2
**/
cairo_surface_t *
cairo_svg_surface_create (const char *filename,
double width,
double height)
{
cairo_output_stream_t *stream;
 
stream = _cairo_output_stream_create_for_filename (filename);
if (_cairo_output_stream_get_status (stream))
return _cairo_surface_create_in_error (_cairo_output_stream_destroy (stream));
 
return _cairo_svg_surface_create_for_stream_internal (stream, width, height, CAIRO_SVG_VERSION_1_1);
}
 
static cairo_bool_t
_cairo_surface_is_svg (cairo_surface_t *surface)
{
return surface->backend == &cairo_svg_surface_backend;
}
 
/* If the abstract_surface is a paginated surface, and that paginated
* surface's target is a svg_surface, then set svg_surface to that
* target. Otherwise return FALSE.
*/
static cairo_bool_t
_extract_svg_surface (cairo_surface_t *surface,
cairo_svg_surface_t **svg_surface)
{
cairo_surface_t *target;
cairo_status_t status_ignored;
 
if (surface->status)
return FALSE;
if (surface->finished) {
status_ignored = _cairo_surface_set_error (surface,
_cairo_error (CAIRO_STATUS_SURFACE_FINISHED));
return FALSE;
}
 
if (! _cairo_surface_is_paginated (surface)) {
status_ignored = _cairo_surface_set_error (surface,
_cairo_error (CAIRO_STATUS_SURFACE_TYPE_MISMATCH));
return FALSE;
}
 
target = _cairo_paginated_surface_get_target (surface);
if (target->status) {
status_ignored = _cairo_surface_set_error (surface,
target->status);
return FALSE;
}
if (target->finished) {
status_ignored = _cairo_surface_set_error (surface,
_cairo_error (CAIRO_STATUS_SURFACE_FINISHED));
return FALSE;
}
 
if (! _cairo_surface_is_svg (target)) {
status_ignored = _cairo_surface_set_error (surface,
_cairo_error (CAIRO_STATUS_SURFACE_TYPE_MISMATCH));
return FALSE;
}
 
*svg_surface = (cairo_svg_surface_t *) target;
return TRUE;
}
 
/**
* cairo_svg_surface_restrict_to_version:
* @surface: a SVG #cairo_surface_t
* @version: SVG version
*
* Restricts the generated SVG file to @version. See cairo_svg_get_versions()
* for a list of available version values that can be used here.
*
* This function should only be called before any drawing operations
* have been performed on the given surface. The simplest way to do
* this is to call this function immediately after creating the
* surface.
*
* Since: 1.2
**/
void
cairo_svg_surface_restrict_to_version (cairo_surface_t *abstract_surface,
cairo_svg_version_t version)
{
cairo_svg_surface_t *surface = NULL; /* hide compiler warning */
 
if (! _extract_svg_surface (abstract_surface, &surface))
return;
 
if (version < CAIRO_SVG_VERSION_LAST)
surface->document->svg_version = version;
}
 
/**
* cairo_svg_get_versions:
* @versions: supported version list
* @num_versions: list length
*
* Used to retrieve the list of supported versions. See
* cairo_svg_surface_restrict_to_version().
*
* Since: 1.2
**/
void
cairo_svg_get_versions (cairo_svg_version_t const **versions,
int *num_versions)
{
if (versions != NULL)
*versions = _cairo_svg_versions;
 
if (num_versions != NULL)
*num_versions = CAIRO_SVG_VERSION_LAST;
}
 
/**
* cairo_svg_version_to_string:
* @version: a version id
*
* Get the string representation of the given @version id. This function
* will return %NULL if @version isn't valid. See cairo_svg_get_versions()
* for a way to get the list of valid version ids.
*
* Return value: the string associated to given version.
*
* Since: 1.2
**/
const char *
cairo_svg_version_to_string (cairo_svg_version_t version)
{
if (version >= CAIRO_SVG_VERSION_LAST)
return NULL;
 
return _cairo_svg_version_strings[version];
}
 
static cairo_bool_t
_cliprect_covers_surface (cairo_svg_surface_t *surface,
cairo_path_fixed_t *path)
{
cairo_box_t box;
 
if (_cairo_path_fixed_is_box (path, &box)) {
if (box.p1.x <= 0 &&
box.p1.y <= 0 &&
_cairo_fixed_to_double (box.p2.x) >= surface->width &&
_cairo_fixed_to_double (box.p2.y) >= surface->height)
{
return TRUE;
}
}
 
return FALSE;
}
 
static cairo_status_t
_cairo_svg_surface_clipper_intersect_clip_path (cairo_surface_clipper_t *clipper,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_antialias_t antialias)
{
cairo_svg_surface_t *surface = cairo_container_of (clipper,
cairo_svg_surface_t,
clipper);
cairo_svg_document_t *document = surface->document;
unsigned int i;
 
if (path == NULL) {
for (i = 0; i < surface->clip_level; i++)
_cairo_output_stream_printf (surface->xml_node, "</g>\n");
 
surface->clip_level = 0;
return CAIRO_STATUS_SUCCESS;
}
 
/* skip trivial whole-page clips */
if (_cliprect_covers_surface (surface, path))
return CAIRO_STATUS_SUCCESS;
 
_cairo_output_stream_printf (document->xml_node_defs,
"<clipPath id=\"clip%d\">\n"
" <path ",
document->clip_id);
_cairo_svg_surface_emit_path (document->xml_node_defs, path, NULL);
 
_cairo_output_stream_printf (document->xml_node_defs,
"/>\n"
"</clipPath>\n");
 
_cairo_output_stream_printf (surface->xml_node,
"<g clip-path=\"url(#clip%d)\" "
"clip-rule=\"%s\">\n",
document->clip_id,
fill_rule == CAIRO_FILL_RULE_EVEN_ODD ?
"evenodd" : "nonzero");
 
document->clip_id++;
surface->clip_level++;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_surface_t *
_cairo_svg_surface_create_for_document (cairo_svg_document_t *document,
cairo_content_t content,
double width,
double height)
{
cairo_svg_surface_t *surface;
cairo_surface_t *paginated;
cairo_status_t status, status_ignored;
 
surface = malloc (sizeof (cairo_svg_surface_t));
if (unlikely (surface == NULL))
return _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
 
_cairo_surface_init (&surface->base,
&cairo_svg_surface_backend,
NULL, /* device */
content);
 
surface->width = width;
surface->height = height;
 
surface->document = _cairo_svg_document_reference (document);
 
surface->clip_level = 0;
_cairo_surface_clipper_init (&surface->clipper,
_cairo_svg_surface_clipper_intersect_clip_path);
 
surface->base_clip = document->clip_id++;
surface->is_base_clip_emitted = FALSE;
 
surface->xml_node = _cairo_memory_stream_create ();
status = _cairo_output_stream_get_status (surface->xml_node);
if (unlikely (status))
goto CLEANUP;
 
_cairo_array_init (&surface->page_set, sizeof (cairo_svg_page_t));
 
if (content == CAIRO_CONTENT_COLOR) {
_cairo_output_stream_printf (surface->xml_node,
"<rect width=\"%f\" height=\"%f\" "
"style=\"opacity:1;stroke:none;"
"fill:rgb(0,0,0);\"/>\n",
width, height);
status = _cairo_output_stream_get_status (surface->xml_node);
if (unlikely (status))
goto CLEANUP;
}
 
surface->paginated_mode = CAIRO_PAGINATED_MODE_ANALYZE;
surface->force_fallbacks = FALSE;
surface->content = content;
 
paginated = _cairo_paginated_surface_create (&surface->base,
surface->content,
&cairo_svg_surface_paginated_backend);
status = paginated->status;
if (status == CAIRO_STATUS_SUCCESS) {
/* paginated keeps the only reference to surface now, drop ours */
cairo_surface_destroy (&surface->base);
return paginated;
}
 
/* ignore status as we are on the error path */
CLEANUP:
status_ignored = _cairo_output_stream_destroy (surface->xml_node);
status_ignored = _cairo_svg_document_destroy (document);
 
free (surface);
 
return _cairo_surface_create_in_error (status);
}
 
static cairo_surface_t *
_cairo_svg_surface_create_for_stream_internal (cairo_output_stream_t *stream,
double width,
double height,
cairo_svg_version_t version)
{
cairo_svg_document_t *document = NULL; /* silence compiler */
cairo_surface_t *surface;
cairo_status_t status;
 
status = _cairo_svg_document_create (stream,
width, height, version,
&document);
if (unlikely (status)) {
surface = _cairo_surface_create_in_error (status);
/* consume the output stream on behalf of caller */
status = _cairo_output_stream_destroy (stream);
return surface;
}
 
surface = _cairo_svg_surface_create_for_document (document, CAIRO_CONTENT_COLOR_ALPHA,
width, height);
if (surface->status) {
status = _cairo_svg_document_destroy (document);
return surface;
}
 
document->owner = surface;
status = _cairo_svg_document_destroy (document);
/* the ref count should be 2 at this point */
assert (status == CAIRO_STATUS_SUCCESS);
 
return surface;
}
 
static cairo_svg_page_t *
_cairo_svg_surface_store_page (cairo_svg_surface_t *surface)
{
unsigned int i;
cairo_svg_page_t page;
cairo_output_stream_t *stream;
cairo_status_t status;
 
stream = _cairo_memory_stream_create ();
if (_cairo_output_stream_get_status (stream)) {
status = _cairo_output_stream_destroy (stream);
return NULL;
}
 
page.surface_id = surface->base.unique_id;
page.clip_level = surface->clip_level;
page.xml_node = surface->xml_node;
 
if (_cairo_array_append (&surface->page_set, &page)) {
status = _cairo_output_stream_destroy (stream);
return NULL;
}
 
surface->xml_node = stream;
surface->clip_level = 0;
for (i = 0; i < page.clip_level; i++)
_cairo_output_stream_printf (page.xml_node, "</g>\n");
 
_cairo_surface_clipper_reset (&surface->clipper);
 
return _cairo_array_index (&surface->page_set,
surface->page_set.num_elements - 1);
}
 
static cairo_int_status_t
_cairo_svg_surface_copy_page (void *abstract_surface)
{
cairo_svg_surface_t *surface = abstract_surface;
cairo_svg_page_t *page;
 
page = _cairo_svg_surface_store_page (surface);
if (unlikely (page == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
_cairo_memory_stream_copy (page->xml_node, surface->xml_node);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_show_page (void *abstract_surface)
{
cairo_svg_surface_t *surface = abstract_surface;
 
if (unlikely (_cairo_svg_surface_store_page (surface) == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
_cairo_svg_surface_emit_transform (cairo_output_stream_t *output,
char const *attribute_str,
const cairo_matrix_t *object_matrix,
const cairo_matrix_t *parent_matrix)
{
cairo_matrix_t matrix = *object_matrix;
 
if (parent_matrix != NULL)
cairo_matrix_multiply (&matrix, &matrix, parent_matrix);
 
if (!_cairo_matrix_is_identity (&matrix))
_cairo_output_stream_printf (output,
"%s=\"matrix(%f,%f,%f,%f,%f,%f)\"",
attribute_str,
matrix.xx, matrix.yx,
matrix.xy, matrix.yy,
matrix.x0, matrix.y0);
}
 
typedef struct {
cairo_output_stream_t *output;
const cairo_matrix_t *ctm_inverse;
} svg_path_info_t;
 
static cairo_status_t
_cairo_svg_path_move_to (void *closure,
const cairo_point_t *point)
{
svg_path_info_t *info = closure;
double x = _cairo_fixed_to_double (point->x);
double y = _cairo_fixed_to_double (point->y);
 
if (info->ctm_inverse)
cairo_matrix_transform_point (info->ctm_inverse, &x, &y);
 
_cairo_output_stream_printf (info->output, "M %f %f ", x, y);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_path_line_to (void *closure,
const cairo_point_t *point)
{
svg_path_info_t *info = closure;
double x = _cairo_fixed_to_double (point->x);
double y = _cairo_fixed_to_double (point->y);
 
if (info->ctm_inverse)
cairo_matrix_transform_point (info->ctm_inverse, &x, &y);
 
_cairo_output_stream_printf (info->output, "L %f %f ", x, y);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_path_curve_to (void *closure,
const cairo_point_t *b,
const cairo_point_t *c,
const cairo_point_t *d)
{
svg_path_info_t *info = closure;
double bx = _cairo_fixed_to_double (b->x);
double by = _cairo_fixed_to_double (b->y);
double cx = _cairo_fixed_to_double (c->x);
double cy = _cairo_fixed_to_double (c->y);
double dx = _cairo_fixed_to_double (d->x);
double dy = _cairo_fixed_to_double (d->y);
 
if (info->ctm_inverse) {
cairo_matrix_transform_point (info->ctm_inverse, &bx, &by);
cairo_matrix_transform_point (info->ctm_inverse, &cx, &cy);
cairo_matrix_transform_point (info->ctm_inverse, &dx, &dy);
}
 
_cairo_output_stream_printf (info->output,
"C %f %f %f %f %f %f ",
bx, by, cx, cy, dx, dy);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_path_close_path (void *closure)
{
svg_path_info_t *info = closure;
 
_cairo_output_stream_printf (info->output, "Z ");
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
_cairo_svg_surface_emit_path (cairo_output_stream_t *output,
cairo_path_fixed_t *path,
const cairo_matrix_t *ctm_inverse)
{
cairo_status_t status;
svg_path_info_t info;
 
_cairo_output_stream_printf (output, "d=\"");
 
info.output = output;
info.ctm_inverse = ctm_inverse;
status = _cairo_path_fixed_interpret (path,
CAIRO_DIRECTION_FORWARD,
_cairo_svg_path_move_to,
_cairo_svg_path_line_to,
_cairo_svg_path_curve_to,
_cairo_svg_path_close_path,
&info);
assert (status == CAIRO_STATUS_SUCCESS);
 
_cairo_output_stream_printf (output, "\"");
}
 
static cairo_int_status_t
_cairo_svg_document_emit_outline_glyph_data (cairo_svg_document_t *document,
cairo_scaled_font_t *scaled_font,
unsigned long glyph_index)
{
cairo_scaled_glyph_t *scaled_glyph;
cairo_int_status_t status;
 
status = _cairo_scaled_glyph_lookup (scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS|
CAIRO_SCALED_GLYPH_INFO_PATH,
&scaled_glyph);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (document->xml_node_glyphs,
"<path style=\"stroke:none;\" ");
 
_cairo_svg_surface_emit_path (document->xml_node_glyphs,
scaled_glyph->path, NULL);
 
_cairo_output_stream_printf (document->xml_node_glyphs,
"/>\n");
 
return status;
}
 
static cairo_int_status_t
_cairo_svg_document_emit_bitmap_glyph_data (cairo_svg_document_t *document,
cairo_scaled_font_t *scaled_font,
unsigned long glyph_index)
{
cairo_scaled_glyph_t *scaled_glyph;
cairo_image_surface_t *image;
cairo_status_t status;
uint8_t *row, *byte;
int rows, cols;
int x, y, bit;
 
status = _cairo_scaled_glyph_lookup (scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS |
CAIRO_SCALED_GLYPH_INFO_SURFACE,
&scaled_glyph);
if (unlikely (status))
return status;
 
image = _cairo_image_surface_coerce_to_format (scaled_glyph->surface,
CAIRO_FORMAT_A1);
status = image->base.status;
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (document->xml_node_glyphs, "<g");
_cairo_svg_surface_emit_transform (document->xml_node_glyphs, " transform",
&image->base.device_transform_inverse, NULL);
_cairo_output_stream_printf (document->xml_node_glyphs, ">/n");
 
for (y = 0, row = image->data, rows = image->height; rows; row += image->stride, rows--, y++) {
for (x = 0, byte = row, cols = (image->width + 7) / 8; cols; byte++, cols--) {
uint8_t output_byte = CAIRO_BITSWAP8_IF_LITTLE_ENDIAN (*byte);
for (bit = 7; bit >= 0 && x < image->width; bit--, x++) {
if (output_byte & (1 << bit)) {
_cairo_output_stream_printf (document->xml_node_glyphs,
"<rect x=\"%d\" y=\"%d\" width=\"1\" height=\"1\"/>\n",
x, y);
}
}
}
}
_cairo_output_stream_printf (document->xml_node_glyphs, "</g>\n");
 
cairo_surface_destroy (&image->base);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_document_emit_glyph (cairo_svg_document_t *document,
cairo_scaled_font_t *scaled_font,
unsigned long scaled_font_glyph_index,
unsigned int font_id,
unsigned int subset_glyph_index)
{
cairo_status_t status;
 
_cairo_output_stream_printf (document->xml_node_glyphs,
"<symbol overflow=\"visible\" id=\"glyph%d-%d\">\n",
font_id,
subset_glyph_index);
 
status = _cairo_svg_document_emit_outline_glyph_data (document,
scaled_font,
scaled_font_glyph_index);
if (status == CAIRO_INT_STATUS_UNSUPPORTED)
status = _cairo_svg_document_emit_bitmap_glyph_data (document,
scaled_font,
scaled_font_glyph_index);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (document->xml_node_glyphs, "</symbol>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_document_emit_font_subset (cairo_scaled_font_subset_t *font_subset,
void *closure)
{
cairo_svg_document_t *document = closure;
unsigned int i;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
 
_cairo_scaled_font_freeze_cache (font_subset->scaled_font);
for (i = 0; i < font_subset->num_glyphs; i++) {
status = _cairo_svg_document_emit_glyph (document,
font_subset->scaled_font,
font_subset->glyphs[i],
font_subset->font_id, i);
if (unlikely (status))
break;
}
_cairo_scaled_font_thaw_cache (font_subset->scaled_font);
 
return status;
}
 
static cairo_status_t
_cairo_svg_document_emit_font_subsets (cairo_svg_document_t *document)
{
cairo_status_t status;
 
status = _cairo_scaled_font_subsets_foreach_scaled (document->font_subsets,
_cairo_svg_document_emit_font_subset,
document);
if (unlikely (status))
goto FAIL;
 
status = _cairo_scaled_font_subsets_foreach_user (document->font_subsets,
_cairo_svg_document_emit_font_subset,
document);
 
FAIL:
_cairo_scaled_font_subsets_destroy (document->font_subsets);
document->font_subsets = NULL;
 
return status;
}
 
static char const *
_cairo_svg_surface_operators[] = {
"clear",
 
"src", "src-over", "src-in",
"src-out", "src-atop",
 
"dst", "dst-over", "dst-in",
"dst-out", "dst-atop",
 
"xor", "plus",
"color-dodge", /* FIXME: saturate ? */
 
"multiply", "screen", "overlay",
"darken", "lighten",
"color-dodge", "color-burn",
"hard-light", "soft-light",
"difference", "exclusion"
};
 
static cairo_bool_t
_cairo_svg_surface_analyze_operator (cairo_svg_surface_t *surface,
cairo_operator_t op)
{
/* guard against newly added operators */
if (op >= ARRAY_LENGTH (_cairo_svg_surface_operators))
return CAIRO_INT_STATUS_UNSUPPORTED;
 
/* allow operators being NULL if they are unsupported */
if (_cairo_svg_surface_operators[op] == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_analyze_operation (cairo_svg_surface_t *surface,
cairo_operator_t op,
const cairo_pattern_t *pattern)
{
cairo_svg_document_t *document = surface->document;
 
if (surface->force_fallbacks &&
surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE)
{
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
/* SVG doesn't support extend reflect for image pattern */
if (pattern->type == CAIRO_PATTERN_TYPE_SURFACE &&
pattern->extend == CAIRO_EXTEND_REFLECT)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
if (document->svg_version >= CAIRO_SVG_VERSION_1_2)
return _cairo_svg_surface_analyze_operator (surface, op);
 
if (op == CAIRO_OPERATOR_OVER)
return CAIRO_STATUS_SUCCESS;
 
/* The SOURCE operator is only supported if there is nothing
* painted underneath. */
if (op == CAIRO_OPERATOR_SOURCE)
return CAIRO_INT_STATUS_FLATTEN_TRANSPARENCY;
 
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
static cairo_int_status_t
_cairo_svg_surface_operation_supported (cairo_svg_surface_t *surface,
cairo_operator_t op,
const cairo_pattern_t *pattern)
{
return _cairo_svg_surface_analyze_operation (surface, op, pattern) != CAIRO_INT_STATUS_UNSUPPORTED;
}
 
static cairo_status_t
_cairo_svg_surface_finish (void *abstract_surface)
{
cairo_status_t status, status2;
cairo_svg_surface_t *surface = abstract_surface;
cairo_svg_document_t *document = surface->document;
cairo_svg_page_t *page;
unsigned int i;
 
if (_cairo_paginated_surface_get_target (document->owner) == &surface->base)
status = _cairo_svg_document_finish (document);
else
status = CAIRO_STATUS_SUCCESS;
 
if (surface->xml_node != NULL) {
status2 = _cairo_output_stream_destroy (surface->xml_node);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
}
 
for (i = 0; i < surface->page_set.num_elements; i++) {
page = _cairo_array_index (&surface->page_set, i);
status2 = _cairo_output_stream_destroy (page->xml_node);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
}
_cairo_array_fini (&surface->page_set);
 
_cairo_surface_clipper_reset (&surface->clipper);
 
status2 = _cairo_svg_document_destroy (document);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
return status;
}
 
 
static void
_cairo_svg_surface_emit_alpha_filter (cairo_svg_document_t *document)
{
if (document->alpha_filter)
return;
 
_cairo_output_stream_printf (document->xml_node_defs,
"<filter id=\"alpha\" "
"filterUnits=\"objectBoundingBox\" "
"x=\"0%%\" y=\"0%%\" "
"width=\"100%%\" height=\"100%%\">\n"
" <feColorMatrix type=\"matrix\" "
"in=\"SourceGraphic\" "
"values=\"0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0\"/>\n"
"</filter>\n");
 
document->alpha_filter = TRUE;
}
 
typedef struct {
cairo_output_stream_t *output;
unsigned int in_mem;
unsigned int trailing;
unsigned char src[3];
} base64_write_closure_t;
 
static char const base64_table[64] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 
static cairo_status_t
base64_write_func (void *closure,
const unsigned char *data,
unsigned int length)
{
base64_write_closure_t *info = (base64_write_closure_t *) closure;
unsigned int i;
unsigned char *src;
 
src = info->src;
 
if (info->in_mem + length < 3) {
for (i = 0; i < length; i++) {
src[i + info->in_mem] = *data++;
}
info->in_mem += length;
return CAIRO_STATUS_SUCCESS;
}
 
do {
unsigned char dst[4];
 
for (i = info->in_mem; i < 3; i++) {
src[i] = *data++;
length--;
}
info->in_mem = 0;
 
dst[0] = base64_table[src[0] >> 2];
dst[1] = base64_table[(src[0] & 0x03) << 4 | src[1] >> 4];
dst[2] = base64_table[(src[1] & 0x0f) << 2 | src[2] >> 6];
dst[3] = base64_table[src[2] & 0xfc >> 2];
/* Special case for the last missing bits */
switch (info->trailing) {
case 2:
dst[2] = '=';
case 1:
dst[3] = '=';
default:
break;
}
_cairo_output_stream_write (info->output, dst, 4);
} while (length >= 3);
 
for (i = 0; i < length; i++) {
src[i] = *data++;
}
info->in_mem = length;
 
return _cairo_output_stream_get_status (info->output);
}
 
static cairo_int_status_t
_cairo_surface_base64_encode_jpeg (cairo_surface_t *surface,
cairo_output_stream_t *output)
{
const unsigned char *mime_data;
unsigned long mime_data_length;
cairo_image_info_t image_info;
base64_write_closure_t info;
cairo_status_t status;
 
cairo_surface_get_mime_data (surface, CAIRO_MIME_TYPE_JPEG,
&mime_data, &mime_data_length);
if (mime_data == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
status = _cairo_image_info_get_jpeg_info (&image_info, mime_data, mime_data_length);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (output, "data:image/jpeg;base64,");
 
info.output = output;
info.in_mem = 0;
info.trailing = 0;
 
status = base64_write_func (&info, mime_data, mime_data_length);
if (unlikely (status))
return status;
 
if (info.in_mem > 0) {
memset (info.src + info.in_mem, 0, 3 - info.in_mem);
info.trailing = 3 - info.in_mem;
info.in_mem = 3;
status = base64_write_func (&info, NULL, 0);
}
 
return status;
}
 
static cairo_int_status_t
_cairo_surface_base64_encode_png (cairo_surface_t *surface,
cairo_output_stream_t *output)
{
const unsigned char *mime_data;
unsigned long mime_data_length;
base64_write_closure_t info;
cairo_status_t status;
 
cairo_surface_get_mime_data (surface, CAIRO_MIME_TYPE_PNG,
&mime_data, &mime_data_length);
if (unlikely (surface->status))
return surface->status;
if (mime_data == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
_cairo_output_stream_printf (output, "data:image/png;base64,");
 
info.output = output;
info.in_mem = 0;
info.trailing = 0;
 
status = base64_write_func (&info, mime_data, mime_data_length);
if (unlikely (status))
return status;
 
if (info.in_mem > 0) {
memset (info.src + info.in_mem, 0, 3 - info.in_mem);
info.trailing = 3 - info.in_mem;
info.in_mem = 3;
status = base64_write_func (&info, NULL, 0);
}
 
return status;
}
 
static cairo_int_status_t
_cairo_surface_base64_encode (cairo_surface_t *surface,
cairo_output_stream_t *output)
{
cairo_status_t status;
base64_write_closure_t info;
 
status = _cairo_surface_base64_encode_jpeg (surface, output);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
 
status = _cairo_surface_base64_encode_png (surface, output);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
return status;
 
info.output = output;
info.in_mem = 0;
info.trailing = 0;
 
_cairo_output_stream_printf (info.output, "data:image/png;base64,");
 
status = cairo_surface_write_to_png_stream (surface, base64_write_func,
(void *) &info);
 
if (unlikely (status))
return status;
 
if (info.in_mem > 0) {
memset (info.src + info.in_mem, 0, 3 - info.in_mem);
info.trailing = 3 - info.in_mem;
info.in_mem = 3;
status = base64_write_func (&info, NULL, 0);
}
 
return status;
}
 
static void
_cairo_svg_surface_emit_operator (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op)
{
if (surface->document->svg_version >= CAIRO_SVG_VERSION_1_2 &&
op != CAIRO_OPERATOR_OVER) {
_cairo_output_stream_printf (output, " comp-op=\"%s\"", _cairo_svg_surface_operators[op]);
if (!_cairo_operator_bounded_by_source (op))
_cairo_output_stream_printf (output, " clip-to-self=\"true\"");
}
}
 
static void
_cairo_svg_surface_emit_operator_for_style (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op)
{
if (surface->document->svg_version >= CAIRO_SVG_VERSION_1_2 &&
op != CAIRO_OPERATOR_OVER) {
_cairo_output_stream_printf (output, "comp-op:%s;", _cairo_svg_surface_operators[op]);
if (!_cairo_operator_bounded_by_source (op))
_cairo_output_stream_printf (output, "clip-to-self:true;");
}
}
 
/**
* _cairo_svg_surface_emit_attr_value:
*
* Write the value to output the stream as a sequence of characters,
* while escaping those which have special meaning in the XML
* attribute's value context: &amp; and &quot;.
**/
static void
_cairo_svg_surface_emit_attr_value (cairo_output_stream_t *stream,
const unsigned char *value,
unsigned int length)
{
const unsigned char *p;
const unsigned char *q;
unsigned int i;
 
/* we'll accumulate non-special chars in [q, p) range */
p = value;
q = p;
for (i = 0; i < length; i++, p++) {
if (*p == '&' || *p == '"') {
/* flush what's left before special char */
if (p != q) {
_cairo_output_stream_write (stream, q, p - q);
q = p + 1;
}
 
if (*p == '&')
_cairo_output_stream_printf (stream, "&amp;");
else // p == '"'
_cairo_output_stream_printf (stream, "&quot;");
}
}
 
/* flush the trailing chars if any */
if (p != q)
_cairo_output_stream_write (stream, q, p - q);
}
 
static cairo_status_t
_cairo_svg_surface_emit_surface (cairo_svg_document_t *document,
cairo_surface_t *surface)
{
cairo_rectangle_int_t extents;
cairo_bool_t is_bounded;
cairo_status_t status;
const unsigned char *uri;
unsigned long uri_len;
 
if (_cairo_user_data_array_get_data (&surface->user_data,
(cairo_user_data_key_t *) document))
{
return CAIRO_STATUS_SUCCESS;
}
 
is_bounded = _cairo_surface_get_extents (surface, &extents);
assert (is_bounded);
 
_cairo_output_stream_printf (document->xml_node_defs,
"<image id=\"image%d\" width=\"%d\" height=\"%d\"",
surface->unique_id,
extents.width, extents.height);
 
_cairo_output_stream_printf (document->xml_node_defs, " xlink:href=\"");
 
cairo_surface_get_mime_data (surface, CAIRO_MIME_TYPE_URI,
&uri, &uri_len);
if (uri != NULL) {
_cairo_svg_surface_emit_attr_value (document->xml_node_defs,
uri, uri_len);
} else {
status = _cairo_surface_base64_encode (surface,
document->xml_node_defs);
if (unlikely (status))
return status;
}
 
_cairo_output_stream_printf (document->xml_node_defs, "\"/>\n");
 
/* and tag it */
return _cairo_user_data_array_set_data (&surface->user_data,
(cairo_user_data_key_t *) document,
document, NULL);
}
 
static cairo_status_t
_cairo_svg_surface_emit_composite_surface_pattern (cairo_output_stream_t *output,
cairo_svg_surface_t *svg_surface,
cairo_operator_t op,
cairo_surface_pattern_t *pattern,
int pattern_id,
const cairo_matrix_t *parent_matrix,
const char *extra_attributes)
{
cairo_status_t status;
cairo_matrix_t p2u;
 
p2u = pattern->base.matrix;
status = cairo_matrix_invert (&p2u);
/* cairo_pattern_set_matrix ensures the matrix is invertible */
assert (status == CAIRO_STATUS_SUCCESS);
 
status = _cairo_svg_surface_emit_surface (svg_surface->document,
pattern->surface);
if (unlikely (status))
return status;
 
if (pattern_id != invalid_pattern_id) {
cairo_rectangle_int_t extents;
cairo_bool_t is_bounded;
 
is_bounded = _cairo_surface_get_extents (pattern->surface, &extents);
assert (is_bounded);
 
_cairo_output_stream_printf (output,
"<pattern id=\"pattern%d\" "
"patternUnits=\"userSpaceOnUse\" "
"width=\"%d\" height=\"%d\" ",
pattern_id,
extents.width, extents.height);
_cairo_svg_surface_emit_transform (output,
" patternTransform",
&p2u, parent_matrix);
_cairo_output_stream_printf (output, ">\n ");
}
 
_cairo_output_stream_printf (output,
"<use xlink:href=\"#image%d\"",
pattern->surface->unique_id);
if (extra_attributes)
_cairo_output_stream_printf (output, " %s", extra_attributes);
 
if (pattern_id == invalid_pattern_id) {
_cairo_svg_surface_emit_operator (output, svg_surface, op);
_cairo_svg_surface_emit_transform (output,
" transform",
&p2u, parent_matrix);
}
_cairo_output_stream_printf (output, "/>\n");
 
 
if (pattern_id != invalid_pattern_id)
_cairo_output_stream_printf (output, "</pattern>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_recording_surface (cairo_svg_document_t *document,
cairo_recording_surface_t *source)
{
cairo_status_t status;
cairo_surface_t *paginated_surface;
cairo_svg_surface_t *svg_surface;
cairo_array_t *page_set;
 
cairo_output_stream_t *contents;
 
if (_cairo_user_data_array_get_data (&source->base.user_data,
(cairo_user_data_key_t *) document))
{
return CAIRO_STATUS_SUCCESS;
}
 
paginated_surface = _cairo_svg_surface_create_for_document (document,
source->content,
source->extents_pixels.width,
source->extents_pixels.height);
if (unlikely (paginated_surface->status))
return paginated_surface->status;
 
svg_surface = (cairo_svg_surface_t *)
_cairo_paginated_surface_get_target (paginated_surface);
cairo_surface_set_fallback_resolution (paginated_surface,
document->owner->x_fallback_resolution,
document->owner->y_fallback_resolution);
cairo_surface_set_device_offset (&svg_surface->base,
-source->extents_pixels.x,
-source->extents_pixels.y);
 
status = _cairo_recording_surface_replay (&source->base, paginated_surface);
if (unlikely (status)) {
cairo_surface_destroy (paginated_surface);
return status;
}
 
cairo_surface_show_page (paginated_surface);
status = cairo_surface_status (paginated_surface);
if (unlikely (status)) {
cairo_surface_destroy (paginated_surface);
return status;
}
 
if (! svg_surface->is_base_clip_emitted) {
svg_surface->is_base_clip_emitted = TRUE;
_cairo_output_stream_printf (document->xml_node_defs,
"<clipPath id=\"clip%d\">\n"
" <rect width=\"%f\" height=\"%f\"/>\n"
"</clipPath>\n",
svg_surface->base_clip,
svg_surface->width,
svg_surface->height);
}
 
if (source->content == CAIRO_CONTENT_ALPHA) {
_cairo_svg_surface_emit_alpha_filter (document);
_cairo_output_stream_printf (document->xml_node_defs,
"<g id=\"surface%d\" "
"clip-path=\"url(#clip%d)\" "
"filter=\"url(#alpha)\">\n",
source->base.unique_id,
svg_surface->base_clip);
} else {
_cairo_output_stream_printf (document->xml_node_defs,
"<g id=\"surface%d\" "
"clip-path=\"url(#clip%d)\">\n",
source->base.unique_id,
svg_surface->base_clip);
}
 
contents = svg_surface->xml_node;
page_set = &svg_surface->page_set;
 
if (_cairo_memory_stream_length (contents) > 0) {
if (unlikely (_cairo_svg_surface_store_page (svg_surface) == NULL)) {
cairo_surface_destroy (paginated_surface);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
}
 
if (page_set->num_elements > 0) {
cairo_svg_page_t *page;
 
page = _cairo_array_index (page_set, page_set->num_elements - 1);
_cairo_memory_stream_copy (page->xml_node, document->xml_node_defs);
}
 
_cairo_output_stream_printf (document->xml_node_defs, "</g>\n");
 
status = cairo_surface_status (paginated_surface);
cairo_surface_destroy (paginated_surface);
 
if (unlikely (status))
return status;
 
/* and tag it */
return _cairo_user_data_array_set_data (&source->base.user_data,
(cairo_user_data_key_t *) document,
document, NULL);
}
 
static cairo_status_t
_cairo_svg_surface_emit_composite_recording_pattern (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op,
cairo_surface_pattern_t *pattern,
int pattern_id,
const cairo_matrix_t *parent_matrix,
const char *extra_attributes)
{
cairo_svg_document_t *document = surface->document;
cairo_recording_surface_t *recording_surface;
cairo_matrix_t p2u;
cairo_status_t status;
 
p2u = pattern->base.matrix;
status = cairo_matrix_invert (&p2u);
/* cairo_pattern_set_matrix ensures the matrix is invertible */
assert (status == CAIRO_STATUS_SUCCESS);
 
recording_surface = (cairo_recording_surface_t *) pattern->surface;
status = _cairo_svg_surface_emit_recording_surface (document, recording_surface);
if (unlikely (status))
return status;
 
if (pattern_id != invalid_pattern_id) {
_cairo_output_stream_printf (output,
"<pattern id=\"pattern%d\" "
"patternUnits=\"userSpaceOnUse\" "
"width=\"%d\" height=\"%d\"",
pattern_id,
recording_surface->extents.width,
recording_surface->extents.height);
_cairo_svg_surface_emit_transform (output, " patternTransform", &p2u, parent_matrix);
_cairo_output_stream_printf (output, ">\n");
}
 
_cairo_output_stream_printf (output,
"<use xlink:href=\"#surface%d\"",
recording_surface->base.unique_id);
 
if (pattern_id == invalid_pattern_id) {
_cairo_svg_surface_emit_operator (output, surface, op);
_cairo_svg_surface_emit_transform (output, " transform", &p2u, parent_matrix);
}
 
if (extra_attributes)
_cairo_output_stream_printf (output, " %s", extra_attributes);
 
_cairo_output_stream_printf (output, "/>\n");
 
if (pattern_id != invalid_pattern_id)
_cairo_output_stream_printf (output, "</pattern>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_composite_pattern (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op,
cairo_surface_pattern_t *pattern,
int pattern_id,
const cairo_matrix_t *parent_matrix,
const char *extra_attributes)
{
 
if (_cairo_surface_is_recording (pattern->surface)) {
return _cairo_svg_surface_emit_composite_recording_pattern (output, surface,
op, pattern,
pattern_id,
parent_matrix,
extra_attributes);
}
 
return _cairo_svg_surface_emit_composite_surface_pattern (output, surface,
op, pattern,
pattern_id,
parent_matrix,
extra_attributes);
}
 
static cairo_status_t
_cairo_svg_surface_emit_solid_pattern (cairo_svg_surface_t *surface,
cairo_solid_pattern_t *pattern,
cairo_output_stream_t *style,
cairo_bool_t is_stroke)
{
_cairo_output_stream_printf (style, is_stroke ?
"stroke:rgb(%f%%,%f%%,%f%%);stroke-opacity:%f;":
"fill:rgb(%f%%,%f%%,%f%%);fill-opacity:%f;",
pattern->color.red * 100.0,
pattern->color.green * 100.0,
pattern->color.blue * 100.0,
pattern->color.alpha);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_surface_pattern (cairo_svg_surface_t *surface,
cairo_surface_pattern_t *pattern,
cairo_output_stream_t *style,
cairo_bool_t is_stroke,
const cairo_matrix_t *parent_matrix)
{
cairo_svg_document_t *document = surface->document;
cairo_status_t status;
int pattern_id;
 
pattern_id = document->pattern_id++;
status = _cairo_svg_surface_emit_composite_pattern (document->xml_node_defs,
surface, CAIRO_OPERATOR_SOURCE, pattern,
pattern_id, parent_matrix, NULL);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (style,
"%s:url(#pattern%d);",
is_stroke ? "stroke" : "fill",
pattern_id);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_pattern_stops (cairo_output_stream_t *output,
cairo_gradient_pattern_t const *pattern,
double start_offset,
cairo_bool_t reverse_stops,
cairo_bool_t emulate_reflect)
{
cairo_gradient_stop_t *stops;
double offset;
unsigned int n_stops;
unsigned int i;
 
if (pattern->n_stops < 1)
return CAIRO_STATUS_SUCCESS;
 
if (pattern->n_stops == 1) {
_cairo_output_stream_printf (output,
"<stop offset=\"%f\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
pattern->stops[0].offset,
pattern->stops[0].color.red * 100.0,
pattern->stops[0].color.green * 100.0,
pattern->stops[0].color.blue * 100.0,
pattern->stops[0].color.alpha);
return CAIRO_STATUS_SUCCESS;
}
 
if (emulate_reflect || reverse_stops) {
n_stops = emulate_reflect ? pattern->n_stops * 2 - 2: pattern->n_stops;
stops = _cairo_malloc_ab (n_stops, sizeof (cairo_gradient_stop_t));
if (unlikely (stops == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
for (i = 0; i < pattern->n_stops; i++) {
if (reverse_stops) {
stops[i] = pattern->stops[pattern->n_stops - i - 1];
stops[i].offset = 1.0 - stops[i].offset;
} else
stops[i] = pattern->stops[i];
if (emulate_reflect) {
stops[i].offset /= 2;
if (i > 0 && i < (pattern->n_stops - 1)) {
if (reverse_stops) {
stops[i + pattern->n_stops - 1] = pattern->stops[i];
stops[i + pattern->n_stops - 1].offset =
0.5 + 0.5 * stops[i + pattern->n_stops - 1].offset;
} else {
stops[i + pattern->n_stops - 1] = pattern->stops[pattern->n_stops - i - 1];
stops[i + pattern->n_stops - 1].offset =
1 - 0.5 * stops[i + pattern->n_stops - 1].offset;
}
}
}
}
} else {
n_stops = pattern->n_stops;
stops = pattern->stops;
}
 
if (start_offset >= 0.0)
for (i = 0; i < n_stops; i++) {
offset = start_offset + (1 - start_offset ) * stops[i].offset;
_cairo_output_stream_printf (output,
"<stop offset=\"%f\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
offset,
stops[i].color.red * 100.0,
stops[i].color.green * 100.0,
stops[i].color.blue * 100.0,
stops[i].color.alpha);
}
else {
cairo_bool_t found = FALSE;
unsigned int offset_index;
cairo_color_stop_t offset_color_start, offset_color_stop;
 
for (i = 0; i < n_stops; i++) {
if (stops[i].offset >= -start_offset) {
if (i > 0) {
if (stops[i].offset != stops[i-1].offset) {
double x0, x1;
cairo_color_stop_t *color0, *color1;
 
x0 = stops[i-1].offset;
x1 = stops[i].offset;
color0 = &stops[i-1].color;
color1 = &stops[i].color;
offset_color_start.red = color0->red + (color1->red - color0->red)
* (-start_offset - x0) / (x1 - x0);
offset_color_start.green = color0->green + (color1->green - color0->green)
* (-start_offset - x0) / (x1 - x0);
offset_color_start.blue = color0->blue + (color1->blue - color0->blue)
* (-start_offset - x0) / (x1 - x0);
offset_color_start.alpha = color0->alpha + (color1->alpha - color0->alpha)
* (-start_offset - x0) / (x1 - x0);
offset_color_stop = offset_color_start;
} else {
offset_color_stop = stops[i-1].color;
offset_color_start = stops[i].color;
}
} else
offset_color_stop = offset_color_start = stops[i].color;
offset_index = i;
found = TRUE;
break;
}
}
 
if (!found) {
offset_index = n_stops - 1;
offset_color_stop = offset_color_start = stops[offset_index].color;
}
 
_cairo_output_stream_printf (output,
"<stop offset=\"0\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
offset_color_start.red * 100.0,
offset_color_start.green * 100.0,
offset_color_start.blue * 100.0,
offset_color_start.alpha);
for (i = offset_index; i < n_stops; i++) {
_cairo_output_stream_printf (output,
"<stop offset=\"%f\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
stops[i].offset + start_offset,
stops[i].color.red * 100.0,
stops[i].color.green * 100.0,
stops[i].color.blue * 100.0,
stops[i].color.alpha);
}
for (i = 0; i < offset_index; i++) {
_cairo_output_stream_printf (output,
"<stop offset=\"%f\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
1.0 + stops[i].offset + start_offset,
stops[i].color.red * 100.0,
stops[i].color.green * 100.0,
stops[i].color.blue * 100.0,
stops[i].color.alpha);
}
 
_cairo_output_stream_printf (output,
"<stop offset=\"1\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
offset_color_stop.red * 100.0,
offset_color_stop.green * 100.0,
offset_color_stop.blue * 100.0,
offset_color_stop.alpha);
 
}
 
if (reverse_stops || emulate_reflect)
free (stops);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
_cairo_svg_surface_emit_pattern_extend (cairo_output_stream_t *output,
cairo_pattern_t *pattern)
{
switch (pattern->extend) {
case CAIRO_EXTEND_REPEAT:
_cairo_output_stream_printf (output, "spreadMethod=\"repeat\" ");
break;
case CAIRO_EXTEND_REFLECT:
_cairo_output_stream_printf (output, "spreadMethod=\"reflect\" ");
break;
case CAIRO_EXTEND_NONE:
case CAIRO_EXTEND_PAD:
break;
}
}
 
static cairo_status_t
_cairo_svg_surface_emit_linear_pattern (cairo_svg_surface_t *surface,
cairo_linear_pattern_t *pattern,
cairo_output_stream_t *style,
cairo_bool_t is_stroke,
const cairo_matrix_t *parent_matrix)
{
cairo_svg_document_t *document = surface->document;
double x0, y0, x1, y1;
cairo_matrix_t p2u;
cairo_status_t status;
 
p2u = pattern->base.base.matrix;
status = cairo_matrix_invert (&p2u);
/* cairo_pattern_set_matrix ensures the matrix is invertible */
assert (status == CAIRO_STATUS_SUCCESS);
 
x0 = _cairo_fixed_to_double (pattern->p1.x);
y0 = _cairo_fixed_to_double (pattern->p1.y);
x1 = _cairo_fixed_to_double (pattern->p2.x);
y1 = _cairo_fixed_to_double (pattern->p2.y);
 
_cairo_output_stream_printf (document->xml_node_defs,
"<linearGradient id=\"linear%d\" "
"gradientUnits=\"userSpaceOnUse\" "
"x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" ",
document->linear_pattern_id,
x0, y0, x1, y1);
 
_cairo_svg_surface_emit_pattern_extend (document->xml_node_defs, &pattern->base.base),
_cairo_svg_surface_emit_transform (document->xml_node_defs, "gradientTransform", &p2u, parent_matrix);
_cairo_output_stream_printf (document->xml_node_defs, ">\n");
 
status = _cairo_svg_surface_emit_pattern_stops (document->xml_node_defs,
&pattern->base, 0.0,
FALSE, FALSE);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (document->xml_node_defs,
"</linearGradient>\n");
 
_cairo_output_stream_printf (style,
"%s:url(#linear%d);",
is_stroke ? "stroke" : "fill",
document->linear_pattern_id);
 
document->linear_pattern_id++;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_radial_pattern (cairo_svg_surface_t *surface,
cairo_radial_pattern_t *pattern,
cairo_output_stream_t *style,
cairo_bool_t is_stroke,
const cairo_matrix_t *parent_matrix)
{
cairo_svg_document_t *document = surface->document;
cairo_matrix_t p2u;
cairo_extend_t extend;
double x0, y0, x1, y1, r0, r1;
double fx, fy;
cairo_bool_t reverse_stops;
cairo_status_t status;
cairo_point_t *c0, *c1;
cairo_fixed_t radius0, radius1;
 
extend = pattern->base.base.extend;
 
if (pattern->r1 < pattern->r2) {
c0 = &pattern->c1;
c1 = &pattern->c2;
radius0 = pattern->r1;
radius1 = pattern->r2;
reverse_stops = FALSE;
} else {
c0 = &pattern->c2;
c1 = &pattern->c1;
radius0 = pattern->r2;
radius1 = pattern->r1;
reverse_stops = TRUE;
}
 
x0 = _cairo_fixed_to_double (c0->x);
y0 = _cairo_fixed_to_double (c0->y);
r0 = _cairo_fixed_to_double (radius0);
x1 = _cairo_fixed_to_double (c1->x);
y1 = _cairo_fixed_to_double (c1->y);
r1 = _cairo_fixed_to_double (radius1);
 
p2u = pattern->base.base.matrix;
status = cairo_matrix_invert (&p2u);
/* cairo_pattern_set_matrix ensures the matrix is invertible */
assert (status == CAIRO_STATUS_SUCCESS);
 
if (pattern->r1 == pattern->r2) {
unsigned int n_stops = pattern->base.n_stops;
 
_cairo_output_stream_printf (document->xml_node_defs,
"<radialGradient id=\"radial%d\" "
"gradientUnits=\"userSpaceOnUse\" "
"cx=\"%f\" cy=\"%f\" "
"fx=\"%f\" fy=\"%f\" r=\"%f\" ",
document->radial_pattern_id,
x1, y1,
x1, y1, r1);
_cairo_svg_surface_emit_transform (document->xml_node_defs,
"gradientTransform",
&p2u, parent_matrix);
_cairo_output_stream_printf (document->xml_node_defs, ">\n");
 
if (extend == CAIRO_EXTEND_NONE || n_stops < 1)
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"0\" style=\""
"stop-color:rgb(0%%,0%%,0%%);"
"stop-opacity:0;\"/>\n");
else {
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"0\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity %f;\"/>\n",
pattern->base.stops[0].color.red * 100.0,
pattern->base.stops[0].color.green * 100.0,
pattern->base.stops[0].color.blue * 100.0,
pattern->base.stops[0].color.alpha);
if (n_stops > 1)
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"0\" style=\""
"stop-color:rgb(%f%%,%f%%,%f%%);"
"stop-opacity:%f;\"/>\n",
pattern->base.stops[n_stops - 1].color.red * 100.0,
pattern->base.stops[n_stops - 1].color.green * 100.0,
pattern->base.stops[n_stops - 1].color.blue * 100.0,
pattern->base.stops[n_stops - 1].color.alpha);
}
 
} else {
double offset, r, x, y;
cairo_bool_t emulate_reflect = FALSE;
 
fx = (r1 * x0 - r0 * x1) / (r1 - r0);
fy = (r1 * y0 - r0 * y1) / (r1 - r0);
 
/* SVG doesn't support the inner circle and use instead a gradient focal.
* That means we need to emulate the cairo behaviour by processing the
* cairo gradient stops.
* The CAIRO_EXTENT_NONE and CAIRO_EXTENT_PAD modes are quite easy to handle,
* it's just a matter of stop position translation and calculation of
* the corresponding SVG radial gradient focal.
* The CAIRO_EXTENT_REFLECT and CAIRO_EXTEND_REPEAT modes require to compute a new
* radial gradient, with an new outer circle, equal to r1 - r0 in the CAIRO_EXTEND_REPEAT
* case, and 2 * (r1 - r0) in the CAIRO_EXTENT_REFLECT case, and a new gradient stop
* list that maps to the original cairo stop list.
*/
if ((extend == CAIRO_EXTEND_REFLECT
|| extend == CAIRO_EXTEND_REPEAT)
&& r0 > 0.0) {
double r_org = r1;
 
if (extend == CAIRO_EXTEND_REFLECT) {
r1 = 2 * r1 - r0;
emulate_reflect = TRUE;
}
 
offset = fmod (r1, r1 - r0) / (r1 - r0) - 1.0;
r = r1 - r0;
 
/* New position of outer circle. */
x = r * (x1 - fx) / r_org + fx;
y = r * (y1 - fy) / r_org + fy;
 
x1 = x;
y1 = y;
r1 = r;
r0 = 0.0;
} else {
offset = r0 / r1;
}
 
_cairo_output_stream_printf (document->xml_node_defs,
"<radialGradient id=\"radial%d\" "
"gradientUnits=\"userSpaceOnUse\" "
"cx=\"%f\" cy=\"%f\" "
"fx=\"%f\" fy=\"%f\" r=\"%f\" ",
document->radial_pattern_id,
x1, y1,
fx, fy, r1);
 
if (emulate_reflect)
_cairo_output_stream_printf (document->xml_node_defs, "spreadMethod=\"repeat\" ");
else
_cairo_svg_surface_emit_pattern_extend (document->xml_node_defs, &pattern->base.base);
_cairo_svg_surface_emit_transform (document->xml_node_defs, "gradientTransform", &p2u, parent_matrix);
_cairo_output_stream_printf (document->xml_node_defs, ">\n");
 
/* To support cairo's EXTEND_NONE, (for which SVG has no similar
* notion), we add transparent color stops on either end of the
* user-provided stops. */
if (extend == CAIRO_EXTEND_NONE) {
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"0\" style=\""
"stop-color:rgb(0%%,0%%,0%%);"
"stop-opacity:0;\"/>\n");
if (r0 != 0.0)
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"%f\" style=\""
"stop-color:rgb(0%%,0%%,0%%);"
"stop-opacity:0;\"/>\n",
r0 / r1);
}
status = _cairo_svg_surface_emit_pattern_stops (document->xml_node_defs,
&pattern->base, offset,
reverse_stops,
emulate_reflect);
if (unlikely (status))
return status;
 
if (pattern->base.base.extend == CAIRO_EXTEND_NONE)
_cairo_output_stream_printf (document->xml_node_defs,
"<stop offset=\"1.0\" style=\""
"stop-color:rgb(0%%,0%%,0%%);"
"stop-opacity:0;\"/>\n");
}
 
_cairo_output_stream_printf (document->xml_node_defs,
"</radialGradient>\n");
 
_cairo_output_stream_printf (style,
"%s:url(#radial%d);",
is_stroke ? "stroke" : "fill",
document->radial_pattern_id);
 
document->radial_pattern_id++;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_cairo_svg_surface_emit_pattern (cairo_svg_surface_t *surface,
const cairo_pattern_t *pattern,
cairo_output_stream_t *output,
cairo_bool_t is_stroke,
const cairo_matrix_t *parent_matrix)
{
switch (pattern->type) {
case CAIRO_PATTERN_TYPE_SOLID:
return _cairo_svg_surface_emit_solid_pattern (surface, (cairo_solid_pattern_t *) pattern,
output, is_stroke);
 
case CAIRO_PATTERN_TYPE_SURFACE:
return _cairo_svg_surface_emit_surface_pattern (surface, (cairo_surface_pattern_t *) pattern,
output, is_stroke, parent_matrix);
 
case CAIRO_PATTERN_TYPE_LINEAR:
return _cairo_svg_surface_emit_linear_pattern (surface, (cairo_linear_pattern_t *) pattern,
output, is_stroke, parent_matrix);
 
case CAIRO_PATTERN_TYPE_RADIAL:
return _cairo_svg_surface_emit_radial_pattern (surface, (cairo_radial_pattern_t *) pattern,
output, is_stroke, parent_matrix);
}
return _cairo_error (CAIRO_STATUS_PATTERN_TYPE_MISMATCH);
}
 
static cairo_status_t
_cairo_svg_surface_emit_fill_style (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_fill_rule_t fill_rule,
const cairo_matrix_t *parent_matrix)
{
_cairo_output_stream_printf (output,
"fill-rule:%s;",
fill_rule == CAIRO_FILL_RULE_EVEN_ODD ?
"evenodd" : "nonzero");
_cairo_svg_surface_emit_operator_for_style (output, surface, op);
return _cairo_svg_surface_emit_pattern (surface, source, output, FALSE, parent_matrix);
}
 
static cairo_status_t
_cairo_svg_surface_emit_stroke_style (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op,
const cairo_pattern_t *source,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *parent_matrix)
{
cairo_status_t status;
const char *line_cap, *line_join;
unsigned int i;
 
switch (stroke_style->line_cap) {
case CAIRO_LINE_CAP_BUTT:
line_cap = "butt";
break;
case CAIRO_LINE_CAP_ROUND:
line_cap = "round";
break;
case CAIRO_LINE_CAP_SQUARE:
line_cap = "square";
break;
default:
ASSERT_NOT_REACHED;
}
 
switch (stroke_style->line_join) {
case CAIRO_LINE_JOIN_MITER:
line_join = "miter";
break;
case CAIRO_LINE_JOIN_ROUND:
line_join = "round";
break;
case CAIRO_LINE_JOIN_BEVEL:
line_join = "bevel";
break;
default:
ASSERT_NOT_REACHED;
}
 
_cairo_output_stream_printf (output,
"stroke-width:%f;"
"stroke-linecap:%s;"
"stroke-linejoin:%s;",
stroke_style->line_width,
line_cap,
line_join);
 
status = _cairo_svg_surface_emit_pattern (surface, source, output, TRUE, parent_matrix);
if (unlikely (status))
return status;
 
_cairo_svg_surface_emit_operator_for_style (output, surface, op);
 
if (stroke_style->num_dashes > 0) {
_cairo_output_stream_printf (output, "stroke-dasharray:");
for (i = 0; i < stroke_style->num_dashes; i++) {
_cairo_output_stream_printf (output, "%f",
stroke_style->dash[i]);
if (i + 1 < stroke_style->num_dashes)
_cairo_output_stream_printf (output, ",");
else
_cairo_output_stream_printf (output, ";");
}
if (stroke_style->dash_offset != 0.0) {
_cairo_output_stream_printf (output,
"stroke-dashoffset:%f;",
stroke_style->dash_offset);
}
}
 
_cairo_output_stream_printf (output,
"stroke-miterlimit:%f;",
stroke_style->miter_limit);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_fill_stroke (void *abstract_surface,
cairo_operator_t fill_op,
const cairo_pattern_t *fill_source,
cairo_fill_rule_t fill_rule,
double fill_tolerance,
cairo_antialias_t fill_antialias,
cairo_path_fixed_t *path,
cairo_operator_t stroke_op,
const cairo_pattern_t *stroke_source,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *stroke_ctm,
const cairo_matrix_t *stroke_ctm_inverse,
double stroke_tolerance,
cairo_antialias_t stroke_antialias,
cairo_clip_t *clip)
{
cairo_svg_surface_t *surface = abstract_surface;
cairo_status_t status;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "<path style=\"");
status = _cairo_svg_surface_emit_fill_style (surface->xml_node, surface, fill_op,
fill_source, fill_rule, stroke_ctm_inverse);
if (unlikely (status))
return status;
 
status = _cairo_svg_surface_emit_stroke_style (surface->xml_node, surface, stroke_op,
stroke_source, stroke_style, stroke_ctm_inverse);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "\" ");
 
_cairo_svg_surface_emit_path (surface->xml_node, path, stroke_ctm_inverse);
 
_cairo_svg_surface_emit_transform (surface->xml_node, " transform", stroke_ctm, NULL);
_cairo_output_stream_printf (surface->xml_node, "/>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_fill (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_antialias_t antialias,
cairo_clip_t *clip)
{
cairo_svg_surface_t *surface = abstract_surface;
cairo_status_t status;
 
if (surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE)
return _cairo_svg_surface_analyze_operation (surface, op, source);
 
assert (_cairo_svg_surface_operation_supported (surface, op, source));
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "<path style=\" stroke:none;");
status = _cairo_svg_surface_emit_fill_style (surface->xml_node, surface, op, source, fill_rule, NULL);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "\" ");
 
_cairo_svg_surface_emit_path (surface->xml_node, path, NULL);
 
_cairo_output_stream_printf (surface->xml_node, "/>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_bool_t
_cairo_svg_surface_get_extents (void *abstract_surface,
cairo_rectangle_int_t *rectangle)
{
cairo_svg_surface_t *surface = abstract_surface;
 
rectangle->x = 0;
rectangle->y = 0;
 
/* XXX: The conversion to integers here is pretty bogus, (not to
* mention the arbitrary limitation of width to a short(!). We
* may need to come up with a better interface for get_size.
*/
rectangle->width = ceil (surface->width);
rectangle->height = ceil (surface->height);
 
return TRUE;
}
 
static cairo_status_t
_cairo_svg_surface_emit_paint (cairo_output_stream_t *output,
cairo_svg_surface_t *surface,
cairo_operator_t op,
const cairo_pattern_t *source,
const cairo_pattern_t *mask_source,
const char *extra_attributes)
{
cairo_status_t status;
 
if (source->type == CAIRO_PATTERN_TYPE_SURFACE &&
source->extend == CAIRO_EXTEND_NONE)
return _cairo_svg_surface_emit_composite_pattern (output,
surface,
op,
(cairo_surface_pattern_t *) source,
invalid_pattern_id,
mask_source ? &mask_source->matrix :NULL,
extra_attributes);
 
_cairo_output_stream_printf (output,
"<rect x=\"0\" y=\"0\" "
"width=\"%f\" height=\"%f\" "
"style=\"",
surface->width, surface->height);
_cairo_svg_surface_emit_operator_for_style (output, surface, op);
status = _cairo_svg_surface_emit_pattern (surface, source, output, FALSE, NULL);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (output, "stroke:none;\"");
 
if (extra_attributes)
_cairo_output_stream_printf (output, " %s", extra_attributes);
 
_cairo_output_stream_printf (output, "/>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_paint (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_clip_t *clip)
{
cairo_status_t status;
cairo_svg_surface_t *surface = abstract_surface;
 
/* Emulation of clear and source operators, when no clipping region
* is defined. We just delete existing content of surface root node,
* and exit early if operator is clear.
*/
if ((op == CAIRO_OPERATOR_CLEAR || op == CAIRO_OPERATOR_SOURCE) &&
clip == NULL)
{
switch (surface->paginated_mode) {
case CAIRO_PAGINATED_MODE_FALLBACK:
ASSERT_NOT_REACHED;
case CAIRO_PAGINATED_MODE_ANALYZE:
return CAIRO_STATUS_SUCCESS;
 
case CAIRO_PAGINATED_MODE_RENDER:
status = _cairo_output_stream_destroy (surface->xml_node);
if (unlikely (status)) {
surface->xml_node = NULL;
return status;
}
 
surface->xml_node = _cairo_memory_stream_create ();
if (_cairo_output_stream_get_status (surface->xml_node)) {
status = _cairo_output_stream_destroy (surface->xml_node);
surface->xml_node = NULL;
return status;
}
 
if (op == CAIRO_OPERATOR_CLEAR) {
if (surface->content == CAIRO_CONTENT_COLOR) {
_cairo_output_stream_printf (surface->xml_node,
"<rect "
"width=\"%f\" height=\"%f\" "
"style=\"opacity:1;"
"stroke:none;"
"fill:rgb(0,0,0);\"/>\n",
surface->width, surface->height);
}
return CAIRO_STATUS_SUCCESS;
}
break;
}
} else {
if (surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE)
return _cairo_svg_surface_analyze_operation (surface, op, source);
 
assert (_cairo_svg_surface_operation_supported (surface, op, source));
}
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
return _cairo_svg_surface_emit_paint (surface->xml_node,
surface, op, source, 0, NULL);
}
 
static cairo_int_status_t
_cairo_svg_surface_mask (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
const cairo_pattern_t *mask,
cairo_clip_t *clip)
{
cairo_status_t status;
cairo_svg_surface_t *surface = abstract_surface;
cairo_svg_document_t *document = surface->document;
cairo_output_stream_t *mask_stream;
char buffer[64];
cairo_bool_t discard_filter = FALSE;
unsigned int mask_id;
 
if (surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE) {
cairo_status_t source_status, mask_status;
 
source_status = _cairo_svg_surface_analyze_operation (surface, op, source);
if (_cairo_status_is_error (source_status))
return source_status;
 
if (mask->has_component_alpha) {
mask_status = CAIRO_INT_STATUS_UNSUPPORTED;
} else {
mask_status = _cairo_svg_surface_analyze_operation (surface, op, mask);
if (_cairo_status_is_error (mask_status))
return mask_status;
}
 
return _cairo_analysis_surface_merge_status (source_status,
mask_status);
}
 
assert (_cairo_svg_surface_operation_supported (surface, op, source));
assert (_cairo_svg_surface_operation_supported (surface, CAIRO_OPERATOR_OVER, mask));
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
if (mask->type == CAIRO_PATTERN_TYPE_SURFACE) {
const cairo_surface_pattern_t *surface_pattern = (const cairo_surface_pattern_t*) mask;
cairo_content_t content = cairo_surface_get_content (surface_pattern->surface);
if (content == CAIRO_CONTENT_ALPHA)
discard_filter = TRUE;
}
 
if (!discard_filter)
_cairo_svg_surface_emit_alpha_filter (document);
 
/* _cairo_svg_surface_emit_paint() will output a pattern definition to
* document->xml_node_defs so we need to write the mask element to
* a temporary stream and then copy that to xml_node_defs. */
mask_stream = _cairo_memory_stream_create ();
if (_cairo_output_stream_get_status (mask_stream))
return _cairo_output_stream_destroy (mask_stream);
 
mask_id = _cairo_svg_document_allocate_mask_id (document);
 
_cairo_output_stream_printf (mask_stream,
"<mask id=\"mask%d\">\n"
"%s",
mask_id,
discard_filter ? "" : " <g filter=\"url(#alpha)\">\n");
status = _cairo_svg_surface_emit_paint (mask_stream, surface, CAIRO_OPERATOR_OVER, mask, source, NULL);
if (unlikely (status)) {
cairo_status_t ignore = _cairo_output_stream_destroy (mask_stream);
return status;
(void) ignore;
}
 
_cairo_output_stream_printf (mask_stream,
"%s"
"</mask>\n",
discard_filter ? "" : " </g>\n");
_cairo_memory_stream_copy (mask_stream, document->xml_node_defs);
 
status = _cairo_output_stream_destroy (mask_stream);
if (unlikely (status))
return status;
 
snprintf (buffer, sizeof buffer, "mask=\"url(#mask%d)\"",
mask_id);
status = _cairo_svg_surface_emit_paint (surface->xml_node, surface, op, source, 0, buffer);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_stroke (void *abstract_dst,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_path_fixed_t *path,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_antialias_t antialias,
cairo_clip_t *clip)
{
cairo_svg_surface_t *surface = abstract_dst;
cairo_status_t status;
 
if (surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE)
return _cairo_svg_surface_analyze_operation (surface, op, source);
 
assert (_cairo_svg_surface_operation_supported (surface, op, source));
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "<path style=\"fill:none;");
status = _cairo_svg_surface_emit_stroke_style (surface->xml_node, surface, op,
source, stroke_style, ctm_inverse);
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node, "\" ");
 
_cairo_svg_surface_emit_path (surface->xml_node, path, ctm_inverse);
 
_cairo_svg_surface_emit_transform (surface->xml_node, " transform", ctm, NULL);
_cairo_output_stream_printf (surface->xml_node, "/>\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
_cairo_svg_surface_show_glyphs (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *pattern,
cairo_glyph_t *glyphs,
int num_glyphs,
cairo_scaled_font_t *scaled_font,
cairo_clip_t *clip,
int *remaining_glyphs)
{
cairo_svg_surface_t *surface = abstract_surface;
cairo_svg_document_t *document = surface->document;
cairo_path_fixed_t path;
cairo_status_t status;
cairo_scaled_font_subsets_glyph_t subset_glyph;
int i;
 
if (surface->paginated_mode == CAIRO_PAGINATED_MODE_ANALYZE)
return _cairo_svg_surface_analyze_operation (surface, op, pattern);
 
assert (_cairo_svg_surface_operation_supported (surface, op, pattern));
 
if (num_glyphs <= 0)
return CAIRO_STATUS_SUCCESS;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
/* FIXME it's probably possible to apply a pattern of a gradient to
* a group of symbols, but I don't know how yet. Gradients or patterns
* are translated by x and y properties of use element. */
if (pattern->type != CAIRO_PATTERN_TYPE_SOLID)
goto FALLBACK;
 
_cairo_output_stream_printf (surface->xml_node, "<g style=\"");
status = _cairo_svg_surface_emit_pattern (surface, pattern,
surface->xml_node, FALSE, NULL);
if (unlikely (status))
return status;
 
_cairo_svg_surface_emit_operator_for_style (surface->xml_node, surface, op);
 
_cairo_output_stream_printf (surface->xml_node, "\">\n");
 
for (i = 0; i < num_glyphs; i++) {
status = _cairo_scaled_font_subsets_map_glyph (document->font_subsets,
scaled_font, glyphs[i].index,
NULL, 0,
&subset_glyph);
if (status == CAIRO_INT_STATUS_UNSUPPORTED) {
_cairo_output_stream_printf (surface->xml_node, "</g>\n");
 
glyphs += i;
num_glyphs -= i;
goto FALLBACK;
}
 
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->xml_node,
" <use xlink:href=\"#glyph%d-%d\" "
"x=\"%f\" y=\"%f\"/>\n",
subset_glyph.font_id,
subset_glyph.subset_glyph_index,
glyphs[i].x, glyphs[i].y);
}
 
_cairo_output_stream_printf (surface->xml_node, "</g>\n");
 
return CAIRO_STATUS_SUCCESS;
 
FALLBACK:
_cairo_path_fixed_init (&path);
 
status = _cairo_scaled_font_glyph_path (scaled_font,
(cairo_glyph_t *) glyphs,
num_glyphs, &path);
 
if (unlikely (status)) {
_cairo_path_fixed_fini (&path);
return status;
}
 
status = _cairo_svg_surface_fill (abstract_surface, op, pattern,
&path, CAIRO_FILL_RULE_WINDING,
0.0, CAIRO_ANTIALIAS_SUBPIXEL,
clip);
 
_cairo_path_fixed_fini (&path);
 
return status;
}
 
static void
_cairo_svg_surface_get_font_options (void *abstract_surface,
cairo_font_options_t *options)
{
_cairo_font_options_init_default (options);
 
cairo_font_options_set_hint_style (options, CAIRO_HINT_STYLE_NONE);
cairo_font_options_set_hint_metrics (options, CAIRO_HINT_METRICS_OFF);
cairo_font_options_set_antialias (options, CAIRO_ANTIALIAS_GRAY);
}
 
static const cairo_surface_backend_t cairo_svg_surface_backend = {
CAIRO_SURFACE_TYPE_SVG,
NULL, /* create_similar: handled by wrapper */
_cairo_svg_surface_finish,
NULL, /* acquire_source_image */
NULL, /* release_source_image */
NULL, /* acquire_dest_image */
NULL, /* release_dest_image */
NULL, /* clone_similar */
NULL, /* _cairo_svg_surface_composite, */
NULL, /* _cairo_svg_surface_fill_rectangles, */
NULL, /* _cairo_svg_surface_composite_trapezoids,*/
NULL, /* create_span_renderer */
NULL, /* check_span_renderer */
_cairo_svg_surface_copy_page,
_cairo_svg_surface_show_page,
_cairo_svg_surface_get_extents,
NULL, /* _cairo_svg_surface_old_show_glyphs, */
_cairo_svg_surface_get_font_options,
NULL, /* flush */
NULL, /* mark dirty rectangle */
NULL, /* scaled font fini */
NULL, /* scaled glyph fini */
_cairo_svg_surface_paint,
_cairo_svg_surface_mask,
_cairo_svg_surface_stroke,
_cairo_svg_surface_fill,
_cairo_svg_surface_show_glyphs,
NULL, /* snapshot */
NULL, /* is_similar */
_cairo_svg_surface_fill_stroke
};
 
static cairo_status_t
_cairo_svg_document_create (cairo_output_stream_t *output_stream,
double width,
double height,
cairo_svg_version_t version,
cairo_svg_document_t **document_out)
{
cairo_svg_document_t *document;
cairo_status_t status, status_ignored;
 
if (output_stream->status)
return output_stream->status;
 
document = malloc (sizeof (cairo_svg_document_t));
if (unlikely (document == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
/* The use of defs for font glyphs imposes no per-subset limit. */
document->font_subsets = _cairo_scaled_font_subsets_create_scaled ();
if (unlikely (document->font_subsets == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto CLEANUP_DOCUMENT;
}
 
document->output_stream = output_stream;
document->refcount = 1;
document->owner = NULL;
document->finished = FALSE;
document->width = width;
document->height = height;
 
document->linear_pattern_id = 0;
document->radial_pattern_id = 0;
document->pattern_id = 0;
document->filter_id = 0;
document->clip_id = 0;
document->mask_id = 0;
 
document->xml_node_defs = _cairo_memory_stream_create ();
status = _cairo_output_stream_get_status (document->xml_node_defs);
if (unlikely (status))
goto CLEANUP_NODE_DEFS;
 
document->xml_node_glyphs = _cairo_memory_stream_create ();
status = _cairo_output_stream_get_status (document->xml_node_glyphs);
if (unlikely (status))
goto CLEANUP_NODE_GLYPHS;
 
document->alpha_filter = FALSE;
 
document->svg_version = version;
 
*document_out = document;
return CAIRO_STATUS_SUCCESS;
 
CLEANUP_NODE_GLYPHS:
status_ignored = _cairo_output_stream_destroy (document->xml_node_glyphs);
CLEANUP_NODE_DEFS:
status_ignored = _cairo_output_stream_destroy (document->xml_node_defs);
_cairo_scaled_font_subsets_destroy (document->font_subsets);
CLEANUP_DOCUMENT:
free (document);
return status;
}
 
static cairo_svg_document_t *
_cairo_svg_document_reference (cairo_svg_document_t *document)
{
document->refcount++;
 
return document;
}
 
static unsigned int
_cairo_svg_document_allocate_mask_id (cairo_svg_document_t *document)
{
return document->mask_id++;
}
 
static cairo_status_t
_cairo_svg_document_destroy (cairo_svg_document_t *document)
{
cairo_status_t status;
 
document->refcount--;
if (document->refcount > 0)
return CAIRO_STATUS_SUCCESS;
 
status = _cairo_svg_document_finish (document);
 
free (document);
 
return status;
}
 
static cairo_status_t
_cairo_svg_document_finish (cairo_svg_document_t *document)
{
cairo_status_t status, status2;
cairo_output_stream_t *output = document->output_stream;
cairo_svg_page_t *page;
unsigned int i;
 
if (document->finished)
return CAIRO_STATUS_SUCCESS;
 
/*
* Should we add DOCTYPE?
*
* Google says no.
*
* http://tech.groups.yahoo.com/group/svg-developers/message/48562:
* There's a bunch of issues, but just to pick a few:
* - they'll give false positives.
* - they'll give false negatives.
* - they're namespace-unaware.
* - they don't wildcard.
* So when they say OK they really haven't checked anything, when
* they say NOT OK they might be on crack, and like all
* namespace-unaware things they're a dead branch of the XML tree.
*
* http://jwatt.org/svg/authoring/:
* Unfortunately the SVG DTDs are a source of so many issues that the
* SVG WG has decided not to write one for the upcoming SVG 1.2
* standard. In fact SVG WG members are even telling people not to use
* a DOCTYPE declaration in SVG 1.0 and 1.1 documents.
*/
 
_cairo_output_stream_printf (output,
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
"<svg xmlns=\"http://www.w3.org/2000/svg\" "
"xmlns:xlink=\"http://www.w3.org/1999/xlink\" "
"width=\"%fpt\" height=\"%fpt\" "
"viewBox=\"0 0 %f %f\" version=\"%s\">\n",
document->width, document->height,
document->width, document->height,
_cairo_svg_internal_version_strings [document->svg_version]);
 
status = _cairo_svg_document_emit_font_subsets (document);
 
if (_cairo_memory_stream_length (document->xml_node_glyphs) > 0 ||
_cairo_memory_stream_length (document->xml_node_defs) > 0) {
_cairo_output_stream_printf (output, "<defs>\n");
if (_cairo_memory_stream_length (document->xml_node_glyphs) > 0) {
_cairo_output_stream_printf (output, "<g>\n");
_cairo_memory_stream_copy (document->xml_node_glyphs, output);
_cairo_output_stream_printf (output, "</g>\n");
}
_cairo_memory_stream_copy (document->xml_node_defs, output);
_cairo_output_stream_printf (output, "</defs>\n");
}
 
if (document->owner != NULL) {
cairo_svg_surface_t *surface;
 
surface = (cairo_svg_surface_t *) _cairo_paginated_surface_get_target (document->owner);
if (surface->xml_node != NULL &&
_cairo_memory_stream_length (surface->xml_node) > 0) {
if (unlikely (_cairo_svg_surface_store_page (surface) == NULL)) {
if (status == CAIRO_STATUS_SUCCESS)
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
}
 
if (surface->page_set.num_elements > 1 &&
_cairo_svg_version_has_page_set_support (document->svg_version)) {
_cairo_output_stream_printf (output, "<pageSet>\n");
for (i = 0; i < surface->page_set.num_elements; i++) {
page = _cairo_array_index (&surface->page_set, i);
_cairo_output_stream_printf (output, "<page>\n");
_cairo_output_stream_printf (output,
"<g id=\"surface%d\">\n",
page->surface_id);
_cairo_memory_stream_copy (page->xml_node, output);
_cairo_output_stream_printf (output, "</g>\n</page>\n");
}
_cairo_output_stream_printf (output, "</pageSet>\n");
} else if (surface->page_set.num_elements > 0) {
page = _cairo_array_index (&surface->page_set, surface->page_set.num_elements - 1);
_cairo_output_stream_printf (output,
"<g id=\"surface%d\">\n",
page->surface_id);
_cairo_memory_stream_copy (page->xml_node, output);
_cairo_output_stream_printf (output, "</g>\n");
}
}
 
_cairo_output_stream_printf (output, "</svg>\n");
 
status2 = _cairo_output_stream_destroy (document->xml_node_glyphs);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
status2 = _cairo_output_stream_destroy (document->xml_node_defs);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
status2 = _cairo_output_stream_destroy (output);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
document->finished = TRUE;
 
return status;
}
 
static void
_cairo_svg_surface_set_paginated_mode (void *abstract_surface,
cairo_paginated_mode_t paginated_mode)
{
cairo_svg_surface_t *surface = abstract_surface;
 
surface->paginated_mode = paginated_mode;
}
 
static cairo_bool_t
_cairo_svg_surface_supports_fine_grained_fallbacks (void *abstract_surface)
{
cairo_svg_surface_t *surface = abstract_surface;
cairo_int_status_t status = CAIRO_INT_STATUS_UNSUPPORTED;
 
if (surface->document->svg_version >= CAIRO_SVG_VERSION_1_2) {
status = _cairo_svg_surface_analyze_operator (surface,
CAIRO_OPERATOR_SOURCE);
}
 
return status == CAIRO_STATUS_SUCCESS;
}
 
static const cairo_paginated_surface_backend_t cairo_svg_surface_paginated_backend = {
NULL /*_cairo_svg_surface_start_page*/,
_cairo_svg_surface_set_paginated_mode,
NULL, /* _cairo_svg_surface_set_bounding_box */
NULL, /* _cairo_svg_surface_set_fallback_images_required */
_cairo_svg_surface_supports_fine_grained_fallbacks,
 
};
/programs/develop/libraries/cairo/src/cairo-truetype-subset.c
0,0 → 1,1433
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2004 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Kristian Høgsberg <krh@redhat.com>
* Adrian Johnson <ajohnson@redneon.com>
*/
 
/*
* Useful links:
* http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6.html
* http://www.microsoft.com/typography/specs/default.htm
*/
 
#define _BSD_SOURCE /* for snprintf(), strdup() */
#include "cairoint.h"
#include "cairo-error-private.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-truetype-subset-private.h"
 
 
typedef struct subset_glyph subset_glyph_t;
struct subset_glyph {
int parent_index;
unsigned long location;
};
 
typedef struct _cairo_truetype_font cairo_truetype_font_t;
 
typedef struct table table_t;
struct table {
unsigned long tag;
cairo_status_t (*write) (cairo_truetype_font_t *font, unsigned long tag);
int pos; /* position in the font directory */
};
 
struct _cairo_truetype_font {
 
cairo_scaled_font_subset_t *scaled_font_subset;
 
table_t truetype_tables[10];
int num_tables;
 
struct {
char *font_name;
char *ps_name;
unsigned int num_glyphs;
int *widths;
long x_min, y_min, x_max, y_max;
long ascent, descent;
int units_per_em;
} base;
 
subset_glyph_t *glyphs;
const cairo_scaled_font_backend_t *backend;
int num_glyphs_in_face;
int checksum_index;
cairo_array_t output;
cairo_array_t string_offsets;
unsigned long last_offset;
unsigned long last_boundary;
int *parent_to_subset;
cairo_status_t status;
 
};
 
/*
* Test that the structs we define for TrueType tables have the
* correct size, ie. they are not padded.
*/
#define check(T, S) COMPILE_TIME_ASSERT (sizeof (T) == (S))
check (tt_head_t, 54);
check (tt_hhea_t, 36);
check (tt_maxp_t, 32);
check (tt_name_record_t, 12);
check (tt_name_t, 18);
check (tt_name_t, 18);
check (tt_composite_glyph_t, 16);
check (tt_glyph_data_t, 26);
#undef check
 
static cairo_status_t
cairo_truetype_font_use_glyph (cairo_truetype_font_t *font,
unsigned short glyph,
unsigned short *out);
 
#define SFNT_VERSION 0x00010000
#define SFNT_STRING_MAX_LENGTH 65535
 
static cairo_status_t
_cairo_truetype_font_set_error (cairo_truetype_font_t *font,
cairo_status_t status)
{
if (status == CAIRO_STATUS_SUCCESS || status == CAIRO_INT_STATUS_UNSUPPORTED)
return status;
 
_cairo_status_set_error (&font->status, status);
 
return _cairo_error (status);
}
 
static cairo_status_t
_cairo_truetype_font_create (cairo_scaled_font_subset_t *scaled_font_subset,
cairo_truetype_font_t **font_return)
{
cairo_status_t status;
cairo_truetype_font_t *font;
const cairo_scaled_font_backend_t *backend;
tt_head_t head;
tt_hhea_t hhea;
tt_maxp_t maxp;
unsigned long size;
 
backend = scaled_font_subset->scaled_font->backend;
if (!backend->load_truetype_table)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
/* FIXME: We should either support subsetting vertical fonts, or fail on
* vertical. Currently font_options_t doesn't have vertical flag, but
* it should be added in the future. For now, the freetype backend
* returns UNSUPPORTED in load_truetype_table if the font is vertical.
*
* if (cairo_font_options_get_vertical_layout (scaled_font_subset->scaled_font))
* return CAIRO_INT_STATUS_UNSUPPORTED;
*/
 
size = sizeof (tt_head_t);
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_head, 0,
(unsigned char *) &head,
&size);
if (unlikely (status))
return status;
 
size = sizeof (tt_maxp_t);
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_maxp, 0,
(unsigned char *) &maxp,
&size);
if (unlikely (status))
return status;
 
size = sizeof (tt_hhea_t);
status = backend->load_truetype_table (scaled_font_subset->scaled_font,
TT_TAG_hhea, 0,
(unsigned char *) &hhea,
&size);
if (unlikely (status))
return status;
 
font = malloc (sizeof (cairo_truetype_font_t));
if (unlikely (font == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->backend = backend;
font->num_glyphs_in_face = be16_to_cpu (maxp.num_glyphs);
font->scaled_font_subset = scaled_font_subset;
 
font->last_offset = 0;
font->last_boundary = 0;
_cairo_array_init (&font->output, sizeof (char));
status = _cairo_array_grow_by (&font->output, 4096);
if (unlikely (status))
goto fail1;
 
font->glyphs = calloc (font->num_glyphs_in_face + 1, sizeof (subset_glyph_t));
if (unlikely (font->glyphs == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
font->parent_to_subset = calloc (font->num_glyphs_in_face, sizeof (int));
if (unlikely (font->parent_to_subset == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
 
font->base.num_glyphs = 0;
font->base.x_min = (int16_t) be16_to_cpu (head.x_min);
font->base.y_min = (int16_t) be16_to_cpu (head.y_min);
font->base.x_max = (int16_t) be16_to_cpu (head.x_max);
font->base.y_max = (int16_t) be16_to_cpu (head.y_max);
font->base.ascent = (int16_t) be16_to_cpu (hhea.ascender);
font->base.descent = (int16_t) be16_to_cpu (hhea.descender);
font->base.units_per_em = (int16_t) be16_to_cpu (head.units_per_em);
if (font->base.units_per_em == 0)
font->base.units_per_em = 2048;
 
font->base.ps_name = NULL;
font->base.font_name = NULL;
status = _cairo_truetype_read_font_name (scaled_font_subset->scaled_font,
&font->base.ps_name,
&font->base.font_name);
if (_cairo_status_is_error (status))
goto fail3;
 
/* If the PS name is not found, create a CairoFont-x-y name. */
if (font->base.ps_name == NULL) {
font->base.ps_name = malloc (30);
if (unlikely (font->base.ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
 
snprintf(font->base.ps_name, 30, "CairoFont-%u-%u",
scaled_font_subset->font_id,
scaled_font_subset->subset_id);
}
 
font->base.widths = calloc (font->num_glyphs_in_face, sizeof (int));
if (unlikely (font->base.widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail4;
}
 
_cairo_array_init (&font->string_offsets, sizeof (unsigned long));
status = _cairo_array_grow_by (&font->string_offsets, 10);
if (unlikely (status))
goto fail5;
 
font->status = CAIRO_STATUS_SUCCESS;
 
*font_return = font;
 
return CAIRO_STATUS_SUCCESS;
 
fail5:
_cairo_array_fini (&font->string_offsets);
free (font->base.widths);
fail4:
free (font->base.ps_name);
fail3:
free (font->parent_to_subset);
if (font->base.font_name)
free (font->base.font_name);
fail2:
free (font->glyphs);
fail1:
_cairo_array_fini (&font->output);
free (font);
 
return status;
}
 
static void
cairo_truetype_font_destroy (cairo_truetype_font_t *font)
{
_cairo_array_fini (&font->string_offsets);
free (font->base.widths);
free (font->base.ps_name);
if (font->base.font_name)
free (font->base.font_name);
free (font->parent_to_subset);
free (font->glyphs);
_cairo_array_fini (&font->output);
free (font);
}
 
static cairo_status_t
cairo_truetype_font_allocate_write_buffer (cairo_truetype_font_t *font,
size_t length,
unsigned char **buffer)
{
cairo_status_t status;
 
if (font->status)
return font->status;
 
status = _cairo_array_allocate (&font->output, length, (void **) buffer);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
cairo_truetype_font_write (cairo_truetype_font_t *font,
const void *data,
size_t length)
{
cairo_status_t status;
 
if (font->status)
return;
 
status = _cairo_array_append_multiple (&font->output, data, length);
if (unlikely (status))
status = _cairo_truetype_font_set_error (font, status);
}
 
static void
cairo_truetype_font_write_be16 (cairo_truetype_font_t *font,
uint16_t value)
{
uint16_t be16_value;
 
if (font->status)
return;
 
be16_value = cpu_to_be16 (value);
cairo_truetype_font_write (font, &be16_value, sizeof be16_value);
}
 
static void
cairo_truetype_font_write_be32 (cairo_truetype_font_t *font,
uint32_t value)
{
uint32_t be32_value;
 
if (font->status)
return;
 
be32_value = cpu_to_be32 (value);
cairo_truetype_font_write (font, &be32_value, sizeof be32_value);
}
 
static cairo_status_t
cairo_truetype_font_align_output (cairo_truetype_font_t *font,
unsigned long *aligned)
{
int length, pad;
unsigned char *padding;
 
length = _cairo_array_num_elements (&font->output);
*aligned = (length + 3) & ~3;
pad = *aligned - length;
 
if (pad) {
cairo_status_t status;
 
status = cairo_truetype_font_allocate_write_buffer (font, pad,
&padding);
if (unlikely (status))
return status;
 
memset (padding, 0, pad);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_check_boundary (cairo_truetype_font_t *font,
unsigned long boundary)
{
cairo_status_t status;
 
if (font->status)
return font->status;
 
if (boundary - font->last_offset > SFNT_STRING_MAX_LENGTH)
{
status = _cairo_array_append (&font->string_offsets,
&font->last_boundary);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
font->last_offset = font->last_boundary;
}
font->last_boundary = boundary;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_cmap_table (cairo_truetype_font_t *font,
unsigned long tag)
{
unsigned int i;
 
cairo_truetype_font_write_be16 (font, 0); /* Table version */
cairo_truetype_font_write_be16 (font, 2); /* Num tables */
 
cairo_truetype_font_write_be16 (font, 3); /* Platform */
cairo_truetype_font_write_be16 (font, 0); /* Encoding */
cairo_truetype_font_write_be32 (font, 20); /* Offset to start of table */
 
cairo_truetype_font_write_be16 (font, 1); /* Platform */
cairo_truetype_font_write_be16 (font, 0); /* Encoding */
cairo_truetype_font_write_be32 (font, 52); /* Offset to start of table */
 
/* Output a format 4 encoding table. */
 
cairo_truetype_font_write_be16 (font, 4); /* Format */
cairo_truetype_font_write_be16 (font, 32); /* Length */
cairo_truetype_font_write_be16 (font, 0); /* Version */
cairo_truetype_font_write_be16 (font, 4); /* 2*segcount */
cairo_truetype_font_write_be16 (font, 4); /* searchrange */
cairo_truetype_font_write_be16 (font, 1); /* entry selector */
cairo_truetype_font_write_be16 (font, 0); /* rangeshift */
cairo_truetype_font_write_be16 (font, 0xf000 + font->base.num_glyphs - 1); /* end count[0] */
cairo_truetype_font_write_be16 (font, 0xffff); /* end count[1] */
cairo_truetype_font_write_be16 (font, 0); /* reserved */
cairo_truetype_font_write_be16 (font, 0xf000); /* startCode[0] */
cairo_truetype_font_write_be16 (font, 0xffff); /* startCode[1] */
cairo_truetype_font_write_be16 (font, 0x1000); /* delta[0] */
cairo_truetype_font_write_be16 (font, 1); /* delta[1] */
cairo_truetype_font_write_be16 (font, 0); /* rangeOffset[0] */
cairo_truetype_font_write_be16 (font, 0); /* rangeOffset[1] */
 
/* Output a format 6 encoding table. */
 
cairo_truetype_font_write_be16 (font, 6);
cairo_truetype_font_write_be16 (font, 10 + 2 * font->base.num_glyphs);
cairo_truetype_font_write_be16 (font, 0);
cairo_truetype_font_write_be16 (font, 0); /* First character */
cairo_truetype_font_write_be16 (font, font->base.num_glyphs);
for (i = 0; i < font->base.num_glyphs; i++)
cairo_truetype_font_write_be16 (font, i);
 
return font->status;
}
 
static cairo_status_t
cairo_truetype_font_write_generic_table (cairo_truetype_font_t *font,
unsigned long tag)
{
cairo_status_t status;
unsigned char *buffer;
unsigned long size;
 
if (font->status)
return font->status;
 
size = 0;
status = font->backend->load_truetype_table(font->scaled_font_subset->scaled_font,
tag, 0, NULL, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = cairo_truetype_font_allocate_write_buffer (font, size, &buffer);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
tag, 0, buffer, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_remap_composite_glyph (cairo_truetype_font_t *font,
unsigned char *buffer,
unsigned long size)
{
tt_glyph_data_t *glyph_data;
tt_composite_glyph_t *composite_glyph;
int num_args;
int has_more_components;
unsigned short flags;
unsigned short index;
cairo_status_t status;
unsigned char *end = buffer + size;
 
if (font->status)
return font->status;
 
glyph_data = (tt_glyph_data_t *) buffer;
if ((unsigned char *)(&glyph_data->data) >= end)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
if ((int16_t)be16_to_cpu (glyph_data->num_contours) >= 0)
return CAIRO_STATUS_SUCCESS;
 
composite_glyph = &glyph_data->glyph;
do {
if ((unsigned char *)(&composite_glyph->args[1]) > end)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
flags = be16_to_cpu (composite_glyph->flags);
has_more_components = flags & TT_MORE_COMPONENTS;
status = cairo_truetype_font_use_glyph (font, be16_to_cpu (composite_glyph->index), &index);
if (unlikely (status))
return status;
 
composite_glyph->index = cpu_to_be16 (index);
num_args = 1;
if (flags & TT_ARG_1_AND_2_ARE_WORDS)
num_args += 1;
 
if (flags & TT_WE_HAVE_A_SCALE)
num_args += 1;
else if (flags & TT_WE_HAVE_AN_X_AND_Y_SCALE)
num_args += 2;
else if (flags & TT_WE_HAVE_A_TWO_BY_TWO)
num_args += 4;
 
composite_glyph = (tt_composite_glyph_t *) &(composite_glyph->args[num_args]);
} while (has_more_components);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_glyf_table (cairo_truetype_font_t *font,
unsigned long tag)
{
unsigned long start_offset, index, size, next;
tt_head_t header;
unsigned long begin, end;
unsigned char *buffer;
unsigned int i;
union {
unsigned char *bytes;
uint16_t *short_offsets;
uint32_t *long_offsets;
} u;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = sizeof (tt_head_t);
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_head, 0,
(unsigned char*) &header, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
if (be16_to_cpu (header.index_to_loc_format) == 0)
size = sizeof (int16_t) * (font->num_glyphs_in_face + 1);
else
size = sizeof (int32_t) * (font->num_glyphs_in_face + 1);
 
u.bytes = malloc (size);
if (unlikely (u.bytes == NULL))
return _cairo_truetype_font_set_error (font, CAIRO_STATUS_NO_MEMORY);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_loca, 0, u.bytes, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
start_offset = _cairo_array_num_elements (&font->output);
for (i = 0; i < font->base.num_glyphs; i++) {
index = font->glyphs[i].parent_index;
if (be16_to_cpu (header.index_to_loc_format) == 0) {
begin = be16_to_cpu (u.short_offsets[index]) * 2;
end = be16_to_cpu (u.short_offsets[index + 1]) * 2;
}
else {
begin = be32_to_cpu (u.long_offsets[index]);
end = be32_to_cpu (u.long_offsets[index + 1]);
}
 
/* quick sanity check... */
if (end < begin) {
status = CAIRO_INT_STATUS_UNSUPPORTED;
goto FAIL;
}
 
size = end - begin;
status = cairo_truetype_font_align_output (font, &next);
if (unlikely (status))
goto FAIL;
 
status = cairo_truetype_font_check_boundary (font, next);
if (unlikely (status))
goto FAIL;
 
font->glyphs[i].location = next - start_offset;
 
status = cairo_truetype_font_allocate_write_buffer (font, size, &buffer);
if (unlikely (status))
goto FAIL;
 
if (size != 0) {
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_glyf, begin, buffer, &size);
if (unlikely (status))
goto FAIL;
 
status = cairo_truetype_font_remap_composite_glyph (font, buffer, size);
if (unlikely (status))
goto FAIL;
}
}
 
status = cairo_truetype_font_align_output (font, &next);
if (unlikely (status))
goto FAIL;
 
font->glyphs[i].location = next - start_offset;
 
status = font->status;
FAIL:
free (u.bytes);
 
return _cairo_truetype_font_set_error (font, status);
}
 
static cairo_status_t
cairo_truetype_font_write_head_table (cairo_truetype_font_t *font,
unsigned long tag)
{
unsigned char *buffer;
unsigned long size;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = 0;
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
tag, 0, NULL, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
font->checksum_index = _cairo_array_num_elements (&font->output) + 8;
status = cairo_truetype_font_allocate_write_buffer (font, size, &buffer);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
tag, 0, buffer, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
/* set checkSumAdjustment to 0 for table checksum calculation */
*(uint32_t *)(buffer + 8) = 0;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_hhea_table (cairo_truetype_font_t *font, unsigned long tag)
{
tt_hhea_t *hhea;
unsigned long size;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = sizeof (tt_hhea_t);
status = cairo_truetype_font_allocate_write_buffer (font, size, (unsigned char **) &hhea);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
tag, 0, (unsigned char *) hhea, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
hhea->num_hmetrics = cpu_to_be16 ((uint16_t)(font->base.num_glyphs));
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_hmtx_table (cairo_truetype_font_t *font,
unsigned long tag)
{
unsigned long size;
unsigned long long_entry_size;
unsigned long short_entry_size;
short *p;
unsigned int i;
tt_hhea_t hhea;
int num_hmetrics;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = sizeof (tt_hhea_t);
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hhea, 0,
(unsigned char*) &hhea, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
num_hmetrics = be16_to_cpu(hhea.num_hmetrics);
 
for (i = 0; i < font->base.num_glyphs; i++) {
long_entry_size = 2 * sizeof (int16_t);
short_entry_size = sizeof (int16_t);
status = cairo_truetype_font_allocate_write_buffer (font,
long_entry_size,
(unsigned char **) &p);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
if (font->glyphs[i].parent_index < num_hmetrics) {
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hmtx,
font->glyphs[i].parent_index * long_entry_size,
(unsigned char *) p, &long_entry_size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
}
else
{
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hmtx,
(num_hmetrics - 1) * long_entry_size,
(unsigned char *) p, &short_entry_size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_hmtx,
num_hmetrics * long_entry_size +
(font->glyphs[i].parent_index - num_hmetrics) * short_entry_size,
(unsigned char *) (p + 1), &short_entry_size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
}
font->base.widths[i] = be16_to_cpu (p[0]);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_loca_table (cairo_truetype_font_t *font,
unsigned long tag)
{
unsigned int i;
tt_head_t header;
unsigned long size;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = sizeof(tt_head_t);
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_head, 0,
(unsigned char*) &header, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
if (be16_to_cpu (header.index_to_loc_format) == 0)
{
for (i = 0; i < font->base.num_glyphs + 1; i++)
cairo_truetype_font_write_be16 (font, font->glyphs[i].location / 2);
} else {
for (i = 0; i < font->base.num_glyphs + 1; i++)
cairo_truetype_font_write_be32 (font, font->glyphs[i].location);
}
 
return font->status;
}
 
static cairo_status_t
cairo_truetype_font_write_maxp_table (cairo_truetype_font_t *font,
unsigned long tag)
{
tt_maxp_t *maxp;
unsigned long size;
cairo_status_t status;
 
if (font->status)
return font->status;
 
size = sizeof (tt_maxp_t);
status = cairo_truetype_font_allocate_write_buffer (font, size, (unsigned char **) &maxp);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
status = font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
tag, 0, (unsigned char *) maxp, &size);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
maxp->num_glyphs = cpu_to_be16 (font->base.num_glyphs);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_truetype_font_write_offset_table (cairo_truetype_font_t *font)
{
cairo_status_t status;
unsigned char *table_buffer;
size_t table_buffer_length;
unsigned short search_range, entry_selector, range_shift;
 
if (font->status)
return font->status;
 
search_range = 1;
entry_selector = 0;
while (search_range * 2 <= font->num_tables) {
search_range *= 2;
entry_selector++;
}
search_range *= 16;
range_shift = font->num_tables * 16 - search_range;
 
cairo_truetype_font_write_be32 (font, SFNT_VERSION);
cairo_truetype_font_write_be16 (font, font->num_tables);
cairo_truetype_font_write_be16 (font, search_range);
cairo_truetype_font_write_be16 (font, entry_selector);
cairo_truetype_font_write_be16 (font, range_shift);
 
/* Allocate space for the table directory. Each directory entry
* will be filled in by cairo_truetype_font_update_entry() after
* the table is written. */
table_buffer_length = font->num_tables * 16;
status = cairo_truetype_font_allocate_write_buffer (font, table_buffer_length,
&table_buffer);
if (unlikely (status))
return _cairo_truetype_font_set_error (font, status);
 
return CAIRO_STATUS_SUCCESS;
}
 
static uint32_t
cairo_truetype_font_calculate_checksum (cairo_truetype_font_t *font,
unsigned long start,
unsigned long end)
{
uint32_t *padded_end;
uint32_t *p;
uint32_t checksum;
char *data;
 
checksum = 0;
data = _cairo_array_index (&font->output, 0);
p = (uint32_t *) (data + start);
padded_end = (uint32_t *) (data + ((end + 3) & ~3));
while (p < padded_end)
checksum += be32_to_cpu(*p++);
 
return checksum;
}
 
static void
cairo_truetype_font_update_entry (cairo_truetype_font_t *font,
int index,
unsigned long tag,
unsigned long start,
unsigned long end)
{
uint32_t *entry;
 
entry = _cairo_array_index (&font->output, 12 + 16 * index);
entry[0] = cpu_to_be32 ((uint32_t)tag);
entry[1] = cpu_to_be32 (cairo_truetype_font_calculate_checksum (font, start, end));
entry[2] = cpu_to_be32 ((uint32_t)start);
entry[3] = cpu_to_be32 ((uint32_t)(end - start));
}
 
static cairo_status_t
cairo_truetype_font_generate (cairo_truetype_font_t *font,
const char **data,
unsigned long *length,
const unsigned long **string_offsets,
unsigned long *num_strings)
{
cairo_status_t status;
unsigned long start, end, next;
uint32_t checksum, *checksum_location;
int i;
 
if (font->status)
return font->status;
 
status = cairo_truetype_font_write_offset_table (font);
if (unlikely (status))
goto FAIL;
 
status = cairo_truetype_font_align_output (font, &start);
if (unlikely (status))
goto FAIL;
 
end = 0;
for (i = 0; i < font->num_tables; i++) {
status = font->truetype_tables[i].write (font, font->truetype_tables[i].tag);
if (unlikely (status))
goto FAIL;
 
end = _cairo_array_num_elements (&font->output);
status = cairo_truetype_font_align_output (font, &next);
if (unlikely (status))
goto FAIL;
 
cairo_truetype_font_update_entry (font, font->truetype_tables[i].pos,
font->truetype_tables[i].tag, start, end);
status = cairo_truetype_font_check_boundary (font, next);
if (unlikely (status))
goto FAIL;
 
start = next;
}
 
checksum =
0xb1b0afba - cairo_truetype_font_calculate_checksum (font, 0, end);
checksum_location = _cairo_array_index (&font->output, font->checksum_index);
*checksum_location = cpu_to_be32 (checksum);
 
*data = _cairo_array_index (&font->output, 0);
*length = _cairo_array_num_elements (&font->output);
*num_strings = _cairo_array_num_elements (&font->string_offsets);
if (*num_strings != 0)
*string_offsets = _cairo_array_index (&font->string_offsets, 0);
else
*string_offsets = NULL;
 
FAIL:
return _cairo_truetype_font_set_error (font, status);
}
 
static cairo_status_t
cairo_truetype_font_use_glyph (cairo_truetype_font_t *font,
unsigned short glyph,
unsigned short *out)
{
if (glyph >= font->num_glyphs_in_face)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
if (font->parent_to_subset[glyph] == 0) {
font->parent_to_subset[glyph] = font->base.num_glyphs;
font->glyphs[font->base.num_glyphs].parent_index = glyph;
font->base.num_glyphs++;
}
 
*out = font->parent_to_subset[glyph];
return CAIRO_STATUS_SUCCESS;
}
 
static void
cairo_truetype_font_add_truetype_table (cairo_truetype_font_t *font,
unsigned long tag,
cairo_status_t (*write) (cairo_truetype_font_t *font, unsigned long tag),
int pos)
{
font->truetype_tables[font->num_tables].tag = tag;
font->truetype_tables[font->num_tables].write = write;
font->truetype_tables[font->num_tables].pos = pos;
font->num_tables++;
}
 
/* cairo_truetype_font_create_truetype_table_list() builds the list of
* truetype tables to be embedded in the subsetted font. Each call to
* cairo_truetype_font_add_truetype_table() adds a table, the callback
* for generating the table, and the position in the table directory
* to the truetype_tables array.
*
* As we write out the glyf table we remap composite glyphs.
* Remapping composite glyphs will reference the sub glyphs the
* composite glyph is made up of. The "glyf" table callback needs to
* be called first so we have all the glyphs in the subset before
* going further.
*
* The order in which tables are added to the truetype_table array
* using cairo_truetype_font_add_truetype_table() specifies the order
* in which the callback functions will be called.
*
* The tables in the table directory must be listed in alphabetical
* order. The "cvt", "fpgm", and "prep" are optional tables. They
* will only be embedded in the subset if they exist in the source
* font. The pos parameter of cairo_truetype_font_add_truetype_table()
* specifies the position of the table in the table directory.
*/
static void
cairo_truetype_font_create_truetype_table_list (cairo_truetype_font_t *font)
{
cairo_bool_t has_cvt = FALSE;
cairo_bool_t has_fpgm = FALSE;
cairo_bool_t has_prep = FALSE;
unsigned long size;
int pos;
 
size = 0;
if (font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_cvt, 0, NULL,
&size) == CAIRO_STATUS_SUCCESS)
has_cvt = TRUE;
 
size = 0;
if (font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_fpgm, 0, NULL,
&size) == CAIRO_STATUS_SUCCESS)
has_fpgm = TRUE;
 
size = 0;
if (font->backend->load_truetype_table (font->scaled_font_subset->scaled_font,
TT_TAG_prep, 0, NULL,
&size) == CAIRO_STATUS_SUCCESS)
has_prep = TRUE;
 
font->num_tables = 0;
pos = 1;
if (has_cvt)
pos++;
if (has_fpgm)
pos++;
cairo_truetype_font_add_truetype_table (font, TT_TAG_glyf, cairo_truetype_font_write_glyf_table, pos);
 
pos = 0;
cairo_truetype_font_add_truetype_table (font, TT_TAG_cmap, cairo_truetype_font_write_cmap_table, pos++);
if (has_cvt)
cairo_truetype_font_add_truetype_table (font, TT_TAG_cvt, cairo_truetype_font_write_generic_table, pos++);
if (has_fpgm)
cairo_truetype_font_add_truetype_table (font, TT_TAG_fpgm, cairo_truetype_font_write_generic_table, pos++);
pos++;
cairo_truetype_font_add_truetype_table (font, TT_TAG_head, cairo_truetype_font_write_head_table, pos++);
cairo_truetype_font_add_truetype_table (font, TT_TAG_hhea, cairo_truetype_font_write_hhea_table, pos++);
cairo_truetype_font_add_truetype_table (font, TT_TAG_hmtx, cairo_truetype_font_write_hmtx_table, pos++);
cairo_truetype_font_add_truetype_table (font, TT_TAG_loca, cairo_truetype_font_write_loca_table, pos++);
cairo_truetype_font_add_truetype_table (font, TT_TAG_maxp, cairo_truetype_font_write_maxp_table, pos++);
if (has_prep)
cairo_truetype_font_add_truetype_table (font, TT_TAG_prep, cairo_truetype_font_write_generic_table, pos);
}
 
cairo_status_t
_cairo_truetype_subset_init (cairo_truetype_subset_t *truetype_subset,
cairo_scaled_font_subset_t *font_subset)
{
cairo_truetype_font_t *font = NULL;
cairo_status_t status;
const char *data = NULL; /* squelch bogus compiler warning */
unsigned long length = 0; /* squelch bogus compiler warning */
unsigned long offsets_length;
unsigned int i;
const unsigned long *string_offsets = NULL;
unsigned long num_strings = 0;
 
status = _cairo_truetype_font_create (font_subset, &font);
if (unlikely (status))
return status;
 
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
unsigned short parent_glyph = font->scaled_font_subset->glyphs[i];
status = cairo_truetype_font_use_glyph (font, parent_glyph, &parent_glyph);
if (unlikely (status))
goto fail1;
}
 
cairo_truetype_font_create_truetype_table_list (font);
status = cairo_truetype_font_generate (font, &data, &length,
&string_offsets, &num_strings);
if (unlikely (status))
goto fail1;
 
truetype_subset->ps_name = strdup (font->base.ps_name);
if (unlikely (truetype_subset->ps_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
if (font->base.font_name != NULL) {
truetype_subset->font_name = strdup (font->base.font_name);
if (unlikely (truetype_subset->font_name == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
} else {
truetype_subset->font_name = NULL;
}
 
/* The widths array returned must contain only widths for the
* glyphs in font_subset. Any subglyphs appended after
* font_subset->num_glyphs are omitted. */
truetype_subset->widths = calloc (sizeof (double),
font->scaled_font_subset->num_glyphs);
if (unlikely (truetype_subset->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++)
truetype_subset->widths[i] = (double)font->base.widths[i]/font->base.units_per_em;
 
truetype_subset->x_min = (double)font->base.x_min/font->base.units_per_em;
truetype_subset->y_min = (double)font->base.y_min/font->base.units_per_em;
truetype_subset->x_max = (double)font->base.x_max/font->base.units_per_em;
truetype_subset->y_max = (double)font->base.y_max/font->base.units_per_em;
truetype_subset->ascent = (double)font->base.ascent/font->base.units_per_em;
truetype_subset->descent = (double)font->base.descent/font->base.units_per_em;
 
if (length) {
truetype_subset->data = malloc (length);
if (unlikely (truetype_subset->data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail4;
}
 
memcpy (truetype_subset->data, data, length);
} else
truetype_subset->data = NULL;
truetype_subset->data_length = length;
 
if (num_strings) {
offsets_length = num_strings * sizeof (unsigned long);
truetype_subset->string_offsets = malloc (offsets_length);
if (unlikely (truetype_subset->string_offsets == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail5;
}
 
memcpy (truetype_subset->string_offsets, string_offsets, offsets_length);
truetype_subset->num_string_offsets = num_strings;
} else {
truetype_subset->string_offsets = NULL;
truetype_subset->num_string_offsets = 0;
}
 
cairo_truetype_font_destroy (font);
 
return CAIRO_STATUS_SUCCESS;
 
fail5:
free (truetype_subset->data);
fail4:
free (truetype_subset->widths);
fail3:
if (truetype_subset->font_name)
free (truetype_subset->font_name);
fail2:
free (truetype_subset->ps_name);
fail1:
cairo_truetype_font_destroy (font);
 
return status;
}
 
void
_cairo_truetype_subset_fini (cairo_truetype_subset_t *subset)
{
free (subset->ps_name);
if (subset->font_name)
free (subset->font_name);
free (subset->widths);
free (subset->data);
free (subset->string_offsets);
}
 
static cairo_int_status_t
_cairo_truetype_reverse_cmap (cairo_scaled_font_t *scaled_font,
unsigned long table_offset,
unsigned long index,
uint32_t *ucs4)
{
cairo_status_t status;
const cairo_scaled_font_backend_t *backend;
tt_segment_map_t *map;
char buf[4];
unsigned int num_segments, i;
unsigned long size;
uint16_t *start_code;
uint16_t *end_code;
uint16_t *delta;
uint16_t *range_offset;
uint16_t *glyph_array;
uint16_t c;
 
backend = scaled_font->backend;
size = 4;
status = backend->load_truetype_table (scaled_font,
TT_TAG_cmap, table_offset,
(unsigned char *) &buf,
&size);
if (unlikely (status))
return status;
 
/* All table formats have the same first two words */
map = (tt_segment_map_t *) buf;
if (be16_to_cpu (map->format) != 4)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
size = be16_to_cpu (map->length);
map = malloc (size);
if (unlikely (map == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
status = backend->load_truetype_table (scaled_font,
TT_TAG_cmap, table_offset,
(unsigned char *) map,
&size);
if (unlikely (status))
goto fail;
 
num_segments = be16_to_cpu (map->segCountX2)/2;
 
/* A Format 4 cmap contains 8 uint16_t numbers and 4 arrays of
* uint16_t each num_segments long. */
if (size < (8 + 4*num_segments)*sizeof(uint16_t))
return CAIRO_INT_STATUS_UNSUPPORTED;
 
end_code = map->endCount;
start_code = &(end_code[num_segments + 1]);
delta = &(start_code[num_segments]);
range_offset = &(delta[num_segments]);
glyph_array = &(range_offset[num_segments]);
 
/* search for glyph in segments with rangeOffset=0 */
for (i = 0; i < num_segments; i++) {
c = index - be16_to_cpu (delta[i]);
if (range_offset[i] == 0 &&
c >= be16_to_cpu (start_code[i]) &&
c <= be16_to_cpu (end_code[i]))
{
*ucs4 = c;
goto found;
}
}
 
/* search for glyph in segments with rangeOffset=1 */
for (i = 0; i < num_segments; i++) {
if (range_offset[i] != 0) {
uint16_t *glyph_ids = &range_offset[i] + be16_to_cpu (range_offset[i])/2;
int range_size = be16_to_cpu (end_code[i]) - be16_to_cpu (start_code[i]) + 1;
uint16_t g_id_be = cpu_to_be16 (index);
int j;
 
if (range_size > 0) {
if ((char*)glyph_ids + 2*range_size > (char*)map + size)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
for (j = 0; j < range_size; j++) {
if (glyph_ids[j] == g_id_be) {
*ucs4 = be16_to_cpu (start_code[i]) + j;
goto found;
}
}
}
}
}
 
/* glyph not found */
*ucs4 = -1;
 
found:
status = CAIRO_STATUS_SUCCESS;
 
fail:
free (map);
 
return status;
}
 
cairo_int_status_t
_cairo_truetype_index_to_ucs4 (cairo_scaled_font_t *scaled_font,
unsigned long index,
uint32_t *ucs4)
{
cairo_status_t status = CAIRO_INT_STATUS_UNSUPPORTED;
const cairo_scaled_font_backend_t *backend;
tt_cmap_t *cmap;
char buf[4];
int num_tables, i;
unsigned long size;
 
backend = scaled_font->backend;
if (!backend->load_truetype_table)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
size = 4;
status = backend->load_truetype_table (scaled_font,
TT_TAG_cmap, 0,
(unsigned char *) &buf,
&size);
if (unlikely (status))
return status;
 
cmap = (tt_cmap_t *) buf;
num_tables = be16_to_cpu (cmap->num_tables);
size = 4 + num_tables*sizeof(tt_cmap_index_t);
cmap = _cairo_malloc_ab_plus_c (num_tables, sizeof (tt_cmap_index_t), 4);
if (unlikely (cmap == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
status = backend->load_truetype_table (scaled_font,
TT_TAG_cmap, 0,
(unsigned char *) cmap,
&size);
if (unlikely (status))
goto cleanup;
 
/* Find a table with Unicode mapping */
for (i = 0; i < num_tables; i++) {
if (be16_to_cpu (cmap->index[i].platform) == 3 &&
be16_to_cpu (cmap->index[i].encoding) == 1) {
status = _cairo_truetype_reverse_cmap (scaled_font,
be32_to_cpu (cmap->index[i].offset),
index,
ucs4);
if (status != CAIRO_INT_STATUS_UNSUPPORTED)
break;
}
}
 
cleanup:
free (cmap);
 
return status;
}
 
cairo_int_status_t
_cairo_truetype_read_font_name (cairo_scaled_font_t *scaled_font,
char **ps_name_out,
char **font_name_out)
{
cairo_status_t status;
const cairo_scaled_font_backend_t *backend;
tt_name_t *name;
tt_name_record_t *record;
unsigned long size;
int i, j;
char *ps_name = NULL;
char *font_name = NULL;
 
backend = scaled_font->backend;
if (!backend->load_truetype_table)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
size = 0;
status = backend->load_truetype_table (scaled_font,
TT_TAG_name, 0,
NULL,
&size);
if (status)
return status;
 
name = malloc (size);
if (name == NULL)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
status = backend->load_truetype_table (scaled_font,
TT_TAG_name, 0,
(unsigned char *) name,
&size);
if (status)
goto fail;
 
/* Extract the font name and PS name from the name table. At
* present this just looks for the Mac platform/Roman encoded font
* name. It should be extended to use any suitable font name in
* the name table.
*/
for (i = 0; i < be16_to_cpu(name->num_records); i++) {
record = &(name->records[i]);
if ((be16_to_cpu (record->platform) == 1) &&
(be16_to_cpu (record->encoding) == 0)) {
 
if (be16_to_cpu (record->name) == 4) {
font_name = malloc (be16_to_cpu(record->length) + 1);
if (font_name == NULL) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
strncpy(font_name,
((char*)name) + be16_to_cpu (name->strings_offset) + be16_to_cpu (record->offset),
be16_to_cpu (record->length));
font_name[be16_to_cpu (record->length)] = 0;
}
 
if (be16_to_cpu (record->name) == 6) {
ps_name = malloc (be16_to_cpu(record->length) + 1);
if (ps_name == NULL) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
strncpy(ps_name,
((char*)name) + be16_to_cpu (name->strings_offset) + be16_to_cpu (record->offset),
be16_to_cpu (record->length));
ps_name[be16_to_cpu (record->length)] = 0;
}
 
if (font_name && ps_name)
break;
}
}
 
free (name);
 
/* Ensure PS name does not contain any spaces */
if (ps_name) {
for (i = 0, j = 0; ps_name[j]; j++) {
if (ps_name[j] == ' ')
continue;
ps_name[i++] = ps_name[j];
}
ps_name[i] = '\0';
}
 
*ps_name_out = ps_name;
*font_name_out = font_name;
 
return CAIRO_STATUS_SUCCESS;
 
fail:
free (name);
 
if (ps_name != NULL)
free (ps_name);
 
if (font_name != NULL)
free (font_name);
 
*ps_name_out = NULL;
*font_name_out = NULL;
 
return status;
}
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/cairo/src/cairo-type1-fallback.c
0,0 → 1,887
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2006 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Adrian Johnson <ajohnson@redneon.com>
*/
 
#define _BSD_SOURCE /* for snprintf(), strdup() */
#include "cairoint.h"
#include "cairo-error-private.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-type1-private.h"
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-path-fixed-private.h"
#include "cairo-output-stream-private.h"
 
typedef enum {
CAIRO_CHARSTRING_TYPE1,
CAIRO_CHARSTRING_TYPE2
} cairo_charstring_type_t;
 
typedef struct _cairo_type1_font {
int *widths;
 
cairo_scaled_font_subset_t *scaled_font_subset;
cairo_scaled_font_t *type1_scaled_font;
 
cairo_array_t contents;
 
double x_min, y_min, x_max, y_max;
 
const char *data;
unsigned long header_size;
unsigned long data_size;
unsigned long trailer_size;
int bbox_position;
int bbox_max_chars;
 
cairo_output_stream_t *output;
 
unsigned short eexec_key;
cairo_bool_t hex_encode;
int hex_column;
} cairo_type1_font_t;
 
static cairo_status_t
cairo_type1_font_create (cairo_scaled_font_subset_t *scaled_font_subset,
cairo_type1_font_t **subset_return,
cairo_bool_t hex_encode)
{
cairo_type1_font_t *font;
cairo_font_face_t *font_face;
cairo_matrix_t font_matrix;
cairo_matrix_t ctm;
cairo_font_options_t font_options;
cairo_status_t status;
 
font = calloc (1, sizeof (cairo_type1_font_t));
if (unlikely (font == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->widths = calloc (scaled_font_subset->num_glyphs, sizeof (int));
if (unlikely (font->widths == NULL)) {
free (font);
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
 
font->scaled_font_subset = scaled_font_subset;
font->hex_encode = hex_encode;
 
font_face = cairo_scaled_font_get_font_face (scaled_font_subset->scaled_font);
 
cairo_matrix_init_scale (&font_matrix, 1000, -1000);
cairo_matrix_init_identity (&ctm);
 
_cairo_font_options_init_default (&font_options);
cairo_font_options_set_hint_style (&font_options, CAIRO_HINT_STYLE_NONE);
cairo_font_options_set_hint_metrics (&font_options, CAIRO_HINT_METRICS_OFF);
 
font->type1_scaled_font = cairo_scaled_font_create (font_face,
&font_matrix,
&ctm,
&font_options);
status = font->type1_scaled_font->status;
if (unlikely (status))
goto fail;
 
_cairo_array_init (&font->contents, sizeof (unsigned char));
font->output = NULL;
 
*subset_return = font;
 
return CAIRO_STATUS_SUCCESS;
 
fail:
free (font->widths);
free (font);
 
return status;
}
 
/* Charstring commands. If the high byte is 0 the command is encoded
* with a single byte. */
#define CHARSTRING_sbw 0x0c07
#define CHARSTRING_rmoveto 0x0015
#define CHARSTRING_rlineto 0x0005
#define CHARSTRING_rcurveto 0x0008
#define CHARSTRING_closepath 0x0009
#define CHARSTRING_endchar 0x000e
 
/* Before calling this function, the caller must allocate sufficient
* space in data (see _cairo_array_grow_by). The maximum number of
* bytes that will be used is 2.
*/
static void
charstring_encode_command (cairo_array_t *data, int command)
{
cairo_status_t status;
int orig_size;
unsigned char buf[5];
unsigned char *p = buf;
 
if (command & 0xff00)
*p++ = command >> 8;
*p++ = command & 0x00ff;
 
/* Ensure the array doesn't grow, which allows this function to
* have no possibility of failure. */
orig_size = _cairo_array_size (data);
status = _cairo_array_append_multiple (data, buf, p - buf);
 
assert (status == CAIRO_STATUS_SUCCESS);
assert (_cairo_array_size (data) == orig_size);
}
 
/* Before calling this function, the caller must allocate sufficient
* space in data (see _cairo_array_grow_by). The maximum number of
* bytes that will be used is 5.
*/
static void
charstring_encode_integer (cairo_array_t *data,
int i,
cairo_charstring_type_t type)
{
cairo_status_t status;
int orig_size;
unsigned char buf[10];
unsigned char *p = buf;
 
if (i >= -107 && i <= 107) {
*p++ = i + 139;
} else if (i >= 108 && i <= 1131) {
i -= 108;
*p++ = (i >> 8)+ 247;
*p++ = i & 0xff;
} else if (i >= -1131 && i <= -108) {
i = -i - 108;
*p++ = (i >> 8)+ 251;
*p++ = i & 0xff;
} else {
if (type == CAIRO_CHARSTRING_TYPE1) {
*p++ = 0xff;
*p++ = i >> 24;
*p++ = (i >> 16) & 0xff;
*p++ = (i >> 8) & 0xff;
*p++ = i & 0xff;
} else {
*p++ = 0xff;
*p++ = (i >> 8) & 0xff;
*p++ = i & 0xff;
*p++ = 0;
*p++ = 0;
}
}
 
/* Ensure the array doesn't grow, which allows this function to
* have no possibility of failure. */
orig_size = _cairo_array_size (data);
status = _cairo_array_append_multiple (data, buf, p - buf);
 
assert (status == CAIRO_STATUS_SUCCESS);
assert (_cairo_array_size (data) == orig_size);
}
 
typedef struct _ps_path_info {
cairo_array_t *data;
int current_x, current_y;
cairo_charstring_type_t type;
} t1_path_info_t;
 
static cairo_status_t
_charstring_move_to (void *closure,
const cairo_point_t *point)
{
t1_path_info_t *path_info = (t1_path_info_t *) closure;
int dx, dy;
cairo_status_t status;
 
status = _cairo_array_grow_by (path_info->data, 12);
if (unlikely (status))
return status;
 
dx = _cairo_fixed_integer_part (point->x) - path_info->current_x;
dy = _cairo_fixed_integer_part (point->y) - path_info->current_y;
charstring_encode_integer (path_info->data, dx, path_info->type);
charstring_encode_integer (path_info->data, dy, path_info->type);
path_info->current_x += dx;
path_info->current_y += dy;
 
charstring_encode_command (path_info->data, CHARSTRING_rmoveto);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_charstring_line_to (void *closure,
const cairo_point_t *point)
{
t1_path_info_t *path_info = (t1_path_info_t *) closure;
int dx, dy;
cairo_status_t status;
 
status = _cairo_array_grow_by (path_info->data, 12);
if (unlikely (status))
return status;
 
dx = _cairo_fixed_integer_part (point->x) - path_info->current_x;
dy = _cairo_fixed_integer_part (point->y) - path_info->current_y;
charstring_encode_integer (path_info->data, dx, path_info->type);
charstring_encode_integer (path_info->data, dy, path_info->type);
path_info->current_x += dx;
path_info->current_y += dy;
 
charstring_encode_command (path_info->data, CHARSTRING_rlineto);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_charstring_curve_to (void *closure,
const cairo_point_t *point1,
const cairo_point_t *point2,
const cairo_point_t *point3)
{
t1_path_info_t *path_info = (t1_path_info_t *) closure;
int dx1, dy1, dx2, dy2, dx3, dy3;
cairo_status_t status;
 
status = _cairo_array_grow_by (path_info->data, 32);
if (unlikely (status))
return status;
 
dx1 = _cairo_fixed_integer_part (point1->x) - path_info->current_x;
dy1 = _cairo_fixed_integer_part (point1->y) - path_info->current_y;
dx2 = _cairo_fixed_integer_part (point2->x) - path_info->current_x - dx1;
dy2 = _cairo_fixed_integer_part (point2->y) - path_info->current_y - dy1;
dx3 = _cairo_fixed_integer_part (point3->x) - path_info->current_x - dx1 - dx2;
dy3 = _cairo_fixed_integer_part (point3->y) - path_info->current_y - dy1 - dy2;
charstring_encode_integer (path_info->data, dx1, path_info->type);
charstring_encode_integer (path_info->data, dy1, path_info->type);
charstring_encode_integer (path_info->data, dx2, path_info->type);
charstring_encode_integer (path_info->data, dy2, path_info->type);
charstring_encode_integer (path_info->data, dx3, path_info->type);
charstring_encode_integer (path_info->data, dy3, path_info->type);
path_info->current_x += dx1 + dx2 + dx3;
path_info->current_y += dy1 + dy2 + dy3;
charstring_encode_command (path_info->data, CHARSTRING_rcurveto);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
_charstring_close_path (void *closure)
{
cairo_status_t status;
t1_path_info_t *path_info = (t1_path_info_t *) closure;
 
if (path_info->type == CAIRO_CHARSTRING_TYPE2)
return CAIRO_STATUS_SUCCESS;
 
status = _cairo_array_grow_by (path_info->data, 2);
if (unlikely (status))
return status;
 
charstring_encode_command (path_info->data, CHARSTRING_closepath);
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
charstring_encrypt (cairo_array_t *data)
{
unsigned char *d, *end;
uint16_t c, p, r;
 
r = CAIRO_TYPE1_CHARSTRING_KEY;
d = (unsigned char *) _cairo_array_index (data, 0);
end = d + _cairo_array_num_elements (data);
while (d < end) {
p = *d;
c = p ^ (r >> 8);
r = (c + r) * CAIRO_TYPE1_ENCRYPT_C1 + CAIRO_TYPE1_ENCRYPT_C2;
*d++ = c;
}
}
 
static cairo_int_status_t
cairo_type1_font_create_charstring (cairo_type1_font_t *font,
int subset_index,
int glyph_index,
cairo_charstring_type_t type,
cairo_array_t *data)
{
cairo_int_status_t status;
cairo_scaled_glyph_t *scaled_glyph;
t1_path_info_t path_info;
cairo_text_extents_t *metrics;
cairo_bool_t emit_path = TRUE;
 
/* This call may return CAIRO_INT_STATUS_UNSUPPORTED for bitmap fonts. */
status = _cairo_scaled_glyph_lookup (font->type1_scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS|
CAIRO_SCALED_GLYPH_INFO_PATH,
&scaled_glyph);
 
/* It is ok for the .notdef glyph to not have a path available. We
* just need the metrics to emit an empty glyph. */
if (glyph_index == 0 && status == CAIRO_INT_STATUS_UNSUPPORTED) {
emit_path = FALSE;
status = _cairo_scaled_glyph_lookup (font->type1_scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS,
&scaled_glyph);
}
if (unlikely (status))
return status;
 
metrics = &scaled_glyph->metrics;
if (subset_index == 0) {
font->x_min = metrics->x_bearing;
font->y_min = metrics->y_bearing;
font->x_max = metrics->x_bearing + metrics->width;
font->y_max = metrics->y_bearing + metrics->height;
} else {
if (metrics->x_bearing < font->x_min)
font->x_min = metrics->x_bearing;
if (metrics->y_bearing < font->y_min)
font->y_min = metrics->y_bearing;
if (metrics->x_bearing + metrics->width > font->x_max)
font->x_max = metrics->x_bearing + metrics->width;
if (metrics->y_bearing + metrics->height > font->y_max)
font->y_max = metrics->y_bearing + metrics->height;
}
font->widths[subset_index] = metrics->x_advance;
 
status = _cairo_array_grow_by (data, 30);
if (unlikely (status))
return status;
 
if (type == CAIRO_CHARSTRING_TYPE1) {
charstring_encode_integer (data, (int) scaled_glyph->metrics.x_bearing, type);
charstring_encode_integer (data, (int) scaled_glyph->metrics.y_bearing, type);
charstring_encode_integer (data, (int) scaled_glyph->metrics.x_advance, type);
charstring_encode_integer (data, (int) scaled_glyph->metrics.y_advance, type);
charstring_encode_command (data, CHARSTRING_sbw);
 
path_info.current_x = (int) scaled_glyph->metrics.x_bearing;
path_info.current_y = (int) scaled_glyph->metrics.y_bearing;
} else {
charstring_encode_integer (data, (int) scaled_glyph->metrics.x_advance, type);
 
path_info.current_x = 0;
path_info.current_y = 0;
}
path_info.data = data;
path_info.type = type;
if (emit_path) {
status = _cairo_path_fixed_interpret (scaled_glyph->path,
CAIRO_DIRECTION_FORWARD,
_charstring_move_to,
_charstring_line_to,
_charstring_curve_to,
_charstring_close_path,
&path_info);
if (unlikely (status))
return status;
}
 
status = _cairo_array_grow_by (data, 1);
if (unlikely (status))
return status;
charstring_encode_command (path_info.data, CHARSTRING_endchar);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_type1_font_write_charstrings (cairo_type1_font_t *font,
cairo_output_stream_t *encrypted_output)
{
cairo_status_t status;
unsigned char zeros[] = { 0, 0, 0, 0 };
cairo_array_t data;
unsigned int i;
int length;
 
_cairo_array_init (&data, sizeof (unsigned char));
status = _cairo_array_grow_by (&data, 1024);
if (unlikely (status))
goto fail;
 
_cairo_output_stream_printf (encrypted_output,
"2 index /CharStrings %d dict dup begin\n",
font->scaled_font_subset->num_glyphs + 1);
 
_cairo_scaled_font_freeze_cache (font->type1_scaled_font);
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
_cairo_array_truncate (&data, 0);
/* four "random" bytes required by encryption algorithm */
status = _cairo_array_append_multiple (&data, zeros, 4);
if (unlikely (status))
break;
 
status = cairo_type1_font_create_charstring (font, i,
font->scaled_font_subset->glyphs[i],
CAIRO_CHARSTRING_TYPE1,
&data);
if (unlikely (status))
break;
 
charstring_encrypt (&data);
length = _cairo_array_num_elements (&data);
if (font->scaled_font_subset->glyph_names != NULL) {
_cairo_output_stream_printf (encrypted_output, "/%s %d RD ",
font->scaled_font_subset->glyph_names[i],
length);
} else if (i == 0) {
_cairo_output_stream_printf (encrypted_output, "/.notdef %d RD ", length);
} else {
_cairo_output_stream_printf (encrypted_output, "/g%d %d RD ", i, length);
}
_cairo_output_stream_write (encrypted_output,
_cairo_array_index (&data, 0),
length);
_cairo_output_stream_printf (encrypted_output, " ND\n");
}
_cairo_scaled_font_thaw_cache (font->type1_scaled_font);
 
fail:
_cairo_array_fini (&data);
return status;
}
 
static void
cairo_type1_font_write_header (cairo_type1_font_t *font,
const char *name)
{
unsigned int i;
const char spaces[50] = " ";
 
_cairo_output_stream_printf (font->output,
"%%!FontType1-1.1 %s 1.0\n"
"11 dict begin\n"
"/FontName /%s def\n"
"/PaintType 0 def\n"
"/FontType 1 def\n"
"/FontMatrix [0.001 0 0 0.001 0 0] readonly def\n",
name,
name);
 
/* We don't know the bbox values until after the charstrings have
* been generated. Reserve some space and fill in the bbox
* later. */
 
/* Worst case for four signed ints with spaces between each number */
font->bbox_max_chars = 50;
 
_cairo_output_stream_printf (font->output, "/FontBBox {");
font->bbox_position = _cairo_output_stream_get_position (font->output);
_cairo_output_stream_write (font->output, spaces, font->bbox_max_chars);
 
_cairo_output_stream_printf (font->output,
"} readonly def\n"
"/Encoding 256 array\n"
"0 1 255 {1 index exch /.notdef put} for\n");
for (i = 1; i < font->scaled_font_subset->num_glyphs; i++) {
if (font->scaled_font_subset->glyph_names != NULL) {
_cairo_output_stream_printf (font->output, "dup %d /%s put\n",
i, font->scaled_font_subset->glyph_names[i]);
} else {
_cairo_output_stream_printf (font->output, "dup %d /g%d put\n", i, i);
}
}
_cairo_output_stream_printf (font->output,
"readonly def\n"
"currentdict end\n"
"currentfile eexec\n");
}
 
static cairo_status_t
cairo_type1_write_stream_encrypted (void *closure,
const unsigned char *data,
unsigned int length)
{
const unsigned char *in, *end;
uint16_t c, p;
static const char hex_digits[16] = "0123456789abcdef";
char digits[3];
cairo_type1_font_t *font = closure;
 
in = (const unsigned char *) data;
end = (const unsigned char *) data + length;
while (in < end) {
p = *in++;
c = p ^ (font->eexec_key >> 8);
font->eexec_key = (c + font->eexec_key) * CAIRO_TYPE1_ENCRYPT_C1 + CAIRO_TYPE1_ENCRYPT_C2;
 
if (font->hex_encode) {
digits[0] = hex_digits[c >> 4];
digits[1] = hex_digits[c & 0x0f];
digits[2] = '\n';
font->hex_column += 2;
 
if (font->hex_column == 78) {
_cairo_output_stream_write (font->output, digits, 3);
font->hex_column = 0;
} else {
_cairo_output_stream_write (font->output, digits, 2);
}
} else {
digits[0] = c;
_cairo_output_stream_write (font->output, digits, 1);
}
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_type1_font_write_private_dict (cairo_type1_font_t *font,
const char *name)
{
cairo_int_status_t status;
cairo_status_t status2;
cairo_output_stream_t *encrypted_output;
 
font->eexec_key = CAIRO_TYPE1_PRIVATE_DICT_KEY;
font->hex_column = 0;
encrypted_output = _cairo_output_stream_create (
cairo_type1_write_stream_encrypted,
NULL,
font);
if (_cairo_output_stream_get_status (encrypted_output))
return _cairo_output_stream_destroy (encrypted_output);
 
/* Note: the first four spaces at the start of this private dict
* are the four "random" bytes of plaintext required by the
* encryption algorithm */
_cairo_output_stream_printf (encrypted_output,
" dup /Private 9 dict dup begin\n"
"/RD {string currentfile exch readstring pop}"
" bind executeonly def\n"
"/ND {noaccess def} executeonly def\n"
"/NP {noaccess put} executeonly def\n"
"/BlueValues [] def\n"
"/MinFeature {16 16} def\n"
"/lenIV 4 def\n"
"/password 5839 def\n");
 
status = cairo_type1_font_write_charstrings (font, encrypted_output);
if (unlikely (status))
goto fail;
 
_cairo_output_stream_printf (encrypted_output,
"end\n"
"end\n"
"readonly put\n"
"noaccess put\n"
"dup /FontName get exch definefont pop\n"
"mark currentfile closefile\n");
 
fail:
status2 = _cairo_output_stream_destroy (encrypted_output);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
return status;
}
 
static void
cairo_type1_font_write_trailer(cairo_type1_font_t *font)
{
int i;
static const char zeros[65] =
"0000000000000000000000000000000000000000000000000000000000000000\n";
 
for (i = 0; i < 8; i++)
_cairo_output_stream_write (font->output, zeros, sizeof zeros);
 
_cairo_output_stream_printf (font->output, "cleartomark\n");
}
 
static cairo_status_t
cairo_type1_write_stream (void *closure,
const unsigned char *data,
unsigned int length)
{
cairo_type1_font_t *font = closure;
 
return _cairo_array_append_multiple (&font->contents, data, length);
}
 
static cairo_int_status_t
cairo_type1_font_write (cairo_type1_font_t *font,
const char *name)
{
cairo_int_status_t status;
 
cairo_type1_font_write_header (font, name);
font->header_size = _cairo_output_stream_get_position (font->output);
 
status = cairo_type1_font_write_private_dict (font, name);
if (unlikely (status))
return status;
 
font->data_size = _cairo_output_stream_get_position (font->output) -
font->header_size;
 
cairo_type1_font_write_trailer (font);
font->trailer_size =
_cairo_output_stream_get_position (font->output) -
font->header_size - font->data_size;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_int_status_t
cairo_type1_font_generate (cairo_type1_font_t *font, const char *name)
{
cairo_int_status_t status;
 
status = _cairo_array_grow_by (&font->contents, 4096);
if (unlikely (status))
return status;
 
font->output = _cairo_output_stream_create (cairo_type1_write_stream, NULL, font);
if (_cairo_output_stream_get_status (font->output))
return _cairo_output_stream_destroy (font->output);
 
status = cairo_type1_font_write (font, name);
if (unlikely (status))
return status;
 
font->data = _cairo_array_index (&font->contents, 0);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_type1_font_destroy (cairo_type1_font_t *font)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
 
free (font->widths);
cairo_scaled_font_destroy (font->type1_scaled_font);
_cairo_array_fini (&font->contents);
if (font->output)
status = _cairo_output_stream_destroy (font->output);
free (font);
 
return status;
}
 
static cairo_status_t
_cairo_type1_fallback_init_internal (cairo_type1_subset_t *type1_subset,
const char *name,
cairo_scaled_font_subset_t *scaled_font_subset,
cairo_bool_t hex_encode)
{
cairo_type1_font_t *font;
cairo_status_t status;
unsigned long length;
unsigned int i, len;
 
status = cairo_type1_font_create (scaled_font_subset, &font, hex_encode);
if (unlikely (status))
return status;
 
status = cairo_type1_font_generate (font, name);
if (unlikely (status))
goto fail1;
 
type1_subset->base_font = strdup (name);
if (unlikely (type1_subset->base_font == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
type1_subset->widths = calloc (sizeof (double), font->scaled_font_subset->num_glyphs);
if (unlikely (type1_subset->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++)
type1_subset->widths[i] = (double)font->widths[i]/1000;
 
type1_subset->x_min = (double)font->x_min/1000;
type1_subset->y_min = (double)font->y_min/1000;
type1_subset->x_max = (double)font->x_max/1000;
type1_subset->y_max = (double)font->y_max/1000;
type1_subset->ascent = (double)font->y_max/1000;
type1_subset->descent = (double)font->y_min/1000;
 
length = font->header_size + font->data_size +
font->trailer_size;
type1_subset->data = malloc (length);
if (unlikely (type1_subset->data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
memcpy (type1_subset->data,
_cairo_array_index (&font->contents, 0), length);
 
len = snprintf(type1_subset->data + font->bbox_position,
font->bbox_max_chars,
"%d %d %d %d",
(int)font->x_min,
(int)font->y_min,
(int)font->x_max,
(int)font->y_max);
type1_subset->data[font->bbox_position + len] = ' ';
 
type1_subset->header_length = font->header_size;
type1_subset->data_length = font->data_size;
type1_subset->trailer_length = font->trailer_size;
 
return cairo_type1_font_destroy (font);
 
fail3:
free (type1_subset->widths);
fail2:
free (type1_subset->base_font);
fail1:
/* status is already set, ignore further errors */
cairo_type1_font_destroy (font);
 
return status;
}
 
cairo_status_t
_cairo_type1_fallback_init_binary (cairo_type1_subset_t *type1_subset,
const char *name,
cairo_scaled_font_subset_t *scaled_font_subset)
{
return _cairo_type1_fallback_init_internal (type1_subset,
name,
scaled_font_subset, FALSE);
}
 
cairo_status_t
_cairo_type1_fallback_init_hex (cairo_type1_subset_t *type1_subset,
const char *name,
cairo_scaled_font_subset_t *scaled_font_subset)
{
return _cairo_type1_fallback_init_internal (type1_subset,
name,
scaled_font_subset, TRUE);
}
 
void
_cairo_type1_fallback_fini (cairo_type1_subset_t *subset)
{
free (subset->base_font);
free (subset->widths);
free (subset->data);
}
 
cairo_status_t
_cairo_type2_charstrings_init (cairo_type2_charstrings_t *type2_subset,
cairo_scaled_font_subset_t *scaled_font_subset)
{
cairo_type1_font_t *font;
cairo_status_t status;
unsigned int i;
cairo_array_t charstring;
 
status = cairo_type1_font_create (scaled_font_subset, &font, FALSE);
if (unlikely (status))
return status;
 
_cairo_array_init (&type2_subset->charstrings, sizeof (cairo_array_t));
 
type2_subset->widths = calloc (sizeof (int), font->scaled_font_subset->num_glyphs);
if (unlikely (type2_subset->widths == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail1;
}
 
_cairo_scaled_font_freeze_cache (font->type1_scaled_font);
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++) {
_cairo_array_init (&charstring, sizeof (unsigned char));
status = _cairo_array_grow_by (&charstring, 32);
if (unlikely (status))
goto fail2;
 
status = cairo_type1_font_create_charstring (font, i,
font->scaled_font_subset->glyphs[i],
CAIRO_CHARSTRING_TYPE2,
&charstring);
if (unlikely (status))
goto fail2;
 
status = _cairo_array_append (&type2_subset->charstrings, &charstring);
if (unlikely (status))
goto fail2;
}
_cairo_scaled_font_thaw_cache (font->type1_scaled_font);
 
for (i = 0; i < font->scaled_font_subset->num_glyphs; i++)
type2_subset->widths[i] = font->widths[i];
 
type2_subset->x_min = (int) font->x_min;
type2_subset->y_min = (int) font->y_min;
type2_subset->x_max = (int) font->x_max;
type2_subset->y_max = (int) font->y_max;
type2_subset->ascent = (int) font->y_max;
type2_subset->descent = (int) font->y_min;
 
return cairo_type1_font_destroy (font);
 
fail2:
_cairo_scaled_font_thaw_cache (font->type1_scaled_font);
_cairo_array_fini (&charstring);
_cairo_type2_charstrings_fini (type2_subset);
fail1:
cairo_type1_font_destroy (font);
return status;
}
 
void
_cairo_type2_charstrings_fini (cairo_type2_charstrings_t *type2_subset)
{
unsigned int i, num_charstrings;
cairo_array_t *charstring;
 
num_charstrings = _cairo_array_num_elements (&type2_subset->charstrings);
for (i = 0; i < num_charstrings; i++) {
charstring = _cairo_array_index (&type2_subset->charstrings, i);
_cairo_array_fini (charstring);
}
_cairo_array_fini (&type2_subset->charstrings);
 
free (type2_subset->widths);
}
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/cairo/src/cairo-type1-subset.c
0,0 → 1,1431
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2006 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Red Hat, Inc.
*
* Contributor(s):
* Kristian Høgsberg <krh@redhat.com>
*/
 
/*
* Useful links:
* http://partners.adobe.com/public/developer/en/font/T1_SPEC.PDF
*/
 
 
#define _BSD_SOURCE /* for snprintf(), strdup() */
#include "cairoint.h"
#include "cairo-error-private.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-type1-private.h"
#include "cairo-scaled-font-subsets-private.h"
#include "cairo-output-stream-private.h"
 
/* XXX: Eventually, we need to handle other font backends */
#if CAIRO_HAS_FT_FONT
 
#include "cairo-ft-private.h"
 
#include <ft2build.h>
#include FT_FREETYPE_H
#include FT_OUTLINE_H
#include FT_TYPE1_TABLES_H
 
#include <ctype.h>
 
typedef struct _cairo_type1_font_subset {
cairo_scaled_font_subset_t *scaled_font_subset;
 
struct {
cairo_unscaled_font_t *unscaled_font;
unsigned int font_id;
char *base_font;
unsigned int num_glyphs;
double x_min, y_min, x_max, y_max;
double ascent, descent;
 
const char *data;
unsigned long header_size;
unsigned long data_size;
unsigned long trailer_size;
} base;
 
FT_Face face;
int num_glyphs;
 
struct {
int subset_index;
double width;
char *name;
} *glyphs;
 
cairo_output_stream_t *output;
cairo_array_t contents;
 
const char *rd, *nd;
 
char *type1_data;
unsigned int type1_length;
char *type1_end;
 
char *header_segment;
int header_segment_size;
char *eexec_segment;
int eexec_segment_size;
cairo_bool_t eexec_segment_is_ascii;
 
char *cleartext;
char *cleartext_end;
 
int header_size;
 
unsigned short eexec_key;
cairo_bool_t hex_encode;
int hex_column;
} cairo_type1_font_subset_t;
 
 
static cairo_status_t
_cairo_type1_font_subset_init (cairo_type1_font_subset_t *font,
cairo_unscaled_font_t *unscaled_font,
cairo_bool_t hex_encode)
{
cairo_ft_unscaled_font_t *ft_unscaled_font;
cairo_status_t status;
FT_Face face;
PS_FontInfoRec font_info;
int i, j;
 
ft_unscaled_font = (cairo_ft_unscaled_font_t *) unscaled_font;
 
face = _cairo_ft_unscaled_font_lock_face (ft_unscaled_font);
if (unlikely (face == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
if (FT_Get_PS_Font_Info(face, &font_info) != 0) {
status = CAIRO_INT_STATUS_UNSUPPORTED;
goto fail1;
}
 
/* OpenType/CFF fonts also have a PS_FontInfoRec */
#if HAVE_FT_LOAD_SFNT_TABLE
if (FT_IS_SFNT (face)) {
status = CAIRO_INT_STATUS_UNSUPPORTED;
goto fail1;
}
#endif
 
memset (font, 0, sizeof (*font));
font->base.unscaled_font = _cairo_unscaled_font_reference (unscaled_font);
font->base.num_glyphs = face->num_glyphs;
font->base.x_min = face->bbox.xMin / (double)face->units_per_EM;
font->base.y_min = face->bbox.yMin / (double)face->units_per_EM;
font->base.x_max = face->bbox.xMax / (double)face->units_per_EM;
font->base.y_max = face->bbox.yMax / (double)face->units_per_EM;
font->base.ascent = face->ascender / (double)face->units_per_EM;
font->base.descent = face->descender / (double)face->units_per_EM;
 
if (face->family_name) {
font->base.base_font = strdup (face->family_name);
if (unlikely (font->base.base_font == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail2;
}
for (i = 0, j = 0; font->base.base_font[j]; j++) {
if (font->base.base_font[j] == ' ')
continue;
font->base.base_font[i++] = font->base.base_font[j];
}
font->base.base_font[i] = '\0';
}
 
font->glyphs = calloc (face->num_glyphs, sizeof font->glyphs[0]);
if (unlikely (font->glyphs == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail3;
}
 
font->hex_encode = hex_encode;
font->num_glyphs = 0;
for (i = 0; i < face->num_glyphs; i++)
font->glyphs[i].subset_index = -1;
 
_cairo_array_init (&font->contents, sizeof (char));
 
_cairo_ft_unscaled_font_unlock_face (ft_unscaled_font);
 
return CAIRO_STATUS_SUCCESS;
 
fail3:
if (font->base.base_font)
free (font->base.base_font);
fail2:
_cairo_unscaled_font_destroy (unscaled_font);
fail1:
_cairo_ft_unscaled_font_unlock_face (ft_unscaled_font);
 
return status;
}
 
static void
cairo_type1_font_subset_use_glyph (cairo_type1_font_subset_t *font, int glyph)
{
if (font->glyphs[glyph].subset_index >= 0)
return;
 
font->glyphs[glyph].subset_index = font->num_glyphs++;
}
 
static cairo_bool_t
is_ps_delimiter(int c)
{
static const char delimiters[] = "()[]{}<>/% \t\r\n";
 
return strchr (delimiters, c) != NULL;
}
 
static const char *
find_token (const char *buffer, const char *end, const char *token)
{
int i, length;
/* FIXME: find substring really must be find_token */
 
if (buffer == NULL)
return NULL;
 
length = strlen (token);
for (i = 0; buffer + i < end - length + 1; i++)
if (memcmp (buffer + i, token, length) == 0)
if ((i == 0 || token[0] == '/' || is_ps_delimiter(buffer[i - 1])) &&
(buffer + i == end - length || is_ps_delimiter(buffer[i + length])))
return buffer + i;
 
return NULL;
}
 
static cairo_status_t
cairo_type1_font_subset_find_segments (cairo_type1_font_subset_t *font)
{
unsigned char *p;
const char *eexec_token;
int size, i;
 
p = (unsigned char *) font->type1_data;
font->type1_end = font->type1_data + font->type1_length;
if (p[0] == 0x80 && p[1] == 0x01) {
font->header_segment_size =
p[2] | (p[3] << 8) | (p[4] << 16) | (p[5] << 24);
font->header_segment = (char *) p + 6;
 
p += 6 + font->header_segment_size;
font->eexec_segment_size =
p[2] | (p[3] << 8) | (p[4] << 16) | (p[5] << 24);
font->eexec_segment = (char *) p + 6;
font->eexec_segment_is_ascii = (p[1] == 1);
 
p += 6 + font->eexec_segment_size;
while (p < (unsigned char *) (font->type1_end) && p[1] != 0x03) {
size = p[2] | (p[3] << 8) | (p[4] << 16) | (p[5] << 24);
p += 6 + size;
}
font->type1_end = (char *) p;
} else {
eexec_token = find_token ((char *) p, font->type1_end, "eexec");
if (eexec_token == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
font->header_segment_size = eexec_token - (char *) p + strlen ("eexec\n");
font->header_segment = (char *) p;
font->eexec_segment_size = font->type1_length - font->header_segment_size;
font->eexec_segment = (char *) p + font->header_segment_size;
font->eexec_segment_is_ascii = TRUE;
for (i = 0; i < 4; i++) {
if (!isxdigit(font->eexec_segment[i]))
font->eexec_segment_is_ascii = FALSE;
}
}
 
return CAIRO_STATUS_SUCCESS;
}
 
/* Search for the definition of key and erase it by overwriting with spaces.
* This function is looks for definitions of the form:
*
* /key1 1234 def
* /key2 [12 34 56] def
*
* ie a key defined as an integer or array of integers.
*
*/
static void
cairo_type1_font_erase_dict_key (cairo_type1_font_subset_t *font,
const char *key)
{
const char *start, *p, *segment_end;
 
segment_end = font->header_segment + font->header_segment_size;
 
start = font->header_segment;
do {
start = find_token (start, segment_end, key);
if (start) {
p = start + strlen(key);
/* skip integers or array of integers */
while (p < segment_end &&
(_cairo_isspace(*p) ||
_cairo_isdigit(*p) ||
*p == '[' ||
*p == ']'))
{
p++;
}
 
if (p + 3 < segment_end && memcmp(p, "def", 3) == 0) {
/* erase definition of the key */
memset((char *) start, ' ', p + 3 - start);
}
start += strlen(key);
}
} while (start);
}
 
static cairo_status_t
cairo_type1_font_subset_write_header (cairo_type1_font_subset_t *font,
const char *name)
{
const char *start, *end, *segment_end;
unsigned int i;
 
/* FIXME:
* This function assumes that /FontName always appears
* before /Encoding. This appears to always be the case with Type1
* fonts.
*
* The more recently added code for removing the UniqueID and XUID
* keys can not make any assumptions about the position of the
* keys in the dictionary so it is implemented by overwriting the
* key definition with spaces before we start copying the font to
* the output.
*
* This code should be rewritten to not make any assumptions about
* the order of dictionary keys. This will allow UniqueID to be
* stripped out instead of leaving a bunch of spaces in the
* output.
*/
cairo_type1_font_erase_dict_key (font, "/UniqueID");
cairo_type1_font_erase_dict_key (font, "/XUID");
 
segment_end = font->header_segment + font->header_segment_size;
 
/* Type 1 fonts created by Fontforge have some PostScript code at
* the start of the font that skips the font if the printer has a
* cached copy of the font with the same unique id. This breaks
* our subsetted font so we disable it by searching for the
* PostScript operator "known" when used to check for the
* "/UniqueID" dictionary key. We append " pop false " after it to
* pop the result of this check off the stack and replace it with
* "false" to make the PostScript code think "/UniqueID" does not
* exist.
*/
end = font->header_segment;
start = find_token (font->header_segment, segment_end, "/UniqueID");
if (start) {
start += 9;
while (start < segment_end && _cairo_isspace (*start))
start++;
if (start + 5 < segment_end && memcmp(start, "known", 5) == 0) {
_cairo_output_stream_write (font->output, font->header_segment,
start + 5 - font->header_segment);
_cairo_output_stream_printf (font->output, " pop false ");
end = start + 5;
}
}
 
start = find_token (end, segment_end, "/FontName");
if (start == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
_cairo_output_stream_write (font->output, end,
start - end);
 
_cairo_output_stream_printf (font->output, "/FontName /%s def", name);
 
end = find_token (start, segment_end, "def");
if (end == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
end += 3;
 
start = find_token (end, segment_end, "/Encoding");
if (start == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
_cairo_output_stream_write (font->output, end, start - end);
 
_cairo_output_stream_printf (font->output,
"/Encoding 256 array\n"
"0 1 255 {1 index exch /.notdef put} for\n");
for (i = 1; i < font->base.num_glyphs; i++) {
if (font->glyphs[i].subset_index < 0)
continue;
_cairo_output_stream_printf (font->output,
"dup %d /%s put\n",
font->glyphs[i].subset_index,
font->glyphs[i].name);
}
_cairo_output_stream_printf (font->output, "readonly def");
 
end = find_token (start, segment_end, "def");
if (end == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
end += 3;
 
_cairo_output_stream_write (font->output, end, segment_end - end);
 
return font->output->status;
}
 
static int
hex_to_int (int ch)
{
if (ch <= '9')
return ch - '0';
else if (ch <= 'F')
return ch - 'A' + 10;
else
return ch - 'a' + 10;
}
 
static cairo_status_t
cairo_type1_font_subset_write_encrypted (cairo_type1_font_subset_t *font,
const char *data, unsigned int length)
{
const unsigned char *in, *end;
int c, p;
static const char hex_digits[16] = "0123456789abcdef";
char digits[3];
 
in = (const unsigned char *) data;
end = (const unsigned char *) data + length;
while (in < end) {
p = *in++;
c = p ^ (font->eexec_key >> 8);
font->eexec_key = (c + font->eexec_key) * CAIRO_TYPE1_ENCRYPT_C1 + CAIRO_TYPE1_ENCRYPT_C2;
 
if (font->hex_encode) {
digits[0] = hex_digits[c >> 4];
digits[1] = hex_digits[c & 0x0f];
digits[2] = '\n';
font->hex_column += 2;
 
if (font->hex_column == 78) {
_cairo_output_stream_write (font->output, digits, 3);
font->hex_column = 0;
} else {
_cairo_output_stream_write (font->output, digits, 2);
}
} else {
digits[0] = c;
_cairo_output_stream_write (font->output, digits, 1);
}
}
 
return font->output->status;
}
 
static cairo_status_t
cairo_type1_font_subset_decrypt_eexec_segment (cairo_type1_font_subset_t *font)
{
unsigned short r = CAIRO_TYPE1_PRIVATE_DICT_KEY;
unsigned char *in, *end;
char *out;
int c, p;
int i;
 
in = (unsigned char *) font->eexec_segment;
end = (unsigned char *) in + font->eexec_segment_size;
 
font->cleartext = malloc (font->eexec_segment_size);
if (unlikely (font->cleartext == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
out = font->cleartext;
while (in < end) {
if (font->eexec_segment_is_ascii) {
c = *in++;
if (_cairo_isspace (c))
continue;
c = (hex_to_int (c) << 4) | hex_to_int (*in++);
} else {
c = *in++;
}
p = c ^ (r >> 8);
r = (c + r) * CAIRO_TYPE1_ENCRYPT_C1 + CAIRO_TYPE1_ENCRYPT_C2;
 
*out++ = p;
}
font->cleartext_end = out;
 
/* Overwrite random bytes with spaces.
*
* The first 4 bytes of the cleartext are the random bytes
* required by the encryption algorithm. When encrypting the
* cleartext, the first ciphertext byte must not be a white space
* character and the first 4 bytes must not be an ASCII Hex
* character. Some fonts do not check that their randomly chosen
* bytes results in ciphertext that complies with this
* restriction. This may cause problems for some PDF consumers. By
* replacing the random bytes with spaces, the first four bytes of
* ciphertext will always be 0xf9, 0x83, 0xef, 0x00 which complies
* with this restriction. Using spaces also means we don't have to
* skip over the random bytes when parsing the cleartext.
*/
for (i = 0; i < 4 && i < font->eexec_segment_size; i++)
font->cleartext[i] = ' ';
 
return CAIRO_STATUS_SUCCESS;
}
 
static const char *
skip_token (const char *p, const char *end)
{
while (p < end && _cairo_isspace(*p))
p++;
 
while (p < end && !_cairo_isspace(*p))
p++;
 
if (p == end)
return NULL;
 
return p;
}
 
static int
cairo_type1_font_subset_lookup_glyph (cairo_type1_font_subset_t *font,
const char *glyph_name, int length)
{
unsigned int i;
 
for (i = 0; i < font->base.num_glyphs; i++) {
if (font->glyphs[i].name &&
strncmp (font->glyphs[i].name, glyph_name, length) == 0 &&
font->glyphs[i].name[length] == '\0')
return i;
}
 
return -1;
}
 
static cairo_status_t
cairo_type1_font_subset_get_glyph_names_and_widths (cairo_type1_font_subset_t *font)
{
unsigned int i;
char buffer[256];
FT_Error error;
 
/* Get glyph names and width using the freetype API */
for (i = 0; i < font->base.num_glyphs; i++) {
if (font->glyphs[i].name != NULL)
continue;
 
error = FT_Load_Glyph (font->face, i,
FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING |
FT_LOAD_NO_BITMAP | FT_LOAD_IGNORE_TRANSFORM);
if (error != FT_Err_Ok) {
/* propagate fatal errors from FreeType */
if (error == FT_Err_Out_Of_Memory)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
font->glyphs[i].width = font->face->glyph->metrics.horiAdvance / (double)font->face->units_per_EM;
 
error = FT_Get_Glyph_Name(font->face, i, buffer, sizeof buffer);
if (error != FT_Err_Ok) {
/* propagate fatal errors from FreeType */
if (error == FT_Err_Out_Of_Memory)
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
font->glyphs[i].name = strdup (buffer);
if (unlikely (font->glyphs[i].name == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
}
 
return CAIRO_STATUS_SUCCESS;
}
 
static void
cairo_type1_font_subset_decrypt_charstring (const unsigned char *in, int size, unsigned char *out)
{
unsigned short r = CAIRO_TYPE1_CHARSTRING_KEY;
int c, p, i;
 
for (i = 0; i < size; i++) {
c = *in++;
p = c ^ (r >> 8);
r = (c + r) * CAIRO_TYPE1_ENCRYPT_C1 + CAIRO_TYPE1_ENCRYPT_C2;
*out++ = p;
}
}
 
static const unsigned char *
cairo_type1_font_subset_decode_integer (const unsigned char *p, int *integer)
{
if (*p <= 246) {
*integer = *p++ - 139;
} else if (*p <= 250) {
*integer = (p[0] - 247) * 256 + p[1] + 108;
p += 2;
} else if (*p <= 254) {
*integer = -(p[0] - 251) * 256 - p[1] - 108;
p += 2;
} else {
*integer = (p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4];
p += 5;
}
 
return p;
}
 
#if 0
/*
* The two tables that follow are generated using this perl code:
*/
 
@encoding = (
/* 0 */
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
/* 16 */
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
/* 32 */
"space", "exclam", "quotedbl", "numbersign",
"dollar", "percent", "ampersand", "quoteright",
"parenleft", "parenright", "asterisk", "plus",
"comma", "hyphen", "period", "slash",
/* 48 */
"zero", "one", "two", "three",
"four", "five", "six", "seven",
"eight", "nine", "colon", "semicolon",
"less", "equal", "greater", "question",
/* 64 */
"at", "A", "B", "C",
"D", "E", "F", "G",
"H", "I", "J", "K",
"L", "M", "N", "O",
/* 80 */
"P", "Q", "R", "S",
"T", "U", "V", "W",
"X", "Y", "Z", "bracketleft",
"backslash", "bracketright", "asciicircum", "underscore",
/* 96 */
"quoteleft", "a", "b", "c",
"d", "e", "f", "g",
"h", "i", "j", "k",
"l", "m", "n", "o",
/* 112 */
"p", "q", "r", "s",
"t", "u", "v", "w",
"x", "y", "z", "braceleft",
"bar", "braceright", "asciitilde", NULL,
/* 128 */
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
/* 144 */
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
/* 160 */
NULL, "exclamdown", "cent", "sterling",
"fraction", "yen", "florin", "section",
"currency", "quotesingle", "quotedblleft", "guillemotleft",
"guilsinglleft","guilsinglright","fi", "fl",
/* 176 */
NULL, "endash", "dagger", "daggerdbl",
"periodcentered",NULL, "paragraph", "bullet",
"quotesinglbase","quotedblbase","quotedblright","guillemotright",
"ellipsis", "perthousand", NULL, "questiondown",
/* 192 */
NULL, "grave", "acute", "circumflex",
"tilde", "macron", "breve", "dotaccent",
"dieresis", NULL, "ring", "cedilla",
NULL, "hungarumlaut", "ogonek", "caron",
/* 208 */
"emdash", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
/* 224 */
NULL, "AE", NULL, "ordfeminine",
NULL, NULL, NULL, NULL,
"Lslash", "Oslash", "OE", "ordmasculine",
NULL, NULL, NULL, NULL,
/* 240 */
NULL, "ae", NULL, NULL,
NULL, "dotlessi", NULL, NULL,
"lslash", "oslash", "oe", "germandbls",
NULL, NULL, NULL, NULL
);
 
print "static const char ps_standard_encoding_symbol[] = {\n";
$s = qq( "\\0");
for $sym (@encoding) {
if (! ($sym eq NULL)) {
$ss = qq( "$sym\\0");
if (length($s) + length($ss) > 78) {
print qq( $s\n);
$s = "";
}
$s .= $ss;
}
}
print qq( $s\n);
print "};\n\n";
print "static const int16_t ps_standard_encoding_offset[256] = {\n";
$offset = 1;
$s = qq();
for $sym (@encoding) {
if (! ($sym eq NULL)) {
$ss = qq( $offset/*$sym*/,);
$offset += length($sym) + 1;
} else {
$ss = qq( 0,);
}
if (length($s) + length($ss) > 78) {
print qq( $s\n);
$s = "";
}
$s .= $ss;
}
print qq( $s\n);
print "};\n";
exit;
#endif
 
static const char ps_standard_encoding_symbol[] = {
"\0" "space\0" "exclam\0" "quotedbl\0" "numbersign\0" "dollar\0" "percent\0"
"ampersand\0" "quoteright\0" "parenleft\0" "parenright\0" "asterisk\0"
"plus\0" "comma\0" "hyphen\0" "period\0" "slash\0" "zero\0" "one\0" "two\0"
"three\0" "four\0" "five\0" "six\0" "seven\0" "eight\0" "nine\0" "colon\0"
"semicolon\0" "less\0" "equal\0" "greater\0" "question\0" "at\0" "A\0" "B\0"
"C\0" "D\0" "E\0" "F\0" "G\0" "H\0" "I\0" "J\0" "K\0" "L\0" "M\0" "N\0" "O\0"
"P\0" "Q\0" "R\0" "S\0" "T\0" "U\0" "V\0" "W\0" "X\0" "Y\0" "Z\0"
"bracketleft\0" "backslash\0" "bracketright\0" "asciicircum\0" "underscore\0"
"quoteleft\0" "a\0" "b\0" "c\0" "d\0" "e\0" "f\0" "g\0" "h\0" "i\0" "j\0"
"k\0" "l\0" "m\0" "n\0" "o\0" "p\0" "q\0" "r\0" "s\0" "t\0" "u\0" "v\0" "w\0"
"x\0" "y\0" "z\0" "braceleft\0" "bar\0" "braceright\0" "asciitilde\0"
"exclamdown\0" "cent\0" "sterling\0" "fraction\0" "yen\0" "florin\0"
"section\0" "currency\0" "quotesingle\0" "quotedblleft\0" "guillemotleft\0"
"guilsinglleft\0" "guilsinglright\0" "fi\0" "fl\0" "endash\0" "dagger\0"
"daggerdbl\0" "periodcentered\0" "paragraph\0" "bullet\0" "quotesinglbase\0"
"quotedblbase\0" "quotedblright\0" "guillemotright\0" "ellipsis\0"
"perthousand\0" "questiondown\0" "grave\0" "acute\0" "circumflex\0" "tilde\0"
"macron\0" "breve\0" "dotaccent\0" "dieresis\0" "ring\0" "cedilla\0"
"hungarumlaut\0" "ogonek\0" "caron\0" "emdash\0" "AE\0" "ordfeminine\0"
"Lslash\0" "Oslash\0" "OE\0" "ordmasculine\0" "ae\0" "dotlessi\0" "lslash\0"
"oslash\0" "oe\0" "germandbls\0"
};
 
static const int16_t ps_standard_encoding_offset[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1/*space*/, 7/*exclam*/, 14/*quotedbl*/, 23/*numbersign*/,
34/*dollar*/, 41/*percent*/, 49/*ampersand*/, 59/*quoteright*/,
70/*parenleft*/, 80/*parenright*/, 91/*asterisk*/, 100/*plus*/, 105/*comma*/,
111/*hyphen*/, 118/*period*/, 125/*slash*/, 131/*zero*/, 136/*one*/,
140/*two*/, 144/*three*/, 150/*four*/, 155/*five*/, 160/*six*/, 164/*seven*/,
170/*eight*/, 176/*nine*/, 181/*colon*/, 187/*semicolon*/, 197/*less*/,
202/*equal*/, 208/*greater*/, 216/*question*/, 225/*at*/, 228/*A*/, 230/*B*/,
232/*C*/, 234/*D*/, 236/*E*/, 238/*F*/, 240/*G*/, 242/*H*/, 244/*I*/,
246/*J*/, 248/*K*/, 250/*L*/, 252/*M*/, 254/*N*/, 256/*O*/, 258/*P*/,
260/*Q*/, 262/*R*/, 264/*S*/, 266/*T*/, 268/*U*/, 270/*V*/, 272/*W*/,
274/*X*/, 276/*Y*/, 278/*Z*/, 280/*bracketleft*/, 292/*backslash*/,
302/*bracketright*/, 315/*asciicircum*/, 327/*underscore*/, 338/*quoteleft*/,
348/*a*/, 350/*b*/, 352/*c*/, 354/*d*/, 356/*e*/, 358/*f*/, 360/*g*/,
362/*h*/, 364/*i*/, 366/*j*/, 368/*k*/, 370/*l*/, 372/*m*/, 374/*n*/,
376/*o*/, 378/*p*/, 380/*q*/, 382/*r*/, 384/*s*/, 386/*t*/, 388/*u*/,
390/*v*/, 392/*w*/, 394/*x*/, 396/*y*/, 398/*z*/, 400/*braceleft*/,
410/*bar*/, 414/*braceright*/, 425/*asciitilde*/, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
436/*exclamdown*/, 447/*cent*/, 452/*sterling*/, 461/*fraction*/, 470/*yen*/,
474/*florin*/, 481/*section*/, 489/*currency*/, 498/*quotesingle*/,
510/*quotedblleft*/, 523/*guillemotleft*/, 537/*guilsinglleft*/,
551/*guilsinglright*/, 566/*fi*/, 569/*fl*/, 0, 572/*endash*/, 579/*dagger*/,
586/*daggerdbl*/, 596/*periodcentered*/, 0, 611/*paragraph*/, 621/*bullet*/,
628/*quotesinglbase*/, 643/*quotedblbase*/, 656/*quotedblright*/,
670/*guillemotright*/, 685/*ellipsis*/, 694/*perthousand*/, 0,
706/*questiondown*/, 0, 719/*grave*/, 725/*acute*/, 731/*circumflex*/,
742/*tilde*/, 748/*macron*/, 755/*breve*/, 761/*dotaccent*/, 771/*dieresis*/,
0, 780/*ring*/, 785/*cedilla*/, 0, 793/*hungarumlaut*/, 806/*ogonek*/,
813/*caron*/, 819/*emdash*/, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
826/*AE*/, 0, 829/*ordfeminine*/, 0, 0, 0, 0, 841/*Lslash*/, 848/*Oslash*/,
855/*OE*/, 858/*ordmasculine*/, 0, 0, 0, 0, 0, 871/*ae*/, 0, 0, 0,
874/*dotlessi*/, 0, 0, 883/*lslash*/, 890/*oslash*/, 897/*oe*/,
900/*germandbls*/, 0, 0, 0, 0,
};
 
#define ps_standard_encoding(index) ((index) ? ps_standard_encoding_symbol+ps_standard_encoding_offset[(index)] : NULL)
 
static cairo_status_t
use_standard_encoding_glyph (cairo_type1_font_subset_t *font, int index)
{
const char *glyph_name;
 
if (index < 0 || index > 255)
return CAIRO_STATUS_SUCCESS;
 
glyph_name = ps_standard_encoding(index);
if (glyph_name == NULL)
return CAIRO_STATUS_SUCCESS;
 
index = cairo_type1_font_subset_lookup_glyph (font,
glyph_name,
strlen(glyph_name));
if (index < 0)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
cairo_type1_font_subset_use_glyph (font, index);
 
return CAIRO_STATUS_SUCCESS;
}
 
#define TYPE1_CHARSTRING_COMMAND_ESCAPE (12)
#define TYPE1_CHARSTRING_COMMAND_SEAC (32 + 6)
 
static cairo_status_t
cairo_type1_font_subset_look_for_seac(cairo_type1_font_subset_t *font,
const char *name, int name_length,
const char *encrypted_charstring, int encrypted_charstring_length)
{
cairo_status_t status;
unsigned char *charstring;
const unsigned char *end;
const unsigned char *p;
int stack[5], sp, value;
int command;
 
charstring = malloc (encrypted_charstring_length);
if (unlikely (charstring == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
cairo_type1_font_subset_decrypt_charstring ((const unsigned char *)
encrypted_charstring,
encrypted_charstring_length,
charstring);
end = charstring + encrypted_charstring_length;
 
p = charstring + 4;
sp = 0;
 
while (p < end) {
if (*p < 32) {
command = *p++;
 
if (command == TYPE1_CHARSTRING_COMMAND_ESCAPE)
command = 32 + *p++;
 
switch (command) {
case TYPE1_CHARSTRING_COMMAND_SEAC:
/* The seac command takes five integer arguments. The
* last two are glyph indices into the PS standard
* encoding give the names of the glyphs that this
* glyph is composed from. All we need to do is to
* make sure those glyphs are present in the subset
* under their standard names. */
status = use_standard_encoding_glyph (font, stack[3]);
if (unlikely (status))
return status;
 
status = use_standard_encoding_glyph (font, stack[4]);
if (unlikely (status))
return status;
 
sp = 0;
break;
 
default:
sp = 0;
break;
}
} else {
/* integer argument */
p = cairo_type1_font_subset_decode_integer (p, &value);
if (sp < 5)
stack[sp++] = value;
}
}
 
free (charstring);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
write_used_glyphs (cairo_type1_font_subset_t *font,
const char *name, int name_length,
const char *charstring, int charstring_length)
{
cairo_status_t status;
char buffer[256];
int length;
 
length = snprintf (buffer, sizeof buffer,
"/%.*s %d %s ",
name_length, name, charstring_length, font->rd);
status = cairo_type1_font_subset_write_encrypted (font, buffer, length);
if (unlikely (status))
return status;
 
status = cairo_type1_font_subset_write_encrypted (font,
charstring,
charstring_length);
if (unlikely (status))
return status;
 
length = snprintf (buffer, sizeof buffer, "%s\n", font->nd);
status = cairo_type1_font_subset_write_encrypted (font, buffer, length);
if (unlikely (status))
return status;
 
return CAIRO_STATUS_SUCCESS;
}
 
typedef cairo_status_t (*glyph_func_t) (cairo_type1_font_subset_t *font,
const char *name, int name_length,
const char *charstring, int charstring_length);
 
static cairo_status_t
cairo_type1_font_subset_for_each_glyph (cairo_type1_font_subset_t *font,
const char *dict_start,
const char *dict_end,
glyph_func_t func,
const char **dict_out)
{
int charstring_length, name_length, glyph_index;
const char *p, *charstring, *name;
char *end;
 
/* We're looking at '/' in the name of the first glyph. The glyph
* definitions are on the form:
*
* /name 23 RD <23 binary bytes> ND
*
* or alternatively using -| and |- instead of RD and ND.
*
* We parse the glyph name and see if it is in the subset. If it
* is, we call the specified callback with the glyph name and
* glyph data, otherwise we just skip it. We need to parse
* through a glyph definition; we can't just find the next '/',
* since the binary data could contain a '/'.
*/
 
p = dict_start;
 
while (*p == '/') {
name = p + 1;
p = skip_token (p, dict_end);
name_length = p - name;
 
charstring_length = strtol (p, &end, 10);
if (p == end)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
/* Skip past -| or RD to binary data. There is exactly one space
* between the -| or RD token and the encrypted data, thus '+ 1'. */
charstring = skip_token (end, dict_end) + 1;
 
/* Skip binary data and |- or ND token. */
p = skip_token (charstring + charstring_length, dict_end);
while (p < dict_end && _cairo_isspace(*p))
p++;
 
/* In case any of the skip_token() calls above reached EOF, p will
* be equal to dict_end. */
if (p == dict_end)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
glyph_index = cairo_type1_font_subset_lookup_glyph (font,
name, name_length);
if (font->glyphs[glyph_index].subset_index >= 0) {
cairo_status_t status = func (font,
name, name_length,
charstring, charstring_length);
if (unlikely (status))
return status;
}
}
 
*dict_out = p;
 
return CAIRO_STATUS_SUCCESS;
}
 
 
static cairo_status_t
cairo_type1_font_subset_write_private_dict (cairo_type1_font_subset_t *font,
const char *name)
{
cairo_status_t status;
const char *p, *charstrings, *dict_start;
const char *closefile_token;
char buffer[32], *glyph_count_end;
int num_charstrings, length;
 
/* The private dict holds hint information, common subroutines and
* the actual glyph definitions (charstrings).
*
* FIXME: update this comment.
*
* What we do here is scan directly the /CharString token, which
* marks the beginning of the glyph definitions. Then we parse
* through the glyph definitions and weed out the glyphs not in
* our subset. Everything else before and after the glyph
* definitions is copied verbatim to the output. It might be
* worthwile to figure out which of the common subroutines are
* used by the glyphs in the subset and get rid of the rest. */
 
/* FIXME: The /Subrs array contains binary data and could
* conceivably have "/CharStrings" in it, so we might need to skip
* this more cleverly. */
charstrings = find_token (font->cleartext, font->cleartext_end, "/CharStrings");
if (charstrings == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
/* Scan past /CharStrings and the integer following it. */
p = charstrings + strlen ("/CharStrings");
num_charstrings = strtol (p, &glyph_count_end, 10);
if (p == glyph_count_end)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
/* Look for a '/' which marks the beginning of the first glyph
* definition. */
for (p = glyph_count_end; p < font->cleartext_end; p++)
if (*p == '/')
break;
if (p == font->cleartext_end)
return CAIRO_INT_STATUS_UNSUPPORTED;
dict_start = p;
 
status = cairo_type1_font_subset_get_glyph_names_and_widths (font);
if (unlikely (status))
return status;
 
/* Now that we have the private dictionary broken down in
* sections, do the first pass through the glyph definitions to
* figure out which subrs and othersubrs are use and which extra
* glyphs may be required by the seac operator. */
status = cairo_type1_font_subset_for_each_glyph (font,
dict_start,
font->cleartext_end,
cairo_type1_font_subset_look_for_seac,
&p);
if (unlikely (status))
return status;
 
closefile_token = find_token (p, font->cleartext_end, "closefile");
if (closefile_token == NULL)
return CAIRO_INT_STATUS_UNSUPPORTED;
 
status = cairo_type1_font_subset_get_glyph_names_and_widths (font);
if (unlikely (status))
return status;
 
/* We're ready to start outputting. First write the header,
* i.e. the public part of the font dict.*/
status = cairo_type1_font_subset_write_header (font, name);
if (unlikely (status))
return status;
 
font->base.header_size = _cairo_output_stream_get_position (font->output);
 
 
/* Start outputting the private dict. First output everything up
* to the /CharStrings token. */
status = cairo_type1_font_subset_write_encrypted (font, font->cleartext,
charstrings - font->cleartext);
if (unlikely (status))
return status;
 
/* Write out new charstring count */
length = snprintf (buffer, sizeof buffer,
"/CharStrings %d", font->num_glyphs);
status = cairo_type1_font_subset_write_encrypted (font, buffer, length);
if (unlikely (status))
return status;
 
/* Write out text between the charstring count and the first
* charstring definition */
status = cairo_type1_font_subset_write_encrypted (font, glyph_count_end,
dict_start - glyph_count_end);
if (unlikely (status))
return status;
 
/* Write out the charstring definitions for each of the glyphs in
* the subset. */
status = cairo_type1_font_subset_for_each_glyph (font,
dict_start,
font->cleartext_end,
write_used_glyphs,
&p);
if (unlikely (status))
return status;
 
/* Output what's left between the end of the glyph definitions and
* the end of the private dict to the output. */
status = cairo_type1_font_subset_write_encrypted (font, p,
closefile_token - p + strlen ("closefile") + 1);
if (unlikely (status))
return status;
 
if (font->hex_encode)
_cairo_output_stream_write (font->output, "\n", 1);
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_type1_font_subset_write_trailer(cairo_type1_font_subset_t *font)
{
const char *cleartomark_token;
int i;
static const char zeros[65] =
"0000000000000000000000000000000000000000000000000000000000000000\n";
 
 
for (i = 0; i < 8; i++)
_cairo_output_stream_write (font->output, zeros, sizeof zeros);
 
cleartomark_token = find_token (font->type1_data, font->type1_end, "cleartomark");
if (cleartomark_token) {
/* Some fonts have conditional save/restore around the entire
* font dict, so we need to retain whatever postscript code
* that may come after 'cleartomark'. */
 
_cairo_output_stream_write (font->output, cleartomark_token,
font->type1_end - cleartomark_token);
} else if (!font->eexec_segment_is_ascii) {
/* Fonts embedded in PDF may omit the fixed-content portion
* that includes the 'cleartomark' operator. Type 1 in PDF is
* always binary. */
 
_cairo_output_stream_printf (font->output, "cleartomark");
} else {
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
/* some fonts do not have a newline at the end of the last line */
_cairo_output_stream_printf (font->output, "\n");
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
type1_font_write (void *closure, const unsigned char *data, unsigned int length)
{
cairo_type1_font_subset_t *font = closure;
 
return _cairo_array_append_multiple (&font->contents, data, length);
}
 
static cairo_status_t
cairo_type1_font_subset_write (cairo_type1_font_subset_t *font,
const char *name)
{
cairo_status_t status;
 
status = cairo_type1_font_subset_find_segments (font);
if (unlikely (status))
return status;
 
status = cairo_type1_font_subset_decrypt_eexec_segment (font);
if (unlikely (status))
return status;
 
/* Determine which glyph definition delimiters to use. */
if (find_token (font->cleartext, font->cleartext_end, "/-|") != NULL) {
font->rd = "-|";
font->nd = "|-";
} else if (find_token (font->cleartext, font->cleartext_end, "/RD") != NULL) {
font->rd = "RD";
font->nd = "ND";
} else {
/* Don't know *what* kind of font this is... */
return CAIRO_INT_STATUS_UNSUPPORTED;
}
 
font->eexec_key = CAIRO_TYPE1_PRIVATE_DICT_KEY;
font->hex_column = 0;
 
status = cairo_type1_font_subset_write_private_dict (font, name);
if (unlikely (status))
return status;
 
font->base.data_size = _cairo_output_stream_get_position (font->output) -
font->base.header_size;
 
status = cairo_type1_font_subset_write_trailer (font);
if (unlikely (status))
return status;
 
font->base.trailer_size =
_cairo_output_stream_get_position (font->output) -
font->base.header_size - font->base.data_size;
 
return CAIRO_STATUS_SUCCESS;
}
 
static cairo_status_t
cairo_type1_font_subset_generate (void *abstract_font,
const char *name)
 
{
cairo_type1_font_subset_t *font = abstract_font;
cairo_ft_unscaled_font_t *ft_unscaled_font;
unsigned long ret;
cairo_status_t status;
 
ft_unscaled_font = (cairo_ft_unscaled_font_t *) font->base.unscaled_font;
font->face = _cairo_ft_unscaled_font_lock_face (ft_unscaled_font);
if (unlikely (font->face == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
 
font->type1_length = font->face->stream->size;
font->type1_data = malloc (font->type1_length);
if (unlikely (font->type1_data == NULL)) {
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
goto fail;
}
 
if (font->face->stream->read != NULL) {
/* Note that read() may be implemented as a macro, thanks POSIX!, so we
* need to wrap the following usage in parentheses in order to
* disambiguate it for the pre-processor - using the verbose function
* pointer dereference for clarity.
*/
ret = (* font->face->stream->read) (font->face->stream, 0,
(unsigned char *) font->type1_data,
font->type1_length);
if (ret != font->type1_length) {
status = _cairo_error (CAIRO_STATUS_READ_ERROR);
goto fail;
}
} else {
memcpy (font->type1_data,
font->face->stream->base, font->type1_length);
}
 
status = _cairo_array_grow_by (&font->contents, 4096);
if (unlikely (status))
goto fail;
 
font->output = _cairo_output_stream_create (type1_font_write, NULL, font);
if (unlikely ((status = font->output->status)))
goto fail;
 
status = cairo_type1_font_subset_write (font, name);
if (unlikely (status))
goto fail;
 
font->base.data = _cairo_array_index (&font->contents, 0);
 
fail:
_cairo_ft_unscaled_font_unlock_face (ft_unscaled_font);
 
return status;
}
 
static cairo_status_t
_cairo_type1_font_subset_fini (cairo_type1_font_subset_t *font)
{
cairo_status_t status = CAIRO_STATUS_SUCCESS;
unsigned int i;
 
/* If the subset generation failed, some of the pointers below may
* be NULL depending on at which point the error occurred. */
 
_cairo_array_fini (&font->contents);
 
free (font->type1_data);
if (font->glyphs != NULL) {
for (i = 0; i < font->base.num_glyphs; i++)
free (font->glyphs[i].name);
}
 
_cairo_unscaled_font_destroy (font->base.unscaled_font);
 
if (font->output != NULL)
status = _cairo_output_stream_destroy (font->output);
 
if (font->base.base_font)
free (font->base.base_font);
free (font->glyphs);
 
return status;
}
 
cairo_status_t
_cairo_type1_subset_init (cairo_type1_subset_t *type1_subset,
const char *name,
cairo_scaled_font_subset_t *scaled_font_subset,
cairo_bool_t hex_encode)
{
cairo_type1_font_subset_t font;
cairo_status_t status, status_ignored;
unsigned long parent_glyph, length;
unsigned int i;
cairo_unscaled_font_t *unscaled_font;
char buf[30];
 
/* XXX: Need to fix this to work with a general cairo_unscaled_font_t. */
if (!_cairo_scaled_font_is_ft (scaled_font_subset->scaled_font))
return CAIRO_INT_STATUS_UNSUPPORTED;
 
if (_cairo_ft_scaled_font_is_vertical (scaled_font_subset->scaled_font))
return CAIRO_INT_STATUS_UNSUPPORTED;
 
unscaled_font = _cairo_ft_scaled_font_get_unscaled_font (scaled_font_subset->scaled_font);
 
status = _cairo_type1_font_subset_init (&font, unscaled_font, hex_encode);
if (unlikely (status))
return status;
 
for (i = 0; i < scaled_font_subset->num_glyphs; i++) {
parent_glyph = scaled_font_subset->glyphs[i];
cairo_type1_font_subset_use_glyph (&font, parent_glyph);
}
 
status = cairo_type1_font_subset_generate (&font, name);
if (unlikely (status))
goto fail1;
 
if (font.base.base_font) {
type1_subset->base_font = strdup (font.base.base_font);
} else {
snprintf(buf, sizeof (buf), "CairoFont-%u-%u",
scaled_font_subset->font_id, scaled_font_subset->subset_id);
type1_subset->base_font = strdup (buf);
}
if (unlikely (type1_subset->base_font == NULL))
goto fail1;
 
type1_subset->widths = calloc (sizeof (double), font.num_glyphs);
if (unlikely (type1_subset->widths == NULL))
goto fail2;
for (i = 0; i < font.base.num_glyphs; i++) {
if (font.glyphs[i].subset_index < 0)
continue;
type1_subset->widths[font.glyphs[i].subset_index] =
font.glyphs[i].width;
}
 
type1_subset->x_min = font.base.x_min;
type1_subset->y_min = font.base.y_min;
type1_subset->x_max = font.base.x_max;
type1_subset->y_max = font.base.y_max;
type1_subset->ascent = font.base.ascent;
type1_subset->descent = font.base.descent;
 
length = font.base.header_size +
font.base.data_size +
font.base.trailer_size;
type1_subset->data = malloc (length);
if (unlikely (type1_subset->data == NULL))
goto fail3;
 
memcpy (type1_subset->data,
_cairo_array_index (&font.contents, 0), length);
 
type1_subset->header_length = font.base.header_size;
type1_subset->data_length = font.base.data_size;
type1_subset->trailer_length = font.base.trailer_size;
 
return _cairo_type1_font_subset_fini (&font);
 
fail3:
free (type1_subset->widths);
fail2:
free (type1_subset->base_font);
fail1:
status_ignored = _cairo_type1_font_subset_fini (&font);
 
return status;
}
 
void
_cairo_type1_subset_fini (cairo_type1_subset_t *subset)
{
free (subset->base_font);
free (subset->widths);
free (subset->data);
}
 
cairo_bool_t
_cairo_type1_scaled_font_is_type1 (cairo_scaled_font_t *scaled_font)
{
cairo_ft_unscaled_font_t *unscaled;
FT_Face face;
PS_FontInfoRec font_info;
cairo_bool_t is_type1 = FALSE;
 
if (!_cairo_scaled_font_is_ft (scaled_font))
return FALSE;
unscaled = (cairo_ft_unscaled_font_t *) _cairo_ft_scaled_font_get_unscaled_font (scaled_font);
face = _cairo_ft_unscaled_font_lock_face (unscaled);
if (!face)
return FALSE;
 
if (FT_Get_PS_Font_Info(face, &font_info) == 0)
is_type1 = TRUE;
 
/* OpenType/CFF fonts also have a PS_FontInfoRec */
#if HAVE_FT_LOAD_SFNT_TABLE
if (FT_IS_SFNT (face))
is_type1 = FALSE;
#endif
 
_cairo_ft_unscaled_font_unlock_face (unscaled);
 
return is_type1;
}
 
#endif /* CAIRO_HAS_FT_FONT */
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/cairo/src/cairo-type3-glyph-surface.c
0,0 → 1,563
/* -*- Mode: c; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 8; -*- */
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2008 Adrian Johnson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Adrian Johnson.
*
* Contributor(s):
* Adrian Johnson <ajohnson@redneon.com>
*/
 
#include "cairoint.h"
 
#if CAIRO_HAS_FONT_SUBSET
 
#include "cairo-type3-glyph-surface-private.h"
#include "cairo-output-stream-private.h"
#include "cairo-recording-surface-private.h"
#include "cairo-analysis-surface-private.h"
#include "cairo-error-private.h"
#include "cairo-surface-clipper-private.h"
 
static const cairo_surface_backend_t cairo_type3_glyph_surface_backend;
 
static cairo_status_t
_cairo_type3_glyph_surface_clipper_intersect_clip_path (cairo_surface_clipper_t *clipper,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_antialias_t antialias)
{
cairo_type3_glyph_surface_t *surface = cairo_container_of (clipper,
cairo_type3_glyph_surface_t,
clipper);
 
if (path == NULL) {
_cairo_output_stream_printf (surface->stream, "Q q\n");
return CAIRO_STATUS_SUCCESS;
}
 
return _cairo_pdf_operators_clip (&surface->pdf_operators,
path,
fill_rule);
}
 
cairo_surface_t *
_cairo_type3_glyph_surface_create (cairo_scaled_font_t *scaled_font,
cairo_output_stream_t *stream,
cairo_type3_glyph_surface_emit_image_t emit_image,
cairo_scaled_font_subsets_t *font_subsets)
{
cairo_type3_glyph_surface_t *surface;
cairo_matrix_t invert_y_axis;
 
if (unlikely (stream != NULL && stream->status))
return _cairo_surface_create_in_error (stream->status);
 
surface = malloc (sizeof (cairo_type3_glyph_surface_t));
if (unlikely (surface == NULL))
return _cairo_surface_create_in_error (_cairo_error (CAIRO_STATUS_NO_MEMORY));
 
_cairo_surface_init (&surface->base,
&cairo_type3_glyph_surface_backend,
NULL, /* device */
CAIRO_CONTENT_COLOR_ALPHA);
 
surface->scaled_font = scaled_font;
surface->stream = stream;
surface->emit_image = emit_image;
 
/* Setup the transform from the user-font device space to Type 3
* font space. The Type 3 font space is defined by the FontMatrix
* entry in the Type 3 dictionary. In the PDF backend this is an
* identity matrix. */
surface->cairo_to_pdf = scaled_font->scale_inverse;
cairo_matrix_init_scale (&invert_y_axis, 1, -1);
cairo_matrix_multiply (&surface->cairo_to_pdf, &surface->cairo_to_pdf, &invert_y_axis);
 
_cairo_pdf_operators_init (&surface->pdf_operators,
surface->stream,
&surface->cairo_to_pdf,
font_subsets);
 
_cairo_surface_clipper_init (&surface->clipper,
_cairo_type3_glyph_surface_clipper_intersect_clip_path);
 
return &surface->base;
}
 
static cairo_status_t
_cairo_type3_glyph_surface_emit_image (cairo_type3_glyph_surface_t *surface,
cairo_image_surface_t *image,
cairo_matrix_t *image_matrix)
{
cairo_status_t status;
 
/* The only image type supported by Type 3 fonts are 1-bit masks */
image = _cairo_image_surface_coerce_to_format (image, CAIRO_FORMAT_A1);
status = image->base.status;
if (unlikely (status))
return status;
 
_cairo_output_stream_printf (surface->stream,
"q %f %f %f %f %f %f cm\n",
image_matrix->xx,
image_matrix->xy,
image_matrix->yx,
image_matrix->yy,
image_matrix->x0,
image_matrix->y0);
 
status = surface->emit_image (image, surface->stream);
cairo_surface_destroy (&image->base);
 
_cairo_output_stream_printf (surface->stream,
"Q\n");
 
return status;
}
 
static cairo_status_t
_cairo_type3_glyph_surface_emit_image_pattern (cairo_type3_glyph_surface_t *surface,
cairo_image_surface_t *image,
const cairo_matrix_t *pattern_matrix)
{
cairo_matrix_t mat, upside_down;
cairo_status_t status;
 
if (image->width == 0 || image->height == 0)
return CAIRO_STATUS_SUCCESS;
 
mat = *pattern_matrix;
 
/* Get the pattern space to user space matrix */
status = cairo_matrix_invert (&mat);
 
/* cairo_pattern_set_matrix ensures the matrix is invertible */
assert (status == CAIRO_STATUS_SUCCESS);
 
/* Make this a pattern space to Type 3 font space matrix */
cairo_matrix_multiply (&mat, &mat, &surface->cairo_to_pdf);
 
/* PDF images are in a 1 unit by 1 unit image space. Turn the 1 by
* 1 image upside down to convert to flip the Y-axis going from
* cairo to PDF. Then scale the image up to the required size. */
cairo_matrix_scale (&mat, image->width, image->height);
cairo_matrix_init (&upside_down, 1, 0, 0, -1, 0, 1);
cairo_matrix_multiply (&mat, &upside_down, &mat);
 
return _cairo_type3_glyph_surface_emit_image (surface, image, &mat);
}
 
static cairo_status_t
_cairo_type3_glyph_surface_finish (void *abstract_surface)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
 
return _cairo_pdf_operators_fini (&surface->pdf_operators);
}
 
static cairo_int_status_t
_cairo_type3_glyph_surface_paint (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_clip_t *clip)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
const cairo_surface_pattern_t *pattern;
cairo_image_surface_t *image;
void *image_extra;
cairo_status_t status;
 
if (source->type != CAIRO_PATTERN_TYPE_SURFACE)
return CAIRO_INT_STATUS_IMAGE_FALLBACK;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
pattern = (const cairo_surface_pattern_t *) source;
status = _cairo_surface_acquire_source_image (pattern->surface,
&image, &image_extra);
if (unlikely (status))
goto fail;
 
status = _cairo_type3_glyph_surface_emit_image_pattern (surface,
image,
&pattern->base.matrix);
 
fail:
_cairo_surface_release_source_image (pattern->surface, image, image_extra);
 
return status;
}
 
static cairo_int_status_t
_cairo_type3_glyph_surface_mask (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
const cairo_pattern_t *mask,
cairo_clip_t *clip)
{
return _cairo_type3_glyph_surface_paint (abstract_surface,
op, mask,
clip);
}
 
static cairo_int_status_t
_cairo_type3_glyph_surface_stroke (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_path_fixed_t *path,
const cairo_stroke_style_t *style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_antialias_t antialias,
cairo_clip_t *clip)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
cairo_int_status_t status;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
return _cairo_pdf_operators_stroke (&surface->pdf_operators,
path,
style,
ctm,
ctm_inverse);
}
 
static cairo_int_status_t
_cairo_type3_glyph_surface_fill (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_antialias_t antialias,
cairo_clip_t *clip)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
cairo_int_status_t status;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
return _cairo_pdf_operators_fill (&surface->pdf_operators,
path,
fill_rule);
}
 
static cairo_int_status_t
_cairo_type3_glyph_surface_show_glyphs (void *abstract_surface,
cairo_operator_t op,
const cairo_pattern_t *source,
cairo_glyph_t *glyphs,
int num_glyphs,
cairo_scaled_font_t *scaled_font,
cairo_clip_t *clip,
int *remaining_glyphs)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
cairo_int_status_t status;
cairo_scaled_font_t *font;
cairo_matrix_t new_ctm, invert_y_axis;
 
status = _cairo_surface_clipper_set_clip (&surface->clipper, clip);
if (unlikely (status))
return status;
 
cairo_matrix_init_scale (&invert_y_axis, 1, -1);
cairo_matrix_multiply (&new_ctm, &invert_y_axis, &scaled_font->ctm);
cairo_matrix_multiply (&new_ctm, &surface->cairo_to_pdf, &new_ctm);
font = cairo_scaled_font_create (scaled_font->font_face,
&scaled_font->font_matrix,
&new_ctm,
&scaled_font->options);
if (unlikely (font->status))
return font->status;
 
status = _cairo_pdf_operators_show_text_glyphs (&surface->pdf_operators,
NULL, 0,
glyphs, num_glyphs,
NULL, 0,
FALSE,
font);
 
cairo_scaled_font_destroy (font);
 
return status;
}
 
static const cairo_surface_backend_t cairo_type3_glyph_surface_backend = {
CAIRO_INTERNAL_SURFACE_TYPE_TYPE3_GLYPH,
NULL, /* _cairo_type3_glyph_surface_create_similar */
_cairo_type3_glyph_surface_finish,
NULL, /* acquire_source_image */
NULL, /* release_source_image */
NULL, /* acquire_dest_image */
NULL, /* release_dest_image */
NULL, /* clone_similar */
NULL, /* composite */
NULL, /* fill_rectangles */
NULL, /* composite_trapezoids */
NULL, /* create_span_renderer */
NULL, /* check_span_renderer */
NULL, /* cairo_type3_glyph_surface_copy_page */
NULL, /* _cairo_type3_glyph_surface_show_page */
NULL, /* _cairo_type3_glyph_surface_get_extents */
NULL, /* old_show_glyphs */
NULL, /* _cairo_type3_glyph_surface_get_font_options */
NULL, /* flush */
NULL, /* mark_dirty_rectangle */
NULL, /* scaled_font_fini */
NULL, /* scaled_glyph_fini */
_cairo_type3_glyph_surface_paint,
_cairo_type3_glyph_surface_mask,
_cairo_type3_glyph_surface_stroke,
_cairo_type3_glyph_surface_fill,
_cairo_type3_glyph_surface_show_glyphs,
NULL, /* snapshot */
};
 
static void
_cairo_type3_glyph_surface_set_stream (cairo_type3_glyph_surface_t *surface,
cairo_output_stream_t *stream)
{
surface->stream = stream;
_cairo_pdf_operators_set_stream (&surface->pdf_operators, stream);
}
 
static cairo_status_t
_cairo_type3_glyph_surface_emit_fallback_image (cairo_type3_glyph_surface_t *surface,
unsigned long glyph_index)
{
cairo_scaled_glyph_t *scaled_glyph;
cairo_status_t status;
cairo_image_surface_t *image;
cairo_matrix_t mat;
double x, y;
 
status = _cairo_scaled_glyph_lookup (surface->scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS |
CAIRO_SCALED_GLYPH_INFO_SURFACE,
&scaled_glyph);
if (unlikely (status))
return status;
 
image = scaled_glyph->surface;
if (image->width == 0 || image->height == 0)
return CAIRO_STATUS_SUCCESS;
 
x = _cairo_fixed_to_double (scaled_glyph->bbox.p1.x);
y = _cairo_fixed_to_double (scaled_glyph->bbox.p2.y);
mat.xx = image->width;
mat.xy = 0;
mat.yx = 0;
mat.yy = image->height;
mat.x0 = x;
mat.y0 = y;
cairo_matrix_multiply (&mat, &mat, &surface->scaled_font->scale_inverse);
mat.y0 *= -1;
 
return _cairo_type3_glyph_surface_emit_image (surface, image, &mat);
}
 
void
_cairo_type3_glyph_surface_set_font_subsets_callback (void *abstract_surface,
cairo_pdf_operators_use_font_subset_t use_font_subset,
void *closure)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
 
if (unlikely (surface->base.status))
return;
 
_cairo_pdf_operators_set_font_subsets_callback (&surface->pdf_operators,
use_font_subset,
closure);
}
 
cairo_status_t
_cairo_type3_glyph_surface_analyze_glyph (void *abstract_surface,
unsigned long glyph_index)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
cairo_scaled_glyph_t *scaled_glyph;
cairo_status_t status, status2;
cairo_output_stream_t *null_stream;
 
if (unlikely (surface->base.status))
return surface->base.status;
 
null_stream = _cairo_null_stream_create ();
if (unlikely (null_stream->status))
return null_stream->status;
 
_cairo_type3_glyph_surface_set_stream (surface, null_stream);
 
_cairo_scaled_font_freeze_cache (surface->scaled_font);
status = _cairo_scaled_glyph_lookup (surface->scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_RECORDING_SURFACE,
&scaled_glyph);
 
if (_cairo_status_is_error (status))
goto cleanup;
 
if (status == CAIRO_INT_STATUS_UNSUPPORTED) {
status = CAIRO_STATUS_SUCCESS;
goto cleanup;
}
 
status = _cairo_recording_surface_replay (scaled_glyph->recording_surface,
&surface->base);
if (unlikely (status))
goto cleanup;
 
status = _cairo_pdf_operators_flush (&surface->pdf_operators);
if (status == CAIRO_INT_STATUS_IMAGE_FALLBACK)
status = CAIRO_STATUS_SUCCESS;
 
cleanup:
_cairo_scaled_font_thaw_cache (surface->scaled_font);
 
status2 = _cairo_output_stream_destroy (null_stream);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
return status;
}
 
cairo_status_t
_cairo_type3_glyph_surface_emit_glyph (void *abstract_surface,
cairo_output_stream_t *stream,
unsigned long glyph_index,
cairo_box_t *bbox,
double *width)
{
cairo_type3_glyph_surface_t *surface = abstract_surface;
cairo_scaled_glyph_t *scaled_glyph;
cairo_status_t status, status2;
double x_advance, y_advance;
cairo_matrix_t font_matrix_inverse;
 
if (unlikely (surface->base.status))
return surface->base.status;
 
_cairo_type3_glyph_surface_set_stream (surface, stream);
 
_cairo_scaled_font_freeze_cache (surface->scaled_font);
status = _cairo_scaled_glyph_lookup (surface->scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS |
CAIRO_SCALED_GLYPH_INFO_RECORDING_SURFACE,
&scaled_glyph);
if (status == CAIRO_INT_STATUS_UNSUPPORTED) {
status = _cairo_scaled_glyph_lookup (surface->scaled_font,
glyph_index,
CAIRO_SCALED_GLYPH_INFO_METRICS,
&scaled_glyph);
if (status == CAIRO_STATUS_SUCCESS)
status = CAIRO_INT_STATUS_IMAGE_FALLBACK;
}
if (_cairo_status_is_error (status)) {
_cairo_scaled_font_thaw_cache (surface->scaled_font);
return status;
}
 
x_advance = scaled_glyph->metrics.x_advance;
y_advance = scaled_glyph->metrics.y_advance;
font_matrix_inverse = surface->scaled_font->font_matrix;
status2 = cairo_matrix_invert (&font_matrix_inverse);
 
/* The invertability of font_matrix is tested in
* pdf_operators_show_glyphs before any glyphs are mapped to the
* subset. */
assert (status2 == CAIRO_STATUS_SUCCESS);
 
cairo_matrix_transform_distance (&font_matrix_inverse, &x_advance, &y_advance);
*width = x_advance;
 
*bbox = scaled_glyph->bbox;
_cairo_matrix_transform_bounding_box_fixed (&surface->scaled_font->scale_inverse,
bbox, NULL);
 
_cairo_output_stream_printf (surface->stream,
"%f 0 %f %f %f %f d1\n",
x_advance,
_cairo_fixed_to_double (bbox->p1.x),
- _cairo_fixed_to_double (bbox->p2.y),
_cairo_fixed_to_double (bbox->p2.x),
- _cairo_fixed_to_double (bbox->p1.y));
 
if (status == CAIRO_STATUS_SUCCESS) {
cairo_output_stream_t *mem_stream;
 
mem_stream = _cairo_memory_stream_create ();
status = mem_stream->status;
if (unlikely (status))
goto FAIL;
 
_cairo_type3_glyph_surface_set_stream (surface, mem_stream);
 
_cairo_output_stream_printf (surface->stream, "q\n");
status = _cairo_recording_surface_replay (scaled_glyph->recording_surface,
&surface->base);
 
status2 = _cairo_pdf_operators_flush (&surface->pdf_operators);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
 
_cairo_output_stream_printf (surface->stream, "Q\n");
 
_cairo_type3_glyph_surface_set_stream (surface, stream);
if (status == CAIRO_STATUS_SUCCESS)
_cairo_memory_stream_copy (mem_stream, stream);
 
status2 = _cairo_output_stream_destroy (mem_stream);
if (status == CAIRO_STATUS_SUCCESS)
status = status2;
}
 
if (status == CAIRO_INT_STATUS_IMAGE_FALLBACK)
status = _cairo_type3_glyph_surface_emit_fallback_image (surface, glyph_index);
 
FAIL:
_cairo_scaled_font_thaw_cache (surface->scaled_font);
 
return status;
}
 
#endif /* CAIRO_HAS_FONT_SUBSET */
/programs/develop/libraries/libpng/LICENSE
0,0 → 1,111
 
This copy of the libpng notices is provided for your convenience. In case of
any discrepancy between this copy and the notices in the file png.h that is
included in the libpng distribution, the latter shall prevail.
 
COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
 
If you modify libpng you may insert additional notices immediately following
this sentence.
 
This code is released under the libpng license.
 
libpng versions 1.2.6, August 15, 2004, through 1.5.1, February 3, 2011, are
Copyright (c) 2004, 2006-2011 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-1.2.5
with the following individual added to the list of Contributing Authors
 
Cosmin Truta
 
libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are
Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-1.0.6
with the following individuals added to the list of Contributing Authors
 
Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant
 
and with the following additions to the disclaimer:
 
There is no warranty against interference with your enjoyment of the
library or against infringement. There is no warranty that our
efforts or the library will fulfill any of your particular purposes
or needs. This library is provided with all faults, and the entire
risk of satisfactory quality, performance, accuracy, and effort is with
the user.
 
libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
Copyright (c) 1998, 1999 Glenn Randers-Pehrson, and are
distributed according to the same disclaimer and license as libpng-0.96,
with the following individuals added to the list of Contributing Authors:
 
Tom Lane
Glenn Randers-Pehrson
Willem van Schaik
 
libpng versions 0.89, June 1996, through 0.96, May 1997, are
Copyright (c) 1996, 1997 Andreas Dilger
Distributed according to the same disclaimer and license as libpng-0.88,
with the following individuals added to the list of Contributing Authors:
 
John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner
 
libpng versions 0.5, May 1995, through 0.88, January 1996, are
Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
 
For the purposes of this copyright and license, "Contributing Authors"
is defined as the following set of individuals:
 
Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt
Tim Wegner
 
The PNG Reference Library is supplied "AS IS". The Contributing Authors
and Group 42, Inc. disclaim all warranties, expressed or implied,
including, without limitation, the warranties of merchantability and of
fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary,
or consequential damages, which may result from the use of the PNG
Reference Library, even if advised of the possibility of such damage.
 
Permission is hereby granted to use, copy, modify, and distribute this
source code, or portions hereof, for any purpose, without fee, subject
to the following restrictions:
 
1. The origin of this source code must not be misrepresented.
 
2. Altered versions must be plainly marked as such and must not
be misrepresented as being the original source.
 
3. This Copyright notice may not be removed or altered from any
source or altered source distribution.
 
The Contributing Authors and Group 42, Inc. specifically permit, without
fee, and encourage the use of this source code as a component to
supporting the PNG file format in commercial products. If you use this
source code in a product, acknowledgment is not required but would be
appreciated.
 
 
A "png_get_copyright" function is available, for convenient use in "about"
boxes and the like:
 
printf("%s",png_get_copyright(NULL));
 
Also, the PNG logo (in PNG format, of course) is supplied in the
files "pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31).
 
Libpng is OSI Certified Open Source Software. OSI Certified Open Source is a
certification mark of the Open Source Initiative.
 
Glenn Randers-Pehrson
glennrp at users.sourceforge.net
February 3, 2011
/programs/develop/libraries/libpng/Makefile
0,0 → 1,44
 
LIBRARY= libpng
 
CC=gcc
CPP=gcc -E
AR= ar rc
 
CFLAGS = -c -O2 -fomit-frame-pointer
 
DEFS = -DHAVE_CONFIG_H
 
LIBPNG_DEFINES = -DPNG_CONFIGURE_LIBPNG
 
DEFINES= $(DEFS) $(LIBPNG_DEFINES)
 
INCLUDES= -I../newlib/include -I../zlib
 
 
SOURCES = png.c pngerror.c pngget.c pngmem.c pngpread.c \
pngread.c pngrio.c pngrtran.c pngrutil.c \
pngset.c pngtrans.c pngwio.c pngwrite.c \
pngwtran.c pngwutil.c png.h pngconf.h \
pngdebug.h pnginfo.h pngpriv.h pngstruct.h
 
 
OBJECTS = $(patsubst %.c, %.o, $(SOURCES))
 
 
# targets
 
 
all:$(LIBRARY).a
 
 
$(LIBRARY).a: $(OBJECTS) Makefile
ar cvrs $(LIBRARY).a $(OBJECTS)
 
 
%.o : %.c Makefile
$(CC) $(CFLAGS) $(DEFINES) $(INCLUDES) -o $@ $<
 
 
 
/programs/develop/libraries/libpng/config.h
0,0 → 1,87
/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader. */
 
/* Define to 1 if you have the <dlfcn.h> header file. */
#define HAVE_DLFCN_H 1
 
/* Define to 1 if you have the <inttypes.h> header file. */
#define HAVE_INTTYPES_H 1
 
/* Define to 1 if you have the `m' library (-lm). */
#define HAVE_LIBM 1
 
/* Define to 1 if you have the `z' library (-lz). */
#define HAVE_LIBZ 1
 
/* Define to 1 if you have the <malloc.h> header file. */
#define HAVE_MALLOC_H 1
 
/* Define to 1 if you have the <memory.h> header file. */
#define HAVE_MEMORY_H 1
 
/* Define to 1 if you have the `memset' function. */
#define HAVE_MEMSET 1
 
/* Define to 1 if you have the `pow' function. */
/* #undef HAVE_POW */
 
/* Define to 1 if you have the <stdint.h> header file. */
#define HAVE_STDINT_H 1
 
/* Define to 1 if you have the <stdlib.h> header file. */
#define HAVE_STDLIB_H 1
 
/* Define to 1 if you have the <strings.h> header file. */
#define HAVE_STRINGS_H 1
 
/* Define to 1 if you have the <string.h> header file. */
#define HAVE_STRING_H 1
 
/* Define to 1 if you have the <sys/stat.h> header file. */
#define HAVE_SYS_STAT_H 1
 
/* Define to 1 if you have the <sys/types.h> header file. */
#define HAVE_SYS_TYPES_H 1
 
/* Define to 1 if you have the <unistd.h> header file. */
#define HAVE_UNISTD_H 1
 
/* Define to the sub-directory in which libtool stores uninstalled libraries.
*/
#define LT_OBJDIR ".libs/"
 
/* Name of package */
#define PACKAGE "libpng"
 
/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT "png-mng-implement@lists.sourceforge.net"
 
/* Define to the full name of this package. */
#define PACKAGE_NAME "libpng"
 
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "libpng 1.5.1"
 
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "libpng"
 
/* Define to the home page for this package. */
#define PACKAGE_URL ""
 
/* Define to the version of this package. */
#define PACKAGE_VERSION "1.5.1"
 
/* Define to 1 if you have the ANSI C header files. */
#define STDC_HEADERS 1
 
/* Define to 1 if your <sys/time.h> declares `struct tm'. */
/* #undef TM_IN_SYS_TIME */
 
/* Version number of package */
#define VERSION "1.5.1"
 
/* Define to empty if `const' does not conform to ANSI C. */
/* #undef const */
 
/* Define to `unsigned int' if <sys/types.h> does not define. */
/* #undef size_t */
/programs/develop/libraries/libpng/libpng-manual.txt
0,0 → 1,4136
libpng-manual.txt - A description on how to use and modify libpng
 
libpng version 1.5.1 - February 3, 2011
Updated and distributed by Glenn Randers-Pehrson
<glennrp at users.sourceforge.net>
Copyright (c) 1998-2011 Glenn Randers-Pehrson
 
This document is released under the libpng license.
For conditions of distribution and use, see the disclaimer
and license in png.h
 
Based on:
 
libpng versions 0.97, January 1998, through 1.5.1 - February 3, 2011
Updated and distributed by Glenn Randers-Pehrson
Copyright (c) 1998-2011 Glenn Randers-Pehrson
 
libpng 1.0 beta 6 version 0.96 May 28, 1997
Updated and distributed by Andreas Dilger
Copyright (c) 1996, 1997 Andreas Dilger
 
libpng 1.0 beta 2 - version 0.88 January 26, 1996
For conditions of distribution and use, see copyright
notice in png.h. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.
 
Updated/rewritten per request in the libpng FAQ
Copyright (c) 1995, 1996 Frank J. T. Wojcik
December 18, 1995 & January 20, 1996
 
I. Introduction
 
This file describes how to use and modify the PNG reference library
(known as libpng) for your own use. There are five sections to this
file: introduction, structures, reading, writing, and modification and
configuration notes for various special platforms. In addition to this
file, example.c is a good starting point for using the library, as
it is heavily commented and should include everything most people
will need. We assume that libpng is already installed; see the
INSTALL file for instructions on how to install libpng.
 
For examples of libpng usage, see the files "example.c", "pngtest.c",
and the files in the "contrib" directory, all of which are included in
the libpng distribution.
 
Libpng was written as a companion to the PNG specification, as a way
of reducing the amount of time and effort it takes to support the PNG
file format in application programs.
 
The PNG specification (second edition), November 2003, is available as
a W3C Recommendation and as an ISO Standard (ISO/IEC 15948:2003 (E)) at
<http://www.w3.org/TR/2003/REC-PNG-20031110/
The W3C and ISO documents have identical technical content.
 
The PNG-1.2 specification is available at
<http://www.libpng.org/pub/png/documents/>. It is technically equivalent
to the PNG specification (second edition) but has some additional material.
 
The PNG-1.0 specification is available
as RFC 2083 <http://www.libpng.org/pub/png/documents/> and as a
W3C Recommendation <http://www.w3.org/TR/REC.png.html>.
 
Some additional chunks are described in the special-purpose public chunks
documents at <http://www.libpng.org/pub/png/documents/>.
 
Other information
about PNG, and the latest version of libpng, can be found at the PNG home
page, <http://www.libpng.org/pub/png/>.
 
Most users will not have to modify the library significantly; advanced
users may want to modify it more. All attempts were made to make it as
complete as possible, while keeping the code easy to understand.
Currently, this library only supports C. Support for other languages
is being considered.
 
Libpng has been designed to handle multiple sessions at one time,
to be easily modifiable, to be portable to the vast majority of
machines (ANSI, K&R, 16-, 32-, and 64-bit) available, and to be easy
to use. The ultimate goal of libpng is to promote the acceptance of
the PNG file format in whatever way possible. While there is still
work to be done (see the TODO file), libpng should cover the
majority of the needs of its users.
 
Libpng uses zlib for its compression and decompression of PNG files.
Further information about zlib, and the latest version of zlib, can
be found at the zlib home page, <http://www.info-zip.org/pub/infozip/zlib/>.
The zlib compression utility is a general purpose utility that is
useful for more than PNG files, and can be used without libpng.
See the documentation delivered with zlib for more details.
You can usually find the source files for the zlib utility wherever you
find the libpng source files.
 
Libpng is thread safe, provided the threads are using different
instances of the structures. Each thread should have its own
png_struct and png_info instances, and thus its own image.
Libpng does not protect itself against two threads using the
same instance of a structure.
 
II. Structures
 
There are two main structures that are important to libpng, png_struct
and png_info. Both are internal structures that are no longer exposed
in the libpng interface (as of libpng 1.5.0).
 
The png_info structure is designed to provide information about the
PNG file. At one time, the fields of png_info were intended to be
directly accessible to the user. However, this tended to cause problems
with applications using dynamically loaded libraries, and as a result
a set of interface functions for png_info (the png_get_*() and png_set_*()
functions) was developed.
 
The png_struct structure is the object used by the library to decode a
single image. As of 1.5.0 this structure is also not exposed.
 
Almost all libpng APIs require a pointer to a png_struct as the first argument.
Many (in particular the png_set and png_get APIs) also require a pointer
to png_info as the second argument. Some application visible macros
defined in png.h designed for basic data access (reading and writing
integers in the PNG format) break this rule, but it's almost always safe
to assume that a (png_struct*) has to be passed to call an API function.
 
The png.h header file is an invaluable reference for programming with libpng.
And while I'm on the topic, make sure you include the libpng header file:
 
#include <png.h>
 
Types
 
The png.h header file defines a number of integral types used by the
APIs. Most of these are fairly obvious; for example types corresponding
to integers of particular sizes and types for passing color values.
 
One exception is how non-integral numbers are handled. For application
convenience most APIs that take such numbers have C (double) arguments,
however internally PNG, and libpng, use 32 bit signed integers and encode
the value by multiplying by 100,000. As of libpng 1.5.0 a convenience
macro PNG_FP_1 is defined in png.h along with a type (png_fixed_point)
which is simply (png_int_32).
 
All APIs that take (double) arguments also have an matching API that
takes the corresponding fixed point integer arguments. The fixed point
API has the same name as the floating point one with _fixed appended.
The actual range of values permitted in the APIs is frequently less than
the full range of (png_fixed_point) (-21474 to +21474). When APIs require
a non-negative argument the type is recorded as png_uint_32 above. Consult
the header file and the text below for more information.
 
Special care must be take with sCAL chunk handling because the chunk itself
uses non-integral values encoded as strings containing decimal floating point
numbers. See the comments in the header file.
 
Configuration
 
The main header file function declarations are frequently protected by C
preprocessing directives of the form:
 
#ifdef PNG_feature_SUPPORTED
declare-function
#endif
 
The library can be built without support for these APIs, although a
standard build will have all implemented APIs. Application programs
should check the feature macros before using an API for maximum
portability. From libpng 1.5.0 the feature macros set during the build
of libpng are recorded in the header file "pnglibconf.h" and this file
is always included by png.h.
 
If you don't need to change the library configuration from the default skip to
the next section ("Reading").
 
Notice that some of the makefiles in the 'scripts' directory and (in 1.5.0) all
of the build project files in the 'projects' directory simply copy
scripts/pnglibconf.h.prebuilt to pnglibconf.h. This means that these build
systems do not permit easy auto-configuration of the library - they only
support the default configuration.
 
The easiest way to make minor changes to the libpng configuration when
auto-configuration is supported is to add definitions to the command line
using (typically) CPPFLAGS. For example:
 
CPPFLAGS=-DPNG_NO_FLOATING_ARITHMETIC
 
will change the internal libpng math implementation for gamma correction and
other arithmetic calculations to fixed point, avoiding the need for fast
floating point support. The result can be seen in the generated pnglibconf.h -
make sure it contains the changed feature macro setting.
 
If you need to make more extensive configuration changes - more than one or two
feature macro settings - you can either add -DPNG_USER_CONFIG to the build
command line and put a list of feature macro settings in pngusr.h or you can set
DFA_XTRA (a makefile variable) to a file containing the same information in the
form of 'option' settings.
 
A. Changing pnglibconf.h
 
A variety of methods exist to build libpng. Not all of these support
reconfiguration of pnglibconf.h. To reconfigure pnglibconf.h it must either be
rebuilt from scripts/pnglibconf.dfa using awk or it must be edited by hand.
 
Hand editing is achieved by copying scripts/pnglibconf.h.prebuilt and changing
the lines defining the supported features, paying very close attention to the
'option' information in scripts/pnglibconf.dfa that describes those features and
their requirements. This is easy to get wrong.
 
B. Configuration using DFA_XTRA
 
Rebuilding from pnglibconf.dfa is easy if a functioning 'awk', or a later
variant such as 'nawk' or 'gawk', is available. The configure build will
automatically find an appropriate awk and build pnglibconf.h.
scripts/pnglibconf.mak contains a set of make rules for doing the same thing if
configure is not used, and many of the makefiles in the scripts directory use
this approach.
 
When rebuilding simply write new file containing changed options and set
DFA_XTRA to the name of this file. This causes the build to append the new file
to the end of scripts/pnglibconf.dfa. pngusr.dfa should contain lines of the
following forms:
 
everything = off
 
This turns all optional features off. Include it at the start of pngusr.dfa to
make it easier to build a minimal configuration. You will need to turn at least
some features on afterward to enable either reading or writing code, or both.
 
option feature on
option feature off
 
Enable or disable a single feature. This will automatically enable other
features required by a feature that is turned on or disable other features that
require a feature which is turned off. Conflicting settings will cause an error
message to be emitted by awk.
 
setting feature default value
 
Changes the default value of setting 'feature' to 'value'. There are a small
number of settings listed at the top of pnglibconf.h, they are documented in the
source code. Most of these values have performance implications for the library
but most of them have no visible effect on the API. Some can also be overridden
from the API.
 
C. Configuration using PNG_USR_CONFIG
 
If -DPNG_USR_CONFIG is added to the CFLAGS when pnglibconf.h is built the file
pngusr.h will automatically be included before the options in
scripts/pnglibconf.dfa are processed. pngusr.h should contain only macro
definitions turning features on or off or setting settings.
 
Apart from the global setting "everything = off" all the options listed above
can be set using macros in pngusr.h:
 
#define PNG_feature_SUPPORTED
 
is equivalent to:
 
option feature on
 
#define PNG_NO_feature
 
is equivalent to:
 
option feature off
 
#define PNG_feature value
 
is equivalent to:
 
setting feature default value
 
Notice that in both cases, pngusr.dfa and pngusr.h, the contents of the
pngusr file you supply override the contents of scripts/pnglibconf.dfa
 
If confusing or incomprehensible behavior results it is possible to
examine the intermediate file pnglibconf.dfn to find the full set of
dependency information for each setting and option. Simply locate the
feature in the file and read the C comments that precede it.
 
III. Reading
 
We'll now walk you through the possible functions to call when reading
in a PNG file sequentially, briefly explaining the syntax and purpose
of each one. See example.c and png.h for more detail. While
progressive reading is covered in the next section, you will still
need some of the functions discussed in this section to read a PNG
file.
 
Setup
 
You will want to do the I/O initialization(*) before you get into libpng,
so if it doesn't work, you don't have much to undo. Of course, you
will also want to insure that you are, in fact, dealing with a PNG
file. Libpng provides a simple check to see if a file is a PNG file.
To use it, pass in the first 1 to 8 bytes of the file to the function
png_sig_cmp(), and it will return 0 (false) if the bytes match the
corresponding bytes of the PNG signature, or nonzero (true) otherwise.
Of course, the more bytes you pass in, the greater the accuracy of the
prediction.
 
If you are intending to keep the file pointer open for use in libpng,
you must ensure you don't read more than 8 bytes from the beginning
of the file, and you also have to make a call to png_set_sig_bytes_read()
with the number of bytes you read from the beginning. Libpng will
then only check the bytes (if any) that your program didn't read.
 
(*): If you are not using the standard I/O functions, you will need
to replace them with custom functions. See the discussion under
Customizing libpng.
 
 
FILE *fp = fopen(file_name, "rb");
if (!fp)
{
return (ERROR);
}
 
fread(header, 1, number, fp);
is_png = !png_sig_cmp(header, 0, number);
 
if (!is_png)
{
return (NOT_PNG);
}
 
 
Next, png_struct and png_info need to be allocated and initialized. In
order to ensure that the size of these structures is correct even with a
dynamically linked libpng, there are functions to initialize and
allocate the structures. We also pass the library version, optional
pointers to error handling functions, and a pointer to a data struct for
use by the error functions, if necessary (the pointer and functions can
be NULL if the default error handlers are to be used). See the section
on Changes to Libpng below regarding the old initialization functions.
The structure allocation functions quietly return NULL if they fail to
create the structure, so your application should check for that.
 
png_structp png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);
 
if (!png_ptr)
return (ERROR);
 
png_infop info_ptr = png_create_info_struct(png_ptr);
 
if (!info_ptr)
{
png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return (ERROR);
}
 
png_infop end_info = png_create_info_struct(png_ptr);
 
if (!end_info)
{
png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);
return (ERROR);
}
 
If you want to use your own memory allocation routines,
use a libpng that was built with PNG_USER_MEM_SUPPORTED defined, and use
png_create_read_struct_2() instead of png_create_read_struct():
 
png_structp png_ptr = png_create_read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);
 
The error handling routines passed to png_create_read_struct()
and the memory alloc/free routines passed to png_create_struct_2()
are only necessary if you are not using the libpng supplied error
handling and memory alloc/free functions.
 
When libpng encounters an error, it expects to longjmp back
to your routine. Therefore, you will need to call setjmp and pass
your png_jmpbuf(png_ptr). If you read the file from different
routines, you will need to update the jmpbuf field every time you enter
a new routine that will call a png_*() function.
 
See your documentation of setjmp/longjmp for your compiler for more
information on setjmp/longjmp. See the discussion on libpng error
handling in the Customizing Libpng section below for more information
on the libpng error handling. If an error occurs, and libpng longjmp's
back to your setjmp, you will want to call png_destroy_read_struct() to
free any memory.
 
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);
fclose(fp);
return (ERROR);
}
 
If you would rather avoid the complexity of setjmp/longjmp issues,
you can compile libpng with PNG_NO_SETJMP, in which case
errors will result in a call to PNG_ABORT() which defaults to abort().
 
You can #define PNG_ABORT() to a function that does something
more useful than abort(), as long as your function does not
return.
 
Now you need to set up the input code. The default for libpng is to
use the C function fread(). If you use this, you will need to pass a
valid FILE * in the function png_init_io(). Be sure that the file is
opened in binary mode. If you wish to handle reading data in another
way, you need not call the png_init_io() function, but you must then
implement the libpng I/O methods discussed in the Customizing Libpng
section below.
 
png_init_io(png_ptr, fp);
 
If you had previously opened the file and read any of the signature from
the beginning in order to see if this was a PNG file, you need to let
libpng know that there are some bytes missing from the start of the file.
 
png_set_sig_bytes(png_ptr, number);
 
You can change the zlib compression buffer size to be used while
reading compressed data with
 
png_set_compression_buffer_size(png_ptr, buffer_size);
 
where the default size is 8192 bytes. Note that the buffer size
is changed immediately and the buffer is reallocated immediately,
instead of setting a flag to be acted upon later.
 
If you want CRC errors to be handled in a different manner than
the default, use
 
png_set_crc_action(png_ptr, crit_action, ancil_action);
 
The values for png_set_crc_action() say how libpng is to handle CRC errors in
ancillary and critical chunks, and whether to use the data contained
therein. Note that it is impossible to "discard" data in a critical
chunk.
 
Choices for (int) crit_action are
PNG_CRC_DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC_WARN_USE 3 warn/use data
PNG_CRC_QUIET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE 5 use the current value
 
Choices for (int) ancil_action are
PNG_CRC_DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC_WARN_DISCARD 2 warn/discard data
PNG_CRC_WARN_USE 3 warn/use data
PNG_CRC_QUIET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE 5 use the current value
 
Setting up callback code
 
You can set up a callback function to handle any unknown chunks in the
input stream. You must supply the function
 
read_chunk_callback(png_structp png_ptr,
png_unknown_chunkp chunk);
{
/* The unknown chunk structure contains your
chunk data, along with similar data for any other
unknown chunks: */
 
png_byte name[5];
png_byte *data;
png_size_t size;
 
/* Note that libpng has already taken care of
the CRC handling */
 
/* put your code here. Search for your chunk in the
unknown chunk structure, process it, and return one
of the following: */
 
return (-n); /* chunk had an error */
return (0); /* did not recognize */
return (n); /* success */
}
 
(You can give your function another name that you like instead of
"read_chunk_callback")
 
To inform libpng about your function, use
 
png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr,
read_chunk_callback);
 
This names not only the callback function, but also a user pointer that
you can retrieve with
 
png_get_user_chunk_ptr(png_ptr);
 
If you call the png_set_read_user_chunk_fn() function, then all unknown
chunks will be saved when read, in case your callback function will need
one or more of them. This behavior can be changed with the
png_set_keep_unknown_chunks() function, described below.
 
At this point, you can set up a callback function that will be
called after each row has been read, which you can use to control
a progress meter or the like. It's demonstrated in pngtest.c.
You must supply a function
 
void read_row_callback(png_structp png_ptr,
png_uint_32 row, int pass);
{
/* put your code here */
}
 
(You can give it another name that you like instead of "read_row_callback")
 
To inform libpng about your function, use
 
png_set_read_status_fn(png_ptr, read_row_callback);
 
Unknown-chunk handling
 
Now you get to set the way the library processes unknown chunks in the
input PNG stream. Both known and unknown chunks will be read. Normal
behavior is that known chunks will be parsed into information in
various info_ptr members while unknown chunks will be discarded. This
behavior can be wasteful if your application will never use some known
chunk types. To change this, you can call:
 
png_set_keep_unknown_chunks(png_ptr, keep,
chunk_list, num_chunks);
keep - 0: default unknown chunk handling
1: ignore; do not keep
2: keep only if safe-to-copy
3: keep even if unsafe-to-copy
 
You can use these definitions:
PNG_HANDLE_CHUNK_AS_DEFAULT 0
PNG_HANDLE_CHUNK_NEVER 1
PNG_HANDLE_CHUNK_IF_SAFE 2
PNG_HANDLE_CHUNK_ALWAYS 3
 
chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or '\0' if
num_chunks is 0)
 
num_chunks - number of chunks affected; if 0, all
unknown chunks are affected. If nonzero,
only the chunks in the list are affected
 
Unknown chunks declared in this way will be saved as raw data onto a
list of png_unknown_chunk structures. If a chunk that is normally
known to libpng is named in the list, it will be handled as unknown,
according to the "keep" directive. If a chunk is named in successive
instances of png_set_keep_unknown_chunks(), the final instance will
take precedence. The IHDR and IEND chunks should not be named in
chunk_list; if they are, libpng will process them normally anyway.
 
Here is an example of the usage of png_set_keep_unknown_chunks(),
where the private "vpAg" chunk will later be processed by a user chunk
callback function:
 
png_byte vpAg[5]={118, 112, 65, 103, (png_byte) '\0'};
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_byte unused_chunks[]=
{
104, 73, 83, 84, (png_byte) '\0', /* hIST */
105, 84, 88, 116, (png_byte) '\0', /* iTXt */
112, 67, 65, 76, (png_byte) '\0', /* pCAL */
115, 67, 65, 76, (png_byte) '\0', /* sCAL */
115, 80, 76, 84, (png_byte) '\0', /* sPLT */
116, 73, 77, 69, (png_byte) '\0', /* tIME */
};
#endif
 
...
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* ignore all unknown chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, NULL, 0);
 
/* except for vpAg: */
png_set_keep_unknown_chunks(read_ptr, 2, vpAg, 1);
 
/* also ignore unused known chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, unused_chunks,
(int)sizeof(unused_chunks)/5);
#endif
 
User limits
 
The PNG specification allows the width and height of an image to be as
large as 2^31-1 (0x7fffffff), or about 2.147 billion rows and columns.
Since very few applications really need to process such large images,
we have imposed an arbitrary 1-million limit on rows and columns.
Larger images will be rejected immediately with a png_error() call. If
you wish to override this limit, you can use
 
png_set_user_limits(png_ptr, width_max, height_max);
 
to set your own limits, or use width_max = height_max = 0x7fffffffL
to allow all valid dimensions (libpng may reject some very large images
anyway because of potential buffer overflow conditions).
 
You should put this statement after you create the PNG structure and
before calling png_read_info(), png_read_png(), or png_process_data().
If you need to retrieve the limits that are being applied, use
 
width_max = png_get_user_width_max(png_ptr);
height_max = png_get_user_height_max(png_ptr);
 
The PNG specification sets no limit on the number of ancillary chunks
allowed in a PNG datastream. You can impose a limit on the total number
of sPLT, tEXt, iTXt, zTXt, and unknown chunks that will be stored, with
 
png_set_chunk_cache_max(png_ptr, user_chunk_cache_max);
 
where 0x7fffffffL means unlimited. You can retrieve this limit with
 
chunk_cache_max = png_get_chunk_cache_max(png_ptr);
 
This limit also applies to the number of buffers that can be allocated
by png_decompress_chunk() while decompressing iTXt, zTXt, and iCCP chunks.
 
You can also set a limit on the amount of memory that a compressed chunk
other than IDAT can occupy, with
 
png_set_chunk_malloc_max(png_ptr, user_chunk_malloc_max);
 
and you can retrieve the limit with
 
chunk_malloc_max = png_get_chunk_malloc_max(png_ptr);
 
Any chunks that would cause either of these limits to be exceeded will
be ignored.
 
The high-level read interface
 
At this point there are two ways to proceed; through the high-level
read interface, or through a sequence of low-level read operations.
You can use the high-level interface if (a) you are willing to read
the entire image into memory, and (b) the input transformations
you want to do are limited to the following set:
 
PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_STRIP_16 Strip 16-bit samples to
8 bits
PNG_TRANSFORM_STRIP_ALPHA Discard the alpha channel
PNG_TRANSFORM_PACKING Expand 1, 2 and 4-bit
samples to bytes
PNG_TRANSFORM_PACKSWAP Change order of packed
pixels to LSB first
PNG_TRANSFORM_EXPAND Perform set_expand()
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the
sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA
to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA
to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity
to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_GRAY_TO_RGB Expand grayscale samples
to RGB (or GA to RGBA)
 
(This excludes setting a background color, doing gamma transformation,
quantizing, and setting filler.) If this is the case, simply do this:
 
png_read_png(png_ptr, info_ptr, png_transforms, NULL)
 
where png_transforms is an integer containing the bitwise OR of some
set of transformation flags. This call is equivalent to png_read_info(),
followed the set of transformations indicated by the transform mask,
then png_read_image(), and finally png_read_end().
 
(The final parameter of this call is not yet used. Someday it might point
to transformation parameters required by some future input transform.)
 
You must use png_transforms and not call any png_set_transform() functions
when you use png_read_png().
 
After you have called png_read_png(), you can retrieve the image data
with
 
row_pointers = png_get_rows(png_ptr, info_ptr);
 
where row_pointers is an array of pointers to the pixel data for each row:
 
png_bytep row_pointers[height];
 
If you know your image size and pixel size ahead of time, you can allocate
row_pointers prior to calling png_read_png() with
 
if (height > PNG_UINT_32_MAX/png_sizeof(png_byte))
png_error (png_ptr,
"Image is too tall to process in memory");
 
if (width > PNG_UINT_32_MAX/pixel_size)
png_error (png_ptr,
"Image is too wide to process in memory");
 
row_pointers = png_malloc(png_ptr,
height*png_sizeof(png_bytep));
 
for (int i=0; i<height, i++)
row_pointers[i]=NULL; /* security precaution */
 
for (int i=0; i<height, i++)
row_pointers[i]=png_malloc(png_ptr,
width*pixel_size);
 
png_set_rows(png_ptr, info_ptr, &row_pointers);
 
Alternatively you could allocate your image in one big block and define
row_pointers[i] to point into the proper places in your block.
 
If you use png_set_rows(), the application is responsible for freeing
row_pointers (and row_pointers[i], if they were separately allocated).
 
If you don't allocate row_pointers ahead of time, png_read_png() will
do it, and it'll be free'ed by libpng when you call png_destroy_*().
 
The low-level read interface
 
If you are going the low-level route, you are now ready to read all
the file information up to the actual image data. You do this with a
call to png_read_info().
 
png_read_info(png_ptr, info_ptr);
 
This will process all chunks up to but not including the image data.
 
Querying the info structure
 
Functions are used to get the information from the info_ptr once it
has been read. Note that these fields may not be completely filled
in until png_read_end() has read the chunk data following the image.
 
png_get_IHDR(png_ptr, info_ptr, &width, &height,
&bit_depth, &color_type, &interlace_type,
&compression_type, &filter_method);
 
width - holds the width of the image
in pixels (up to 2^31).
 
height - holds the height of the image
in pixels (up to 2^31).
 
bit_depth - holds the bit depth of one of the
image channels. (valid values are
1, 2, 4, 8, 16 and depend also on
the color_type. See also
significant bits (sBIT) below).
 
color_type - describes which color/alpha channels
are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)
 
PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA
 
interlace_type - (PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7)
 
compression_type - (must be PNG_COMPRESSION_TYPE_BASE
for PNG 1.0)
 
filter_method - (must be PNG_FILTER_TYPE_BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL_DIFFERENCING if
the PNG datastream is embedded in
a MNG-1.0 datastream)
 
Any or all of interlace_type, compression_type, or
filter_method can be NULL if you are
not interested in their values.
 
Note that png_get_IHDR() returns 32-bit data into
the application's width and height variables.
This is an unsafe situation if these are 16-bit
variables. In such situations, the
png_get_image_width() and png_get_image_height()
functions described below are safer.
 
width = png_get_image_width(png_ptr,
info_ptr);
 
height = png_get_image_height(png_ptr,
info_ptr);
 
bit_depth = png_get_bit_depth(png_ptr,
info_ptr);
 
color_type = png_get_color_type(png_ptr,
info_ptr);
 
interlace_type = png_get_interlace_type(png_ptr,
info_ptr);
 
compression_type = png_get_compression_type(png_ptr,
info_ptr);
 
filter_method = png_get_filter_type(png_ptr,
info_ptr);
 
channels = png_get_channels(png_ptr, info_ptr);
 
channels - number of channels of info for the
color type (valid values are 1 (GRAY,
PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))
 
rowbytes = png_get_rowbytes(png_ptr, info_ptr);
 
rowbytes - number of bytes needed to hold a row
 
signature = png_get_signature(png_ptr, info_ptr);
 
signature - holds the signature read from the
file (if any). The data is kept in
the same offset it would be if the
whole signature were read (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).
 
These are also important, but their validity depends on whether the chunk
has been read. The png_get_valid(png_ptr, info_ptr, PNG_INFO_<chunk>) and
png_get_<chunk>(png_ptr, info_ptr, ...) functions return non-zero if the
data has been read, or zero if it is missing. The parameters to the
png_get_<chunk> are set directly if they are simple data types, or a
pointer into the info_ptr is returned for any complex types.
 
png_get_PLTE(png_ptr, info_ptr, &palette,
&num_palette);
 
palette - the palette for the file
(array of png_color)
 
num_palette - number of entries in the palette
 
png_get_gAMA(png_ptr, info_ptr, &file_gamma);
png_get_gAMA_fixed(png_ptr, info_ptr, &int_file_gamma);
 
file_gamma - the gamma at which the file is
written (PNG_INFO_gAMA)
 
int_file_gamma - 100,000 times the gamma at which the
file is written
 
png_get_sRGB(png_ptr, info_ptr, &srgb_intent);
 
file_srgb_intent - the rendering intent (PNG_INFO_sRGB)
The presence of the sRGB chunk
means that the pixel data is in the
sRGB color space. This chunk also
implies specific values of gAMA and
cHRM.
 
png_get_iCCP(png_ptr, info_ptr, &name,
&compression_type, &profile, &proflen);
 
name - The profile name.
 
compression_type - The compression type; always
PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.
 
profile - International Color Consortium color
profile data. May contain NULs.
 
proflen - length of profile data in bytes.
 
png_get_sBIT(png_ptr, info_ptr, &sig_bit);
 
sig_bit - the number of significant bits for
(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the
given color type (png_color_16)
 
png_get_tRNS(png_ptr, info_ptr, &trans_alpha,
&num_trans, &trans_color);
 
trans_alpha - array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)
 
num_trans - number of transparent entries
(PNG_INFO_tRNS)
 
trans_color - graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)
 
png_get_hIST(png_ptr, info_ptr, &hist);
(PNG_INFO_hIST)
 
hist - histogram of palette (array of
png_uint_16)
 
png_get_tIME(png_ptr, info_ptr, &mod_time);
 
mod_time - time image was last modified
(PNG_VALID_tIME)
 
png_get_bKGD(png_ptr, info_ptr, &background);
 
background - background color (PNG_VALID_bKGD)
valid 16-bit red, green and blue
values, regardless of color_type
 
num_comments = png_get_text(png_ptr, info_ptr,
&text_ptr, &num_text);
 
num_comments - number of comments
 
text_ptr - array of png_text holding image
comments
 
text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt
 
text_ptr[i].key - keyword for comment. Must contain
1-79 characters.
 
text_ptr[i].text - text comments for current
keyword. Can be empty.
 
text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt
 
text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt
 
text_ptr[i].lang - language of comment (empty
string for unknown).
 
text_ptr[i].lang_key - keyword in UTF-8
(empty string for unknown).
 
Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist
when the library is built with iTXt chunk support.
 
num_text - number of comments (same as
num_comments; you can put NULL here
to avoid the duplication)
 
Note while png_set_text() will accept text, language,
and translated keywords that can be NULL pointers, the
structure returned by png_get_text will always contain
regular zero-terminated C strings. They might be
empty strings but they will never be NULL pointers.
 
num_spalettes = png_get_sPLT(png_ptr, info_ptr,
&palette_ptr);
 
num_spalettes - number of sPLT chunks read.
 
palette_ptr - array of palette structures holding
contents of one or more sPLT chunks
read.
 
png_get_oFFs(png_ptr, info_ptr, &offset_x, &offset_y,
&unit_type);
 
offset_x - positive offset from the left edge
of the screen
 
offset_y - positive offset from the top edge
of the screen
 
unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER
 
png_get_pHYs(png_ptr, info_ptr, &res_x, &res_y,
&unit_type);
 
res_x - pixels/unit physical resolution in
x direction
 
res_y - pixels/unit physical resolution in
x direction
 
unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER
 
png_get_sCAL(png_ptr, info_ptr, &unit, &width,
&height)
 
unit - physical scale units (an integer)
 
width - width of a pixel in physical scale units
 
height - height of a pixel in physical scale units
(width and height are doubles)
 
png_get_sCAL_s(png_ptr, info_ptr, &unit, &width,
&height)
 
unit - physical scale units (an integer)
 
width - width of a pixel in physical scale units
 
height - height of a pixel in physical scale units
(width and height are strings like "2.54")
 
num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, &unknowns)
 
unknowns - array of png_unknown_chunk
structures holding unknown chunks
 
unknowns[i].name - name of unknown chunk
 
unknowns[i].data - data of unknown chunk
 
unknowns[i].size - size of unknown chunk's data
 
unknowns[i].location - position of chunk in file
 
The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.
 
The data from the pHYs chunk can be retrieved in several convenient
forms:
 
res_x = png_get_x_pixels_per_meter(png_ptr,
info_ptr)
 
res_y = png_get_y_pixels_per_meter(png_ptr,
info_ptr)
 
res_x_and_y = png_get_pixels_per_meter(png_ptr,
info_ptr)
 
res_x = png_get_x_pixels_per_inch(png_ptr,
info_ptr)
 
res_y = png_get_y_pixels_per_inch(png_ptr,
info_ptr)
 
res_x_and_y = png_get_pixels_per_inch(png_ptr,
info_ptr)
 
aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)
 
Each of these returns 0 [signifying "unknown"] if
the data is not present or if res_x is 0;
res_x_and_y is 0 if res_x != res_y
 
Note that because of the way the resolutions are
stored internally, the inch conversions won't
come out to exactly even number. For example,
72 dpi is stored as 0.28346 pixels/meter, and
when this is retrieved it is 71.9988 dpi, so
be sure to round the returned value appropriately
if you want to display a reasonable-looking result.
 
The data from the oFFs chunk can be retrieved in several convenient
forms:
 
x_offset = png_get_x_offset_microns(png_ptr, info_ptr);
 
y_offset = png_get_y_offset_microns(png_ptr, info_ptr);
 
x_offset = png_get_x_offset_inches(png_ptr, info_ptr);
 
y_offset = png_get_y_offset_inches(png_ptr, info_ptr);
 
Each of these returns 0 [signifying "unknown" if both
x and y are 0] if the data is not present or if the
chunk is present but the unit is the pixel. The
remark about inexact inch conversions applies here
as well, because a value in inches can't always be
converted to microns and back without some loss
of precision.
 
For more information, see the png_info definition in png.h and the
PNG specification for chunk contents. Be careful with trusting
rowbytes, as some of the transformations could increase the space
needed to hold a row (expand, filler, gray_to_rgb, etc.).
See png_read_update_info(), below.
 
A quick word about text_ptr and num_text. PNG stores comments in
keyword/text pairs, one pair per chunk, with no limit on the number
of text chunks, and a 2^31 byte limit on their size. While there are
suggested keywords, there is no requirement to restrict the use to these
strings. It is strongly suggested that keywords and text be sensible
to humans (that's the point), so don't use abbreviations. Non-printing
symbols are not allowed. See the PNG specification for more details.
There is also no requirement to have text after the keyword.
 
Keywords should be limited to 79 Latin-1 characters without leading or
trailing spaces, but non-consecutive spaces are allowed within the
keyword. It is possible to have the same keyword any number of times.
The text_ptr is an array of png_text structures, each holding a
pointer to a language string, a pointer to a keyword and a pointer to
a text string. The text string, language code, and translated
keyword may be empty or NULL pointers. The keyword/text
pairs are put into the array in the order that they are received.
However, some or all of the text chunks may be after the image, so, to
make sure you have read all the text chunks, don't mess with these
until after you read the stuff after the image. This will be
mentioned again below in the discussion that goes with png_read_end().
 
Input transformations
 
After you've read the header information, you can set up the library
to handle any special transformations of the image data. The various
ways to transform the data will be described in the order that they
should occur. This is important, as some of these change the color
type and/or bit depth of the data, and some others only work on
certain color types and bit depths. Even though each transformation
checks to see if it has data that it can do something with, you should
make sure to only enable a transformation if it will be valid for the
data. For example, don't swap red and blue on grayscale data.
 
The colors used for the background and transparency values should be
supplied in the same format/depth as the current image data. They
are stored in the same format/depth as the image data in a bKGD or tRNS
chunk, so this is what libpng expects for this data. The colors are
transformed to keep in sync with the image data when an application
calls the png_read_update_info() routine (see below).
 
Data will be decoded into the supplied row buffers packed into bytes
unless the library has been told to transform it into another format.
For example, 4 bit/pixel paletted or grayscale data will be returned
2 pixels/byte with the leftmost pixel in the high-order bits of the
byte, unless png_set_packing() is called. 8-bit RGB data will be stored
in RGB RGB RGB format unless png_set_filler() or png_set_add_alpha()
is called to insert filler bytes, either before or after each RGB triplet.
16-bit RGB data will be returned RRGGBB RRGGBB, with the most significant
byte of the color value first, unless png_set_strip_16() is called to
transform it to regular RGB RGB triplets, or png_set_filler() or
png_set_add alpha() is called to insert filler bytes, either before or
after each RRGGBB triplet. Similarly, 8-bit or 16-bit grayscale data can
be modified with
png_set_filler(), png_set_add_alpha(), or png_set_strip_16().
 
The following code transforms grayscale images of less than 8 to 8 bits,
changes paletted images to RGB, and adds a full alpha channel if there is
transparency information in a tRNS chunk. This is most useful on
grayscale images with bit depths of 2 or 4 or if there is a multiple-image
viewing application that wishes to treat all images in the same way.
 
if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(png_ptr);
 
if (color_type == PNG_COLOR_TYPE_GRAY &&
bit_depth < 8) png_set_expand_gray_1_2_4_to_8(png_ptr);
 
if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr);
 
These three functions are actually aliases for png_set_expand(), added
in libpng version 1.0.4, with the function names expanded to improve code
readability. In some future version they may actually do different
things.
 
As of libpng version 1.2.9, png_set_expand_gray_1_2_4_to_8() was
added. It expands the sample depth without changing tRNS to alpha.
 
As of libpng version 1.5.1, not all possible expansions are supported.
 
In the following table, the 01 means grayscale with depth<8, 31 means
indexed with depth<8, other numerals represent the color type, "T" means
the tRNS chunk is present, A means an alpha channel is present, and O
means tRNS or alpha is present but all pixels in the image are opaque.
 
FROM 01 31 0 0T 0O 2 2T 2O 3 3T 3O 4A 4O 6A 6O
TO
01 -
31 -
0 1 -
0T -
0O -
2 GX -
2T -
2O -
3 1 -
3T -
3O -
4A T -
4O -
6A GX TX TX -
6O GX TX -
 
Within the matrix,
"-" means the transformation is not supported.
"X" means the transformation is obtained by png_set_expand().
"1" means the transformation is obtained by
png_set_expand_gray_1_2_4_to_8
"G" means the transformation is obtained by
png_set_gray_to_rgb().
"P" means the transformation is obtained by
png_set_expand_palette_to_rgb().
"T" means the transformation is obtained by
png_set_tRNS_to_alpha().
 
PNG can have files with 16 bits per channel. If you only can handle
8 bits per channel, this will strip the pixels down to 8 bit.
 
if (bit_depth == 16)
png_set_strip_16(png_ptr);
 
If, for some reason, you don't need the alpha channel on an image,
and you want to remove it rather than combining it with the background
(but the image author certainly had in mind that you *would* combine
it with the background, so that's what you should probably do):
 
if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);
 
In PNG files, the alpha channel in an image
is the level of opacity. If you need the alpha channel in an image to
be the level of transparency instead of opacity, you can invert the
alpha channel (or the tRNS chunk data) after it's read, so that 0 is
fully opaque and 255 (in 8-bit or paletted images) or 65535 (in 16-bit
images) is fully transparent, with
 
png_set_invert_alpha(png_ptr);
 
PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as
they can, resulting in, for example, 8 pixels per byte for 1 bit
files. This code expands to 1 pixel per byte without changing the
values of the pixels:
 
if (bit_depth < 8)
png_set_packing(png_ptr);
 
PNG files have possible bit depths of 1, 2, 4, 8, and 16. All pixels
stored in a PNG image have been "scaled" or "shifted" up to the next
higher possible bit depth (e.g. from 5 bits/sample in the range [0,31]
to 8 bits/sample in the range [0, 255]). However, it is also possible
to convert the PNG pixel data back to the original bit depth of the
image. This call reduces the pixels back down to the original bit depth:
 
png_color_8p sig_bit;
 
if (png_get_sBIT(png_ptr, info_ptr, &sig_bit))
png_set_shift(png_ptr, sig_bit);
 
PNG files store 3-color pixels in red, green, blue order. This code
changes the storage of the pixels to blue, green, red:
 
if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);
 
PNG files store RGB pixels packed into 3 or 6 bytes. This code expands them
into 4 or 8 bytes for windowing systems that need them in this format:
 
if (color_type == PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptr, filler, PNG_FILLER_BEFORE);
 
where "filler" is the 8 or 16-bit number to fill with, and the location is
either PNG_FILLER_BEFORE or PNG_FILLER_AFTER, depending upon whether
you want the filler before the RGB or after. This transformation
does not affect images that already have full alpha channels. To add an
opaque alpha channel, use filler=0xff or 0xffff and PNG_FILLER_AFTER which
will generate RGBA pixels.
 
Note that png_set_filler() does not change the color type. If you want
to do that, you can add a true alpha channel with
 
if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY)
png_set_add_alpha(png_ptr, filler, PNG_FILLER_AFTER);
 
where "filler" contains the alpha value to assign to each pixel.
This function was added in libpng-1.2.7.
 
If you are reading an image with an alpha channel, and you need the
data as ARGB instead of the normal PNG format RGBA:
 
if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_alpha(png_ptr);
 
For some uses, you may want a grayscale image to be represented as
RGB. This code will do that conversion:
 
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);
 
Conversely, you can convert an RGB or RGBA image to grayscale or grayscale
with alpha.
 
if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_rgb_to_gray_fixed(png_ptr, error_action,
int red_weight, int green_weight);
 
error_action = 1: silently do the conversion
 
error_action = 2: issue a warning if the original
image has any pixel where
red != green or red != blue
 
error_action = 3: issue an error and abort the
conversion if the original
image has any pixel where
red != green or red != blue
 
red_weight: weight of red component times 100000
 
green_weight: weight of green component times 100000
If either weight is negative, default
weights (21268, 71514) are used.
 
If you have set error_action = 1 or 2, you can
later check whether the image really was gray, after processing
the image rows, with the png_get_rgb_to_gray_status(png_ptr) function.
It will return a png_byte that is zero if the image was gray or
1 if there were any non-gray pixels. bKGD and sBIT data
will be silently converted to grayscale, using the green channel
data, regardless of the error_action setting.
 
With red_weight+green_weight<=100000,
the normalized graylevel is computed:
 
int rw = red_weight * 65536;
int gw = green_weight * 65536;
int bw = 65536 - (rw + gw);
gray = (rw*red + gw*green + bw*blue)/65536;
 
The default values approximate those recommended in the Charles
Poynton's Color FAQ, <http://www.inforamp.net/~poynton/>
Copyright (c) 1998-01-04 Charles Poynton <poynton at inforamp.net>
 
Y = 0.212671 * R + 0.715160 * G + 0.072169 * B
 
Libpng approximates this with integers scaled by 32768:
 
Y = (6968 * R + 23434 * G + 2366 * B)/32768
 
The calculation is done in a linear colorspace, if the image gamma
can be determined.
 
If you have a grayscale and you are using png_set_expand_depth(),
png_set_expand(), or png_set_gray_to_rgb to change to truecolor or to
a higher bit-depth, you must either supply the background color as a gray
value at the original file bit-depth (need_expand = 1) or else supply the
background color as an RGB triplet at the final, expanded bit depth
(need_expand = 0). Similarly, if you are reading a paletted image, you
must either supply the background color as a palette index (need_expand = 1)
or as an RGB triplet that may or may not be in the palette (need_expand = 0).
 
png_color_16 my_background;
png_color_16p image_background;
 
if (png_get_bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,
PNG_BACKGROUND_GAMMA_FILE, 1, 1.0);
else
png_set_background(png_ptr, &my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1.0);
 
The png_set_background() function tells libpng to composite images
with alpha or simple transparency against the supplied background
color. If the PNG file contains a bKGD chunk (PNG_INFO_bKGD valid),
you may use this color, or supply another color more suitable for
the current display (e.g., the background color from a web page). You
need to tell libpng whether the color is in the gamma space of the
display (PNG_BACKGROUND_GAMMA_SCREEN for colors you supply), the file
(PNG_BACKGROUND_GAMMA_FILE for colors from the bKGD chunk), or one
that is neither of these gammas (PNG_BACKGROUND_GAMMA_UNIQUE - I don't
know why anyone would use this, but it's here).
 
To properly display PNG images on any kind of system, the application needs
to know what the display gamma is. Ideally, the user will know this, and
the application will allow them to set it. One method of allowing the user
to set the display gamma separately for each system is to check for a
SCREEN_GAMMA or DISPLAY_GAMMA environment variable, which will hopefully be
correctly set.
 
Note that display_gamma is the overall gamma correction required to produce
pleasing results, which depends on the lighting conditions in the surrounding
environment. In a dim or brightly lit room, no compensation other than
the physical gamma exponent of the monitor is needed, while in a dark room
a slightly smaller exponent is better.
 
double gamma, screen_gamma;
 
if (/* We have a user-defined screen
gamma value */)
{
screen_gamma = user_defined_screen_gamma;
}
 
/* One way that applications can share the same
screen gamma value */
else if ((gamma_str = getenv("SCREEN_GAMMA"))
!= NULL)
{
screen_gamma = (double)atof(gamma_str);
}
 
/* If we don't have another value */
else
{
screen_gamma = 2.2; /* A good guess for a
PC monitor in a bright office or a dim room */
 
screen_gamma = 2.0; /* A good guess for a
PC monitor in a dark room */
 
screen_gamma = 1.7 or 1.0; /* A good
guess for Mac systems */
}
 
The functions png_set_gamma() and its fixed point equivalent
png_set_gamma_fixed() handle gamma transformations of the data.
Pass both the file gamma and the current screen_gamma. If the file does
not have a gamma value, you can pass one anyway if you have an idea what
it is (usually 0.45455 is a good guess for GIF images on PCs). Note
that file gammas are inverted from screen gammas. See the discussions
on gamma in the PNG specification for an excellent description of what
gamma is, and why all applications should support it. It is strongly
recommended that PNG viewers support gamma correction.
 
if (png_get_gAMA(png_ptr, info_ptr, &file_gamma))
png_set_gamma(png_ptr, screen_gamma, file_gamma);
 
else
png_set_gamma(png_ptr, screen_gamma, 0.45455);
 
If you need to reduce an RGB file to a paletted file, or if a paletted
file has more entries then will fit on your screen, png_set_quantize()
will do that. Note that this is a simple match quantization that merely
finds the closest color available. This should work fairly well with
optimized palettes, but fairly badly with linear color cubes. If you
pass a palette that is larger then maximum_colors, the file will
reduce the number of colors in the palette so it will fit into
maximum_colors. If there is a histogram, it will use it to make
more intelligent choices when reducing the palette. If there is no
histogram, it may not do as good a job.
 
if (color_type & PNG_COLOR_MASK_COLOR)
{
if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_PLTE))
{
png_uint_16p histogram = NULL;
 
png_get_hIST(png_ptr, info_ptr,
&histogram);
png_set_quantize(png_ptr, palette, num_palette,
max_screen_colors, histogram, 1);
}
 
else
{
png_color std_color_cube[MAX_SCREEN_COLORS] =
{ ... colors ... };
 
png_set_quantize(png_ptr, std_color_cube,
MAX_SCREEN_COLORS, MAX_SCREEN_COLORS,
NULL,0);
}
}
 
PNG files describe monochrome as black being zero and white being one.
The following code will reverse this (make black be one and white be
zero):
 
if (bit_depth == 1 && color_type == PNG_COLOR_TYPE_GRAY)
png_set_invert_mono(png_ptr);
 
This function can also be used to invert grayscale and gray-alpha images:
 
if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_invert_mono(png_ptr);
 
PNG files store 16 bit pixels in network byte order (big-endian,
ie. most significant bits first). This code changes the storage to the
other way (little-endian, i.e. least significant bits first, the
way PCs store them):
 
if (bit_depth == 16)
png_set_swap(png_ptr);
 
If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you
need to change the order the pixels are packed into bytes, you can use:
 
if (bit_depth < 8)
png_set_packswap(png_ptr);
 
Finally, you can write your own transformation function if none of
the existing ones meets your needs. This is done by setting a callback
with
 
png_set_read_user_transform_fn(png_ptr,
read_transform_fn);
 
You must supply the function
 
void read_transform_fn(png_structp png_ptr, row_info_ptr
row_info, png_bytep data)
 
See pngtest.c for a working example. Your function will be called
after all of the other transformations have been processed. Take care with
interlaced images if you do the interlace yourself - the width of the row is the
width in 'row_info', not the overall image width.
 
If supported libpng provides two information routines that you can use to find
where you are in processing the image:
 
png_get_current_pass_number(png_structp png_ptr);
png_get_current_row_number(png_structp png_ptr);
 
Don't try using these outside a transform callback - firstly they are only
supported if user transforms are supported, secondly they may well return
unexpected results unless the row is actually being processed at the moment they
are called.
 
You can also set up a pointer to a user structure for use by your
callback function, and you can inform libpng that your transform
function will change the number of channels or bit depth with the
function
 
png_set_user_transform_info(png_ptr, user_ptr,
user_depth, user_channels);
 
The user's application, not libpng, is responsible for allocating and
freeing any memory required for the user structure.
 
You can retrieve the pointer via the function
png_get_user_transform_ptr(). For example:
 
voidp read_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);
 
The last thing to handle is interlacing; this is covered in detail below,
but you must call the function here if you want libpng to handle expansion
of the interlaced image.
 
number_of_passes = png_set_interlace_handling(png_ptr);
 
After setting the transformations, libpng can update your png_info
structure to reflect any transformations you've requested with this
call. This is most useful to update the info structure's rowbytes
field so you can use it to allocate your image memory. This function
will also update your palette with the correct screen_gamma and
background if these have been given with the calls above.
 
png_read_update_info(png_ptr, info_ptr);
 
After you call png_read_update_info(), you can allocate any
memory you need to hold the image. The row data is simply
raw byte data for all forms of images. As the actual allocation
varies among applications, no example will be given. If you
are allocating one large chunk, you will need to build an
array of pointers to each row, as it will be needed for some
of the functions below.
 
Remember: Before you call png_read_update_info(), the png_get_
functions return the values corresponding to the original PNG image.
After you call png_read_update_info the values refer to the image
that libpng will output. Consequently you must call all the png_set_
functions before you call png_read_update_info(). This is particularly
important for png_set_interlace_handling() - if you are going to call
png_read_update_info() you must call png_set_interlace_handling() before
it unless you want to receive interlaced output.
 
Reading image data
 
After you've allocated memory, you can read the image data.
The simplest way to do this is in one function call. If you are
allocating enough memory to hold the whole image, you can just
call png_read_image() and libpng will read in all the image data
and put it in the memory area supplied. You will need to pass in
an array of pointers to each row.
 
This function automatically handles interlacing, so you don't
need to call png_set_interlace_handling() (unless you call
png_read_update_info()) or call this function multiple times, or any
of that other stuff necessary with png_read_rows().
 
png_read_image(png_ptr, row_pointers);
 
where row_pointers is:
 
png_bytep row_pointers[height];
 
You can point to void or char or whatever you use for pixels.
 
If you don't want to read in the whole image at once, you can
use png_read_rows() instead. If there is no interlacing (check
interlace_type == PNG_INTERLACE_NONE), this is simple:
 
png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);
 
where row_pointers is the same as in the png_read_image() call.
 
If you are doing this just one row at a time, you can do this with
a single row_pointer instead of an array of row_pointers:
 
png_bytep row_pointer = row;
png_read_row(png_ptr, row_pointer, NULL);
 
If the file is interlaced (interlace_type != 0 in the IHDR chunk), things
get somewhat harder. The only current (PNG Specification version 1.2)
interlacing type for PNG is (interlace_type == PNG_INTERLACE_ADAM7);
a somewhat complicated 2D interlace scheme, known as Adam7, that
breaks down an image into seven smaller images of varying size, based
on an 8x8 grid. This number is defined (from libpng 1.5) as
PNG_INTERLACE_ADAM7_PASSES in png.h
 
libpng can fill out those images or it can give them to you "as is".
It is almost always better to have libpng handle the interlacing for you.
If you want the images filled out, there are two ways to do that. The one
mentioned in the PNG specification is to expand each pixel to cover
those pixels that have not been read yet (the "rectangle" method).
This results in a blocky image for the first pass, which gradually
smooths out as more pixels are read. The other method is the "sparkle"
method, where pixels are drawn only in their final locations, with the
rest of the image remaining whatever colors they were initialized to
before the start of the read. The first method usually looks better,
but tends to be slower, as there are more pixels to put in the rows.
 
If, as is likely, you want libpng to expand the images, call this before
calling png_start_read_image() or png_read_update_info():
 
if (interlace_type == PNG_INTERLACE_ADAM7)
number_of_passes
= png_set_interlace_handling(png_ptr);
 
This will return the number of passes needed. Currently, this is seven,
but may change if another interlace type is added. This function can be
called even if the file is not interlaced, where it will return one pass.
You then need to read the whole image 'number_of_passes' times. Each time
will distribute the pixels from the current pass to the correct place in
the output image, so you need to supply the same rows to png_read_rows in
each pass.
 
If you are not going to display the image after each pass, but are
going to wait until the entire image is read in, use the sparkle
effect. This effect is faster and the end result of either method
is exactly the same. If you are planning on displaying the image
after each pass, the "rectangle" effect is generally considered the
better looking one.
 
If you only want the "sparkle" effect, just call png_read_rows() as
normal, with the third parameter NULL. Make sure you make pass over
the image number_of_passes times, and you don't change the data in the
rows between calls. You can change the locations of the data, just
not the data. Each pass only writes the pixels appropriate for that
pass, and assumes the data from previous passes is still valid.
 
png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);
 
If you only want the first effect (the rectangles), do the same as
before except pass the row buffer in the third parameter, and leave
the second parameter NULL.
 
png_read_rows(png_ptr, NULL, row_pointers,
number_of_rows);
 
If you don't want libpng to handle the interlacing details, just call
png_read_rows() PNG_INTERLACE_ADAM7_PASSES times to read in all the images.
Each of the images is a valid image by itself, however you will almost
certainly need to distribute the pixels from each sub-image to the
correct place. This is where everything gets very tricky.
 
If you want to retrieve the separate images you must pass the correct
number of rows to each successive call of png_read_rows(). The calculation
gets pretty complicated for small images, where some sub-images may
not even exist because either their width or height ends up zero.
libpng provides two macros to help you in 1.5 and later versions:
 
png_uint_32 width = PNG_PASS_COLS(image_width, pass_number);
png_uint_32 height = PNG_PASS_ROWS(image_height, pass_number);
 
Respectively these tell you the width and height of the sub-image
corresponding to the numbered pass. 'pass' is in in the range 0 to 6 -
this can be confusing because the specification refers to the same passes
as 1 to 7! Be careful, you must check both the width and height before
calling png_read_rows() and not call it for that pass if either is zero.
 
You can, of course, read each sub-image row by row. If you want to
produce optimal code to make a pixel-by-pixel transformation of an
interlaced image this is the best approach; read each row of each pass,
transform it, and write it out to a new interlaced image.
 
If you want to de-interlace the image yourself libpng provides further
macros to help that tell you where to place the pixels in the output image.
Because the interlacing scheme is rectangular - sub-image pixels are always
arranged on a rectangular grid - all you need to know for each pass is the
starting column and row in the output image of the first pixel plus the
spacing between each pixel. As of libpng 1.5 there are four macros to
retrieve this information:
 
png_uint_32 x = PNG_PASS_START_COL(pass);
png_uint_32 y = PNG_PASS_START_ROW(pass);
png_uint_32 xStep = 1U << PNG_PASS_COL_SHIFT(pass);
png_uint_32 yStep = 1U << PNG_PASS_ROW_SHIFT(pass);
 
These allow you to write the obvious loop:
 
png_uint_32 input_y = 0;
png_uint_32 output_y = PNG_PASS_START_ROW(pass);
 
while (output_y < output_image_height)
{
png_uint_32 input_x = 0;
png_uint_32 output_x = PNG_PASS_START_COL(pass);
 
while (output_x < output_image_width)
{
image[output_y][output_x] =
subimage[pass][input_y][input_x++];
 
output_x += xStep;
}
 
++input_y;
output_y += yStep;
}
 
Notice that the steps between successive output rows and columns are
returned as shifts. This is possible because the pixels in the subimages
are always a power of 2 apart - 1, 2, 4 or 8 pixels - in the original
image. In practice you may need to directly calculate the output coordinate
given an input coordinate. libpng provides two further macros for this
purpose:
 
png_uint_32 output_x = PNG_COL_FROM_PASS_COL(input_x, pass);
png_uint_32 output_y = PNG_ROW_FROM_PASS_ROW(input_y, pass);
 
Finally a pair of macros are provided to tell you if a particular image
row or column appears in a given pass:
 
int col_in_pass = PNG_COL_IN_INTERLACE_PASS(output_x, pass);
int row_in_pass = PNG_ROW_IN_INTERLACE_PASS(output_y, pass);
 
Bear in mind that you will probably also need to check the width and height
of the pass in addition to the above to be sure the pass even exists!
 
With any luck you are convinced by now that you don't want to do your own
interlace handling. In reality normally the only good reason for doing this
is if you are processing PNG files on a pixel-by-pixel basis and don't want
to load the whole file into memory when it is interlaced.
 
libpng includes a test program, pngvalid, that illustrates reading and
writing of interlaced images. If you can't get interlacing to work in your
code and don't want to leave it to libpng (the recommended approach) see
how pngvalid.c does it.
 
Finishing a sequential read
 
After you are finished reading the image through the
low-level interface, you can finish reading the file. If you are
interested in comments or time, which may be stored either before or
after the image data, you should pass the separate png_info struct if
you want to keep the comments from before and after the image
separate. If you are not interested, you can pass NULL.
 
png_read_end(png_ptr, end_info);
 
When you are done, you can free all memory allocated by libpng like this:
 
png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);
 
It is also possible to individually free the info_ptr members that
point to libpng-allocated storage with the following function:
 
png_free_data(png_ptr, info_ptr, mask, seq)
 
mask - identifies data to be freed, a mask
containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,
or simply PNG_FREE_ALL
 
seq - sequence number of item to be freed
(-1 for all items)
 
This function may be safely called when the relevant storage has
already been freed, or has not yet been allocated, or was allocated
by the user and not by libpng, and will in those cases do nothing.
The "seq" parameter is ignored if only one item of the selected data
type, such as PLTE, is allowed. If "seq" is not -1, and multiple items
are allowed for the data type identified in the mask, such as text or
sPLT, only the n'th item in the structure is freed, where n is "seq".
 
The default behavior is only to free data that was allocated internally
by libpng. This can be changed, so that libpng will not free the data,
or so that it will free data that was allocated by the user with png_malloc()
or png_zalloc() and passed in via a png_set_*() function, with
 
png_data_freer(png_ptr, info_ptr, freer, mask)
 
freer - one of
PNG_DESTROY_WILL_FREE_DATA
PNG_SET_WILL_FREE_DATA
PNG_USER_WILL_FREE_DATA
 
mask - which data elements are affected
same choices as in png_free_data()
 
This function only affects data that has already been allocated.
You can call this function after reading the PNG data but before calling
any png_set_*() functions, to control whether the user or the png_set_*()
function is responsible for freeing any existing data that might be present,
and again after the png_set_*() functions to control whether the user
or png_destroy_*() is supposed to free the data. When the user assumes
responsibility for libpng-allocated data, the application must use
png_free() to free it, and when the user transfers responsibility to libpng
for data that the user has allocated, the user must have used png_malloc()
or png_zalloc() to allocate it.
 
If you allocated your row_pointers in a single block, as suggested above in
the description of the high level read interface, you must not transfer
responsibility for freeing it to the png_set_rows or png_read_destroy function,
because they would also try to free the individual row_pointers[i].
 
If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword
separately, do not transfer responsibility for freeing text_ptr to libpng,
because when libpng fills a png_text structure it combines these members with
the key member, and png_free_data() will free only text_ptr.key. Similarly,
if you transfer responsibility for free'ing text_ptr from libpng to your
application, your application must not separately free those members.
 
The png_free_data() function will turn off the "valid" flag for anything
it frees. If you need to turn the flag off for a chunk that was freed by
your application instead of by libpng, you can use
 
png_set_invalid(png_ptr, info_ptr, mask);
 
mask - identifies the chunks to be made invalid,
containing the bitwise OR of one or
more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_hIST, PNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO_iCCP, PNG_INFO_sPLT,
PNG_INFO_sCAL, PNG_INFO_IDAT
 
For a more compact example of reading a PNG image, see the file example.c.
 
Reading PNG files progressively
 
The progressive reader is slightly different then the non-progressive
reader. Instead of calling png_read_info(), png_read_rows(), and
png_read_end(), you make one call to png_process_data(), which calls
callbacks when it has the info, a row, or the end of the image. You
set up these callbacks with png_set_progressive_read_fn(). You don't
have to worry about the input/output functions of libpng, as you are
giving the library the data directly in png_process_data(). I will
assume that you have read the section on reading PNG files above,
so I will only highlight the differences (although I will show
all of the code).
 
png_structp png_ptr;
png_infop info_ptr;
 
/* An example code fragment of how you would
initialize the progressive reader in your
application. */
int
initialize_png_reader()
{
png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);
 
if (!png_ptr)
return (ERROR);
 
info_ptr = png_create_info_struct(png_ptr);
 
if (!info_ptr)
{
png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return (ERROR);
}
 
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);
return (ERROR);
}
 
/* This one's new. You can provide functions
to be called when the header info is valid,
when each row is completed, and when the image
is finished. If you aren't using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call
png_set_progressive_read_fn(). You can use
any struct as the user_ptr (cast to a void pointer
for the function call), and retrieve the pointer
from inside the callbacks using the function
 
png_get_progressive_ptr(png_ptr);
 
which will return a void pointer, which you have
to cast appropriately.
*/
png_set_progressive_read_fn(png_ptr, (void *)user_ptr,
info_callback, row_callback, end_callback);
 
return 0;
}
 
/* A code fragment that you call as you receive blocks
of data */
int
process_data(png_bytep buffer, png_uint_32 length)
{
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);
return (ERROR);
}
 
/* This one's new also. Simply give it a chunk
of data from the file stream (in order, of
course). On machines with segmented memory
models machines, don't give it any more than
64K. The library seems to run fine with sizes
of 4K. Although you can give it much less if
necessary (I assume you can give it chunks of
1 byte, I haven't tried less then 256 bytes
yet). When this function returns, you may
want to display any rows that were generated
in the row callback if you don't already do
so there.
*/
png_process_data(png_ptr, info_ptr, buffer, length);
 
/* At this point you can call png_process_data_skip if
you want to handle data the library will skip yourself;
it simply returns the number of bytes to skip (and stops
libpng skipping that number of bytes on the next
png_process_data call).
return 0;
}
 
/* This function is called (as set by
png_set_progressive_read_fn() above) when enough data
has been supplied so all of the header has been
read.
*/
void
info_callback(png_structp png_ptr, png_infop info)
{
/* Do any setup here, including setting any of
the transformations mentioned in the Reading
PNG files section. For now, you _must_ call
either png_start_read_image() or
png_read_update_info() after all the
transformations are set (even if you don't set
any). You may start getting rows before
png_process_data() returns, so this is your
last chance to prepare for that.
 
This is where you turn on interlace handling,
assuming you don't want to do it yourself.
 
If you need to you can stop the processing of
your original input data at this point by calling
png_process_data_pause. This returns the number
of unprocessed bytes from the last png_process_data
call - it is up to you to ensure that the next call
sees these bytes again. If you don't want to bother
with this you can get libpng to cache the unread
bytes by setting the 'save' parameter (see png.h) but
then libpng will have to copy the data internally.
*/
}
 
/* This function is called when each row of image
data is complete */
void
row_callback(png_structp png_ptr, png_bytep new_row,
png_uint_32 row_num, int pass)
{
/* If the image is interlaced, and you turned
on the interlace handler, this function will
be called for every row in every pass. Some
of these rows will not be changed from the
previous pass. When the row is not changed,
the new_row variable will be NULL. The rows
and passes are called in order, so you don't
really need the row_num and pass, but I'm
supplying them because it may make your life
easier.
 
If you did not turn on interlace handling then
the callback is called for each row of each
sub-image when the image is interlaced. In this
case 'row_num' is the row in the sub-image, not
the row in the output image as it is in all other
cases.
 
For the non-NULL rows of interlaced images when
you have switched on libpng interlace handling,
you must call png_progressive_combine_row()
passing in the row and the old row. You can
call this function for NULL rows (it will just
return) and for non-interlaced images (it just
does the memcpy for you) if it will make the
code easier. Thus, you can just do this for
all cases if you switch on interlace handling;
*/
 
png_progressive_combine_row(png_ptr, old_row,
new_row);
 
/* where old_row is what was displayed for
previously for the row. Note that the first
pass (pass == 0, really) will completely cover
the old row, so the rows do not have to be
initialized. After the first pass (and only
for interlaced images), you will have to pass
the current row, and the function will combine
the old row and the new row.
 
You can also call png_process_data_pause in this
callback - see above.
*/
}
 
void
end_callback(png_structp png_ptr, png_infop info)
{
/* This function is called after the whole image
has been read, including any chunks after the
image (up to and including the IEND). You
will usually have the same info chunk as you
had in the header, although some data may have
been added to the comments and time fields.
 
Most people won't do much here, perhaps setting
a flag that marks the image as finished.
*/
}
 
 
 
IV. Writing
 
Much of this is very similar to reading. However, everything of
importance is repeated here, so you won't have to constantly look
back up in the reading section to understand writing.
 
Setup
 
You will want to do the I/O initialization before you get into libpng,
so if it doesn't work, you don't have anything to undo. If you are not
using the standard I/O functions, you will need to replace them with
custom writing functions. See the discussion under Customizing libpng.
 
FILE *fp = fopen(file_name, "wb");
 
if (!fp)
return (ERROR);
 
Next, png_struct and png_info need to be allocated and initialized.
As these can be both relatively large, you may not want to store these
on the stack, unless you have stack space to spare. Of course, you
will want to check if they return NULL. If you are also reading,
you won't want to name your read structure and your write structure
both "png_ptr"; you can call them anything you like, such as
"read_ptr" and "write_ptr". Look at pngtest.c, for example.
 
png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);
 
if (!png_ptr)
return (ERROR);
 
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{
png_destroy_write_struct(&png_ptr,
(png_infopp)NULL);
return (ERROR);
}
 
If you want to use your own memory allocation routines,
define PNG_USER_MEM_SUPPORTED and use
png_create_write_struct_2() instead of png_create_write_struct():
 
png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);
 
After you have these structures, you will need to set up the
error handling. When libpng encounters an error, it expects to
longjmp() back to your routine. Therefore, you will need to call
setjmp() and pass the png_jmpbuf(png_ptr). If you
write the file from different routines, you will need to update
the png_jmpbuf(png_ptr) every time you enter a new routine that will
call a png_*() function. See your documentation of setjmp/longjmp
for your compiler for more information on setjmp/longjmp. See
the discussion on libpng error handling in the Customizing Libpng
section below for more information on the libpng error handling.
 
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
return (ERROR);
}
...
return;
 
If you would rather avoid the complexity of setjmp/longjmp issues,
you can compile libpng with PNG_NO_SETJMP, in which case
errors will result in a call to PNG_ABORT() which defaults to abort().
 
You can #define PNG_ABORT() to a function that does something
more useful than abort(), as long as your function does not
return.
 
Now you need to set up the output code. The default for libpng is to
use the C function fwrite(). If you use this, you will need to pass a
valid FILE * in the function png_init_io(). Be sure that the file is
opened in binary mode. Again, if you wish to handle writing data in
another way, see the discussion on libpng I/O handling in the Customizing
Libpng section below.
 
png_init_io(png_ptr, fp);
 
If you are embedding your PNG into a datastream such as MNG, and don't
want libpng to write the 8-byte signature, or if you have already
written the signature in your application, use
 
png_set_sig_bytes(png_ptr, 8);
 
to inform libpng that it should not write a signature.
 
Write callbacks
 
At this point, you can set up a callback function that will be
called after each row has been written, which you can use to control
a progress meter or the like. It's demonstrated in pngtest.c.
You must supply a function
 
void write_row_callback(png_structp png_ptr, png_uint_32 row,
int pass);
{
/* put your code here */
}
 
(You can give it another name that you like instead of "write_row_callback")
 
To inform libpng about your function, use
 
png_set_write_status_fn(png_ptr, write_row_callback);
 
You now have the option of modifying how the compression library will
run. The following functions are mainly for testing, but may be useful
in some cases, like if you need to write PNG files extremely fast and
are willing to give up some compression, or if you want to get the
maximum possible compression at the expense of slower writing. If you
have no special needs in this area, let the library do what it wants by
not calling this function at all, as it has been tuned to deliver a good
speed/compression ratio. The second parameter to png_set_filter() is
the filter method, for which the only valid values are 0 (as of the
July 1999 PNG specification, version 1.2) or 64 (if you are writing
a PNG datastream that is to be embedded in a MNG datastream). The third
parameter is a flag that indicates which filter type(s) are to be tested
for each scanline. See the PNG specification for details on the specific
filter types.
 
 
/* turn on or off filtering, and/or choose
specific filters. You can use either a single
PNG_FILTER_VALUE_NAME or the bitwise OR of one
or more PNG_FILTER_NAME masks.
*/
png_set_filter(png_ptr, 0,
PNG_FILTER_NONE | PNG_FILTER_VALUE_NONE |
PNG_FILTER_SUB | PNG_FILTER_VALUE_SUB |
PNG_FILTER_UP | PNG_FILTER_VALUE_UP |
PNG_FILTER_AVG | PNG_FILTER_VALUE_AVG |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH|
PNG_ALL_FILTERS);
 
If an application wants to start and stop using particular filters during
compression, it should start out with all of the filters (to ensure that
the previous row of pixels will be stored in case it's needed later),
and then add and remove them after the start of compression.
 
If you are writing a PNG datastream that is to be embedded in a MNG
datastream, the second parameter can be either 0 or 64.
 
The png_set_compression_*() functions interface to the zlib compression
library, and should mostly be ignored unless you really know what you are
doing. The only generally useful call is png_set_compression_level()
which changes how much time zlib spends on trying to compress the image
data. See the Compression Library (zlib.h and algorithm.txt, distributed
with zlib) for details on the compression levels.
 
/* set the zlib compression level */
png_set_compression_level(png_ptr,
Z_BEST_COMPRESSION);
 
/* set other zlib parameters */
png_set_compression_mem_level(png_ptr, 8);
png_set_compression_strategy(png_ptr,
Z_DEFAULT_STRATEGY);
png_set_compression_window_bits(png_ptr, 15);
png_set_compression_method(png_ptr, 8);
png_set_compression_buffer_size(png_ptr, 8192)
 
extern PNG_EXPORT(void,png_set_zbuf_size)
 
Setting the contents of info for output
 
You now need to fill in the png_info structure with all the data you
wish to write before the actual image. Note that the only thing you
are allowed to write after the image is the text chunks and the time
chunk (as of PNG Specification 1.2, anyway). See png_write_end() and
the latest PNG specification for more information on that. If you
wish to write them before the image, fill them in now, and flag that
data as being valid. If you want to wait until after the data, don't
fill them until png_write_end(). For all the fields in png_info and
their data types, see png.h. For explanations of what the fields
contain, see the PNG specification.
 
Some of the more important parts of the png_info are:
 
png_set_IHDR(png_ptr, info_ptr, width, height,
bit_depth, color_type, interlace_type,
compression_type, filter_method)
 
width - holds the width of the image
in pixels (up to 2^31).
 
height - holds the height of the image
in pixels (up to 2^31).
 
bit_depth - holds the bit depth of one of the
image channels.
(valid values are 1, 2, 4, 8, 16
and depend also on the
color_type. See also significant
bits (sBIT) below).
 
color_type - describes which color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)
 
PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA
 
interlace_type - PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7
 
compression_type - (must be
PNG_COMPRESSION_TYPE_DEFAULT)
 
filter_method - (must be PNG_FILTER_TYPE_DEFAULT
or, if you are writing a PNG to
be embedded in a MNG datastream,
can also be
PNG_INTRAPIXEL_DIFFERENCING)
 
If you call png_set_IHDR(), the call must appear before any of the
other png_set_*() functions, because they might require access to some of
the IHDR settings. The remaining png_set_*() functions can be called
in any order.
 
If you wish, you can reset the compression_type, interlace_type, or
filter_method later by calling png_set_IHDR() again; if you do this, the
width, height, bit_depth, and color_type must be the same in each call.
 
png_set_PLTE(png_ptr, info_ptr, palette,
num_palette);
 
palette - the palette for the file
(array of png_color)
num_palette - number of entries in the palette
 
png_set_gAMA(png_ptr, info_ptr, file_gamma);
png_set_gAMA_fixed(png_ptr, info_ptr, int_file_gamma);
 
file_gamma - the gamma at which the image was
created (PNG_INFO_gAMA)
 
int_file_gamma - 100,000 times the gamma at which
the image was created
 
png_set_sRGB(png_ptr, info_ptr, srgb_intent);
 
srgb_intent - the rendering intent
(PNG_INFO_sRGB) The presence of
the sRGB chunk means that the pixel
data is in the sRGB color space.
This chunk also implies specific
values of gAMA and cHRM. Rendering
intent is the CSS-1 property that
has been defined by the International
Color Consortium
(http://www.color.org).
It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.
 
 
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr,
srgb_intent);
 
srgb_intent - the rendering intent
(PNG_INFO_sRGB) The presence of the
sRGB chunk means that the pixel
data is in the sRGB color space.
This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with sRGB to be
written.
 
png_set_iCCP(png_ptr, info_ptr, name, compression_type,
profile, proflen);
 
name - The profile name.
 
compression_type - The compression type; always
PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.
 
profile - International Color Consortium color
profile data. May contain NULs.
 
proflen - length of profile data in bytes.
 
png_set_sBIT(png_ptr, info_ptr, sig_bit);
 
sig_bit - the number of significant bits for
(PNG_INFO_sBIT) each of the gray, red,
green, and blue channels, whichever are
appropriate for the given color type
(png_color_16)
 
png_set_tRNS(png_ptr, info_ptr, trans_alpha,
num_trans, trans_color);
 
trans_alpha - array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)
 
trans_color - graylevel or color sample values
(in order red, green, blue) of the
single transparent color for
non-paletted images (PNG_INFO_tRNS)
 
num_trans - number of transparent entries
(PNG_INFO_tRNS)
 
png_set_hIST(png_ptr, info_ptr, hist);
 
hist - histogram of palette (array of
png_uint_16) (PNG_INFO_hIST)
 
png_set_tIME(png_ptr, info_ptr, mod_time);
 
mod_time - time image was last modified
(PNG_VALID_tIME)
 
png_set_bKGD(png_ptr, info_ptr, background);
 
background - background color (PNG_VALID_bKGD)
 
png_set_text(png_ptr, info_ptr, text_ptr, num_text);
 
text_ptr - array of png_text holding image
comments
 
text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt
text_ptr[i].key - keyword for comment. Must contain
1-79 characters.
text_ptr[i].text - text comments for current
keyword. Can be NULL or empty.
text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt
text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt
text_ptr[i].lang - language of comment (NULL or
empty for unknown).
text_ptr[i].translated_keyword - keyword in UTF-8 (NULL
or empty for unknown).
Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist
when the library is built with iTXt chunk support.
 
num_text - number of comments
 
png_set_sPLT(png_ptr, info_ptr, &palette_ptr,
num_spalettes);
 
palette_ptr - array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.
num_spalettes - number of palette structures to be
added.
 
png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y,
unit_type);
 
offset_x - positive offset from the left
edge of the screen
 
offset_y - positive offset from the top
edge of the screen
 
unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER
 
png_set_pHYs(png_ptr, info_ptr, res_x, res_y,
unit_type);
 
res_x - pixels/unit physical resolution
in x direction
 
res_y - pixels/unit physical resolution
in y direction
 
unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER
 
png_set_sCAL(png_ptr, info_ptr, unit, width, height)
 
unit - physical scale units (an integer)
 
width - width of a pixel in physical scale units
 
height - height of a pixel in physical scale units
(width and height are doubles)
 
png_set_sCAL_s(png_ptr, info_ptr, unit, width, height)
 
unit - physical scale units (an integer)
 
width - width of a pixel in physical scale units
 
height - height of a pixel in physical scale units
(width and height are strings like "2.54")
 
png_set_unknown_chunks(png_ptr, info_ptr, &unknowns,
num_unknowns)
 
unknowns - array of png_unknown_chunk
structures holding unknown chunks
unknowns[i].name - name of unknown chunk
unknowns[i].data - data of unknown chunk
unknowns[i].size - size of unknown chunk's data
unknowns[i].location - position to write chunk in file
0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IDAT
PNG_AFTER_IDAT: after IDAT
 
The "location" member is set automatically according to
what part of the output file has already been written.
You can change its value after calling png_set_unknown_chunks()
as demonstrated in pngtest.c. Within each of the "locations",
the chunks are sequenced according to their position in the
structure (that is, the value of "i", which is the order in which
the chunk was either read from the input file or defined with
png_set_unknown_chunks).
 
A quick word about text and num_text. text is an array of png_text
structures. num_text is the number of valid structures in the array.
Each png_text structure holds a language code, a keyword, a text value,
and a compression type.
 
The compression types have the same valid numbers as the compression
types of the image data. Currently, the only valid number is zero.
However, you can store text either compressed or uncompressed, unlike
images, which always have to be compressed. So if you don't want the
text compressed, set the compression type to PNG_TEXT_COMPRESSION_NONE.
Because tEXt and zTXt chunks don't have a language field, if you
specify PNG_TEXT_COMPRESSION_NONE or PNG_TEXT_COMPRESSION_zTXt
any language code or translated keyword will not be written out.
 
Until text gets around 1000 bytes, it is not worth compressing it.
After the text has been written out to the file, the compression type
is set to PNG_TEXT_COMPRESSION_NONE_WR or PNG_TEXT_COMPRESSION_zTXt_WR,
so that it isn't written out again at the end (in case you are calling
png_write_end() with the same struct).
 
The keywords that are given in the PNG Specification are:
 
Title Short (one line) title or
caption for image
 
Author Name of image's creator
 
Description Description of image (possibly long)
 
Copyright Copyright notice
 
Creation Time Time of original image creation
(usually RFC 1123 format, see below)
 
Software Software used to create the image
 
Disclaimer Legal disclaimer
 
Warning Warning of nature of content
 
Source Device used to create the image
 
Comment Miscellaneous comment; conversion
from other image format
 
The keyword-text pairs work like this. Keywords should be short
simple descriptions of what the comment is about. Some typical
keywords are found in the PNG specification, as is some recommendations
on keywords. You can repeat keywords in a file. You can even write
some text before the image and some after. For example, you may want
to put a description of the image before the image, but leave the
disclaimer until after, so viewers working over modem connections
don't have to wait for the disclaimer to go over the modem before
they start seeing the image. Finally, keywords should be full
words, not abbreviations. Keywords and text are in the ISO 8859-1
(Latin-1) character set (a superset of regular ASCII) and can not
contain NUL characters, and should not contain control or other
unprintable characters. To make the comments widely readable, stick
with basic ASCII, and avoid machine specific character set extensions
like the IBM-PC character set. The keyword must be present, but
you can leave off the text string on non-compressed pairs.
Compressed pairs must have a text string, as only the text string
is compressed anyway, so the compression would be meaningless.
 
PNG supports modification time via the png_time structure. Two
conversion routines are provided, png_convert_from_time_t() for
time_t and png_convert_from_struct_tm() for struct tm. The
time_t routine uses gmtime(). You don't have to use either of
these, but if you wish to fill in the png_time structure directly,
you should provide the time in universal time (GMT) if possible
instead of your local time. Note that the year number is the full
year (e.g. 1998, rather than 98 - PNG is year 2000 compliant!), and
that months start with 1.
 
If you want to store the time of the original image creation, you should
use a plain tEXt chunk with the "Creation Time" keyword. This is
necessary because the "creation time" of a PNG image is somewhat vague,
depending on whether you mean the PNG file, the time the image was
created in a non-PNG format, a still photo from which the image was
scanned, or possibly the subject matter itself. In order to facilitate
machine-readable dates, it is recommended that the "Creation Time"
tEXt chunk use RFC 1123 format dates (e.g. "22 May 1997 18:07:10 GMT"),
although this isn't a requirement. Unlike the tIME chunk, the
"Creation Time" tEXt chunk is not expected to be automatically changed
by the software. To facilitate the use of RFC 1123 dates, a function
png_convert_to_rfc1123(png_timep) is provided to convert from PNG
time to an RFC 1123 format string.
 
Writing unknown chunks
 
You can use the png_set_unknown_chunks function to queue up chunks
for writing. You give it a chunk name, raw data, and a size; that's
all there is to it. The chunks will be written by the next following
png_write_info_before_PLTE, png_write_info, or png_write_end function.
Any chunks previously read into the info structure's unknown-chunk
list will also be written out in a sequence that satisfies the PNG
specification's ordering rules.
 
The high-level write interface
 
At this point there are two ways to proceed; through the high-level
write interface, or through a sequence of low-level write operations.
You can use the high-level interface if your image data is present
in the info structure. All defined output
transformations are permitted, enabled by the following masks.
 
PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_PACKING Pack 1, 2 and 4-bit samples
PNG_TRANSFORM_PACKSWAP Change order of packed
pixels to LSB first
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the
sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA
to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA
to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity
to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Strip out filler
bytes (deprecated).
PNG_TRANSFORM_STRIP_FILLER_BEFORE Strip out leading
filler bytes
PNG_TRANSFORM_STRIP_FILLER_AFTER Strip out trailing
filler bytes
 
If you have valid image data in the info structure (you can use
png_set_rows() to put image data in the info structure), simply do this:
 
png_write_png(png_ptr, info_ptr, png_transforms, NULL)
 
where png_transforms is an integer containing the bitwise OR of some set of
transformation flags. This call is equivalent to png_write_info(),
followed the set of transformations indicated by the transform mask,
then png_write_image(), and finally png_write_end().
 
(The final parameter of this call is not yet used. Someday it might point
to transformation parameters required by some future output transform.)
 
You must use png_transforms and not call any png_set_transform() functions
when you use png_write_png().
 
The low-level write interface
 
If you are going the low-level route instead, you are now ready to
write all the file information up to the actual image data. You do
this with a call to png_write_info().
 
png_write_info(png_ptr, info_ptr);
 
Note that there is one transformation you may need to do before
png_write_info(). In PNG files, the alpha channel in an image is the
level of opacity. If your data is supplied as a level of transparency,
you can invert the alpha channel before you write it, so that 0 is
fully transparent and 255 (in 8-bit or paletted images) or 65535
(in 16-bit images) is fully opaque, with
 
png_set_invert_alpha(png_ptr);
 
This must appear before png_write_info() instead of later with the
other transformations because in the case of paletted images the tRNS
chunk data has to be inverted before the tRNS chunk is written. If
your image is not a paletted image, the tRNS data (which in such cases
represents a single color to be rendered as transparent) won't need to
be changed, and you can safely do this transformation after your
png_write_info() call.
 
If you need to write a private chunk that you want to appear before
the PLTE chunk when PLTE is present, you can write the PNG info in
two steps, and insert code to write your own chunk between them:
 
png_write_info_before_PLTE(png_ptr, info_ptr);
png_set_unknown_chunks(png_ptr, info_ptr, ...);
png_write_info(png_ptr, info_ptr);
 
After you've written the file information, you can set up the library
to handle any special transformations of the image data. The various
ways to transform the data will be described in the order that they
should occur. This is important, as some of these change the color
type and/or bit depth of the data, and some others only work on
certain color types and bit depths. Even though each transformation
checks to see if it has data that it can do something with, you should
make sure to only enable a transformation if it will be valid for the
data. For example, don't swap red and blue on grayscale data.
 
PNG files store RGB pixels packed into 3 or 6 bytes. This code tells
the library to strip input data that has 4 or 8 bytes per pixel down
to 3 or 6 bytes (or strip 2 or 4-byte grayscale+filler data to 1 or 2
bytes per pixel).
 
png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);
 
where the 0 is unused, and the location is either PNG_FILLER_BEFORE or
PNG_FILLER_AFTER, depending upon whether the filler byte in the pixel
is stored XRGB or RGBX.
 
PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as
they can, resulting in, for example, 8 pixels per byte for 1 bit files.
If the data is supplied at 1 pixel per byte, use this code, which will
correctly pack the pixels into a single byte:
 
png_set_packing(png_ptr);
 
PNG files reduce possible bit depths to 1, 2, 4, 8, and 16. If your
data is of another bit depth, you can write an sBIT chunk into the
file so that decoders can recover the original data if desired.
 
/* Set the true bit depth of the image data */
if (color_type & PNG_COLOR_MASK_COLOR)
{
sig_bit.red = true_bit_depth;
sig_bit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;
}
 
else
{
sig_bit.gray = true_bit_depth;
}
 
if (color_type & PNG_COLOR_MASK_ALPHA)
{
sig_bit.alpha = true_bit_depth;
}
 
png_set_sBIT(png_ptr, info_ptr, &sig_bit);
 
If the data is stored in the row buffer in a bit depth other than
one supported by PNG (e.g. 3 bit data in the range 0-7 for a 4-bit PNG),
this will scale the values to appear to be the correct bit depth as
is required by PNG.
 
png_set_shift(png_ptr, &sig_bit);
 
PNG files store 16 bit pixels in network byte order (big-endian,
ie. most significant bits first). This code would be used if they are
supplied the other way (little-endian, i.e. least significant bits
first, the way PCs store them):
 
if (bit_depth > 8)
png_set_swap(png_ptr);
 
If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you
need to change the order the pixels are packed into bytes, you can use:
 
if (bit_depth < 8)
png_set_packswap(png_ptr);
 
PNG files store 3 color pixels in red, green, blue order. This code
would be used if they are supplied as blue, green, red:
 
png_set_bgr(png_ptr);
 
PNG files describe monochrome as black being zero and white being
one. This code would be used if the pixels are supplied with this reversed
(black being one and white being zero):
 
png_set_invert_mono(png_ptr);
 
Finally, you can write your own transformation function if none of
the existing ones meets your needs. This is done by setting a callback
with
 
png_set_write_user_transform_fn(png_ptr,
write_transform_fn);
 
You must supply the function
 
void write_transform_fn(png_structp png_ptr ptr,
row_info_ptr row_info, png_bytep data)
 
See pngtest.c for a working example. Your function will be called
before any of the other transformations are processed. If supported
libpng also supplies an information routine that may be called from
your callback:
 
png_get_current_row_number(png_ptr);
 
This returns the current row passed to the transform. Even with interlaced
images the value returned is the row in the final output image.
 
You can also set up a pointer to a user structure for use by your
callback function.
 
png_set_user_transform_info(png_ptr, user_ptr, 0, 0);
 
The user_channels and user_depth parameters of this function are ignored
when writing; you can set them to zero as shown.
 
You can retrieve the pointer via the function png_get_user_transform_ptr().
For example:
 
voidp write_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);
 
It is possible to have libpng flush any pending output, either manually,
or automatically after a certain number of lines have been written. To
flush the output stream a single time call:
 
png_write_flush(png_ptr);
 
and to have libpng flush the output stream periodically after a certain
number of scanlines have been written, call:
 
png_set_flush(png_ptr, nrows);
 
Note that the distance between rows is from the last time png_write_flush()
was called, or the first row of the image if it has never been called.
So if you write 50 lines, and then png_set_flush 25, it will flush the
output on the next scanline, and every 25 lines thereafter, unless
png_write_flush() is called before 25 more lines have been written.
If nrows is too small (less than about 10 lines for a 640 pixel wide
RGB image) the image compression may decrease noticeably (although this
may be acceptable for real-time applications). Infrequent flushing will
only degrade the compression performance by a few percent over images
that do not use flushing.
 
Writing the image data
 
That's it for the transformations. Now you can write the image data.
The simplest way to do this is in one function call. If you have the
whole image in memory, you can just call png_write_image() and libpng
will write the image. You will need to pass in an array of pointers to
each row. This function automatically handles interlacing, so you don't
need to call png_set_interlace_handling() or call this function multiple
times, or any of that other stuff necessary with png_write_rows().
 
png_write_image(png_ptr, row_pointers);
 
where row_pointers is:
 
png_byte *row_pointers[height];
 
You can point to void or char or whatever you use for pixels.
 
If you don't want to write the whole image at once, you can
use png_write_rows() instead. If the file is not interlaced,
this is simple:
 
png_write_rows(png_ptr, row_pointers,
number_of_rows);
 
row_pointers is the same as in the png_write_image() call.
 
If you are just writing one row at a time, you can do this with
a single row_pointer instead of an array of row_pointers:
 
png_bytep row_pointer = row;
 
png_write_row(png_ptr, row_pointer);
 
When the file is interlaced, things can get a good deal more complicated.
The only currently (as of the PNG Specification version 1.2, dated July
1999) defined interlacing scheme for PNG files is the "Adam7" interlace
scheme, that breaks down an image into seven smaller images of varying
size. libpng will build these images for you, or you can do them
yourself. If you want to build them yourself, see the PNG specification
for details of which pixels to write when.
 
If you don't want libpng to handle the interlacing details, just
use png_set_interlace_handling() and call png_write_rows() the
correct number of times to write all the sub-images
(png_set_interlace_handling() returns the number of sub-images.)
 
If you want libpng to build the sub-images, call this before you start
writing any rows:
 
number_of_passes = png_set_interlace_handling(png_ptr);
 
This will return the number of passes needed. Currently, this is seven,
but may change if another interlace type is added.
 
Then write the complete image number_of_passes times.
 
png_write_rows(png_ptr, row_pointers, number_of_rows);
 
Think carefully before you write an interlaced image. Typically code that
reads such images reads all the image data into memory, uncompressed, before
doing any processing. Only code that can display an image on the fly can
take advantage of the interlacing and even then the image has to be exactly
the correct size for the output device, because scaling an image requires
adjacent pixels and these are not available until all the passes have been
read.
 
If you do write an interlaced image you will hardly ever need to handle
the interlacing yourself. Call png_set_interlace_handling() and use the
approach described above.
 
The only time it is conceivable that you will really need to write an
interlaced image pass-by-pass is when you have read one pass by pass and
made some pixel-by-pixel transformation to it, as described in the read
code above. In this case use the PNG_PASS_ROWS and PNG_PASS_COLS macros
to determine the size of each sub-image in turn and simply write the rows
you obtained from the read code.
 
Finishing a sequential write
 
After you are finished writing the image, you should finish writing
the file. If you are interested in writing comments or time, you should
pass an appropriately filled png_info pointer. If you are not interested,
you can pass NULL.
 
png_write_end(png_ptr, info_ptr);
 
When you are done, you can free all memory used by libpng like this:
 
png_destroy_write_struct(&png_ptr, &info_ptr);
 
It is also possible to individually free the info_ptr members that
point to libpng-allocated storage with the following function:
 
png_free_data(png_ptr, info_ptr, mask, seq)
 
mask - identifies data to be freed, a mask
containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,
or simply PNG_FREE_ALL
 
seq - sequence number of item to be freed
(-1 for all items)
 
This function may be safely called when the relevant storage has
already been freed, or has not yet been allocated, or was allocated
by the user and not by libpng, and will in those cases do nothing.
The "seq" parameter is ignored if only one item of the selected data
type, such as PLTE, is allowed. If "seq" is not -1, and multiple items
are allowed for the data type identified in the mask, such as text or
sPLT, only the n'th item in the structure is freed, where n is "seq".
 
If you allocated data such as a palette that you passed in to libpng
with png_set_*, you must not free it until just before the call to
png_destroy_write_struct().
 
The default behavior is only to free data that was allocated internally
by libpng. This can be changed, so that libpng will not free the data,
or so that it will free data that was allocated by the user with png_malloc()
or png_zalloc() and passed in via a png_set_*() function, with
 
png_data_freer(png_ptr, info_ptr, freer, mask)
 
freer - one of
PNG_DESTROY_WILL_FREE_DATA
PNG_SET_WILL_FREE_DATA
PNG_USER_WILL_FREE_DATA
 
mask - which data elements are affected
same choices as in png_free_data()
 
For example, to transfer responsibility for some data from a read structure
to a write structure, you could use
 
png_data_freer(read_ptr, read_info_ptr,
PNG_USER_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)
 
png_data_freer(write_ptr, write_info_ptr,
PNG_DESTROY_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)
 
thereby briefly reassigning responsibility for freeing to the user but
immediately afterwards reassigning it once more to the write_destroy
function. Having done this, it would then be safe to destroy the read
structure and continue to use the PLTE, tRNS, and hIST data in the write
structure.
 
This function only affects data that has already been allocated.
You can call this function before calling after the png_set_*() functions
to control whether the user or png_destroy_*() is supposed to free the data.
When the user assumes responsibility for libpng-allocated data, the
application must use
png_free() to free it, and when the user transfers responsibility to libpng
for data that the user has allocated, the user must have used png_malloc()
or png_zalloc() to allocate it.
 
If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword
separately, do not transfer responsibility for freeing text_ptr to libpng,
because when libpng fills a png_text structure it combines these members with
the key member, and png_free_data() will free only text_ptr.key. Similarly,
if you transfer responsibility for free'ing text_ptr from libpng to your
application, your application must not separately free those members.
For a more compact example of writing a PNG image, see the file example.c.
 
V. Modifying/Customizing libpng:
 
There are two issues here. The first is changing how libpng does
standard things like memory allocation, input/output, and error handling.
The second deals with more complicated things like adding new chunks,
adding new transformations, and generally changing how libpng works.
Both of those are compile-time issues; that is, they are generally
determined at the time the code is written, and there is rarely a need
to provide the user with a means of changing them.
 
Memory allocation, input/output, and error handling
 
All of the memory allocation, input/output, and error handling in libpng
goes through callbacks that are user-settable. The default routines are
in pngmem.c, pngrio.c, pngwio.c, and pngerror.c, respectively. To change
these functions, call the appropriate png_set_*_fn() function.
 
Memory allocation is done through the functions png_malloc(), png_calloc(),
and png_free(). These currently just call the standard C functions.
png_calloc() calls png_malloc() and then clears the newly
allocated memory to zero. There is limited support for certain systems
with segmented memory architectures and the types of pointers declared by
png.h match this; you will have to use appropriate pointers in your
application. Since it is
unlikely that the method of handling memory allocation on a platform
will change between applications, these functions must be modified in
the library at compile time. If you prefer to use a different method
of allocating and freeing data, you can use png_create_read_struct_2() or
png_create_write_struct_2() to register your own functions as described
above. These functions also provide a void pointer that can be retrieved
via
 
mem_ptr=png_get_mem_ptr(png_ptr);
 
Your replacement memory functions must have prototypes as follows:
 
png_voidp malloc_fn(png_structp png_ptr,
png_alloc_size_t size);
 
void free_fn(png_structp png_ptr, png_voidp ptr);
 
Your malloc_fn() must return NULL in case of failure. The png_malloc()
function will normally call png_error() if it receives a NULL from the
system memory allocator or from your replacement malloc_fn().
 
Your free_fn() will never be called with a NULL ptr, since libpng's
png_free() checks for NULL before calling free_fn().
 
Input/Output in libpng is done through png_read() and png_write(),
which currently just call fread() and fwrite(). The FILE * is stored in
png_struct and is initialized via png_init_io(). If you wish to change
the method of I/O, the library supplies callbacks that you can set
through the function png_set_read_fn() and png_set_write_fn() at run
time, instead of calling the png_init_io() function. These functions
also provide a void pointer that can be retrieved via the function
png_get_io_ptr(). For example:
 
png_set_read_fn(png_structp read_ptr,
voidp read_io_ptr, png_rw_ptr read_data_fn)
 
png_set_write_fn(png_structp write_ptr,
voidp write_io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);
 
voidp read_io_ptr = png_get_io_ptr(read_ptr);
voidp write_io_ptr = png_get_io_ptr(write_ptr);
 
The replacement I/O functions must have prototypes as follows:
 
void user_read_data(png_structp png_ptr,
png_bytep data, png_size_t length);
 
void user_write_data(png_structp png_ptr,
png_bytep data, png_size_t length);
 
void user_flush_data(png_structp png_ptr);
 
The user_read_data() function is responsible for detecting and
handling end-of-data errors.
 
Supplying NULL for the read, write, or flush functions sets them back
to using the default C stream functions, which expect the io_ptr to
point to a standard *FILE structure. It is probably a mistake
to use NULL for one of write_data_fn and output_flush_fn but not both
of them, unless you have built libpng with PNG_NO_WRITE_FLUSH defined.
It is an error to read from a write stream, and vice versa.
 
Error handling in libpng is done through png_error() and png_warning().
Errors handled through png_error() are fatal, meaning that png_error()
should never return to its caller. Currently, this is handled via
setjmp() and longjmp() (unless you have compiled libpng with
PNG_NO_SETJMP, in which case it is handled via PNG_ABORT()),
but you could change this to do things like exit() if you should wish,
as long as your function does not return.
 
On non-fatal errors, png_warning() is called
to print a warning message, and then control returns to the calling code.
By default png_error() and png_warning() print a message on stderr via
fprintf() unless the library is compiled with PNG_NO_CONSOLE_IO defined
(because you don't want the messages) or PNG_NO_STDIO defined (because
fprintf() isn't available). If you wish to change the behavior of the error
functions, you will need to set up your own message callbacks. These
functions are normally supplied at the time that the png_struct is created.
It is also possible to redirect errors and warnings to your own replacement
functions after png_create_*_struct() has been called by calling:
 
png_set_error_fn(png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);
 
png_voidp error_ptr = png_get_error_ptr(png_ptr);
 
If NULL is supplied for either error_fn or warning_fn, then the libpng
default function will be used, calling fprintf() and/or longjmp() if a
problem is encountered. The replacement error functions should have
parameters as follows:
 
void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);
 
void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);
 
The motivation behind using setjmp() and longjmp() is the C++ throw and
catch exception handling methods. This makes the code much easier to write,
as there is no need to check every return code of every function call.
However, there are some uncertainties about the status of local variables
after a longjmp, so the user may want to be careful about doing anything
after setjmp returns non-zero besides returning itself. Consult your
compiler documentation for more details. For an alternative approach, you
may wish to use the "cexcept" facility (see http://cexcept.sourceforge.net).
 
Custom chunks
 
If you need to read or write custom chunks, you may need to get deeper
into the libpng code. The library now has mechanisms for storing
and writing chunks of unknown type; you can even declare callbacks
for custom chunks. However, this may not be good enough if the
library code itself needs to know about interactions between your
chunk and existing `intrinsic' chunks.
 
If you need to write a new intrinsic chunk, first read the PNG
specification. Acquire a first level of understanding of how it works.
Pay particular attention to the sections that describe chunk names,
and look at how other chunks were designed, so you can do things
similarly. Second, check out the sections of libpng that read and
write chunks. Try to find a chunk that is similar to yours and use
it as a template. More details can be found in the comments inside
the code. It is best to handle unknown chunks in a generic method,
via callback functions, instead of by modifying libpng functions.
 
If you wish to write your own transformation for the data, look through
the part of the code that does the transformations, and check out some of
the simpler ones to get an idea of how they work. Try to find a similar
transformation to the one you want to add and copy off of it. More details
can be found in the comments inside the code itself.
 
Configuring for 16 bit platforms
 
You will want to look into zconf.h to tell zlib (and thus libpng) that
it cannot allocate more then 64K at a time. Even if you can, the memory
won't be accessible. So limit zlib and libpng to 64K by defining MAXSEG_64K.
 
Configuring for DOS
 
For DOS users who only have access to the lower 640K, you will
have to limit zlib's memory usage via a png_set_compression_mem_level()
call. See zlib.h or zconf.h in the zlib library for more information.
 
Configuring for Medium Model
 
Libpng's support for medium model has been tested on most of the popular
compilers. Make sure MAXSEG_64K gets defined, USE_FAR_KEYWORD gets
defined, and FAR gets defined to far in pngconf.h, and you should be
all set. Everything in the library (except for zlib's structure) is
expecting far data. You must use the typedefs with the p or pp on
the end for pointers (or at least look at them and be careful). Make
note that the rows of data are defined as png_bytepp, which is an
unsigned char far * far *.
 
Configuring for gui/windowing platforms:
 
You will need to write new error and warning functions that use the GUI
interface, as described previously, and set them to be the error and
warning functions at the time that png_create_*_struct() is called,
in order to have them available during the structure initialization.
They can be changed later via png_set_error_fn(). On some compilers,
you may also have to change the memory allocators (png_malloc, etc.).
 
Configuring for compiler xxx:
 
All includes for libpng are in pngconf.h. If you need to add, change
or delete an include, this is the place to do it.
The includes that are not needed outside libpng are placed in pngpriv.h,
which is only used by the routines inside libpng itself.
The files in libpng proper only include pngpriv.h and png.h, which
in turn includes pngconf.h.
 
Configuring zlib:
 
There are special functions to configure the compression. Perhaps the
most useful one changes the compression level, which currently uses
input compression values in the range 0 - 9. The library normally
uses the default compression level (Z_DEFAULT_COMPRESSION = 6). Tests
have shown that for a large majority of images, compression values in
the range 3-6 compress nearly as well as higher levels, and do so much
faster. For online applications it may be desirable to have maximum speed
(Z_BEST_SPEED = 1). With versions of zlib after v0.99, you can also
specify no compression (Z_NO_COMPRESSION = 0), but this would create
files larger than just storing the raw bitmap. You can specify the
compression level by calling:
 
png_set_compression_level(png_ptr, level);
 
Another useful one is to reduce the memory level used by the library.
The memory level defaults to 8, but it can be lowered if you are
short on memory (running DOS, for example, where you only have 640K).
Note that the memory level does have an effect on compression; among
other things, lower levels will result in sections of incompressible
data being emitted in smaller stored blocks, with a correspondingly
larger relative overhead of up to 15% in the worst case.
 
png_set_compression_mem_level(png_ptr, level);
 
The other functions are for configuring zlib. They are not recommended
for normal use and may result in writing an invalid PNG file. See
zlib.h for more information on what these mean.
 
png_set_compression_strategy(png_ptr,
strategy);
 
png_set_compression_window_bits(png_ptr,
window_bits);
 
png_set_compression_method(png_ptr, method);
png_set_compression_buffer_size(png_ptr, size);
 
Controlling row filtering
 
If you want to control whether libpng uses filtering or not, which
filters are used, and how it goes about picking row filters, you
can call one of these functions. The selection and configuration
of row filters can have a significant impact on the size and
encoding speed and a somewhat lesser impact on the decoding speed
of an image. Filtering is enabled by default for RGB and grayscale
images (with and without alpha), but not for paletted images nor
for any images with bit depths less than 8 bits/pixel.
 
The 'method' parameter sets the main filtering method, which is
currently only '0' in the PNG 1.2 specification. The 'filters'
parameter sets which filter(s), if any, should be used for each
scanline. Possible values are PNG_ALL_FILTERS and PNG_NO_FILTERS
to turn filtering on and off, respectively.
 
Individual filter types are PNG_FILTER_NONE, PNG_FILTER_SUB,
PNG_FILTER_UP, PNG_FILTER_AVG, PNG_FILTER_PAETH, which can be bitwise
ORed together with '|' to specify one or more filters to use.
These filters are described in more detail in the PNG specification.
If you intend to change the filter type during the course of writing
the image, you should start with flags set for all of the filters
you intend to use so that libpng can initialize its internal
structures appropriately for all of the filter types. (Note that this
means the first row must always be adaptively filtered, because libpng
currently does not allocate the filter buffers until png_write_row()
is called for the first time.)
 
filters = PNG_FILTER_NONE | PNG_FILTER_SUB
PNG_FILTER_UP | PNG_FILTER_AVG |
PNG_FILTER_PAETH | PNG_ALL_FILTERS;
 
png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE,
filters);
The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in a MNG
datastream. This parameter must be the
same as the value of filter_method used
in png_set_IHDR().
 
It is also possible to influence how libpng chooses from among the
available filters. This is done in one or both of two ways - by
telling it how important it is to keep the same filter for successive
rows, and by telling it the relative computational costs of the filters.
 
double weights[3] = {1.5, 1.3, 1.1},
costs[PNG_FILTER_VALUE_LAST] =
{1.0, 1.3, 1.3, 1.5, 1.7};
 
png_set_filter_heuristics(png_ptr,
PNG_FILTER_HEURISTIC_WEIGHTED, 3,
weights, costs);
 
The weights are multiplying factors that indicate to libpng that the
row filter should be the same for successive rows unless another row filter
is that many times better than the previous filter. In the above example,
if the previous 3 filters were SUB, SUB, NONE, the SUB filter could have a
"sum of absolute differences" 1.5 x 1.3 times higher than other filters
and still be chosen, while the NONE filter could have a sum 1.1 times
higher than other filters and still be chosen. Unspecified weights are
taken to be 1.0, and the specified weights should probably be declining
like those above in order to emphasize recent filters over older filters.
 
The filter costs specify for each filter type a relative decoding cost
to be considered when selecting row filters. This means that filters
with higher costs are less likely to be chosen over filters with lower
costs, unless their "sum of absolute differences" is that much smaller.
The costs do not necessarily reflect the exact computational speeds of
the various filters, since this would unduly influence the final image
size.
 
Note that the numbers above were invented purely for this example and
are given only to help explain the function usage. Little testing has
been done to find optimum values for either the costs or the weights.
 
Removing unwanted object code
 
There are a bunch of #define's in pngconf.h that control what parts of
libpng are compiled. All the defines end in _SUPPORTED. If you are
never going to use a capability, you can change the #define to #undef
before recompiling libpng and save yourself code and data space, or
you can turn off individual capabilities with defines that begin with
PNG_NO_.
 
In libpng-1.5.0 and later, the #define's are in pnglibconf.h instead.
 
You can also turn all of the transforms and ancillary chunk capabilities
off en masse with compiler directives that define
PNG_NO_READ[or WRITE]_TRANSFORMS, or PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS,
or all four,
along with directives to turn on any of the capabilities that you do
want. The PNG_NO_READ[or WRITE]_TRANSFORMS directives disable the extra
transformations but still leave the library fully capable of reading
and writing PNG files with all known public chunks. Use of the
PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS directive produces a library
that is incapable of reading or writing ancillary chunks. If you are
not using the progressive reading capability, you can turn that off
with PNG_NO_PROGRESSIVE_READ (don't confuse this with the INTERLACING
capability, which you'll still have).
 
All the reading and writing specific code are in separate files, so the
linker should only grab the files it needs. However, if you want to
make sure, or if you are building a stand alone library, all the
reading files start with pngr and all the writing files start with
pngw. The files that don't match either (like png.c, pngtrans.c, etc.)
are used for both reading and writing, and always need to be included.
The progressive reader is in pngpread.c
 
If you are creating or distributing a dynamically linked library (a .so
or DLL file), you should not remove or disable any parts of the library,
as this will cause applications linked with different versions of the
library to fail if they call functions not available in your library.
The size of the library itself should not be an issue, because only
those sections that are actually used will be loaded into memory.
 
Requesting debug printout
 
The macro definition PNG_DEBUG can be used to request debugging
printout. Set it to an integer value in the range 0 to 3. Higher
numbers result in increasing amounts of debugging information. The
information is printed to the "stderr" file, unless another file
name is specified in the PNG_DEBUG_FILE macro definition.
 
When PNG_DEBUG > 0, the following functions (macros) become available:
 
png_debug(level, message)
png_debug1(level, message, p1)
png_debug2(level, message, p1, p2)
 
in which "level" is compared to PNG_DEBUG to decide whether to print
the message, "message" is the formatted string to be printed,
and p1 and p2 are parameters that are to be embedded in the string
according to printf-style formatting directives. For example,
 
png_debug1(2, "foo=%d\n", foo);
 
is expanded to
 
if (PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d\n", foo);
 
When PNG_DEBUG is defined but is zero, the macros aren't defined, but you
can still use PNG_DEBUG to control your own debugging:
 
#ifdef PNG_DEBUG
fprintf(stderr, ...
#endif
 
When PNG_DEBUG = 1, the macros are defined, but only png_debug statements
having level = 0 will be printed. There aren't any such statements in
this version of libpng, but if you insert some they will be printed.
 
VI. MNG support
 
The MNG specification (available at http://www.libpng.org/pub/mng) allows
certain extensions to PNG for PNG images that are embedded in MNG datastreams.
Libpng can support some of these extensions. To enable them, use the
png_permit_mng_features() function:
 
feature_set = png_permit_mng_features(png_ptr, mask)
 
mask is a png_uint_32 containing the bitwise OR of the
features you want to enable. These include
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER_64
PNG_ALL_MNG_FEATURES
 
feature_set is a png_uint_32 that is the bitwise AND of
your mask with the set of MNG features that is
supported by the version of libpng that you are using.
 
It is an error to use this function when reading or writing a standalone
PNG file with the PNG 8-byte signature. The PNG datastream must be wrapped
in a MNG datastream. As a minimum, it must have the MNG 8-byte signature
and the MHDR and MEND chunks. Libpng does not provide support for these
or any other MNG chunks; your application must provide its own support for
them. You may wish to consider using libmng (available at
http://www.libmng.com) instead.
 
VII. Changes to Libpng from version 0.88
 
It should be noted that versions of libpng later than 0.96 are not
distributed by the original libpng author, Guy Schalnat, nor by
Andreas Dilger, who had taken over from Guy during 1996 and 1997, and
distributed versions 0.89 through 0.96, but rather by another member
of the original PNG Group, Glenn Randers-Pehrson. Guy and Andreas are
still alive and well, but they have moved on to other things.
 
The old libpng functions png_read_init(), png_write_init(),
png_info_init(), png_read_destroy(), and png_write_destroy() have been
moved to PNG_INTERNAL in version 0.95 to discourage their use. These
functions will be removed from libpng version 1.4.0.
 
The preferred method of creating and initializing the libpng structures is
via the png_create_read_struct(), png_create_write_struct(), and
png_create_info_struct() because they isolate the size of the structures
from the application, allow version error checking, and also allow the
use of custom error handling routines during the initialization, which
the old functions do not. The functions png_read_destroy() and
png_write_destroy() do not actually free the memory that libpng
allocated for these structs, but just reset the data structures, so they
can be used instead of png_destroy_read_struct() and
png_destroy_write_struct() if you feel there is too much system overhead
allocating and freeing the png_struct for each image read.
 
Setting the error callbacks via png_set_message_fn() before
png_read_init() as was suggested in libpng-0.88 is no longer supported
because this caused applications that do not use custom error functions
to fail if the png_ptr was not initialized to zero. It is still possible
to set the error callbacks AFTER png_read_init(), or to change them with
png_set_error_fn(), which is essentially the same function, but with a new
name to force compilation errors with applications that try to use the old
method.
 
Starting with version 1.0.7, you can find out which version of the library
you are using at run-time:
 
png_uint_32 libpng_vn = png_access_version_number();
 
The number libpng_vn is constructed from the major version, minor
version with leading zero, and release number with leading zero,
(e.g., libpng_vn for version 1.0.7 is 10007).
 
You can also check which version of png.h you used when compiling your
application:
 
png_uint_32 application_vn = PNG_LIBPNG_VER;
 
VIII. Changes to Libpng from version 1.0.x to 1.2.x
 
Support for user memory management was enabled by default. To
accomplish this, the functions png_create_read_struct_2(),
png_create_write_struct_2(), png_set_mem_fn(), png_get_mem_ptr(),
png_malloc_default(), and png_free_default() were added.
 
Support for the iTXt chunk has been enabled by default as of
version 1.2.41.
 
Support for certain MNG features was enabled.
 
Support for numbered error messages was added. However, we never got
around to actually numbering the error messages. The function
png_set_strip_error_numbers() was added (Note: the prototype for this
function was inadvertently removed from png.h in PNG_NO_ASSEMBLER_CODE
builds of libpng-1.2.15. It was restored in libpng-1.2.36).
 
The png_malloc_warn() function was added at libpng-1.2.3. This issues
a png_warning and returns NULL instead of aborting when it fails to
acquire the requested memory allocation.
 
Support for setting user limits on image width and height was enabled
by default. The functions png_set_user_limits(), png_get_user_width_max(),
and png_get_user_height_max() were added at libpng-1.2.6.
 
The png_set_add_alpha() function was added at libpng-1.2.7.
 
The function png_set_expand_gray_1_2_4_to_8() was added at libpng-1.2.9.
Unlike png_set_gray_1_2_4_to_8(), the new function does not expand the
tRNS chunk to alpha. The png_set_gray_1_2_4_to_8() function is
deprecated.
 
A number of macro definitions in support of runtime selection of
assembler code features (especially Intel MMX code support) were
added at libpng-1.2.0:
 
PNG_ASM_FLAG_MMX_SUPPORT_COMPILED
PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW
PNG_ASM_FLAG_MMX_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_FILTER_SUB
PNG_ASM_FLAG_MMX_READ_FILTER_UP
PNG_ASM_FLAG_MMX_READ_FILTER_AVG
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH
PNG_ASM_FLAGS_INITIALIZED
PNG_MMX_READ_FLAGS
PNG_MMX_FLAGS
PNG_MMX_WRITE_FLAGS
PNG_MMX_FLAGS
 
We added the following functions in support of runtime
selection of assembler code features:
 
png_get_mmx_flagmask()
png_set_mmx_thresholds()
png_get_asm_flags()
png_get_mmx_bitdepth_threshold()
png_get_mmx_rowbytes_threshold()
png_set_asm_flags()
 
We replaced all of these functions with simple stubs in libpng-1.2.20,
when the Intel assembler code was removed due to a licensing issue.
 
These macros are deprecated:
 
PNG_READ_TRANSFORMS_NOT_SUPPORTED
PNG_PROGRESSIVE_READ_NOT_SUPPORTED
PNG_NO_SEQUENTIAL_READ_SUPPORTED
PNG_WRITE_TRANSFORMS_NOT_SUPPORTED
PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED
PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED
 
They have been replaced, respectively, by:
 
PNG_NO_READ_TRANSFORMS
PNG_NO_PROGRESSIVE_READ
PNG_NO_SEQUENTIAL_READ
PNG_NO_WRITE_TRANSFORMS
PNG_NO_READ_ANCILLARY_CHUNKS
PNG_NO_WRITE_ANCILLARY_CHUNKS
 
PNG_MAX_UINT was replaced with PNG_UINT_31_MAX. It has been
deprecated since libpng-1.0.16 and libpng-1.2.6.
 
The function
png_check_sig(sig, num)
was replaced with
!png_sig_cmp(sig, 0, num)
It has been deprecated since libpng-0.90.
 
The function
png_set_gray_1_2_4_to_8()
which also expands tRNS to alpha was replaced with
png_set_expand_gray_1_2_4_to_8()
which does not. It has been deprecated since libpng-1.0.18 and 1.2.9.
 
IX. Changes to Libpng from version 1.0.x/1.2.x to 1.4.x
 
Private libpng prototypes and macro definitions were moved from
png.h and pngconf.h into a new pngpriv.h header file.
 
Functions png_set_benign_errors(), png_benign_error(), and
png_chunk_benign_error() were added.
 
Support for setting the maximum amount of memory that the application
will allocate for reading chunks was added, as a security measure.
The functions png_set_chunk_cache_max() and png_get_chunk_cache_max()
were added to the library.
 
We implemented support for I/O states by adding png_ptr member io_state
and functions png_get_io_chunk_name() and png_get_io_state() in pngget.c
 
We added PNG_TRANSFORM_GRAY_TO_RGB to the available high-level
input transforms.
 
Checking for and reporting of errors in the IHDR chunk is more thorough.
 
Support for global arrays was removed, to improve thread safety.
 
Some obsolete/deprecated macros and functions have been removed.
 
Typecasted NULL definitions such as
#define png_voidp_NULL (png_voidp)NULL
were eliminated. If you used these in your application, just use
NULL instead.
 
The png_struct and info_struct members "trans" and "trans_values" were
changed to "trans_alpha" and "trans_color", respectively.
 
The obsolete, unused pnggccrd.c and pngvcrd.c files and related makefiles
were removed.
 
The PNG_1_0_X and PNG_1_2_X macros were eliminated.
 
The PNG_LEGACY_SUPPORTED macro was eliminated.
 
Many WIN32_WCE #ifdefs were removed.
 
The functions png_read_init(info_ptr), png_write_init(info_ptr),
png_info_init(info_ptr), png_read_destroy(), and png_write_destroy()
have been removed. They have been deprecated since libpng-0.95.
 
The png_permit_empty_plte() was removed. It has been deprecated
since libpng-1.0.9. Use png_permit_mng_features() instead.
 
We removed the obsolete stub functions png_get_mmx_flagmask(),
png_set_mmx_thresholds(), png_get_asm_flags(),
png_get_mmx_bitdepth_threshold(), png_get_mmx_rowbytes_threshold(),
png_set_asm_flags(), and png_mmx_supported()
 
We removed the obsolete png_check_sig(), png_memcpy_check(), and
png_memset_check() functions. Instead use !png_sig_cmp(), memcpy(),
and memset(), respectively.
 
The function png_set_gray_1_2_4_to_8() was removed. It has been
deprecated since libpng-1.0.18 and 1.2.9, when it was replaced with
png_set_expand_gray_1_2_4_to_8() because the former function also
expanded palette images.
 
Macros for png_get_uint_16, png_get_uint_32, and png_get_int_32
were added and are used by default instead of the corresponding
functions. Unfortunately,
from libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the
function) incorrectly returned a value of type png_uint_32.
 
We changed the prototype for png_malloc() from
png_malloc(png_structp png_ptr, png_uint_32 size)
to
png_malloc(png_structp png_ptr, png_alloc_size_t size)
 
This also applies to the prototype for the user replacement malloc_fn().
 
The png_calloc() function was added and is used in place of
of "png_malloc(); memset();" except in the case in png_read_png()
where the array consists of pointers; in this case a "for" loop is used
after the png_malloc() to set the pointers to NULL, to give robust.
behavior in case the application runs out of memory part-way through
the process.
 
We changed the prototypes of png_get_compression_buffer_size() and
png_set_compression_buffer_size() to work with png_size_t instead of
png_uint_32.
 
Support for numbered error messages was removed by default, since we
never got around to actually numbering the error messages. The function
png_set_strip_error_numbers() was removed from the library by default.
 
The png_zalloc() and png_zfree() functions are no longer exported.
The png_zalloc() function no longer zeroes out the memory that it
allocates.
 
Support for dithering was disabled by default in libpng-1.4.0, because
been well tested and doesn't actually "dither". The code was not
removed, however, and could be enabled by building libpng with
PNG_READ_DITHER_SUPPORTED defined. In libpng-1.4.2, this support
was reenabled, but the function was renamed png_set_quantize() to
reflect more accurately what it actually does. At the same time,
the PNG_DITHER_[RED,GREEN_BLUE]_BITS macros were also renamed to
PNG_QUANTIZE_[RED,GREEN,BLUE]_BITS, and PNG_READ_DITHER_SUPPORTED
was renamed to PNG_READ_QUANTIZE_SUPPORTED.
 
We removed the trailing '.' from the warning and error messages.
 
X. Changes to Libpng from version 1.4.x to 1.5.x
 
From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the
function) incorrectly returned a value of type png_uint_32.
 
A. Changes that affect users of libpng
 
There are no substantial API changes between the non-deprecated parts of
the 1.4.5 API and the 1.5.0 API, however the ability to directly access
the main libpng control structures, png_struct and png_info, deprecated
in earlier versions of libpng, has been completely removed from
libpng 1.5.
 
We no longer include zlib.h in png.h. Applications that need access
to information in zlib.h will need to add the '#include "zlib.h"'
directive. It does not matter whether it is placed prior to or after
the '"#include png.h"' directive.
 
We moved the png_strcpy(), png_strncpy(), png_strlen(), png_memcpy(),
png_memcmp(), png_sprintf, and png_memcpy() macros into a private
header file (pngpriv.h) that is not accessible to applications.
 
In png_get_iCCP, the type of "profile" was changed from png_charpp
to png_bytepp, and in png_set_iCCP, from png_charp to png_const_bytep.
 
There are changes of form in png.h, including new and changed macros to
declare
parts of the API. Some API functions with arguments that are pointers to
data not modified within the function have been corrected to declare
these arguments with PNG_CONST.
 
Much of the internal use of C macros to control the library build has also
changed and some of this is visible in the exported header files, in
particular the use of macros to control data and API elements visible
during application compilation may require significant revision to
application code. (It is extremely rare for an application to do this.)
 
Any program that compiled against libpng 1.4 and did not use deprecated
features or access internal library structures should compile and work
against libpng 1.5.
 
libpng 1.5.0 adds PNG_ PASS macros to help in the reading and writing of
interlaced images. The macros return the number of rows and columns in
each pass and information that can be used to de-interlace and (if
absolutely necessary) interlace an image.
 
libpng 1.5.0 adds an API png_longjmp(png_ptr, value). This API calls
the application provided png_longjmp_ptr on the internal, but application
initialized, jmpbuf. It is provided as a convenience to avoid the need
to use the png_jmpbuf macro, which had the unnecessary side effect of
resetting the internal png_longjmp_ptr value.
 
libpng 1.5.0 includes a complete fixed point API. By default this is
present along with the corresponding floating point API. In general the
fixed point API is faster and smaller than the floating point one because
the PNG file format used fixed point, not floating point. This applies
even if the library uses floating point in internal calculations. A new
macro, PNG_FLOATING_ARITHMETIC_SUPPORTED, reveals whether the library
uses floating point arithmetic (the default) or fixed point arithmetic
internally for performance critical calculations such as gamma correction.
In some cases, the gamma calculations may produce slightly different
results. This has changed the results in png_rgb_to_gray and in alpha
composition (png_set_background for example). This applies even if the
original image was already linear (gamma == 1.0) and, therefore, it is
not necessary to linearize the image. This is because libpng has *not*
been changed to optimize that case correctly, yet.
 
Fixed point support for the sCAL chunk comes with an important caveat;
the sCAL specification uses a decimal encoding of floating point values
and the accuracy of PNG fixed point values is insufficient for
representation of these values. Consequently a "string" API
(png_get_sCAL_s and png_set_sCAL_s) is the only reliable way of reading
arbitrary sCAL chunks in the absence of either the floating point API or
internal floating point calculations.
 
Applications no longer need to include the optional distribution header
file pngusr.h or define the corresponding macros during application
build in order to see the correct variant of the libpng API. From 1.5.0
application code can check for the corresponding _SUPPORTED macro:
 
#ifdef PNG_INCH_CONVERSIONS_SUPPORTED
/* code that uses the inch conversion APIs. */
#endif
 
This macro will only be defined if the inch conversion functions have been
compiled into libpng. The full set of macros, and whether or not support
has been compiled in, are available in the header file pnglibconf.h.
This header file is specific to the libpng build. Notice that prior to
1.5.0 the _SUPPORTED macros would always have the default definition unless
reset by pngusr.h or by explicit settings on the compiler command line.
These settings may produce compiler warnings or errors in 1.5.0 because
of macro redefinition.
 
From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the
function) incorrectly returned a value of type png_uint_32. libpng 1.5.0
is consistent with the implementation in 1.4.5 and 1.2.x (where the macro
did not exist.)
 
Applications can now choose whether to use these macros or to call the
corresponding function by defining PNG_USE_READ_MACROS or
PNG_NO_USE_READ_MACROS before including png.h. Notice that this is
only supported from 1.5.0 -defining PNG_NO_USE_READ_MACROS prior to 1.5.0
will lead to a link failure.
 
B. Changes to the build and configuration of libpng
 
Details of internal changes to the library code can be found in the CHANGES
file. These will be of no concern to the vast majority of library users or
builders, however the few who configure libpng to a non-default feature
set may need to change how this is done.
 
There should be no need for library builders to alter build scripts if
these use the distributed build support - configure or the makefiles -
however users of the makefiles may care to update their build scripts
to build pnglibconf.h where the corresponding makefile does not do so.
 
Building libpng with a non-default configuration has changed completely.
The old method using pngusr.h should still work correctly even though the
way pngusr.h is used in the build has been changed, however library
builders will probably want to examine the changes to take advantage of
new capabilities and to simplify their build system.
 
B.1 Specific changes to library configuration capabilities
 
The library now supports a complete fixed point implementation and can
thus be used on systems which have no floating point support or very
limited or slow support. Previously gamma correction, an essential part
of complete PNG support, required reasonably fast floating point.
 
As part of this the choice of internal implementation has been made
independent of the choice of fixed versus floating point APIs and all the
missing fixed point APIs have been implemented.
 
The exact mechanism used to control attributes of API functions has
changed. A single set of operating system independent macro definitions
is used and operating system specific directives are defined in
pnglibconf.h
 
As part of this the mechanism used to choose procedure call standards on
those systems that allow a choice has been changed. At present this only
affects certain Microsoft (DOS, Windows) and IBM (OS/2) operating systems
running on Intel processors. As before PNGAPI is defined where required
to control the exported API functions; however, two new macros, PNGCBAPI
and PNGCAPI, are used instead for callback functions (PNGCBAPI) and
(PNGCAPI) for functions that must match a C library prototype (currently
only png_longjmp_ptr, which must match the C longjmp function.) The new
approach is documented in pngconf.h
 
Despite these changes libpng 1.5.0 only supports the native C function
calling standard on those platforms tested so far (__cdecl on Microsoft
Windows). This is because the support requirements for alternative
calling conventions seem to no longer exist. Developers who find it
necessary to set PNG_API_RULE to 1 should advise the mailing list
(png-mng-implement) of this and library builders who use Openwatcom and
therefore set PNG_API_RULE to 2 should also contact the mailing list.
 
A new test program, pngvalid, is provided in addition to pngtest.
pngvalid validates the arithmetic accuracy of the gamma correction
calculations and includes a number of validations of the file format.
A subset of the full range of tests is run when "make check" is done
(in the 'configure' build.) pngvalid also allows total allocated memory
usage to be evaluated and performs additional memory overwrite validation.
 
Many changes to individual feature macros have been made. The following
are the changes most likely to be noticed by library builders who
configure libpng:
 
1) All feature macros now have consistent naming:
 
#define PNG_NO_feature turns the feature off
#define PNG_feature_SUPPORTED turns the feature on
 
pnglibconf.h contains one line for each feature macro which is either:
 
#define PNG_feature_SUPPORTED
 
if the feature is supported or:
 
/*#undef PNG_feature_SUPPORTED*/
 
if it is not. Library code consistently checks for the 'SUPPORTED' macro.
It does not, and should not, check for the 'NO' macro which will not
normally be defined even if the feature is not supported.
 
Compatibility with the old names is provided as follows:
 
PNG_INCH_CONVERSIONS turns on PNG_INCH_CONVERSIONS_SUPPORTED
 
And the following definitions disable the corresponding feature:
 
PNG_SETJMP_NOT_SUPPORTED disables SETJMP
PNG_READ_TRANSFORMS_NOT_SUPPORTED disables READ_TRANSFORMS
PNG_NO_READ_COMPOSITED_NODIV disables READ_COMPOSITE_NODIV
PNG_WRITE_TRANSFORMS_NOT_SUPPORTED disables WRITE_TRANSFORMS
PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED disables READ_ANCILLARY_CHUNKS
PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED disables WRITE_ANCILLARY_CHUNKS
 
Library builders should remove use of the above, inconsistent, names.
 
2) Warning and error message formatting was previously conditional on
the STDIO feature. The library has been changed to use the
CONSOLE_IO feature instead. This means that if CONSOLE_IO is disabled
the library no longer uses the printf(3) functions, even though the
default read/write implementations use (FILE) style stdio.h functions.
 
3) Three feature macros now control the fixed/floating point decisions:
 
PNG_FLOATING_POINT_SUPPORTED enables the floating point APIs
 
PNG_FIXED_POINT_SUPPORTED enables the fixed point APIs; however, in
practice these are normally required internally anyway (because the PNG
file format is fixed point), therefore in most cases PNG_NO_FIXED_POINT
merely stops the function from being exported.
 
PNG_FLOATING_ARITHMETIC_SUPPORTED chooses between the internal floating
point implementation or the fixed point one. Typically the fixed point
implementation is larger and slower than the floating point implementation
on a system that supports floating point, however it may be faster on a
system which lacks floating point hardware and therefore uses a software
emulation.
 
4) Added PNG_{READ,WRITE}_INT_FUNCTIONS_SUPPORTED. This allows the
functions to read and write ints to be disabled independently of
PNG_USE_READ_MACROS, which allows libpng to be built with the functions
even though the default is to use the macros - this allows applications
to choose at app buildtime whether or not to use macros (previously
impossible because the functions weren't in the default build.)
 
B.2 Changes to the configuration mechanism
 
Prior to libpng-1.5.0 library builders who needed to configure libpng
had either to modify the exported pngconf.h header file to add system
specific configuration or had to write feature selection macros into
pngusr.h and cause this to be included into pngconf.h by defining
PNG_USER_CONFIG. The latter mechanism had the disadvantage that an
application built without PNG_USER_CONFIG defined would see the
unmodified, default, libpng API and thus would probably fail to link.
 
These mechanisms still work in the configure build and in any makefile
build that builds pnglibconf.h although the feature selection macros
have changed somewhat as described above. In 1.5.0, however, pngusr.h is
processed only once, when the exported header file pnglibconf.h is built.
pngconf.h no longer includes pngusr.h, therefore it is ignored after the
build of pnglibconf.h and it is never included in an application build.
 
The rarely used alternative of adding a list of feature macros to the
CFLAGS setting in the build also still works, however the macros will be
copied to pnglibconf.h and this may produce macro redefinition warnings
when the individual C files are compiled.
 
All configuration now only works if pnglibconf.h is built from
scripts/pnglibconf.dfa. This requires the program awk. Brian Kernighan
(the original author of awk) maintains C source code of that awk and this
and all known later implementations (often called by subtly different
names - nawk and gawk for example) are adequate to build pnglibconf.h.
The Sun Microsystems (now Oracle) program 'awk' is an earlier version
and does not work, this may also apply to other systems that have a
functioning awk called 'nawk'.
 
Configuration options are now documented in scripts/pnglibconf.dfa. This
file also includes dependency information that ensures a configuration is
consistent; that is, if a feature is switched off dependent features are
also removed. As a recommended alternative to using feature macros in
pngusr.h a system builder may also define equivalent options in pngusr.dfa
(or, indeed, any file) and add that to the configuration by setting
DFA_XTRA to the file name. The makefiles in contrib/pngminim illustrate
how to do this, and a case where pngusr.h is still required.
 
XI. Detecting libpng
 
The png_get_io_ptr() function has been present since libpng-0.88, has never
changed, and is unaffected by conditional compilation macros. It is the
best choice for use in configure scripts for detecting the presence of any
libpng version since 0.88. In an autoconf "configure.in" you could use
 
AC_CHECK_LIB(png, png_get_io_ptr, ...
 
XII. Source code repository
 
Since about February 2009, version 1.2.34, libpng has been under "git" source
control. The git repository was built from old libpng-x.y.z.tar.gz files
going back to version 0.70. You can access the git repository (read only)
at
 
git://libpng.git.sourceforge.net/gitroot/libpng
 
or you can browse it via "gitweb" at
 
http://libpng.git.sourceforge.net/git/gitweb.cgi?p=libpng
 
Patches can be sent to glennrp at users.sourceforge.net or to
png-mng-implement at lists.sourceforge.net or you can upload them to
the libpng bug tracker at
 
http://libpng.sourceforge.net
 
We also accept patches built from the tar or zip distributions, and
simple verbal discriptions of bug fixes, reported either to the
SourceForge bug tracker or to the png-mng-implement at lists.sf.net
mailing list.
 
XIII. Coding style
 
Our coding style is similar to the "Allman" style, with curly
braces on separate lines:
 
if (condition)
{
action;
}
 
else if (another condition)
{
another action;
}
 
The braces can be omitted from simple one-line actions:
 
if (condition)
return (0);
 
We use 3-space indentation, except for continued statements which
are usually indented the same as the first line of the statement
plus four more spaces.
 
For macro definitions we use 2-space indentation, always leaving the "#"
in the first column.
 
#ifndef PNG_NO_FEATURE
# ifndef PNG_FEATURE_SUPPORTED
# define PNG_FEATURE_SUPPORTED
# endif
#endif
 
Comments appear with the leading "/*" at the same indentation as
the statement that follows the comment:
 
/* Single-line comment */
statement;
 
/* This is a multiple-line
* comment.
*/
statement;
 
Very short comments can be placed after the end of the statement
to which they pertain:
 
statement; /* comment */
 
We don't use C++ style ("//") comments. We have, however,
used them in the past in some now-abandoned MMX assembler
code.
 
Functions and their curly braces are not indented, and
exported functions are marked with PNGAPI:
 
/* This is a public function that is visible to
* application programmers. It does thus-and-so.
*/
void PNGAPI
png_exported_function(png_ptr, png_info, foo)
{
body;
}
 
The prototypes for all exported functions appear in png.h,
above the comment that says
 
/* Maintainer: Put new public prototypes here ... */
 
We mark all non-exported functions with "/* PRIVATE */"":
 
void /* PRIVATE */
png_non_exported_function(png_ptr, png_info, foo)
{
body;
}
 
The prototypes for non-exported functions (except for those in
pngtest) appear in
pngpriv.h
above the comment that says
 
/* Maintainer: Put new private prototypes here ^ and in libpngpf.3 */
 
To avoid polluting the global namespace, the names of all exported
functions and variables begin with "png_", and all publicly visible C
preprocessor macros begin with "PNG_". We request that applications that
use libpng *not* begin any of their own symbols with either of these strings.
 
We put a space after each comma and after each semicolon
in "for" statements, and we put spaces before and after each
C binary operator and after "for" or "while", and before
"?". We don't put a space between a typecast and the expression
being cast, nor do we put one between a function name and the
left parenthesis that follows it:
 
for (i = 2; i > 0; --i)
y[i] = a(x) + (int)b;
 
We prefer #ifdef and #ifndef to #if defined() and if !defined()
when there is only one macro being tested.
 
We do not use the TAB character for indentation in the C sources.
 
Lines do not exceed 80 characters.
 
Other rules can be inferred by inspecting the libpng source.
 
XIV. Y2K Compliance in libpng
 
February 3, 2011
 
Since the PNG Development group is an ad-hoc body, we can't make
an official declaration.
 
This is your unofficial assurance that libpng from version 0.71 and
upward through 1.5.1 are Y2K compliant. It is my belief that earlier
versions were also Y2K compliant.
 
Libpng only has three year fields. One is a 2-byte unsigned integer that
will hold years up to 65535. The other two hold the date in text
format, and will hold years up to 9999.
 
The integer is
"png_uint_16 year" in png_time_struct.
 
The strings are
"png_charp time_buffer" in png_struct and
"near_time_buffer", which is a local character string in png.c.
 
There are seven time-related functions:
 
png_convert_to_rfc_1123() in png.c
(formerly png_convert_to_rfc_1152() in error)
png_convert_from_struct_tm() in pngwrite.c, called
in pngwrite.c
png_convert_from_time_t() in pngwrite.c
png_get_tIME() in pngget.c
png_handle_tIME() in pngrutil.c, called in pngread.c
png_set_tIME() in pngset.c
png_write_tIME() in pngwutil.c, called in pngwrite.c
 
All appear to handle dates properly in a Y2K environment. The
png_convert_from_time_t() function calls gmtime() to convert from system
clock time, which returns (year - 1900), which we properly convert to
the full 4-digit year. There is a possibility that applications using
libpng are not passing 4-digit years into the png_convert_to_rfc_1123()
function, or that they are incorrectly passing only a 2-digit year
instead of "year - 1900" into the png_convert_from_struct_tm() function,
but this is not under our control. The libpng documentation has always
stated that it works with 4-digit years, and the APIs have been
documented as such.
 
The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned
integer to hold the year, and can hold years as large as 65535.
 
zlib, upon which libpng depends, is also Y2K compliant. It contains
no date-related code.
 
 
Glenn Randers-Pehrson
libpng maintainer
PNG Development Group
/programs/develop/libraries/libpng/png.c
0,0 → 1,2362
 
/* png.c - location for general purpose libpng functions
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
/* Generate a compiler error if there is an old png.h in the search path. */
typedef png_libpng_version_1_5_1 Your_png_h_is_not_version_1_5_1;
 
/* Tells libpng that we have already handled the first "num_bytes" bytes
* of the PNG file signature. If the PNG data is embedded into another
* stream we can set num_bytes = 8 so that libpng will not attempt to read
* or write any of the magic bytes before it starts on the IHDR.
*/
 
#ifdef PNG_READ_SUPPORTED
void PNGAPI
png_set_sig_bytes(png_structp png_ptr, int num_bytes)
{
png_debug(1, "in png_set_sig_bytes");
 
if (png_ptr == NULL)
return;
 
if (num_bytes > 8)
png_error(png_ptr, "Too many bytes for PNG signature");
 
png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
}
 
/* Checks whether the supplied bytes match the PNG signature. We allow
* checking less than the full 8-byte signature so that those apps that
* already read the first few bytes of a file to determine the file type
* can simply check the remaining bytes for extra assurance. Returns
* an integer less than, equal to, or greater than zero if sig is found,
* respectively, to be less than, to match, or be greater than the correct
* PNG signature (this is the same behaviour as strcmp, memcmp, etc).
*/
int PNGAPI
png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
{
png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 
if (num_to_check > 8)
num_to_check = 8;
 
else if (num_to_check < 1)
return (-1);
 
if (start > 7)
return (-1);
 
if (start + num_to_check > 8)
num_to_check = 8 - start;
 
return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
}
 
#endif /* PNG_READ_SUPPORTED */
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
/* Function to allocate memory for zlib */
PNG_FUNCTION(voidpf /* PRIVATE */,
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
{
png_voidp ptr;
png_structp p=(png_structp)png_ptr;
png_uint_32 save_flags=p->flags;
png_alloc_size_t num_bytes;
 
if (png_ptr == NULL)
return (NULL);
 
if (items > PNG_UINT_32_MAX/size)
{
png_warning (p, "Potential overflow in png_zalloc()");
return (NULL);
}
num_bytes = (png_alloc_size_t)items * size;
 
p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
p->flags=save_flags;
 
return ((voidpf)ptr);
}
 
/* Function to free memory for zlib */
void /* PRIVATE */
png_zfree(voidpf png_ptr, voidpf ptr)
{
png_free((png_structp)png_ptr, (png_voidp)ptr);
}
 
/* Reset the CRC variable to 32 bits of 1's. Care must be taken
* in case CRC is > 32 bits to leave the top bits 0.
*/
void /* PRIVATE */
png_reset_crc(png_structp png_ptr)
{
png_ptr->crc = crc32(0, Z_NULL, 0);
}
 
/* Calculate the CRC over a section of data. We can only pass as
* much data to this routine as the largest single buffer size. We
* also check that this data will actually be used before going to the
* trouble of calculating it.
*/
void /* PRIVATE */
png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
{
int need_crc = 1;
 
if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
need_crc = 0;
}
 
else /* critical */
{
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
need_crc = 0;
}
 
if (need_crc)
png_ptr->crc = crc32(png_ptr->crc, ptr, (uInt)length);
}
 
/* Allocate the memory for an info_struct for the application. We don't
* really need the png_ptr, but it could potentially be useful in the
* future. This should be used in favour of malloc(png_sizeof(png_info))
* and png_info_init() so that applications that want to use a shared
* libpng don't have to be recompiled if png_info changes size.
*/
PNG_FUNCTION(png_infop,PNGAPI
png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
{
png_infop info_ptr;
 
png_debug(1, "in png_create_info_struct");
 
if (png_ptr == NULL)
return (NULL);
 
#ifdef PNG_USER_MEM_SUPPORTED
info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
png_ptr->malloc_fn, png_ptr->mem_ptr);
#else
info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
#endif
if (info_ptr != NULL)
png_info_init_3(&info_ptr, png_sizeof(png_info));
 
return (info_ptr);
}
 
/* This function frees the memory associated with a single info struct.
* Normally, one would use either png_destroy_read_struct() or
* png_destroy_write_struct() to free an info struct, but this may be
* useful for some applications.
*/
void PNGAPI
png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
{
png_infop info_ptr = NULL;
 
png_debug(1, "in png_destroy_info_struct");
 
if (png_ptr == NULL)
return;
 
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (info_ptr != NULL)
{
png_info_destroy(png_ptr, info_ptr);
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
png_ptr->mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
}
 
/* Initialize the info structure. This is now an internal function (0.89)
* and applications using it are urged to use png_create_info_struct()
* instead.
*/
 
void PNGAPI
png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
{
png_infop info_ptr = *ptr_ptr;
 
png_debug(1, "in png_info_init_3");
 
if (info_ptr == NULL)
return;
 
if (png_sizeof(png_info) > png_info_struct_size)
{
png_destroy_struct(info_ptr);
info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
*ptr_ptr = info_ptr;
}
 
/* Set everything to 0 */
png_memset(info_ptr, 0, png_sizeof(png_info));
}
 
void PNGAPI
png_data_freer(png_structp png_ptr, png_infop info_ptr,
int freer, png_uint_32 mask)
{
png_debug(1, "in png_data_freer");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (freer == PNG_DESTROY_WILL_FREE_DATA)
info_ptr->free_me |= mask;
 
else if (freer == PNG_USER_WILL_FREE_DATA)
info_ptr->free_me &= ~mask;
 
else
png_warning(png_ptr,
"Unknown freer parameter in png_data_freer");
}
 
void PNGAPI
png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
int num)
{
png_debug(1, "in png_free_data");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
#ifdef PNG_TEXT_SUPPORTED
/* Free text item num or (if num == -1) all text items */
if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
{
if (num != -1)
{
if (info_ptr->text && info_ptr->text[num].key)
{
png_free(png_ptr, info_ptr->text[num].key);
info_ptr->text[num].key = NULL;
}
}
 
else
{
int i;
for (i = 0; i < info_ptr->num_text; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
png_free(png_ptr, info_ptr->text);
info_ptr->text = NULL;
info_ptr->num_text=0;
}
}
#endif
 
#ifdef PNG_tRNS_SUPPORTED
/* Free any tRNS entry */
if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
{
png_free(png_ptr, info_ptr->trans_alpha);
info_ptr->trans_alpha = NULL;
info_ptr->valid &= ~PNG_INFO_tRNS;
}
#endif
 
#ifdef PNG_sCAL_SUPPORTED
/* Free any sCAL entry */
if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
{
#if defined(PNG_FIXED_POINT_SUPPORTED) && !defined(PNG_FLOATING_POINT_SUPPORTED)
png_free(png_ptr, info_ptr->scal_s_width);
png_free(png_ptr, info_ptr->scal_s_height);
info_ptr->scal_s_width = NULL;
info_ptr->scal_s_height = NULL;
#endif
info_ptr->valid &= ~PNG_INFO_sCAL;
}
#endif
 
#ifdef PNG_pCAL_SUPPORTED
/* Free any pCAL entry */
if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
{
png_free(png_ptr, info_ptr->pcal_purpose);
png_free(png_ptr, info_ptr->pcal_units);
info_ptr->pcal_purpose = NULL;
info_ptr->pcal_units = NULL;
if (info_ptr->pcal_params != NULL)
{
int i;
for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
{
png_free(png_ptr, info_ptr->pcal_params[i]);
info_ptr->pcal_params[i] = NULL;
}
png_free(png_ptr, info_ptr->pcal_params);
info_ptr->pcal_params = NULL;
}
info_ptr->valid &= ~PNG_INFO_pCAL;
}
#endif
 
#ifdef PNG_iCCP_SUPPORTED
/* Free any iCCP entry */
if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
{
png_free(png_ptr, info_ptr->iccp_name);
png_free(png_ptr, info_ptr->iccp_profile);
info_ptr->iccp_name = NULL;
info_ptr->iccp_profile = NULL;
info_ptr->valid &= ~PNG_INFO_iCCP;
}
#endif
 
#ifdef PNG_sPLT_SUPPORTED
/* Free a given sPLT entry, or (if num == -1) all sPLT entries */
if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
{
if (num != -1)
{
if (info_ptr->splt_palettes)
{
png_free(png_ptr, info_ptr->splt_palettes[num].name);
png_free(png_ptr, info_ptr->splt_palettes[num].entries);
info_ptr->splt_palettes[num].name = NULL;
info_ptr->splt_palettes[num].entries = NULL;
}
}
 
else
{
if (info_ptr->splt_palettes_num)
{
int i;
for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
 
png_free(png_ptr, info_ptr->splt_palettes);
info_ptr->splt_palettes = NULL;
info_ptr->splt_palettes_num = 0;
}
info_ptr->valid &= ~PNG_INFO_sPLT;
}
}
#endif
 
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
if (png_ptr->unknown_chunk.data)
{
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
}
 
if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
{
if (num != -1)
{
if (info_ptr->unknown_chunks)
{
png_free(png_ptr, info_ptr->unknown_chunks[num].data);
info_ptr->unknown_chunks[num].data = NULL;
}
}
 
else
{
int i;
 
if (info_ptr->unknown_chunks_num)
{
for (i = 0; i < info_ptr->unknown_chunks_num; i++)
png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
 
png_free(png_ptr, info_ptr->unknown_chunks);
info_ptr->unknown_chunks = NULL;
info_ptr->unknown_chunks_num = 0;
}
}
}
#endif
 
#ifdef PNG_hIST_SUPPORTED
/* Free any hIST entry */
if ((mask & PNG_FREE_HIST) & info_ptr->free_me)
{
png_free(png_ptr, info_ptr->hist);
info_ptr->hist = NULL;
info_ptr->valid &= ~PNG_INFO_hIST;
}
#endif
 
/* Free any PLTE entry that was internally allocated */
if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
{
png_zfree(png_ptr, info_ptr->palette);
info_ptr->palette = NULL;
info_ptr->valid &= ~PNG_INFO_PLTE;
info_ptr->num_palette = 0;
}
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
/* Free any image bits attached to the info structure */
if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
{
if (info_ptr->row_pointers)
{
int row;
for (row = 0; row < (int)info_ptr->height; row++)
{
png_free(png_ptr, info_ptr->row_pointers[row]);
info_ptr->row_pointers[row] = NULL;
}
png_free(png_ptr, info_ptr->row_pointers);
info_ptr->row_pointers = NULL;
}
info_ptr->valid &= ~PNG_INFO_IDAT;
}
#endif
 
if (num != -1)
mask &= ~PNG_FREE_MUL;
 
info_ptr->free_me &= ~mask;
}
 
/* This is an internal routine to free any memory that the info struct is
* pointing to before re-using it or freeing the struct itself. Recall
* that png_free() checks for NULL pointers for us.
*/
void /* PRIVATE */
png_info_destroy(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_info_destroy");
 
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_ptr->num_chunk_list)
{
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list = NULL;
png_ptr->num_chunk_list = 0;
}
#endif
 
png_info_init_3(&info_ptr, png_sizeof(png_info));
}
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 
/* This function returns a pointer to the io_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy() or png_read_destroy() are called.
*/
png_voidp PNGAPI
png_get_io_ptr(png_structp png_ptr)
{
if (png_ptr == NULL)
return (NULL);
 
return (png_ptr->io_ptr);
}
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
# ifdef PNG_STDIO_SUPPORTED
/* Initialize the default input/output functions for the PNG file. If you
* use your own read or write routines, you can call either png_set_read_fn()
* or png_set_write_fn() instead of png_init_io(). If you have defined
* PNG_NO_STDIO, you must use a function of your own because "FILE *" isn't
* necessarily available.
*/
void PNGAPI
png_init_io(png_structp png_ptr, png_FILE_p fp)
{
png_debug(1, "in png_init_io");
 
if (png_ptr == NULL)
return;
 
png_ptr->io_ptr = (png_voidp)fp;
}
# endif
 
# ifdef PNG_TIME_RFC1123_SUPPORTED
/* Convert the supplied time into an RFC 1123 string suitable for use in
* a "Creation Time" or other text-based time string.
*/
png_const_charp PNGAPI
png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
{
static PNG_CONST char short_months[12][4] =
{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
 
if (png_ptr == NULL)
return (NULL);
 
if (png_ptr->time_buffer == NULL)
{
png_ptr->time_buffer = (png_charp)png_malloc(png_ptr, (png_uint_32)(29*
png_sizeof(char)));
}
 
# ifdef USE_FAR_KEYWORD
{
char near_time_buf[29];
png_snprintf6(near_time_buf, 29, "%d %s %d %02d:%02d:%02d +0000",
ptime->day % 32, short_months[(ptime->month - 1) % 12],
ptime->year, ptime->hour % 24, ptime->minute % 60,
ptime->second % 61);
png_memcpy(png_ptr->time_buffer, near_time_buf,
29*png_sizeof(char));
}
# else
png_snprintf6(png_ptr->time_buffer, 29, "%d %s %d %02d:%02d:%02d +0000",
ptime->day % 32, short_months[(ptime->month - 1) % 12],
ptime->year, ptime->hour % 24, ptime->minute % 60,
ptime->second % 61);
# endif
return png_ptr->time_buffer;
}
# endif /* PNG_TIME_RFC1123_SUPPORTED */
 
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 
png_const_charp PNGAPI
png_get_copyright(png_const_structp png_ptr)
{
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
#ifdef PNG_STRING_COPYRIGHT
return PNG_STRING_COPYRIGHT
#else
# ifdef __STDC__
return PNG_STRING_NEWLINE \
"libpng version 1.5.1 - February 3, 2011" PNG_STRING_NEWLINE \
"Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
"Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
"Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
PNG_STRING_NEWLINE;
# else
return "libpng version 1.5.1 - February 3, 2011\
Copyright (c) 1998-2011 Glenn Randers-Pehrson\
Copyright (c) 1996-1997 Andreas Dilger\
Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
# endif
#endif
}
 
/* The following return the library version as a short string in the
* format 1.0.0 through 99.99.99zz. To get the version of *.h files
* used with your application, print out PNG_LIBPNG_VER_STRING, which
* is defined in png.h.
* Note: now there is no difference between png_get_libpng_ver() and
* png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
* it is guaranteed that png.c uses the correct version of png.h.
*/
png_const_charp PNGAPI
png_get_libpng_ver(png_const_structp png_ptr)
{
/* Version of *.c files used when building libpng */
return png_get_header_ver(png_ptr);
}
 
png_const_charp PNGAPI
png_get_header_ver(png_const_structp png_ptr)
{
/* Version of *.h files used when building libpng */
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
return PNG_LIBPNG_VER_STRING;
}
 
png_const_charp PNGAPI
png_get_header_version(png_const_structp png_ptr)
{
/* Returns longer string containing both version and date */
PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
#ifdef __STDC__
return PNG_HEADER_VERSION_STRING
# ifndef PNG_READ_SUPPORTED
" (NO READ SUPPORT)"
# endif
PNG_STRING_NEWLINE;
#else
return PNG_HEADER_VERSION_STRING;
#endif
}
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
# ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int PNGAPI
png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
{
/* Check chunk_name and return "keep" value if it's on the list, else 0 */
int i;
png_bytep p;
if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list<=0)
return 0;
 
p = png_ptr->chunk_list + png_ptr->num_chunk_list*5 - 5;
for (i = png_ptr->num_chunk_list; i; i--, p -= 5)
if (!png_memcmp(chunk_name, p, 4))
return ((int)*(p + 4));
return 0;
}
# endif
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
 
#ifdef PNG_READ_SUPPORTED
/* This function, added to libpng-1.0.6g, is untested. */
int PNGAPI
png_reset_zstream(png_structp png_ptr)
{
if (png_ptr == NULL)
return Z_STREAM_ERROR;
 
return (inflateReset(&png_ptr->zstream));
}
#endif /* PNG_READ_SUPPORTED */
 
/* This function was added to libpng-1.0.7 */
png_uint_32 PNGAPI
png_access_version_number(void)
{
/* Version of *.c files used when building libpng */
return((png_uint_32)PNG_LIBPNG_VER);
}
 
 
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
# ifdef PNG_SIZE_T
/* Added at libpng version 1.2.6 */
PNG_EXTERN png_size_t PNGAPI png_convert_size PNGARG((size_t size));
png_size_t PNGAPI
png_convert_size(size_t size)
{
if (size > (png_size_t)-1)
PNG_ABORT(); /* We haven't got access to png_ptr, so no png_error() */
 
return ((png_size_t)size);
}
# endif /* PNG_SIZE_T */
 
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
# ifdef PNG_CHECK_cHRM_SUPPORTED
 
int /* PRIVATE */
png_check_cHRM_fixed(png_structp png_ptr,
png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
png_fixed_point blue_x, png_fixed_point blue_y)
{
int ret = 1;
unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
 
png_debug(1, "in function png_check_cHRM_fixed");
 
if (png_ptr == NULL)
return 0;
 
if (white_x < 0 || white_y <= 0 ||
red_x < 0 || red_y < 0 ||
green_x < 0 || green_y < 0 ||
blue_x < 0 || blue_y < 0)
{
png_warning(png_ptr,
"Ignoring attempt to set negative chromaticity value");
ret = 0;
}
if (white_x > (png_fixed_point)PNG_UINT_31_MAX ||
white_y > (png_fixed_point)PNG_UINT_31_MAX ||
red_x > (png_fixed_point)PNG_UINT_31_MAX ||
red_y > (png_fixed_point)PNG_UINT_31_MAX ||
green_x > (png_fixed_point)PNG_UINT_31_MAX ||
green_y > (png_fixed_point)PNG_UINT_31_MAX ||
blue_x > (png_fixed_point)PNG_UINT_31_MAX ||
blue_y > (png_fixed_point)PNG_UINT_31_MAX )
{
png_warning(png_ptr,
"Ignoring attempt to set chromaticity value exceeding 21474.83");
ret = 0;
}
if (white_x > 100000L - white_y)
{
png_warning(png_ptr, "Invalid cHRM white point");
ret = 0;
}
 
if (red_x > 100000L - red_y)
{
png_warning(png_ptr, "Invalid cHRM red point");
ret = 0;
}
 
if (green_x > 100000L - green_y)
{
png_warning(png_ptr, "Invalid cHRM green point");
ret = 0;
}
 
if (blue_x > 100000L - blue_y)
{
png_warning(png_ptr, "Invalid cHRM blue point");
ret = 0;
}
 
png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
 
if (xy_hi == yx_hi && xy_lo == yx_lo)
{
png_warning(png_ptr,
"Ignoring attempt to set cHRM RGB triangle with zero area");
ret = 0;
}
 
return ret;
}
# endif /* PNG_CHECK_cHRM_SUPPORTED */
 
void /* PRIVATE */
png_check_IHDR(png_structp png_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int interlace_type, int compression_type,
int filter_type)
{
int error = 0;
 
/* Check for width and height valid values */
if (width == 0)
{
png_warning(png_ptr, "Image width is zero in IHDR");
error = 1;
}
 
if (height == 0)
{
png_warning(png_ptr, "Image height is zero in IHDR");
error = 1;
}
 
# ifdef PNG_SET_USER_LIMITS_SUPPORTED
if (width > png_ptr->user_width_max || width > PNG_USER_WIDTH_MAX)
 
# else
if (width > PNG_USER_WIDTH_MAX)
# endif
{
png_warning(png_ptr, "Image width exceeds user limit in IHDR");
error = 1;
}
 
# ifdef PNG_SET_USER_LIMITS_SUPPORTED
if (height > png_ptr->user_height_max || height > PNG_USER_HEIGHT_MAX)
# else
if (height > PNG_USER_HEIGHT_MAX)
# endif
{
png_warning(png_ptr, "Image height exceeds user limit in IHDR");
error = 1;
}
 
if (width > PNG_UINT_31_MAX)
{
png_warning(png_ptr, "Invalid image width in IHDR");
error = 1;
}
 
if (height > PNG_UINT_31_MAX)
{
png_warning(png_ptr, "Invalid image height in IHDR");
error = 1;
}
 
if (width > (PNG_UINT_32_MAX
>> 3) /* 8-byte RGBA pixels */
- 48 /* bigrowbuf hack */
- 1 /* filter byte */
- 7*8 /* rounding of width to multiple of 8 pixels */
- 8) /* extra max_pixel_depth pad */
png_warning(png_ptr, "Width is too large for libpng to process pixels");
 
/* Check other values */
if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
bit_depth != 8 && bit_depth != 16)
{
png_warning(png_ptr, "Invalid bit depth in IHDR");
error = 1;
}
 
if (color_type < 0 || color_type == 1 ||
color_type == 5 || color_type > 6)
{
png_warning(png_ptr, "Invalid color type in IHDR");
error = 1;
}
 
if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
((color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
{
png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
error = 1;
}
 
if (interlace_type >= PNG_INTERLACE_LAST)
{
png_warning(png_ptr, "Unknown interlace method in IHDR");
error = 1;
}
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
{
png_warning(png_ptr, "Unknown compression method in IHDR");
error = 1;
}
 
# ifdef PNG_MNG_FEATURES_SUPPORTED
/* Accept filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not read a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
png_ptr->mng_features_permitted)
png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
 
if (filter_type != PNG_FILTER_TYPE_BASE)
{
if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
(color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
{
png_warning(png_ptr, "Unknown filter method in IHDR");
error = 1;
}
 
if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
{
png_warning(png_ptr, "Invalid filter method in IHDR");
error = 1;
}
}
 
# else
if (filter_type != PNG_FILTER_TYPE_BASE)
{
png_warning(png_ptr, "Unknown filter method in IHDR");
error = 1;
}
# endif
 
if (error == 1)
png_error(png_ptr, "Invalid IHDR data");
}
 
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
/* ASCII to fp functions */
/* Check an ASCII formated floating point value, see the more detailed
* comments in pngpriv.h
*/
/* The following is used internally to preserve the 'valid' flag */
#define png_fp_add(state, flags) ((state) |= (flags))
#define png_fp_set(state, value)\
((state) = (value) | ((state) & PNG_FP_WAS_VALID))
 
/* Internal type codes: bits above the base state! */
#define PNG_FP_SIGN 0 /* [+-] */
#define PNG_FP_DOT 4 /* . */
#define PNG_FP_DIGIT 8 /* [0123456789] */
#define PNG_FP_E 12 /* [Ee] */
 
int /* PRIVATE */
png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
png_size_tp whereami)
{
int state = *statep;
png_size_t i = *whereami;
 
while (i < size)
{
int type;
/* First find the type of the next character */
{
char ch = string[i];
 
if (ch >= 48 && ch <= 57)
type = PNG_FP_DIGIT;
 
else switch (ch)
{
case 43: case 45: type = PNG_FP_SIGN; break;
case 46: type = PNG_FP_DOT; break;
case 69: case 101: type = PNG_FP_E; break;
default: goto PNG_FP_End;
}
}
 
/* Now deal with this type according to the current
* state, the type is arranged to not overlap the
* bits of the PNG_FP_STATE.
*/
switch ((state & PNG_FP_STATE) + type)
{
case PNG_FP_INTEGER + PNG_FP_SIGN:
if (state & PNG_FP_SAW_ANY)
goto PNG_FP_End; /* not a part of the number */
 
png_fp_add(state, PNG_FP_SAW_SIGN);
break;
 
case PNG_FP_INTEGER + PNG_FP_DOT:
/* Ok as trailer, ok as lead of fraction. */
if (state & PNG_FP_SAW_DOT) /* two dots */
goto PNG_FP_End;
 
else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
png_fp_add(state, PNG_FP_SAW_DOT);
 
else
png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 
break;
 
case PNG_FP_INTEGER + PNG_FP_DIGIT:
if (state & PNG_FP_SAW_DOT) /* delayed fraction */
png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
 
png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
 
break;
case PNG_FP_INTEGER + PNG_FP_E:
if ((state & PNG_FP_SAW_DIGIT) == 0)
goto PNG_FP_End;
 
png_fp_set(state, PNG_FP_EXPONENT);
 
break;
 
/* case PNG_FP_FRACTION + PNG_FP_SIGN:
goto PNG_FP_End; ** no sign in exponent */
 
/* case PNG_FP_FRACTION + PNG_FP_DOT:
goto PNG_FP_End; ** Because SAW_DOT is always set */
 
case PNG_FP_FRACTION + PNG_FP_DIGIT:
png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
break;
 
case PNG_FP_FRACTION + PNG_FP_E:
/* This is correct because the trailing '.' on an
* integer is handled above - so we can only get here
* with the sequence ".E" (with no preceding digits).
*/
if ((state & PNG_FP_SAW_DIGIT) == 0)
goto PNG_FP_End;
 
png_fp_set(state, PNG_FP_EXPONENT);
 
break;
 
case PNG_FP_EXPONENT + PNG_FP_SIGN:
if (state & PNG_FP_SAW_ANY)
goto PNG_FP_End; /* not a part of the number */
 
png_fp_add(state, PNG_FP_SAW_SIGN);
 
break;
 
/* case PNG_FP_EXPONENT + PNG_FP_DOT:
goto PNG_FP_End; */
 
case PNG_FP_EXPONENT + PNG_FP_DIGIT:
png_fp_add(state, PNG_FP_SAW_DIGIT + PNG_FP_WAS_VALID);
 
break;
 
/* case PNG_FP_EXPONEXT + PNG_FP_E:
goto PNG_FP_End; */
 
default: goto PNG_FP_End; /* I.e. break 2 */
}
 
/* The character seems ok, continue. */
++i;
}
 
PNG_FP_End:
/* Here at the end, update the state and return the correct
* return code.
*/
*statep = state;
*whereami = i;
 
return (state & PNG_FP_SAW_DIGIT) != 0;
}
 
 
/* The same but for a complete string. */
int
png_check_fp_string(png_const_charp string, png_size_t size)
{
int state=0;
png_size_t char_index=0;
 
return png_check_fp_number(string, size, &state, &char_index) &&
(char_index == size || string[char_index] == 0);
}
#endif /* pCAL or sCAL */
 
#ifdef PNG_READ_sCAL_SUPPORTED
# ifdef PNG_FLOATING_POINT_SUPPORTED
/* Utility used below - a simple accurate power of ten from an integral
* exponent.
*/
static double
png_pow10(int power)
{
int recip = 0;
double d = 1;
 
/* Handle negative exponent with a reciprocal at the end because
* 10 is exact whereas .1 is inexact in base 2
*/
if (power < 0)
{
if (power < DBL_MIN_10_EXP) return 0;
recip = 1, power = -power;
}
 
if (power > 0)
{
/* Decompose power bitwise. */
double mult = 10;
do
{
if (power & 1) d *= mult;
mult *= mult;
power >>= 1;
}
while (power > 0);
 
if (recip) d = 1/d;
}
/* else power is 0 and d is 1 */
 
return d;
}
 
/* Function to format a floating point value in ASCII with a given
* precision.
*/
void /* PRIVATE */
png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
double fp, unsigned int precision)
{
/* We use standard functions from math.h, but not printf because
* that would require stdio. The caller must supply a buffer of
* sufficient size or we will png_error. The tests on size and
* the space in ascii[] consumed are indicated below.
*/
if (precision < 1)
precision = DBL_DIG;
 
/* Enforce the limit of the implementation precision too. */
if (precision > DBL_DIG+1)
precision = DBL_DIG+1;
 
/* Basic sanity checks */
if (size >= precision+5) /* See the requirements below. */
{
if (fp < 0)
{
fp = -fp;
*ascii++ = 45; /* '-' PLUS 1 TOTAL 1*/
--size;
}
 
if (fp >= DBL_MIN && fp <= DBL_MAX)
{
int exp_b10; /* A base 10 exponent */
double base; /* 10^exp_b10 */
 
/* First extract a base 10 exponent of the number,
* the calculation below rounds down when converting
* from base 2 to base 10 (multiply by log10(2) -
* 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
* be increased. Note that the arithmetic shift
* performs a floor() unlike C arithmetic - using a
* C multiply would break the following for negative
* exponents.
*/
(void)frexp(fp, &exp_b10); /* exponent to base 2 */
 
exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
 
/* Avoid underflow here. */
base = png_pow10(exp_b10); /* May underflow */
 
while (base < DBL_MIN || base < fp)
{
/* And this may overflow. */
double test = png_pow10(exp_b10+1);
 
if (test <= DBL_MAX)
++exp_b10, base = test;
 
else
break;
}
 
/* Normalize fp and correct exp_b10, after this fp is in the
* range [.1,1) and exp_b10 is both the exponent and the digit
* *before* which the decimal point should be inserted
* (starting with 0 for the first digit). Note that this
* works even if 10^exp_b10 is out of range because of the
* test on DBL_MAX above.
*/
fp /= base;
while (fp >= 1) fp /= 10, ++exp_b10;
 
/* Because of the code above fp may, at this point, be
* less than .1, this is ok because the code below can
* handle the leading zeros this generates, so no attempt
* is made to correct that here.
*/
 
{
int czero, clead, cdigits;
char exponent[10];
 
/* Allow up to two leading zeros - this will not lengthen
* the number compared to using E-n.
*/
if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
{
czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
exp_b10 = 0; /* Dot added below before first output. */
}
else
czero = 0; /* No zeros to add */
 
/* Generate the digit list, stripping trailing zeros and
* inserting a '.' before a digit if the exponent is 0.
*/
clead = czero; /* Count of leading zeros */
cdigits = 0; /* Count of digits in list. */
 
do
{
double d;
 
fp *= 10;
/* Use modf here, not floor and subtract, so that
* the separation is done in one step. At the end
* of the loop don't break the number into parts so
* that the final digit is rounded.
*/
if (cdigits+czero-clead+1 < (int)precision)
fp = modf(fp, &d);
 
else
{
d = floor(fp + .5);
 
if (d > 9)
{
/* Rounding up to 10, handle that here. */
if (czero > 0)
{
--czero, d = 1;
if (cdigits == 0) --clead;
}
else
{
while (cdigits > 0 && d > 9)
{
int ch = *--ascii;
 
if (exp_b10 != (-1))
++exp_b10;
 
else if (ch == 46)
{
ch = *--ascii, ++size;
/* Advance exp_b10 to '1', so that the
* decimal point happens after the
* previous digit.
*/
exp_b10 = 1;
}
 
--cdigits;
d = ch - 47; /* I.e. 1+(ch-48) */
}
 
/* Did we reach the beginning? If so adjust the
* exponent but take into account the leading
* decimal point.
*/
if (d > 9) /* cdigits == 0 */
{
if (exp_b10 == (-1))
{
/* Leading decimal point (plus zeros?), if
* we lose the decimal point here it must
* be reentered below.
*/
int ch = *--ascii;
 
if (ch == 46)
++size, exp_b10 = 1;
 
/* Else lost a leading zero, so 'exp_b10' is
* still ok at (-1)
*/
}
else
++exp_b10;
 
/* In all cases we output a '1' */
d = 1;
}
}
}
fp = 0; /* Guarantees termination below. */
}
 
if (d == 0)
{
++czero;
if (cdigits == 0) ++clead;
}
else
{
/* Included embedded zeros in the digit count. */
cdigits += czero - clead;
clead = 0;
 
while (czero > 0)
{
/* exp_b10 == (-1) means we just output the decimal
* place - after the DP don't adjust 'exp_b10' any
* more!
*/
if (exp_b10 != (-1))
{
if (exp_b10 == 0) *ascii++ = 46, --size;
/* PLUS 1: TOTAL 4 */
--exp_b10;
}
*ascii++ = 48, --czero;
}
 
if (exp_b10 != (-1))
{
if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
above */
--exp_b10;
}
*ascii++ = (char)(48 + (int)d), ++cdigits;
}
}
while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
 
/* The total output count (max) is now 4+precision */
 
/* Check for an exponent, if we don't need one we are
* done and just need to terminate the string. At
* this point exp_b10==(-1) is effectively if flag - it got
* to '-1' because of the decrement after outputing
* the decimal point above (the exponent required is
* *not* -1!)
*/
if (exp_b10 >= (-1) && exp_b10 <= 2)
{
/* The following only happens if we didn't output the
* leading zeros above for negative exponent, so this
* doest add to the digit requirement. Note that the
* two zeros here can only be output if the two leading
* zeros were *not* output, so this doesn't increase
* the output count.
*/
while (--exp_b10 >= 0) *ascii++ = 48;
 
*ascii = 0;
 
/* Total buffer requirement (including the '\0') is
* 5+precision - see check at the start.
*/
return;
}
 
/* Here if an exponent is required, adjust size for
* the digits we output but did not count. The total
* digit output here so far is at most 1+precision - no
* decimal point and no leading or trailing zeros have
* been output.
*/
size -= cdigits;
 
*ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision*/
if (exp_b10 < 0)
{
*ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
exp_b10 = -exp_b10;
}
 
cdigits = 0;
 
while (exp_b10 > 0)
{
exponent[cdigits++] = (char)(48 + exp_b10 % 10);
exp_b10 /= 10;
}
 
/* Need another size check here for the exponent digits, so
* this need not be considered above.
*/
if ((int)size > cdigits)
{
while (cdigits > 0) *ascii++ = exponent[--cdigits];
 
*ascii = 0;
 
return;
}
}
}
else if (!(fp >= DBL_MIN))
{
*ascii++ = 48; /* '0' */
*ascii = 0;
return;
}
else
{
*ascii++ = 105; /* 'i' */
*ascii++ = 110; /* 'n' */
*ascii++ = 102; /* 'f' */
*ascii = 0;
return;
}
}
 
/* Here on buffer too small. */
png_error(png_ptr, "ASCII conversion buffer too small");
}
 
# endif /* FLOATING_POINT */
 
# ifdef PNG_FIXED_POINT_SUPPORTED
/* Function to format a fixed point value in ASCII.
*/
void /* PRIVATE */
png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
png_fixed_point fp)
{
/* Require space for 10 decimal digits, a decimal point, a minus sign and a
* trailing \0, 13 characters:
*/
if (size > 12)
{
png_uint_32 num;
 
/* Avoid overflow here on the minimum integer. */
if (fp < 0)
*ascii++ = 45, --size, num = -fp;
else
num = fp;
 
if (num <= 0x80000000U) /* else overflowed */
{
unsigned int ndigits = 0, first = 16/*flag value*/;
char digits[10];
 
while (num)
{
/* Split the low digit off num: */
unsigned int tmp = num/10;
num -= tmp*10;
digits[ndigits++] = (char)(48 + num);
/* Record the first non-zero digit, note that this is a number
* starting at 1, it's not actually the array index.
*/
if (first == 16 && num > 0)
first = ndigits;
num = tmp;
}
 
if (ndigits > 0)
{
while (ndigits > 5) *ascii++ = digits[--ndigits];
/* The remaining digits are fractional digits, ndigits is '5' or
* smaller at this point. It is certainly not zero. Check for a
* non-zero fractional digit:
*/
if (first <= 5)
{
unsigned int i;
*ascii++ = 46; /* decimal point */
/* ndigits may be <5 for small numbers, output leading zeros
* then ndigits digits to first:
*/
i = 5;
while (ndigits < i) *ascii++ = 48, --i;
while (ndigits >= first) *ascii++ = digits[--ndigits];
/* Don't output the trailing zeros! */
}
}
else
*ascii++ = 48;
 
/* And null terminate the string: */
*ascii = 0;
return;
}
}
 
/* Here on buffer too small. */
png_error(png_ptr, "ASCII conversion buffer too small");
}
# endif /* FIXED_POINT */
#endif /* READ_SCAL */
 
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
!defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
png_fixed_point
png_fixed(png_structp png_ptr, double fp, png_const_charp text)
{
double r = floor(100000 * fp + .5);
 
if (r > 2147483647. || r < -2147483648.)
png_fixed_error(png_ptr, text);
 
return (png_fixed_point)r;
}
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || \
defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
/* muldiv functions */
/* This API takes signed arguments and rounds the result to the nearest
* integer (or, for a fixed point number - the standard argument - to
* the nearest .00001). Overflow and divide by zero are signalled in
* the result, a boolean - true on success, false on overflow.
*/
int
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
png_int_32 divisor)
{
/* Return a * times / divisor, rounded. */
if (divisor != 0)
{
if (a == 0 || times == 0)
{
*res = 0;
return 1;
}
else
{
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = a;
r *= times;
r /= divisor;
r = floor(r+.5);
 
/* A png_fixed_point is a 32 bit integer. */
if (r <= 2147483647. && r >= -2147483648.)
{
*res = (png_fixed_point)r;
return 1;
}
#else
int negative = 0;
png_uint_32 A, T, D;
png_uint_32 s16, s32, s00;
 
if (a < 0)
negative = 1, A = -a;
else
A = a;
 
if (times < 0)
negative = !negative, T = -times;
else
T = times;
 
if (divisor < 0)
negative = !negative, D = -divisor;
else
D = divisor;
 
/* Following can't overflow because the arguments only
* have 31 bits each, however the result may be 32 bits.
*/
s16 = (A >> 16) * (T & 0xffff) +
(A & 0xffff) * (T >> 16);
/* Can't overflow because the a*times bit is only 30
* bits at most.
*/
s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
s00 = (A & 0xffff) * (T & 0xffff);
 
s16 = (s16 & 0xffff) << 16;
s00 += s16;
 
if (s00 < s16)
++s32; /* carry */
 
if (s32 < D) /* else overflow */
{
/* s32.s00 is now the 64 bit product, do a standard
* division, we know that s32 < D, so the maximum
* required shift is 31.
*/
int bitshift = 32;
png_fixed_point result = 0; /* NOTE: signed */
 
while (--bitshift >= 0)
{
png_uint_32 d32, d00;
 
if (bitshift > 0)
d32 = D >> (32-bitshift), d00 = D << bitshift;
 
else
d32 = 0, d00 = D;
 
if (s32 > d32)
{
if (s00 < d00) --s32; /* carry */
s32 -= d32, s00 -= d00, result += 1<<bitshift;
}
 
else
if (s32 == d32 && s00 >= d00)
s32 = 0, s00 -= d00, result += 1<<bitshift;
}
 
/* Handle the rounding. */
if (s00 >= (D >> 1))
++result;
 
if (negative)
result = -result;
 
/* Check for overflow. */
if ((negative && result <= 0) || (!negative && result >= 0))
{
*res = result;
return 1;
}
}
#endif
}
}
 
return 0;
}
#endif /* READ_GAMMA || INCH_CONVERSIONS */
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
/* The following is for when the caller doesn't much care about the
* result.
*/
png_fixed_point
png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
png_int_32 divisor)
{
png_fixed_point result;
 
if (png_muldiv(&result, a, times, divisor))
return result;
 
png_warning(png_ptr, "fixed point overflow ignored");
return 0;
}
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
png_fixed_point
png_reciprocal(png_fixed_point a)
{
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = floor(1E10/a+.5);
 
if (r <= 2147483647. && r >= -2147483648.)
return (png_fixed_point)r;
#else
png_fixed_point res;
 
if (png_muldiv(&res, 100000, 100000, a))
return res;
#endif
 
return 0; /* error/overflow */
}
 
/* A local convenience routine. */
static png_fixed_point
png_product2(png_fixed_point a, png_fixed_point b)
{
/* The required result is 1/a * 1/b; the following preserves accuracy. */
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = a * 1E-5;
r *= b;
r = floor(r+.5);
 
if (r <= 2147483647. && r >= -2147483648.)
return (png_fixed_point)r;
#else
png_fixed_point res;
 
if (png_muldiv(&res, a, b, 100000))
return res;
#endif
 
return 0; /* overflow */
}
 
/* The inverse of the above. */
png_fixed_point
png_reciprocal2(png_fixed_point a, png_fixed_point b)
{
/* The required result is 1/a * 1/b; the following preserves accuracy. */
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = 1E15/a;
r /= b;
r = floor(r+.5);
 
if (r <= 2147483647. && r >= -2147483648.)
return (png_fixed_point)r;
#else
/* This may overflow because the range of png_fixed_point isn't symmetric,
* but this API is only used for the product of file and screen gamma so it
* doesn't matter that the smallest number it can produce is 1/21474, not
* 1/100000
*/
png_fixed_point res = png_product2(a, b);
 
if (res != 0)
return png_reciprocal(res);
#endif
 
return 0; /* overflow */
}
#endif /* READ_GAMMA */
 
#ifdef PNG_CHECK_cHRM_SUPPORTED
/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
* 2010: moved from pngset.c) */
/*
* Multiply two 32-bit numbers, V1 and V2, using 32-bit
* arithmetic, to produce a 64 bit result in the HI/LO words.
*
* A B
* x C D
* ------
* AD || BD
* AC || CB || 0
*
* where A and B are the high and low 16-bit words of V1,
* C and D are the 16-bit words of V2, AD is the product of
* A and D, and X || Y is (X << 16) + Y.
*/
 
void /* PRIVATE */
png_64bit_product (long v1, long v2, unsigned long *hi_product,
unsigned long *lo_product)
{
int a, b, c, d;
long lo, hi, x, y;
 
a = (v1 >> 16) & 0xffff;
b = v1 & 0xffff;
c = (v2 >> 16) & 0xffff;
d = v2 & 0xffff;
 
lo = b * d; /* BD */
x = a * d + c * b; /* AD + CB */
y = ((lo >> 16) & 0xffff) + x;
 
lo = (lo & 0xffff) | ((y & 0xffff) << 16);
hi = (y >> 16) & 0xffff;
 
hi += a * c; /* AC */
 
*hi_product = (unsigned long)hi;
*lo_product = (unsigned long)lo;
}
#endif /* CHECK_cHRM */
 
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
/* Fixed point gamma.
*
* To calculate gamma this code implements fast log() and exp() calls using only
* fixed point arithmetic. This code has sufficient precision for either 8 or
* 16 bit sample values.
*
* The tables used here were calculated using simple 'bc' programs, but C double
* precision floating point arithmetic would work fine. The programs are given
* at the head of each table.
*
* 8 bit log table
* This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
* 255, so it's the base 2 logarithm of a normalized 8 bit floating point
* mantissa. The numbers are 32 bit fractions.
*/
static png_uint_32
png_8bit_l2[128] =
{
# if PNG_DO_BC
for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
# endif
4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
24347096U, 0U
#if 0
/* The following are the values for 16 bit tables - these work fine for the 8
* bit conversions but produce very slightly larger errors in the 16 bit log
* (about 1.2 as opposed to 0.7 absolute error in the final value). To use
* these all the shifts below must be adjusted appropriately.
*/
65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
1119, 744, 372
#endif
};
 
static png_int_32
png_log8bit(unsigned int x)
{
unsigned int lg2 = 0;
/* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
* because the log is actually negate that means adding 1. The final
* returned value thus has the range 0 (for 255 input) to 7.994 (for 1
* input), return 7.99998 for the overflow (log 0) case - so the result is
* always at most 19 bits.
*/
if ((x &= 0xff) == 0)
return 0xffffffff;
 
if ((x & 0xf0) == 0)
lg2 = 4, x <<= 4;
 
if ((x & 0xc0) == 0)
lg2 += 2, x <<= 2;
 
if ((x & 0x80) == 0)
lg2 += 1, x <<= 1;
 
/* result is at most 19 bits, so this cast is safe: */
return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
}
 
/* The above gives exact (to 16 binary places) log2 values for 8 bit images,
* for 16 bit images we use the most significant 8 bits of the 16 bit value to
* get an approximation then multiply the approximation by a correction factor
* determined by the remaining up to 8 bits. This requires an additional step
* in the 16 bit case.
*
* We want log2(value/65535), we have log2(v'/255), where:
*
* value = v' * 256 + v''
* = v' * f
*
* So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
* to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
* than 258. The final factor also needs to correct for the fact that our 8 bit
* value is scaled by 255, whereas the 16 bit values must be scaled by 65535.
*
* This gives a final formula using a calculated value 'x' which is value/v' and
* scaling by 65536 to match the above table:
*
* log2(x/257) * 65536
*
* Since these numbers are so close to '1' we can use simple linear
* interpolation between the two end values 256/257 (result -368.61) and 258/257
* (result 367.179). The values used below are scaled by a further 64 to give
* 16 bit precision in the interpolation:
*
* Start (256): -23591
* Zero (257): 0
* End (258): 23499
*/
static png_int_32
png_log16bit(png_uint_32 x)
{
unsigned int lg2 = 0;
 
/* As above, but now the input has 16 bits. */
if ((x &= 0xffff) == 0)
return 0xffffffff;
 
if ((x & 0xff00) == 0)
lg2 = 8, x <<= 8;
 
if ((x & 0xf000) == 0)
lg2 += 4, x <<= 4;
 
if ((x & 0xc000) == 0)
lg2 += 2, x <<= 2;
 
if ((x & 0x8000) == 0)
lg2 += 1, x <<= 1;
 
/* Calculate the base logarithm from the top 8 bits as a 28 bit fractional
* value.
*/
lg2 <<= 28;
lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
 
/* Now we need to interpolate the factor, this requires a division by the top
* 8 bits. Do this with maximum precision.
*/
x = ((x << 16) + (x >> 9)) / (x >> 8);
 
/* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
* the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
* 16 bits to interpolate to get the low bits of the result. Round the
* answer. Note that the end point values are scaled by 64 to retain overall
* precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
* the overall scaling by 6-12. Round at every step.
*/
x -= 1U << 24;
 
if (x <= 65536U) /* <= '257' */
lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
 
else
lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
 
/* Safe, because the result can't have more than 20 bits: */
return (png_int_32)((lg2 + 2048) >> 12);
}
 
/* The 'exp()' case must invert the above, taking a 20 bit fixed point
* logarithmic value and returning a 16 or 8 bit number as appropriate. In
* each case only the low 16 bits are relevant - the fraction - since the
* integer bits (the top 4) simply determine a shift.
*
* The worst case is the 16 bit distinction between 65535 and 65534, this
* requires perhaps spurious accuracty in the decoding of the logarithm to
* distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
* of getting this accuracy in practice.
*
* To deal with this the following exp() function works out the exponent of the
* frational part of the logarithm by using an accurate 32 bit value from the
* top four fractional bits then multiplying in the remaining bits.
*/
static png_uint_32
png_32bit_exp[16] =
{
# if PNG_DO_BC
for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
# endif
/* NOTE: the first entry is deliberately set to the maximum 32 bit value. */
4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
2553802834U, 2445529972U, 2341847524U, 2242560872U
};
 
/* Adjustment table; provided to explain the numbers in the code below. */
#if PNG_DO_BC
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
11 44937.64284865548751208448
10 45180.98734845585101160448
9 45303.31936980687359311872
8 45364.65110595323018870784
7 45395.35850361789624614912
6 45410.72259715102037508096
5 45418.40724413220722311168
4 45422.25021786898173001728
3 45424.17186732298419044352
2 45425.13273269940811464704
1 45425.61317555035558641664
0 45425.85339951654943850496
#endif
 
static png_uint_32
png_exp(png_fixed_point x)
{
if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
{
/* Obtain a 4 bit approximation */
png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
 
/* Incorporate the low 12 bits - these decrease the returned value by
* multiplying by a number less than 1 if the bit is set. The multiplier
* is determined by the above table and the shift. Notice that the values
* converge on 45426 and this is used to allow linear interpolation of the
* low bits.
*/
if (x & 0x800)
e -= (((e >> 16) * 44938U) + 16U) >> 5;
 
if (x & 0x400)
e -= (((e >> 16) * 45181U) + 32U) >> 6;
 
if (x & 0x200)
e -= (((e >> 16) * 45303U) + 64U) >> 7;
 
if (x & 0x100)
e -= (((e >> 16) * 45365U) + 128U) >> 8;
 
if (x & 0x080)
e -= (((e >> 16) * 45395U) + 256U) >> 9;
 
if (x & 0x040)
e -= (((e >> 16) * 45410U) + 512U) >> 10;
 
/* And handle the low 6 bits in a single block. */
e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
 
/* Handle the upper bits of x. */
e >>= x >> 16;
return e;
}
 
/* Check for overflow */
if (x <= 0)
return png_32bit_exp[0];
 
/* Else underflow */
return 0;
}
 
static png_byte
png_exp8bit(png_fixed_point lg2)
{
/* Get a 32 bit value: */
png_uint_32 x = png_exp(lg2);
 
/* Convert the 32 bit value to 0..255 by multiplying by 256-1, note that the
* second, rounding, step can't overflow because of the first, subtraction,
* step.
*/
x -= x >> 8;
return (png_byte)((x + 0x7fffffU) >> 24);
}
 
static png_uint_16
png_exp16bit(png_fixed_point lg2)
{
/* Get a 32 bit value: */
png_uint_32 x = png_exp(lg2);
 
/* Convert the 32 bit value to 0..65535 by multiplying by 65536-1: */
x -= x >> 16;
return (png_uint_16)((x + 32767U) >> 16);
}
#endif /* FLOATING_ARITHMETIC */
 
png_byte
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
{
if (value > 0 && value < 255)
{
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
return (png_byte)r;
# else
png_int_32 lg2 = png_log8bit(value);
png_fixed_point res;
 
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
return png_exp8bit(res);
 
/* Overflow. */
value = 0;
# endif
}
 
return (png_byte)value;
}
 
png_uint_16
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
{
if (value > 0 && value < 65535)
{
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
return (png_uint_16)r;
# else
png_int_32 lg2 = png_log16bit(value);
png_fixed_point res;
 
if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
return png_exp16bit(res);
 
/* Overflow. */
value = 0;
# endif
}
 
return (png_uint_16)value;
}
 
/* This does the right thing based on the bit_depth field of the
* png_struct, interpreting values as 8 or 16 bit. While the result
* is nominally a 16 bit value if bit depth is 8 then the result is
* 8 bit (as are the arguments.)
*/
png_uint_16 /* PRIVATE */
png_gamma_correct(png_structp png_ptr, unsigned int value,
png_fixed_point gamma_val)
{
if (png_ptr->bit_depth == 8)
return png_gamma_8bit_correct(value, gamma_val);
 
else
return png_gamma_16bit_correct(value, gamma_val);
}
 
/* This is the shared test on whether a gamma value is 'significant' - whether
* it is worth doing gamma correction.
*/
int /* PRIVATE */
png_gamma_significant(png_fixed_point gamma_val)
{
return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
}
 
/* Internal function to build a single 16 bit table - the table consists of
* 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
* to shift the input values right (or 16-number_of_signifiant_bits).
*
* The caller is responsible for ensuring that the table gets cleaned up on
* png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
* should be somewhere that will be cleaned.
*/
static void
png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
{
/* Various values derived from 'shift': */
PNG_CONST unsigned int num = 1U << (8U - shift);
PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
unsigned int i;
 
png_uint_16pp table = *ptable =
(png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 
for (i = 0; i < num; i++)
{
png_uint_16p sub_table = table[i] =
(png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
 
/* The 'threshold' test is repeated here because it can arise for one of
* the 16 bit tables even if the others don't hit it.
*/
if (png_gamma_significant(gamma_val))
{
/* The old code would overflow at the end and this would cause the
* 'pow' function to return a result >1, resulting in an
* arithmetic error. This code follows the spec exactly; ig is
* the recovered input sample, it always has 8-16 bits.
*
* We want input * 65535/max, rounded, the arithmetic fits in 32
* bits (unsigned) so long as max <= 32767.
*/
unsigned int j;
for (j = 0; j < 256; j++)
{
png_uint_32 ig = (j << (8-shift)) + i;
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
/* Inline the 'max' scaling operation: */
double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
sub_table[j] = (png_uint_16)d;
# else
if (shift)
ig = (ig * 65535U + max_by_2)/max;
 
sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
# endif
}
}
else
{
/* We must still build a table, but do it the fast way. */
unsigned int j;
 
for (j = 0; j < 256; j++)
{
png_uint_32 ig = (j << (8-shift)) + i;
 
if (shift)
ig = (ig * 65535U + max_by_2)/max;
 
sub_table[j] = (png_uint_16)ig;
}
}
}
}
 
/* NOTE: this function expects the *inverse* of the overall gamma transformation
* required.
*/
static void
png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
{
PNG_CONST unsigned int num = 1U << (8U - shift);
PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
unsigned int i;
png_uint_32 last;
 
png_uint_16pp table = *ptable =
(png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
 
/* 'num' is the number of tables and also the number of low bits of low
* bits of the input 16 bit value used to select a table. Each table is
* itself index by the high 8 bits of the value.
*/
for (i = 0; i < num; i++)
table[i] = (png_uint_16p)png_malloc(png_ptr,
256 * png_sizeof(png_uint_16));
 
/* 'gamma_val' is set to the reciprocal of the value calculated above, so
* pow(out,g) is an *input* value. 'last' is the last input value set.
*
* In the loop 'i' is used to find output values. Since the output is 8
* bit there are only 256 possible values. The tables are set up to
* select the closest possible output value for each input by finding
* the input value at the boundary between each pair of output values
* and filling the table up to that boundary with the lower output
* value.
*
* The boundary values are 0.5,1.5..253.5,254.5. Since these are 9 bit
* values the code below uses a 16 bit value in i; the values start at
* 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
* entries are filled with 255). Start i at 128 and fill all 'last'
* table entries <= 'max'
*/
last = 0;
for (i = 0; i < 255; ++i) /* 8 bit output value */
{
/* Find the corresponding maximum input value */
png_uint_16 out = (png_uint_16)(i * 257U); /* 16 bit output value */
 
/* Find the boundary value in 16 bits: */
png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
 
/* Adjust (round) to (16-shift) bits: */
bound = (bound * max + 32768U)/65535U + 1U;
 
while (last < bound)
{
table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
last++;
}
}
 
/* And fill in the final entries. */
while (last < (num << 8))
{
table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
last++;
}
}
 
/* Build a single 8 bit table: same as the 16 bit case but much simpler (and
* typically much faster). Note that libpng currently does no sBIT processing
* (apparently contrary to the spec) so a 256 entry table is always generated.
*/
static void
png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
PNG_CONST png_fixed_point gamma_val)
{
unsigned int i;
png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
 
if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
table[i] = png_gamma_8bit_correct(i, gamma_val);
 
else for (i=0; i<256; ++i)
table[i] = (png_byte)i;
}
 
/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
* tables, we don't make a full table if we are reducing to 8-bit in
* the future. Note also how the gamma_16 tables are segmented so that
* we don't need to allocate > 64K chunks for a full 16-bit table.
*/
void /* PRIVATE */
png_build_gamma_table(png_structp png_ptr, int bit_depth)
{
png_debug(1, "in png_build_gamma_table");
 
if (bit_depth <= 8)
{
png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
png_ptr->screen_gamma) : PNG_FP_1);
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & ((PNG_BACKGROUND) | PNG_RGB_TO_GRAY))
{
png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
png_reciprocal(png_ptr->gamma));
 
png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
png_ptr->gamma/* Probably doing rgb_to_gray */);
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
}
else
{
png_byte shift, sig_bit;
 
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
{
sig_bit = png_ptr->sig_bit.red;
 
if (png_ptr->sig_bit.green > sig_bit)
sig_bit = png_ptr->sig_bit.green;
 
if (png_ptr->sig_bit.blue > sig_bit)
sig_bit = png_ptr->sig_bit.blue;
}
else
sig_bit = png_ptr->sig_bit.gray;
 
/* 16 bit gamma code uses this equation:
*
* ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
*
* Where 'iv' is the input color value and 'ov' is the output value -
* pow(iv, gamma).
*
* Thus the gamma table consists of up to 256 256 entry tables. The table
* is selected by the (8-gamma_shift) most significant of the low 8 bits of
* the color value then indexed by the upper 8 bits:
*
* table[low bits][high 8 bits]
*
* So the table 'n' corresponds to all those 'iv' of:
*
* <all high 8 bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
*
*/
if (sig_bit > 0 && sig_bit < 16U)
shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
 
else
shift = 0; /* keep all 16 bits */
 
if (png_ptr->transformations & PNG_16_TO_8)
{
/* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
* the significant bits in the *input* when the output will
* eventually be 8 bits. By default it is 11.
*/
if (shift < (16U - PNG_MAX_GAMMA_8))
shift = (16U - PNG_MAX_GAMMA_8);
}
 
if (shift > 8U)
shift = 8U; /* Guarantees at least one table! */
 
png_ptr->gamma_shift = shift;
 
#ifdef PNG_16BIT_SUPPORTED
if (png_ptr->transformations & (PNG_16_TO_8 | PNG_BACKGROUND))
#endif
png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
png_ptr->screen_gamma) : PNG_FP_1);
 
#ifdef PNG_16BIT_SUPPORTED
else
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
png_ptr->screen_gamma) : PNG_FP_1);
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
if (png_ptr->transformations & (PNG_BACKGROUND | PNG_RGB_TO_GRAY))
{
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
png_reciprocal(png_ptr->gamma));
 
/* Notice that the '16 from 1' table should be full precision, however
* the lookup on this table still uses gamma_shift, so it can't be.
* TODO: fix this.
*/
png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
png_ptr->gamma/* Probably doing rgb_to_gray */);
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED || PNG_RGB_TO_GRAY_SUPPORTED */
}
}
#endif /* READ_GAMMA */
#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
/programs/develop/libraries/libpng/png.h
0,0 → 1,2280
 
/* png.h - header file for PNG reference library
*
* libpng version 1.5.1 - February 3, 2011
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license (See LICENSE, below)
*
* Authors and maintainers:
* libpng versions 0.71, May 1995, through 0.88, January 1996: Guy Schalnat
* libpng versions 0.89c, June 1996, through 0.96, May 1997: Andreas Dilger
* libpng versions 0.97, January 1998, through 1.5.1 - February 3, 2011: Glenn
* See also "Contributing Authors", below.
*
* Note about libpng version numbers:
*
* Due to various miscommunications, unforeseen code incompatibilities
* and occasional factors outside the authors' control, version numbering
* on the library has not always been consistent and straightforward.
* The following table summarizes matters since version 0.89c, which was
* the first widely used release:
*
* source png.h png.h shared-lib
* version string int version
* ------- ------ ----- ----------
* 0.89c "1.0 beta 3" 0.89 89 1.0.89
* 0.90 "1.0 beta 4" 0.90 90 0.90 [should have been 2.0.90]
* 0.95 "1.0 beta 5" 0.95 95 0.95 [should have been 2.0.95]
* 0.96 "1.0 beta 6" 0.96 96 0.96 [should have been 2.0.96]
* 0.97b "1.00.97 beta 7" 1.00.97 97 1.0.1 [should have been 2.0.97]
* 0.97c 0.97 97 2.0.97
* 0.98 0.98 98 2.0.98
* 0.99 0.99 98 2.0.99
* 0.99a-m 0.99 99 2.0.99
* 1.00 1.00 100 2.1.0 [100 should be 10000]
* 1.0.0 (from here on, the 100 2.1.0 [100 should be 10000]
* 1.0.1 png.h string is 10001 2.1.0
* 1.0.1a-e identical to the 10002 from here on, the shared library
* 1.0.2 source version) 10002 is 2.V where V is the source code
* 1.0.2a-b 10003 version, except as noted.
* 1.0.3 10003
* 1.0.3a-d 10004
* 1.0.4 10004
* 1.0.4a-f 10005
* 1.0.5 (+ 2 patches) 10005
* 1.0.5a-d 10006
* 1.0.5e-r 10100 (not source compatible)
* 1.0.5s-v 10006 (not binary compatible)
* 1.0.6 (+ 3 patches) 10006 (still binary incompatible)
* 1.0.6d-f 10007 (still binary incompatible)
* 1.0.6g 10007
* 1.0.6h 10007 10.6h (testing xy.z so-numbering)
* 1.0.6i 10007 10.6i
* 1.0.6j 10007 2.1.0.6j (incompatible with 1.0.0)
* 1.0.7beta11-14 DLLNUM 10007 2.1.0.7beta11-14 (binary compatible)
* 1.0.7beta15-18 1 10007 2.1.0.7beta15-18 (binary compatible)
* 1.0.7rc1-2 1 10007 2.1.0.7rc1-2 (binary compatible)
* 1.0.7 1 10007 (still compatible)
* 1.0.8beta1-4 1 10008 2.1.0.8beta1-4
* 1.0.8rc1 1 10008 2.1.0.8rc1
* 1.0.8 1 10008 2.1.0.8
* 1.0.9beta1-6 1 10009 2.1.0.9beta1-6
* 1.0.9rc1 1 10009 2.1.0.9rc1
* 1.0.9beta7-10 1 10009 2.1.0.9beta7-10
* 1.0.9rc2 1 10009 2.1.0.9rc2
* 1.0.9 1 10009 2.1.0.9
* 1.0.10beta1 1 10010 2.1.0.10beta1
* 1.0.10rc1 1 10010 2.1.0.10rc1
* 1.0.10 1 10010 2.1.0.10
* 1.0.11beta1-3 1 10011 2.1.0.11beta1-3
* 1.0.11rc1 1 10011 2.1.0.11rc1
* 1.0.11 1 10011 2.1.0.11
* 1.0.12beta1-2 2 10012 2.1.0.12beta1-2
* 1.0.12rc1 2 10012 2.1.0.12rc1
* 1.0.12 2 10012 2.1.0.12
* 1.1.0a-f - 10100 2.1.1.0a-f (branch abandoned)
* 1.2.0beta1-2 2 10200 2.1.2.0beta1-2
* 1.2.0beta3-5 3 10200 3.1.2.0beta3-5
* 1.2.0rc1 3 10200 3.1.2.0rc1
* 1.2.0 3 10200 3.1.2.0
* 1.2.1beta1-4 3 10201 3.1.2.1beta1-4
* 1.2.1rc1-2 3 10201 3.1.2.1rc1-2
* 1.2.1 3 10201 3.1.2.1
* 1.2.2beta1-6 12 10202 12.so.0.1.2.2beta1-6
* 1.0.13beta1 10 10013 10.so.0.1.0.13beta1
* 1.0.13rc1 10 10013 10.so.0.1.0.13rc1
* 1.2.2rc1 12 10202 12.so.0.1.2.2rc1
* 1.0.13 10 10013 10.so.0.1.0.13
* 1.2.2 12 10202 12.so.0.1.2.2
* 1.2.3rc1-6 12 10203 12.so.0.1.2.3rc1-6
* 1.2.3 12 10203 12.so.0.1.2.3
* 1.2.4beta1-3 13 10204 12.so.0.1.2.4beta1-3
* 1.0.14rc1 13 10014 10.so.0.1.0.14rc1
* 1.2.4rc1 13 10204 12.so.0.1.2.4rc1
* 1.0.14 10 10014 10.so.0.1.0.14
* 1.2.4 13 10204 12.so.0.1.2.4
* 1.2.5beta1-2 13 10205 12.so.0.1.2.5beta1-2
* 1.0.15rc1-3 10 10015 10.so.0.1.0.15rc1-3
* 1.2.5rc1-3 13 10205 12.so.0.1.2.5rc1-3
* 1.0.15 10 10015 10.so.0.1.0.15
* 1.2.5 13 10205 12.so.0.1.2.5
* 1.2.6beta1-4 13 10206 12.so.0.1.2.6beta1-4
* 1.0.16 10 10016 10.so.0.1.0.16
* 1.2.6 13 10206 12.so.0.1.2.6
* 1.2.7beta1-2 13 10207 12.so.0.1.2.7beta1-2
* 1.0.17rc1 10 10017 12.so.0.1.0.17rc1
* 1.2.7rc1 13 10207 12.so.0.1.2.7rc1
* 1.0.17 10 10017 12.so.0.1.0.17
* 1.2.7 13 10207 12.so.0.1.2.7
* 1.2.8beta1-5 13 10208 12.so.0.1.2.8beta1-5
* 1.0.18rc1-5 10 10018 12.so.0.1.0.18rc1-5
* 1.2.8rc1-5 13 10208 12.so.0.1.2.8rc1-5
* 1.0.18 10 10018 12.so.0.1.0.18
* 1.2.8 13 10208 12.so.0.1.2.8
* 1.2.9beta1-3 13 10209 12.so.0.1.2.9beta1-3
* 1.2.9beta4-11 13 10209 12.so.0.9[.0]
* 1.2.9rc1 13 10209 12.so.0.9[.0]
* 1.2.9 13 10209 12.so.0.9[.0]
* 1.2.10beta1-7 13 10210 12.so.0.10[.0]
* 1.2.10rc1-2 13 10210 12.so.0.10[.0]
* 1.2.10 13 10210 12.so.0.10[.0]
* 1.4.0beta1-5 14 10400 14.so.0.0[.0]
* 1.2.11beta1-4 13 10211 12.so.0.11[.0]
* 1.4.0beta7-8 14 10400 14.so.0.0[.0]
* 1.2.11 13 10211 12.so.0.11[.0]
* 1.2.12 13 10212 12.so.0.12[.0]
* 1.4.0beta9-14 14 10400 14.so.0.0[.0]
* 1.2.13 13 10213 12.so.0.13[.0]
* 1.4.0beta15-36 14 10400 14.so.0.0[.0]
* 1.4.0beta37-87 14 10400 14.so.14.0[.0]
* 1.4.0rc01 14 10400 14.so.14.0[.0]
* 1.4.0beta88-109 14 10400 14.so.14.0[.0]
* 1.4.0rc02-08 14 10400 14.so.14.0[.0]
* 1.4.0 14 10400 14.so.14.0[.0]
* 1.4.1beta01-03 14 10401 14.so.14.1[.0]
* 1.4.1rc01 14 10401 14.so.14.1[.0]
* 1.4.1beta04-12 14 10401 14.so.14.1[.0]
* 1.4.1 14 10401 14.so.14.1[.0]
* 1.4.2 14 10402 14.so.14.2[.0]
* 1.4.3 14 10403 14.so.14.3[.0]
* 1.4.4 14 10404 14.so.14.4[.0]
* 1.5.0beta01-58 15 10500 15.so.15.0[.0]
* 1.5.0rc01-07 15 10500 15.so.15.0[.0]
* 1.5.0 15 10500 15.so.15.0[.0]
* 1.5.1beta01-11 15 10501 15.so.15.1[.0]
* 1.5.1rc01-02 15 10501 15.so.15.1[.0]
* 1.5.1 15 10501 15.so.15.1[.0]
*
* Henceforth the source version will match the shared-library major
* and minor numbers; the shared-library major version number will be
* used for changes in backward compatibility, as it is intended. The
* PNG_LIBPNG_VER macro, which is not used within libpng but is available
* for applications, is an unsigned integer of the form xyyzz corresponding
* to the source version x.y.z (leading zeros in y and z). Beta versions
* were given the previous public release number plus a letter, until
* version 1.0.6j; from then on they were given the upcoming public
* release number plus "betaNN" or "rcN".
*
* Binary incompatibility exists only when applications make direct access
* to the info_ptr or png_ptr members through png.h, and the compiled
* application is loaded with a different version of the library.
*
* DLLNUM will change each time there are forward or backward changes
* in binary compatibility (e.g., when a new feature is added).
*
* See libpng-manual.txt or libpng.3 for more information. The PNG
* specification is available as a W3C Recommendation and as an ISO
* Specification, <http://www.w3.org/TR/2003/REC-PNG-20031110/
*/
 
/*
* COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
*
* If you modify libpng you may insert additional notices immediately following
* this sentence.
*
* This code is released under the libpng license.
*
* libpng versions 1.2.6, August 15, 2004, through 1.5.1, February 3, 2011, are
* Copyright (c) 2004, 2006-2011 Glenn Randers-Pehrson, and are
* distributed according to the same disclaimer and license as libpng-1.2.5
* with the following individual added to the list of Contributing Authors:
*
* Cosmin Truta
*
* libpng versions 1.0.7, July 1, 2000, through 1.2.5, October 3, 2002, are
* Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are
* distributed according to the same disclaimer and license as libpng-1.0.6
* with the following individuals added to the list of Contributing Authors:
*
* Simon-Pierre Cadieux
* Eric S. Raymond
* Gilles Vollant
*
* and with the following additions to the disclaimer:
*
* There is no warranty against interference with your enjoyment of the
* library or against infringement. There is no warranty that our
* efforts or the library will fulfill any of your particular purposes
* or needs. This library is provided with all faults, and the entire
* risk of satisfactory quality, performance, accuracy, and effort is with
* the user.
*
* libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
* Copyright (c) 1998, 1999, 2000 Glenn Randers-Pehrson, and are
* distributed according to the same disclaimer and license as libpng-0.96,
* with the following individuals added to the list of Contributing Authors:
*
* Tom Lane
* Glenn Randers-Pehrson
* Willem van Schaik
*
* libpng versions 0.89, June 1996, through 0.96, May 1997, are
* Copyright (c) 1996, 1997 Andreas Dilger
* Distributed according to the same disclaimer and license as libpng-0.88,
* with the following individuals added to the list of Contributing Authors:
*
* John Bowler
* Kevin Bracey
* Sam Bushell
* Magnus Holmgren
* Greg Roelofs
* Tom Tanner
*
* libpng versions 0.5, May 1995, through 0.88, January 1996, are
* Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
*
* For the purposes of this copyright and license, "Contributing Authors"
* is defined as the following set of individuals:
*
* Andreas Dilger
* Dave Martindale
* Guy Eric Schalnat
* Paul Schmidt
* Tim Wegner
*
* The PNG Reference Library is supplied "AS IS". The Contributing Authors
* and Group 42, Inc. disclaim all warranties, expressed or implied,
* including, without limitation, the warranties of merchantability and of
* fitness for any purpose. The Contributing Authors and Group 42, Inc.
* assume no liability for direct, indirect, incidental, special, exemplary,
* or consequential damages, which may result from the use of the PNG
* Reference Library, even if advised of the possibility of such damage.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* source code, or portions hereof, for any purpose, without fee, subject
* to the following restrictions:
*
* 1. The origin of this source code must not be misrepresented.
*
* 2. Altered versions must be plainly marked as such and must not
* be misrepresented as being the original source.
*
* 3. This Copyright notice may not be removed or altered from
* any source or altered source distribution.
*
* The Contributing Authors and Group 42, Inc. specifically permit, without
* fee, and encourage the use of this source code as a component to
* supporting the PNG file format in commercial products. If you use this
* source code in a product, acknowledgment is not required but would be
* appreciated.
*/
 
/*
* A "png_get_copyright" function is available, for convenient use in "about"
* boxes and the like:
*
* printf("%s", png_get_copyright(NULL));
*
* Also, the PNG logo (in PNG format, of course) is supplied in the
* files "pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31).
*/
 
/*
* Libpng is OSI Certified Open Source Software. OSI Certified is a
* certification mark of the Open Source Initiative.
*/
 
/*
* The contributing authors would like to thank all those who helped
* with testing, bug fixes, and patience. This wouldn't have been
* possible without all of you.
*
* Thanks to Frank J. T. Wojcik for helping with the documentation.
*/
 
/*
* Y2K compliance in libpng:
* =========================
*
* February 3, 2011
*
* Since the PNG Development group is an ad-hoc body, we can't make
* an official declaration.
*
* This is your unofficial assurance that libpng from version 0.71 and
* upward through 1.5.1 are Y2K compliant. It is my belief that
* earlier versions were also Y2K compliant.
*
* Libpng only has three year fields. One is a 2-byte unsigned integer
* that will hold years up to 65535. The other two hold the date in text
* format, and will hold years up to 9999.
*
* The integer is
* "png_uint_16 year" in png_time_struct.
*
* The strings are
* "png_charp time_buffer" in png_struct and
* "near_time_buffer", which is a local character string in png.c.
*
* There are seven time-related functions:
* png.c: png_convert_to_rfc_1123() in png.c
* (formerly png_convert_to_rfc_1152() in error)
* png_convert_from_struct_tm() in pngwrite.c, called in pngwrite.c
* png_convert_from_time_t() in pngwrite.c
* png_get_tIME() in pngget.c
* png_handle_tIME() in pngrutil.c, called in pngread.c
* png_set_tIME() in pngset.c
* png_write_tIME() in pngwutil.c, called in pngwrite.c
*
* All handle dates properly in a Y2K environment. The
* png_convert_from_time_t() function calls gmtime() to convert from system
* clock time, which returns (year - 1900), which we properly convert to
* the full 4-digit year. There is a possibility that applications using
* libpng are not passing 4-digit years into the png_convert_to_rfc_1123()
* function, or that they are incorrectly passing only a 2-digit year
* instead of "year - 1900" into the png_convert_from_struct_tm() function,
* but this is not under our control. The libpng documentation has always
* stated that it works with 4-digit years, and the APIs have been
* documented as such.
*
* The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned
* integer to hold the year, and can hold years as large as 65535.
*
* zlib, upon which libpng depends, is also Y2K compliant. It contains
* no date-related code.
*
* Glenn Randers-Pehrson
* libpng maintainer
* PNG Development Group
*/
 
#ifndef PNG_H
#define PNG_H
 
/* This is not the place to learn how to use libpng. The file libpng-manual.txt
* describes how to use libpng, and the file example.c summarizes it
* with some code on which to build. This file is useful for looking
* at the actual function definitions and structure components.
*/
 
/* Version information for png.h - this should match the version in png.c */
#define PNG_LIBPNG_VER_STRING "1.5.1"
#define PNG_HEADER_VERSION_STRING \
" libpng version 1.5.1 - February 3, 2011\n"
 
#define PNG_LIBPNG_VER_SONUM 15
#define PNG_LIBPNG_VER_DLLNUM 15
 
/* These should match the first 3 components of PNG_LIBPNG_VER_STRING: */
#define PNG_LIBPNG_VER_MAJOR 1
#define PNG_LIBPNG_VER_MINOR 5
#define PNG_LIBPNG_VER_RELEASE 1
/* This should match the numeric part of the final component of
* PNG_LIBPNG_VER_STRING, omitting any leading zero:
*/
 
#define PNG_LIBPNG_VER_BUILD 0
 
/* Release Status */
#define PNG_LIBPNG_BUILD_ALPHA 1
#define PNG_LIBPNG_BUILD_BETA 2
#define PNG_LIBPNG_BUILD_RC 3
#define PNG_LIBPNG_BUILD_STABLE 4
#define PNG_LIBPNG_BUILD_RELEASE_STATUS_MASK 7
 
/* Release-Specific Flags */
#define PNG_LIBPNG_BUILD_PATCH 8 /* Can be OR'ed with
PNG_LIBPNG_BUILD_STABLE only */
#define PNG_LIBPNG_BUILD_PRIVATE 16 /* Cannot be OR'ed with
PNG_LIBPNG_BUILD_SPECIAL */
#define PNG_LIBPNG_BUILD_SPECIAL 32 /* Cannot be OR'ed with
PNG_LIBPNG_BUILD_PRIVATE */
 
#define PNG_LIBPNG_BUILD_BASE_TYPE PNG_LIBPNG_BUILD_BETA
 
/* Careful here. At one time, Guy wanted to use 082, but that would be octal.
* We must not include leading zeros.
* Versions 0.7 through 1.0.0 were in the range 0 to 100 here (only
* version 1.0.0 was mis-numbered 100 instead of 10000). From
* version 1.0.1 it's xxyyzz, where x=major, y=minor, z=release
*/
#define PNG_LIBPNG_VER 10501 /* 1.5.1 */
 
/* Library configuration: these options cannot be changed after
* the library has been built.
*/
#ifndef PNGLCONF_H
/* If pnglibconf.h is missing, you can
* copy scripts/pnglibconf.h.prebuilt to pnglibconf.h
*/
# include "pnglibconf.h"
#endif
 
#ifndef PNG_VERSION_INFO_ONLY
/* Standard header files (not needed for the version info) */
# ifdef PNG_SETJMP_SUPPORTED
# include <setjmp.h>
# endif
 
/* Need the time information for converting tIME chunks, it
* defines struct tm:
*/
#ifdef PNG_CONVERT_tIME_SUPPORTED
/* "time.h" functions are not supported on all operating systems */
# include <time.h>
#endif
 
/* Machine specific configuration. */
# include "pngconf.h"
#endif
 
/*
* Added at libpng-1.2.8
*
* Ref MSDN: Private as priority over Special
* VS_FF_PRIVATEBUILD File *was not* built using standard release
* procedures. If this value is given, the StringFileInfo block must
* contain a PrivateBuild string.
*
* VS_FF_SPECIALBUILD File *was* built by the original company using
* standard release procedures but is a variation of the standard
* file of the same version number. If this value is given, the
* StringFileInfo block must contain a SpecialBuild string.
*/
 
#ifdef PNG_USER_PRIVATEBUILD /* From pnglibconf.h */
# define PNG_LIBPNG_BUILD_TYPE \
(PNG_LIBPNG_BUILD_BASE_TYPE | PNG_LIBPNG_BUILD_PRIVATE)
#else
# ifdef PNG_LIBPNG_SPECIALBUILD
# define PNG_LIBPNG_BUILD_TYPE \
(PNG_LIBPNG_BUILD_BASE_TYPE | PNG_LIBPNG_BUILD_SPECIAL)
# else
# define PNG_LIBPNG_BUILD_TYPE (PNG_LIBPNG_BUILD_BASE_TYPE)
# endif
#endif
 
#ifndef PNG_VERSION_INFO_ONLY
 
/* Inhibit C++ name-mangling for libpng functions but not for system calls. */
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
 
/* Version information for C files, stored in png.c. This had better match
* the version above.
*/
#define png_libpng_ver png_get_header_ver(NULL)
 
/* This file is arranged in several sections:
*
* 1. Any configuration options that can be specified by for the application
* code when it is built. (Build time configuration is in pnglibconf.h)
* 2. Type definitions (base types are defined in pngconf.h), structure
* definitions.
* 3. Exported library functions.
*
* The library source code has additional files (principally pngpriv.h) that
* allow configuration of the library.
*/
/* Section 1: run time configuration
* See pnglibconf.h for build time configuration
*
* Run time configuration allows the application to choose between
* implementations of certain arithmetic APIs. The default is set
* at build time and recorded in pnglibconf.h, but it is safe to
* override these (and only these) settings. Note that this won't
* change what the library does, only application code, and the
* settings can (and probably should) be made on a per-file basis
* by setting the #defines before including png.h
*
* Use macros to read integers from PNG data or use the exported
* functions?
* PNG_USE_READ_MACROS: use the macros (see below) Note that
* the macros evaluate their argument multiple times.
* PNG_NO_USE_READ_MACROS: call the relevant library function.
*
* Use the alternative algorithm for compositing alpha samples that
* does not use division?
* PNG_READ_COMPOSITE_NODIV_SUPPORTED: use the 'no division'
* algorithm.
* PNG_NO_READ_COMPOSITE_NODIV: use the 'division' algorithm.
*
* How to handle benign errors if PNG_ALLOW_BENIGN_ERRORS is
* false?
* PNG_ALLOW_BENIGN_ERRORS: map calls to the benign error
* APIs to png_warning.
* Otherwise the calls are mapped to png_error.
*/
 
/* Section 2: type definitions, including structures and compile time
* constants.
* See pngconf.h for base types that vary by machine/system
*/
 
/* This triggers a compiler error in png.c, if png.c and png.h
* do not agree upon the version number.
*/
typedef char* png_libpng_version_1_5_1;
 
/* Three color definitions. The order of the red, green, and blue, (and the
* exact size) is not important, although the size of the fields need to
* be png_byte or png_uint_16 (as defined below).
*/
typedef struct png_color_struct
{
png_byte red;
png_byte green;
png_byte blue;
} png_color;
typedef png_color FAR * png_colorp;
typedef PNG_CONST png_color FAR * png_const_colorp;
typedef png_color FAR * FAR * png_colorpp;
 
typedef struct png_color_16_struct
{
png_byte index; /* used for palette files */
png_uint_16 red; /* for use in red green blue files */
png_uint_16 green;
png_uint_16 blue;
png_uint_16 gray; /* for use in grayscale files */
} png_color_16;
typedef png_color_16 FAR * png_color_16p;
typedef PNG_CONST png_color_16 FAR * png_const_color_16p;
typedef png_color_16 FAR * FAR * png_color_16pp;
 
typedef struct png_color_8_struct
{
png_byte red; /* for use in red green blue files */
png_byte green;
png_byte blue;
png_byte gray; /* for use in grayscale files */
png_byte alpha; /* for alpha channel files */
} png_color_8;
typedef png_color_8 FAR * png_color_8p;
typedef PNG_CONST png_color_8 FAR * png_const_color_8p;
typedef png_color_8 FAR * FAR * png_color_8pp;
 
/*
* The following two structures are used for the in-core representation
* of sPLT chunks.
*/
typedef struct png_sPLT_entry_struct
{
png_uint_16 red;
png_uint_16 green;
png_uint_16 blue;
png_uint_16 alpha;
png_uint_16 frequency;
} png_sPLT_entry;
typedef png_sPLT_entry FAR * png_sPLT_entryp;
typedef PNG_CONST png_sPLT_entry FAR * png_const_sPLT_entryp;
typedef png_sPLT_entry FAR * FAR * png_sPLT_entrypp;
 
/* When the depth of the sPLT palette is 8 bits, the color and alpha samples
* occupy the LSB of their respective members, and the MSB of each member
* is zero-filled. The frequency member always occupies the full 16 bits.
*/
 
typedef struct png_sPLT_struct
{
png_charp name; /* palette name */
png_byte depth; /* depth of palette samples */
png_sPLT_entryp entries; /* palette entries */
png_int_32 nentries; /* number of palette entries */
} png_sPLT_t;
typedef png_sPLT_t FAR * png_sPLT_tp;
typedef PNG_CONST png_sPLT_t FAR * png_const_sPLT_tp;
typedef png_sPLT_t FAR * FAR * png_sPLT_tpp;
 
#ifdef PNG_TEXT_SUPPORTED
/* png_text holds the contents of a text/ztxt/itxt chunk in a PNG file,
* and whether that contents is compressed or not. The "key" field
* points to a regular zero-terminated C string. The "text", "lang", and
* "lang_key" fields can be regular C strings, empty strings, or NULL pointers.
* However, the * structure returned by png_get_text() will always contain
* regular zero-terminated C strings (possibly empty), never NULL pointers,
* so they can be safely used in printf() and other string-handling functions.
*/
typedef struct png_text_struct
{
int compression; /* compression value:
-1: tEXt, none
0: zTXt, deflate
1: iTXt, none
2: iTXt, deflate */
png_charp key; /* keyword, 1-79 character description of "text" */
png_charp text; /* comment, may be an empty string (ie "")
or a NULL pointer */
png_size_t text_length; /* length of the text string */
png_size_t itxt_length; /* length of the itxt string */
png_charp lang; /* language code, 0-79 characters
or a NULL pointer */
png_charp lang_key; /* keyword translated UTF-8 string, 0 or more
chars or a NULL pointer */
} png_text;
typedef png_text FAR * png_textp;
typedef PNG_CONST png_text FAR * png_const_textp;
typedef png_text FAR * FAR * png_textpp;
#endif
 
/* Supported compression types for text in PNG files (tEXt, and zTXt).
* The values of the PNG_TEXT_COMPRESSION_ defines should NOT be changed. */
#define PNG_TEXT_COMPRESSION_NONE_WR -3
#define PNG_TEXT_COMPRESSION_zTXt_WR -2
#define PNG_TEXT_COMPRESSION_NONE -1
#define PNG_TEXT_COMPRESSION_zTXt 0
#define PNG_ITXT_COMPRESSION_NONE 1
#define PNG_ITXT_COMPRESSION_zTXt 2
#define PNG_TEXT_COMPRESSION_LAST 3 /* Not a valid value */
 
/* png_time is a way to hold the time in an machine independent way.
* Two conversions are provided, both from time_t and struct tm. There
* is no portable way to convert to either of these structures, as far
* as I know. If you know of a portable way, send it to me. As a side
* note - PNG has always been Year 2000 compliant!
*/
typedef struct png_time_struct
{
png_uint_16 year; /* full year, as in, 1995 */
png_byte month; /* month of year, 1 - 12 */
png_byte day; /* day of month, 1 - 31 */
png_byte hour; /* hour of day, 0 - 23 */
png_byte minute; /* minute of hour, 0 - 59 */
png_byte second; /* second of minute, 0 - 60 (for leap seconds) */
} png_time;
typedef png_time FAR * png_timep;
typedef PNG_CONST png_time FAR * png_const_timep;
typedef png_time FAR * FAR * png_timepp;
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) || \
defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
/* png_unknown_chunk is a structure to hold queued chunks for which there is
* no specific support. The idea is that we can use this to queue
* up private chunks for output even though the library doesn't actually
* know about their semantics.
*/
typedef struct png_unknown_chunk_t
{
png_byte name[5];
png_byte *data;
png_size_t size;
 
/* libpng-using applications should NOT directly modify this byte. */
png_byte location; /* mode of operation at read time */
}
png_unknown_chunk;
typedef png_unknown_chunk FAR * png_unknown_chunkp;
typedef PNG_CONST png_unknown_chunk FAR * png_const_unknown_chunkp;
typedef png_unknown_chunk FAR * FAR * png_unknown_chunkpp;
#endif
 
typedef struct png_info_def png_info;
typedef png_info FAR * png_infop;
typedef PNG_CONST png_info FAR * png_const_infop;
typedef png_info FAR * FAR * png_infopp;
 
/* Maximum positive integer used in PNG is (2^31)-1 */
#define PNG_UINT_31_MAX ((png_uint_32)0x7fffffffL)
#define PNG_UINT_32_MAX ((png_uint_32)(-1))
#define PNG_SIZE_MAX ((png_size_t)(-1))
 
/* These are constants for fixed point values encoded in the
* PNG specification manner (x100000)
*/
#define PNG_FP_1 100000
#define PNG_FP_HALF 50000
 
/* These describe the color_type field in png_info. */
/* color type masks */
#define PNG_COLOR_MASK_PALETTE 1
#define PNG_COLOR_MASK_COLOR 2
#define PNG_COLOR_MASK_ALPHA 4
 
/* color types. Note that not all combinations are legal */
#define PNG_COLOR_TYPE_GRAY 0
#define PNG_COLOR_TYPE_PALETTE (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_PALETTE)
#define PNG_COLOR_TYPE_RGB (PNG_COLOR_MASK_COLOR)
#define PNG_COLOR_TYPE_RGB_ALPHA (PNG_COLOR_MASK_COLOR | PNG_COLOR_MASK_ALPHA)
#define PNG_COLOR_TYPE_GRAY_ALPHA (PNG_COLOR_MASK_ALPHA)
/* aliases */
#define PNG_COLOR_TYPE_RGBA PNG_COLOR_TYPE_RGB_ALPHA
#define PNG_COLOR_TYPE_GA PNG_COLOR_TYPE_GRAY_ALPHA
 
/* This is for compression type. PNG 1.0-1.2 only define the single type. */
#define PNG_COMPRESSION_TYPE_BASE 0 /* Deflate method 8, 32K window */
#define PNG_COMPRESSION_TYPE_DEFAULT PNG_COMPRESSION_TYPE_BASE
 
/* This is for filter type. PNG 1.0-1.2 only define the single type. */
#define PNG_FILTER_TYPE_BASE 0 /* Single row per-byte filtering */
#define PNG_INTRAPIXEL_DIFFERENCING 64 /* Used only in MNG datastreams */
#define PNG_FILTER_TYPE_DEFAULT PNG_FILTER_TYPE_BASE
 
/* These are for the interlacing type. These values should NOT be changed. */
#define PNG_INTERLACE_NONE 0 /* Non-interlaced image */
#define PNG_INTERLACE_ADAM7 1 /* Adam7 interlacing */
#define PNG_INTERLACE_LAST 2 /* Not a valid value */
 
/* These are for the oFFs chunk. These values should NOT be changed. */
#define PNG_OFFSET_PIXEL 0 /* Offset in pixels */
#define PNG_OFFSET_MICROMETER 1 /* Offset in micrometers (1/10^6 meter) */
#define PNG_OFFSET_LAST 2 /* Not a valid value */
 
/* These are for the pCAL chunk. These values should NOT be changed. */
#define PNG_EQUATION_LINEAR 0 /* Linear transformation */
#define PNG_EQUATION_BASE_E 1 /* Exponential base e transform */
#define PNG_EQUATION_ARBITRARY 2 /* Arbitrary base exponential transform */
#define PNG_EQUATION_HYPERBOLIC 3 /* Hyperbolic sine transformation */
#define PNG_EQUATION_LAST 4 /* Not a valid value */
 
/* These are for the sCAL chunk. These values should NOT be changed. */
#define PNG_SCALE_UNKNOWN 0 /* unknown unit (image scale) */
#define PNG_SCALE_METER 1 /* meters per pixel */
#define PNG_SCALE_RADIAN 2 /* radians per pixel */
#define PNG_SCALE_LAST 3 /* Not a valid value */
 
/* These are for the pHYs chunk. These values should NOT be changed. */
#define PNG_RESOLUTION_UNKNOWN 0 /* pixels/unknown unit (aspect ratio) */
#define PNG_RESOLUTION_METER 1 /* pixels/meter */
#define PNG_RESOLUTION_LAST 2 /* Not a valid value */
 
/* These are for the sRGB chunk. These values should NOT be changed. */
#define PNG_sRGB_INTENT_PERCEPTUAL 0
#define PNG_sRGB_INTENT_RELATIVE 1
#define PNG_sRGB_INTENT_SATURATION 2
#define PNG_sRGB_INTENT_ABSOLUTE 3
#define PNG_sRGB_INTENT_LAST 4 /* Not a valid value */
 
/* This is for text chunks */
#define PNG_KEYWORD_MAX_LENGTH 79
 
/* Maximum number of entries in PLTE/sPLT/tRNS arrays */
#define PNG_MAX_PALETTE_LENGTH 256
 
/* These determine if an ancillary chunk's data has been successfully read
* from the PNG header, or if the application has filled in the corresponding
* data in the info_struct to be written into the output file. The values
* of the PNG_INFO_<chunk> defines should NOT be changed.
*/
#define PNG_INFO_gAMA 0x0001
#define PNG_INFO_sBIT 0x0002
#define PNG_INFO_cHRM 0x0004
#define PNG_INFO_PLTE 0x0008
#define PNG_INFO_tRNS 0x0010
#define PNG_INFO_bKGD 0x0020
#define PNG_INFO_hIST 0x0040
#define PNG_INFO_pHYs 0x0080
#define PNG_INFO_oFFs 0x0100
#define PNG_INFO_tIME 0x0200
#define PNG_INFO_pCAL 0x0400
#define PNG_INFO_sRGB 0x0800 /* GR-P, 0.96a */
#define PNG_INFO_iCCP 0x1000 /* ESR, 1.0.6 */
#define PNG_INFO_sPLT 0x2000 /* ESR, 1.0.6 */
#define PNG_INFO_sCAL 0x4000 /* ESR, 1.0.6 */
#define PNG_INFO_IDAT 0x8000L /* ESR, 1.0.6 */
 
/* This is used for the transformation routines, as some of them
* change these values for the row. It also should enable using
* the routines for other purposes.
*/
typedef struct png_row_info_struct
{
png_uint_32 width; /* width of row */
png_size_t rowbytes; /* number of bytes in row */
png_byte color_type; /* color type of row */
png_byte bit_depth; /* bit depth of row */
png_byte channels; /* number of channels (1, 2, 3, or 4) */
png_byte pixel_depth; /* bits per pixel (depth * channels) */
} png_row_info;
 
typedef png_row_info FAR * png_row_infop;
typedef png_row_info FAR * FAR * png_row_infopp;
 
/* These are the function types for the I/O functions and for the functions
* that allow the user to override the default I/O functions with his or her
* own. The png_error_ptr type should match that of user-supplied warning
* and error functions, while the png_rw_ptr type should match that of the
* user read/write data functions. Note that the 'write' function must not
* modify the buffer it is passed. The 'read' function, on the other hand, is
* expected to return the read data in the buffer.
*/
typedef struct png_struct_def png_struct;
typedef PNG_CONST png_struct FAR * png_const_structp;
typedef png_struct FAR * png_structp;
 
typedef PNG_CALLBACK(void, *png_error_ptr, (png_structp, png_const_charp), );
typedef PNG_CALLBACK(void, *png_rw_ptr, (png_structp, png_bytep, png_size_t), );
typedef PNG_CALLBACK(void, *png_flush_ptr, (png_structp), );
typedef PNG_CALLBACK(void, *png_read_status_ptr, (png_structp, png_uint_32,
int), );
typedef PNG_CALLBACK(void, *png_write_status_ptr, (png_structp, png_uint_32,
int), );
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
typedef PNG_CALLBACK(void, *png_progressive_info_ptr,
(png_structp, png_infop), );
typedef PNG_CALLBACK(void, *png_progressive_end_ptr,
(png_structp, png_infop), );
typedef PNG_CALLBACK(void, *png_progressive_row_ptr,
(png_structp, png_bytep, png_uint_32, int), );
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
typedef PNG_CALLBACK(void, *png_user_transform_ptr,
(png_structp, png_row_infop, png_bytep), );
#endif
 
#ifdef PNG_USER_CHUNKS_SUPPORTED
typedef PNG_CALLBACK(int, *png_user_chunk_ptr, (png_structp,
png_unknown_chunkp), );
#endif
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
typedef PNG_CALLBACK(void, *png_unknown_chunk_ptr, (png_structp), );
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* This must match the function definition in <setjmp.h>, and the
* application must include this before png.h to obtain the definition
* of jmp_buf. The function is required to be PNG_NORETURN. (Note that
* PNG_PTR_NORETURN is used here because current versions of the Microsoft
* C compiler do not support the PNG_NORETURN attribute on a pointer.)
*
* If you get a type warning from the compiler when linking against this line
* then your compiler has 'longjmp' that does not match the requirements of the
* compiler that built libpng. You will have to write a wrapper function for
* your compiler's longjmp and call png_set_longjmp_fn directly (not via the
* png_jmpbuf macro.)
*
* If you get a warning here while building the library you will need to make
* changes to ensure that pnglibconf.h records the calling convention used by
* your compiler. This may be very difficult - try using a different compiler
* to build the library!
*/
typedef PNG_FUNCTION(void, (PNGCAPI *png_longjmp_ptr), PNGARG((jmp_buf, int)),
PNG_PTR_NORETURN);
#endif
 
/* Transform masks for the high-level interface */
#define PNG_TRANSFORM_IDENTITY 0x0000 /* read and write */
#define PNG_TRANSFORM_STRIP_16 0x0001 /* read only */
#define PNG_TRANSFORM_STRIP_ALPHA 0x0002 /* read only */
#define PNG_TRANSFORM_PACKING 0x0004 /* read and write */
#define PNG_TRANSFORM_PACKSWAP 0x0008 /* read and write */
#define PNG_TRANSFORM_EXPAND 0x0010 /* read only */
#define PNG_TRANSFORM_INVERT_MONO 0x0020 /* read and write */
#define PNG_TRANSFORM_SHIFT 0x0040 /* read and write */
#define PNG_TRANSFORM_BGR 0x0080 /* read and write */
#define PNG_TRANSFORM_SWAP_ALPHA 0x0100 /* read and write */
#define PNG_TRANSFORM_SWAP_ENDIAN 0x0200 /* read and write */
#define PNG_TRANSFORM_INVERT_ALPHA 0x0400 /* read and write */
#define PNG_TRANSFORM_STRIP_FILLER 0x0800 /* write only */
/* Added to libpng-1.2.34 */
#define PNG_TRANSFORM_STRIP_FILLER_BEFORE PNG_TRANSFORM_STRIP_FILLER
#define PNG_TRANSFORM_STRIP_FILLER_AFTER 0x1000 /* write only */
/* Added to libpng-1.4.0 */
#define PNG_TRANSFORM_GRAY_TO_RGB 0x2000 /* read only */
 
/* Flags for MNG supported features */
#define PNG_FLAG_MNG_EMPTY_PLTE 0x01
#define PNG_FLAG_MNG_FILTER_64 0x04
#define PNG_ALL_MNG_FEATURES 0x05
 
/* NOTE: prior to 1.5 these functions had no 'API' style declaration,
* this allowed the zlib default functions to be used on Windows
* platforms. In 1.5 the zlib default malloc (which just calls malloc and
* ignores the first argument) should be completely compatible with the
* following.
*/
typedef PNG_CALLBACK(png_voidp, *png_malloc_ptr, (png_structp,
png_alloc_size_t), );
typedef PNG_CALLBACK(void, *png_free_ptr, (png_structp, png_voidp), );
 
typedef png_struct FAR * FAR * png_structpp;
 
/* Section 3: exported functions
* Here are the function definitions most commonly used. This is not
* the place to find out how to use libpng. See libpng-manual.txt for the
* full explanation, see example.c for the summary. This just provides
* a simple one line description of the use of each function.
*
* The PNG_EXPORT() and PNG_EXPORTA() macros used below are defined in
* pngconf.h and in the *.dfn files in the scripts directory.
*
* PNG_EXPORT(ordinal, type, name, (args));
*
* ordinal: ordinal that is used while building
* *.def files. The ordinal value is only
* relevant when preprocessing png.h with
* the *.dfn files for building symbol table
* entries, and are removed by pngconf.h.
* type: return type of the function
* name: function name
* args: function arguments, with types
*
* When we wish to append attributes to a function prototype we use
* the PNG_EXPORTA() macro instead.
*
* PNG_EXPORTA(ordinal, type, name, (args), attributes);
*
* ordinal, type, name, and args: same as in PNG_EXPORT().
* attributes: function attributes
*/
 
/* Returns the version number of the library */
PNG_EXPORT(1, png_uint_32, png_access_version_number, (void));
 
/* Tell lib we have already handled the first <num_bytes> magic bytes.
* Handling more than 8 bytes from the beginning of the file is an error.
*/
PNG_EXPORT(2, void, png_set_sig_bytes, (png_structp png_ptr, int num_bytes));
 
/* Check sig[start] through sig[start + num_to_check - 1] to see if it's a
* PNG file. Returns zero if the supplied bytes match the 8-byte PNG
* signature, and non-zero otherwise. Having num_to_check == 0 or
* start > 7 will always fail (ie return non-zero).
*/
PNG_EXPORT(3, int, png_sig_cmp, (png_const_bytep sig, png_size_t start,
png_size_t num_to_check));
 
/* Simple signature checking function. This is the same as calling
* png_check_sig(sig, n) := !png_sig_cmp(sig, 0, n).
*/
#define png_check_sig(sig, n) !png_sig_cmp((sig), 0, (n))
 
/* Allocate and initialize png_ptr struct for reading, and any other memory. */
PNG_EXPORTA(4, png_structp, png_create_read_struct,
(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn),
PNG_ALLOCATED);
 
/* Allocate and initialize png_ptr struct for writing, and any other memory */
PNG_EXPORTA(5, png_structp, png_create_write_struct,
(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warn_fn),
PNG_ALLOCATED);
 
PNG_EXPORT(6, png_size_t, png_get_compression_buffer_size,
(png_const_structp png_ptr));
 
PNG_EXPORT(7, void, png_set_compression_buffer_size, (png_structp png_ptr,
png_size_t size));
 
/* Moved from pngconf.h in 1.4.0 and modified to ensure setjmp/longjmp
* match up.
*/
#ifdef PNG_SETJMP_SUPPORTED
/* This function returns the jmp_buf built in to *png_ptr. It must be
* supplied with an appropriate 'longjmp' function to use on that jmp_buf
* unless the default error function is overridden in which case NULL is
* acceptable. The size of the jmp_buf is checked against the actual size
* allocated by the library - the call will return NULL on a mismatch
* indicating an ABI mismatch.
*/
PNG_EXPORT(8, jmp_buf*, png_set_longjmp_fn, (png_structp png_ptr,
png_longjmp_ptr longjmp_fn, size_t jmp_buf_size));
# define png_jmpbuf(png_ptr) \
(*png_set_longjmp_fn((png_ptr), longjmp, sizeof (jmp_buf)))
#else
# define png_jmpbuf(png_ptr) \
(LIBPNG_WAS_COMPILED_WITH__PNG_NO_SETJMP)
#endif
/* This function should be used by libpng applications in place of
* longjmp(png_ptr->jmpbuf, val). If longjmp_fn() has been set, it
* will use it; otherwise it will call PNG_ABORT(). This function was
* added in libpng-1.5.0.
*/
PNG_EXPORTA(9, void, png_longjmp, (png_structp png_ptr, int val),
PNG_NORETURN);
 
#ifdef PNG_READ_SUPPORTED
/* Reset the compression stream */
PNG_EXPORT(10, int, png_reset_zstream, (png_structp png_ptr));
#endif
 
/* New functions added in libpng-1.0.2 (not enabled by default until 1.2.0) */
#ifdef PNG_USER_MEM_SUPPORTED
PNG_EXPORTA(11, png_structp, png_create_read_struct_2,
(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warn_fn,
png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn),
PNG_ALLOCATED);
PNG_EXPORTA(12, png_structp, png_create_write_struct_2,
(png_const_charp user_png_ver, png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warn_fn,
png_voidp mem_ptr, png_malloc_ptr malloc_fn, png_free_ptr free_fn),
PNG_ALLOCATED);
#endif
 
/* Write the PNG file signature. */
PNG_EXPORT(13, void, png_write_sig, (png_structp png_ptr));
 
/* Write a PNG chunk - size, type, (optional) data, CRC. */
PNG_EXPORT(14, void, png_write_chunk, (png_structp png_ptr, png_const_bytep
chunk_name, png_const_bytep data, png_size_t length));
 
/* Write the start of a PNG chunk - length and chunk name. */
PNG_EXPORT(15, void, png_write_chunk_start, (png_structp png_ptr,
png_const_bytep chunk_name, png_uint_32 length));
 
/* Write the data of a PNG chunk started with png_write_chunk_start(). */
PNG_EXPORT(16, void, png_write_chunk_data, (png_structp png_ptr,
png_const_bytep data, png_size_t length));
 
/* Finish a chunk started with png_write_chunk_start() (includes CRC). */
PNG_EXPORT(17, void, png_write_chunk_end, (png_structp png_ptr));
 
/* Allocate and initialize the info structure */
PNG_EXPORTA(18, png_infop, png_create_info_struct, (png_structp png_ptr),
PNG_ALLOCATED);
 
PNG_EXPORT(19, void, png_info_init_3, (png_infopp info_ptr,
png_size_t png_info_struct_size));
 
/* Writes all the PNG information before the image. */
PNG_EXPORT(20, void, png_write_info_before_PLTE,
(png_structp png_ptr, png_infop info_ptr));
PNG_EXPORT(21, void, png_write_info,
(png_structp png_ptr, png_infop info_ptr));
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the information before the actual image data. */
PNG_EXPORT(22, void, png_read_info,
(png_structp png_ptr, png_infop info_ptr));
#endif
 
#ifdef PNG_TIME_RFC1123_SUPPORTED
PNG_EXPORT(23, png_const_charp, png_convert_to_rfc1123,
(png_structp png_ptr,
png_const_timep ptime));
#endif
 
#ifdef PNG_CONVERT_tIME_SUPPORTED
/* Convert from a struct tm to png_time */
PNG_EXPORT(24, void, png_convert_from_struct_tm, (png_timep ptime,
PNG_CONST struct tm FAR * ttime));
 
/* Convert from time_t to png_time. Uses gmtime() */
PNG_EXPORT(25, void, png_convert_from_time_t,
(png_timep ptime, time_t ttime));
#endif /* PNG_CONVERT_tIME_SUPPORTED */
 
#ifdef PNG_READ_EXPAND_SUPPORTED
/* Expand data to 24-bit RGB, or 8-bit grayscale, with alpha if available. */
PNG_EXPORT(26, void, png_set_expand, (png_structp png_ptr));
PNG_EXPORT(27, void, png_set_expand_gray_1_2_4_to_8, (png_structp png_ptr));
PNG_EXPORT(28, void, png_set_palette_to_rgb, (png_structp png_ptr));
PNG_EXPORT(29, void, png_set_tRNS_to_alpha, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* Use blue, green, red order for pixels. */
PNG_EXPORT(30, void, png_set_bgr, (png_structp png_ptr));
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* Expand the grayscale to 24-bit RGB if necessary. */
PNG_EXPORT(31, void, png_set_gray_to_rgb, (png_structp png_ptr));
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
/* Reduce RGB to grayscale. */
PNG_FP_EXPORT(32, void, png_set_rgb_to_gray, (png_structp png_ptr,
int error_action, double red, double green));
PNG_FIXED_EXPORT(33, void, png_set_rgb_to_gray_fixed, (png_structp png_ptr,
int error_action, png_fixed_point red, png_fixed_point green));
 
PNG_EXPORT(34, png_byte, png_get_rgb_to_gray_status, (png_const_structp
png_ptr));
#endif
 
PNG_EXPORT(35, void, png_build_grayscale_palette, (int bit_depth,
png_colorp palette));
 
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
PNG_EXPORT(36, void, png_set_strip_alpha, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
PNG_EXPORT(37, void, png_set_swap_alpha, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
PNG_EXPORT(38, void, png_set_invert_alpha, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
/* Add a filler byte to 8-bit Gray or 24-bit RGB images. */
PNG_EXPORT(39, void, png_set_filler, (png_structp png_ptr, png_uint_32 filler,
int flags));
/* The values of the PNG_FILLER_ defines should NOT be changed */
# define PNG_FILLER_BEFORE 0
# define PNG_FILLER_AFTER 1
/* Add an alpha byte to 8-bit Gray or 24-bit RGB images. */
PNG_EXPORT(40, void, png_set_add_alpha,
(png_structp png_ptr, png_uint_32 filler,
int flags));
#endif /* PNG_READ_FILLER_SUPPORTED || PNG_WRITE_FILLER_SUPPORTED */
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* Swap bytes in 16-bit depth files. */
PNG_EXPORT(41, void, png_set_swap, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED)
/* Use 1 byte per pixel in 1, 2, or 4-bit depth files. */
PNG_EXPORT(42, void, png_set_packing, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED) || \
defined(PNG_WRITE_PACKSWAP_SUPPORTED)
/* Swap packing order of pixels in bytes. */
PNG_EXPORT(43, void, png_set_packswap, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
/* Converts files to legal bit depths. */
PNG_EXPORT(44, void, png_set_shift, (png_structp png_ptr, png_const_color_8p
true_bits));
#endif
 
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \
defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* Have the code handle the interlacing. Returns the number of passes.
* MUST be called before png_read_update_info or png_start_read_image,
* otherwise it will not have the desired effect. Note that it is still
* necessary to call png_read_row or png_read_rows png_get_image_height
* times for each pass.
*/
PNG_EXPORT(45, int, png_set_interlace_handling, (png_structp png_ptr));
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
/* Invert monochrome files */
PNG_EXPORT(46, void, png_set_invert_mono, (png_structp png_ptr));
#endif
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
/* Handle alpha and tRNS by replacing with a background color. */
PNG_FP_EXPORT(47, void, png_set_background, (png_structp png_ptr,
png_const_color_16p background_color, int background_gamma_code,
int need_expand, double background_gamma));
PNG_FIXED_EXPORT(215, void, png_set_background_fixed, (png_structp png_ptr,
png_const_color_16p background_color, int background_gamma_code,
int need_expand, png_fixed_point background_gamma));
#endif
#ifdef PNG_READ_BACKGROUND_SUPPORTED
# define PNG_BACKGROUND_GAMMA_UNKNOWN 0
# define PNG_BACKGROUND_GAMMA_SCREEN 1
# define PNG_BACKGROUND_GAMMA_FILE 2
# define PNG_BACKGROUND_GAMMA_UNIQUE 3
#endif
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
/* Strip the second byte of information from a 16-bit depth file. */
PNG_EXPORT(48, void, png_set_strip_16, (png_structp png_ptr));
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
/* Turn on quantizing, and reduce the palette to the number of colors
* available.
*/
PNG_EXPORT(49, void, png_set_quantize,
(png_structp png_ptr, png_colorp palette,
int num_palette, int maximum_colors, png_const_uint_16p histogram,
int full_quantize));
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
/* The threshold on gamma processing is configurable but hard-wired into the
* library. The following is the floating point variant.
*/
#define PNG_GAMMA_THRESHOLD (PNG_GAMMA_THRESHOLD_FIXED*.00001)
 
/* Handle gamma correction. Screen_gamma=(display_exponent) */
PNG_FP_EXPORT(50, void, png_set_gamma,
(png_structp png_ptr, double screen_gamma,
double default_file_gamma));
PNG_FIXED_EXPORT(208, void, png_set_gamma_fixed, (png_structp png_ptr,
png_fixed_point screen_gamma, png_fixed_point default_file_gamma));
#endif
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
/* Set how many lines between output flushes - 0 for no flushing */
PNG_EXPORT(51, void, png_set_flush, (png_structp png_ptr, int nrows));
/* Flush the current PNG output buffer */
PNG_EXPORT(52, void, png_write_flush, (png_structp png_ptr));
#endif
 
/* Optional update palette with requested transformations */
PNG_EXPORT(53, void, png_start_read_image, (png_structp png_ptr));
 
/* Optional call to update the users info structure */
PNG_EXPORT(54, void, png_read_update_info,
(png_structp png_ptr, png_infop info_ptr));
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read one or more rows of image data. */
PNG_EXPORT(55, void, png_read_rows, (png_structp png_ptr, png_bytepp row,
png_bytepp display_row, png_uint_32 num_rows));
#endif
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read a row of data. */
PNG_EXPORT(56, void, png_read_row, (png_structp png_ptr, png_bytep row,
png_bytep display_row));
#endif
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the whole image into memory at once. */
PNG_EXPORT(57, void, png_read_image, (png_structp png_ptr, png_bytepp image));
#endif
 
/* Write a row of image data */
PNG_EXPORT(58, void, png_write_row,
(png_structp png_ptr, png_const_bytep row));
 
/* Write a few rows of image data: (*row) is not written; however, the type
* is declared as writeable to maintain compatibility with previous versions
* of libpng and to allow the 'display_row' array from read_rows to be passed
* unchanged to write_rows.
*/
PNG_EXPORT(59, void, png_write_rows, (png_structp png_ptr, png_bytepp row,
png_uint_32 num_rows));
 
/* Write the image data */
PNG_EXPORT(60, void, png_write_image,
(png_structp png_ptr, png_bytepp image));
 
/* Write the end of the PNG file. */
PNG_EXPORT(61, void, png_write_end,
(png_structp png_ptr, png_infop info_ptr));
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the end of the PNG file. */
PNG_EXPORT(62, void, png_read_end, (png_structp png_ptr, png_infop info_ptr));
#endif
 
/* Free any memory associated with the png_info_struct */
PNG_EXPORT(63, void, png_destroy_info_struct, (png_structp png_ptr,
png_infopp info_ptr_ptr));
 
/* Free any memory associated with the png_struct and the png_info_structs */
PNG_EXPORT(64, void, png_destroy_read_struct, (png_structpp png_ptr_ptr,
png_infopp info_ptr_ptr, png_infopp end_info_ptr_ptr));
 
/* Free any memory associated with the png_struct and the png_info_structs */
PNG_EXPORT(65, void, png_destroy_write_struct, (png_structpp png_ptr_ptr,
png_infopp info_ptr_ptr));
 
/* Set the libpng method of handling chunk CRC errors */
PNG_EXPORT(66, void, png_set_crc_action,
(png_structp png_ptr, int crit_action, int ancil_action));
 
/* Values for png_set_crc_action() say how to handle CRC errors in
* ancillary and critical chunks, and whether to use the data contained
* therein. Note that it is impossible to "discard" data in a critical
* chunk. For versions prior to 0.90, the action was always error/quit,
* whereas in version 0.90 and later, the action for CRC errors in ancillary
* chunks is warn/discard. These values should NOT be changed.
*
* value action:critical action:ancillary
*/
#define PNG_CRC_DEFAULT 0 /* error/quit warn/discard data */
#define PNG_CRC_ERROR_QUIT 1 /* error/quit error/quit */
#define PNG_CRC_WARN_DISCARD 2 /* (INVALID) warn/discard data */
#define PNG_CRC_WARN_USE 3 /* warn/use data warn/use data */
#define PNG_CRC_QUIET_USE 4 /* quiet/use data quiet/use data */
#define PNG_CRC_NO_CHANGE 5 /* use current value use current value */
 
/* These functions give the user control over the scan-line filtering in
* libpng and the compression methods used by zlib. These functions are
* mainly useful for testing, as the defaults should work with most users.
* Those users who are tight on memory or want faster performance at the
* expense of compression can modify them. See the compression library
* header file (zlib.h) for an explination of the compression functions.
*/
 
/* Set the filtering method(s) used by libpng. Currently, the only valid
* value for "method" is 0.
*/
PNG_EXPORT(67, void, png_set_filter,
(png_structp png_ptr, int method, int filters));
 
/* Flags for png_set_filter() to say which filters to use. The flags
* are chosen so that they don't conflict with real filter types
* below, in case they are supplied instead of the #defined constants.
* These values should NOT be changed.
*/
#define PNG_NO_FILTERS 0x00
#define PNG_FILTER_NONE 0x08
#define PNG_FILTER_SUB 0x10
#define PNG_FILTER_UP 0x20
#define PNG_FILTER_AVG 0x40
#define PNG_FILTER_PAETH 0x80
#define PNG_ALL_FILTERS (PNG_FILTER_NONE | PNG_FILTER_SUB | PNG_FILTER_UP | \
PNG_FILTER_AVG | PNG_FILTER_PAETH)
 
/* Filter values (not flags) - used in pngwrite.c, pngwutil.c for now.
* These defines should NOT be changed.
*/
#define PNG_FILTER_VALUE_NONE 0
#define PNG_FILTER_VALUE_SUB 1
#define PNG_FILTER_VALUE_UP 2
#define PNG_FILTER_VALUE_AVG 3
#define PNG_FILTER_VALUE_PAETH 4
#define PNG_FILTER_VALUE_LAST 5
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED /* EXPERIMENTAL */
/* The "heuristic_method" is given by one of the PNG_FILTER_HEURISTIC_
* defines, either the default (minimum-sum-of-absolute-differences), or
* the experimental method (weighted-minimum-sum-of-absolute-differences).
*
* Weights are factors >= 1.0, indicating how important it is to keep the
* filter type consistent between rows. Larger numbers mean the current
* filter is that many times as likely to be the same as the "num_weights"
* previous filters. This is cumulative for each previous row with a weight.
* There needs to be "num_weights" values in "filter_weights", or it can be
* NULL if the weights aren't being specified. Weights have no influence on
* the selection of the first row filter. Well chosen weights can (in theory)
* improve the compression for a given image.
*
* Costs are factors >= 1.0 indicating the relative decoding costs of a
* filter type. Higher costs indicate more decoding expense, and are
* therefore less likely to be selected over a filter with lower computational
* costs. There needs to be a value in "filter_costs" for each valid filter
* type (given by PNG_FILTER_VALUE_LAST), or it can be NULL if you aren't
* setting the costs. Costs try to improve the speed of decompression without
* unduly increasing the compressed image size.
*
* A negative weight or cost indicates the default value is to be used, and
* values in the range [0.0, 1.0) indicate the value is to remain unchanged.
* The default values for both weights and costs are currently 1.0, but may
* change if good general weighting/cost heuristics can be found. If both
* the weights and costs are set to 1.0, this degenerates the WEIGHTED method
* to the UNWEIGHTED method, but with added encoding time/computation.
*/
PNG_FP_EXPORT(68, void, png_set_filter_heuristics, (png_structp png_ptr,
int heuristic_method, int num_weights, png_const_doublep filter_weights,
png_const_doublep filter_costs));
PNG_FIXED_EXPORT(209, void, png_set_filter_heuristics_fixed,
(png_structp png_ptr,
int heuristic_method, int num_weights, png_const_fixed_point_p
filter_weights, png_const_fixed_point_p filter_costs));
#endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */
 
/* Heuristic used for row filter selection. These defines should NOT be
* changed.
*/
#define PNG_FILTER_HEURISTIC_DEFAULT 0 /* Currently "UNWEIGHTED" */
#define PNG_FILTER_HEURISTIC_UNWEIGHTED 1 /* Used by libpng < 0.95 */
#define PNG_FILTER_HEURISTIC_WEIGHTED 2 /* Experimental feature */
#define PNG_FILTER_HEURISTIC_LAST 3 /* Not a valid value */
 
/* Set the library compression level. Currently, valid values range from
* 0 - 9, corresponding directly to the zlib compression levels 0 - 9
* (0 - no compression, 9 - "maximal" compression). Note that tests have
* shown that zlib compression levels 3-6 usually perform as well as level 9
* for PNG images, and do considerably fewer caclulations. In the future,
* these values may not correspond directly to the zlib compression levels.
*/
PNG_EXPORT(69, void, png_set_compression_level,
(png_structp png_ptr, int level));
 
PNG_EXPORT(70, void, png_set_compression_mem_level, (png_structp png_ptr,
int mem_level));
 
PNG_EXPORT(71, void, png_set_compression_strategy, (png_structp png_ptr,
int strategy));
 
PNG_EXPORT(72, void, png_set_compression_window_bits, (png_structp png_ptr,
int window_bits));
 
PNG_EXPORT(73, void, png_set_compression_method, (png_structp png_ptr,
int method));
 
/* These next functions are called for input/output, memory, and error
* handling. They are in the file pngrio.c, pngwio.c, and pngerror.c,
* and call standard C I/O routines such as fread(), fwrite(), and
* fprintf(). These functions can be made to use other I/O routines
* at run time for those applications that need to handle I/O in a
* different manner by calling png_set_???_fn(). See libpng-manual.txt for
* more information.
*/
 
#ifdef PNG_STDIO_SUPPORTED
/* Initialize the input/output for the PNG file to the default functions. */
PNG_EXPORT(74, void, png_init_io, (png_structp png_ptr, png_FILE_p fp));
#endif
 
/* Replace the (error and abort), and warning functions with user
* supplied functions. If no messages are to be printed you must still
* write and use replacement functions. The replacement error_fn should
* still do a longjmp to the last setjmp location if you are using this
* method of error handling. If error_fn or warning_fn is NULL, the
* default function will be used.
*/
 
PNG_EXPORT(75, void, png_set_error_fn,
(png_structp png_ptr, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warning_fn));
 
/* Return the user pointer associated with the error functions */
PNG_EXPORT(76, png_voidp, png_get_error_ptr, (png_const_structp png_ptr));
 
/* Replace the default data output functions with a user supplied one(s).
* If buffered output is not used, then output_flush_fn can be set to NULL.
* If PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile time
* output_flush_fn will be ignored (and thus can be NULL).
* It is probably a mistake to use NULL for output_flush_fn if
* write_data_fn is not also NULL unless you have built libpng with
* PNG_WRITE_FLUSH_SUPPORTED undefined, because in this case libpng's
* default flush function, which uses the standard *FILE structure, will
* be used.
*/
PNG_EXPORT(77, void, png_set_write_fn, (png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn));
 
/* Replace the default data input function with a user supplied one. */
PNG_EXPORT(78, void, png_set_read_fn, (png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr read_data_fn));
 
/* Return the user pointer associated with the I/O functions */
PNG_EXPORT(79, png_voidp, png_get_io_ptr, (png_structp png_ptr));
 
PNG_EXPORT(80, void, png_set_read_status_fn, (png_structp png_ptr,
png_read_status_ptr read_row_fn));
 
PNG_EXPORT(81, void, png_set_write_status_fn, (png_structp png_ptr,
png_write_status_ptr write_row_fn));
 
#ifdef PNG_USER_MEM_SUPPORTED
/* Replace the default memory allocation functions with user supplied one(s). */
PNG_EXPORT(82, void, png_set_mem_fn, (png_structp png_ptr, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn));
/* Return the user pointer associated with the memory functions */
PNG_EXPORT(83, png_voidp, png_get_mem_ptr, (png_const_structp png_ptr));
#endif
 
#ifdef PNG_READ_USER_TRANSFORM_SUPPORTED
PNG_EXPORT(84, void, png_set_read_user_transform_fn, (png_structp png_ptr,
png_user_transform_ptr read_user_transform_fn));
#endif
 
#ifdef PNG_WRITE_USER_TRANSFORM_SUPPORTED
PNG_EXPORT(85, void, png_set_write_user_transform_fn, (png_structp png_ptr,
png_user_transform_ptr write_user_transform_fn));
#endif
 
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED
PNG_EXPORT(86, void, png_set_user_transform_info, (png_structp png_ptr,
png_voidp user_transform_ptr, int user_transform_depth,
int user_transform_channels));
/* Return the user pointer associated with the user transform functions */
PNG_EXPORT(87, png_voidp, png_get_user_transform_ptr,
(png_const_structp png_ptr));
#endif
 
#ifdef PNG_USER_TRANSFORM_INFO_SUPPORTED
/* Return information about the row currently being processed. Note that these
* APIs do not fail but will return unexpected results if called outside a user
* transform callback. Also note that when transforming an interlaced image the
* row number is still the row in the final, de-interlaced, image but the row
* only contains the data of the current pass - consult png_row_info for the
* actual width of the row!
*/
PNG_EXPORT(217, png_uint_32, png_get_current_row_number, (png_const_structp));
PNG_EXPORT(218, png_byte, png_get_current_pass_number, (png_const_structp));
#endif
 
#ifdef PNG_USER_CHUNKS_SUPPORTED
PNG_EXPORT(88, void, png_set_read_user_chunk_fn, (png_structp png_ptr,
png_voidp user_chunk_ptr, png_user_chunk_ptr read_user_chunk_fn));
PNG_EXPORT(89, png_voidp, png_get_user_chunk_ptr, (png_const_structp png_ptr));
#endif
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
/* Sets the function callbacks for the push reader, and a pointer to a
* user-defined structure available to the callback functions.
*/
PNG_EXPORT(90, void, png_set_progressive_read_fn, (png_structp png_ptr,
png_voidp progressive_ptr, png_progressive_info_ptr info_fn,
png_progressive_row_ptr row_fn, png_progressive_end_ptr end_fn));
 
/* Returns the user pointer associated with the push read functions */
PNG_EXPORT(91, png_voidp, png_get_progressive_ptr, (png_const_structp png_ptr));
 
/* Function to be called when data becomes available */
PNG_EXPORT(92, void, png_process_data,
(png_structp png_ptr, png_infop info_ptr,
png_bytep buffer, png_size_t buffer_size));
 
/* A function which may be called *only* within png_process_data to stop the
* processing of any more data. The function returns the number of bytes
* remaining, excluding any that libpng has cached internally. A subsequent
* call to png_process_data must supply these bytes again. If the argument
* 'save' is set to true the routine will first save all the pending data and
* will always return 0.
*/
PNG_EXPORT(219, png_size_t, png_process_data_pause, (png_structp, int save));
 
/* A function which may be called *only* outside (after) a call to
* png_process_data. It returns the number of bytes of data to skip in the
* input. Normally it will return 0, but if it returns a non-zero value the
* application must skip than number of bytes of input data and pass the
* following data to the next call to png_process_data.
*/
PNG_EXPORT(220, png_uint_32, png_process_data_skip, (png_structp));
 
/* Function that combines rows. 'new_row' is a flag that should come from
* the callback and be non-NULL if anything needs to be done; the library
* stores its own version of the new data internally and ignores the passed
* in value.
*/
PNG_EXPORT(93, void, png_progressive_combine_row, (png_structp png_ptr,
png_bytep old_row, png_const_bytep new_row));
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
PNG_EXPORTA(94, png_voidp, png_malloc,
(png_structp png_ptr, png_alloc_size_t size),
PNG_ALLOCATED);
/* Added at libpng version 1.4.0 */
PNG_EXPORTA(95, png_voidp, png_calloc,
(png_structp png_ptr, png_alloc_size_t size),
PNG_ALLOCATED);
 
/* Added at libpng version 1.2.4 */
PNG_EXPORTA(96, png_voidp, png_malloc_warn, (png_structp png_ptr,
png_alloc_size_t size), PNG_ALLOCATED);
 
/* Frees a pointer allocated by png_malloc() */
PNG_EXPORT(97, void, png_free, (png_structp png_ptr, png_voidp ptr));
 
/* Free data that was allocated internally */
PNG_EXPORT(98, void, png_free_data,
(png_structp png_ptr, png_infop info_ptr, png_uint_32 free_me, int num));
 
/* Reassign responsibility for freeing existing data, whether allocated
* by libpng or by the application */
PNG_EXPORT(99, void, png_data_freer,
(png_structp png_ptr, png_infop info_ptr, int freer, png_uint_32 mask));
 
/* Assignments for png_data_freer */
#define PNG_DESTROY_WILL_FREE_DATA 1
#define PNG_SET_WILL_FREE_DATA 1
#define PNG_USER_WILL_FREE_DATA 2
/* Flags for png_ptr->free_me and info_ptr->free_me */
#define PNG_FREE_HIST 0x0008
#define PNG_FREE_ICCP 0x0010
#define PNG_FREE_SPLT 0x0020
#define PNG_FREE_ROWS 0x0040
#define PNG_FREE_PCAL 0x0080
#define PNG_FREE_SCAL 0x0100
#define PNG_FREE_UNKN 0x0200
#define PNG_FREE_LIST 0x0400
#define PNG_FREE_PLTE 0x1000
#define PNG_FREE_TRNS 0x2000
#define PNG_FREE_TEXT 0x4000
#define PNG_FREE_ALL 0x7fff
#define PNG_FREE_MUL 0x4220 /* PNG_FREE_SPLT|PNG_FREE_TEXT|PNG_FREE_UNKN */
 
#ifdef PNG_USER_MEM_SUPPORTED
PNG_EXPORTA(100, png_voidp, png_malloc_default, (png_structp png_ptr,
png_alloc_size_t size), PNG_ALLOCATED);
PNG_EXPORT(101, void, png_free_default, (png_structp png_ptr, png_voidp ptr));
#endif
 
#ifdef PNG_ERROR_TEXT_SUPPORTED
/* Fatal error in PNG image of libpng - can't continue */
PNG_EXPORTA(102, void, png_error,
(png_structp png_ptr, png_const_charp error_message),
PNG_NORETURN);
 
/* The same, but the chunk name is prepended to the error string. */
PNG_EXPORTA(103, void, png_chunk_error, (png_structp png_ptr,
png_const_charp error_message), PNG_NORETURN);
 
#else
/* Fatal error in PNG image of libpng - can't continue */
PNG_EXPORTA(104, void, png_err, (png_structp png_ptr), PNG_NORETURN);
#endif
 
/* Non-fatal error in libpng. Can continue, but may have a problem. */
PNG_EXPORT(105, void, png_warning, (png_structp png_ptr,
png_const_charp warning_message));
 
/* Non-fatal error in libpng, chunk name is prepended to message. */
PNG_EXPORT(106, void, png_chunk_warning, (png_structp png_ptr,
png_const_charp warning_message));
 
#ifdef PNG_BENIGN_ERRORS_SUPPORTED
/* Benign error in libpng. Can continue, but may have a problem.
* User can choose whether to handle as a fatal error or as a warning. */
# undef png_benign_error
PNG_EXPORT(107, void, png_benign_error, (png_structp png_ptr,
png_const_charp warning_message));
 
/* Same, chunk name is prepended to message. */
# undef png_chunk_benign_error
PNG_EXPORT(108, void, png_chunk_benign_error, (png_structp png_ptr,
png_const_charp warning_message));
 
PNG_EXPORT(109, void, png_set_benign_errors,
(png_structp png_ptr, int allowed));
#else
# ifdef PNG_ALLOW_BENIGN_ERRORS
# define png_benign_error png_warning
# define png_chunk_benign_error png_chunk_warning
# else
# define png_benign_error png_error
# define png_chunk_benign_error png_chunk_error
# endif
#endif
 
/* The png_set_<chunk> functions are for storing values in the png_info_struct.
* Similarly, the png_get_<chunk> calls are used to read values from the
* png_info_struct, either storing the parameters in the passed variables, or
* setting pointers into the png_info_struct where the data is stored. The
* png_get_<chunk> functions return a non-zero value if the data was available
* in info_ptr, or return zero and do not change any of the parameters if the
* data was not available.
*
* These functions should be used instead of directly accessing png_info
* to avoid problems with future changes in the size and internal layout of
* png_info_struct.
*/
/* Returns "flag" if chunk data is valid in info_ptr. */
PNG_EXPORT(110, png_uint_32, png_get_valid,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 flag));
 
/* Returns number of bytes needed to hold a transformed row. */
PNG_EXPORT(111, png_size_t, png_get_rowbytes, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
/* Returns row_pointers, which is an array of pointers to scanlines that was
* returned from png_read_png().
*/
PNG_EXPORT(112, png_bytepp, png_get_rows,
(png_const_structp png_ptr, png_const_infop info_ptr));
/* Set row_pointers, which is an array of pointers to scanlines for use
* by png_write_png().
*/
PNG_EXPORT(113, void, png_set_rows, (png_structp png_ptr,
png_infop info_ptr, png_bytepp row_pointers));
#endif
 
/* Returns number of color channels in image. */
PNG_EXPORT(114, png_byte, png_get_channels,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
#ifdef PNG_EASY_ACCESS_SUPPORTED
/* Returns image width in pixels. */
PNG_EXPORT(115, png_uint_32, png_get_image_width, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image height in pixels. */
PNG_EXPORT(116, png_uint_32, png_get_image_height, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image bit_depth. */
PNG_EXPORT(117, png_byte, png_get_bit_depth,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
/* Returns image color_type. */
PNG_EXPORT(118, png_byte, png_get_color_type, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image filter_type. */
PNG_EXPORT(119, png_byte, png_get_filter_type, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image interlace_type. */
PNG_EXPORT(120, png_byte, png_get_interlace_type, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image compression_type. */
PNG_EXPORT(121, png_byte, png_get_compression_type, (png_const_structp png_ptr,
png_const_infop info_ptr));
 
/* Returns image resolution in pixels per meter, from pHYs chunk data. */
PNG_EXPORT(122, png_uint_32, png_get_pixels_per_meter,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_EXPORT(123, png_uint_32, png_get_x_pixels_per_meter,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_EXPORT(124, png_uint_32, png_get_y_pixels_per_meter,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
/* Returns pixel aspect ratio, computed from pHYs chunk data. */
PNG_FP_EXPORT(125, float, png_get_pixel_aspect_ratio,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_FIXED_EXPORT(210, png_fixed_point, png_get_pixel_aspect_ratio_fixed,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
/* Returns image x, y offset in pixels or microns, from oFFs chunk data. */
PNG_EXPORT(126, png_int_32, png_get_x_offset_pixels,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_EXPORT(127, png_int_32, png_get_y_offset_pixels,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_EXPORT(128, png_int_32, png_get_x_offset_microns,
(png_const_structp png_ptr, png_const_infop info_ptr));
PNG_EXPORT(129, png_int_32, png_get_y_offset_microns,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
#endif /* PNG_EASY_ACCESS_SUPPORTED */
 
/* Returns pointer to signature string read from PNG header */
PNG_EXPORT(130, png_const_bytep, png_get_signature,
(png_const_structp png_ptr, png_infop info_ptr));
 
#ifdef PNG_bKGD_SUPPORTED
PNG_EXPORT(131, png_uint_32, png_get_bKGD,
(png_const_structp png_ptr, png_infop info_ptr,
png_color_16p *background));
#endif
 
#ifdef PNG_bKGD_SUPPORTED
PNG_EXPORT(132, void, png_set_bKGD, (png_structp png_ptr, png_infop info_ptr,
png_const_color_16p background));
#endif
 
#ifdef PNG_cHRM_SUPPORTED
PNG_FP_EXPORT(133, png_uint_32, png_get_cHRM, (png_const_structp png_ptr,
png_const_infop info_ptr, double *white_x, double *white_y, double *red_x,
double *red_y, double *green_x, double *green_y, double *blue_x,
double *blue_y));
#ifdef PNG_FIXED_POINT_SUPPORTED /* Otherwise not implemented */
PNG_FIXED_EXPORT(134, png_uint_32, png_get_cHRM_fixed,
(png_const_structp png_ptr,
png_const_infop info_ptr, png_fixed_point *int_white_x,
png_fixed_point *int_white_y, png_fixed_point *int_red_x,
png_fixed_point *int_red_y, png_fixed_point *int_green_x,
png_fixed_point *int_green_y, png_fixed_point *int_blue_x,
png_fixed_point *int_blue_y));
#endif
#endif
 
#ifdef PNG_cHRM_SUPPORTED
PNG_FP_EXPORT(135, void, png_set_cHRM,
(png_structp png_ptr, png_infop info_ptr,
double white_x, double white_y, double red_x, double red_y, double green_x,
double green_y, double blue_x, double blue_y));
PNG_FIXED_EXPORT(136, void, png_set_cHRM_fixed, (png_structp png_ptr,
png_infop info_ptr, png_fixed_point int_white_x,
png_fixed_point int_white_y, png_fixed_point int_red_x,
png_fixed_point int_red_y, png_fixed_point int_green_x,
png_fixed_point int_green_y, png_fixed_point int_blue_x,
png_fixed_point int_blue_y));
#endif
 
#ifdef PNG_gAMA_SUPPORTED
PNG_FP_EXPORT(137, png_uint_32, png_get_gAMA,
(png_const_structp png_ptr, png_const_infop info_ptr,
double *file_gamma));
PNG_FIXED_EXPORT(138, png_uint_32, png_get_gAMA_fixed,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_fixed_point *int_file_gamma));
#endif
 
#ifdef PNG_gAMA_SUPPORTED
PNG_FP_EXPORT(139, void, png_set_gAMA, (png_structp png_ptr,
png_infop info_ptr, double file_gamma));
PNG_FIXED_EXPORT(140, void, png_set_gAMA_fixed, (png_structp png_ptr,
png_infop info_ptr, png_fixed_point int_file_gamma));
#endif
 
#ifdef PNG_hIST_SUPPORTED
PNG_EXPORT(141, png_uint_32, png_get_hIST,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_16p *hist));
#endif
 
#ifdef PNG_hIST_SUPPORTED
PNG_EXPORT(142, void, png_set_hIST, (png_structp png_ptr,
png_infop info_ptr, png_const_uint_16p hist));
#endif
 
PNG_EXPORT(143, png_uint_32, png_get_IHDR,
(png_structp png_ptr, png_infop info_ptr,
png_uint_32 *width, png_uint_32 *height, int *bit_depth, int *color_type,
int *interlace_method, int *compression_method, int *filter_method));
 
PNG_EXPORT(144, void, png_set_IHDR,
(png_structp png_ptr, png_infop info_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth, int color_type,
int interlace_method, int compression_method, int filter_method));
 
#ifdef PNG_oFFs_SUPPORTED
PNG_EXPORT(145, png_uint_32, png_get_oFFs,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_int_32 *offset_x, png_int_32 *offset_y, int *unit_type));
#endif
 
#ifdef PNG_oFFs_SUPPORTED
PNG_EXPORT(146, void, png_set_oFFs,
(png_structp png_ptr, png_infop info_ptr,
png_int_32 offset_x, png_int_32 offset_y, int unit_type));
#endif
 
#ifdef PNG_pCAL_SUPPORTED
PNG_EXPORT(147, png_uint_32, png_get_pCAL,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_charp *purpose, png_int_32 *X0, png_int_32 *X1, int *type,
int *nparams,
png_charp *units, png_charpp *params));
#endif
 
#ifdef PNG_pCAL_SUPPORTED
PNG_EXPORT(148, void, png_set_pCAL, (png_structp png_ptr,
png_infop info_ptr,
png_const_charp purpose, png_int_32 X0, png_int_32 X1, int type,
int nparams, png_const_charp units, png_charpp params));
#endif
 
#ifdef PNG_pHYs_SUPPORTED
PNG_EXPORT(149, png_uint_32, png_get_pHYs,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type));
#endif
 
#ifdef PNG_pHYs_SUPPORTED
PNG_EXPORT(150, void, png_set_pHYs,
(png_structp png_ptr, png_infop info_ptr,
png_uint_32 res_x, png_uint_32 res_y, int unit_type));
#endif
 
PNG_EXPORT(151, png_uint_32, png_get_PLTE,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_colorp *palette, int *num_palette));
 
PNG_EXPORT(152, void, png_set_PLTE,
(png_structp png_ptr, png_infop info_ptr,
png_const_colorp palette, int num_palette));
 
#ifdef PNG_sBIT_SUPPORTED
PNG_EXPORT(153, png_uint_32, png_get_sBIT,
(png_const_structp png_ptr, png_infop info_ptr,
png_color_8p *sig_bit));
#endif
 
#ifdef PNG_sBIT_SUPPORTED
PNG_EXPORT(154, void, png_set_sBIT,
(png_structp png_ptr, png_infop info_ptr, png_const_color_8p sig_bit));
#endif
 
#ifdef PNG_sRGB_SUPPORTED
PNG_EXPORT(155, png_uint_32, png_get_sRGB, (png_const_structp png_ptr,
png_const_infop info_ptr, int *file_srgb_intent));
#endif
 
#ifdef PNG_sRGB_SUPPORTED
PNG_EXPORT(156, void, png_set_sRGB,
(png_structp png_ptr, png_infop info_ptr, int srgb_intent));
PNG_EXPORT(157, void, png_set_sRGB_gAMA_and_cHRM, (png_structp png_ptr,
png_infop info_ptr, int srgb_intent));
#endif
 
#ifdef PNG_iCCP_SUPPORTED
PNG_EXPORT(158, png_uint_32, png_get_iCCP,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_charpp name, int *compression_type, png_bytepp profile,
png_uint_32 *proflen));
#endif
 
#ifdef PNG_iCCP_SUPPORTED
PNG_EXPORT(159, void, png_set_iCCP,
(png_structp png_ptr, png_infop info_ptr,
png_const_charp name, int compression_type, png_const_bytep profile,
png_uint_32 proflen));
#endif
 
#ifdef PNG_sPLT_SUPPORTED
PNG_EXPORT(160, png_uint_32, png_get_sPLT,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_sPLT_tpp entries));
#endif
 
#ifdef PNG_sPLT_SUPPORTED
PNG_EXPORT(161, void, png_set_sPLT,
(png_structp png_ptr, png_infop info_ptr,
png_const_sPLT_tp entries, int nentries));
#endif
 
#ifdef PNG_TEXT_SUPPORTED
/* png_get_text also returns the number of text chunks in *num_text */
PNG_EXPORT(162, png_uint_32, png_get_text,
(png_const_structp png_ptr, png_const_infop info_ptr,
png_textp *text_ptr, int *num_text));
#endif
 
/* Note while png_set_text() will accept a structure whose text,
* language, and translated keywords are NULL pointers, the structure
* returned by png_get_text will always contain regular
* zero-terminated C strings. They might be empty strings but
* they will never be NULL pointers.
*/
 
#ifdef PNG_TEXT_SUPPORTED
PNG_EXPORT(163, void, png_set_text,
(png_structp png_ptr, png_infop info_ptr,
png_const_textp text_ptr, int num_text));
#endif
 
#ifdef PNG_tIME_SUPPORTED
PNG_EXPORT(164, png_uint_32, png_get_tIME,
(png_const_structp png_ptr, png_infop info_ptr, png_timep *mod_time));
#endif
 
#ifdef PNG_tIME_SUPPORTED
PNG_EXPORT(165, void, png_set_tIME,
(png_structp png_ptr, png_infop info_ptr, png_const_timep mod_time));
#endif
 
#ifdef PNG_tRNS_SUPPORTED
PNG_EXPORT(166, png_uint_32, png_get_tRNS,
(png_const_structp png_ptr, png_infop info_ptr,
png_bytep *trans_alpha, int *num_trans, png_color_16p *trans_color));
#endif
 
#ifdef PNG_tRNS_SUPPORTED
PNG_EXPORT(167, void, png_set_tRNS,
(png_structp png_ptr, png_infop info_ptr,
png_const_bytep trans_alpha, int num_trans,
png_const_color_16p trans_color));
#endif
 
#ifdef PNG_sCAL_SUPPORTED
PNG_FP_EXPORT(168, png_uint_32, png_get_sCAL,
(png_const_structp png_ptr, png_const_infop info_ptr,
int *unit, double *width, double *height));
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
/* NOTE: this API is currently implemented using floating point arithmetic,
* consequently it can only be used on systems with floating point support.
* In any case the range of values supported by png_fixed_point is small and it
* is highly recommended that png_get_sCAL_s be used instead.
*/
PNG_FIXED_EXPORT(214, png_uint_32, png_get_sCAL_fixed,
(png_structp png_ptr, png_const_infop info_ptr, int *unit,
png_fixed_point *width,
png_fixed_point *height));
#endif
PNG_EXPORT(169, png_uint_32, png_get_sCAL_s,
(png_const_structp png_ptr, png_const_infop info_ptr,
int *unit, png_charpp swidth, png_charpp sheight));
 
PNG_FP_EXPORT(170, void, png_set_sCAL,
(png_structp png_ptr, png_infop info_ptr,
int unit, double width, double height));
PNG_FIXED_EXPORT(213, void, png_set_sCAL_fixed, (png_structp png_ptr,
png_infop info_ptr, int unit, png_fixed_point width,
png_fixed_point height));
PNG_EXPORT(171, void, png_set_sCAL_s,
(png_structp png_ptr, png_infop info_ptr,
int unit, png_const_charp swidth, png_const_charp sheight));
#endif /* PNG_sCAL_SUPPORTED */
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
/* Provide a list of chunks and how they are to be handled, if the built-in
handling or default unknown chunk handling is not desired. Any chunks not
listed will be handled in the default manner. The IHDR and IEND chunks
must not be listed.
keep = 0: follow default behaviour
= 1: do not keep
= 2: keep only if safe-to-copy
= 3: keep even if unsafe-to-copy
*/
PNG_EXPORT(172, void, png_set_keep_unknown_chunks,
(png_structp png_ptr, int keep,
png_const_bytep chunk_list, int num_chunks));
PNG_EXPORT(173, int, png_handle_as_unknown, (png_structp png_ptr,
png_const_bytep chunk_name));
#endif
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
PNG_EXPORT(174, void, png_set_unknown_chunks, (png_structp png_ptr,
png_infop info_ptr, png_const_unknown_chunkp unknowns,
int num_unknowns));
PNG_EXPORT(175, void, png_set_unknown_chunk_location,
(png_structp png_ptr, png_infop info_ptr, int chunk, int location));
PNG_EXPORT(176, int, png_get_unknown_chunks, (png_const_structp png_ptr,
png_const_infop info_ptr, png_unknown_chunkpp entries));
#endif
 
/* Png_free_data() will turn off the "valid" flag for anything it frees.
* If you need to turn it off for a chunk that your application has freed,
* you can use png_set_invalid(png_ptr, info_ptr, PNG_INFO_CHNK);
*/
PNG_EXPORT(177, void, png_set_invalid,
(png_structp png_ptr, png_infop info_ptr, int mask));
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
/* The "params" pointer is currently not used and is for future expansion. */
PNG_EXPORT(178, void, png_read_png, (png_structp png_ptr, png_infop info_ptr,
int transforms, png_voidp params));
PNG_EXPORT(179, void, png_write_png, (png_structp png_ptr, png_infop info_ptr,
int transforms, png_voidp params));
#endif
 
PNG_EXPORT(180, png_const_charp, png_get_copyright,
(png_const_structp png_ptr));
PNG_EXPORT(181, png_const_charp, png_get_header_ver,
(png_const_structp png_ptr));
PNG_EXPORT(182, png_const_charp, png_get_header_version,
(png_const_structp png_ptr));
PNG_EXPORT(183, png_const_charp, png_get_libpng_ver,
(png_const_structp png_ptr));
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
PNG_EXPORT(184, png_uint_32, png_permit_mng_features, (png_structp png_ptr,
png_uint_32 mng_features_permitted));
#endif
 
/* For use in png_set_keep_unknown, added to version 1.2.6 */
#define PNG_HANDLE_CHUNK_AS_DEFAULT 0
#define PNG_HANDLE_CHUNK_NEVER 1
#define PNG_HANDLE_CHUNK_IF_SAFE 2
#define PNG_HANDLE_CHUNK_ALWAYS 3
 
/* Strip the prepended error numbers ("#nnn ") from error and warning
* messages before passing them to the error or warning handler.
*/
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
PNG_EXPORT(185, void, png_set_strip_error_numbers,
(png_structp png_ptr,
png_uint_32 strip_mode));
#endif
 
/* Added in libpng-1.2.6 */
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
PNG_EXPORT(186, void, png_set_user_limits, (png_structp png_ptr,
png_uint_32 user_width_max, png_uint_32 user_height_max));
PNG_EXPORT(187, png_uint_32, png_get_user_width_max,
(png_const_structp png_ptr));
PNG_EXPORT(188, png_uint_32, png_get_user_height_max,
(png_const_structp png_ptr));
/* Added in libpng-1.4.0 */
PNG_EXPORT(189, void, png_set_chunk_cache_max, (png_structp png_ptr,
png_uint_32 user_chunk_cache_max));
PNG_EXPORT(190, png_uint_32, png_get_chunk_cache_max,
(png_const_structp png_ptr));
/* Added in libpng-1.4.1 */
PNG_EXPORT(191, void, png_set_chunk_malloc_max, (png_structp png_ptr,
png_alloc_size_t user_chunk_cache_max));
PNG_EXPORT(192, png_alloc_size_t, png_get_chunk_malloc_max,
(png_const_structp png_ptr));
#endif
 
#if defined(PNG_INCH_CONVERSIONS_SUPPORTED)
PNG_EXPORT(193, png_uint_32, png_get_pixels_per_inch,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
PNG_EXPORT(194, png_uint_32, png_get_x_pixels_per_inch,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
PNG_EXPORT(195, png_uint_32, png_get_y_pixels_per_inch,
(png_const_structp png_ptr, png_const_infop info_ptr));
 
PNG_FP_EXPORT(196, float, png_get_x_offset_inches,
(png_const_structp png_ptr, png_const_infop info_ptr));
#ifdef PNG_FIXED_POINT_SUPPORTED /* otherwise not implemented. */
PNG_FIXED_EXPORT(211, png_fixed_point, png_get_x_offset_inches_fixed,
(png_structp png_ptr, png_const_infop info_ptr));
#endif
 
PNG_FP_EXPORT(197, float, png_get_y_offset_inches, (png_const_structp png_ptr,
png_const_infop info_ptr));
#ifdef PNG_FIXED_POINT_SUPPORTED /* otherwise not implemented. */
PNG_FIXED_EXPORT(212, png_fixed_point, png_get_y_offset_inches_fixed,
(png_structp png_ptr, png_const_infop info_ptr));
#endif
 
# ifdef PNG_pHYs_SUPPORTED
PNG_EXPORT(198, png_uint_32, png_get_pHYs_dpi, (png_const_structp png_ptr,
png_const_infop info_ptr, png_uint_32 *res_x, png_uint_32 *res_y,
int *unit_type));
# endif /* PNG_pHYs_SUPPORTED */
#endif /* PNG_INCH_CONVERSIONS_SUPPORTED */
 
/* Added in libpng-1.4.0 */
#ifdef PNG_IO_STATE_SUPPORTED
PNG_EXPORT(199, png_uint_32, png_get_io_state, (png_structp png_ptr));
 
PNG_EXPORTA(200, png_const_bytep, png_get_io_chunk_name,
(png_structp png_ptr), PNG_DEPRECATED);
PNG_EXPORT(216, png_uint_32, png_get_io_chunk_type,
(png_const_structp png_ptr));
 
/* The flags returned by png_get_io_state() are the following: */
# define PNG_IO_NONE 0x0000 /* no I/O at this moment */
# define PNG_IO_READING 0x0001 /* currently reading */
# define PNG_IO_WRITING 0x0002 /* currently writing */
# define PNG_IO_SIGNATURE 0x0010 /* currently at the file signature */
# define PNG_IO_CHUNK_HDR 0x0020 /* currently at the chunk header */
# define PNG_IO_CHUNK_DATA 0x0040 /* currently at the chunk data */
# define PNG_IO_CHUNK_CRC 0x0080 /* currently at the chunk crc */
# define PNG_IO_MASK_OP 0x000f /* current operation: reading/writing */
# define PNG_IO_MASK_LOC 0x00f0 /* current location: sig/hdr/data/crc */
#endif /* ?PNG_IO_STATE_SUPPORTED */
 
/* Interlace support. The following macros are always defined so that if
* libpng interlace handling is turned off the macros may be used to handle
* interlaced images within the application.
*/
#define PNG_INTERLACE_ADAM7_PASSES 7
 
/* Two macros to return the first row and first column of the original,
* full, image which appears in a given pass. 'pass' is in the range 0
* to 6 and the result is in the range 0 to 7.
*/
#define PNG_PASS_START_ROW(pass) (((1U&~(pass))<<(3-((pass)>>1)))&7)
#define PNG_PASS_START_COL(pass) (((1U& (pass))<<(3-(((pass)+1)>>1)))&7)
 
/* Two macros to help evaluate the number of rows or columns in each
* pass. This is expressed as a shift - effectively log2 of the number or
* rows or columns in each 8x8 tile of the original image.
*/
#define PNG_PASS_ROW_SHIFT(pass) ((pass)>2?(8-(pass))>>1:3)
#define PNG_PASS_COL_SHIFT(pass) ((pass)>1?(7-(pass))>>1:3)
 
/* Hence two macros to determine the number of rows or columns in a given
* pass of an image given its height or width. In fact these macros may
* return non-zero even though the sub-image is empty, because the other
* dimension may be empty for a small image.
*/
#define PNG_PASS_ROWS(height, pass) (((height)+(((1<<PNG_PASS_ROW_SHIFT(pass))\
-1)-PNG_PASS_START_ROW(pass)))>>PNG_PASS_ROW_SHIFT(pass))
#define PNG_PASS_COLS(width, pass) (((width)+(((1<<PNG_PASS_COL_SHIFT(pass))\
-1)-PNG_PASS_START_COL(pass)))>>PNG_PASS_COL_SHIFT(pass))
 
/* For the progressive reader it is necessary to find the row in the output
* image given a row in an interlaced image, so two more macros:
*/
#define PNG_ROW_FROM_PASS_ROW(yIn, pass) \
(((yIn)<<PNG_PASS_ROW_SHIFT(pass))+PNG_PASS_START_ROW(pass))
#define PNG_COL_FROM_PASS_COL(xIn, pass) \
(((xIn)<<PNG_PASS_COL_SHIFT(pass))+PNG_PASS_START_COL(pass))
 
/* Two macros which return a boolean (0 or 1) saying whether the given row
* or column is in a particular pass. These use a common utility macro that
* returns a mask for a given pass - the offset 'off' selects the row or
* column version. The mask has the appropriate bit set for each column in
* the tile.
*/
#define PNG_PASS_MASK(pass,off) ( \
((0x110145AFU>>(((7-(off))-(pass))<<2)) & 0xFU) | \
((0x01145AF0U>>(((7-(off))-(pass))<<2)) & 0xF0U))
 
#define PNG_ROW_IN_INTERLACE_PASS(y, pass) \
((PNG_PASS_MASK(pass,0) >> ((y)&7)) & 1)
#define PNG_COL_IN_INTERLACE_PASS(x, pass) \
((PNG_PASS_MASK(pass,1) >> ((x)&7)) & 1)
 
#ifdef PNG_READ_COMPOSITE_NODIV_SUPPORTED
/* With these routines we avoid an integer divide, which will be slower on
* most machines. However, it does take more operations than the corresponding
* divide method, so it may be slower on a few RISC systems. There are two
* shifts (by 8 or 16 bits) and an addition, versus a single integer divide.
*
* Note that the rounding factors are NOT supposed to be the same! 128 and
* 32768 are correct for the NODIV code; 127 and 32767 are correct for the
* standard method.
*
* [Optimized code by Greg Roelofs and Mark Adler...blame us for bugs. :-) ]
*/
 
/* fg and bg should be in `gamma 1.0' space; alpha is the opacity */
 
# define png_composite(composite, fg, alpha, bg) \
{ png_uint_16 temp = (png_uint_16)((png_uint_16)(fg) \
* (png_uint_16)(alpha) \
+ (png_uint_16)(bg)*(png_uint_16)(255 \
- (png_uint_16)(alpha)) + (png_uint_16)128); \
(composite) = (png_byte)((temp + (temp >> 8)) >> 8); }
 
# define png_composite_16(composite, fg, alpha, bg) \
{ png_uint_32 temp = (png_uint_32)((png_uint_32)(fg) \
* (png_uint_32)(alpha) \
+ (png_uint_32)(bg)*(png_uint_32)(65535L \
- (png_uint_32)(alpha)) + (png_uint_32)32768L); \
(composite) = (png_uint_16)((temp + (temp >> 16)) >> 16); }
 
#else /* Standard method using integer division */
 
# define png_composite(composite, fg, alpha, bg) \
(composite) = (png_byte)(((png_uint_16)(fg) * (png_uint_16)(alpha) + \
(png_uint_16)(bg) * (png_uint_16)(255 - (png_uint_16)(alpha)) + \
(png_uint_16)127) / 255)
 
# define png_composite_16(composite, fg, alpha, bg) \
(composite) = (png_uint_16)(((png_uint_32)(fg) * (png_uint_32)(alpha) + \
(png_uint_32)(bg)*(png_uint_32)(65535L - (png_uint_32)(alpha)) + \
(png_uint_32)32767) / (png_uint_32)65535L)
#endif /* PNG_READ_COMPOSITE_NODIV_SUPPORTED */
 
#ifdef PNG_READ_INT_FUNCTIONS_SUPPORTED
PNG_EXPORT(201, png_uint_32, png_get_uint_32, (png_const_bytep buf));
PNG_EXPORT(202, png_uint_16, png_get_uint_16, (png_const_bytep buf));
PNG_EXPORT(203, png_int_32, png_get_int_32, (png_const_bytep buf));
#endif
 
PNG_EXPORT(204, png_uint_32, png_get_uint_31, (png_structp png_ptr,
png_const_bytep buf));
/* No png_get_int_16 -- may be added if there's a real need for it. */
 
/* Place a 32-bit number into a buffer in PNG byte order (big-endian). */
#ifdef PNG_WRITE_INT_FUNCTIONS_SUPPORTED
PNG_EXPORT(205, void, png_save_uint_32, (png_bytep buf, png_uint_32 i));
#endif
#ifdef PNG_SAVE_INT_32_SUPPORTED
PNG_EXPORT(206, void, png_save_int_32, (png_bytep buf, png_int_32 i));
#endif
 
/* Place a 16-bit number into a buffer in PNG byte order.
* The parameter is declared unsigned int, not png_uint_16,
* just to avoid potential problems on pre-ANSI C compilers.
*/
#ifdef PNG_WRITE_INT_FUNCTIONS_SUPPORTED
PNG_EXPORT(207, void, png_save_uint_16, (png_bytep buf, unsigned int i));
/* No png_save_int_16 -- may be added if there's a real need for it. */
#endif
 
#ifdef PNG_USE_READ_MACROS
/* Inline macros to do direct reads of bytes from the input buffer.
* The png_get_int_32() routine assumes we are using two's complement
* format for negative values, which is almost certainly true.
*/
# define png_get_uint_32(buf) \
(((png_uint_32)(*(buf)) << 24) + \
((png_uint_32)(*((buf) + 1)) << 16) + \
((png_uint_32)(*((buf) + 2)) << 8) + \
((png_uint_32)(*((buf) + 3))))
 
/* From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the
* function) incorrectly returned a value of type png_uint_32.
*/
# define png_get_uint_16(buf) \
((png_uint_16) \
(((unsigned int)(*(buf)) << 8) + \
((unsigned int)(*((buf) + 1)))))
 
# define png_get_int_32(buf) \
((png_int_32)((*(buf) & 0x80) \
? -((png_int_32)((png_get_uint_32(buf) ^ 0xffffffffL) + 1)) \
: (png_int_32)png_get_uint_32(buf)))
#endif
 
/* Maintainer: Put new public prototypes here ^, in libpng.3, and project
* defs
*/
 
/* The last ordinal number (this is the *last* one already used; the next
* one to use is one more than this.) Maintainer, remember to add an entry to
* scripts/symbols.def as well.
*/
#ifdef PNG_EXPORT_LAST_ORDINAL
PNG_EXPORT_LAST_ORDINAL(220);
#endif
 
#ifdef __cplusplus
}
#endif
 
#endif /* PNG_VERSION_INFO_ONLY */
/* Do not put anything past this line */
#endif /* PNG_H */
/programs/develop/libraries/libpng/pngconf.h
0,0 → 1,632
 
/* pngconf.h - machine configurable file for libpng
*
* libpng version 1.5.1 - February 3, 2011
*
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
*/
 
/* Any machine specific code is near the front of this file, so if you
* are configuring libpng for a machine, you may want to read the section
* starting here down to where it starts to typedef png_color, png_text,
* and png_info.
*/
 
#ifndef PNGCONF_H
#define PNGCONF_H
 
/* PNG_NO_LIMITS_H may be used to turn off the use of the standard C
* definition file for machine specific limits, this may impact the
* correctness of the definitons below (see uses of INT_MAX).
*/
#ifndef PNG_NO_LIMITS_H
# include <limits.h>
#endif
 
/* For the memory copy APIs (i.e. the standard definitions of these),
* because this file defines png_memcpy and so on the base APIs must
* be defined here.
*/
#ifdef BSD
# include <strings.h>
#else
# include <string.h>
#endif
 
/* For png_FILE_p - this provides the standard definition of a
* FILE
*/
#ifdef PNG_STDIO_SUPPORTED
# include <stdio.h>
#endif
 
/* This controls optimization of the reading of 16 and 32 bit values
* from PNG files. It can be set on a per-app-file basis - it
* just changes whether a macro is used to the function is called.
* The library builder sets the default, if read functions are not
* built into the library the macro implementation is forced on.
*/
#ifndef PNG_READ_INT_FUNCTIONS_SUPPORTED
# define PNG_USE_READ_MACROS
#endif
#if !defined(PNG_NO_USE_READ_MACROS) && !defined(PNG_USE_READ_MACROS)
# if PNG_DEFAULT_READ_MACROS
# define PNG_USE_READ_MACROS
# endif
#endif
 
/* COMPILER SPECIFIC OPTIONS.
*
* These options are provided so that a variety of difficult compilers
* can be used. Some are fixed at build time (e.g. PNG_API_RULE
* below) but still have compiler specific implementations, others
* may be changed on a per-file basis when compiling against libpng.
*/
 
/* The PNGARG macro protects us against machines that don't have function
* prototypes (ie K&R style headers). If your compiler does not handle
* function prototypes, define this macro and use the included ansi2knr.
* I've always been able to use _NO_PROTO as the indicator, but you may
* need to drag the empty declaration out in front of here, or change the
* ifdef to suit your own needs.
*/
#ifndef PNGARG
 
# ifdef OF /* zlib prototype munger */
# define PNGARG(arglist) OF(arglist)
# else
 
# ifdef _NO_PROTO
# define PNGARG(arglist) ()
# else
# define PNGARG(arglist) arglist
# endif /* _NO_PROTO */
 
# endif /* OF */
 
#endif /* PNGARG */
 
/* Function calling conventions.
* =============================
* Normally it is not necessary to specify to the compiler how to call
* a function - it just does it - however on x86 systems derived from
* Microsoft and Borland C compilers ('IBM PC', 'DOS', 'Windows' systems
* and some others) there are multiple ways to call a function and the
* default can be changed on the compiler command line. For this reason
* libpng specifies the calling convention of every exported function and
* every function called via a user supplied function pointer. This is
* done in this file by defining the following macros:
*
* PNGAPI Calling convention for exported functions.
* PNGCBAPI Calling convention for user provided (callback) functions.
* PNGCAPI Calling convention used by the ANSI-C library (required
* for longjmp callbacks and sometimes used internally to
* specify the calling convention for zlib).
*
* These macros should never be overridden. If it is necessary to
* change calling convention in a private build this can be done
* by setting PNG_API_RULE (which defaults to 0) to one of the values
* below to select the correct 'API' variants.
*
* PNG_API_RULE=0 Use PNGCAPI - the 'C' calling convention - throughout.
* This is correct in every known environment.
* PNG_API_RULE=1 Use the operating system convention for PNGAPI and
* the 'C' calling convention (from PNGCAPI) for
* callbacks (PNGCBAPI). This is no longer required
* in any known environment - if it has to be used
* please post an explanation of the problem to the
* libpng mailing list.
*
* These cases only differ if the operating system does not use the C
* calling convention, at present this just means the above cases
* (x86 DOS/Windows sytems) and, even then, this does not apply to
* Cygwin running on those systems.
*
* Note that the value must be defined in pnglibconf.h so that what
* the application uses to call the library matches the conventions
* set when building the library.
*/
 
/* Symbol export
* =============
* When building a shared library it is almost always necessary to tell
* the compiler which symbols to export. The png.h macro 'PNG_EXPORT'
* is used to mark the symbols. On some systems these symbols can be
* extracted at link time and need no special processing by the compiler,
* on other systems the symbols are flagged by the compiler and just
* the declaration requires a special tag applied (unfortunately) in a
* compiler dependent way. Some systems can do either.
*
* A small number of older systems also require a symbol from a DLL to
* be flagged to the program that calls it. This is a problem because
* we do not know in the header file included by application code that
* the symbol will come from a shared library, as opposed to a statically
* linked one. For this reason the application must tell us by setting
* the magic flag PNG_USE_DLL to turn on the special processing before
* it includes png.h.
*
* Four additional macros are used to make this happen:
*
* PNG_IMPEXP The magic (if any) to cause a symbol to be exported from
* the build or imported if PNG_USE_DLL is set - compiler
* and system specific.
*
* PNG_EXPORT_TYPE(type) A macro that pre or appends PNG_IMPEXP to
* 'type', compiler specific.
*
* PNG_DLL_EXPORT Set to the magic to use during a libpng build to
* make a symbol exported from the DLL.
*
* PNG_DLL_IMPORT Set to the magic to force the libpng symbols to come
* from a DLL - used to define PNG_IMPEXP when
* PNG_USE_DLL is set.
*/
 
/* System specific discovery.
* ==========================
* This code is used at build time to find PNG_IMPEXP, the API settings
* and PNG_EXPORT_TYPE(), it may also set a macro to indicate the DLL
* import processing is possible. On Windows/x86 systems it also sets
* compiler-specific macros to the values required to change the calling
* conventions of the various functions.
*/
#if ( defined(_Windows) || defined(_WINDOWS) || defined(WIN32) ||\
defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) ) &&\
( defined(_X86_) || defined(_X64_) || defined(_M_IX86) ||\
defined(_M_X64) || defined(_M_IA64) )
/* Windows system (DOS doesn't support DLLs) running on x86/x64. Includes
* builds under Cygwin or MinGW. Also includes Watcom builds but these need
* special treatment because they are not compatible with GCC or Visual C
* because of different calling conventions.
*/
# if PNG_API_RULE == 2
/* If this line results in an error, either because __watcall is not
* understood or because of a redefine just below you cannot use *this*
* build of the library with the compiler you are using. *This* build was
* build using Watcom and applications must also be built using Watcom!
*/
# define PNGCAPI __watcall
# endif
 
# if defined(__GNUC__) || (defined (_MSC_VER) && (_MSC_VER >= 800))
# define PNGCAPI __cdecl
# if PNG_API_RULE == 1
# define PNGAPI __stdcall
# endif
# else
/* An older compiler, or one not detected (erroneously) above,
* if necessary override on the command line to get the correct
* variants for the compiler.
*/
# ifndef PNGCAPI
# define PNGCAPI _cdecl
# endif
# if PNG_API_RULE == 1 && !defined(PNGAPI)
# define PNGAPI _stdcall
# endif
# endif /* compiler/api */
/* NOTE: PNGCBAPI always defaults to PNGCAPI. */
 
# if defined(PNGAPI) && !defined(PNG_USER_PRIVATEBUILD)
ERROR: PNG_USER_PRIVATEBUILD must be defined if PNGAPI is changed
# endif
 
# if (defined(_MSC_VER) && _MSC_VER < 800) ||\
(defined(__BORLANDC__) && __BORLANDC__ < 0x500)
/* older Borland and MSC
* compilers used '__export' and required this to be after
* the type.
*/
# ifndef PNG_EXPORT_TYPE
# define PNG_EXPORT_TYPE(type) type PNG_IMPEXP
# endif
# define PNG_DLL_EXPORT __export
# else /* newer compiler */
# define PNG_DLL_EXPORT __declspec(dllexport)
# ifndef PNG_DLL_IMPORT
# define PNG_DLL_IMPORT __declspec(dllimport)
# endif
# endif /* compiler */
 
#else /* !Windows/x86 */
# if (defined(__IBMC__) || defined(__IBMCPP__)) && defined(__OS2__)
# define PNGAPI _System
# else /* !Windows/x86 && !OS/2 */
/* Use the defaults, or define PNG*API on the command line (but
* this will have to be done for every compile!)
*/
# endif /* other system, !OS/2 */
#endif /* !Windows/x86 */
 
/* Now do all the defaulting . */
#ifndef PNGCAPI
# define PNGCAPI
#endif
#ifndef PNGCBAPI
# define PNGCBAPI PNGCAPI
#endif
#ifndef PNGAPI
# define PNGAPI PNGCAPI
#endif
 
/* The default for PNG_IMPEXP depends on whether the library is
* being built or used.
*/
#ifndef PNG_IMPEXP
# ifdef PNGLIB_BUILD
/* Building the library */
# if (defined(DLL_EXPORT)/*from libtool*/ ||\
defined(_WINDLL) || defined(_DLL) || defined(__DLL__) ||\
defined(_USRDLL) ||\
defined(PNG_BUILD_DLL)) && defined(PNG_DLL_EXPORT)
/* Building a DLL. */
# define PNG_IMPEXP PNG_DLL_EXPORT
# endif /* DLL */
# else
/* Using the library */
# if defined(PNG_USE_DLL) && defined(PNG_DLL_IMPORT)
/* This forces use of a DLL, disallowing static linking */
# define PNG_IMPEXP PNG_DLL_IMPORT
# endif
# endif
 
# ifndef PNG_IMPEXP
# define PNG_IMPEXP
# endif
#endif
 
/* THe following complexity is concerned with getting the 'attributes' of the
* declared function in the correct place. This potentially requires a separate
* PNG_EXPORT function for every compiler.
*/
#ifndef PNG_FUNCTION
# ifdef __GNUC__
# define PNG_FUNCTION(type, name, args, attributes)\
attributes type name args
# else /* !GNUC */
# ifdef _MSC_VER
# define PNG_FUNCTION(type, name, args, attributes)\
attributes type name args
# else /* !MSC */
# define PNG_FUNCTION(type, name, args, attributes)\
type name args
# endif
# endif
#endif
 
#ifndef PNG_EXPORT_TYPE
# define PNG_EXPORT_TYPE(type) PNG_IMPEXP type
#endif
 
/* The ordinal value is only relevant when preprocessing png.h for symbol
* table entries, so we discard it here. See the .dfn files in the
* scripts directory.
*/
#ifndef PNG_EXPORTA
# define PNG_EXPORTA(ordinal, type, name, args, attributes)\
extern PNG_FUNCTION(PNG_EXPORT_TYPE(type),(PNGAPI name),PNGARG(args),\
attributes)
#endif
 
#define PNG_EXPORT(ordinal, type, name, args)\
PNG_EXPORTA(ordinal, type, name, args, )
 
/* Use PNG_REMOVED to comment out a removed interface. */
#ifndef PNG_REMOVED
# define PNG_REMOVED(ordinal, type, name, args, attributes)
#endif
 
#ifndef PNG_CALLBACK
# define PNG_CALLBACK(type, name, args, attributes)\
type (PNGCBAPI name) PNGARG(args) attributes
#endif
 
/* Support for compiler specific function attributes. These are used
* so that where compiler support is available incorrect use of API
* functions in png.h will generate compiler warnings.
*
* Added at libpng-1.2.41.
*/
 
#ifndef PNG_NO_PEDANTIC_WARNINGS
# ifndef PNG_PEDANTIC_WARNINGS_SUPPORTED
# define PNG_PEDANTIC_WARNINGS_SUPPORTED
# endif
#endif
 
#ifdef PNG_PEDANTIC_WARNINGS_SUPPORTED
/* Support for compiler specific function attributes. These are used
* so that where compiler support is available incorrect use of API
* functions in png.h will generate compiler warnings. Added at libpng
* version 1.2.41.
*/
# ifdef __GNUC__
# ifndef PNG_USE_RESULT
# define PNG_USE_RESULT __attribute__((__warn_unused_result__))
# endif
# ifndef PNG_NORETURN
# define PNG_NORETURN __attribute__((__noreturn__))
# endif
# ifndef PNG_PTR_NORETURN
# define PNG_PTR_NORETURN __attribute__((__noreturn__))
# endif
# ifndef PNG_ALLOCATED
# define PNG_ALLOCATED __attribute__((__malloc__))
# endif
 
/* This specifically protects structure members that should only be
* accessed from within the library, therefore should be empty during
* a library build.
*/
# ifndef PNGLIB_BUILD
# ifndef PNG_DEPRECATED
# define PNG_DEPRECATED __attribute__((__deprecated__))
# endif
# ifndef PNG_DEPSTRUCT
# define PNG_DEPSTRUCT __attribute__((__deprecated__))
# endif
# ifndef PNG_PRIVATE
# if 0 /* Doesn't work so we use deprecated instead*/
# define PNG_PRIVATE \
__attribute__((warning("This function is not exported by libpng.")))
# else
# define PNG_PRIVATE \
__attribute__((__deprecated__))
# endif
# endif /* PNG_PRIVATE */
# endif /* PNGLIB_BUILD */
# endif /* __GNUC__ */
# ifdef _MSC_VER /* may need to check value */
# ifndef PNG_USE_RESULT
# define PNG_USE_RESULT /*not supported*/
# endif
# ifndef PNG_NORETURN
# define PNG_NORETURN __declspec(noreturn)
# endif
# ifndef PNG_PTR_NORETURN
# define PNG_PTR_NORETURN /*not supported*/
# endif
# ifndef PNG_ALLOCATED
# define PNG_ALLOCATED __declspec(restrict)
# endif
 
/* This specifically protects structure members that should only be
* accessed from within the library, therefore should be empty during
* a library build.
*/
# ifndef PNGLIB_BUILD
# ifndef PNG_DEPRECATED
# define PNG_DEPRECATED __declspec(deprecated)
# endif
# ifndef PNG_DEPSTRUCT
# define PNG_DEPSTRUCT __declspec(deprecated)
# endif
# ifndef PNG_PRIVATE
# define PNG_PRIVATE __declspec(deprecated)
# endif /* PNG_PRIVATE */
# endif /* PNGLIB_BUILD */
# endif /* __GNUC__ */
#endif /* PNG_PEDANTIC_WARNINGS */
 
#ifndef PNG_DEPRECATED
# define PNG_DEPRECATED /* Use of this function is deprecated */
#endif
#ifndef PNG_USE_RESULT
# define PNG_USE_RESULT /* The result of this function must be checked */
#endif
#ifndef PNG_NORETURN
# define PNG_NORETURN /* This function does not return */
#endif
#ifndef PNG_ALLOCATED
# define PNG_ALLOCATED /* The result of the function is new memory */
#endif
#ifndef PNG_DEPSTRUCT
# define PNG_DEPSTRUCT /* Access to this struct member is deprecated */
#endif
#ifndef PNG_PRIVATE
# define PNG_PRIVATE /* This is a private libpng function */
#endif
#ifndef PNG_FP_EXPORT /* A floating point API. */
# ifdef PNG_FLOATING_POINT_SUPPORTED
# define PNG_FP_EXPORT(ordinal, type, name, args)\
PNG_EXPORT(ordinal, type, name, args)
# else /* No floating point APIs */
# define PNG_FP_EXPORT(ordinal, type, name, args)
# endif
#endif
#ifndef PNG_FIXED_EXPORT /* A fixed point API. */
# ifdef PNG_FIXED_POINT_SUPPORTED
# define PNG_FIXED_EXPORT(ordinal, type, name, args)\
PNG_EXPORT(ordinal, type, name, args)
# else /* No fixed point APIs */
# define PNG_FIXED_EXPORT(ordinal, type, name, args)
# endif
#endif
 
/* The following uses const char * instead of char * for error
* and warning message functions, so some compilers won't complain.
* If you do not want to use const, define PNG_NO_CONST here.
*
* This should not change how the APIs are called, so it can be done
* on a per-file basis in the application.
*/
#ifndef PNG_CONST
# ifndef PNG_NO_CONST
# define PNG_CONST const
# else
# define PNG_CONST
# endif
#endif
 
/* Some typedefs to get us started. These should be safe on most of the
* common platforms. The typedefs should be at least as large as the
* numbers suggest (a png_uint_32 must be at least 32 bits long), but they
* don't have to be exactly that size. Some compilers dislike passing
* unsigned shorts as function parameters, so you may be better off using
* unsigned int for png_uint_16.
*/
 
#if defined(INT_MAX) && (INT_MAX > 0x7ffffffeL)
typedef unsigned int png_uint_32;
typedef int png_int_32;
#else
typedef unsigned long png_uint_32;
typedef long png_int_32;
#endif
typedef unsigned short png_uint_16;
typedef short png_int_16;
typedef unsigned char png_byte;
 
#ifdef PNG_NO_SIZE_T
typedef unsigned int png_size_t;
#else
typedef size_t png_size_t;
#endif
#define png_sizeof(x) (sizeof (x))
 
/* The following is needed for medium model support. It cannot be in the
* pngpriv.h header. Needs modification for other compilers besides
* MSC. Model independent support declares all arrays and pointers to be
* large using the far keyword. The zlib version used must also support
* model independent data. As of version zlib 1.0.4, the necessary changes
* have been made in zlib. The USE_FAR_KEYWORD define triggers other
* changes that are needed. (Tim Wegner)
*/
 
/* Separate compiler dependencies (problem here is that zlib.h always
* defines FAR. (SJT)
*/
#ifdef __BORLANDC__
# if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__)
# define LDATA 1
# else
# define LDATA 0
# endif
/* GRR: why is Cygwin in here? Cygwin is not Borland C... */
# if !defined(__WIN32__) && !defined(__FLAT__) && !defined(__CYGWIN__)
# define PNG_MAX_MALLOC_64K /* only used in build */
# if (LDATA != 1)
# ifndef FAR
# define FAR __far
# endif
# define USE_FAR_KEYWORD
# endif /* LDATA != 1 */
/* Possibly useful for moving data out of default segment.
* Uncomment it if you want. Could also define FARDATA as
* const if your compiler supports it. (SJT)
# define FARDATA FAR
*/
# endif /* __WIN32__, __FLAT__, __CYGWIN__ */
#endif /* __BORLANDC__ */
 
 
/* Suggest testing for specific compiler first before testing for
* FAR. The Watcom compiler defines both __MEDIUM__ and M_I86MM,
* making reliance oncertain keywords suspect. (SJT)
*/
 
/* MSC Medium model */
#ifdef FAR
# ifdef M_I86MM
# define USE_FAR_KEYWORD
# define FARDATA FAR
# include <dos.h>
# endif
#endif
 
/* SJT: default case */
#ifndef FAR
# define FAR
#endif
 
/* At this point FAR is always defined */
#ifndef FARDATA
# define FARDATA
#endif
 
/* Typedef for floating-point numbers that are converted
* to fixed-point with a multiple of 100,000, e.g., gamma
*/
typedef png_int_32 png_fixed_point;
 
/* Add typedefs for pointers */
typedef void FAR * png_voidp;
typedef PNG_CONST void FAR * png_const_voidp;
typedef png_byte FAR * png_bytep;
typedef PNG_CONST png_byte FAR * png_const_bytep;
typedef png_uint_32 FAR * png_uint_32p;
typedef PNG_CONST png_uint_32 FAR * png_const_uint_32p;
typedef png_int_32 FAR * png_int_32p;
typedef PNG_CONST png_int_32 FAR * png_const_int_32p;
typedef png_uint_16 FAR * png_uint_16p;
typedef PNG_CONST png_uint_16 FAR * png_const_uint_16p;
typedef png_int_16 FAR * png_int_16p;
typedef PNG_CONST png_int_16 FAR * png_const_int_16p;
typedef char FAR * png_charp;
typedef PNG_CONST char FAR * png_const_charp;
typedef png_fixed_point FAR * png_fixed_point_p;
typedef PNG_CONST png_fixed_point FAR * png_const_fixed_point_p;
typedef png_size_t FAR * png_size_tp;
typedef PNG_CONST png_size_t FAR * png_const_size_tp;
 
#ifdef PNG_STDIO_SUPPORTED
typedef FILE * png_FILE_p;
#endif
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
typedef double FAR * png_doublep;
typedef PNG_CONST double FAR * png_const_doublep;
#endif
 
/* Pointers to pointers; i.e. arrays */
typedef png_byte FAR * FAR * png_bytepp;
typedef png_uint_32 FAR * FAR * png_uint_32pp;
typedef png_int_32 FAR * FAR * png_int_32pp;
typedef png_uint_16 FAR * FAR * png_uint_16pp;
typedef png_int_16 FAR * FAR * png_int_16pp;
typedef PNG_CONST char FAR * FAR * png_const_charpp;
typedef char FAR * FAR * png_charpp;
typedef png_fixed_point FAR * FAR * png_fixed_point_pp;
#ifdef PNG_FLOATING_POINT_SUPPORTED
typedef double FAR * FAR * png_doublepp;
#endif
 
/* Pointers to pointers to pointers; i.e., pointer to array */
typedef char FAR * FAR * FAR * png_charppp;
 
/* png_alloc_size_t is guaranteed to be no smaller than png_size_t,
* and no smaller than png_uint_32. Casts from png_size_t or png_uint_32
* to png_alloc_size_t are not necessary; in fact, it is recommended
* not to use them at all so that the compiler can complain when something
* turns out to be problematic.
* Casts in the other direction (from png_alloc_size_t to png_size_t or
* png_uint_32) should be explicitly applied; however, we do not expect
* to encounter practical situations that require such conversions.
*/
#if defined(__TURBOC__) && !defined(__FLAT__)
typedef unsigned long png_alloc_size_t;
#else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
typedef unsigned long png_alloc_size_t;
# else
/* This is an attempt to detect an old Windows system where (int) is
* actually 16 bits, in that case png_malloc must have an argument with a
* bigger size to accomodate the requirements of the library.
*/
# if (defined(_Windows) || defined(_WINDOWS) || defined(_WINDOWS_)) && \
(!defined(INT_MAX) || INT_MAX <= 0x7ffffffeL)
typedef DWORD png_alloc_size_t;
# else
typedef png_size_t png_alloc_size_t;
# endif
# endif
#endif
 
#endif /* PNGCONF_H */
/programs/develop/libraries/libpng/pngdebug.h
0,0 → 1,157
 
/* pngdebug.h - Debugging macros for libpng, also used in pngtest.c
*
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* Last changed in libpng 1.5.0 [January 6, 2011]
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
/* Define PNG_DEBUG at compile time for debugging information. Higher
* numbers for PNG_DEBUG mean more debugging information. This has
* only been added since version 0.95 so it is not implemented throughout
* libpng yet, but more support will be added as needed.
*
* png_debug[1-2]?(level, message ,arg{0-2})
* Expands to a statement (either a simple expression or a compound
* do..while(0) statement) that outputs a message with parameter
* substitution if PNG_DEBUG is defined to 2 or more. If PNG_DEBUG
* is undefined, 0 or 1 every png_debug expands to a simple expression
* (actually ((void)0)).
*
* level: level of detail of message, starting at 0. A level 'n'
* message is preceded by 'n' tab characters (not implemented
* on Microsoft compilers unless PNG_DEBUG_FILE is also
* defined, to allow debug DLL compilation with no standard IO).
* message: a printf(3) style text string. A trailing '\n' is added
* to the message.
* arg: 0 to 2 arguments for printf(3) style substitution in message.
*/
#ifndef PNGDEBUG_H
#define PNGDEBUG_H
/* These settings control the formatting of messages in png.c and pngerror.c */
/* Moved to pngdebug.h at 1.5.0 */
# ifndef PNG_LITERAL_SHARP
# define PNG_LITERAL_SHARP 0x23
# endif
# ifndef PNG_LITERAL_LEFT_SQUARE_BRACKET
# define PNG_LITERAL_LEFT_SQUARE_BRACKET 0x5b
# endif
# ifndef PNG_LITERAL_RIGHT_SQUARE_BRACKET
# define PNG_LITERAL_RIGHT_SQUARE_BRACKET 0x5d
# endif
# ifndef PNG_STRING_NEWLINE
# define PNG_STRING_NEWLINE "\n"
# endif
 
#ifdef PNG_DEBUG
# if (PNG_DEBUG > 0)
# if !defined(PNG_DEBUG_FILE) && defined(_MSC_VER)
# include <crtdbg.h>
# if (PNG_DEBUG > 1)
# ifndef _DEBUG
# define _DEBUG
# endif
# ifndef png_debug
# define png_debug(l,m) _RPT0(_CRT_WARN,m PNG_STRING_NEWLINE)
# endif
# ifndef png_debug1
# define png_debug1(l,m,p1) _RPT1(_CRT_WARN,m PNG_STRING_NEWLINE,p1)
# endif
# ifndef png_debug2
# define png_debug2(l,m,p1,p2) \
_RPT2(_CRT_WARN,m PNG_STRING_NEWLINE,p1,p2)
# endif
# endif
# else /* PNG_DEBUG_FILE || !_MSC_VER */
# ifndef PNG_STDIO_SUPPORTED
# include <stdio.h> /* not included yet */
# endif
# ifndef PNG_DEBUG_FILE
# define PNG_DEBUG_FILE stderr
# endif /* PNG_DEBUG_FILE */
 
# if (PNG_DEBUG > 1)
/* Note: ["%s"m PNG_STRING_NEWLINE] probably does not work on
* non-ISO compilers
*/
# ifdef __STDC__
# ifndef png_debug
# define png_debug(l,m) \
do { \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":"")))); \
} while (0)
# endif
# ifndef png_debug1
# define png_debug1(l,m,p1) \
do { \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1); \
} while (0)
# endif
# ifndef png_debug2
# define png_debug2(l,m,p1,p2) \
do { \
int num_tabs=l; \
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1,p2); \
} while (0)
# endif
# else /* __STDC __ */
# ifndef png_debug
# define png_debug(l,m) \
do { \
int num_tabs=l; \
char format[256]; \
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \
m,PNG_STRING_NEWLINE); \
fprintf(PNG_DEBUG_FILE,format); \
} while (0)
# endif
# ifndef png_debug1
# define png_debug1(l,m,p1) \
do { \
int num_tabs=l; \
char format[256]; \
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \
m,PNG_STRING_NEWLINE); \
fprintf(PNG_DEBUG_FILE,format,p1); \
} while (0)
# endif
# ifndef png_debug2
# define png_debug2(l,m,p1,p2) \
do { \
int num_tabs=l; \
char format[256]; \
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \
m,PNG_STRING_NEWLINE); \
fprintf(PNG_DEBUG_FILE,format,p1,p2); \
} while (0)
# endif
# endif /* __STDC __ */
# endif /* (PNG_DEBUG > 1) */
 
# endif /* _MSC_VER */
# endif /* (PNG_DEBUG > 0) */
#endif /* PNG_DEBUG */
#ifndef png_debug
# define png_debug(l, m) ((void)0)
#endif
#ifndef png_debug1
# define png_debug1(l, m, p1) ((void)0)
#endif
#ifndef png_debug2
# define png_debug2(l, m, p1, p2) ((void)0)
#endif
#endif /* PNGDEBUG_H */
/programs/develop/libraries/libpng/pngerror.c
0,0 → 1,447
 
/* pngerror.c - stub functions for i/o and memory allocation
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file provides a location for all error handling. Users who
* need special error handling are expected to write replacement functions
* and use png_set_error_fn() to use those functions. See the instructions
* at each function.
*/
 
#include "pngpriv.h"
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 
static PNG_FUNCTION(void, png_default_error,PNGARG((png_structp png_ptr,
png_const_charp error_message)),PNG_NORETURN);
 
#ifdef PNG_WARNINGS_SUPPORTED
static void /* PRIVATE */
png_default_warning PNGARG((png_structp png_ptr,
png_const_charp warning_message));
#endif /* PNG_WARNINGS_SUPPORTED */
 
/* This function is called whenever there is a fatal error. This function
* should not be changed. If there is a need to handle errors differently,
* you should supply a replacement error function and use png_set_error_fn()
* to replace the error function at run-time.
*/
#ifdef PNG_ERROR_TEXT_SUPPORTED
PNG_FUNCTION(void,PNGAPI
png_error,(png_structp png_ptr, png_const_charp error_message),PNG_NORETURN)
{
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
char msg[16];
if (png_ptr != NULL)
{
if (png_ptr->flags&
(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))
{
if (*error_message == PNG_LITERAL_SHARP)
{
/* Strip "#nnnn " from beginning of error message. */
int offset;
for (offset = 1; offset<15; offset++)
if (error_message[offset] == ' ')
break;
 
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT)
{
int i;
for (i = 0; i < offset - 1; i++)
msg[i] = error_message[i + 1];
msg[i - 1] = '\0';
error_message = msg;
}
 
else
error_message += offset;
}
 
else
{
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT)
{
msg[0] = '0';
msg[1] = '\0';
error_message = msg;
}
}
}
}
#endif
if (png_ptr != NULL && png_ptr->error_fn != NULL)
(*(png_ptr->error_fn))(png_ptr, error_message);
 
/* If the custom handler doesn't exist, or if it returns,
use the default handler, which will not return. */
png_default_error(png_ptr, error_message);
}
#else
PNG_FUNCTION(void,PNGAPI
png_err,(png_structp png_ptr),PNG_NORETURN)
{
if (png_ptr != NULL && png_ptr->error_fn != NULL)
(*(png_ptr->error_fn))(png_ptr, '\0');
 
/* If the custom handler doesn't exist, or if it returns,
use the default handler, which will not return. */
png_default_error(png_ptr, '\0');
}
#endif /* PNG_ERROR_TEXT_SUPPORTED */
 
#ifdef PNG_WARNINGS_SUPPORTED
/* This function is called whenever there is a non-fatal error. This function
* should not be changed. If there is a need to handle warnings differently,
* you should supply a replacement warning function and use
* png_set_error_fn() to replace the warning function at run-time.
*/
void PNGAPI
png_warning(png_structp png_ptr, png_const_charp warning_message)
{
int offset = 0;
if (png_ptr != NULL)
{
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (png_ptr->flags&
(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT))
#endif
{
if (*warning_message == PNG_LITERAL_SHARP)
{
for (offset = 1; offset < 15; offset++)
if (warning_message[offset] == ' ')
break;
}
}
}
if (png_ptr != NULL && png_ptr->warning_fn != NULL)
(*(png_ptr->warning_fn))(png_ptr, warning_message + offset);
else
png_default_warning(png_ptr, warning_message + offset);
}
#endif /* PNG_WARNINGS_SUPPORTED */
 
#ifdef PNG_BENIGN_ERRORS_SUPPORTED
void PNGAPI
png_benign_error(png_structp png_ptr, png_const_charp error_message)
{
if (png_ptr->flags & PNG_FLAG_BENIGN_ERRORS_WARN)
png_warning(png_ptr, error_message);
else
png_error(png_ptr, error_message);
}
#endif
 
/* These utilities are used internally to build an error message that relates
* to the current chunk. The chunk name comes from png_ptr->chunk_name,
* this is used to prefix the message. The message is limited in length
* to 63 bytes, the name characters are output as hex digits wrapped in []
* if the character is invalid.
*/
#define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97))
static PNG_CONST char png_digit[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'
};
 
#define PNG_MAX_ERROR_TEXT 64
#if defined(PNG_WARNINGS_SUPPORTED) || defined(PNG_ERROR_TEXT_SUPPORTED)
static void /* PRIVATE */
png_format_buffer(png_structp png_ptr, png_charp buffer, png_const_charp
error_message)
{
int iout = 0, iin = 0;
 
while (iin < 4)
{
int c = png_ptr->chunk_name[iin++];
if (isnonalpha(c))
{
buffer[iout++] = PNG_LITERAL_LEFT_SQUARE_BRACKET;
buffer[iout++] = png_digit[(c & 0xf0) >> 4];
buffer[iout++] = png_digit[c & 0x0f];
buffer[iout++] = PNG_LITERAL_RIGHT_SQUARE_BRACKET;
}
 
else
{
buffer[iout++] = (png_byte)c;
}
}
 
if (error_message == NULL)
buffer[iout] = '\0';
 
else
{
buffer[iout++] = ':';
buffer[iout++] = ' ';
png_memcpy(buffer + iout, error_message, PNG_MAX_ERROR_TEXT);
buffer[iout + PNG_MAX_ERROR_TEXT - 1] = '\0';
}
}
#endif /* PNG_WARNINGS_SUPPORTED || PNG_ERROR_TEXT_SUPPORTED */
 
#if defined(PNG_READ_SUPPORTED) && defined(PNG_ERROR_TEXT_SUPPORTED)
PNG_FUNCTION(void,PNGAPI
png_chunk_error,(png_structp png_ptr, png_const_charp error_message),
PNG_NORETURN)
{
char msg[18+PNG_MAX_ERROR_TEXT];
if (png_ptr == NULL)
png_error(png_ptr, error_message);
 
else
{
png_format_buffer(png_ptr, msg, error_message);
png_error(png_ptr, msg);
}
}
#endif /* PNG_READ_SUPPORTED && PNG_ERROR_TEXT_SUPPORTED */
 
#ifdef PNG_WARNINGS_SUPPORTED
void PNGAPI
png_chunk_warning(png_structp png_ptr, png_const_charp warning_message)
{
char msg[18+PNG_MAX_ERROR_TEXT];
if (png_ptr == NULL)
png_warning(png_ptr, warning_message);
 
else
{
png_format_buffer(png_ptr, msg, warning_message);
png_warning(png_ptr, msg);
}
}
#endif /* PNG_WARNINGS_SUPPORTED */
 
#ifdef PNG_READ_SUPPORTED
#ifdef PNG_BENIGN_ERRORS_SUPPORTED
void PNGAPI
png_chunk_benign_error(png_structp png_ptr, png_const_charp error_message)
{
if (png_ptr->flags & PNG_FLAG_BENIGN_ERRORS_WARN)
png_chunk_warning(png_ptr, error_message);
 
else
png_chunk_error(png_ptr, error_message);
}
#endif
#endif /* PNG_READ_SUPPORTED */
 
#ifdef PNG_ERROR_TEXT_SUPPORTED
#ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_FUNCTION(void,
png_fixed_error,(png_structp png_ptr, png_const_charp name),PNG_NORETURN)
{
# define fixed_message "fixed point overflow in "
# define fixed_message_ln ((sizeof fixed_message)-1)
int iin;
char msg[fixed_message_ln+PNG_MAX_ERROR_TEXT];
png_memcpy(msg, fixed_message, fixed_message_ln);
iin = 0;
if (name != NULL) while (iin < (PNG_MAX_ERROR_TEXT-1) && name[iin] != 0)
{
msg[fixed_message_ln + iin] = name[iin];
++iin;
}
msg[fixed_message_ln + iin] = 0;
png_error(png_ptr, msg);
}
#endif
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* This API only exists if ANSI-C style error handling is used,
* otherwise it is necessary for png_default_error to be overridden.
*/
jmp_buf* PNGAPI
png_set_longjmp_fn(png_structp png_ptr, png_longjmp_ptr longjmp_fn,
size_t jmp_buf_size)
{
if (png_ptr == NULL || jmp_buf_size != png_sizeof(jmp_buf))
return NULL;
 
png_ptr->longjmp_fn = longjmp_fn;
return &png_ptr->png_jmpbuf;
}
#endif
 
/* This is the default error handling function. Note that replacements for
* this function MUST NOT RETURN, or the program will likely crash. This
* function is used by default, or if the program supplies NULL for the
* error function pointer in png_set_error_fn().
*/
static PNG_FUNCTION(void /* PRIVATE */,
png_default_error,(png_structp png_ptr, png_const_charp error_message),
PNG_NORETURN)
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (*error_message == PNG_LITERAL_SHARP)
{
/* Strip "#nnnn " from beginning of error message. */
int offset;
char error_number[16];
for (offset = 0; offset<15; offset++)
{
error_number[offset] = error_message[offset + 1];
if (error_message[offset] == ' ')
break;
}
 
if ((offset > 1) && (offset < 15))
{
error_number[offset - 1] = '\0';
fprintf(stderr, "libpng error no. %s: %s",
error_number, error_message + offset + 1);
fprintf(stderr, PNG_STRING_NEWLINE);
}
 
else
{
fprintf(stderr, "libpng error: %s, offset=%d",
error_message, offset);
fprintf(stderr, PNG_STRING_NEWLINE);
}
}
else
#endif
{
fprintf(stderr, "libpng error: %s", error_message);
fprintf(stderr, PNG_STRING_NEWLINE);
}
#endif
#ifndef PNG_CONSOLE_IO_SUPPORTED
PNG_UNUSED(error_message) /* Make compiler happy */
#endif
png_longjmp(png_ptr, 1);
}
 
PNG_FUNCTION(void,PNGAPI
png_longjmp,(png_structp png_ptr, int val),PNG_NORETURN)
{
#ifdef PNG_SETJMP_SUPPORTED
if (png_ptr && png_ptr->longjmp_fn)
{
# ifdef USE_FAR_KEYWORD
{
jmp_buf png_jmpbuf;
png_memcpy(png_jmpbuf, png_ptr->png_jmpbuf, png_sizeof(jmp_buf));
png_ptr->longjmp_fn(png_jmpbuf, val);
}
 
# else
png_ptr->longjmp_fn(png_ptr->png_jmpbuf, val);
# endif
}
#endif
/* Here if not setjmp support or if png_ptr is null. */
PNG_ABORT();
}
 
#ifdef PNG_WARNINGS_SUPPORTED
/* This function is called when there is a warning, but the library thinks
* it can continue anyway. Replacement functions don't have to do anything
* here if you don't want them to. In the default configuration, png_ptr is
* not used, but it is passed in case it may be useful.
*/
static void /* PRIVATE */
png_default_warning(png_structp png_ptr, png_const_charp warning_message)
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
# ifdef PNG_ERROR_NUMBERS_SUPPORTED
if (*warning_message == PNG_LITERAL_SHARP)
{
int offset;
char warning_number[16];
for (offset = 0; offset < 15; offset++)
{
warning_number[offset] = warning_message[offset + 1];
if (warning_message[offset] == ' ')
break;
}
 
if ((offset > 1) && (offset < 15))
{
warning_number[offset + 1] = '\0';
fprintf(stderr, "libpng warning no. %s: %s",
warning_number, warning_message + offset);
fprintf(stderr, PNG_STRING_NEWLINE);
}
 
else
{
fprintf(stderr, "libpng warning: %s",
warning_message);
fprintf(stderr, PNG_STRING_NEWLINE);
}
}
else
# endif
 
{
fprintf(stderr, "libpng warning: %s", warning_message);
fprintf(stderr, PNG_STRING_NEWLINE);
}
#else
PNG_UNUSED(warning_message) /* Make compiler happy */
#endif
PNG_UNUSED(png_ptr) /* Make compiler happy */
}
#endif /* PNG_WARNINGS_SUPPORTED */
 
/* This function is called when the application wants to use another method
* of handling errors and warnings. Note that the error function MUST NOT
* return to the calling routine or serious problems will occur. The return
* method used in the default routine calls longjmp(png_ptr->png_jmpbuf, 1)
*/
void PNGAPI
png_set_error_fn(png_structp png_ptr, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warning_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->error_ptr = error_ptr;
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
}
 
 
/* This function returns a pointer to the error_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy and png_read_destroy are called.
*/
png_voidp PNGAPI
png_get_error_ptr(png_const_structp png_ptr)
{
if (png_ptr == NULL)
return NULL;
 
return ((png_voidp)png_ptr->error_ptr);
}
 
 
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
void PNGAPI
png_set_strip_error_numbers(png_structp png_ptr, png_uint_32 strip_mode)
{
if (png_ptr != NULL)
{
png_ptr->flags &=
((~(PNG_FLAG_STRIP_ERROR_NUMBERS |
PNG_FLAG_STRIP_ERROR_TEXT))&strip_mode);
}
}
#endif
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngget.c
0,0 → 1,1032
 
/* pngget.c - retrieval of values from info struct
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
*/
 
#include "pngpriv.h"
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 
png_uint_32 PNGAPI
png_get_valid(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 flag)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->valid & flag);
 
return(0);
}
 
png_size_t PNGAPI
png_get_rowbytes(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->rowbytes);
 
return(0);
}
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
png_bytepp PNGAPI
png_get_rows(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->row_pointers);
 
return(0);
}
#endif
 
#ifdef PNG_EASY_ACCESS_SUPPORTED
/* Easy access to info, added in libpng-0.99 */
png_uint_32 PNGAPI
png_get_image_width(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->width;
 
return (0);
}
 
png_uint_32 PNGAPI
png_get_image_height(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->height;
 
return (0);
}
 
png_byte PNGAPI
png_get_bit_depth(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->bit_depth;
 
return (0);
}
 
png_byte PNGAPI
png_get_color_type(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->color_type;
 
return (0);
}
 
png_byte PNGAPI
png_get_filter_type(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->filter_type;
 
return (0);
}
 
png_byte PNGAPI
png_get_interlace_type(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->interlace_type;
 
return (0);
}
 
png_byte PNGAPI
png_get_compression_type(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return info_ptr->compression_type;
 
return (0);
}
 
png_uint_32 PNGAPI
png_get_x_pixels_per_meter(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_pHYs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function",
"png_get_x_pixels_per_meter");
 
if (info_ptr->phys_unit_type == PNG_RESOLUTION_METER)
return (info_ptr->x_pixels_per_unit);
}
#endif
 
return (0);
}
 
png_uint_32 PNGAPI
png_get_y_pixels_per_meter(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_pHYs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function",
"png_get_y_pixels_per_meter");
 
if (info_ptr->phys_unit_type == PNG_RESOLUTION_METER)
return (info_ptr->y_pixels_per_unit);
}
#endif
 
return (0);
}
 
png_uint_32 PNGAPI
png_get_pixels_per_meter(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_pHYs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function", "png_get_pixels_per_meter");
 
if (info_ptr->phys_unit_type == PNG_RESOLUTION_METER &&
info_ptr->x_pixels_per_unit == info_ptr->y_pixels_per_unit)
return (info_ptr->x_pixels_per_unit);
}
#endif
 
return (0);
}
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
float PNGAPI
png_get_pixel_aspect_ratio(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_READ_pHYs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function", "png_get_aspect_ratio");
 
if (info_ptr->x_pixels_per_unit != 0)
return ((float)((float)info_ptr->y_pixels_per_unit
/(float)info_ptr->x_pixels_per_unit));
}
#endif
 
return ((float)0.0);
}
#endif
 
#ifdef PNG_FIXED_POINT_SUPPORTED
png_fixed_point PNGAPI
png_get_pixel_aspect_ratio_fixed(png_const_structp png_ptr,
png_const_infop info_ptr)
{
#ifdef PNG_READ_pHYs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs)
&& info_ptr->x_pixels_per_unit > 0 && info_ptr->y_pixels_per_unit > 0
&& info_ptr->x_pixels_per_unit <= PNG_UINT_31_MAX
&& info_ptr->y_pixels_per_unit <= PNG_UINT_31_MAX)
{
png_fixed_point res;
 
png_debug1(1, "in %s retrieval function", "png_get_aspect_ratio_fixed");
 
/* The following casts work because a PNG 4 byte integer only has a valid
* range of 0..2^31-1; otherwise the cast might overflow.
*/
if (png_muldiv(&res, (png_int_32)info_ptr->y_pixels_per_unit, PNG_FP_1,
(png_int_32)info_ptr->x_pixels_per_unit))
return res;
}
#endif
 
return 0;
}
#endif
 
png_int_32 PNGAPI
png_get_x_offset_microns(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_oFFs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_debug1(1, "in %s retrieval function", "png_get_x_offset_microns");
 
if (info_ptr->offset_unit_type == PNG_OFFSET_MICROMETER)
return (info_ptr->x_offset);
}
#endif
 
return (0);
}
 
png_int_32 PNGAPI
png_get_y_offset_microns(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_oFFs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_debug1(1, "in %s retrieval function", "png_get_y_offset_microns");
 
if (info_ptr->offset_unit_type == PNG_OFFSET_MICROMETER)
return (info_ptr->y_offset);
}
#endif
 
return (0);
}
 
png_int_32 PNGAPI
png_get_x_offset_pixels(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_oFFs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_debug1(1, "in %s retrieval function", "png_get_x_offset_pixels");
 
if (info_ptr->offset_unit_type == PNG_OFFSET_PIXEL)
return (info_ptr->x_offset);
}
#endif
 
return (0);
}
 
png_int_32 PNGAPI
png_get_y_offset_pixels(png_const_structp png_ptr, png_const_infop info_ptr)
{
#ifdef PNG_oFFs_SUPPORTED
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_debug1(1, "in %s retrieval function", "png_get_y_offset_pixels");
 
if (info_ptr->offset_unit_type == PNG_OFFSET_PIXEL)
return (info_ptr->y_offset);
}
#endif
 
return (0);
}
 
#ifdef PNG_INCH_CONVERSIONS_SUPPORTED
static png_uint_32
ppi_from_ppm(png_uint_32 ppm)
{
#if 0
/* The conversion is *(2.54/100), in binary (32 digits):
* .00000110100000001001110101001001
*/
png_uint_32 t1001, t1101;
ppm >>= 1; /* .1 */
t1001 = ppm + (ppm >> 3); /* .1001 */
t1101 = t1001 + (ppm >> 1); /* .1101 */
ppm >>= 20; /* .000000000000000000001 */
t1101 += t1101 >> 15; /* .1101000000000001101 */
t1001 >>= 11; /* .000000000001001 */
t1001 += t1001 >> 12; /* .000000000001001000000001001 */
ppm += t1001; /* .000000000001001000001001001 */
ppm += t1101; /* .110100000001001110101001001 */
return (ppm + 16) >> 5;/* .00000110100000001001110101001001 */
#else
/* The argument is a PNG unsigned integer, so it is not permitted
* to be bigger than 2^31.
*/
png_fixed_point result;
if (ppm <= PNG_UINT_31_MAX && png_muldiv(&result, (png_int_32)ppm, 127,
5000))
return result;
 
/* Overflow. */
return 0;
#endif
}
 
png_uint_32 PNGAPI
png_get_pixels_per_inch(png_const_structp png_ptr, png_const_infop info_ptr)
{
return ppi_from_ppm(png_get_pixels_per_meter(png_ptr, info_ptr));
}
 
png_uint_32 PNGAPI
png_get_x_pixels_per_inch(png_const_structp png_ptr, png_const_infop info_ptr)
{
return ppi_from_ppm(png_get_x_pixels_per_meter(png_ptr, info_ptr));
}
 
png_uint_32 PNGAPI
png_get_y_pixels_per_inch(png_const_structp png_ptr, png_const_infop info_ptr)
{
return ppi_from_ppm(png_get_y_pixels_per_meter(png_ptr, info_ptr));
}
 
#ifdef PNG_FIXED_POINT_SUPPORTED
static png_fixed_point
png_fixed_inches_from_microns(png_structp png_ptr, png_int_32 microns)
{
/* Convert from metres * 1,000,000 to inches * 100,000, meters to
* inches is simply *(100/2.54), so we want *(10/2.54) == 500/127.
* Notice that this can overflow - a warning is output and 0 is
* returned.
*/
return png_muldiv_warn(png_ptr, microns, 500, 127);
}
 
png_fixed_point PNGAPI
png_get_x_offset_inches_fixed(png_structp png_ptr,
png_const_infop info_ptr)
{
return png_fixed_inches_from_microns(png_ptr,
png_get_x_offset_microns(png_ptr, info_ptr));
}
#endif
 
#ifdef PNG_FIXED_POINT_SUPPORTED
png_fixed_point PNGAPI
png_get_y_offset_inches_fixed(png_structp png_ptr,
png_const_infop info_ptr)
{
return png_fixed_inches_from_microns(png_ptr,
png_get_y_offset_microns(png_ptr, info_ptr));
}
#endif
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
float PNGAPI
png_get_x_offset_inches(png_const_structp png_ptr, png_const_infop info_ptr)
{
/* To avoid the overflow do the conversion directly in floating
* point.
*/
return (float)(png_get_x_offset_microns(png_ptr, info_ptr) * .00003937);
}
#endif
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
float PNGAPI
png_get_y_offset_inches(png_const_structp png_ptr, png_const_infop info_ptr)
{
/* To avoid the overflow do the conversion directly in floating
* point.
*/
return (float)(png_get_y_offset_microns(png_ptr, info_ptr) * .00003937);
}
#endif
 
#ifdef PNG_pHYs_SUPPORTED
png_uint_32 PNGAPI
png_get_pHYs_dpi(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)
{
png_uint_32 retval = 0;
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_debug1(1, "in %s retrieval function", "pHYs");
 
if (res_x != NULL)
{
*res_x = info_ptr->x_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
 
if (res_y != NULL)
{
*res_y = info_ptr->y_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
 
if (unit_type != NULL)
{
*unit_type = (int)info_ptr->phys_unit_type;
retval |= PNG_INFO_pHYs;
 
if (*unit_type == 1)
{
if (res_x != NULL) *res_x = (png_uint_32)(*res_x * .0254 + .50);
if (res_y != NULL) *res_y = (png_uint_32)(*res_y * .0254 + .50);
}
}
}
 
return (retval);
}
#endif /* PNG_pHYs_SUPPORTED */
#endif /* PNG_INCH_CONVERSIONS_SUPPORTED */
 
/* png_get_channels really belongs in here, too, but it's been around longer */
 
#endif /* PNG_EASY_ACCESS_SUPPORTED */
 
png_byte PNGAPI
png_get_channels(png_const_structp png_ptr, png_const_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->channels);
 
return (0);
}
 
png_const_bytep PNGAPI
png_get_signature(png_const_structp png_ptr, png_infop info_ptr)
{
if (png_ptr != NULL && info_ptr != NULL)
return(info_ptr->signature);
 
return (NULL);
}
 
#ifdef PNG_bKGD_SUPPORTED
png_uint_32 PNGAPI
png_get_bKGD(png_const_structp png_ptr, png_infop info_ptr,
png_color_16p *background)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD)
&& background != NULL)
{
png_debug1(1, "in %s retrieval function", "bKGD");
 
*background = &(info_ptr->background);
return (PNG_INFO_bKGD);
}
 
return (0);
}
#endif
 
#ifdef PNG_cHRM_SUPPORTED
# ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_cHRM(png_const_structp png_ptr, png_const_infop info_ptr,
double *white_x, double *white_y, double *red_x, double *red_y,
double *green_x, double *green_y, double *blue_x, double *blue_y)
{
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
{
png_debug1(1, "in %s retrieval function", "cHRM");
 
if (white_x != NULL)
*white_x = png_float(png_ptr, info_ptr->x_white, "cHRM white X");
if (white_y != NULL)
*white_y = png_float(png_ptr, info_ptr->y_white, "cHRM white Y");
if (red_x != NULL)
*red_x = png_float(png_ptr, info_ptr->x_red, "cHRM red X");
if (red_y != NULL)
*red_y = png_float(png_ptr, info_ptr->y_red, "cHRM red Y");
if (green_x != NULL)
*green_x = png_float(png_ptr, info_ptr->x_green, "cHRM green X");
if (green_y != NULL)
*green_y = png_float(png_ptr, info_ptr->y_green, "cHRM green Y");
if (blue_x != NULL)
*blue_x = png_float(png_ptr, info_ptr->x_blue, "cHRM blue X");
if (blue_y != NULL)
*blue_y = png_float(png_ptr, info_ptr->y_blue, "cHRM blue Y");
return (PNG_INFO_cHRM);
}
 
return (0);
}
# endif
 
# ifdef PNG_FIXED_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_cHRM_fixed(png_const_structp png_ptr, png_const_infop info_ptr,
png_fixed_point *white_x, png_fixed_point *white_y, png_fixed_point *red_x,
png_fixed_point *red_y, png_fixed_point *green_x, png_fixed_point *green_y,
png_fixed_point *blue_x, png_fixed_point *blue_y)
{
png_debug1(1, "in %s retrieval function", "cHRM");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
{
if (white_x != NULL)
*white_x = info_ptr->x_white;
if (white_y != NULL)
*white_y = info_ptr->y_white;
if (red_x != NULL)
*red_x = info_ptr->x_red;
if (red_y != NULL)
*red_y = info_ptr->y_red;
if (green_x != NULL)
*green_x = info_ptr->x_green;
if (green_y != NULL)
*green_y = info_ptr->y_green;
if (blue_x != NULL)
*blue_x = info_ptr->x_blue;
if (blue_y != NULL)
*blue_y = info_ptr->y_blue;
return (PNG_INFO_cHRM);
}
 
return (0);
}
# endif
#endif
 
#ifdef PNG_gAMA_SUPPORTED
png_uint_32 PNGFAPI
png_get_gAMA_fixed(png_const_structp png_ptr, png_const_infop info_ptr,
png_fixed_point *file_gamma)
{
png_debug1(1, "in %s retrieval function", "gAMA");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
&& file_gamma != NULL)
{
*file_gamma = info_ptr->gamma;
return (PNG_INFO_gAMA);
}
 
return (0);
}
# ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_gAMA(png_const_structp png_ptr, png_const_infop info_ptr,
double *file_gamma)
{
png_fixed_point igamma;
png_uint_32 ok = png_get_gAMA_fixed(png_ptr, info_ptr, &igamma);
 
if (ok)
*file_gamma = png_float(png_ptr, igamma, "png_get_gAMA");
 
return ok;
}
 
# endif
#endif
 
#ifdef PNG_sRGB_SUPPORTED
png_uint_32 PNGAPI
png_get_sRGB(png_const_structp png_ptr, png_const_infop info_ptr,
int *file_srgb_intent)
{
png_debug1(1, "in %s retrieval function", "sRGB");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)
&& file_srgb_intent != NULL)
{
*file_srgb_intent = (int)info_ptr->srgb_intent;
return (PNG_INFO_sRGB);
}
 
return (0);
}
#endif
 
#ifdef PNG_iCCP_SUPPORTED
png_uint_32 PNGAPI
png_get_iCCP(png_const_structp png_ptr, png_const_infop info_ptr,
png_charpp name, int *compression_type,
png_bytepp profile, png_uint_32 *proflen)
{
png_debug1(1, "in %s retrieval function", "iCCP");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP)
&& name != NULL && profile != NULL && proflen != NULL)
{
*name = info_ptr->iccp_name;
*profile = info_ptr->iccp_profile;
/* Compression_type is a dummy so the API won't have to change
* if we introduce multiple compression types later.
*/
*proflen = (int)info_ptr->iccp_proflen;
*compression_type = (int)info_ptr->iccp_compression;
return (PNG_INFO_iCCP);
}
 
return (0);
}
#endif
 
#ifdef PNG_sPLT_SUPPORTED
png_uint_32 PNGAPI
png_get_sPLT(png_const_structp png_ptr, png_const_infop info_ptr,
png_sPLT_tpp spalettes)
{
if (png_ptr != NULL && info_ptr != NULL && spalettes != NULL)
{
*spalettes = info_ptr->splt_palettes;
return ((png_uint_32)info_ptr->splt_palettes_num);
}
 
return (0);
}
#endif
 
#ifdef PNG_hIST_SUPPORTED
png_uint_32 PNGAPI
png_get_hIST(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_16p *hist)
{
png_debug1(1, "in %s retrieval function", "hIST");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST)
&& hist != NULL)
{
*hist = info_ptr->hist;
return (PNG_INFO_hIST);
}
 
return (0);
}
#endif
 
png_uint_32 PNGAPI
png_get_IHDR(png_structp png_ptr, png_infop info_ptr,
png_uint_32 *width, png_uint_32 *height, int *bit_depth,
int *color_type, int *interlace_type, int *compression_type,
int *filter_type)
 
{
png_debug1(1, "in %s retrieval function", "IHDR");
 
if (png_ptr == NULL || info_ptr == NULL || width == NULL ||
height == NULL || bit_depth == NULL || color_type == NULL)
return (0);
 
*width = info_ptr->width;
*height = info_ptr->height;
*bit_depth = info_ptr->bit_depth;
*color_type = info_ptr->color_type;
 
if (compression_type != NULL)
*compression_type = info_ptr->compression_type;
 
if (filter_type != NULL)
*filter_type = info_ptr->filter_type;
 
if (interlace_type != NULL)
*interlace_type = info_ptr->interlace_type;
 
/* This is redundant if we can be sure that the info_ptr values were all
* assigned in png_set_IHDR(). We do the check anyhow in case an
* application has ignored our advice not to mess with the members
* of info_ptr directly.
*/
png_check_IHDR (png_ptr, info_ptr->width, info_ptr->height,
info_ptr->bit_depth, info_ptr->color_type, info_ptr->interlace_type,
info_ptr->compression_type, info_ptr->filter_type);
 
return (1);
}
 
#ifdef PNG_oFFs_SUPPORTED
png_uint_32 PNGAPI
png_get_oFFs(png_const_structp png_ptr, png_const_infop info_ptr,
png_int_32 *offset_x, png_int_32 *offset_y, int *unit_type)
{
png_debug1(1, "in %s retrieval function", "oFFs");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs)
&& offset_x != NULL && offset_y != NULL && unit_type != NULL)
{
*offset_x = info_ptr->x_offset;
*offset_y = info_ptr->y_offset;
*unit_type = (int)info_ptr->offset_unit_type;
return (PNG_INFO_oFFs);
}
 
return (0);
}
#endif
 
#ifdef PNG_pCAL_SUPPORTED
png_uint_32 PNGAPI
png_get_pCAL(png_const_structp png_ptr, png_const_infop info_ptr,
png_charp *purpose, png_int_32 *X0, png_int_32 *X1, int *type, int *nparams,
png_charp *units, png_charpp *params)
{
png_debug1(1, "in %s retrieval function", "pCAL");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL)
&& purpose != NULL && X0 != NULL && X1 != NULL && type != NULL &&
nparams != NULL && units != NULL && params != NULL)
{
*purpose = info_ptr->pcal_purpose;
*X0 = info_ptr->pcal_X0;
*X1 = info_ptr->pcal_X1;
*type = (int)info_ptr->pcal_type;
*nparams = (int)info_ptr->pcal_nparams;
*units = info_ptr->pcal_units;
*params = info_ptr->pcal_params;
return (PNG_INFO_pCAL);
}
 
return (0);
}
#endif
 
#ifdef PNG_sCAL_SUPPORTED
# ifdef PNG_FIXED_POINT_SUPPORTED
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
png_uint_32 PNGAPI
png_get_sCAL_fixed(png_structp png_ptr, png_const_infop info_ptr,
int *unit, png_fixed_point *width, png_fixed_point *height)
{
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_sCAL))
{
*unit = info_ptr->scal_unit;
/*TODO: make this work without FP support */
*width = png_fixed(png_ptr, atof(info_ptr->scal_s_width), "sCAL width");
*height = png_fixed(png_ptr, atof(info_ptr->scal_s_height),
"sCAL height");
return (PNG_INFO_sCAL);
}
 
return(0);
}
# endif /* FLOATING_ARITHMETIC */
# endif /* FIXED_POINT */
# ifdef PNG_FLOATING_POINT_SUPPORTED
png_uint_32 PNGAPI
png_get_sCAL(png_const_structp png_ptr, png_const_infop info_ptr,
int *unit, double *width, double *height)
{
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_sCAL))
{
*unit = info_ptr->scal_unit;
*width = atof(info_ptr->scal_s_width);
*height = atof(info_ptr->scal_s_height);
return (PNG_INFO_sCAL);
}
 
return(0);
}
# endif /* FLOATING POINT */
png_uint_32 PNGAPI
png_get_sCAL_s(png_const_structp png_ptr, png_const_infop info_ptr,
int *unit, png_charpp width, png_charpp height)
{
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_sCAL))
{
*unit = info_ptr->scal_unit;
*width = info_ptr->scal_s_width;
*height = info_ptr->scal_s_height;
return (PNG_INFO_sCAL);
}
 
return(0);
}
#endif /* sCAL */
 
#ifdef PNG_pHYs_SUPPORTED
png_uint_32 PNGAPI
png_get_pHYs(png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *res_x, png_uint_32 *res_y, int *unit_type)
{
png_uint_32 retval = 0;
 
png_debug1(1, "in %s retrieval function", "pHYs");
 
if (png_ptr != NULL && info_ptr != NULL &&
(info_ptr->valid & PNG_INFO_pHYs))
{
if (res_x != NULL)
{
*res_x = info_ptr->x_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
 
if (res_y != NULL)
{
*res_y = info_ptr->y_pixels_per_unit;
retval |= PNG_INFO_pHYs;
}
 
if (unit_type != NULL)
{
*unit_type = (int)info_ptr->phys_unit_type;
retval |= PNG_INFO_pHYs;
}
}
 
return (retval);
}
#endif /* pHYs */
 
png_uint_32 PNGAPI
png_get_PLTE(png_const_structp png_ptr, png_const_infop info_ptr,
png_colorp *palette, int *num_palette)
{
png_debug1(1, "in %s retrieval function", "PLTE");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_PLTE)
&& palette != NULL)
{
*palette = info_ptr->palette;
*num_palette = info_ptr->num_palette;
png_debug1(3, "num_palette = %d", *num_palette);
return (PNG_INFO_PLTE);
}
 
return (0);
}
 
#ifdef PNG_sBIT_SUPPORTED
png_uint_32 PNGAPI
png_get_sBIT(png_const_structp png_ptr, png_infop info_ptr,
png_color_8p *sig_bit)
{
png_debug1(1, "in %s retrieval function", "sBIT");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT)
&& sig_bit != NULL)
{
*sig_bit = &(info_ptr->sig_bit);
return (PNG_INFO_sBIT);
}
 
return (0);
}
#endif
 
#ifdef PNG_TEXT_SUPPORTED
png_uint_32 PNGAPI
png_get_text(png_const_structp png_ptr, png_const_infop info_ptr,
png_textp *text_ptr, int *num_text)
{
if (png_ptr != NULL && info_ptr != NULL && info_ptr->num_text > 0)
{
png_debug1(1, "in %s retrieval function",
(png_ptr->chunk_name[0] == '\0' ? "text" :
(png_const_charp)png_ptr->chunk_name));
 
if (text_ptr != NULL)
*text_ptr = info_ptr->text;
 
if (num_text != NULL)
*num_text = info_ptr->num_text;
 
return ((png_uint_32)info_ptr->num_text);
}
 
if (num_text != NULL)
*num_text = 0;
 
return(0);
}
#endif
 
#ifdef PNG_tIME_SUPPORTED
png_uint_32 PNGAPI
png_get_tIME(png_const_structp png_ptr, png_infop info_ptr, png_timep *mod_time)
{
png_debug1(1, "in %s retrieval function", "tIME");
 
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME)
&& mod_time != NULL)
{
*mod_time = &(info_ptr->mod_time);
return (PNG_INFO_tIME);
}
 
return (0);
}
#endif
 
#ifdef PNG_tRNS_SUPPORTED
png_uint_32 PNGAPI
png_get_tRNS(png_const_structp png_ptr, png_infop info_ptr,
png_bytep *trans_alpha, int *num_trans, png_color_16p *trans_color)
{
png_uint_32 retval = 0;
if (png_ptr != NULL && info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
png_debug1(1, "in %s retrieval function", "tRNS");
 
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (trans_alpha != NULL)
{
*trans_alpha = info_ptr->trans_alpha;
retval |= PNG_INFO_tRNS;
}
 
if (trans_color != NULL)
*trans_color = &(info_ptr->trans_color);
}
 
else /* if (info_ptr->color_type != PNG_COLOR_TYPE_PALETTE) */
{
if (trans_color != NULL)
{
*trans_color = &(info_ptr->trans_color);
retval |= PNG_INFO_tRNS;
}
 
if (trans_alpha != NULL)
*trans_alpha = NULL;
}
 
if (num_trans != NULL)
{
*num_trans = info_ptr->num_trans;
retval |= PNG_INFO_tRNS;
}
}
 
return (retval);
}
#endif
 
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
int PNGAPI
png_get_unknown_chunks(png_const_structp png_ptr, png_const_infop info_ptr,
png_unknown_chunkpp unknowns)
{
if (png_ptr != NULL && info_ptr != NULL && unknowns != NULL)
{
*unknowns = info_ptr->unknown_chunks;
return info_ptr->unknown_chunks_num;
}
 
return (0);
}
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
png_byte PNGAPI
png_get_rgb_to_gray_status (png_const_structp png_ptr)
{
return (png_byte)(png_ptr ? png_ptr->rgb_to_gray_status : 0);
}
#endif
 
#ifdef PNG_USER_CHUNKS_SUPPORTED
png_voidp PNGAPI
png_get_user_chunk_ptr(png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->user_chunk_ptr : NULL);
}
#endif
 
png_size_t PNGAPI
png_get_compression_buffer_size(png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->zbuf_size : 0L);
}
 
 
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
/* These functions were added to libpng 1.2.6 and were enabled
* by default in libpng-1.4.0 */
png_uint_32 PNGAPI
png_get_user_width_max (png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->user_width_max : 0);
}
 
png_uint_32 PNGAPI
png_get_user_height_max (png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->user_height_max : 0);
}
 
/* This function was added to libpng 1.4.0 */
png_uint_32 PNGAPI
png_get_chunk_cache_max (png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->user_chunk_cache_max : 0);
}
 
/* This function was added to libpng 1.4.1 */
png_alloc_size_t PNGAPI
png_get_chunk_malloc_max (png_const_structp png_ptr)
{
return (png_ptr ? png_ptr->user_chunk_malloc_max : 0);
}
#endif /* ?PNG_SET_USER_LIMITS_SUPPORTED */
 
/* These functions were added to libpng 1.4.0 */
#ifdef PNG_IO_STATE_SUPPORTED
png_uint_32 PNGAPI
png_get_io_state (png_structp png_ptr)
{
return png_ptr->io_state;
}
 
png_uint_32 PNGAPI
png_get_io_chunk_type (png_const_structp png_ptr)
{
return ((png_ptr->chunk_name[0] << 24) +
(png_ptr->chunk_name[1] << 16) +
(png_ptr->chunk_name[2] << 8) +
(png_ptr->chunk_name[3]));
}
 
png_const_bytep PNGAPI
png_get_io_chunk_name (png_structp png_ptr)
{
return png_ptr->chunk_name;
}
#endif /* ?PNG_IO_STATE_SUPPORTED */
 
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pnginfo.h
0,0 → 1,270
 
/* pnginfo.h - header file for PNG reference library
*
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* Last changed in libpng 1.5.0 [January 6, 2011]
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
/* png_info is a structure that holds the information in a PNG file so
* that the application can find out the characteristics of the image.
* If you are reading the file, this structure will tell you what is
* in the PNG file. If you are writing the file, fill in the information
* you want to put into the PNG file, using png_set_*() functions, then
* call png_write_info().
*
* The names chosen should be very close to the PNG specification, so
* consult that document for information about the meaning of each field.
*
* With libpng < 0.95, it was only possible to directly set and read the
* the values in the png_info_struct, which meant that the contents and
* order of the values had to remain fixed. With libpng 0.95 and later,
* however, there are now functions that abstract the contents of
* png_info_struct from the application, so this makes it easier to use
* libpng with dynamic libraries, and even makes it possible to use
* libraries that don't have all of the libpng ancillary chunk-handing
* functionality. In libpng-1.5.0 this was moved into a separate private
* file that is not visible to applications.
*
* The following members may have allocated storage attached that should be
* cleaned up before the structure is discarded: palette, trans, text,
* pcal_purpose, pcal_units, pcal_params, hist, iccp_name, iccp_profile,
* splt_palettes, scal_unit, row_pointers, and unknowns. By default, these
* are automatically freed when the info structure is deallocated, if they were
* allocated internally by libpng. This behavior can be changed by means
* of the png_data_freer() function.
*
* More allocation details: all the chunk-reading functions that
* change these members go through the corresponding png_set_*
* functions. A function to clear these members is available: see
* png_free_data(). The png_set_* functions do not depend on being
* able to point info structure members to any of the storage they are
* passed (they make their own copies), EXCEPT that the png_set_text
* functions use the same storage passed to them in the text_ptr or
* itxt_ptr structure argument, and the png_set_rows and png_set_unknowns
* functions do not make their own copies.
*/
#ifndef PNGINFO_H
#define PNGINFO_H
 
struct png_info_def
{
/* the following are necessary for every PNG file */
png_uint_32 width; /* width of image in pixels (from IHDR) */
png_uint_32 height; /* height of image in pixels (from IHDR) */
png_uint_32 valid; /* valid chunk data (see PNG_INFO_ below) */
png_size_t rowbytes; /* bytes needed to hold an untransformed row */
png_colorp palette; /* array of color values (valid & PNG_INFO_PLTE) */
png_uint_16 num_palette; /* number of color entries in "palette" (PLTE) */
png_uint_16 num_trans; /* number of transparent palette color (tRNS) */
png_byte bit_depth; /* 1, 2, 4, 8, or 16 bits/channel (from IHDR) */
png_byte color_type; /* see PNG_COLOR_TYPE_ below (from IHDR) */
/* The following three should have been named *_method not *_type */
png_byte compression_type; /* must be PNG_COMPRESSION_TYPE_BASE (IHDR) */
png_byte filter_type; /* must be PNG_FILTER_TYPE_BASE (from IHDR) */
png_byte interlace_type; /* One of PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */
 
/* The following is informational only on read, and not used on writes. */
png_byte channels; /* number of data channels per pixel (1, 2, 3, 4) */
png_byte pixel_depth; /* number of bits per pixel */
png_byte spare_byte; /* to align the data, and for future use */
png_byte signature[8]; /* magic bytes read by libpng from start of file */
 
/* The rest of the data is optional. If you are reading, check the
* valid field to see if the information in these are valid. If you
* are writing, set the valid field to those chunks you want written,
* and initialize the appropriate fields below.
*/
 
#if defined(PNG_gAMA_SUPPORTED)
/* The gAMA chunk describes the gamma characteristics of the system
* on which the image was created, normally in the range [1.0, 2.5].
* Data is valid if (valid & PNG_INFO_gAMA) is non-zero.
*/
png_fixed_point gamma;
#endif
 
#ifdef PNG_sRGB_SUPPORTED
/* GR-P, 0.96a */
/* Data valid if (valid & PNG_INFO_sRGB) non-zero. */
png_byte srgb_intent; /* sRGB rendering intent [0, 1, 2, or 3] */
#endif
 
#ifdef PNG_TEXT_SUPPORTED
/* The tEXt, and zTXt chunks contain human-readable textual data in
* uncompressed, compressed, and optionally compressed forms, respectively.
* The data in "text" is an array of pointers to uncompressed,
* null-terminated C strings. Each chunk has a keyword that describes the
* textual data contained in that chunk. Keywords are not required to be
* unique, and the text string may be empty. Any number of text chunks may
* be in an image.
*/
int num_text; /* number of comments read or comments to write */
int max_text; /* current size of text array */
png_textp text; /* array of comments read or comments to write */
#endif /* PNG_TEXT_SUPPORTED */
 
#ifdef PNG_tIME_SUPPORTED
/* The tIME chunk holds the last time the displayed image data was
* modified. See the png_time struct for the contents of this struct.
*/
png_time mod_time;
#endif
 
#ifdef PNG_sBIT_SUPPORTED
/* The sBIT chunk specifies the number of significant high-order bits
* in the pixel data. Values are in the range [1, bit_depth], and are
* only specified for the channels in the pixel data. The contents of
* the low-order bits is not specified. Data is valid if
* (valid & PNG_INFO_sBIT) is non-zero.
*/
png_color_8 sig_bit; /* significant bits in color channels */
#endif
 
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_EXPAND_SUPPORTED) || \
defined(PNG_READ_BACKGROUND_SUPPORTED)
/* The tRNS chunk supplies transparency data for paletted images and
* other image types that don't need a full alpha channel. There are
* "num_trans" transparency values for a paletted image, stored in the
* same order as the palette colors, starting from index 0. Values
* for the data are in the range [0, 255], ranging from fully transparent
* to fully opaque, respectively. For non-paletted images, there is a
* single color specified that should be treated as fully transparent.
* Data is valid if (valid & PNG_INFO_tRNS) is non-zero.
*/
png_bytep trans; /* alpha values for paletted image */
png_bytep trans_alpha; /* alpha values for paletted image */
png_color_16 trans_color; /* transparent color for non-palette image */
#endif
 
#if defined(PNG_bKGD_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
/* The bKGD chunk gives the suggested image background color if the
* display program does not have its own background color and the image
* is needs to composited onto a background before display. The colors
* in "background" are normally in the same color space/depth as the
* pixel data. Data is valid if (valid & PNG_INFO_bKGD) is non-zero.
*/
png_color_16 background;
#endif
 
#ifdef PNG_oFFs_SUPPORTED
/* The oFFs chunk gives the offset in "offset_unit_type" units rightwards
* and downwards from the top-left corner of the display, page, or other
* application-specific co-ordinate space. See the PNG_OFFSET_ defines
* below for the unit types. Valid if (valid & PNG_INFO_oFFs) non-zero.
*/
png_int_32 x_offset; /* x offset on page */
png_int_32 y_offset; /* y offset on page */
png_byte offset_unit_type; /* offset units type */
#endif
 
#ifdef PNG_pHYs_SUPPORTED
/* The pHYs chunk gives the physical pixel density of the image for
* display or printing in "phys_unit_type" units (see PNG_RESOLUTION_
* defines below). Data is valid if (valid & PNG_INFO_pHYs) is non-zero.
*/
png_uint_32 x_pixels_per_unit; /* horizontal pixel density */
png_uint_32 y_pixels_per_unit; /* vertical pixel density */
png_byte phys_unit_type; /* resolution type (see PNG_RESOLUTION_ below) */
#endif
 
#ifdef PNG_hIST_SUPPORTED
/* The hIST chunk contains the relative frequency or importance of the
* various palette entries, so that a viewer can intelligently select a
* reduced-color palette, if required. Data is an array of "num_palette"
* values in the range [0,65535]. Data valid if (valid & PNG_INFO_hIST)
* is non-zero.
*/
png_uint_16p hist;
#endif
 
#ifdef PNG_cHRM_SUPPORTED
/* The cHRM chunk describes the CIE color characteristics of the monitor
* on which the PNG was created. This data allows the viewer to do gamut
* mapping of the input image to ensure that the viewer sees the same
* colors in the image as the creator. Values are in the range
* [0.0, 0.8]. Data valid if (valid & PNG_INFO_cHRM) non-zero.
*/
png_fixed_point x_white;
png_fixed_point y_white;
png_fixed_point x_red;
png_fixed_point y_red;
png_fixed_point x_green;
png_fixed_point y_green;
png_fixed_point x_blue;
png_fixed_point y_blue;
#endif
 
#ifdef PNG_pCAL_SUPPORTED
/* The pCAL chunk describes a transformation between the stored pixel
* values and original physical data values used to create the image.
* The integer range [0, 2^bit_depth - 1] maps to the floating-point
* range given by [pcal_X0, pcal_X1], and are further transformed by a
* (possibly non-linear) transformation function given by "pcal_type"
* and "pcal_params" into "pcal_units". Please see the PNG_EQUATION_
* defines below, and the PNG-Group's PNG extensions document for a
* complete description of the transformations and how they should be
* implemented, and for a description of the ASCII parameter strings.
* Data values are valid if (valid & PNG_INFO_pCAL) non-zero.
*/
png_charp pcal_purpose; /* pCAL chunk description string */
png_int_32 pcal_X0; /* minimum value */
png_int_32 pcal_X1; /* maximum value */
png_charp pcal_units; /* Latin-1 string giving physical units */
png_charpp pcal_params; /* ASCII strings containing parameter values */
png_byte pcal_type; /* equation type (see PNG_EQUATION_ below) */
png_byte pcal_nparams; /* number of parameters given in pcal_params */
#endif
 
/* New members added in libpng-1.0.6 */
png_uint_32 free_me; /* flags items libpng is responsible for freeing */
 
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) || \
defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
/* Storage for unknown chunks that the library doesn't recognize. */
png_unknown_chunkp unknown_chunks;
int unknown_chunks_num;
#endif
 
#ifdef PNG_iCCP_SUPPORTED
/* iCCP chunk data. */
png_charp iccp_name; /* profile name */
png_bytep iccp_profile; /* International Color Consortium profile data */
png_uint_32 iccp_proflen; /* ICC profile data length */
png_byte iccp_compression; /* Always zero */
#endif
 
#ifdef PNG_sPLT_SUPPORTED
/* Data on sPLT chunks (there may be more than one). */
png_sPLT_tp splt_palettes;
png_uint_32 splt_palettes_num;
#endif
 
#ifdef PNG_sCAL_SUPPORTED
/* The sCAL chunk describes the actual physical dimensions of the
* subject matter of the graphic. The chunk contains a unit specification
* a byte value, and two ASCII strings representing floating-point
* values. The values are width and height corresponsing to one pixel
* in the image. Data values are valid if (valid & PNG_INFO_sCAL) is
* non-zero.
*/
png_byte scal_unit; /* unit of physical scale */
png_charp scal_s_width; /* string containing height */
png_charp scal_s_height; /* string containing width */
#endif
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
/* Memory has been allocated if (valid & PNG_ALLOCATED_INFO_ROWS)
non-zero */
/* Data valid if (valid & PNG_INFO_IDAT) non-zero */
png_bytepp row_pointers; /* the image bits */
#endif
 
};
#endif /* PNGINFO_H */
/programs/develop/libraries/libpng/pnglibconf.h
0,0 → 1,173
/* pnglibconf.h - library build configuration */
 
/* libpng version 1.5.0 - January 6, 2011 */
 
/* Copyright (c) 1998-2011 Glenn Randers-Pehrson */
 
/* This code is released under the libpng license. */
/* For conditions of distribution and use, see the disclaimer */
/* and license in png.h */
 
/* pnglibconf.h */
/* Machine generated file: DO NOT EDIT */
/* Derived from: scripts/pnglibconf.dfa */
#ifndef PNGLCONF_H
#define PNGLCONF_H
/* settings */
#define PNG_MAX_GAMMA_8 11
#define PNG_CALLOC_SUPPORTED
#define PNG_QUANTIZE_RED_BITS 5
#define PNG_USER_WIDTH_MAX 1000000L
#define PNG_QUANTIZE_GREEN_BITS 5
#define PNG_API_RULE 0
#define PNG_QUANTIZE_BLUE_BITS 5
#define PNG_USER_CHUNK_CACHE_MAX 0
#define PNG_USER_HEIGHT_MAX 1000000L
#define PNG_sCAL_PRECISION 5
#define PNG_COST_SHIFT 3
#define PNG_WEIGHT_SHIFT 8
#define PNG_USER_CHUNK_MALLOC_MAX 0
#define PNG_DEFAULT_READ_MACROS 1
#define PNG_ZBUF_SIZE 8192
#define PNG_GAMMA_THRESHOLD_FIXED 5000
/* end of settings */
/* options */
#define PNG_INFO_IMAGE_SUPPORTED
#define PNG_HANDLE_AS_UNKNOWN_SUPPORTED
#define PNG_POINTER_INDEXING_SUPPORTED
#define PNG_WARNINGS_SUPPORTED
#define PNG_FLOATING_ARITHMETIC_SUPPORTED
#define PNG_WRITE_SUPPORTED
#define PNG_WRITE_INTERLACING_SUPPORTED
#define PNG_WRITE_16BIT_SUPPORTED
#define PNG_EASY_ACCESS_SUPPORTED
#define PNG_ALIGN_MEMORY_SUPPORTED
#define PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
#define PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED
#define PNG_USER_LIMITS_SUPPORTED
#define PNG_FIXED_POINT_SUPPORTED
/*#undef PNG_ERROR_NUMBERS_SUPPORTED*/
#define PNG_ERROR_TEXT_SUPPORTED
#define PNG_READ_SUPPORTED
/*#undef PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED*/
#define PNG_BENIGN_ERRORS_SUPPORTED
#define PNG_SETJMP_SUPPORTED
#define PNG_WRITE_FLUSH_SUPPORTED
#define PNG_MNG_FEATURES_SUPPORTED
#define PNG_FLOATING_POINT_SUPPORTED
#define PNG_INCH_CONVERSIONS_SUPPORTED
#define PNG_STDIO_SUPPORTED
#define PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
#define PNG_USER_MEM_SUPPORTED
#define PNG_IO_STATE_SUPPORTED
#define PNG_SET_USER_LIMITS_SUPPORTED
#define PNG_READ_ANCILLARY_CHUNKS_SUPPORTED
#define PNG_WRITE_INT_FUNCTIONS_SUPPORTED
#define PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED
#define PNG_WRITE_FILTER_SUPPORTED
#define PNG_SET_CHUNK_CACHE_LIMIT_SUPPORTED
#define PNG_WRITE_iCCP_SUPPORTED
#define PNG_READ_TRANSFORMS_SUPPORTED
#define PNG_READ_GAMMA_SUPPORTED
#define PNG_READ_bKGD_SUPPORTED
#define PNG_UNKNOWN_CHUNKS_SUPPORTED
#define PNG_READ_sCAL_SUPPORTED
#define PNG_WRITE_hIST_SUPPORTED
#define PNG_READ_OPT_PLTE_SUPPORTED
#define PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED
#define PNG_WRITE_gAMA_SUPPORTED
#define PNG_READ_GRAY_TO_RGB_SUPPORTED
#define PNG_WRITE_pCAL_SUPPORTED
#define PNG_READ_INVERT_ALPHA_SUPPORTED
#define PNG_WRITE_TRANSFORMS_SUPPORTED
#define PNG_READ_sBIT_SUPPORTED
#define PNG_READ_PACK_SUPPORTED
#define PNG_WRITE_SWAP_SUPPORTED
#define PNG_READ_cHRM_SUPPORTED
#define PNG_WRITE_tIME_SUPPORTED
#define PNG_READ_INTERLACING_SUPPORTED
#define PNG_READ_tRNS_SUPPORTED
#define PNG_WRITE_pHYs_SUPPORTED
#define PNG_WRITE_INVERT_SUPPORTED
#define PNG_READ_RGB_TO_GRAY_SUPPORTED
#define PNG_WRITE_sRGB_SUPPORTED
#define PNG_READ_oFFs_SUPPORTED
#define PNG_WRITE_FILLER_SUPPORTED
#define PNG_WRITE_TEXT_SUPPORTED
#define PNG_WRITE_SHIFT_SUPPORTED
#define PNG_PROGRESSIVE_READ_SUPPORTED
#define PNG_READ_SHIFT_SUPPORTED
#define PNG_CONVERT_tIME_SUPPORTED
#define PNG_READ_USER_TRANSFORM_SUPPORTED
#define PNG_READ_INT_FUNCTIONS_SUPPORTED
#define PNG_READ_USER_CHUNKS_SUPPORTED
#define PNG_READ_hIST_SUPPORTED
#define PNG_READ_16BIT_SUPPORTED
#define PNG_READ_SWAP_ALPHA_SUPPORTED
#define PNG_READ_COMPOSITE_NODIV_SUPPORTED
#define PNG_SEQUENTIAL_READ_SUPPORTED
#define PNG_READ_BACKGROUND_SUPPORTED
#define PNG_READ_QUANTIZE_SUPPORTED
#define PNG_READ_iCCP_SUPPORTED
#define PNG_READ_STRIP_ALPHA_SUPPORTED
#define PNG_READ_PACKSWAP_SUPPORTED
#define PNG_READ_sRGB_SUPPORTED
#define PNG_WRITE_tEXt_SUPPORTED
#define PNG_READ_gAMA_SUPPORTED
#define PNG_READ_pCAL_SUPPORTED
#define PNG_READ_EXPAND_SUPPORTED
#define PNG_WRITE_sPLT_SUPPORTED
#define PNG_READ_SWAP_SUPPORTED
#define PNG_READ_tIME_SUPPORTED
#define PNG_READ_pHYs_SUPPORTED
#define PNG_WRITE_SWAP_ALPHA_SUPPORTED
#define PNG_TIME_RFC1123_SUPPORTED
#define PNG_READ_TEXT_SUPPORTED
#define PNG_WRITE_BGR_SUPPORTED
#define PNG_USER_CHUNKS_SUPPORTED
#define PNG_CONSOLE_IO_SUPPORTED
#define PNG_WRITE_PACK_SUPPORTED
#define PNG_READ_FILLER_SUPPORTED
#define PNG_WRITE_bKGD_SUPPORTED
#define PNG_WRITE_tRNS_SUPPORTED
#define PNG_READ_sPLT_SUPPORTED
#define PNG_WRITE_sCAL_SUPPORTED
#define PNG_WRITE_oFFs_SUPPORTED
#define PNG_READ_tEXt_SUPPORTED
#define PNG_WRITE_sBIT_SUPPORTED
#define PNG_READ_INVERT_SUPPORTED
#define PNG_READ_16_TO_8_SUPPORTED
#define PNG_WRITE_cHRM_SUPPORTED
#define PNG_16BIT_SUPPORTED
#define PNG_WRITE_USER_TRANSFORM_SUPPORTED
#define PNG_READ_BGR_SUPPORTED
#define PNG_WRITE_PACKSWAP_SUPPORTED
#define PNG_WRITE_INVERT_ALPHA_SUPPORTED
#define PNG_sCAL_SUPPORTED
#define PNG_WRITE_zTXt_SUPPORTED
#define PNG_USER_TRANSFORM_INFO_SUPPORTED
#define PNG_sBIT_SUPPORTED
#define PNG_cHRM_SUPPORTED
#define PNG_bKGD_SUPPORTED
#define PNG_tRNS_SUPPORTED
#define PNG_WRITE_iTXt_SUPPORTED
#define PNG_oFFs_SUPPORTED
#define PNG_USER_TRANSFORM_PTR_SUPPORTED
#define PNG_hIST_SUPPORTED
#define PNG_iCCP_SUPPORTED
#define PNG_sRGB_SUPPORTED
#define PNG_READ_zTXt_SUPPORTED
#define PNG_gAMA_SUPPORTED
#define PNG_pCAL_SUPPORTED
#define PNG_CHECK_cHRM_SUPPORTED
#define PNG_tIME_SUPPORTED
#define PNG_pHYs_SUPPORTED
#define PNG_READ_iTXt_SUPPORTED
#define PNG_TEXT_SUPPORTED
#define PNG_SAVE_INT_32_SUPPORTED
#define PNG_sPLT_SUPPORTED
#define PNG_tEXt_SUPPORTED
#define PNG_zTXt_SUPPORTED
#define PNG_iTXt_SUPPORTED
/* end of options */
#endif /* PNGLCONF_H */
/programs/develop/libraries/libpng/pngmem.c
0,0 → 1,658
 
/* pngmem.c - stub functions for memory allocation
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file provides a location for all memory allocation. Users who
* need special memory handling are expected to supply replacement
* functions for png_malloc() and png_free(), and to use
* png_create_read_struct_2() and png_create_write_struct_2() to
* identify the replacement functions.
*/
 
#include "pngpriv.h"
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 
/* Borland DOS special memory handler */
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__)
/* If you change this, be sure to change the one in png.h also */
 
/* Allocate memory for a png_struct. The malloc and memset can be replaced
by a single call to calloc() if this is thought to improve performance. */
PNG_FUNCTION(png_voidp /* PRIVATE */,
png_create_struct,(int type),PNG_ALLOCATED)
{
# ifdef PNG_USER_MEM_SUPPORTED
return (png_create_struct_2(type, NULL, NULL));
}
 
/* Alternate version of png_create_struct, for use with user-defined malloc. */
PNG_FUNCTION(png_voidp /* PRIVATE */,
png_create_struct_2,(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr),
PNG_ALLOCATED)
{
# endif /* PNG_USER_MEM_SUPPORTED */
png_size_t size;
png_voidp struct_ptr;
 
if (type == PNG_STRUCT_INFO)
size = png_sizeof(png_info);
 
else if (type == PNG_STRUCT_PNG)
size = png_sizeof(png_struct);
 
else
return (png_get_copyright(NULL));
 
# ifdef PNG_USER_MEM_SUPPORTED
if (malloc_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
struct_ptr = (*(malloc_fn))(png_ptr, (png_uint_32)size);
}
 
else
# endif /* PNG_USER_MEM_SUPPORTED */
struct_ptr = (png_voidp)farmalloc(size);
if (struct_ptr != NULL)
png_memset(struct_ptr, 0, size);
 
return (struct_ptr);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct(png_voidp struct_ptr)
{
# ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2(struct_ptr, NULL, NULL);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn,
png_voidp mem_ptr)
{
# endif
if (struct_ptr != NULL)
{
# ifdef PNG_USER_MEM_SUPPORTED
if (free_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
(*(free_fn))(png_ptr, struct_ptr);
return;
}
 
# endif /* PNG_USER_MEM_SUPPORTED */
farfree (struct_ptr);
}
}
 
/* Allocate memory. For reasonable files, size should never exceed
* 64K. However, zlib may allocate more then 64K if you don't tell
* it not to. See zconf.h and png.h for more information. zlib does
* need to allocate exactly 64K, so whatever you call here must
* have the ability to do that.
*
* Borland seems to have a problem in DOS mode for exactly 64K.
* It gives you a segment with an offset of 8 (perhaps to store its
* memory stuff). zlib doesn't like this at all, so we have to
* detect and deal with it. This code should not be needed in
* Windows or OS/2 modes, and only in 16 bit mode. This code has
* been updated by Alexander Lehmann for version 0.89 to waste less
* memory.
*
* Note that we can't use png_size_t for the "size" declaration,
* since on some systems a png_size_t is a 16-bit quantity, and as a
* result, we would be truncating potentially larger memory requests
* (which should cause a fatal error) and introducing major problems.
*/
PNG_FUNCTION(png_voidp,PNGAPI
png_calloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
 
ret = (png_malloc(png_ptr, size));
 
if (ret != NULL)
png_memset(ret,0,(png_size_t)size);
 
return (ret);
}
 
PNG_FUNCTION(png_voidp,PNGAPI
png_malloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
 
if (png_ptr == NULL || size == 0)
return (NULL);
 
# ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr->malloc_fn != NULL)
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size));
 
else
ret = (png_malloc_default(png_ptr, size));
 
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of memory");
 
return (ret);
}
 
PNG_FUNCTION(png_voidp,PNGAPI
png_malloc_default,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
# endif /* PNG_USER_MEM_SUPPORTED */
 
if (png_ptr == NULL || size == 0)
return (NULL);
 
# ifdef PNG_MAX_MALLOC_64K
if (size > (png_uint_32)65536L)
{
png_warning(png_ptr, "Cannot Allocate > 64K");
ret = NULL;
}
 
else
# endif
 
if (size != (size_t)size)
ret = NULL;
 
else if (size == (png_uint_32)65536L)
{
if (png_ptr->offset_table == NULL)
{
/* Try to see if we need to do any of this fancy stuff */
ret = farmalloc(size);
if (ret == NULL || ((png_size_t)ret & 0xffff))
{
int num_blocks;
png_uint_32 total_size;
png_bytep table;
int i;
png_byte huge * hptr;
 
if (ret != NULL)
{
farfree(ret);
ret = NULL;
}
 
if (png_ptr->zlib_window_bits > 14)
num_blocks = (int)(1 << (png_ptr->zlib_window_bits - 14));
 
else
num_blocks = 1;
 
if (png_ptr->zlib_mem_level >= 7)
num_blocks += (int)(1 << (png_ptr->zlib_mem_level - 7));
 
else
num_blocks++;
 
total_size = ((png_uint_32)65536L) * (png_uint_32)num_blocks+16;
 
table = farmalloc(total_size);
 
if (table == NULL)
{
# ifndef PNG_USER_MEM_SUPPORTED
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out Of Memory"); /* Note "O", "M" */
 
else
png_warning(png_ptr, "Out Of Memory");
# endif
return (NULL);
}
 
if ((png_size_t)table & 0xfff0)
{
# ifndef PNG_USER_MEM_SUPPORTED
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr,
"Farmalloc didn't return normalized pointer");
 
else
png_warning(png_ptr,
"Farmalloc didn't return normalized pointer");
# endif
return (NULL);
}
 
png_ptr->offset_table = table;
png_ptr->offset_table_ptr = farmalloc(num_blocks *
png_sizeof(png_bytep));
 
if (png_ptr->offset_table_ptr == NULL)
{
# ifndef PNG_USER_MEM_SUPPORTED
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out Of memory"); /* Note "O", "m" */
 
else
png_warning(png_ptr, "Out Of memory");
# endif
return (NULL);
}
 
hptr = (png_byte huge *)table;
if ((png_size_t)hptr & 0xf)
{
hptr = (png_byte huge *)((long)(hptr) & 0xfffffff0L);
hptr = hptr + 16L; /* "hptr += 16L" fails on Turbo C++ 3.0 */
}
 
for (i = 0; i < num_blocks; i++)
{
png_ptr->offset_table_ptr[i] = (png_bytep)hptr;
hptr = hptr + (png_uint_32)65536L; /* "+=" fails on TC++3.0 */
}
 
png_ptr->offset_table_number = num_blocks;
png_ptr->offset_table_count = 0;
png_ptr->offset_table_count_free = 0;
}
}
 
if (png_ptr->offset_table_count >= png_ptr->offset_table_number)
{
# ifndef PNG_USER_MEM_SUPPORTED
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory"); /* Note "o" and "M" */
 
else
png_warning(png_ptr, "Out of Memory");
# endif
return (NULL);
}
 
ret = png_ptr->offset_table_ptr[png_ptr->offset_table_count++];
}
 
else
ret = farmalloc(size);
 
# ifndef PNG_USER_MEM_SUPPORTED
if (ret == NULL)
{
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of memory"); /* Note "o" and "m" */
 
else
png_warning(png_ptr, "Out of memory"); /* Note "o" and "m" */
}
# endif
 
return (ret);
}
 
/* Free a pointer allocated by png_malloc(). In the default
* configuration, png_ptr is not used, but is passed in case it
* is needed. If ptr is NULL, return without taking any action.
*/
void PNGAPI
png_free(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
# ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr->free_fn != NULL)
{
(*(png_ptr->free_fn))(png_ptr, ptr);
return;
}
 
else
png_free_default(png_ptr, ptr);
}
 
void PNGAPI
png_free_default(png_structp png_ptr, png_voidp ptr)
{
# endif /* PNG_USER_MEM_SUPPORTED */
 
if (png_ptr == NULL || ptr == NULL)
return;
 
if (png_ptr->offset_table != NULL)
{
int i;
 
for (i = 0; i < png_ptr->offset_table_count; i++)
{
if (ptr == png_ptr->offset_table_ptr[i])
{
ptr = NULL;
png_ptr->offset_table_count_free++;
break;
}
}
if (png_ptr->offset_table_count_free == png_ptr->offset_table_count)
{
farfree(png_ptr->offset_table);
farfree(png_ptr->offset_table_ptr);
png_ptr->offset_table = NULL;
png_ptr->offset_table_ptr = NULL;
}
}
 
if (ptr != NULL)
farfree(ptr);
}
 
#else /* Not the Borland DOS special memory handler */
 
/* Allocate memory for a png_struct or a png_info. The malloc and
memset can be replaced by a single call to calloc() if this is thought
to improve performance noticably. */
PNG_FUNCTION(png_voidp /* PRIVATE */,
png_create_struct,(int type),PNG_ALLOCATED)
{
# ifdef PNG_USER_MEM_SUPPORTED
return (png_create_struct_2(type, NULL, NULL));
}
 
/* Allocate memory for a png_struct or a png_info. The malloc and
memset can be replaced by a single call to calloc() if this is thought
to improve performance noticably. */
PNG_FUNCTION(png_voidp /* PRIVATE */,
png_create_struct_2,(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr),
PNG_ALLOCATED)
{
# endif /* PNG_USER_MEM_SUPPORTED */
png_size_t size;
png_voidp struct_ptr;
 
if (type == PNG_STRUCT_INFO)
size = png_sizeof(png_info);
 
else if (type == PNG_STRUCT_PNG)
size = png_sizeof(png_struct);
 
else
return (NULL);
 
# ifdef PNG_USER_MEM_SUPPORTED
if (malloc_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
struct_ptr = (*(malloc_fn))(png_ptr, size);
 
if (struct_ptr != NULL)
png_memset(struct_ptr, 0, size);
 
return (struct_ptr);
}
# endif /* PNG_USER_MEM_SUPPORTED */
 
# if defined(__TURBOC__) && !defined(__FLAT__)
struct_ptr = (png_voidp)farmalloc(size);
# else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
struct_ptr = (png_voidp)halloc(size, 1);
# else
struct_ptr = (png_voidp)malloc(size);
# endif
# endif
 
if (struct_ptr != NULL)
png_memset(struct_ptr, 0, size);
 
return (struct_ptr);
}
 
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct(png_voidp struct_ptr)
{
# ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2(struct_ptr, NULL, NULL);
}
 
/* Free memory allocated by a png_create_struct() call */
void /* PRIVATE */
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn,
png_voidp mem_ptr)
{
# endif /* PNG_USER_MEM_SUPPORTED */
if (struct_ptr != NULL)
{
# ifdef PNG_USER_MEM_SUPPORTED
if (free_fn != NULL)
{
png_struct dummy_struct;
png_structp png_ptr = &dummy_struct;
png_ptr->mem_ptr=mem_ptr;
(*(free_fn))(png_ptr, struct_ptr);
return;
}
# endif /* PNG_USER_MEM_SUPPORTED */
# if defined(__TURBOC__) && !defined(__FLAT__)
farfree(struct_ptr);
 
# else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
hfree(struct_ptr);
 
# else
free(struct_ptr);
 
# endif
# endif
}
}
 
/* Allocate memory. For reasonable files, size should never exceed
* 64K. However, zlib may allocate more then 64K if you don't tell
* it not to. See zconf.h and png.h for more information. zlib does
* need to allocate exactly 64K, so whatever you call here must
* have the ability to do that.
*/
 
PNG_FUNCTION(png_voidp,PNGAPI
png_calloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
 
ret = (png_malloc(png_ptr, size));
 
if (ret != NULL)
png_memset(ret,0,(png_size_t)size);
 
return (ret);
}
 
PNG_FUNCTION(png_voidp,PNGAPI
png_malloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
 
# ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr == NULL || size == 0)
return (NULL);
 
if (png_ptr->malloc_fn != NULL)
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size));
 
else
ret = (png_malloc_default(png_ptr, size));
 
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory");
 
return (ret);
}
 
PNG_FUNCTION(png_voidp,PNGAPI
png_malloc_default,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ret;
# endif /* PNG_USER_MEM_SUPPORTED */
 
if (png_ptr == NULL || size == 0)
return (NULL);
 
# ifdef PNG_MAX_MALLOC_64K
if (size > (png_uint_32)65536L)
{
# ifndef PNG_USER_MEM_SUPPORTED
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Cannot Allocate > 64K");
 
else
# endif
return NULL;
}
# endif
 
/* Check for overflow */
# if defined(__TURBOC__) && !defined(__FLAT__)
 
if (size != (unsigned long)size)
ret = NULL;
 
else
ret = farmalloc(size);
 
# else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
if (size != (unsigned long)size)
ret = NULL;
 
else
ret = halloc(size, 1);
 
# else
if (size != (size_t)size)
ret = NULL;
 
else
ret = malloc((size_t)size);
# endif
# endif
 
# ifndef PNG_USER_MEM_SUPPORTED
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0)
png_error(png_ptr, "Out of Memory");
# endif
 
return (ret);
}
 
/* Free a pointer allocated by png_malloc(). If ptr is NULL, return
* without taking any action.
*/
void PNGAPI
png_free(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
# ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr->free_fn != NULL)
{
(*(png_ptr->free_fn))(png_ptr, ptr);
return;
}
 
else
png_free_default(png_ptr, ptr);
}
 
void PNGAPI
png_free_default(png_structp png_ptr, png_voidp ptr)
{
if (png_ptr == NULL || ptr == NULL)
return;
 
# endif /* PNG_USER_MEM_SUPPORTED */
 
# if defined(__TURBOC__) && !defined(__FLAT__)
farfree(ptr);
 
# else
# if defined(_MSC_VER) && defined(MAXSEG_64K)
hfree(ptr);
 
# else
free(ptr);
 
# endif
# endif
}
#endif /* Not Borland DOS special memory handler */
 
/* This function was added at libpng version 1.2.3. The png_malloc_warn()
* function will set up png_malloc() to issue a png_warning and return NULL
* instead of issuing a png_error, if it fails to allocate the requested
* memory.
*/
PNG_FUNCTION(png_voidp,PNGAPI
png_malloc_warn,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED)
{
png_voidp ptr;
png_uint_32 save_flags;
if (png_ptr == NULL)
return (NULL);
 
save_flags = png_ptr->flags;
png_ptr->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
ptr = (png_voidp)png_malloc((png_structp)png_ptr, size);
png_ptr->flags=save_flags;
return(ptr);
}
 
 
#ifdef PNG_USER_MEM_SUPPORTED
/* This function is called when the application wants to use another method
* of allocating and freeing memory.
*/
void PNGAPI
png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr
malloc_fn, png_free_ptr free_fn)
{
if (png_ptr != NULL)
{
png_ptr->mem_ptr = mem_ptr;
png_ptr->malloc_fn = malloc_fn;
png_ptr->free_fn = free_fn;
}
}
 
/* This function returns a pointer to the mem_ptr associated with the user
* functions. The application should free any memory associated with this
* pointer before png_write_destroy and png_read_destroy are called.
*/
png_voidp PNGAPI
png_get_mem_ptr(png_const_structp png_ptr)
{
if (png_ptr == NULL)
return (NULL);
 
return ((png_voidp)png_ptr->mem_ptr);
}
#endif /* PNG_USER_MEM_SUPPORTED */
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngpread.c
0,0 → 1,1854
 
/* pngpread.c - read a png file in push mode
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
 
/* Push model modes */
#define PNG_READ_SIG_MODE 0
#define PNG_READ_CHUNK_MODE 1
#define PNG_READ_IDAT_MODE 2
#define PNG_SKIP_MODE 3
#define PNG_READ_tEXt_MODE 4
#define PNG_READ_zTXt_MODE 5
#define PNG_READ_DONE_MODE 6
#define PNG_READ_iTXt_MODE 7
#define PNG_ERROR_MODE 8
 
void PNGAPI
png_process_data(png_structp png_ptr, png_infop info_ptr,
png_bytep buffer, png_size_t buffer_size)
{
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_push_restore_buffer(png_ptr, buffer, buffer_size);
 
while (png_ptr->buffer_size)
{
png_process_some_data(png_ptr, info_ptr);
}
}
 
png_size_t PNGAPI
png_process_data_pause(png_structp png_ptr, int save)
{
if (png_ptr != NULL)
{
/* It's easiest for the caller if we do the save, then the caller doesn't
* have to supply the same data again:
*/
if (save)
png_push_save_buffer(png_ptr);
else
{
/* This includes any pending saved bytes: */
png_size_t remaining = png_ptr->buffer_size;
png_ptr->buffer_size = 0;
 
/* So subtract the saved buffer size, unless all the data
* is actually 'saved', in which case we just return 0
*/
if (png_ptr->save_buffer_size < remaining)
return remaining - png_ptr->save_buffer_size;
}
}
 
return 0;
}
 
png_uint_32 PNGAPI
png_process_data_skip(png_structp png_ptr)
{
png_uint_32 remaining = 0;
 
if (png_ptr != NULL && png_ptr->process_mode == PNG_SKIP_MODE &&
png_ptr->skip_length > 0)
{
/* At the end of png_process_data the buffer size must be 0 (see the loop
* above) so we can detect a broken call here:
*/
if (png_ptr->buffer_size != 0)
png_error(png_ptr,
"png_process_data_skip called inside png_process_data");
 
/* If is impossible for there to be a saved buffer at this point -
* otherwise we could not be in SKIP mode. This will also happen if
* png_process_skip is called inside png_process_data (but only very
* rarely.)
*/
if (png_ptr->save_buffer_size != 0)
png_error(png_ptr, "png_process_data_skip called with saved data");
 
remaining = png_ptr->skip_length;
png_ptr->skip_length = 0;
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
}
 
return remaining;
}
 
/* What we do with the incoming data depends on what we were previously
* doing before we ran out of data...
*/
void /* PRIVATE */
png_process_some_data(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr == NULL)
return;
 
switch (png_ptr->process_mode)
{
case PNG_READ_SIG_MODE:
{
png_push_read_sig(png_ptr, info_ptr);
break;
}
 
case PNG_READ_CHUNK_MODE:
{
png_push_read_chunk(png_ptr, info_ptr);
break;
}
 
case PNG_READ_IDAT_MODE:
{
png_push_read_IDAT(png_ptr);
break;
}
 
#ifdef PNG_READ_tEXt_SUPPORTED
case PNG_READ_tEXt_MODE:
{
png_push_read_tEXt(png_ptr, info_ptr);
break;
}
 
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
case PNG_READ_zTXt_MODE:
{
png_push_read_zTXt(png_ptr, info_ptr);
break;
}
 
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
case PNG_READ_iTXt_MODE:
{
png_push_read_iTXt(png_ptr, info_ptr);
break;
}
 
#endif
case PNG_SKIP_MODE:
{
png_push_crc_finish(png_ptr);
break;
}
 
default:
{
png_ptr->buffer_size = 0;
break;
}
}
}
 
/* Read any remaining signature bytes from the stream and compare them with
* the correct PNG signature. It is possible that this routine is called
* with bytes already read from the signature, either because they have been
* checked by the calling application, or because of multiple calls to this
* routine.
*/
void /* PRIVATE */
png_push_read_sig(png_structp png_ptr, png_infop info_ptr)
{
png_size_t num_checked = png_ptr->sig_bytes,
num_to_check = 8 - num_checked;
 
if (png_ptr->buffer_size < num_to_check)
{
num_to_check = png_ptr->buffer_size;
}
 
png_push_fill_buffer(png_ptr, &(info_ptr->signature[num_checked]),
num_to_check);
png_ptr->sig_bytes = (png_byte)(png_ptr->sig_bytes + num_to_check);
 
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check))
{
if (num_checked < 4 &&
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4))
png_error(png_ptr, "Not a PNG file");
 
else
png_error(png_ptr, "PNG file corrupted by ASCII conversion");
}
else
{
if (png_ptr->sig_bytes >= 8)
{
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
}
}
}
 
void /* PRIVATE */
png_push_read_chunk(png_structp png_ptr, png_infop info_ptr)
{
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#ifdef PNG_READ_bKGD_SUPPORTED
PNG_bKGD;
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
PNG_cHRM;
#endif
#ifdef PNG_READ_gAMA_SUPPORTED
PNG_gAMA;
#endif
#ifdef PNG_READ_hIST_SUPPORTED
PNG_hIST;
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
PNG_iCCP;
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
PNG_iTXt;
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
PNG_oFFs;
#endif
#ifdef PNG_READ_pCAL_SUPPORTED
PNG_pCAL;
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
PNG_pHYs;
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
PNG_sBIT;
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
PNG_sCAL;
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
PNG_sRGB;
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
PNG_sPLT;
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
PNG_tEXt;
#endif
#ifdef PNG_READ_tIME_SUPPORTED
PNG_tIME;
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
PNG_tRNS;
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
PNG_zTXt;
#endif
 
/* First we make sure we have enough data for the 4 byte chunk name
* and the 4 byte chunk length before proceeding with decoding the
* chunk data. To fully decode each of these chunks, we also make
* sure we have enough data in the buffer for the 4 byte CRC at the
* end of every chunk (except IDAT, which is handled separately).
*/
if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER))
{
png_byte chunk_length[4];
 
if (png_ptr->buffer_size < 8)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_fill_buffer(png_ptr, chunk_length, 4);
png_ptr->push_length = png_get_uint_31(png_ptr, chunk_length);
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
png_check_chunk_name(png_ptr, png_ptr->chunk_name);
png_ptr->mode |= PNG_HAVE_CHUNK_HEADER;
}
 
if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
if (png_ptr->mode & PNG_AFTER_IDAT)
png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT;
 
if (!png_memcmp(png_ptr->chunk_name, png_IHDR, 4))
{
if (png_ptr->push_length != 13)
png_error(png_ptr, "Invalid IHDR length");
 
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_IHDR(png_ptr, info_ptr, png_ptr->push_length);
}
 
else if (!png_memcmp(png_ptr->chunk_name, png_IEND, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_IEND(png_ptr, info_ptr, png_ptr->push_length);
 
png_ptr->process_mode = PNG_READ_DONE_MODE;
png_push_have_end(png_ptr, info_ptr);
}
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_ptr->mode |= PNG_HAVE_IDAT;
 
png_handle_unknown(png_ptr, info_ptr, png_ptr->push_length);
 
if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
png_ptr->mode |= PNG_HAVE_PLTE;
 
else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
}
}
 
#endif
else if (!png_memcmp(png_ptr->chunk_name, png_PLTE, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_handle_PLTE(png_ptr, info_ptr, png_ptr->push_length);
}
 
else if (!png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
/* If we reach an IDAT chunk, this means we have read all of the
* header chunks, and we can start reading the image (or if this
* is called after the image has been read - we have an error).
*/
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
{
if (!(png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT))
if (png_ptr->push_length == 0)
return;
 
if (png_ptr->mode & PNG_AFTER_IDAT)
png_benign_error(png_ptr, "Too many IDATs found");
}
 
png_ptr->idat_size = png_ptr->push_length;
png_ptr->mode |= PNG_HAVE_IDAT;
png_ptr->process_mode = PNG_READ_IDAT_MODE;
png_push_have_info(png_ptr, info_ptr);
png_ptr->zstream.avail_out =
(uInt) PNG_ROWBYTES(png_ptr->pixel_depth,
png_ptr->iwidth) + 1;
png_ptr->zstream.next_out = png_ptr->row_buf;
return;
}
 
#ifdef PNG_READ_gAMA_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_gAMA, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_gAMA(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_sBIT, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_sBIT(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_cHRM, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_cHRM(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_sRGB, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_sRGB(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_iCCP, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_iCCP(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_sPLT, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_sPLT(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_tRNS, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_tRNS(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_bKGD_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_bKGD, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_bKGD(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_hIST_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_hIST, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_hIST(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_pHYs, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_pHYs(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_oFFs, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_oFFs(png_ptr, info_ptr, png_ptr->push_length);
}
#endif
 
#ifdef PNG_READ_pCAL_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_pCAL, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_pCAL(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_sCAL, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_sCAL(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_tIME_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_tIME, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_handle_tIME(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_tEXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_handle_tEXt(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_zTXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_handle_zTXt(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
else if (!png_memcmp(png_ptr->chunk_name, png_iTXt, 4))
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_handle_iTXt(png_ptr, info_ptr, png_ptr->push_length);
}
 
#endif
else
{
if (png_ptr->push_length + 4 > png_ptr->buffer_size)
{
png_push_save_buffer(png_ptr);
return;
}
png_push_handle_unknown(png_ptr, info_ptr, png_ptr->push_length);
}
 
png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER;
}
 
void /* PRIVATE */
png_push_crc_skip(png_structp png_ptr, png_uint_32 skip)
{
png_ptr->process_mode = PNG_SKIP_MODE;
png_ptr->skip_length = skip;
}
 
void /* PRIVATE */
png_push_crc_finish(png_structp png_ptr)
{
if (png_ptr->skip_length && png_ptr->save_buffer_size)
{
png_size_t save_size = png_ptr->save_buffer_size;
png_uint_32 skip_length = png_ptr->skip_length;
 
/* We want the smaller of 'skip_length' and 'save_buffer_size', but
* they are of different types and we don't know which variable has the
* fewest bits. Carefully select the smaller and cast it to the type of
* the larger - this cannot overflow. Do not cast in the following test
* - it will break on either 16 or 64 bit platforms.
*/
if (skip_length < save_size)
save_size = (png_size_t)skip_length;
 
else
skip_length = (png_uint_32)save_size;
 
png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size);
 
png_ptr->skip_length -= skip_length;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
if (png_ptr->skip_length && png_ptr->current_buffer_size)
{
png_size_t save_size = png_ptr->current_buffer_size;
png_uint_32 skip_length = png_ptr->skip_length;
 
/* We want the smaller of 'skip_length' and 'current_buffer_size', here,
* the same problem exists as above and the same solution.
*/
if (skip_length < save_size)
save_size = (png_size_t)skip_length;
 
else
skip_length = (png_uint_32)save_size;
 
png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size);
 
png_ptr->skip_length -= skip_length;
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
if (!png_ptr->skip_length)
{
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_crc_finish(png_ptr, 0);
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
}
}
 
void PNGCBAPI
png_push_fill_buffer(png_structp png_ptr, png_bytep buffer, png_size_t length)
{
png_bytep ptr;
 
if (png_ptr == NULL)
return;
 
ptr = buffer;
if (png_ptr->save_buffer_size)
{
png_size_t save_size;
 
if (length < png_ptr->save_buffer_size)
save_size = length;
 
else
save_size = png_ptr->save_buffer_size;
 
png_memcpy(ptr, png_ptr->save_buffer_ptr, save_size);
length -= save_size;
ptr += save_size;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
if (length && png_ptr->current_buffer_size)
{
png_size_t save_size;
 
if (length < png_ptr->current_buffer_size)
save_size = length;
 
else
save_size = png_ptr->current_buffer_size;
 
png_memcpy(ptr, png_ptr->current_buffer_ptr, save_size);
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
}
 
void /* PRIVATE */
png_push_save_buffer(png_structp png_ptr)
{
if (png_ptr->save_buffer_size)
{
if (png_ptr->save_buffer_ptr != png_ptr->save_buffer)
{
png_size_t i, istop;
png_bytep sp;
png_bytep dp;
 
istop = png_ptr->save_buffer_size;
for (i = 0, sp = png_ptr->save_buffer_ptr, dp = png_ptr->save_buffer;
i < istop; i++, sp++, dp++)
{
*dp = *sp;
}
}
}
if (png_ptr->save_buffer_size + png_ptr->current_buffer_size >
png_ptr->save_buffer_max)
{
png_size_t new_max;
png_bytep old_buffer;
 
if (png_ptr->save_buffer_size > PNG_SIZE_MAX -
(png_ptr->current_buffer_size + 256))
{
png_error(png_ptr, "Potential overflow of save_buffer");
}
 
new_max = png_ptr->save_buffer_size + png_ptr->current_buffer_size + 256;
old_buffer = png_ptr->save_buffer;
png_ptr->save_buffer = (png_bytep)png_malloc_warn(png_ptr,
(png_size_t)new_max);
 
if (png_ptr->save_buffer == NULL)
{
png_free(png_ptr, old_buffer);
png_error(png_ptr, "Insufficient memory for save_buffer");
}
 
png_memcpy(png_ptr->save_buffer, old_buffer, png_ptr->save_buffer_size);
png_free(png_ptr, old_buffer);
png_ptr->save_buffer_max = new_max;
}
if (png_ptr->current_buffer_size)
{
png_memcpy(png_ptr->save_buffer + png_ptr->save_buffer_size,
png_ptr->current_buffer_ptr, png_ptr->current_buffer_size);
png_ptr->save_buffer_size += png_ptr->current_buffer_size;
png_ptr->current_buffer_size = 0;
}
png_ptr->save_buffer_ptr = png_ptr->save_buffer;
png_ptr->buffer_size = 0;
}
 
void /* PRIVATE */
png_push_restore_buffer(png_structp png_ptr, png_bytep buffer,
png_size_t buffer_length)
{
png_ptr->current_buffer = buffer;
png_ptr->current_buffer_size = buffer_length;
png_ptr->buffer_size = buffer_length + png_ptr->save_buffer_size;
png_ptr->current_buffer_ptr = png_ptr->current_buffer;
}
 
void /* PRIVATE */
png_push_read_IDAT(png_structp png_ptr)
{
PNG_IDAT;
if (!(png_ptr->mode & PNG_HAVE_CHUNK_HEADER))
{
png_byte chunk_length[4];
 
if (png_ptr->buffer_size < 8)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_fill_buffer(png_ptr, chunk_length, 4);
png_ptr->push_length = png_get_uint_31(png_ptr, chunk_length);
png_reset_crc(png_ptr);
png_crc_read(png_ptr, png_ptr->chunk_name, 4);
png_ptr->mode |= PNG_HAVE_CHUNK_HEADER;
 
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
{
png_ptr->process_mode = PNG_READ_CHUNK_MODE;
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
png_error(png_ptr, "Not enough compressed data");
 
return;
}
 
png_ptr->idat_size = png_ptr->push_length;
}
if (png_ptr->idat_size && png_ptr->save_buffer_size)
{
png_size_t save_size = png_ptr->save_buffer_size;
png_uint_32 idat_size = png_ptr->idat_size;
 
/* We want the smaller of 'idat_size' and 'current_buffer_size', but they
* are of different types and we don't know which variable has the fewest
* bits. Carefully select the smaller and cast it to the type of the
* larger - this cannot overflow. Do not cast in the following test - it
* will break on either 16 or 64 bit platforms.
*/
if (idat_size < save_size)
save_size = (png_size_t)idat_size;
 
else
idat_size = (png_uint_32)save_size;
 
png_calculate_crc(png_ptr, png_ptr->save_buffer_ptr, save_size);
 
png_process_IDAT_data(png_ptr, png_ptr->save_buffer_ptr, save_size);
 
png_ptr->idat_size -= idat_size;
png_ptr->buffer_size -= save_size;
png_ptr->save_buffer_size -= save_size;
png_ptr->save_buffer_ptr += save_size;
}
 
if (png_ptr->idat_size && png_ptr->current_buffer_size)
{
png_size_t save_size = png_ptr->current_buffer_size;
png_uint_32 idat_size = png_ptr->idat_size;
 
/* We want the smaller of 'idat_size' and 'current_buffer_size', but they
* are of different types and we don't know which variable has the fewest
* bits. Carefully select the smaller and cast it to the type of the
* larger - this cannot overflow.
*/
if (idat_size < save_size)
save_size = (png_size_t)idat_size;
 
else
idat_size = (png_uint_32)save_size;
 
png_calculate_crc(png_ptr, png_ptr->current_buffer_ptr, save_size);
 
png_process_IDAT_data(png_ptr, png_ptr->current_buffer_ptr, save_size);
 
png_ptr->idat_size -= idat_size;
png_ptr->buffer_size -= save_size;
png_ptr->current_buffer_size -= save_size;
png_ptr->current_buffer_ptr += save_size;
}
if (!png_ptr->idat_size)
{
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_crc_finish(png_ptr, 0);
png_ptr->mode &= ~PNG_HAVE_CHUNK_HEADER;
png_ptr->mode |= PNG_AFTER_IDAT;
}
}
 
void /* PRIVATE */
png_process_IDAT_data(png_structp png_ptr, png_bytep buffer,
png_size_t buffer_length)
{
/* The caller checks for a non-zero buffer length. */
if (!(buffer_length > 0) || buffer == NULL)
png_error(png_ptr, "No IDAT data (internal error)");
 
/* This routine must process all the data it has been given
* before returning, calling the row callback as required to
* handle the uncompressed results.
*/
png_ptr->zstream.next_in = buffer;
png_ptr->zstream.avail_in = (uInt)buffer_length;
 
/* Keep going until the decompressed data is all processed
* or the stream marked as finished.
*/
while (png_ptr->zstream.avail_in > 0 &&
!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
{
int ret;
 
/* We have data for zlib, but we must check that zlib
* has someplace to put the results. It doesn't matter
* if we don't expect any results -- it may be the input
* data is just the LZ end code.
*/
if (!(png_ptr->zstream.avail_out > 0))
{
png_ptr->zstream.avail_out =
(uInt) PNG_ROWBYTES(png_ptr->pixel_depth,
png_ptr->iwidth) + 1;
 
png_ptr->zstream.next_out = png_ptr->row_buf;
}
 
/* Using Z_SYNC_FLUSH here means that an unterminated
* LZ stream (a stream with a missing end code) can still
* be handled, otherwise (Z_NO_FLUSH) a future zlib
* implementation might defer output and therefore
* change the current behavior (see comments in inflate.c
* for why this doesn't happen at present with zlib 1.2.5).
*/
ret = inflate(&png_ptr->zstream, Z_SYNC_FLUSH);
 
/* Check for any failure before proceeding. */
if (ret != Z_OK && ret != Z_STREAM_END)
{
/* Terminate the decompression. */
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
 
/* This may be a truncated stream (missing or
* damaged end code). Treat that as a warning.
*/
if (png_ptr->row_number >= png_ptr->num_rows ||
png_ptr->pass > 6)
png_warning(png_ptr, "Truncated compressed data in IDAT");
 
else
png_error(png_ptr, "Decompression error in IDAT");
 
/* Skip the check on unprocessed input */
return;
}
 
/* Did inflate output any data? */
if (png_ptr->zstream.next_out != png_ptr->row_buf)
{
/* Is this unexpected data after the last row?
* If it is, artificially terminate the LZ output
* here.
*/
if (png_ptr->row_number >= png_ptr->num_rows ||
png_ptr->pass > 6)
{
/* Extra data. */
png_warning(png_ptr, "Extra compressed data in IDAT");
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
 
/* Do no more processing; skip the unprocessed
* input check below.
*/
return;
}
 
/* Do we have a complete row? */
if (png_ptr->zstream.avail_out == 0)
png_push_process_row(png_ptr);
}
 
/* And check for the end of the stream. */
if (ret == Z_STREAM_END)
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
}
 
/* All the data should have been processed, if anything
* is left at this point we have bytes of IDAT data
* after the zlib end code.
*/
if (png_ptr->zstream.avail_in > 0)
png_warning(png_ptr, "Extra compression data in IDAT");
}
 
void /* PRIVATE */
png_push_process_row(png_structp png_ptr)
{
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->iwidth;
png_ptr->row_info.channels = png_ptr->channels;
png_ptr->row_info.bit_depth = png_ptr->bit_depth;
png_ptr->row_info.pixel_depth = png_ptr->pixel_depth;
 
png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth,
png_ptr->row_info.width);
 
png_read_filter_row(png_ptr, &(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->prev_row + 1,
(int)(png_ptr->row_buf[0]));
 
png_memcpy(png_ptr->prev_row, png_ptr->row_buf, png_ptr->rowbytes + 1);
 
if (png_ptr->transformations || (png_ptr->flags&PNG_FLAG_STRIP_ALPHA))
png_do_read_transformations(png_ptr);
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Blow up interlaced rows to full size */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
if (png_ptr->pass < 6)
/* old interface (pre-1.0.9):
png_do_read_interlace(&(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations);
*/
png_do_read_interlace(png_ptr);
 
switch (png_ptr->pass)
{
case 0:
{
int i;
for (i = 0; i < 8 && png_ptr->pass == 0; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr); /* Updates png_ptr->pass */
}
 
if (png_ptr->pass == 2) /* Pass 1 might be empty */
{
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
 
if (png_ptr->pass == 4 && png_ptr->height <= 4)
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
 
if (png_ptr->pass == 6 && png_ptr->height <= 4)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
 
break;
}
 
case 1:
{
int i;
for (i = 0; i < 8 && png_ptr->pass == 1; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
 
if (png_ptr->pass == 2) /* Skip top 4 generated rows */
{
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
 
break;
}
 
case 2:
{
int i;
 
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
 
for (i = 0; i < 4 && png_ptr->pass == 2; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
 
if (png_ptr->pass == 4) /* Pass 3 might be empty */
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
 
break;
}
 
case 3:
{
int i;
 
for (i = 0; i < 4 && png_ptr->pass == 3; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
 
if (png_ptr->pass == 4) /* Skip top two generated rows */
{
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
 
break;
}
 
case 4:
{
int i;
 
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
 
for (i = 0; i < 2 && png_ptr->pass == 4; i++)
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
 
if (png_ptr->pass == 6) /* Pass 5 might be empty */
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
 
break;
}
 
case 5:
{
int i;
 
for (i = 0; i < 2 && png_ptr->pass == 5; i++)
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
 
if (png_ptr->pass == 6) /* Skip top generated row */
{
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
 
break;
}
 
default:
case 6:
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
 
if (png_ptr->pass != 6)
break;
 
png_push_have_row(png_ptr, NULL);
png_read_push_finish_row(png_ptr);
}
}
}
else
#endif
{
png_push_have_row(png_ptr, png_ptr->row_buf + 1);
png_read_push_finish_row(png_ptr);
}
}
 
void /* PRIVATE */
png_read_push_finish_row(png_structp png_ptr)
{
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
PNG_CONST int FARDATA png_pass_start[] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
PNG_CONST int FARDATA png_pass_inc[] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
PNG_CONST int FARDATA png_pass_ystart[] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
PNG_CONST int FARDATA png_pass_yinc[] = {8, 8, 8, 4, 4, 2, 2};
 
/* Height of interlace block. This is not currently used - if you need
* it, uncomment it here and in png.h
PNG_CONST int FARDATA png_pass_height[] = {8, 8, 4, 4, 2, 2, 1};
*/
 
png_ptr->row_number++;
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
do
{
png_ptr->pass++;
if ((png_ptr->pass == 1 && png_ptr->width < 5) ||
(png_ptr->pass == 3 && png_ptr->width < 3) ||
(png_ptr->pass == 5 && png_ptr->width < 2))
png_ptr->pass++;
 
if (png_ptr->pass > 7)
png_ptr->pass--;
 
if (png_ptr->pass >= 7)
break;
 
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
 
if (png_ptr->transformations & PNG_INTERLACE)
break;
 
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
 
} while (png_ptr->iwidth == 0 || png_ptr->num_rows == 0);
}
#endif /* PNG_READ_INTERLACING_SUPPORTED */
}
 
#ifdef PNG_READ_tEXt_SUPPORTED
void /* PRIVATE */
png_push_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
PNG_UNUSED(info_ptr) /* To quiet some compiler warnings */
png_error(png_ptr, "Out of place tEXt");
/*NOT REACHED*/
}
 
#ifdef PNG_MAX_MALLOC_64K
png_ptr->skip_length = 0; /* This may not be necessary */
 
if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */
{
png_warning(png_ptr, "tEXt chunk too large to fit in memory");
png_ptr->skip_length = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_size_t)(length + 1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_tEXt_MODE;
}
 
void /* PRIVATE */
png_push_read_tEXt(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
 
else
text_size = png_ptr->current_text_left;
 
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp text;
png_charp key;
int ret;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
#ifdef PNG_MAX_MALLOC_64K
if (png_ptr->skip_length)
return;
#endif
 
key = png_ptr->current_text;
 
for (text = key; *text; text++)
/* Empty loop */ ;
 
if (text < key + png_ptr->current_text_size)
text++;
 
text_ptr = (png_textp)png_malloc(png_ptr, png_sizeof(png_text));
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr->key = key;
text_ptr->itxt_length = 0;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->text = text;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, key);
png_free(png_ptr, text_ptr);
png_ptr->current_text = NULL;
 
if (ret)
png_warning(png_ptr, "Insufficient memory to store text chunk");
}
}
#endif
 
#ifdef PNG_READ_zTXt_SUPPORTED
void /* PRIVATE */
png_push_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
PNG_UNUSED(info_ptr) /* To quiet some compiler warnings */
png_error(png_ptr, "Out of place zTXt");
/*NOT REACHED*/
}
 
#ifdef PNG_MAX_MALLOC_64K
/* We can't handle zTXt chunks > 64K, since we don't have enough space
* to be able to store the uncompressed data. Actually, the threshold
* is probably around 32K, but it isn't as definite as 64K is.
*/
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "zTXt chunk too large to fit in memory");
png_push_crc_skip(png_ptr, length);
return;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_size_t)(length + 1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_zTXt_MODE;
}
 
void /* PRIVATE */
png_push_read_zTXt(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < (png_uint_32)png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
 
else
text_size = png_ptr->current_text_left;
 
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp text;
png_charp key;
int ret;
png_size_t text_size, key_size;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
key = png_ptr->current_text;
 
for (text = key; *text; text++)
/* Empty loop */ ;
 
/* zTXt can't have zero text */
if (text >= key + png_ptr->current_text_size)
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
return;
}
 
text++;
 
if (*text != PNG_TEXT_COMPRESSION_zTXt) /* Check compression byte */
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
return;
}
 
text++;
 
png_ptr->zstream.next_in = (png_bytep)text;
png_ptr->zstream.avail_in = (uInt)(png_ptr->current_text_size -
(text - key));
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
key_size = text - key;
text_size = 0;
text = NULL;
ret = Z_STREAM_END;
 
while (png_ptr->zstream.avail_in)
{
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END)
{
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
png_ptr->current_text = NULL;
png_free(png_ptr, key);
png_free(png_ptr, text);
return;
}
 
if (!(png_ptr->zstream.avail_out) || ret == Z_STREAM_END)
{
if (text == NULL)
{
text = (png_charp)png_malloc(png_ptr,
(png_ptr->zbuf_size
- png_ptr->zstream.avail_out + key_size + 1));
 
png_memcpy(text + key_size, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
 
png_memcpy(text, key, key_size);
 
text_size = key_size + png_ptr->zbuf_size -
png_ptr->zstream.avail_out;
 
*(text + text_size) = '\0';
}
 
else
{
png_charp tmp;
 
tmp = text;
text = (png_charp)png_malloc(png_ptr, text_size +
(png_ptr->zbuf_size
- png_ptr->zstream.avail_out + 1));
 
png_memcpy(text, tmp, text_size);
png_free(png_ptr, tmp);
 
png_memcpy(text + text_size, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
 
text_size += png_ptr->zbuf_size - png_ptr->zstream.avail_out;
*(text + text_size) = '\0';
}
 
if (ret != Z_STREAM_END)
{
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
}
else
{
break;
}
 
if (ret == Z_STREAM_END)
break;
}
 
inflateReset(&png_ptr->zstream);
png_ptr->zstream.avail_in = 0;
 
if (ret != Z_STREAM_END)
{
png_ptr->current_text = NULL;
png_free(png_ptr, key);
png_free(png_ptr, text);
return;
}
 
png_ptr->current_text = NULL;
png_free(png_ptr, key);
key = text;
text += key_size;
 
text_ptr = (png_textp)png_malloc(png_ptr,
png_sizeof(png_text));
text_ptr->compression = PNG_TEXT_COMPRESSION_zTXt;
text_ptr->key = key;
text_ptr->itxt_length = 0;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->text = text;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, key);
png_free(png_ptr, text_ptr);
 
if (ret)
png_warning(png_ptr, "Insufficient memory to store text chunk");
}
}
#endif
 
#ifdef PNG_READ_iTXt_SUPPORTED
void /* PRIVATE */
png_push_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
if (!(png_ptr->mode & PNG_HAVE_IHDR) || (png_ptr->mode & PNG_HAVE_IEND))
{
PNG_UNUSED(info_ptr) /* To quiet some compiler warnings */
png_error(png_ptr, "Out of place iTXt");
/*NOT REACHED*/
}
 
#ifdef PNG_MAX_MALLOC_64K
png_ptr->skip_length = 0; /* This may not be necessary */
 
if (length > (png_uint_32)65535L) /* Can't hold entire string in memory */
{
png_warning(png_ptr, "iTXt chunk too large to fit in memory");
png_ptr->skip_length = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_ptr->current_text = (png_charp)png_malloc(png_ptr,
(png_size_t)(length + 1));
png_ptr->current_text[length] = '\0';
png_ptr->current_text_ptr = png_ptr->current_text;
png_ptr->current_text_size = (png_size_t)length;
png_ptr->current_text_left = (png_size_t)length;
png_ptr->process_mode = PNG_READ_iTXt_MODE;
}
 
void /* PRIVATE */
png_push_read_iTXt(png_structp png_ptr, png_infop info_ptr)
{
 
if (png_ptr->buffer_size && png_ptr->current_text_left)
{
png_size_t text_size;
 
if (png_ptr->buffer_size < png_ptr->current_text_left)
text_size = png_ptr->buffer_size;
 
else
text_size = png_ptr->current_text_left;
 
png_crc_read(png_ptr, (png_bytep)png_ptr->current_text_ptr, text_size);
png_ptr->current_text_left -= text_size;
png_ptr->current_text_ptr += text_size;
}
 
if (!(png_ptr->current_text_left))
{
png_textp text_ptr;
png_charp key;
int comp_flag;
png_charp lang;
png_charp lang_key;
png_charp text;
int ret;
 
if (png_ptr->buffer_size < 4)
{
png_push_save_buffer(png_ptr);
return;
}
 
png_push_crc_finish(png_ptr);
 
#ifdef PNG_MAX_MALLOC_64K
if (png_ptr->skip_length)
return;
#endif
 
key = png_ptr->current_text;
 
for (lang = key; *lang; lang++)
/* Empty loop */ ;
 
if (lang < key + png_ptr->current_text_size - 3)
lang++;
 
comp_flag = *lang++;
lang++; /* Skip comp_type, always zero */
 
for (lang_key = lang; *lang_key; lang_key++)
/* Empty loop */ ;
 
lang_key++; /* Skip NUL separator */
 
text=lang_key;
 
if (lang_key < key + png_ptr->current_text_size - 1)
{
for (; *text; text++)
/* Empty loop */ ;
}
 
if (text < key + png_ptr->current_text_size)
text++;
 
text_ptr = (png_textp)png_malloc(png_ptr,
png_sizeof(png_text));
 
text_ptr->compression = comp_flag + 2;
text_ptr->key = key;
text_ptr->lang = lang;
text_ptr->lang_key = lang_key;
text_ptr->text = text;
text_ptr->text_length = 0;
text_ptr->itxt_length = png_strlen(text);
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_ptr->current_text = NULL;
 
png_free(png_ptr, text_ptr);
if (ret)
png_warning(png_ptr, "Insufficient memory to store iTXt chunk");
}
}
#endif
 
/* This function is called when we haven't found a handler for this
* chunk. If there isn't a problem with the chunk itself (ie a bad chunk
* name or a critical chunk), the chunk is (currently) silently ignored.
*/
void /* PRIVATE */
png_push_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32
length)
{
png_uint_32 skip = 0;
 
if (!(png_ptr->chunk_name[0] & 0x20))
{
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
&& png_ptr->read_user_chunk_fn == NULL
#endif
)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
 
PNG_UNUSED(info_ptr) /* To quiet some compiler warnings */
}
 
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
if (png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS)
{
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "unknown chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
png_memcpy((png_charp)png_ptr->unknown_chunk.name,
(png_charp)png_ptr->chunk_name,
png_sizeof(png_ptr->unknown_chunk.name));
png_ptr->unknown_chunk.name[png_sizeof(png_ptr->unknown_chunk.name) - 1]
= '\0';
 
png_ptr->unknown_chunk.size = (png_size_t)length;
 
if (length == 0)
png_ptr->unknown_chunk.data = NULL;
 
else
{
png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr,
(png_size_t)length);
png_crc_read(png_ptr, (png_bytep)png_ptr->unknown_chunk.data, length);
}
 
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
if (png_ptr->read_user_chunk_fn != NULL)
{
/* Callback to user unknown chunk handler */
int ret;
ret = (*(png_ptr->read_user_chunk_fn))
(png_ptr, &png_ptr->unknown_chunk);
 
if (ret < 0)
png_chunk_error(png_ptr, "error in user chunk");
 
if (ret == 0)
{
if (!(png_ptr->chunk_name[0] & 0x20))
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS)
png_chunk_error(png_ptr, "unknown critical chunk");
png_set_unknown_chunks(png_ptr, info_ptr,
&png_ptr->unknown_chunk, 1);
}
}
 
else
#endif
png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1);
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
}
 
else
#endif
skip=length;
png_push_crc_skip(png_ptr, skip);
}
 
void /* PRIVATE */
png_push_have_info(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->info_fn != NULL)
(*(png_ptr->info_fn))(png_ptr, info_ptr);
}
 
void /* PRIVATE */
png_push_have_end(png_structp png_ptr, png_infop info_ptr)
{
if (png_ptr->end_fn != NULL)
(*(png_ptr->end_fn))(png_ptr, info_ptr);
}
 
void /* PRIVATE */
png_push_have_row(png_structp png_ptr, png_bytep row)
{
if (png_ptr->row_fn != NULL)
(*(png_ptr->row_fn))(png_ptr, row, png_ptr->row_number,
(int)png_ptr->pass);
}
 
void PNGAPI
png_progressive_combine_row (png_structp png_ptr, png_bytep old_row,
png_const_bytep new_row)
{
PNG_CONST int FARDATA png_pass_dsp_mask[7] =
{0xff, 0x0f, 0xff, 0x33, 0xff, 0x55, 0xff};
 
if (png_ptr == NULL)
return;
 
if (new_row != NULL) /* new_row must == png_ptr->row_buf here. */
png_combine_row(png_ptr, old_row, png_pass_dsp_mask[png_ptr->pass]);
}
 
void PNGAPI
png_set_progressive_read_fn(png_structp png_ptr, png_voidp progressive_ptr,
png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn,
png_progressive_end_ptr end_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->info_fn = info_fn;
png_ptr->row_fn = row_fn;
png_ptr->end_fn = end_fn;
 
png_set_read_fn(png_ptr, progressive_ptr, png_push_fill_buffer);
}
 
png_voidp PNGAPI
png_get_progressive_ptr(png_const_structp png_ptr)
{
if (png_ptr == NULL)
return (NULL);
 
return png_ptr->io_ptr;
}
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
/programs/develop/libraries/libpng/pngpriv.h
0,0 → 1,1235
 
/* pngpriv.h - private declarations for use inside libpng
*
* For conditions of distribution and use, see copyright notice in png.h
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* Last changed in libpng 1.5.0 [January 6, 2011]
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
/* The symbols declared in this file (including the functions declared
* as PNG_EXTERN) are PRIVATE. They are not part of the libpng public
* interface, and are not recommended for use by regular applications.
* Some of them may become public in the future; others may stay private,
* change in an incompatible way, or even disappear.
* Although the libpng users are not forbidden to include this header,
* they should be well aware of the issues that may arise from doing so.
*/
 
#ifndef PNGPRIV_H
#define PNGPRIV_H
 
/* This is required for the definition of abort(), used as a last ditch
* error handler when all else fails.
*/
#include <stdlib.h>
 
#define PNGLIB_BUILD
#ifdef PNG_USER_CONFIG
# include "pngusr.h"
/* These should have been defined in pngusr.h */
# ifndef PNG_USER_PRIVATEBUILD
# define PNG_USER_PRIVATEBUILD "Custom libpng build"
# endif
# ifndef PNG_USER_DLLFNAME_POSTFIX
# define PNG_USER_DLLFNAME_POSTFIX "Cb"
# endif
#endif
#include "png.h"
#include "pnginfo.h"
#include "pngstruct.h"
 
/* This is used for 16 bit gamma tables - only the top level pointers are const,
* this could be changed:
*/
typedef PNG_CONST png_uint_16p FAR * png_const_uint_16pp;
 
/* Added at libpng-1.2.9 */
/* Moved to pngpriv.h at libpng-1.5.0 */
 
/* config.h is created by and PNG_CONFIGURE_LIBPNG is set by the "configure"
* script. We may need it here to get the correct configuration on things
* like limits.
*/
#ifdef PNG_CONFIGURE_LIBPNG
# ifdef HAVE_CONFIG_H
# include "config.h"
# endif
#endif
 
/* Moved to pngpriv.h at libpng-1.5.0 */
/* NOTE: some of these may have been used in external applications as
* these definitions were exposed in pngconf.h prior to 1.5.
*/
 
/* If you are running on a machine where you cannot allocate more
* than 64K of memory at once, uncomment this. While libpng will not
* normally need that much memory in a chunk (unless you load up a very
* large file), zlib needs to know how big of a chunk it can use, and
* libpng thus makes sure to check any memory allocation to verify it
* will fit into memory.
*
* zlib provides 'MAXSEG_64K' which, if defined, indicates the
* same limit and pngconf.h (already included) sets the limit
* if certain operating systems are detected.
*/
#if defined(MAXSEG_64K) && !defined(PNG_MAX_MALLOC_64K)
# define PNG_MAX_MALLOC_64K
#endif
 
/* Unused formal parameter warnings are silenced using the following macro
* which is expected to have no bad effects on performance (optimizing
* compilers will probably remove it entirely). Note that if you replace
* it with something other than whitespace, you must include the terminating
* semicolon.
*/
#define PNG_UNUSED(param) (void)param;
 
/* Just a little check that someone hasn't tried to define something
* contradictory.
*/
#if (PNG_ZBUF_SIZE > 65536L) && defined(PNG_MAX_MALLOC_64K)
# undef PNG_ZBUF_SIZE
# define PNG_ZBUF_SIZE 65536L
#endif
 
/* If warnings or errors are turned off the code is disabled
* or redirected here.
*/
#ifndef PNG_WARNINGS_SUPPORTED
# define png_warning(s1,s2) ((void)0)
# define png_chunk_warning(s1,s2) ((void)0)
#endif
#ifndef PNG_ERROR_TEXT_SUPPORTED
# define png_error(s1,s2) png_err(s1)
# define png_chunk_error(s1,s2) png_err(s1)
# define png_fixed_error(s1,s2) png_err(s1)
#endif
 
#ifndef PNG_EXTERN
/* The functions exported by PNG_EXTERN are internal functions, which
* aren't usually used outside the library (as far as I know), so it is
* debatable if they should be exported at all. In the future, when it
* is possible to have run-time registry of chunk-handling functions,
* some of these might be made available again.
# define PNG_EXTERN extern
*/
# define PNG_EXTERN
#endif
 
/* Some fixed point APIs are still required even if not exported because
* they get used by the corresponding floating point APIs. This magic
* deals with this:
*/
#ifdef PNG_FIXED_POINT_SUPPORTED
# define PNGFAPI PNGAPI
#else
# define PNGFAPI /* PRIVATE */
#endif
 
/* Other defines specific to compilers can go here. Try to keep
* them inside an appropriate ifdef/endif pair for portability.
*/
#if defined(PNG_FLOATING_POINT_SUPPORTED) ||\
defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)
/* png.c requires the following ANSI-C constants if the conversion of
* floating point to ASCII is implemented therein:
*
* DBL_DIG Maximum number of decimal digits (can be set to any constant)
* DBL_MIN Smallest normalized fp number (can be set to an arbitrary value)
* DBL_MAX Maximum floating point number (can be set to an arbitrary value)
*/
# include <float.h>
 
# if (defined(__MWERKS__) && defined(macintosh)) || defined(applec) || \
defined(THINK_C) || defined(__SC__) || defined(TARGET_OS_MAC)
/* We need to check that <math.h> hasn't already been included earlier
* as it seems it doesn't agree with <fp.h>, yet we should really use
* <fp.h> if possible.
*/
# if !defined(__MATH_H__) && !defined(__MATH_H) && !defined(__cmath__)
# include <fp.h>
# endif
# else
# include <math.h>
# endif
# if defined(_AMIGA) && defined(__SASC) && defined(_M68881)
/* Amiga SAS/C: We must include builtin FPU functions when compiling using
* MATH=68881
*/
# include <m68881.h>
# endif
#endif
 
/* This provides the non-ANSI (far) memory allocation routines. */
#if defined(__TURBOC__) && defined(__MSDOS__)
# include <mem.h>
# include <alloc.h>
#endif
 
 
/* Moved here around 1.5.0beta36 from pngconf.h */
/* Users may want to use these so they are not private. Any library
* functions that are passed far data must be model-independent.
*/
 
/* Memory model/platform independent fns */
#ifndef PNG_ABORT
# ifdef _WINDOWS_
# define PNG_ABORT() ExitProcess(0)
# else
# define PNG_ABORT() abort()
# endif
#endif
 
#ifdef USE_FAR_KEYWORD
/* Use this to make far-to-near assignments */
# define CHECK 1
# define NOCHECK 0
# define CVT_PTR(ptr) (png_far_to_near(png_ptr,ptr,CHECK))
# define CVT_PTR_NOCHECK(ptr) (png_far_to_near(png_ptr,ptr,NOCHECK))
# define png_strcpy _fstrcpy
# define png_strncpy _fstrncpy /* Added to v 1.2.6 */
# define png_strlen _fstrlen
# define png_memcmp _fmemcmp /* SJT: added */
# define png_memcpy _fmemcpy
# define png_memset _fmemset
# define png_sprintf sprintf
#else
# ifdef _WINDOWS_ /* Favor Windows over C runtime fns */
# define CVT_PTR(ptr) (ptr)
# define CVT_PTR_NOCHECK(ptr) (ptr)
# define png_strcpy lstrcpyA
# define png_strncpy lstrcpynA
# define png_strlen lstrlenA
# define png_memcmp memcmp
# define png_memcpy CopyMemory
# define png_memset memset
# define png_sprintf wsprintfA
# else
# define CVT_PTR(ptr) (ptr)
# define CVT_PTR_NOCHECK(ptr) (ptr)
# define png_strcpy strcpy
# define png_strncpy strncpy /* Added to v 1.2.6 */
# define png_strlen strlen
# define png_memcmp memcmp /* SJT: added */
# define png_memcpy memcpy
# define png_memset memset
# define png_sprintf sprintf
# endif
#endif
/* End of memory model/platform independent support */
 
#ifndef PNG_NO_SNPRINTF
# ifdef _MSC_VER
# define png_snprintf _snprintf /* Added to v 1.2.19 */
# define png_snprintf2 _snprintf
# define png_snprintf6 _snprintf
# else
# define png_snprintf snprintf /* Added to v 1.2.19 */
# define png_snprintf2 snprintf
# define png_snprintf6 snprintf
# endif
#else
/* You don't have or don't want to use snprintf(). Caution: Using
* sprintf instead of snprintf exposes your application to accidental
* or malevolent buffer overflows. If you don't have snprintf()
* as a general rule you should provide one (you can get one from
* Portable OpenSSH).
*/
# define png_snprintf(s1,n,fmt,x1) png_sprintf(s1,fmt,x1)
# define png_snprintf2(s1,n,fmt,x1,x2) png_sprintf(s1,fmt,x1,x2)
# define png_snprintf6(s1,n,fmt,x1,x2,x3,x4,x5,x6) \
png_sprintf(s1,fmt,x1,x2,x3,x4,x5,x6)
#endif
/* End of 1.5.0beta36 move from pngconf.h */
 
/* CONSTANTS and UTILITY MACROS
* These are used internally by libpng and not exposed in the API
*/
 
/* Various modes of operation. Note that after an init, mode is set to
* zero automatically when the structure is created.
*/
#define PNG_HAVE_IHDR 0x01
#define PNG_HAVE_PLTE 0x02
#define PNG_HAVE_IDAT 0x04
#define PNG_AFTER_IDAT 0x08 /* Have complete zlib datastream */
#define PNG_HAVE_IEND 0x10
#define PNG_HAVE_gAMA 0x20
#define PNG_HAVE_cHRM 0x40
#define PNG_HAVE_sRGB 0x80
#define PNG_HAVE_CHUNK_HEADER 0x100
#define PNG_WROTE_tIME 0x200
#define PNG_WROTE_INFO_BEFORE_PLTE 0x400
#define PNG_BACKGROUND_IS_GRAY 0x800
#define PNG_HAVE_PNG_SIGNATURE 0x1000
#define PNG_HAVE_CHUNK_AFTER_IDAT 0x2000 /* Have another chunk after IDAT */
 
/* Flags for the transformations the PNG library does on the image data */
#define PNG_BGR 0x0001
#define PNG_INTERLACE 0x0002
#define PNG_PACK 0x0004
#define PNG_SHIFT 0x0008
#define PNG_SWAP_BYTES 0x0010
#define PNG_INVERT_MONO 0x0020
#define PNG_QUANTIZE 0x0040
#define PNG_BACKGROUND 0x0080
#define PNG_BACKGROUND_EXPAND 0x0100
/* 0x0200 unused */
#define PNG_16_TO_8 0x0400
#define PNG_RGBA 0x0800
#define PNG_EXPAND 0x1000
#define PNG_GAMMA 0x2000
#define PNG_GRAY_TO_RGB 0x4000
#define PNG_FILLER 0x8000L
#define PNG_PACKSWAP 0x10000L
#define PNG_SWAP_ALPHA 0x20000L
#define PNG_STRIP_ALPHA 0x40000L
#define PNG_INVERT_ALPHA 0x80000L
#define PNG_USER_TRANSFORM 0x100000L
#define PNG_RGB_TO_GRAY_ERR 0x200000L
#define PNG_RGB_TO_GRAY_WARN 0x400000L
#define PNG_RGB_TO_GRAY 0x600000L /* two bits, RGB_TO_GRAY_ERR|WARN */
/* 0x800000L Unused */
#define PNG_ADD_ALPHA 0x1000000L /* Added to libpng-1.2.7 */
#define PNG_EXPAND_tRNS 0x2000000L /* Added to libpng-1.2.9 */
/* 0x4000000L unused */
/* 0x8000000L unused */
/* 0x10000000L unused */
/* 0x20000000L unused */
/* 0x40000000L unused */
 
/* Flags for png_create_struct */
#define PNG_STRUCT_PNG 0x0001
#define PNG_STRUCT_INFO 0x0002
 
/* Scaling factor for filter heuristic weighting calculations */
#define PNG_WEIGHT_FACTOR (1<<(PNG_WEIGHT_SHIFT))
#define PNG_COST_FACTOR (1<<(PNG_COST_SHIFT))
 
/* Flags for the png_ptr->flags rather than declaring a byte for each one */
#define PNG_FLAG_ZLIB_CUSTOM_STRATEGY 0x0001
#define PNG_FLAG_ZLIB_CUSTOM_LEVEL 0x0002
#define PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL 0x0004
#define PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS 0x0008
#define PNG_FLAG_ZLIB_CUSTOM_METHOD 0x0010
#define PNG_FLAG_ZLIB_FINISHED 0x0020
#define PNG_FLAG_ROW_INIT 0x0040
#define PNG_FLAG_FILLER_AFTER 0x0080
#define PNG_FLAG_CRC_ANCILLARY_USE 0x0100
#define PNG_FLAG_CRC_ANCILLARY_NOWARN 0x0200
#define PNG_FLAG_CRC_CRITICAL_USE 0x0400
#define PNG_FLAG_CRC_CRITICAL_IGNORE 0x0800
/* 0x1000 unused */
/* 0x2000 unused */
/* 0x4000 unused */
#define PNG_FLAG_KEEP_UNKNOWN_CHUNKS 0x8000L
#define PNG_FLAG_KEEP_UNSAFE_CHUNKS 0x10000L
#define PNG_FLAG_LIBRARY_MISMATCH 0x20000L
#define PNG_FLAG_STRIP_ERROR_NUMBERS 0x40000L
#define PNG_FLAG_STRIP_ERROR_TEXT 0x80000L
#define PNG_FLAG_MALLOC_NULL_MEM_OK 0x100000L
#define PNG_FLAG_ADD_ALPHA 0x200000L /* Added to libpng-1.2.8 */
#define PNG_FLAG_STRIP_ALPHA 0x400000L /* Added to libpng-1.2.8 */
#define PNG_FLAG_BENIGN_ERRORS_WARN 0x800000L /* Added to libpng-1.4.0 */
/* 0x1000000L unused */
/* 0x2000000L unused */
/* 0x4000000L unused */
/* 0x8000000L unused */
/* 0x10000000L unused */
/* 0x20000000L unused */
/* 0x40000000L unused */
 
#define PNG_FLAG_CRC_ANCILLARY_MASK (PNG_FLAG_CRC_ANCILLARY_USE | \
PNG_FLAG_CRC_ANCILLARY_NOWARN)
 
#define PNG_FLAG_CRC_CRITICAL_MASK (PNG_FLAG_CRC_CRITICAL_USE | \
PNG_FLAG_CRC_CRITICAL_IGNORE)
 
#define PNG_FLAG_CRC_MASK (PNG_FLAG_CRC_ANCILLARY_MASK | \
PNG_FLAG_CRC_CRITICAL_MASK)
 
/* zlib.h declares a magic type 'uInt' that limits the amount of data that zlib
* can handle at once. This type need be no larger than 16 bits (so maximum of
* 65535), this define allows us to discover how big it is, but limited by the
* maximuum for png_size_t. The value can be overriden in a library build
* (pngusr.h, or set it in CPPFLAGS) and it works to set it to a considerably
* lower value (e.g. 255 works). A lower value may help memory usage (slightly)
* and may even improve performance on some systems (and degrade it on others.)
*/
#ifndef ZLIB_IO_MAX
# define ZLIB_IO_MAX ((uInt)-1)
#endif
 
/* Save typing and make code easier to understand */
 
#define PNG_COLOR_DIST(c1, c2) (abs((int)((c1).red) - (int)((c2).red)) + \
abs((int)((c1).green) - (int)((c2).green)) + \
abs((int)((c1).blue) - (int)((c2).blue)))
 
/* Added to libpng-1.2.6 JB */
#define PNG_ROWBYTES(pixel_bits, width) \
((pixel_bits) >= 8 ? \
((png_size_t)(width) * (((png_size_t)(pixel_bits)) >> 3)) : \
(( ((png_size_t)(width) * ((png_size_t)(pixel_bits))) + 7) >> 3) )
 
/* PNG_OUT_OF_RANGE returns true if value is outside the range
* ideal-delta..ideal+delta. Each argument is evaluated twice.
* "ideal" and "delta" should be constants, normally simple
* integers, "value" a variable. Added to libpng-1.2.6 JB
*/
#define PNG_OUT_OF_RANGE(value, ideal, delta) \
( (value) < (ideal)-(delta) || (value) > (ideal)+(delta) )
 
/* Conversions between fixed and floating point, only defined if
* required (to make sure the code doesn't accidentally use float
* when it is supposedly disabled.)
*/
#ifdef PNG_FLOATING_POINT_SUPPORTED
/* The floating point conversion can't overflow, though it can and
* does lose accuracy relative to the original fixed point value.
* In practice this doesn't matter because png_fixed_point only
* stores numbers with very low precision. The png_ptr and s
* arguments are unused by default but are there in case error
* checking becomes a requirement.
*/
#define png_float(png_ptr, fixed, s) (.00001 * (fixed))
 
/* The fixed point conversion performs range checking and evaluates
* its argument multiple times, so must be used with care. The
* range checking uses the PNG specification values for a signed
* 32 bit fixed point value except that the values are deliberately
* rounded-to-zero to an integral value - 21474 (21474.83 is roughly
* (2^31-1) * 100000). 's' is a string that describes the value being
* converted.
*
* NOTE: this macro will raise a png_error if the range check fails,
* therefore it is normally only appropriate to use this on values
* that come from API calls or other sources where an out of range
* error indicates a programming error, not a data error!
*
* NOTE: by default this is off - the macro is not used - because the
* function call saves a lot of code.
*/
#ifdef PNG_FIXED_POINT_MACRO_SUPPORTED
#define png_fixed(png_ptr, fp, s) ((fp) <= 21474 && (fp) >= -21474 ?\
((png_fixed_point)(100000 * (fp))) : (png_fixed_error(png_ptr, s),0))
#else
PNG_EXTERN png_fixed_point png_fixed PNGARG((png_structp png_ptr, double fp,
png_const_charp text));
#endif
#endif
 
/* Constant strings for known chunk types. If you need to add a chunk,
* define the name here, and add an invocation of the macro wherever it's
* needed.
*/
#define PNG_IHDR PNG_CONST png_byte png_IHDR[5] = { 73, 72, 68, 82, '\0'}
#define PNG_IDAT PNG_CONST png_byte png_IDAT[5] = { 73, 68, 65, 84, '\0'}
#define PNG_IEND PNG_CONST png_byte png_IEND[5] = { 73, 69, 78, 68, '\0'}
#define PNG_PLTE PNG_CONST png_byte png_PLTE[5] = { 80, 76, 84, 69, '\0'}
#define PNG_bKGD PNG_CONST png_byte png_bKGD[5] = { 98, 75, 71, 68, '\0'}
#define PNG_cHRM PNG_CONST png_byte png_cHRM[5] = { 99, 72, 82, 77, '\0'}
#define PNG_gAMA PNG_CONST png_byte png_gAMA[5] = {103, 65, 77, 65, '\0'}
#define PNG_hIST PNG_CONST png_byte png_hIST[5] = {104, 73, 83, 84, '\0'}
#define PNG_iCCP PNG_CONST png_byte png_iCCP[5] = {105, 67, 67, 80, '\0'}
#define PNG_iTXt PNG_CONST png_byte png_iTXt[5] = {105, 84, 88, 116, '\0'}
#define PNG_oFFs PNG_CONST png_byte png_oFFs[5] = {111, 70, 70, 115, '\0'}
#define PNG_pCAL PNG_CONST png_byte png_pCAL[5] = {112, 67, 65, 76, '\0'}
#define PNG_sCAL PNG_CONST png_byte png_sCAL[5] = {115, 67, 65, 76, '\0'}
#define PNG_pHYs PNG_CONST png_byte png_pHYs[5] = {112, 72, 89, 115, '\0'}
#define PNG_sBIT PNG_CONST png_byte png_sBIT[5] = {115, 66, 73, 84, '\0'}
#define PNG_sPLT PNG_CONST png_byte png_sPLT[5] = {115, 80, 76, 84, '\0'}
#define PNG_sRGB PNG_CONST png_byte png_sRGB[5] = {115, 82, 71, 66, '\0'}
#define PNG_sTER PNG_CONST png_byte png_sTER[5] = {115, 84, 69, 82, '\0'}
#define PNG_tEXt PNG_CONST png_byte png_tEXt[5] = {116, 69, 88, 116, '\0'}
#define PNG_tIME PNG_CONST png_byte png_tIME[5] = {116, 73, 77, 69, '\0'}
#define PNG_tRNS PNG_CONST png_byte png_tRNS[5] = {116, 82, 78, 83, '\0'}
#define PNG_zTXt PNG_CONST png_byte png_zTXt[5] = {122, 84, 88, 116, '\0'}
 
 
/* Inhibit C++ name-mangling for libpng functions but not for system calls. */
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
 
/* These functions are used internally in the code. They generally
* shouldn't be used unless you are writing code to add or replace some
* functionality in libpng. More information about most functions can
* be found in the files where the functions are located.
*/
 
/* Allocate memory for an internal libpng struct */
PNG_EXTERN PNG_FUNCTION(png_voidp,png_create_struct,PNGARG((int type)),
PNG_ALLOCATED);
 
/* Free memory from internal libpng struct */
PNG_EXTERN void png_destroy_struct PNGARG((png_voidp struct_ptr));
 
PNG_EXTERN PNG_FUNCTION(png_voidp,png_create_struct_2,
PNGARG((int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr)),
PNG_ALLOCATED);
PNG_EXTERN void png_destroy_struct_2 PNGARG((png_voidp struct_ptr,
png_free_ptr free_fn, png_voidp mem_ptr));
 
/* Free any memory that info_ptr points to and reset struct. */
PNG_EXTERN void png_info_destroy PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* Function to allocate memory for zlib. PNGAPI is disallowed. */
PNG_EXTERN PNG_FUNCTION(voidpf,png_zalloc,PNGARG((voidpf png_ptr, uInt items,
uInt size)),PNG_ALLOCATED);
 
/* Function to free memory for zlib. PNGAPI is disallowed. */
PNG_EXTERN void png_zfree PNGARG((voidpf png_ptr, voidpf ptr));
 
/* Next four functions are used internally as callbacks. PNGCBAPI is required
* but not PNG_EXPORT. PNGAPI added at libpng version 1.2.3, changed to
* PNGCBAPI at 1.5.0
*/
 
PNG_EXTERN void PNGCBAPI png_default_read_data PNGARG((png_structp png_ptr,
png_bytep data, png_size_t length));
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
PNG_EXTERN void PNGCBAPI png_push_fill_buffer PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t length));
#endif
 
PNG_EXTERN void PNGCBAPI png_default_write_data PNGARG((png_structp png_ptr,
png_bytep data, png_size_t length));
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
# ifdef PNG_STDIO_SUPPORTED
PNG_EXTERN void PNGCBAPI png_default_flush PNGARG((png_structp png_ptr));
# endif
#endif
 
/* Reset the CRC variable */
PNG_EXTERN void png_reset_crc PNGARG((png_structp png_ptr));
 
/* Write the "data" buffer to whatever output you are using */
PNG_EXTERN void png_write_data PNGARG((png_structp png_ptr,
png_const_bytep data, png_size_t length));
 
/* Read and check the PNG file signature */
PNG_EXTERN void png_read_sig PNGARG((png_structp png_ptr, png_infop info_ptr));
 
/* Read the chunk header (length + type name) */
PNG_EXTERN png_uint_32 png_read_chunk_header PNGARG((png_structp png_ptr));
 
/* Read data from whatever input you are using into the "data" buffer */
PNG_EXTERN void png_read_data PNGARG((png_structp png_ptr, png_bytep data,
png_size_t length));
 
/* Read bytes into buf, and update png_ptr->crc */
PNG_EXTERN void png_crc_read PNGARG((png_structp png_ptr, png_bytep buf,
png_size_t length));
 
/* Decompress data in a chunk that uses compression */
#if defined(PNG_zTXt_SUPPORTED) || defined(PNG_iTXt_SUPPORTED) || \
defined(PNG_iCCP_SUPPORTED) || defined(PNG_sPLT_SUPPORTED)
PNG_EXTERN void png_decompress_chunk PNGARG((png_structp png_ptr,
int comp_type, png_size_t chunklength, png_size_t prefix_length,
png_size_t *data_length));
#endif
 
/* Read "skip" bytes, read the file crc, and (optionally) verify png_ptr->crc */
PNG_EXTERN int png_crc_finish PNGARG((png_structp png_ptr, png_uint_32 skip));
 
/* Read the CRC from the file and compare it to the libpng calculated CRC */
PNG_EXTERN int png_crc_error PNGARG((png_structp png_ptr));
 
/* Calculate the CRC over a section of data. Note that we are only
* passing a maximum of 64K on systems that have this as a memory limit,
* since this is the maximum buffer size we can specify.
*/
PNG_EXTERN void png_calculate_crc PNGARG((png_structp png_ptr,
png_const_bytep ptr, png_size_t length));
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
PNG_EXTERN void png_flush PNGARG((png_structp png_ptr));
#endif
 
/* Write various chunks */
 
/* Write the IHDR chunk, and update the png_struct with the necessary
* information.
*/
PNG_EXTERN void png_write_IHDR PNGARG((png_structp png_ptr, png_uint_32 width,
png_uint_32 height,
int bit_depth, int color_type, int compression_method, int filter_method,
int interlace_method));
 
PNG_EXTERN void png_write_PLTE PNGARG((png_structp png_ptr,
png_const_colorp palette, png_uint_32 num_pal));
 
PNG_EXTERN void png_write_IDAT PNGARG((png_structp png_ptr, png_bytep data,
png_size_t length));
 
PNG_EXTERN void png_write_IEND PNGARG((png_structp png_ptr));
 
#ifdef PNG_WRITE_gAMA_SUPPORTED
# ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_EXTERN void png_write_gAMA PNGARG((png_structp png_ptr, double file_gamma));
# endif
# ifdef PNG_FIXED_POINT_SUPPORTED
PNG_EXTERN void png_write_gAMA_fixed PNGARG((png_structp png_ptr,
png_fixed_point file_gamma));
# endif
#endif
 
#ifdef PNG_WRITE_sBIT_SUPPORTED
PNG_EXTERN void png_write_sBIT PNGARG((png_structp png_ptr,
png_const_color_8p sbit, int color_type));
#endif
 
#ifdef PNG_WRITE_cHRM_SUPPORTED
# ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_EXTERN void png_write_cHRM PNGARG((png_structp png_ptr,
double white_x, double white_y,
double red_x, double red_y, double green_x, double green_y,
double blue_x, double blue_y));
# endif
PNG_EXTERN void png_write_cHRM_fixed PNGARG((png_structp png_ptr,
png_fixed_point int_white_x, png_fixed_point int_white_y,
png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point
int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x,
png_fixed_point int_blue_y));
#endif
 
#ifdef PNG_WRITE_sRGB_SUPPORTED
PNG_EXTERN void png_write_sRGB PNGARG((png_structp png_ptr,
int intent));
#endif
 
#ifdef PNG_WRITE_iCCP_SUPPORTED
PNG_EXTERN void png_write_iCCP PNGARG((png_structp png_ptr,
png_const_charp name, int compression_type,
png_const_charp profile, int proflen));
/* Note to maintainer: profile should be png_bytep */
#endif
 
#ifdef PNG_WRITE_sPLT_SUPPORTED
PNG_EXTERN void png_write_sPLT PNGARG((png_structp png_ptr,
png_const_sPLT_tp palette));
#endif
 
#ifdef PNG_WRITE_tRNS_SUPPORTED
PNG_EXTERN void png_write_tRNS PNGARG((png_structp png_ptr,
png_const_bytep trans, png_const_color_16p values, int number,
int color_type));
#endif
 
#ifdef PNG_WRITE_bKGD_SUPPORTED
PNG_EXTERN void png_write_bKGD PNGARG((png_structp png_ptr,
png_const_color_16p values, int color_type));
#endif
 
#ifdef PNG_WRITE_hIST_SUPPORTED
PNG_EXTERN void png_write_hIST PNGARG((png_structp png_ptr,
png_const_uint_16p hist, int num_hist));
#endif
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
PNG_EXTERN png_size_t png_check_keyword PNGARG((png_structp png_ptr,
png_const_charp key, png_charpp new_key));
#endif
 
#ifdef PNG_WRITE_tEXt_SUPPORTED
PNG_EXTERN void png_write_tEXt PNGARG((png_structp png_ptr, png_const_charp key,
png_const_charp text, png_size_t text_len));
#endif
 
#ifdef PNG_WRITE_zTXt_SUPPORTED
PNG_EXTERN void png_write_zTXt PNGARG((png_structp png_ptr, png_const_charp key,
png_const_charp text, png_size_t text_len, int compression));
#endif
 
#ifdef PNG_WRITE_iTXt_SUPPORTED
PNG_EXTERN void png_write_iTXt PNGARG((png_structp png_ptr,
int compression, png_const_charp key, png_const_charp lang,
png_const_charp lang_key, png_const_charp text));
#endif
 
#ifdef PNG_TEXT_SUPPORTED /* Added at version 1.0.14 and 1.2.4 */
PNG_EXTERN int png_set_text_2 PNGARG((png_structp png_ptr,
png_infop info_ptr, png_const_textp text_ptr, int num_text));
#endif
 
#ifdef PNG_WRITE_oFFs_SUPPORTED
PNG_EXTERN void png_write_oFFs PNGARG((png_structp png_ptr,
png_int_32 x_offset, png_int_32 y_offset, int unit_type));
#endif
 
#ifdef PNG_WRITE_pCAL_SUPPORTED
PNG_EXTERN void png_write_pCAL PNGARG((png_structp png_ptr, png_charp purpose,
png_int_32 X0, png_int_32 X1, int type, int nparams,
png_const_charp units, png_charpp params));
#endif
 
#ifdef PNG_WRITE_pHYs_SUPPORTED
PNG_EXTERN void png_write_pHYs PNGARG((png_structp png_ptr,
png_uint_32 x_pixels_per_unit, png_uint_32 y_pixels_per_unit,
int unit_type));
#endif
 
#ifdef PNG_WRITE_tIME_SUPPORTED
PNG_EXTERN void png_write_tIME PNGARG((png_structp png_ptr,
png_const_timep mod_time));
#endif
 
#ifdef PNG_WRITE_sCAL_SUPPORTED
PNG_EXTERN void png_write_sCAL_s PNGARG((png_structp png_ptr,
int unit, png_const_charp width, png_const_charp height));
#endif
 
/* Called when finished processing a row of data */
PNG_EXTERN void png_write_finish_row PNGARG((png_structp png_ptr));
 
/* Internal use only. Called before first row of data */
PNG_EXTERN void png_write_start_row PNGARG((png_structp png_ptr));
 
/* Combine a row of data, dealing with alpha, etc. if requested */
PNG_EXTERN void png_combine_row PNGARG((png_structp png_ptr, png_bytep row,
int mask));
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Expand an interlaced row */
/* OLD pre-1.0.9 interface:
PNG_EXTERN void png_do_read_interlace PNGARG((png_row_infop row_info,
png_bytep row, int pass, png_uint_32 transformations));
*/
PNG_EXTERN void png_do_read_interlace PNGARG((png_structp png_ptr));
#endif
 
/* GRR TO DO (2.0 or whenever): simplify other internal calling interfaces */
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Grab pixels out of a row for an interlaced pass */
PNG_EXTERN void png_do_write_interlace PNGARG((png_row_infop row_info,
png_bytep row, int pass));
#endif
 
/* Unfilter a row */
PNG_EXTERN void png_read_filter_row PNGARG((png_structp png_ptr,
png_row_infop row_info, png_bytep row, png_const_bytep prev_row,
int filter));
 
/* Choose the best filter to use and filter the row data */
PNG_EXTERN void png_write_find_filter PNGARG((png_structp png_ptr,
png_row_infop row_info));
 
/* Write out the filtered row. */
PNG_EXTERN void png_write_filtered_row PNGARG((png_structp png_ptr,
png_bytep filtered_row));
/* Finish a row while reading, dealing with interlacing passes, etc. */
PNG_EXTERN void png_read_finish_row PNGARG((png_structp png_ptr));
 
/* Initialize the row buffers, etc. */
PNG_EXTERN void png_read_start_row PNGARG((png_structp png_ptr));
/* Optional call to update the users info structure */
PNG_EXTERN void png_read_transform_info PNGARG((png_structp png_ptr,
png_infop info_ptr));
 
/* These are the functions that do the transformations */
#ifdef PNG_READ_FILLER_SUPPORTED
PNG_EXTERN void png_do_read_filler PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 filler, png_uint_32 flags));
#endif
 
#ifdef PNG_READ_SWAP_ALPHA_SUPPORTED
PNG_EXTERN void png_do_read_swap_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_WRITE_SWAP_ALPHA_SUPPORTED
PNG_EXTERN void png_do_write_swap_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
PNG_EXTERN void png_do_read_invert_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
PNG_EXTERN void png_do_write_invert_alpha PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#if defined(PNG_WRITE_FILLER_SUPPORTED) || \
defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
PNG_EXTERN void png_do_strip_filler PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 flags));
#endif
 
#ifdef PNG_16BIT_SUPPORTED
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
PNG_EXTERN void png_do_swap PNGARG((png_row_infop row_info,
png_bytep row));
#endif
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED) || \
defined(PNG_WRITE_PACKSWAP_SUPPORTED)
PNG_EXTERN void png_do_packswap PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
PNG_EXTERN int png_do_rgb_to_gray PNGARG((png_structp png_ptr,
png_row_infop row_info, png_bytep row));
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
PNG_EXTERN void png_do_gray_to_rgb PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_PACK_SUPPORTED
PNG_EXTERN void png_do_unpack PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_SHIFT_SUPPORTED
PNG_EXTERN void png_do_unshift PNGARG((png_row_infop row_info,
png_bytep row, png_const_color_8p sig_bits));
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
PNG_EXTERN void png_do_invert PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
PNG_EXTERN void png_do_chop PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
PNG_EXTERN void png_do_quantize PNGARG((png_row_infop row_info,
png_bytep row, png_const_bytep palette_lookup,
png_const_bytep quantize_lookup));
 
# ifdef PNG_CORRECT_PALETTE_SUPPORTED
PNG_EXTERN void png_correct_palette PNGARG((png_structp png_ptr,
png_colorp palette, int num_palette));
# endif
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
PNG_EXTERN void png_do_bgr PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
#ifdef PNG_WRITE_PACK_SUPPORTED
PNG_EXTERN void png_do_pack PNGARG((png_row_infop row_info,
png_bytep row, png_uint_32 bit_depth));
#endif
 
#ifdef PNG_WRITE_SHIFT_SUPPORTED
PNG_EXTERN void png_do_shift PNGARG((png_row_infop row_info,
png_bytep row, png_const_color_8p bit_depth));
#endif
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
# ifdef PNG_READ_GAMMA_SUPPORTED
PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info,
png_bytep row, png_const_color_16p trans_color,
png_const_color_16p background, png_const_color_16p background_1,
png_const_bytep gamma_table, png_const_bytep gamma_from_1,
png_const_bytep gamma_to_1, png_const_uint_16pp gamma_16,
png_const_uint_16pp gamma_16_from_1, png_const_uint_16pp gamma_16_to_1,
int gamma_shift));
# else
PNG_EXTERN void png_do_background PNGARG((png_row_infop row_info,
png_bytep row, png_const_color_16p trans_color,
png_const_color_16p background));
# endif
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
PNG_EXTERN void png_do_gamma PNGARG((png_row_infop row_info,
png_bytep row, png_const_bytep gamma_table,
png_const_uint_16pp gamma_16_table, int gamma_shift));
#endif
 
#ifdef PNG_READ_EXPAND_SUPPORTED
PNG_EXTERN void png_do_expand_palette PNGARG((png_row_infop row_info,
png_bytep row, png_const_colorp palette, png_const_bytep trans,
int num_trans));
PNG_EXTERN void png_do_expand PNGARG((png_row_infop row_info,
png_bytep row, png_const_color_16p trans_color));
#endif
 
/* The following decodes the appropriate chunks, and does error correction,
* then calls the appropriate callback for the chunk if it is valid.
*/
 
/* Decode the IHDR chunk */
PNG_EXTERN void png_handle_IHDR PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
PNG_EXTERN void png_handle_PLTE PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
PNG_EXTERN void png_handle_IEND PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
 
#ifdef PNG_READ_bKGD_SUPPORTED
PNG_EXTERN void png_handle_bKGD PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_cHRM_SUPPORTED
PNG_EXTERN void png_handle_cHRM PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_gAMA_SUPPORTED
PNG_EXTERN void png_handle_gAMA PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
PNG_EXTERN void png_handle_hIST PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_iCCP_SUPPORTED
PNG_EXTERN void png_handle_iCCP PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif /* PNG_READ_iCCP_SUPPORTED */
 
#ifdef PNG_READ_iTXt_SUPPORTED
PNG_EXTERN void png_handle_iTXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_oFFs_SUPPORTED
PNG_EXTERN void png_handle_oFFs PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_pCAL_SUPPORTED
PNG_EXTERN void png_handle_pCAL PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_pHYs_SUPPORTED
PNG_EXTERN void png_handle_pHYs PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_sBIT_SUPPORTED
PNG_EXTERN void png_handle_sBIT PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_sCAL_SUPPORTED
PNG_EXTERN void png_handle_sCAL PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_sPLT_SUPPORTED
PNG_EXTERN void png_handle_sPLT PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif /* PNG_READ_sPLT_SUPPORTED */
 
#ifdef PNG_READ_sRGB_SUPPORTED
PNG_EXTERN void png_handle_sRGB PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_tEXt_SUPPORTED
PNG_EXTERN void png_handle_tEXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_tIME_SUPPORTED
PNG_EXTERN void png_handle_tIME PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_tRNS_SUPPORTED
PNG_EXTERN void png_handle_tRNS PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
#ifdef PNG_READ_zTXt_SUPPORTED
PNG_EXTERN void png_handle_zTXt PNGARG((png_structp png_ptr, png_infop info_ptr,
png_uint_32 length));
#endif
 
PNG_EXTERN void png_handle_unknown PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
 
PNG_EXTERN void png_check_chunk_name PNGARG((png_structp png_ptr,
png_const_bytep chunk_name));
 
/* Handle the transformations for reading and writing */
PNG_EXTERN void png_do_read_transformations PNGARG((png_structp png_ptr));
PNG_EXTERN void png_do_write_transformations PNGARG((png_structp png_ptr));
 
PNG_EXTERN void png_init_read_transformations PNGARG((png_structp png_ptr));
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
PNG_EXTERN void png_push_read_chunk PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_read_sig PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_check_crc PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_crc_skip PNGARG((png_structp png_ptr,
png_uint_32 length));
PNG_EXTERN void png_push_crc_finish PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_save_buffer PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_restore_buffer PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t buffer_length));
PNG_EXTERN void png_push_read_IDAT PNGARG((png_structp png_ptr));
PNG_EXTERN void png_process_IDAT_data PNGARG((png_structp png_ptr,
png_bytep buffer, png_size_t buffer_length));
PNG_EXTERN void png_push_process_row PNGARG((png_structp png_ptr));
PNG_EXTERN void png_push_handle_unknown PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_have_info PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_have_end PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_push_have_row PNGARG((png_structp png_ptr, png_bytep row));
PNG_EXTERN void png_push_read_end PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_process_some_data PNGARG((png_structp png_ptr,
png_infop info_ptr));
PNG_EXTERN void png_read_push_finish_row PNGARG((png_structp png_ptr));
# ifdef PNG_READ_tEXt_SUPPORTED
PNG_EXTERN void png_push_handle_tEXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_tEXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
# endif
# ifdef PNG_READ_zTXt_SUPPORTED
PNG_EXTERN void png_push_handle_zTXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_zTXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
# endif
# ifdef PNG_READ_iTXt_SUPPORTED
PNG_EXTERN void png_push_handle_iTXt PNGARG((png_structp png_ptr,
png_infop info_ptr, png_uint_32 length));
PNG_EXTERN void png_push_read_iTXt PNGARG((png_structp png_ptr,
png_infop info_ptr));
# endif
 
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
PNG_EXTERN void png_do_read_intrapixel PNGARG((png_row_infop row_info,
png_bytep row));
PNG_EXTERN void png_do_write_intrapixel PNGARG((png_row_infop row_info,
png_bytep row));
#endif
 
/* Added at libpng version 1.4.0 */
#ifdef PNG_CHECK_cHRM_SUPPORTED
PNG_EXTERN int png_check_cHRM_fixed PNGARG((png_structp png_ptr,
png_fixed_point int_white_x, png_fixed_point int_white_y,
png_fixed_point int_red_x, png_fixed_point int_red_y, png_fixed_point
int_green_x, png_fixed_point int_green_y, png_fixed_point int_blue_x,
png_fixed_point int_blue_y));
#endif
 
#ifdef PNG_CHECK_cHRM_SUPPORTED
/* Added at libpng version 1.2.34 and 1.4.0 */
/* Currently only used by png_check_cHRM_fixed */
PNG_EXTERN void png_64bit_product PNGARG((long v1, long v2,
unsigned long *hi_product, unsigned long *lo_product));
#endif
 
/* Added at libpng version 1.4.0 */
PNG_EXTERN void png_check_IHDR PNGARG((png_structp png_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int interlace_type, int compression_type,
int filter_type));
 
/* Free all memory used by the read (old method - NOT DLL EXPORTED) */
PNG_EXTERN void png_read_destroy PNGARG((png_structp png_ptr,
png_infop info_ptr, png_infop end_info_ptr));
 
/* Free any memory used in png_ptr struct (old method - NOT DLL EXPORTED) */
PNG_EXTERN void png_write_destroy PNGARG((png_structp png_ptr));
 
#ifdef USE_FAR_KEYWORD /* memory model conversion function */
PNG_EXTERN void *png_far_to_near PNGARG((png_structp png_ptr, png_voidp ptr,
int check));
#endif /* USE_FAR_KEYWORD */
 
#if defined(PNG_FLOATING_POINT_SUPPORTED) && defined(PNG_ERROR_TEXT_SUPPORTED)
PNG_EXTERN PNG_FUNCTION(void, png_fixed_error, (png_structp png_ptr,
png_const_charp name),PNG_NORETURN);
#endif
 
/* ASCII to FP interfaces, currently only implemented if sCAL
* support is required.
*/
#if defined(PNG_READ_sCAL_SUPPORTED)
/* MAX_DIGITS is actually the maximum number of characters in an sCAL
* width or height, derived from the precision (number of significant
* digits - a build time settable option) and assumpitions about the
* maximum ridiculous exponent.
*/
#define PNG_sCAL_MAX_DIGITS (PNG_sCAL_PRECISION+1/*.*/+1/*E*/+10/*exponent*/)
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
PNG_EXTERN void png_ascii_from_fp PNGARG((png_structp png_ptr, png_charp ascii,
png_size_t size, double fp, unsigned int precision));
#endif /* FLOATING_POINT */
 
#ifdef PNG_FIXED_POINT_SUPPORTED
PNG_EXTERN void png_ascii_from_fixed PNGARG((png_structp png_ptr,
png_charp ascii, png_size_t size, png_fixed_point fp));
#endif /* FIXED_POINT */
#endif /* READ_sCAL */
 
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
/* An internal API to validate the format of a floating point number.
* The result is the index of the next character. If the number is
* not valid it will be the index of a character in the supposed number.
*
* The format of a number is defined in the PNG extensions specification
* and this API is strictly conformant to that spec, not anyone elses!
*
* The format as a regular expression is:
*
* [+-]?[0-9]+.?([Ee][+-]?[0-9]+)?
*
* or:
*
* [+-]?.[0-9]+(.[0-9]+)?([Ee][+-]?[0-9]+)?
*
* The complexity is that either integer or fraction must be present and the
* fraction is permitted to have no digits only if the integer is present.
*
* NOTE: The dangling E problem.
* There is a PNG valid floating point number in the following:
*
* PNG floating point numb1.ers are not greedy.
*
* Working this out requires *TWO* character lookahead (because of the
* sign), the parser does not do this - it will fail at the 'r' - this
* doesn't matter for PNG sCAL chunk values, but it requires more care
* if the value were ever to be embedded in something more complex. Use
* ANSI-C strtod if you need the lookahead.
*/
/* State table for the parser. */
#define PNG_FP_INTEGER 0 /* before or in integer */
#define PNG_FP_FRACTION 1 /* before or in fraction */
#define PNG_FP_EXPONENT 2 /* before or in exponent */
#define PNG_FP_STATE 3 /* mask for the above */
#define PNG_FP_SAW_SIGN 4 /* Saw +/- in current state */
#define PNG_FP_SAW_DIGIT 8 /* Saw a digit in current state */
#define PNG_FP_SAW_DOT 16 /* Saw a dot in current state */
#define PNG_FP_SAW_E 32 /* Saw an E (or e) in current state */
#define PNG_FP_SAW_ANY 60 /* Saw any of the above 4 */
#define PNG_FP_WAS_VALID 64 /* Preceding substring is a valid fp number */
#define PNG_FP_INVALID 128 /* Available for callers as a distinct value */
 
/* Result codes for the parser (boolean - true meants ok, false means
* not ok yet.)
*/
#define PNG_FP_MAYBE 0 /* The number may be valid in the future */
#define PNG_FP_OK 1 /* The number is valid */
 
/* The actual parser. This can be called repeatedly, it updates
* the index into the string and the state variable (which must
* be initialzed to 0). It returns a result code, as above. There
* is no point calling the parser any more if it fails to advance to
* the end of the string - it is stuck on an invalid character (or
* terminated by '\0').
*
* Note that the pointer will consume an E or even an E+ then leave
* a 'maybe' state even though a preceding integer.fraction is valid.
* The PNG_FP_WAS_VALID flag indicates that a preceding substring was
* a valid number. It's possible to recover from this by calling
* the parser again (from the start, with state 0) but with a string
* that omits the last character (i.e. set the size to the index of
* the problem character.) This has not been tested within libpng.
*/
PNG_EXTERN int png_check_fp_number PNGARG((png_const_charp string,
png_size_t size, int *statep, png_size_tp whereami));
 
/* This is the same but it checks a complete string and returns true
* only if it just contains a floating point number.
*/
PNG_EXTERN int png_check_fp_string PNGARG((png_const_charp string,
png_size_t size));
#endif /* pCAL || sCAL */
 
#if defined(PNG_READ_GAMMA_SUPPORTED) ||\
defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
/* Added at libpng version 1.5.0 */
/* This is a utility to provide a*times/div (rounded) and indicate
* if there is an overflow. The result is a boolean - false (0)
* for overflow, true (1) if no overflow, in which case *res
* holds the result.
*/
PNG_EXTERN int png_muldiv PNGARG((png_fixed_point_p res, png_fixed_point a,
png_int_32 times, png_int_32 div));
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
/* Same deal, but issue a warning on overflow and return 0. */
PNG_EXTERN png_fixed_point png_muldiv_warn PNGARG((png_structp png_ptr,
png_fixed_point a, png_int_32 times, png_int_32 div));
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
/* Calculate a reciprocal - used for gamma values. This returns
* 0 if the argument is 0 in order to maintain an undefined value,
* there are no warnings.
*/
PNG_EXTERN png_fixed_point png_reciprocal PNGARG((png_fixed_point a));
 
/* The same but gives a reciprocal of the product of two fixed point
* values. Accuracy is suitable for gamma calculations but this is
* not exact - use png_muldiv for that.
*/
PNG_EXTERN png_fixed_point png_reciprocal2 PNGARG((png_fixed_point a,
png_fixed_point b));
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
/* Internal fixed point gamma correction. These APIs are called as
* required to convert single values - they don't need to be fast,
* they are not used when processing image pixel values.
*
* While the input is an 'unsigned' value it must actually be the
* correct bit value - 0..255 or 0..65535 as required.
*/
PNG_EXTERN png_uint_16 png_gamma_correct PNGARG((png_structp png_ptr,
unsigned int value, png_fixed_point gamma));
PNG_EXTERN int png_gamma_significant PNGARG((png_fixed_point gamma));
PNG_EXTERN png_uint_16 png_gamma_16bit_correct PNGARG((unsigned int value,
png_fixed_point gamma));
PNG_EXTERN png_byte png_gamma_8bit_correct PNGARG((unsigned int value,
png_fixed_point gamma));
PNG_EXTERN void png_build_gamma_table PNGARG((png_structp png_ptr,
int bit_depth));
#endif
 
/* Maintainer: Put new private prototypes here ^ and in libpngpf.3 */
 
 
#include "pngdebug.h"
 
#ifdef __cplusplus
}
#endif
 
#endif /* PNGPRIV_H */
/programs/develop/libraries/libpng/pngread.c
0,0 → 1,1466
 
/* pngread.c - read a PNG file
*
* Last changed in libpng 1.5.1 [$RDATE%]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file contains routines that an application calls directly to
* read a PNG file or stream.
*/
 
#include "pngpriv.h"
 
#ifdef PNG_READ_SUPPORTED
 
/* Create a PNG structure for reading, and allocate any memory needed. */
PNG_FUNCTION(png_structp,PNGAPI
png_create_read_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn),PNG_ALLOCATED)
{
 
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_read_struct_2(user_png_ver, error_ptr, error_fn,
warn_fn, NULL, NULL, NULL));
}
 
/* Alternate create PNG structure for reading, and allocate any memory
* needed.
*/
PNG_FUNCTION(png_structp,PNGAPI
png_create_read_struct_2,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
{
#endif /* PNG_USER_MEM_SUPPORTED */
 
#ifdef PNG_SETJMP_SUPPORTED
volatile
#endif
png_structp png_ptr;
volatile int png_cleanup_needed = 0;
 
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf png_jmpbuf;
#endif
#endif
 
int i;
 
png_debug(1, "in png_create_read_struct");
 
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG,
malloc_fn, mem_ptr);
#else
png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
#endif
if (png_ptr == NULL)
return (NULL);
 
/* Added at libpng-1.2.6 */
#ifdef PNG_USER_LIMITS_SUPPORTED
png_ptr->user_width_max = PNG_USER_WIDTH_MAX;
png_ptr->user_height_max = PNG_USER_HEIGHT_MAX;
 
# ifdef PNG_USER_CHUNK_CACHE_MAX
/* Added at libpng-1.2.43 and 1.4.0 */
png_ptr->user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
# endif
 
# ifdef PNG_SET_USER_CHUNK_MALLOC_MAX
/* Added at libpng-1.2.43 and 1.4.1 */
png_ptr->user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
# endif
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* Applications that neglect to set up their own setjmp() and then
encounter a png_error() will longjmp here. Since the jmpbuf is
then meaningless we abort instead of returning. */
#ifdef USE_FAR_KEYWORD
if (setjmp(png_jmpbuf))
#else
if (setjmp(png_jmpbuf(png_ptr))) /* Sets longjmp to match setjmp */
#endif
PNG_ABORT();
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(png_ptr), png_jmpbuf, png_sizeof(jmp_buf));
#endif
#endif /* PNG_SETJMP_SUPPORTED */
 
#ifdef PNG_USER_MEM_SUPPORTED
png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn);
#endif
 
png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn);
 
if (user_png_ver)
{
i = 0;
 
do
{
if (user_png_ver[i] != png_libpng_ver[i])
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
} while (png_libpng_ver[i++]);
}
 
else
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
 
 
if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
{
/* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
* we must recompile any applications that use any older library version.
* For versions after libpng 1.0, we will be compatible, so we need
* only check the first digit.
*/
if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
(user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
(user_png_ver[0] == '0' && user_png_ver[2] < '9'))
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
char msg[80];
if (user_png_ver)
{
png_snprintf2(msg, 80,
"Application built with libpng-%.20s"
" but running with %.20s",
user_png_ver,
png_libpng_ver);
png_warning(png_ptr, msg);
}
#else
png_warning(png_ptr,
"Incompatible libpng version in application and library");
#endif
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags = 0;
#endif
 
png_cleanup_needed = 1;
}
}
 
if (!png_cleanup_needed)
{
/* Initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
png_ptr->zbuf = (png_bytep)png_malloc_warn(png_ptr, png_ptr->zbuf_size);
 
if (png_ptr->zbuf == NULL)
png_cleanup_needed = 1;
}
 
png_ptr->zstream.zalloc = png_zalloc;
png_ptr->zstream.zfree = png_zfree;
png_ptr->zstream.opaque = (voidpf)png_ptr;
 
if (!png_cleanup_needed)
{
switch (inflateInit(&png_ptr->zstream))
{
case Z_OK:
break; /* Do nothing */
 
case Z_MEM_ERROR:
png_warning(png_ptr, "zlib memory error");
png_cleanup_needed = 1;
break;
 
case Z_STREAM_ERROR:
png_warning(png_ptr, "zlib stream error");
png_cleanup_needed = 1;
break;
 
case Z_VERSION_ERROR:
png_warning(png_ptr, "zlib version error");
png_cleanup_needed = 1;
break;
 
default: png_warning(png_ptr, "Unknown zlib error");
png_cleanup_needed = 1;
}
}
 
if (png_cleanup_needed)
{
/* Clean up PNG structure and deallocate any memory. */
png_free(png_ptr, png_ptr->zbuf);
png_ptr->zbuf = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr,
(png_free_ptr)free_fn, (png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
return (NULL);
}
 
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
 
png_set_read_fn(png_ptr, NULL, NULL);
 
 
return (png_ptr);
}
 
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the information before the actual image data. This has been
* changed in v0.90 to allow reading a file that already has the magic
* bytes read from the stream. You can tell libpng how many bytes have
* been read from the beginning of the stream (up to the maximum of 8)
* via png_set_sig_bytes(), and we will only check the remaining bytes
* here. The application can then have access to the signature bytes we
* read if it is determined that this isn't a valid PNG file.
*/
void PNGAPI
png_read_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_info");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* Read and check the PNG file signature. */
png_read_sig(png_ptr, info_ptr);
 
for (;;)
{
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#ifdef PNG_READ_bKGD_SUPPORTED
PNG_bKGD;
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
PNG_cHRM;
#endif
#ifdef PNG_READ_gAMA_SUPPORTED
PNG_gAMA;
#endif
#ifdef PNG_READ_hIST_SUPPORTED
PNG_hIST;
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
PNG_iCCP;
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
PNG_iTXt;
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
PNG_oFFs;
#endif
#ifdef PNG_READ_pCAL_SUPPORTED
PNG_pCAL;
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
PNG_pHYs;
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
PNG_sBIT;
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
PNG_sCAL;
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
PNG_sPLT;
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
PNG_sRGB;
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
PNG_tEXt;
#endif
#ifdef PNG_READ_tIME_SUPPORTED
PNG_tIME;
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
PNG_tRNS;
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
PNG_zTXt;
#endif
png_uint_32 length = png_read_chunk_header(png_ptr);
PNG_CONST png_bytep chunk_name = png_ptr->chunk_name;
 
/* This should be a binary subdivision search or a hash for
* matching the chunk name rather than a linear search.
*/
if (!png_memcmp(chunk_name, png_IDAT, 4))
if (png_ptr->mode & PNG_AFTER_IDAT)
png_ptr->mode |= PNG_HAVE_CHUNK_AFTER_IDAT;
 
if (!png_memcmp(chunk_name, png_IHDR, 4))
png_handle_IHDR(png_ptr, info_ptr, length);
 
else if (!png_memcmp(chunk_name, png_IEND, 4))
png_handle_IEND(png_ptr, info_ptr, length);
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if (png_handle_as_unknown(png_ptr, chunk_name))
{
if (!png_memcmp(chunk_name, png_IDAT, 4))
png_ptr->mode |= PNG_HAVE_IDAT;
 
png_handle_unknown(png_ptr, info_ptr, length);
 
if (!png_memcmp(chunk_name, png_PLTE, 4))
png_ptr->mode |= PNG_HAVE_PLTE;
 
else if (!png_memcmp(chunk_name, png_IDAT, 4))
{
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
 
break;
}
}
#endif
else if (!png_memcmp(chunk_name, png_PLTE, 4))
png_handle_PLTE(png_ptr, info_ptr, length);
 
else if (!png_memcmp(chunk_name, png_IDAT, 4))
{
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before IDAT");
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
png_error(png_ptr, "Missing PLTE before IDAT");
 
png_ptr->idat_size = length;
png_ptr->mode |= PNG_HAVE_IDAT;
break;
}
 
#ifdef PNG_READ_bKGD_SUPPORTED
else if (!png_memcmp(chunk_name, png_bKGD, 4))
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_cHRM_SUPPORTED
else if (!png_memcmp(chunk_name, png_cHRM, 4))
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_gAMA_SUPPORTED
else if (!png_memcmp(chunk_name, png_gAMA, 4))
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
else if (!png_memcmp(chunk_name, png_hIST, 4))
png_handle_hIST(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_oFFs_SUPPORTED
else if (!png_memcmp(chunk_name, png_oFFs, 4))
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_pCAL_SUPPORTED
else if (!png_memcmp(chunk_name, png_pCAL, 4))
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sCAL_SUPPORTED
else if (!png_memcmp(chunk_name, png_sCAL, 4))
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_pHYs_SUPPORTED
else if (!png_memcmp(chunk_name, png_pHYs, 4))
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sBIT_SUPPORTED
else if (!png_memcmp(chunk_name, png_sBIT, 4))
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sRGB_SUPPORTED
else if (!png_memcmp(chunk_name, png_sRGB, 4))
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_iCCP_SUPPORTED
else if (!png_memcmp(chunk_name, png_iCCP, 4))
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sPLT_SUPPORTED
else if (!png_memcmp(chunk_name, png_sPLT, 4))
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tEXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_tEXt, 4))
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tIME_SUPPORTED
else if (!png_memcmp(chunk_name, png_tIME, 4))
png_handle_tIME(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tRNS_SUPPORTED
else if (!png_memcmp(chunk_name, png_tRNS, 4))
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_zTXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_zTXt, 4))
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_iTXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_iTXt, 4))
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
 
else
png_handle_unknown(png_ptr, info_ptr, length);
}
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
/* Optional call to update the users info_ptr structure */
void PNGAPI
png_read_update_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_update_info");
 
if (png_ptr == NULL)
return;
 
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
 
else
png_warning(png_ptr,
"Ignoring extra png_read_update_info() call;"
" row buffer not reallocated");
 
png_read_transform_info(png_ptr, info_ptr);
}
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Initialize palette, background, etc, after transformations
* are set, but before any reading takes place. This allows
* the user to obtain a gamma-corrected palette, for example.
* If the user doesn't call this, we will do it ourselves.
*/
void PNGAPI
png_start_read_image(png_structp png_ptr)
{
png_debug(1, "in png_start_read_image");
 
if (png_ptr == NULL)
return;
 
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
else
png_warning(png_ptr,
"Ignoring extra png_start_read_image() call;"
" row buffer not reallocated");
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
void PNGAPI
png_read_row(png_structp png_ptr, png_bytep row, png_bytep dsp_row)
{
PNG_IDAT;
PNG_CONST int png_pass_dsp_mask[7] = {0xff, 0x0f, 0xff, 0x33, 0xff, 0x55,
0xff};
PNG_CONST int png_pass_mask[7] = {0x80, 0x08, 0x88, 0x22, 0xaa, 0x55, 0xff};
int ret;
 
if (png_ptr == NULL)
return;
 
png_debug2(1, "in png_read_row (row %lu, pass %d)",
(unsigned long)png_ptr->row_number, png_ptr->pass);
 
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
png_read_start_row(png_ptr);
 
if (png_ptr->row_number == 0 && png_ptr->pass == 0)
{
/* Check for transforms that have been set but were defined out */
#if defined(PNG_WRITE_INVERT_SUPPORTED) && !defined(PNG_READ_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_warning(png_ptr, "PNG_READ_INVERT_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_FILLER_SUPPORTED) && !defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_warning(png_ptr, "PNG_READ_FILLER_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_PACKSWAP_SUPPORTED) && \
!defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_warning(png_ptr, "PNG_READ_PACKSWAP_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_PACK_SUPPORTED) && !defined(PNG_READ_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_warning(png_ptr, "PNG_READ_PACK_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_SHIFT_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_warning(png_ptr, "PNG_READ_SHIFT_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_BGR_SUPPORTED) && !defined(PNG_READ_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_warning(png_ptr, "PNG_READ_BGR_SUPPORTED is not defined");
#endif
 
#if defined(PNG_WRITE_SWAP_SUPPORTED) && !defined(PNG_READ_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_warning(png_ptr, "PNG_READ_SWAP_SUPPORTED is not defined");
#endif
}
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* If interlaced and we do not need a new row, combine row and return */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
switch (png_ptr->pass)
{
case 0:
if (png_ptr->row_number & 0x07)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
png_read_finish_row(png_ptr);
return;
}
break;
 
case 1:
if ((png_ptr->row_number & 0x07) || png_ptr->width < 5)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
 
png_read_finish_row(png_ptr);
return;
}
break;
 
case 2:
if ((png_ptr->row_number & 0x07) != 4)
{
if (dsp_row != NULL && (png_ptr->row_number & 4))
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
 
png_read_finish_row(png_ptr);
return;
}
break;
 
case 3:
if ((png_ptr->row_number & 3) || png_ptr->width < 3)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
 
png_read_finish_row(png_ptr);
return;
}
break;
 
case 4:
if ((png_ptr->row_number & 3) != 2)
{
if (dsp_row != NULL && (png_ptr->row_number & 2))
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
 
png_read_finish_row(png_ptr);
return;
}
break;
case 5:
if ((png_ptr->row_number & 1) || png_ptr->width < 2)
{
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row,
png_pass_dsp_mask[png_ptr->pass]);
 
png_read_finish_row(png_ptr);
return;
}
break;
 
default:
case 6:
if (!(png_ptr->row_number & 1))
{
png_read_finish_row(png_ptr);
return;
}
break;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IDAT))
png_error(png_ptr, "Invalid attempt to read row data");
 
png_ptr->zstream.next_out = png_ptr->row_buf;
png_ptr->zstream.avail_out =
(uInt)(PNG_ROWBYTES(png_ptr->pixel_depth,
png_ptr->iwidth) + 1);
 
do
{
if (!(png_ptr->zstream.avail_in))
{
while (!png_ptr->idat_size)
{
png_crc_finish(png_ptr, 0);
 
png_ptr->idat_size = png_read_chunk_header(png_ptr);
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
}
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_in = png_ptr->zbuf;
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size;
png_crc_read(png_ptr, png_ptr->zbuf,
(png_size_t)png_ptr->zstream.avail_in);
png_ptr->idat_size -= png_ptr->zstream.avail_in;
}
 
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
 
if (ret == Z_STREAM_END)
{
if (png_ptr->zstream.avail_out || png_ptr->zstream.avail_in ||
png_ptr->idat_size)
png_benign_error(png_ptr, "Extra compressed data");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
if (ret != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg :
"Decompression error");
 
} while (png_ptr->zstream.avail_out);
 
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->iwidth;
png_ptr->row_info.channels = png_ptr->channels;
png_ptr->row_info.bit_depth = png_ptr->bit_depth;
png_ptr->row_info.pixel_depth = png_ptr->pixel_depth;
png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth,
png_ptr->row_info.width);
 
if (png_ptr->row_buf[0])
png_read_filter_row(png_ptr, &(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->prev_row + 1,
(int)(png_ptr->row_buf[0]));
 
png_memcpy(png_ptr->prev_row, png_ptr->row_buf, png_ptr->rowbytes + 1);
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
if ((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING))
{
/* Intrapixel differencing */
png_do_read_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1);
}
#endif
 
 
if (png_ptr->transformations || (png_ptr->flags&PNG_FLAG_STRIP_ALPHA))
png_do_read_transformations(png_ptr);
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Blow up interlaced rows to full size */
if (png_ptr->interlaced &&
(png_ptr->transformations & PNG_INTERLACE))
{
if (png_ptr->pass < 6)
/* Old interface (pre-1.0.9):
* png_do_read_interlace(&(png_ptr->row_info),
* png_ptr->row_buf + 1, png_ptr->pass, png_ptr->transformations);
*/
png_do_read_interlace(png_ptr);
 
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, png_pass_dsp_mask[png_ptr->pass]);
 
if (row != NULL)
png_combine_row(png_ptr, row, png_pass_mask[png_ptr->pass]);
}
 
else
#endif
{
if (row != NULL)
png_combine_row(png_ptr, row, 0xff);
 
if (dsp_row != NULL)
png_combine_row(png_ptr, dsp_row, 0xff);
}
png_read_finish_row(png_ptr);
 
if (png_ptr->read_row_fn != NULL)
(*(png_ptr->read_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass);
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read one or more rows of image data. If the image is interlaced,
* and png_set_interlace_handling() has been called, the rows need to
* contain the contents of the rows from the previous pass. If the
* image has alpha or transparency, and png_handle_alpha()[*] has been
* called, the rows contents must be initialized to the contents of the
* screen.
*
* "row" holds the actual image, and pixels are placed in it
* as they arrive. If the image is displayed after each pass, it will
* appear to "sparkle" in. "display_row" can be used to display a
* "chunky" progressive image, with finer detail added as it becomes
* available. If you do not want this "chunky" display, you may pass
* NULL for display_row. If you do not want the sparkle display, and
* you have not called png_handle_alpha(), you may pass NULL for rows.
* If you have called png_handle_alpha(), and the image has either an
* alpha channel or a transparency chunk, you must provide a buffer for
* rows. In this case, you do not have to provide a display_row buffer
* also, but you may. If the image is not interlaced, or if you have
* not called png_set_interlace_handling(), the display_row buffer will
* be ignored, so pass NULL to it.
*
* [*] png_handle_alpha() does not exist yet, as of this version of libpng
*/
 
void PNGAPI
png_read_rows(png_structp png_ptr, png_bytepp row,
png_bytepp display_row, png_uint_32 num_rows)
{
png_uint_32 i;
png_bytepp rp;
png_bytepp dp;
 
png_debug(1, "in png_read_rows");
 
if (png_ptr == NULL)
return;
 
rp = row;
dp = display_row;
if (rp != NULL && dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp++;
png_bytep dptr = *dp++;
 
png_read_row(png_ptr, rptr, dptr);
}
 
else if (rp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep rptr = *rp;
png_read_row(png_ptr, rptr, NULL);
rp++;
}
 
else if (dp != NULL)
for (i = 0; i < num_rows; i++)
{
png_bytep dptr = *dp;
png_read_row(png_ptr, NULL, dptr);
dp++;
}
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the entire image. If the image has an alpha channel or a tRNS
* chunk, and you have called png_handle_alpha()[*], you will need to
* initialize the image to the current image that PNG will be overlaying.
* We set the num_rows again here, in case it was incorrectly set in
* png_read_start_row() by a call to png_read_update_info() or
* png_start_read_image() if png_set_interlace_handling() wasn't called
* prior to either of these functions like it should have been. You can
* only call this function once. If you desire to have an image for
* each pass of a interlaced image, use png_read_rows() instead.
*
* [*] png_handle_alpha() does not exist yet, as of this version of libpng
*/
void PNGAPI
png_read_image(png_structp png_ptr, png_bytepp image)
{
png_uint_32 i, image_height;
int pass, j;
png_bytepp rp;
 
png_debug(1, "in png_read_image");
 
if (png_ptr == NULL)
return;
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
{
pass = png_set_interlace_handling(png_ptr);
/* And make sure transforms are initialized. */
png_start_read_image(png_ptr);
}
else
{
if (png_ptr->interlaced && !(png_ptr->transformations & PNG_INTERLACE))
{
/* Caller called png_start_read_image or png_read_update_info without
* first turning on the PNG_INTERLACE transform. We can fix this here,
* but the caller should do it!
*/
png_warning(png_ptr, "Interlace handling should be turned on when "
"using png_read_image");
/* Make sure this is set correctly */
png_ptr->num_rows = png_ptr->height;
}
 
/* Obtain the pass number, which also turns on the PNG_INTERLACE flag in
* the above error case.
*/
pass = png_set_interlace_handling(png_ptr);
}
#else
if (png_ptr->interlaced)
png_error(png_ptr,
"Cannot read interlaced image -- interlace handler disabled");
 
pass = 1;
#endif
 
image_height=png_ptr->height;
 
for (j = 0; j < pass; j++)
{
rp = image;
for (i = 0; i < image_height; i++)
{
png_read_row(png_ptr, *rp, NULL);
rp++;
}
}
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
/* Read the end of the PNG file. Will not read past the end of the
* file, will verify the end is accurate, and will read any comments
* or time information at the end of the file, if info is not NULL.
*/
void PNGAPI
png_read_end(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_end");
 
if (png_ptr == NULL)
return;
 
png_crc_finish(png_ptr, 0); /* Finish off CRC from last IDAT chunk */
 
do
{
PNG_IHDR;
PNG_IDAT;
PNG_IEND;
PNG_PLTE;
#ifdef PNG_READ_bKGD_SUPPORTED
PNG_bKGD;
#endif
#ifdef PNG_READ_cHRM_SUPPORTED
PNG_cHRM;
#endif
#ifdef PNG_READ_gAMA_SUPPORTED
PNG_gAMA;
#endif
#ifdef PNG_READ_hIST_SUPPORTED
PNG_hIST;
#endif
#ifdef PNG_READ_iCCP_SUPPORTED
PNG_iCCP;
#endif
#ifdef PNG_READ_iTXt_SUPPORTED
PNG_iTXt;
#endif
#ifdef PNG_READ_oFFs_SUPPORTED
PNG_oFFs;
#endif
#ifdef PNG_READ_pCAL_SUPPORTED
PNG_pCAL;
#endif
#ifdef PNG_READ_pHYs_SUPPORTED
PNG_pHYs;
#endif
#ifdef PNG_READ_sBIT_SUPPORTED
PNG_sBIT;
#endif
#ifdef PNG_READ_sCAL_SUPPORTED
PNG_sCAL;
#endif
#ifdef PNG_READ_sPLT_SUPPORTED
PNG_sPLT;
#endif
#ifdef PNG_READ_sRGB_SUPPORTED
PNG_sRGB;
#endif
#ifdef PNG_READ_tEXt_SUPPORTED
PNG_tEXt;
#endif
#ifdef PNG_READ_tIME_SUPPORTED
PNG_tIME;
#endif
#ifdef PNG_READ_tRNS_SUPPORTED
PNG_tRNS;
#endif
#ifdef PNG_READ_zTXt_SUPPORTED
PNG_zTXt;
#endif
png_uint_32 length = png_read_chunk_header(png_ptr);
PNG_CONST png_bytep chunk_name = png_ptr->chunk_name;
 
if (!png_memcmp(chunk_name, png_IHDR, 4))
png_handle_IHDR(png_ptr, info_ptr, length);
 
else if (!png_memcmp(chunk_name, png_IEND, 4))
png_handle_IEND(png_ptr, info_ptr, length);
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
else if (png_handle_as_unknown(png_ptr, chunk_name))
{
if (!png_memcmp(chunk_name, png_IDAT, 4))
{
if ((length > 0) || (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT))
png_benign_error(png_ptr, "Too many IDATs found");
}
png_handle_unknown(png_ptr, info_ptr, length);
if (!png_memcmp(chunk_name, png_PLTE, 4))
png_ptr->mode |= PNG_HAVE_PLTE;
}
#endif
 
else if (!png_memcmp(chunk_name, png_IDAT, 4))
{
/* Zero length IDATs are legal after the last IDAT has been
* read, but not after other chunks have been read.
*/
if ((length > 0) || (png_ptr->mode & PNG_HAVE_CHUNK_AFTER_IDAT))
png_benign_error(png_ptr, "Too many IDATs found");
 
png_crc_finish(png_ptr, length);
}
else if (!png_memcmp(chunk_name, png_PLTE, 4))
png_handle_PLTE(png_ptr, info_ptr, length);
 
#ifdef PNG_READ_bKGD_SUPPORTED
else if (!png_memcmp(chunk_name, png_bKGD, 4))
png_handle_bKGD(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_cHRM_SUPPORTED
else if (!png_memcmp(chunk_name, png_cHRM, 4))
png_handle_cHRM(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_gAMA_SUPPORTED
else if (!png_memcmp(chunk_name, png_gAMA, 4))
png_handle_gAMA(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
else if (!png_memcmp(chunk_name, png_hIST, 4))
png_handle_hIST(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_oFFs_SUPPORTED
else if (!png_memcmp(chunk_name, png_oFFs, 4))
png_handle_oFFs(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_pCAL_SUPPORTED
else if (!png_memcmp(chunk_name, png_pCAL, 4))
png_handle_pCAL(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sCAL_SUPPORTED
else if (!png_memcmp(chunk_name, png_sCAL, 4))
png_handle_sCAL(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_pHYs_SUPPORTED
else if (!png_memcmp(chunk_name, png_pHYs, 4))
png_handle_pHYs(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sBIT_SUPPORTED
else if (!png_memcmp(chunk_name, png_sBIT, 4))
png_handle_sBIT(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sRGB_SUPPORTED
else if (!png_memcmp(chunk_name, png_sRGB, 4))
png_handle_sRGB(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_iCCP_SUPPORTED
else if (!png_memcmp(chunk_name, png_iCCP, 4))
png_handle_iCCP(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_sPLT_SUPPORTED
else if (!png_memcmp(chunk_name, png_sPLT, 4))
png_handle_sPLT(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tEXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_tEXt, 4))
png_handle_tEXt(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tIME_SUPPORTED
else if (!png_memcmp(chunk_name, png_tIME, 4))
png_handle_tIME(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_tRNS_SUPPORTED
else if (!png_memcmp(chunk_name, png_tRNS, 4))
png_handle_tRNS(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_zTXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_zTXt, 4))
png_handle_zTXt(png_ptr, info_ptr, length);
#endif
 
#ifdef PNG_READ_iTXt_SUPPORTED
else if (!png_memcmp(chunk_name, png_iTXt, 4))
png_handle_iTXt(png_ptr, info_ptr, length);
#endif
 
else
png_handle_unknown(png_ptr, info_ptr, length);
} while (!(png_ptr->mode & PNG_HAVE_IEND));
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
/* Free all memory used by the read */
void PNGAPI
png_destroy_read_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr,
png_infopp end_info_ptr_ptr)
{
png_structp png_ptr = NULL;
png_infop info_ptr = NULL, end_info_ptr = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn = NULL;
png_voidp mem_ptr = NULL;
#endif
 
png_debug(1, "in png_destroy_read_struct");
 
if (png_ptr_ptr != NULL)
png_ptr = *png_ptr_ptr;
if (png_ptr == NULL)
return;
 
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
mem_ptr = png_ptr->mem_ptr;
#endif
 
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (end_info_ptr_ptr != NULL)
end_info_ptr = *end_info_ptr_ptr;
 
png_read_destroy(png_ptr, info_ptr, end_info_ptr);
 
if (info_ptr != NULL)
{
#ifdef PNG_TEXT_SUPPORTED
png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, -1);
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
 
if (end_info_ptr != NULL)
{
#ifdef PNG_READ_TEXT_SUPPORTED
png_free_data(png_ptr, end_info_ptr, PNG_FREE_TEXT, -1);
#endif
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)end_info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)end_info_ptr);
#endif
*end_info_ptr_ptr = NULL;
}
 
if (png_ptr != NULL)
{
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
*png_ptr_ptr = NULL;
}
}
 
/* Free all memory used by the read (old method) */
void /* PRIVATE */
png_read_destroy(png_structp png_ptr, png_infop info_ptr,
png_infop end_info_ptr)
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp;
#endif
png_error_ptr error_fn;
png_error_ptr warning_fn;
png_voidp error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn;
#endif
 
png_debug(1, "in png_read_destroy");
 
if (info_ptr != NULL)
png_info_destroy(png_ptr, info_ptr);
 
if (end_info_ptr != NULL)
png_info_destroy(png_ptr, end_info_ptr);
 
png_free(png_ptr, png_ptr->zbuf);
png_free(png_ptr, png_ptr->big_row_buf);
png_free(png_ptr, png_ptr->prev_row);
png_free(png_ptr, png_ptr->chunkdata);
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
png_free(png_ptr, png_ptr->palette_lookup);
png_free(png_ptr, png_ptr->quantize_index);
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
png_free(png_ptr, png_ptr->gamma_table);
#endif
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
png_free(png_ptr, png_ptr->gamma_from_1);
png_free(png_ptr, png_ptr->gamma_to_1);
#endif
 
if (png_ptr->free_me & PNG_FREE_PLTE)
png_zfree(png_ptr, png_ptr->palette);
png_ptr->free_me &= ~PNG_FREE_PLTE;
 
#if defined(PNG_tRNS_SUPPORTED) || \
defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->free_me & PNG_FREE_TRNS)
png_free(png_ptr, png_ptr->trans_alpha);
png_ptr->free_me &= ~PNG_FREE_TRNS;
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
if (png_ptr->free_me & PNG_FREE_HIST)
png_free(png_ptr, png_ptr->hist);
png_ptr->free_me &= ~PNG_FREE_HIST;
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
if (png_ptr->gamma_16_table != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_table[i]);
}
png_free(png_ptr, png_ptr->gamma_16_table);
}
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
if (png_ptr->gamma_16_from_1 != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
}
png_free(png_ptr, png_ptr->gamma_16_from_1);
}
if (png_ptr->gamma_16_to_1 != NULL)
{
int i;
int istop = (1 << (8 - png_ptr->gamma_shift));
for (i = 0; i < istop; i++)
{
png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
}
png_free(png_ptr, png_ptr->gamma_16_to_1);
}
#endif
#endif
 
#ifdef PNG_TIME_RFC1123_SUPPORTED
png_free(png_ptr, png_ptr->time_buffer);
#endif
 
inflateEnd(&png_ptr->zstream);
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
png_free(png_ptr, png_ptr->save_buffer);
#endif
 
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
#ifdef PNG_TEXT_SUPPORTED
png_free(png_ptr, png_ptr->current_text);
#endif /* PNG_TEXT_SUPPORTED */
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
/* Save the important info out of the png_struct, in case it is
* being used again.
*/
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(tmp_jmp, png_ptr->png_jmpbuf, png_sizeof(jmp_buf));
#endif
 
error_fn = png_ptr->error_fn;
warning_fn = png_ptr->warning_fn;
error_ptr = png_ptr->error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
#endif
 
png_memset(png_ptr, 0, png_sizeof(png_struct));
 
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
png_ptr->error_ptr = error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr->free_fn = free_fn;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(png_ptr->png_jmpbuf, tmp_jmp, png_sizeof(jmp_buf));
#endif
 
}
 
void PNGAPI
png_set_read_status_fn(png_structp png_ptr, png_read_status_ptr read_row_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->read_row_fn = read_row_fn;
}
 
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
#ifdef PNG_INFO_IMAGE_SUPPORTED
void PNGAPI
png_read_png(png_structp png_ptr, png_infop info_ptr,
int transforms,
voidp params)
{
int row;
 
if (png_ptr == NULL)
return;
 
/* png_read_info() gives us all of the information from the
* PNG file before the first IDAT (image data chunk).
*/
png_read_info(png_ptr, info_ptr);
if (info_ptr->height > PNG_UINT_32_MAX/png_sizeof(png_bytep))
png_error(png_ptr, "Image is too high to process with png_read_png()");
 
/* -------------- image transformations start here ------------------- */
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
/* Tell libpng to strip 16 bit/color files down to 8 bits per color.
*/
if (transforms & PNG_TRANSFORM_STRIP_16)
png_set_strip_16(png_ptr);
#endif
 
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
/* Strip alpha bytes from the input data without combining with
* the background (not recommended).
*/
if (transforms & PNG_TRANSFORM_STRIP_ALPHA)
png_set_strip_alpha(png_ptr);
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) && !defined(PNG_READ_EXPAND_SUPPORTED)
/* Extract multiple pixels with bit depths of 1, 2, or 4 from a single
* byte into separate bytes (useful for paletted and grayscale images).
*/
if (transforms & PNG_TRANSFORM_PACKING)
png_set_packing(png_ptr);
#endif
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
/* Change the order of packed pixels to least significant bit first
* (not useful if you are using png_set_packing).
*/
if (transforms & PNG_TRANSFORM_PACKSWAP)
png_set_packswap(png_ptr);
#endif
 
#ifdef PNG_READ_EXPAND_SUPPORTED
/* Expand paletted colors into true RGB triplets
* Expand grayscale images to full 8 bits from 1, 2, or 4 bits/pixel
* Expand paletted or RGB images with transparency to full alpha
* channels so the data will be available as RGBA quartets.
*/
if (transforms & PNG_TRANSFORM_EXPAND)
if ((png_ptr->bit_depth < 8) ||
(png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) ||
(png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)))
png_set_expand(png_ptr);
#endif
 
/* We don't handle background color or gamma transformation or quantizing.
*/
 
#ifdef PNG_READ_INVERT_SUPPORTED
/* Invert monochrome files to have 0 as white and 1 as black
*/
if (transforms & PNG_TRANSFORM_INVERT_MONO)
png_set_invert_mono(png_ptr);
#endif
 
#ifdef PNG_READ_SHIFT_SUPPORTED
/* If you want to shift the pixel values from the range [0,255] or
* [0,65535] to the original [0,7] or [0,31], or whatever range the
* colors were originally in:
*/
if ((transforms & PNG_TRANSFORM_SHIFT)
&& png_get_valid(png_ptr, info_ptr, PNG_INFO_sBIT))
{
png_color_8p sig_bit;
 
png_get_sBIT(png_ptr, info_ptr, &sig_bit);
png_set_shift(png_ptr, sig_bit);
}
#endif
 
#ifdef PNG_READ_BGR_SUPPORTED
/* Flip the RGB pixels to BGR (or RGBA to BGRA) */
if (transforms & PNG_TRANSFORM_BGR)
png_set_bgr(png_ptr);
#endif
 
#ifdef PNG_READ_SWAP_ALPHA_SUPPORTED
/* Swap the RGBA or GA data to ARGB or AG (or BGRA to ABGR) */
if (transforms & PNG_TRANSFORM_SWAP_ALPHA)
png_set_swap_alpha(png_ptr);
#endif
 
#ifdef PNG_READ_SWAP_SUPPORTED
/* Swap bytes of 16 bit files to least significant byte first */
if (transforms & PNG_TRANSFORM_SWAP_ENDIAN)
png_set_swap(png_ptr);
#endif
 
/* Added at libpng-1.2.41 */
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
/* Invert the alpha channel from opacity to transparency */
if (transforms & PNG_TRANSFORM_INVERT_ALPHA)
png_set_invert_alpha(png_ptr);
#endif
 
/* Added at libpng-1.2.41 */
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* Expand grayscale image to RGB */
if (transforms & PNG_TRANSFORM_GRAY_TO_RGB)
png_set_gray_to_rgb(png_ptr);
#endif
 
/* We don't handle adding filler bytes */
 
/* Optional call to gamma correct and add the background to the palette
* and update info structure. REQUIRED if you are expecting libpng to
* update the palette for you (i.e., you selected such a transform above).
*/
png_read_update_info(png_ptr, info_ptr);
 
/* -------------- image transformations end here ------------------- */
 
png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0);
if (info_ptr->row_pointers == NULL)
{
png_uint_32 iptr;
 
info_ptr->row_pointers = (png_bytepp)png_malloc(png_ptr,
info_ptr->height * png_sizeof(png_bytep));
for (iptr=0; iptr<info_ptr->height; iptr++)
info_ptr->row_pointers[iptr] = NULL;
 
info_ptr->free_me |= PNG_FREE_ROWS;
 
for (row = 0; row < (int)info_ptr->height; row++)
info_ptr->row_pointers[row] = (png_bytep)png_malloc(png_ptr,
png_get_rowbytes(png_ptr, info_ptr));
}
 
png_read_image(png_ptr, info_ptr->row_pointers);
info_ptr->valid |= PNG_INFO_IDAT;
 
/* Read rest of file, and get additional chunks in info_ptr - REQUIRED */
png_read_end(png_ptr, info_ptr);
 
PNG_UNUSED(transforms) /* Quiet compiler warnings */
PNG_UNUSED(params)
 
}
#endif /* PNG_INFO_IMAGE_SUPPORTED */
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
#endif /* PNG_READ_SUPPORTED */
/programs/develop/libraries/libpng/pngrio.c
0,0 → 1,176
 
/* pngrio.c - functions for data input
*
* Last changed in libpng 1.5.0 [January 6, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file provides a location for all input. Users who need
* special handling are expected to write a function that has the same
* arguments as this and performs a similar function, but that possibly
* has a different input method. Note that you shouldn't change this
* function, but rather write a replacement function and then make
* libpng use it at run time with png_set_read_fn(...).
*/
 
#include "pngpriv.h"
 
#ifdef PNG_READ_SUPPORTED
 
/* Read the data from whatever input you are using. The default routine
* reads from a file pointer. Note that this routine sometimes gets called
* with very small lengths, so you should implement some kind of simple
* buffering if you are using unbuffered reads. This should never be asked
* to read more then 64K on a 16 bit machine.
*/
void /* PRIVATE */
png_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_debug1(4, "reading %d bytes", (int)length);
 
if (png_ptr->read_data_fn != NULL)
(*(png_ptr->read_data_fn))(png_ptr, data, length);
 
else
png_error(png_ptr, "Call to NULL read function");
}
 
#ifdef PNG_STDIO_SUPPORTED
/* This is the function that does the actual reading of data. If you are
* not reading from a standard C stream, you should create a replacement
* read_data function and use it at run time with png_set_read_fn(), rather
* than changing the library.
*/
# ifndef USE_FAR_KEYWORD
void PNGCBAPI
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
 
if (png_ptr == NULL)
return;
 
/* fread() returns 0 on error, so it is OK to store this in a png_size_t
* instead of an int, which is what fread() actually returns.
*/
check = fread(data, 1, length, (png_FILE_p)png_ptr->io_ptr);
 
if (check != length)
png_error(png_ptr, "Read Error");
}
# else
/* This is the model-independent version. Since the standard I/O library
can't handle far buffers in the medium and small models, we have to copy
the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
static void PNGCBAPI
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
png_byte *n_data;
png_FILE_p io_ptr;
 
if (png_ptr == NULL)
return;
 
/* Check if data really is near. If so, use usual code. */
n_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
 
if ((png_bytep)n_data == data)
{
check = fread(n_data, 1, length, io_ptr);
}
 
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t read, remaining, err;
check = 0;
remaining = length;
 
do
{
read = MIN(NEAR_BUF_SIZE, remaining);
err = fread(buf, 1, read, io_ptr);
png_memcpy(data, buf, read); /* copy far buffer to near buffer */
 
if (err != read)
break;
 
else
check += err;
 
data += read;
remaining -= read;
}
while (remaining != 0);
}
 
if ((png_uint_32)check != (png_uint_32)length)
png_error(png_ptr, "read Error");
}
# endif
#endif
 
/* This function allows the application to supply a new input function
* for libpng if standard C streams aren't being used.
*
* This function takes as its arguments:
*
* png_ptr - pointer to a png input data structure
*
* io_ptr - pointer to user supplied structure containing info about
* the input functions. May be NULL.
*
* read_data_fn - pointer to a new input function that takes as its
* arguments a pointer to a png_struct, a pointer to
* a location where input data can be stored, and a 32-bit
* unsigned int that is the number of bytes to be read.
* To exit and output any fatal error messages the new write
* function should call png_error(png_ptr, "Error msg").
* May be NULL, in which case libpng's default function will
* be used.
*/
void PNGAPI
png_set_read_fn(png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr read_data_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->io_ptr = io_ptr;
 
#ifdef PNG_STDIO_SUPPORTED
if (read_data_fn != NULL)
png_ptr->read_data_fn = read_data_fn;
 
else
png_ptr->read_data_fn = png_default_read_data;
#else
png_ptr->read_data_fn = read_data_fn;
#endif
 
/* It is an error to write to a read device */
if (png_ptr->write_data_fn != NULL)
{
png_ptr->write_data_fn = NULL;
png_warning(png_ptr,
"Can't set both read_data_fn and write_data_fn in the"
" same structure");
}
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
png_ptr->output_flush_fn = NULL;
#endif
}
#endif /* PNG_READ_SUPPORTED */
/programs/develop/libraries/libpng/pngrtran.c
0,0 → 1,4224
 
/* pngrtran.c - transforms the data in a row for PNG readers
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file contains functions optionally called by an application
* in order to tell libpng how to handle data when reading a PNG.
* Transformations that are used in both reading and writing are
* in pngtrans.c.
*/
 
#include "pngpriv.h"
 
#ifdef PNG_READ_SUPPORTED
 
/* Set the action on getting a CRC error for an ancillary or critical chunk. */
void PNGAPI
png_set_crc_action(png_structp png_ptr, int crit_action, int ancil_action)
{
png_debug(1, "in png_set_crc_action");
 
if (png_ptr == NULL)
return;
 
/* Tell libpng how we react to CRC errors in critical chunks */
switch (crit_action)
{
case PNG_CRC_NO_CHANGE: /* Leave setting as is */
break;
 
case PNG_CRC_WARN_USE: /* Warn/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE;
break;
 
case PNG_CRC_QUIET_USE: /* Quiet/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
png_ptr->flags |= PNG_FLAG_CRC_CRITICAL_USE |
PNG_FLAG_CRC_CRITICAL_IGNORE;
break;
 
case PNG_CRC_WARN_DISCARD: /* Not a valid action for critical data */
png_warning(png_ptr,
"Can't discard critical data on CRC error");
case PNG_CRC_ERROR_QUIT: /* Error/quit */
 
case PNG_CRC_DEFAULT:
default:
png_ptr->flags &= ~PNG_FLAG_CRC_CRITICAL_MASK;
break;
}
 
/* Tell libpng how we react to CRC errors in ancillary chunks */
switch (ancil_action)
{
case PNG_CRC_NO_CHANGE: /* Leave setting as is */
break;
 
case PNG_CRC_WARN_USE: /* Warn/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE;
break;
 
case PNG_CRC_QUIET_USE: /* Quiet/use data */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_USE |
PNG_FLAG_CRC_ANCILLARY_NOWARN;
break;
 
case PNG_CRC_ERROR_QUIT: /* Error/quit */
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
png_ptr->flags |= PNG_FLAG_CRC_ANCILLARY_NOWARN;
break;
 
case PNG_CRC_WARN_DISCARD: /* Warn/discard data */
 
case PNG_CRC_DEFAULT:
default:
png_ptr->flags &= ~PNG_FLAG_CRC_ANCILLARY_MASK;
break;
}
}
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
/* Handle alpha and tRNS via a background color */
void PNGFAPI
png_set_background_fixed(png_structp png_ptr,
png_const_color_16p background_color, int background_gamma_code,
int need_expand, png_fixed_point background_gamma)
{
png_debug(1, "in png_set_background_fixed");
 
if (png_ptr == NULL)
return;
 
if (background_gamma_code == PNG_BACKGROUND_GAMMA_UNKNOWN)
{
png_warning(png_ptr, "Application must supply a known background gamma");
return;
}
 
png_ptr->transformations |= PNG_BACKGROUND;
png_memcpy(&(png_ptr->background), background_color,
png_sizeof(png_color_16));
png_ptr->background_gamma = background_gamma;
png_ptr->background_gamma_type = (png_byte)(background_gamma_code);
png_ptr->transformations |= (need_expand ? PNG_BACKGROUND_EXPAND : 0);
}
 
# ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_background(png_structp png_ptr,
png_const_color_16p background_color, int background_gamma_code,
int need_expand, double background_gamma)
{
png_set_background_fixed(png_ptr, background_color, background_gamma_code,
need_expand, png_fixed(png_ptr, background_gamma, "png_set_background"));
}
# endif /* FLOATING_POINT */
#endif /* READ_BACKGROUND */
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
/* Strip 16 bit depth files to 8 bit depth */
void PNGAPI
png_set_strip_16(png_structp png_ptr)
{
png_debug(1, "in png_set_strip_16");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_16_TO_8;
}
#endif
 
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
void PNGAPI
png_set_strip_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_strip_alpha");
 
if (png_ptr == NULL)
return;
 
png_ptr->flags |= PNG_FLAG_STRIP_ALPHA;
}
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
/* Dither file to 8 bit. Supply a palette, the current number
* of elements in the palette, the maximum number of elements
* allowed, and a histogram if possible. If the current number
* of colors is greater then the maximum number, the palette will be
* modified to fit in the maximum number. "full_quantize" indicates
* whether we need a quantizing cube set up for RGB images, or if we
* simply are reducing the number of colors in a paletted image.
*/
 
typedef struct png_dsort_struct
{
struct png_dsort_struct FAR * next;
png_byte left;
png_byte right;
} png_dsort;
typedef png_dsort FAR * png_dsortp;
typedef png_dsort FAR * FAR * png_dsortpp;
 
void PNGAPI
png_set_quantize(png_structp png_ptr, png_colorp palette,
int num_palette, int maximum_colors, png_const_uint_16p histogram,
int full_quantize)
{
png_debug(1, "in png_set_quantize");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_QUANTIZE;
 
if (!full_quantize)
{
int i;
 
png_ptr->quantize_index = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * png_sizeof(png_byte)));
for (i = 0; i < num_palette; i++)
png_ptr->quantize_index[i] = (png_byte)i;
}
 
if (num_palette > maximum_colors)
{
if (histogram != NULL)
{
/* This is easy enough, just throw out the least used colors.
* Perhaps not the best solution, but good enough.
*/
 
int i;
 
/* Initialize an array to sort colors */
png_ptr->quantize_sort = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * png_sizeof(png_byte)));
 
/* Initialize the quantize_sort array */
for (i = 0; i < num_palette; i++)
png_ptr->quantize_sort[i] = (png_byte)i;
 
/* Find the least used palette entries by starting a
* bubble sort, and running it until we have sorted
* out enough colors. Note that we don't care about
* sorting all the colors, just finding which are
* least used.
*/
 
for (i = num_palette - 1; i >= maximum_colors; i--)
{
int done; /* To stop early if the list is pre-sorted */
int j;
 
done = 1;
for (j = 0; j < i; j++)
{
if (histogram[png_ptr->quantize_sort[j]]
< histogram[png_ptr->quantize_sort[j + 1]])
{
png_byte t;
 
t = png_ptr->quantize_sort[j];
png_ptr->quantize_sort[j] = png_ptr->quantize_sort[j + 1];
png_ptr->quantize_sort[j + 1] = t;
done = 0;
}
}
 
if (done)
break;
}
 
/* Swap the palette around, and set up a table, if necessary */
if (full_quantize)
{
int j = num_palette;
 
/* Put all the useful colors within the max, but don't
* move the others.
*/
for (i = 0; i < maximum_colors; i++)
{
if ((int)png_ptr->quantize_sort[i] >= maximum_colors)
{
do
j--;
while ((int)png_ptr->quantize_sort[j] >= maximum_colors);
 
palette[i] = palette[j];
}
}
}
else
{
int j = num_palette;
 
/* Move all the used colors inside the max limit, and
* develop a translation table.
*/
for (i = 0; i < maximum_colors; i++)
{
/* Only move the colors we need to */
if ((int)png_ptr->quantize_sort[i] >= maximum_colors)
{
png_color tmp_color;
 
do
j--;
while ((int)png_ptr->quantize_sort[j] >= maximum_colors);
 
tmp_color = palette[j];
palette[j] = palette[i];
palette[i] = tmp_color;
/* Indicate where the color went */
png_ptr->quantize_index[j] = (png_byte)i;
png_ptr->quantize_index[i] = (png_byte)j;
}
}
 
/* Find closest color for those colors we are not using */
for (i = 0; i < num_palette; i++)
{
if ((int)png_ptr->quantize_index[i] >= maximum_colors)
{
int min_d, k, min_k, d_index;
 
/* Find the closest color to one we threw out */
d_index = png_ptr->quantize_index[i];
min_d = PNG_COLOR_DIST(palette[d_index], palette[0]);
for (k = 1, min_k = 0; k < maximum_colors; k++)
{
int d;
 
d = PNG_COLOR_DIST(palette[d_index], palette[k]);
 
if (d < min_d)
{
min_d = d;
min_k = k;
}
}
/* Point to closest color */
png_ptr->quantize_index[i] = (png_byte)min_k;
}
}
}
png_free(png_ptr, png_ptr->quantize_sort);
png_ptr->quantize_sort = NULL;
}
else
{
/* This is much harder to do simply (and quickly). Perhaps
* we need to go through a median cut routine, but those
* don't always behave themselves with only a few colors
* as input. So we will just find the closest two colors,
* and throw out one of them (chosen somewhat randomly).
* [We don't understand this at all, so if someone wants to
* work on improving it, be our guest - AED, GRP]
*/
int i;
int max_d;
int num_new_palette;
png_dsortp t;
png_dsortpp hash;
 
t = NULL;
 
/* Initialize palette index arrays */
png_ptr->index_to_palette = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * png_sizeof(png_byte)));
png_ptr->palette_to_index = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(num_palette * png_sizeof(png_byte)));
 
/* Initialize the sort array */
for (i = 0; i < num_palette; i++)
{
png_ptr->index_to_palette[i] = (png_byte)i;
png_ptr->palette_to_index[i] = (png_byte)i;
}
 
hash = (png_dsortpp)png_calloc(png_ptr, (png_uint_32)(769 *
png_sizeof(png_dsortp)));
 
num_new_palette = num_palette;
 
/* Initial wild guess at how far apart the farthest pixel
* pair we will be eliminating will be. Larger
* numbers mean more areas will be allocated, Smaller
* numbers run the risk of not saving enough data, and
* having to do this all over again.
*
* I have not done extensive checking on this number.
*/
max_d = 96;
 
while (num_new_palette > maximum_colors)
{
for (i = 0; i < num_new_palette - 1; i++)
{
int j;
 
for (j = i + 1; j < num_new_palette; j++)
{
int d;
 
d = PNG_COLOR_DIST(palette[i], palette[j]);
 
if (d <= max_d)
{
 
t = (png_dsortp)png_malloc_warn(png_ptr,
(png_uint_32)(png_sizeof(png_dsort)));
 
if (t == NULL)
break;
 
t->next = hash[d];
t->left = (png_byte)i;
t->right = (png_byte)j;
hash[d] = t;
}
}
if (t == NULL)
break;
}
 
if (t != NULL)
for (i = 0; i <= max_d; i++)
{
if (hash[i] != NULL)
{
png_dsortp p;
 
for (p = hash[i]; p; p = p->next)
{
if ((int)png_ptr->index_to_palette[p->left]
< num_new_palette &&
(int)png_ptr->index_to_palette[p->right]
< num_new_palette)
{
int j, next_j;
 
if (num_new_palette & 0x01)
{
j = p->left;
next_j = p->right;
}
else
{
j = p->right;
next_j = p->left;
}
 
num_new_palette--;
palette[png_ptr->index_to_palette[j]]
= palette[num_new_palette];
if (!full_quantize)
{
int k;
 
for (k = 0; k < num_palette; k++)
{
if (png_ptr->quantize_index[k] ==
png_ptr->index_to_palette[j])
png_ptr->quantize_index[k] =
png_ptr->index_to_palette[next_j];
 
if ((int)png_ptr->quantize_index[k] ==
num_new_palette)
png_ptr->quantize_index[k] =
png_ptr->index_to_palette[j];
}
}
 
png_ptr->index_to_palette[png_ptr->palette_to_index
[num_new_palette]] = png_ptr->index_to_palette[j];
 
png_ptr->palette_to_index[png_ptr->index_to_palette[j]]
= png_ptr->palette_to_index[num_new_palette];
 
png_ptr->index_to_palette[j] =
(png_byte)num_new_palette;
 
png_ptr->palette_to_index[num_new_palette] =
(png_byte)j;
}
if (num_new_palette <= maximum_colors)
break;
}
if (num_new_palette <= maximum_colors)
break;
}
}
 
for (i = 0; i < 769; i++)
{
if (hash[i] != NULL)
{
png_dsortp p = hash[i];
while (p)
{
t = p->next;
png_free(png_ptr, p);
p = t;
}
}
hash[i] = 0;
}
max_d += 96;
}
png_free(png_ptr, hash);
png_free(png_ptr, png_ptr->palette_to_index);
png_free(png_ptr, png_ptr->index_to_palette);
png_ptr->palette_to_index = NULL;
png_ptr->index_to_palette = NULL;
}
num_palette = maximum_colors;
}
if (png_ptr->palette == NULL)
{
png_ptr->palette = palette;
}
png_ptr->num_palette = (png_uint_16)num_palette;
 
if (full_quantize)
{
int i;
png_bytep distance;
int total_bits = PNG_QUANTIZE_RED_BITS + PNG_QUANTIZE_GREEN_BITS +
PNG_QUANTIZE_BLUE_BITS;
int num_red = (1 << PNG_QUANTIZE_RED_BITS);
int num_green = (1 << PNG_QUANTIZE_GREEN_BITS);
int num_blue = (1 << PNG_QUANTIZE_BLUE_BITS);
png_size_t num_entries = ((png_size_t)1 << total_bits);
 
png_ptr->palette_lookup = (png_bytep)png_calloc(png_ptr,
(png_uint_32)(num_entries * png_sizeof(png_byte)));
 
distance = (png_bytep)png_malloc(png_ptr, (png_uint_32)(num_entries *
png_sizeof(png_byte)));
 
png_memset(distance, 0xff, num_entries * png_sizeof(png_byte));
 
for (i = 0; i < num_palette; i++)
{
int ir, ig, ib;
int r = (palette[i].red >> (8 - PNG_QUANTIZE_RED_BITS));
int g = (palette[i].green >> (8 - PNG_QUANTIZE_GREEN_BITS));
int b = (palette[i].blue >> (8 - PNG_QUANTIZE_BLUE_BITS));
 
for (ir = 0; ir < num_red; ir++)
{
/* int dr = abs(ir - r); */
int dr = ((ir > r) ? ir - r : r - ir);
int index_r = (ir << (PNG_QUANTIZE_BLUE_BITS +
PNG_QUANTIZE_GREEN_BITS));
 
for (ig = 0; ig < num_green; ig++)
{
/* int dg = abs(ig - g); */
int dg = ((ig > g) ? ig - g : g - ig);
int dt = dr + dg;
int dm = ((dr > dg) ? dr : dg);
int index_g = index_r | (ig << PNG_QUANTIZE_BLUE_BITS);
 
for (ib = 0; ib < num_blue; ib++)
{
int d_index = index_g | ib;
/* int db = abs(ib - b); */
int db = ((ib > b) ? ib - b : b - ib);
int dmax = ((dm > db) ? dm : db);
int d = dmax + dt + db;
 
if (d < (int)distance[d_index])
{
distance[d_index] = (png_byte)d;
png_ptr->palette_lookup[d_index] = (png_byte)i;
}
}
}
}
}
 
png_free(png_ptr, distance);
}
}
#endif /* PNG_READ_QUANTIZE_SUPPORTED */
 
#ifdef PNG_READ_GAMMA_SUPPORTED
/* Transform the image from the file_gamma to the screen_gamma. We
* only do transformations on images where the file_gamma and screen_gamma
* are not close reciprocals, otherwise it slows things down slightly, and
* also needlessly introduces small errors.
*
* We will turn off gamma transformation later if no semitransparent entries
* are present in the tRNS array for palette images. We can't do it here
* because we don't necessarily have the tRNS chunk yet.
*/
static int /* PRIVATE */
png_gamma_threshold(png_fixed_point scrn_gamma, png_fixed_point file_gamma)
{
/* PNG_GAMMA_THRESHOLD is the threshold for performing gamma
* correction as a difference of the overall transform from 1.0
*
* We want to compare the threshold with s*f - 1, if we get
* overflow here it is because of wacky gamma values so we
* turn on processing anyway.
*/
png_fixed_point gtest;
return !png_muldiv(&gtest, scrn_gamma, file_gamma, PNG_FP_1) ||
png_gamma_significant(gtest);
}
 
void PNGFAPI
png_set_gamma_fixed(png_structp png_ptr, png_fixed_point scrn_gamma,
png_fixed_point file_gamma)
{
png_debug(1, "in png_set_gamma_fixed");
 
if (png_ptr == NULL)
return;
 
if ((png_ptr->color_type & PNG_COLOR_MASK_ALPHA) ||
(png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) ||
png_gamma_threshold(scrn_gamma, file_gamma))
png_ptr->transformations |= PNG_GAMMA;
png_ptr->gamma = file_gamma;
png_ptr->screen_gamma = scrn_gamma;
}
 
# ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_gamma(png_structp png_ptr, double scrn_gamma, double file_gamma)
{
png_set_gamma_fixed(png_ptr,
png_fixed(png_ptr, scrn_gamma, "png_set_gamma screen gamma"),
png_fixed(png_ptr, file_gamma, "png_set_gamma file gamma"));
}
# endif /* FLOATING_POINT_SUPPORTED */
#endif /* READ_GAMMA */
 
#ifdef PNG_READ_EXPAND_SUPPORTED
/* Expand paletted images to RGB, expand grayscale images of
* less than 8-bit depth to 8-bit depth, and expand tRNS chunks
* to alpha channels.
*/
void PNGAPI
png_set_expand(png_structp png_ptr)
{
png_debug(1, "in png_set_expand");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS);
png_ptr->flags &= ~PNG_FLAG_ROW_INIT;
}
 
/* GRR 19990627: the following three functions currently are identical
* to png_set_expand(). However, it is entirely reasonable that someone
* might wish to expand an indexed image to RGB but *not* expand a single,
* fully transparent palette entry to a full alpha channel--perhaps instead
* convert tRNS to the grayscale/RGB format (16-bit RGB value), or replace
* the transparent color with a particular RGB value, or drop tRNS entirely.
* IOW, a future version of the library may make the transformations flag
* a bit more fine-grained, with separate bits for each of these three
* functions.
*
* More to the point, these functions make it obvious what libpng will be
* doing, whereas "expand" can (and does) mean any number of things.
*
* GRP 20060307: In libpng-1.2.9, png_set_gray_1_2_4_to_8() was modified
* to expand only the sample depth but not to expand the tRNS to alpha
* and its name was changed to png_set_expand_gray_1_2_4_to_8().
*/
 
/* Expand paletted images to RGB. */
void PNGAPI
png_set_palette_to_rgb(png_structp png_ptr)
{
png_debug(1, "in png_set_palette_to_rgb");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS);
png_ptr->flags &= ~PNG_FLAG_ROW_INIT;
}
 
/* Expand grayscale images of less than 8-bit depth to 8 bits. */
void PNGAPI
png_set_expand_gray_1_2_4_to_8(png_structp png_ptr)
{
png_debug(1, "in png_set_expand_gray_1_2_4_to_8");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_EXPAND;
png_ptr->flags &= ~PNG_FLAG_ROW_INIT;
}
 
 
 
/* Expand tRNS chunks to alpha channels. */
void PNGAPI
png_set_tRNS_to_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_tRNS_to_alpha");
 
png_ptr->transformations |= (PNG_EXPAND | PNG_EXPAND_tRNS);
png_ptr->flags &= ~PNG_FLAG_ROW_INIT;
}
#endif /* defined(PNG_READ_EXPAND_SUPPORTED) */
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
void PNGAPI
png_set_gray_to_rgb(png_structp png_ptr)
{
png_debug(1, "in png_set_gray_to_rgb");
 
if (png_ptr != NULL)
{
/* Because rgb must be 8 bits or more: */
png_set_expand_gray_1_2_4_to_8(png_ptr);
png_ptr->transformations |= PNG_GRAY_TO_RGB;
png_ptr->flags &= ~PNG_FLAG_ROW_INIT;
}
}
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
void PNGFAPI
png_set_rgb_to_gray_fixed(png_structp png_ptr, int error_action,
png_fixed_point red, png_fixed_point green)
{
png_debug(1, "in png_set_rgb_to_gray");
 
if (png_ptr == NULL)
return;
 
switch(error_action)
{
case 1:
png_ptr->transformations |= PNG_RGB_TO_GRAY;
break;
 
case 2:
png_ptr->transformations |= PNG_RGB_TO_GRAY_WARN;
break;
 
case 3:
png_ptr->transformations |= PNG_RGB_TO_GRAY_ERR;
break;
 
default:
png_error(png_ptr, "invalid error action to rgb_to_gray");
break;
}
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
#ifdef PNG_READ_EXPAND_SUPPORTED
png_ptr->transformations |= PNG_EXPAND;
#else
{
png_warning(png_ptr,
"Cannot do RGB_TO_GRAY without EXPAND_SUPPORTED");
 
png_ptr->transformations &= ~PNG_RGB_TO_GRAY;
}
#endif
{
png_uint_16 red_int, green_int;
if (red < 0 || green < 0)
{
red_int = 6968; /* .212671 * 32768 + .5 */
green_int = 23434; /* .715160 * 32768 + .5 */
}
 
else if (red + green < 100000L)
{
red_int = (png_uint_16)(((png_uint_32)red*32768L)/100000L);
green_int = (png_uint_16)(((png_uint_32)green*32768L)/100000L);
}
 
else
{
png_warning(png_ptr, "ignoring out of range rgb_to_gray coefficients");
red_int = 6968;
green_int = 23434;
}
 
png_ptr->rgb_to_gray_red_coeff = red_int;
png_ptr->rgb_to_gray_green_coeff = green_int;
png_ptr->rgb_to_gray_blue_coeff =
(png_uint_16)(32768 - red_int - green_int);
}
}
 
#ifdef PNG_FLOATING_POINT_SUPPORTED
/* Convert a RGB image to a grayscale of the same width. This allows us,
* for example, to convert a 24 bpp RGB image into an 8 bpp grayscale image.
*/
 
void PNGAPI
png_set_rgb_to_gray(png_structp png_ptr, int error_action, double red,
double green)
{
if (png_ptr == NULL)
return;
 
png_set_rgb_to_gray_fixed(png_ptr, error_action,
png_fixed(png_ptr, red, "rgb to gray red coefficient"),
png_fixed(png_ptr, green, "rgb to gray green coefficient"));
}
#endif /* FLOATING POINT */
 
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
void PNGAPI
png_set_read_user_transform_fn(png_structp png_ptr, png_user_transform_ptr
read_user_transform_fn)
{
png_debug(1, "in png_set_read_user_transform_fn");
 
if (png_ptr == NULL)
return;
 
#ifdef PNG_READ_USER_TRANSFORM_SUPPORTED
png_ptr->transformations |= PNG_USER_TRANSFORM;
png_ptr->read_user_transform_fn = read_user_transform_fn;
#endif
}
#endif
 
/* Initialize everything needed for the read. This includes modifying
* the palette.
*/
void /* PRIVATE */
png_init_read_transformations(png_structp png_ptr)
{
png_debug(1, "in png_init_read_transformations");
 
{
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
defined(PNG_READ_SHIFT_SUPPORTED) || \
defined(PNG_READ_GAMMA_SUPPORTED)
int color_type = png_ptr->color_type;
#endif
 
#if defined(PNG_READ_EXPAND_SUPPORTED) && defined(PNG_READ_BACKGROUND_SUPPORTED)
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* Detect gray background and attempt to enable optimization
* for gray --> RGB case
*
* Note: if PNG_BACKGROUND_EXPAND is set and color_type is either RGB or
* RGB_ALPHA (in which case need_expand is superfluous anyway), the
* background color might actually be gray yet not be flagged as such.
* This is not a problem for the current code, which uses
* PNG_BACKGROUND_IS_GRAY only to decide when to do the
* png_do_gray_to_rgb() transformation.
*/
if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) &&
!(color_type & PNG_COLOR_MASK_COLOR))
{
png_ptr->mode |= PNG_BACKGROUND_IS_GRAY;
}
 
else if ((png_ptr->transformations & PNG_BACKGROUND) &&
!(png_ptr->transformations & PNG_BACKGROUND_EXPAND) &&
(png_ptr->transformations & PNG_GRAY_TO_RGB) &&
png_ptr->background.red == png_ptr->background.green &&
png_ptr->background.red == png_ptr->background.blue)
{
png_ptr->mode |= PNG_BACKGROUND_IS_GRAY;
png_ptr->background.gray = png_ptr->background.red;
}
#endif
 
if ((png_ptr->transformations & PNG_BACKGROUND_EXPAND) &&
(png_ptr->transformations & PNG_EXPAND))
{
if (!(color_type & PNG_COLOR_MASK_COLOR)) /* i.e., GRAY or GRAY_ALPHA */
{
/* Expand background and tRNS chunks */
switch (png_ptr->bit_depth)
{
case 1:
png_ptr->background.gray *= (png_uint_16)0xff;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
if (!(png_ptr->transformations & PNG_EXPAND_tRNS))
{
png_ptr->trans_color.gray *= (png_uint_16)0xff;
png_ptr->trans_color.red = png_ptr->trans_color.green
= png_ptr->trans_color.blue = png_ptr->trans_color.gray;
}
break;
 
case 2:
png_ptr->background.gray *= (png_uint_16)0x55;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
if (!(png_ptr->transformations & PNG_EXPAND_tRNS))
{
png_ptr->trans_color.gray *= (png_uint_16)0x55;
png_ptr->trans_color.red = png_ptr->trans_color.green
= png_ptr->trans_color.blue = png_ptr->trans_color.gray;
}
break;
 
case 4:
png_ptr->background.gray *= (png_uint_16)0x11;
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
if (!(png_ptr->transformations & PNG_EXPAND_tRNS))
{
png_ptr->trans_color.gray *= (png_uint_16)0x11;
png_ptr->trans_color.red = png_ptr->trans_color.green
= png_ptr->trans_color.blue = png_ptr->trans_color.gray;
}
break;
 
default:
 
case 8:
 
case 16:
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
break;
}
}
else if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_ptr->background.red =
png_ptr->palette[png_ptr->background.index].red;
png_ptr->background.green =
png_ptr->palette[png_ptr->background.index].green;
png_ptr->background.blue =
png_ptr->palette[png_ptr->background.index].blue;
 
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
if (png_ptr->transformations & PNG_INVERT_ALPHA)
{
#ifdef PNG_READ_EXPAND_SUPPORTED
if (!(png_ptr->transformations & PNG_EXPAND_tRNS))
#endif
{
/* Invert the alpha channel (in tRNS) unless the pixels are
* going to be expanded, in which case leave it for later
*/
int i, istop;
istop=(int)png_ptr->num_trans;
for (i=0; i<istop; i++)
png_ptr->trans_alpha[i] = (png_byte)(255 -
png_ptr->trans_alpha[i]);
}
}
#endif
 
}
}
#endif
 
#if defined(PNG_READ_BACKGROUND_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED)
png_ptr->background_1 = png_ptr->background;
#endif
#ifdef PNG_READ_GAMMA_SUPPORTED
 
if ((color_type == PNG_COLOR_TYPE_PALETTE && png_ptr->num_trans != 0)
&& png_gamma_threshold(png_ptr->screen_gamma, png_ptr->gamma))
{
int i, k;
k=0;
for (i=0; i<png_ptr->num_trans; i++)
{
if (png_ptr->trans_alpha[i] != 0 && png_ptr->trans_alpha[i] != 0xff)
k=1; /* Partial transparency is present */
}
if (k == 0)
png_ptr->transformations &= ~PNG_GAMMA;
}
 
if ((png_ptr->transformations & (PNG_GAMMA | PNG_RGB_TO_GRAY)) &&
png_ptr->gamma != 0)
{
png_build_gamma_table(png_ptr, png_ptr->bit_depth);
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
if (png_ptr->transformations & PNG_BACKGROUND)
{
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
/* Could skip if no transparency */
png_color back, back_1;
png_colorp palette = png_ptr->palette;
int num_palette = png_ptr->num_palette;
int i;
if (png_ptr->background_gamma_type == PNG_BACKGROUND_GAMMA_FILE)
{
 
back.red = png_ptr->gamma_table[png_ptr->background.red];
back.green = png_ptr->gamma_table[png_ptr->background.green];
back.blue = png_ptr->gamma_table[png_ptr->background.blue];
 
back_1.red = png_ptr->gamma_to_1[png_ptr->background.red];
back_1.green = png_ptr->gamma_to_1[png_ptr->background.green];
back_1.blue = png_ptr->gamma_to_1[png_ptr->background.blue];
}
else
{
png_fixed_point g, gs;
 
switch (png_ptr->background_gamma_type)
{
case PNG_BACKGROUND_GAMMA_SCREEN:
g = (png_ptr->screen_gamma);
gs = PNG_FP_1;
break;
 
case PNG_BACKGROUND_GAMMA_FILE:
g = png_reciprocal(png_ptr->gamma);
gs = png_reciprocal2(png_ptr->gamma,
png_ptr->screen_gamma);
break;
 
case PNG_BACKGROUND_GAMMA_UNIQUE:
g = png_reciprocal(png_ptr->background_gamma);
gs = png_reciprocal2(png_ptr->background_gamma,
png_ptr->screen_gamma);
break;
default:
g = PNG_FP_1; /* back_1 */
gs = PNG_FP_1; /* back */
break;
}
 
if (png_gamma_significant(gs))
{
back.red = (png_byte)png_ptr->background.red;
back.green = (png_byte)png_ptr->background.green;
back.blue = (png_byte)png_ptr->background.blue;
}
 
else
{
back.red = png_gamma_8bit_correct(png_ptr->background.red,
gs);
back.green = png_gamma_8bit_correct(png_ptr->background.green,
gs);
back.blue = png_gamma_8bit_correct(png_ptr->background.blue,
gs);
}
back_1.red = png_gamma_8bit_correct(png_ptr->background.red, g);
back_1.green = png_gamma_8bit_correct(png_ptr->background.green,
g);
back_1.blue = png_gamma_8bit_correct(png_ptr->background.blue,
g);
}
for (i = 0; i < num_palette; i++)
{
if (i < (int)png_ptr->num_trans &&
png_ptr->trans_alpha[i] != 0xff)
{
if (png_ptr->trans_alpha[i] == 0)
{
palette[i] = back;
}
else /* if (png_ptr->trans_alpha[i] != 0xff) */
{
png_byte v, w;
 
v = png_ptr->gamma_to_1[palette[i].red];
png_composite(w, v, png_ptr->trans_alpha[i], back_1.red);
palette[i].red = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[palette[i].green];
png_composite(w, v, png_ptr->trans_alpha[i], back_1.green);
palette[i].green = png_ptr->gamma_from_1[w];
 
v = png_ptr->gamma_to_1[palette[i].blue];
png_composite(w, v, png_ptr->trans_alpha[i], back_1.blue);
palette[i].blue = png_ptr->gamma_from_1[w];
}
}
else
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
}
/* Prevent the transformations being done again, and make sure
* that the now spurious alpha channel is stripped - the code
* has just reduced background composition and gamma correction
* to a simple alpha channel strip.
*/
png_ptr->transformations &= ~PNG_BACKGROUND;
png_ptr->transformations &= ~PNG_GAMMA;
png_ptr->flags |= PNG_FLAG_STRIP_ALPHA;
}
 
/* if (png_ptr->background_gamma_type!=PNG_BACKGROUND_GAMMA_UNKNOWN) */
else
/* color_type != PNG_COLOR_TYPE_PALETTE */
{
png_fixed_point g = PNG_FP_1;
png_fixed_point gs = PNG_FP_1;
 
switch (png_ptr->background_gamma_type)
{
case PNG_BACKGROUND_GAMMA_SCREEN:
g = png_ptr->screen_gamma;
/* gs = PNG_FP_1; */
break;
 
case PNG_BACKGROUND_GAMMA_FILE:
g = png_reciprocal(png_ptr->gamma);
gs = png_reciprocal2(png_ptr->gamma, png_ptr->screen_gamma);
break;
 
case PNG_BACKGROUND_GAMMA_UNIQUE:
g = png_reciprocal(png_ptr->background_gamma);
gs = png_reciprocal2(png_ptr->background_gamma,
png_ptr->screen_gamma);
break;
 
default:
png_error(png_ptr, "invalid background gamma type");
}
 
png_ptr->background_1.gray = png_gamma_correct(png_ptr,
png_ptr->background.gray, g);
 
png_ptr->background.gray = png_gamma_correct(png_ptr,
png_ptr->background.gray, gs);
 
if ((png_ptr->background.red != png_ptr->background.green) ||
(png_ptr->background.red != png_ptr->background.blue) ||
(png_ptr->background.red != png_ptr->background.gray))
{
/* RGB or RGBA with color background */
png_ptr->background_1.red = png_gamma_correct(png_ptr,
png_ptr->background.red, g);
 
png_ptr->background_1.green = png_gamma_correct(png_ptr,
png_ptr->background.green, g);
 
png_ptr->background_1.blue = png_gamma_correct(png_ptr,
png_ptr->background.blue, g);
 
png_ptr->background.red = png_gamma_correct(png_ptr,
png_ptr->background.red, gs);
 
png_ptr->background.green = png_gamma_correct(png_ptr,
png_ptr->background.green, gs);
 
png_ptr->background.blue = png_gamma_correct(png_ptr,
png_ptr->background.blue, gs);
}
 
else
{
/* GRAY, GRAY ALPHA, RGB, or RGBA with gray background */
png_ptr->background_1.red = png_ptr->background_1.green
= png_ptr->background_1.blue = png_ptr->background_1.gray;
 
png_ptr->background.red = png_ptr->background.green
= png_ptr->background.blue = png_ptr->background.gray;
}
}
}
else
/* Transformation does not include PNG_BACKGROUND */
#endif /* PNG_READ_BACKGROUND_SUPPORTED */
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_colorp palette = png_ptr->palette;
int num_palette = png_ptr->num_palette;
int i;
 
for (i = 0; i < num_palette; i++)
{
palette[i].red = png_ptr->gamma_table[palette[i].red];
palette[i].green = png_ptr->gamma_table[palette[i].green];
palette[i].blue = png_ptr->gamma_table[palette[i].blue];
}
 
/* Done the gamma correction. */
png_ptr->transformations &= ~PNG_GAMMA;
}
}
#ifdef PNG_READ_BACKGROUND_SUPPORTED
else
#endif
#endif /* PNG_READ_GAMMA_SUPPORTED */
#ifdef PNG_READ_BACKGROUND_SUPPORTED
/* No GAMMA transformation */
if ((png_ptr->transformations & PNG_BACKGROUND) &&
(color_type == PNG_COLOR_TYPE_PALETTE))
{
int i;
int istop = (int)png_ptr->num_trans;
png_color back;
png_colorp palette = png_ptr->palette;
 
back.red = (png_byte)png_ptr->background.red;
back.green = (png_byte)png_ptr->background.green;
back.blue = (png_byte)png_ptr->background.blue;
 
for (i = 0; i < istop; i++)
{
if (png_ptr->trans_alpha[i] == 0)
{
palette[i] = back;
}
 
else if (png_ptr->trans_alpha[i] != 0xff)
{
/* The png_composite() macro is defined in png.h */
png_composite(palette[i].red, palette[i].red,
png_ptr->trans_alpha[i], back.red);
 
png_composite(palette[i].green, palette[i].green,
png_ptr->trans_alpha[i], back.green);
 
png_composite(palette[i].blue, palette[i].blue,
png_ptr->trans_alpha[i], back.blue);
}
}
 
/* Handled alpha, still need to strip the channel. */
png_ptr->transformations &= ~PNG_BACKGROUND;
png_ptr->flags |= PNG_FLAG_STRIP_ALPHA;
}
#endif /* PNG_READ_BACKGROUND_SUPPORTED */
 
#ifdef PNG_READ_SHIFT_SUPPORTED
if ((png_ptr->transformations & PNG_SHIFT) &&
(color_type == PNG_COLOR_TYPE_PALETTE))
{
png_uint_16 i;
png_uint_16 istop = png_ptr->num_palette;
int sr = 8 - png_ptr->sig_bit.red;
int sg = 8 - png_ptr->sig_bit.green;
int sb = 8 - png_ptr->sig_bit.blue;
 
if (sr < 0 || sr > 8)
sr = 0;
 
if (sg < 0 || sg > 8)
sg = 0;
 
if (sb < 0 || sb > 8)
sb = 0;
 
for (i = 0; i < istop; i++)
{
png_ptr->palette[i].red >>= sr;
png_ptr->palette[i].green >>= sg;
png_ptr->palette[i].blue >>= sb;
}
}
#endif /* PNG_READ_SHIFT_SUPPORTED */
}
#if !defined(PNG_READ_GAMMA_SUPPORTED) && !defined(PNG_READ_SHIFT_SUPPORTED) \
&& !defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr)
return;
#endif
}
 
/* Modify the info structure to reflect the transformations. The
* info should be updated so a PNG file could be written with it,
* assuming the transformations result in valid PNG data.
*/
void /* PRIVATE */
png_read_transform_info(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_read_transform_info");
 
#ifdef PNG_READ_EXPAND_SUPPORTED
if (png_ptr->transformations & PNG_EXPAND)
{
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (png_ptr->num_trans &&
(png_ptr->transformations & PNG_EXPAND_tRNS))
info_ptr->color_type = PNG_COLOR_TYPE_RGB_ALPHA;
 
else
info_ptr->color_type = PNG_COLOR_TYPE_RGB;
 
info_ptr->bit_depth = 8;
info_ptr->num_trans = 0;
}
else
{
if (png_ptr->num_trans)
{
if (png_ptr->transformations & PNG_EXPAND_tRNS)
info_ptr->color_type |= PNG_COLOR_MASK_ALPHA;
}
if (info_ptr->bit_depth < 8)
info_ptr->bit_depth = 8;
 
info_ptr->num_trans = 0;
}
}
#endif
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
if (png_ptr->transformations & PNG_BACKGROUND)
{
info_ptr->color_type = (png_byte)(info_ptr->color_type &
~PNG_COLOR_MASK_ALPHA);
info_ptr->num_trans = 0;
info_ptr->background = png_ptr->background;
}
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
if (png_ptr->transformations & PNG_GAMMA)
{
info_ptr->gamma = png_ptr->gamma;
}
#endif
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
#ifdef PNG_READ_16BIT_SUPPORTED
if ((png_ptr->transformations & PNG_16_TO_8) && (info_ptr->bit_depth == 16))
info_ptr->bit_depth = 8;
#else
/* Force chopping 16-bit input down to 8 */
if (info_ptr->bit_depth == 16)
{
png_ptr->transformations |=PNG_16_TO_8;
info_ptr->bit_depth = 8;
}
#endif
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
if (png_ptr->transformations & PNG_GRAY_TO_RGB)
info_ptr->color_type |= PNG_COLOR_MASK_COLOR;
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
if (png_ptr->transformations & PNG_RGB_TO_GRAY)
info_ptr->color_type &= ~PNG_COLOR_MASK_COLOR;
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
if (png_ptr->transformations & PNG_QUANTIZE)
{
if (((info_ptr->color_type == PNG_COLOR_TYPE_RGB) ||
(info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)) &&
png_ptr->palette_lookup && info_ptr->bit_depth == 8)
{
info_ptr->color_type = PNG_COLOR_TYPE_PALETTE;
}
}
#endif
 
#ifdef PNG_READ_PACK_SUPPORTED
if ((png_ptr->transformations & PNG_PACK) && (info_ptr->bit_depth < 8))
info_ptr->bit_depth = 8;
#endif
 
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
info_ptr->channels = 1;
 
else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR)
info_ptr->channels = 3;
 
else
info_ptr->channels = 1;
 
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA)
info_ptr->color_type &= ~PNG_COLOR_MASK_ALPHA;
#endif
 
if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA)
info_ptr->channels++;
 
#ifdef PNG_READ_FILLER_SUPPORTED
/* STRIP_ALPHA and FILLER allowed: MASK_ALPHA bit stripped above */
if ((png_ptr->transformations & PNG_FILLER) &&
((info_ptr->color_type == PNG_COLOR_TYPE_RGB) ||
(info_ptr->color_type == PNG_COLOR_TYPE_GRAY)))
{
info_ptr->channels++;
/* If adding a true alpha channel not just filler */
if (png_ptr->transformations & PNG_ADD_ALPHA)
info_ptr->color_type |= PNG_COLOR_MASK_ALPHA;
}
#endif
 
#if defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) && \
defined(PNG_READ_USER_TRANSFORM_SUPPORTED)
if (png_ptr->transformations & PNG_USER_TRANSFORM)
{
if (info_ptr->bit_depth < png_ptr->user_transform_depth)
info_ptr->bit_depth = png_ptr->user_transform_depth;
 
if (info_ptr->channels < png_ptr->user_transform_channels)
info_ptr->channels = png_ptr->user_transform_channels;
}
#endif
 
info_ptr->pixel_depth = (png_byte)(info_ptr->channels *
info_ptr->bit_depth);
 
info_ptr->rowbytes = PNG_ROWBYTES(info_ptr->pixel_depth, info_ptr->width);
 
#ifndef PNG_READ_EXPAND_SUPPORTED
if (png_ptr)
return;
#endif
}
 
/* Transform the row. The order of transformations is significant,
* and is very touchy. If you add a transformation, take care to
* decide how it fits in with the other transformations here.
*/
void /* PRIVATE */
png_do_read_transformations(png_structp png_ptr)
{
png_debug(1, "in png_do_read_transformations");
 
if (png_ptr->row_buf == NULL)
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
char msg[50];
 
png_snprintf2(msg, 50,
"NULL row buffer for row %ld, pass %d", (long)png_ptr->row_number,
png_ptr->pass);
png_error(png_ptr, msg);
#else
png_error(png_ptr, "NULL row buffer");
#endif
}
#ifdef PNG_WARN_UNINITIALIZED_ROW
if (!(png_ptr->flags & PNG_FLAG_ROW_INIT))
/* Application has failed to call either png_read_start_image()
* or png_read_update_info() after setting transforms that expand
* pixels. This check added to libpng-1.2.19
*/
#if (PNG_WARN_UNINITIALIZED_ROW==1)
png_error(png_ptr, "Uninitialized row");
#else
png_warning(png_ptr, "Uninitialized row");
#endif
#endif
 
#ifdef PNG_READ_EXPAND_SUPPORTED
if (png_ptr->transformations & PNG_EXPAND)
{
if (png_ptr->row_info.color_type == PNG_COLOR_TYPE_PALETTE)
{
png_do_expand_palette(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->palette, png_ptr->trans_alpha, png_ptr->num_trans);
}
else
{
if (png_ptr->num_trans &&
(png_ptr->transformations & PNG_EXPAND_tRNS))
png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->trans_color));
else
 
png_do_expand(&(png_ptr->row_info), png_ptr->row_buf + 1,
NULL);
}
}
#endif
 
#ifdef PNG_READ_STRIP_ALPHA_SUPPORTED
if (png_ptr->flags & PNG_FLAG_STRIP_ALPHA)
png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
PNG_FLAG_FILLER_AFTER | (png_ptr->flags & PNG_FLAG_STRIP_ALPHA));
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
if (png_ptr->transformations & PNG_RGB_TO_GRAY)
{
int rgb_error =
png_do_rgb_to_gray(png_ptr, &(png_ptr->row_info),
png_ptr->row_buf + 1);
 
if (rgb_error)
{
png_ptr->rgb_to_gray_status=1;
if ((png_ptr->transformations & PNG_RGB_TO_GRAY) ==
PNG_RGB_TO_GRAY_WARN)
png_warning(png_ptr, "png_do_rgb_to_gray found nongray pixel");
 
if ((png_ptr->transformations & PNG_RGB_TO_GRAY) ==
PNG_RGB_TO_GRAY_ERR)
png_error(png_ptr, "png_do_rgb_to_gray found nongray pixel");
}
}
#endif
 
/* From Andreas Dilger e-mail to png-implement, 26 March 1998:
*
* In most cases, the "simple transparency" should be done prior to doing
* gray-to-RGB, or you will have to test 3x as many bytes to check if a
* pixel is transparent. You would also need to make sure that the
* transparency information is upgraded to RGB.
*
* To summarize, the current flow is:
* - Gray + simple transparency -> compare 1 or 2 gray bytes and composite
* with background "in place" if transparent,
* convert to RGB if necessary
* - Gray + alpha -> composite with gray background and remove alpha bytes,
* convert to RGB if necessary
*
* To support RGB backgrounds for gray images we need:
* - Gray + simple transparency -> convert to RGB + simple transparency,
* compare 3 or 6 bytes and composite with
* background "in place" if transparent
* (3x compare/pixel compared to doing
* composite with gray bkgrnd)
* - Gray + alpha -> convert to RGB + alpha, composite with background and
* remove alpha bytes (3x float
* operations/pixel compared with composite
* on gray background)
*
* Greg's change will do this. The reason it wasn't done before is for
* performance, as this increases the per-pixel operations. If we would check
* in advance if the background was gray or RGB, and position the gray-to-RGB
* transform appropriately, then it would save a lot of work/time.
*/
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* If gray -> RGB, do so now only if background is non-gray; else do later
* for performance reasons
*/
if ((png_ptr->transformations & PNG_GRAY_TO_RGB) &&
!(png_ptr->mode & PNG_BACKGROUND_IS_GRAY))
png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
if ((png_ptr->transformations & PNG_BACKGROUND) &&
((png_ptr->num_trans != 0) ||
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA)))
png_do_background(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->trans_color), &(png_ptr->background)
#ifdef PNG_READ_GAMMA_SUPPORTED
, &(png_ptr->background_1),
png_ptr->gamma_table, png_ptr->gamma_from_1,
png_ptr->gamma_to_1, png_ptr->gamma_16_table,
png_ptr->gamma_16_from_1, png_ptr->gamma_16_to_1,
png_ptr->gamma_shift
#endif
);
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
if ((png_ptr->transformations & PNG_GAMMA) &&
#ifdef PNG_READ_BACKGROUND_SUPPORTED
!((png_ptr->transformations & PNG_BACKGROUND) &&
((png_ptr->num_trans != 0) ||
(png_ptr->color_type & PNG_COLOR_MASK_ALPHA))) &&
#endif
(png_ptr->color_type != PNG_COLOR_TYPE_PALETTE))
png_do_gamma(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->gamma_table, png_ptr->gamma_16_table,
png_ptr->gamma_shift);
#endif
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
if (png_ptr->transformations & PNG_16_TO_8)
png_do_chop(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
if (png_ptr->transformations & PNG_QUANTIZE)
{
png_do_quantize(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->palette_lookup, png_ptr->quantize_index);
 
if (png_ptr->row_info.rowbytes == 0)
png_error(png_ptr, "png_do_quantize returned rowbytes=0");
}
#endif /* PNG_READ_QUANTIZE_SUPPORTED */
 
#ifdef PNG_READ_INVERT_SUPPORTED
if (png_ptr->transformations & PNG_INVERT_MONO)
png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_SHIFT_SUPPORTED
if (png_ptr->transformations & PNG_SHIFT)
png_do_unshift(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->shift));
#endif
 
#ifdef PNG_READ_PACK_SUPPORTED
if (png_ptr->transformations & PNG_PACK)
png_do_unpack(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_BGR_SUPPORTED
if (png_ptr->transformations & PNG_BGR)
png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* If gray -> RGB, do so now only if we did not do so above */
if ((png_ptr->transformations & PNG_GRAY_TO_RGB) &&
(png_ptr->mode & PNG_BACKGROUND_IS_GRAY))
png_do_gray_to_rgb(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_FILLER_SUPPORTED
if (png_ptr->transformations & PNG_FILLER)
png_do_read_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
(png_uint_32)png_ptr->filler, png_ptr->flags);
#endif
 
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
if (png_ptr->transformations & PNG_INVERT_ALPHA)
png_do_read_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_SWAP_ALPHA_SUPPORTED
if (png_ptr->transformations & PNG_SWAP_ALPHA)
png_do_read_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_READ_16BIT_SUPPORTED
#ifdef PNG_READ_SWAP_SUPPORTED
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
#endif
 
#ifdef PNG_READ_USER_TRANSFORM_SUPPORTED
if (png_ptr->transformations & PNG_USER_TRANSFORM)
{
if (png_ptr->read_user_transform_fn != NULL)
(*(png_ptr->read_user_transform_fn)) /* User read transform function */
(png_ptr, /* png_ptr */
&(png_ptr->row_info), /* row_info: */
/* png_uint_32 width; width of row */
/* png_size_t rowbytes; number of bytes in row */
/* png_byte color_type; color type of pixels */
/* png_byte bit_depth; bit depth of samples */
/* png_byte channels; number of channels (1-4) */
/* png_byte pixel_depth; bits per pixel (depth*channels) */
png_ptr->row_buf + 1); /* start of pixel data for row */
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED
if (png_ptr->user_transform_depth)
png_ptr->row_info.bit_depth = png_ptr->user_transform_depth;
 
if (png_ptr->user_transform_channels)
png_ptr->row_info.channels = png_ptr->user_transform_channels;
#endif
png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth *
png_ptr->row_info.channels);
 
png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth,
png_ptr->row_info.width);
}
#endif
 
}
 
#ifdef PNG_READ_PACK_SUPPORTED
/* Unpack pixels of 1, 2, or 4 bits per pixel into 1 byte per pixel,
* without changing the actual values. Thus, if you had a row with
* a bit depth of 1, you would end up with bytes that only contained
* the numbers 0 or 1. If you would rather they contain 0 and 255, use
* png_do_shift() after this.
*/
void /* PRIVATE */
png_do_unpack(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_unpack");
 
if (row_info->bit_depth < 8)
{
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
switch (row_info->bit_depth)
{
case 1:
{
png_bytep sp = row + (png_size_t)((row_width - 1) >> 3);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x01);
 
if (shift == 7)
{
shift = 0;
sp--;
}
 
else
shift++;
 
dp--;
}
break;
}
 
case 2:
{
 
png_bytep sp = row + (png_size_t)((row_width - 1) >> 2);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x03);
 
if (shift == 6)
{
shift = 0;
sp--;
}
 
else
shift += 2;
 
dp--;
}
break;
}
 
case 4:
{
png_bytep sp = row + (png_size_t)((row_width - 1) >> 1);
png_bytep dp = row + (png_size_t)row_width - 1;
png_uint_32 shift = (int)((1 - ((row_width + 1) & 0x01)) << 2);
for (i = 0; i < row_width; i++)
{
*dp = (png_byte)((*sp >> shift) & 0x0f);
 
if (shift == 4)
{
shift = 0;
sp--;
}
 
else
shift = 4;
 
dp--;
}
break;
}
 
default:
break;
}
row_info->bit_depth = 8;
row_info->pixel_depth = (png_byte)(8 * row_info->channels);
row_info->rowbytes = row_width * row_info->channels;
}
}
#endif
 
#ifdef PNG_READ_SHIFT_SUPPORTED
/* Reverse the effects of png_do_shift. This routine merely shifts the
* pixels back to their significant bits values. Thus, if you have
* a row of bit depth 8, but only 5 are significant, this will shift
* the values back to 0 through 31.
*/
void /* PRIVATE */
png_do_unshift(png_row_infop row_info, png_bytep row,
png_const_color_8p sig_bits)
{
png_debug(1, "in png_do_unshift");
 
if (
row_info->color_type != PNG_COLOR_TYPE_PALETTE)
{
int shift[4];
int channels = 0;
int c;
png_uint_16 value = 0;
png_uint_32 row_width = row_info->width;
 
if (row_info->color_type & PNG_COLOR_MASK_COLOR)
{
shift[channels++] = row_info->bit_depth - sig_bits->red;
shift[channels++] = row_info->bit_depth - sig_bits->green;
shift[channels++] = row_info->bit_depth - sig_bits->blue;
}
 
else
{
shift[channels++] = row_info->bit_depth - sig_bits->gray;
}
 
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
shift[channels++] = row_info->bit_depth - sig_bits->alpha;
}
 
for (c = 0; c < channels; c++)
{
if (shift[c] <= 0)
shift[c] = 0;
 
else
value = 1;
}
 
if (!value)
return;
 
switch (row_info->bit_depth)
{
default:
break;
 
case 2:
{
png_bytep bp;
png_size_t i;
png_size_t istop = row_info->rowbytes;
 
for (bp = row, i = 0; i < istop; i++)
{
*bp >>= 1;
*bp++ &= 0x55;
}
break;
}
 
case 4:
{
png_bytep bp = row;
png_size_t i;
png_size_t istop = row_info->rowbytes;
png_byte mask = (png_byte)((((int)0xf0 >> shift[0]) & (int)0xf0) |
(png_byte)((int)0xf >> shift[0]));
 
for (i = 0; i < istop; i++)
{
*bp >>= shift[0];
*bp++ &= mask;
}
break;
}
 
case 8:
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = row_width * channels;
 
for (i = 0; i < istop; i++)
{
*bp++ >>= shift[i%channels];
}
break;
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
case 16:
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = channels * row_width;
 
for (i = 0; i < istop; i++)
{
value = (png_uint_16)((*bp << 8) + *(bp + 1));
value >>= shift[i%channels];
*bp++ = (png_byte)(value >> 8);
*bp++ = (png_byte)(value & 0xff);
}
break;
}
#endif
}
}
}
#endif
 
#ifdef PNG_READ_16_TO_8_SUPPORTED
/* Chop rows of bit depth 16 down to 8 */
void /* PRIVATE */
png_do_chop(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_chop");
 
if (row_info->bit_depth == 16)
{
png_bytep sp = row;
png_bytep dp = row;
png_uint_32 i;
png_uint_32 istop = row_info->width * row_info->channels;
 
for (i = 0; i<istop; i++, sp += 2, dp++)
{
#ifdef PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED
/* This does a more accurate scaling of the 16-bit color
* value, rather than a simple low-byte truncation.
*
* What the ideal calculation should be:
* *dp = (((((png_uint_32)(*sp) << 8) |
* (png_uint_32)(*(sp + 1))) * 255 + 127)
* / (png_uint_32)65535L;
*
* GRR: no, I think this is what it really should be:
* *dp = (((((png_uint_32)(*sp) << 8) |
* (png_uint_32)(*(sp + 1))) + 128L)
* / (png_uint_32)257L;
*
* GRR: here's the exact calculation with shifts:
* temp = (((png_uint_32)(*sp) << 8) |
* (png_uint_32)(*(sp + 1))) + 128L;
* *dp = (temp - (temp >> 8)) >> 8;
*
* Approximate calculation with shift/add instead of multiply/divide:
* *dp = ((((png_uint_32)(*sp) << 8) |
* (png_uint_32)((int)(*(sp + 1)) - *sp)) + 128) >> 8;
*
* What we actually do to avoid extra shifting and conversion:
*/
 
*dp = *sp + ((((int)(*(sp + 1)) - *sp) > 128) ? 1 : 0);
#else
/* Simply discard the low order byte */
*dp = *sp;
#endif
}
row_info->bit_depth = 8;
row_info->pixel_depth = (png_byte)(8 * row_info->channels);
row_info->rowbytes = row_info->width * row_info->channels;
}
}
#endif
 
#ifdef PNG_READ_SWAP_ALPHA_SUPPORTED
void /* PRIVATE */
png_do_read_swap_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_swap_alpha");
 
{
png_uint_32 row_width = row_info->width;
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
/* This converts from RGBA to ARGB */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save;
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
/* This converts from RRGGBBAA to AARRGGBB */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save[2];
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save[0] = *(--sp);
save[1] = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save[0];
*(--dp) = save[1];
}
}
#endif
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
/* This converts from GA to AG */
if (row_info->bit_depth == 8)
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save;
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
/* This converts from GGAA to AAGG */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_byte save[2];
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
save[0] = *(--sp);
save[1] = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = save[0];
*(--dp) = save[1];
}
}
#endif
}
}
}
#endif
 
#ifdef PNG_READ_INVERT_ALPHA_SUPPORTED
void /* PRIVATE */
png_do_read_invert_alpha(png_row_infop row_info, png_bytep row)
{
png_uint_32 row_width;
png_debug(1, "in png_do_read_invert_alpha");
 
row_width = row_info->width;
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This inverts the alpha channel in RGBA */
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
 
/* This does nothing:
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
We can replace it with:
*/
sp-=3;
dp=sp;
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
/* This inverts the alpha channel in RRGGBBAA */
else
{
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = (png_byte)(255 - *(--sp));
 
/* This does nothing:
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
We can replace it with:
*/
sp-=6;
dp=sp;
}
}
#endif
}
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This inverts the alpha channel in GA */
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = *(--sp);
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
else
{
/* This inverts the alpha channel in GGAA */
png_bytep sp = row + row_info->rowbytes;
png_bytep dp = sp;
png_uint_32 i;
 
for (i = 0; i < row_width; i++)
{
*(--dp) = (png_byte)(255 - *(--sp));
*(--dp) = (png_byte)(255 - *(--sp));
/*
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*/
sp-=2;
dp=sp;
}
}
#endif
}
}
#endif
 
#ifdef PNG_READ_FILLER_SUPPORTED
/* Add filler channel if we have RGB color */
void /* PRIVATE */
png_do_read_filler(png_row_infop row_info, png_bytep row,
png_uint_32 filler, png_uint_32 flags)
{
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
#ifdef PNG_READ_16BIT_SUPPORTED
png_byte hi_filler = (png_byte)((filler>>8) & 0xff);
#endif
png_byte lo_filler = (png_byte)(filler & 0xff);
 
png_debug(1, "in png_do_read_filler");
 
if (
row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
if (row_info->bit_depth == 8)
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This changes the data from G to GX */
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = lo_filler;
*(--dp) = *(--sp);
}
*(--dp) = lo_filler;
row_info->channels = 2;
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
 
else
{
/* This changes the data from G to XG */
png_bytep sp = row + (png_size_t)row_width;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = lo_filler;
}
row_info->channels = 2;
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
else if (row_info->bit_depth == 16)
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This changes the data from GG to GGXX */
png_bytep sp = row + (png_size_t)row_width * 2;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 1; i < row_width; i++)
{
*(--dp) = hi_filler;
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = hi_filler;
*(--dp) = lo_filler;
row_info->channels = 2;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
 
else
{
/* This changes the data from GG to XXGG */
png_bytep sp = row + (png_size_t)row_width * 2;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = hi_filler;
*(--dp) = lo_filler;
}
row_info->channels = 2;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
}
#endif
} /* COLOR_TYPE == GRAY */
else if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
if (row_info->bit_depth == 8)
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This changes the data from RGB to RGBX */
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 1; i < row_width; i++)
{
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = lo_filler;
row_info->channels = 4;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
 
else
{
/* This changes the data from RGB to XRGB */
png_bytep sp = row + (png_size_t)row_width * 3;
png_bytep dp = sp + (png_size_t)row_width;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = lo_filler;
}
row_info->channels = 4;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
}
}
 
#ifdef PNG_READ_16BIT_SUPPORTED
else if (row_info->bit_depth == 16)
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This changes the data from RRGGBB to RRGGBBXX */
png_bytep sp = row + (png_size_t)row_width * 6;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 1; i < row_width; i++)
{
*(--dp) = hi_filler;
*(--dp) = lo_filler;
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
}
*(--dp) = hi_filler;
*(--dp) = lo_filler;
row_info->channels = 4;
row_info->pixel_depth = 64;
row_info->rowbytes = row_width * 8;
}
 
else
{
/* This changes the data from RRGGBB to XXRRGGBB */
png_bytep sp = row + (png_size_t)row_width * 6;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = *(--sp);
*(--dp) = hi_filler;
*(--dp) = lo_filler;
}
 
row_info->channels = 4;
row_info->pixel_depth = 64;
row_info->rowbytes = row_width * 8;
}
}
#endif
} /* COLOR_TYPE == RGB */
}
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
/* Expand grayscale files to RGB, with or without alpha */
void /* PRIVATE */
png_do_gray_to_rgb(png_row_infop row_info, png_bytep row)
{
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
png_debug(1, "in png_do_gray_to_rgb");
 
if (row_info->bit_depth >= 8 &&
!(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
if (row_info->bit_depth == 8)
{
/* This changes G to RGB */
png_bytep sp = row + (png_size_t)row_width - 1;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(dp--) = *sp;
*(dp--) = *sp;
*(dp--) = *(sp--);
}
}
 
else
{
/* This changes GG to RRGGBB */
png_bytep sp = row + (png_size_t)row_width * 2 - 1;
png_bytep dp = sp + (png_size_t)row_width * 4;
for (i = 0; i < row_width; i++)
{
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *(sp--);
*(dp--) = *(sp--);
}
}
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This changes GA to RGBA */
png_bytep sp = row + (png_size_t)row_width * 2 - 1;
png_bytep dp = sp + (png_size_t)row_width * 2;
for (i = 0; i < row_width; i++)
{
*(dp--) = *(sp--);
*(dp--) = *sp;
*(dp--) = *sp;
*(dp--) = *(sp--);
}
}
 
else
{
/* This changes GGAA to RRGGBBAA */
png_bytep sp = row + (png_size_t)row_width * 4 - 1;
png_bytep dp = sp + (png_size_t)row_width * 4;
for (i = 0; i < row_width; i++)
{
*(dp--) = *(sp--);
*(dp--) = *(sp--);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *sp;
*(dp--) = *(sp - 1);
*(dp--) = *(sp--);
*(dp--) = *(sp--);
}
}
}
row_info->channels += (png_byte)2;
row_info->color_type |= PNG_COLOR_MASK_COLOR;
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
}
#endif
 
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
/* Reduce RGB files to grayscale, with or without alpha
* using the equation given in Poynton's ColorFAQ at
* <http://www.inforamp.net/~poynton/> (THIS LINK IS DEAD June 2008)
* New link:
* <http://www.poynton.com/notes/colour_and_gamma/>
* Charles Poynton poynton at poynton.com
*
* Y = 0.212671 * R + 0.715160 * G + 0.072169 * B
*
* We approximate this with
*
* Y = 0.21268 * R + 0.7151 * G + 0.07217 * B
*
* which can be expressed with integers as
*
* Y = (6969 * R + 23434 * G + 2365 * B)/32768
*
* The calculation is to be done in a linear colorspace.
*
* Other integer coefficents can be used via png_set_rgb_to_gray().
*/
int /* PRIVATE */
png_do_rgb_to_gray(png_structp png_ptr, png_row_infop row_info, png_bytep row)
 
{
png_uint_32 i;
 
png_uint_32 row_width = row_info->width;
int rgb_error = 0;
 
png_debug(1, "in png_do_rgb_to_gray");
 
if (!(row_info->color_type & PNG_COLOR_MASK_PALETTE) &&
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
png_uint_32 rc = png_ptr->rgb_to_gray_red_coeff;
png_uint_32 gc = png_ptr->rgb_to_gray_green_coeff;
png_uint_32 bc = png_ptr->rgb_to_gray_blue_coeff;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
 
for (i = 0; i < row_width; i++)
{
png_byte red = png_ptr->gamma_to_1[*(sp++)];
png_byte green = png_ptr->gamma_to_1[*(sp++)];
png_byte blue = png_ptr->gamma_to_1[*(sp++)];
 
if (red != green || red != blue)
{
rgb_error |= 1;
*(dp++) = png_ptr->gamma_from_1[
(rc*red + gc*green + bc*blue)>>15];
}
 
else
*(dp++) = *(sp - 1);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = *(sp++);
png_byte green = *(sp++);
png_byte blue = *(sp++);
 
if (red != green || red != blue)
{
rgb_error |= 1;
*(dp++) = (png_byte)((rc*red + gc*green + bc*blue)>>15);
}
 
else
*(dp++) = *(sp - 1);
}
}
}
 
else /* RGB bit_depth == 16 */
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_16_to_1 != NULL &&
png_ptr->gamma_16_from_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, w;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
green = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
 
if (red == green && red == blue)
w = red;
 
else
{
png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff)
>> png_ptr->gamma_shift][red>>8];
png_uint_16 green_1 =
png_ptr->gamma_16_to_1[(green&0xff) >>
png_ptr->gamma_shift][green>>8];
png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff)
>> png_ptr->gamma_shift][blue>>8];
png_uint_16 gray16 = (png_uint_16)((rc*red_1 + gc*green_1
+ bc*blue_1)>>15);
w = png_ptr->gamma_16_from_1[(gray16&0xff) >>
png_ptr->gamma_shift][gray16 >> 8];
rgb_error |= 1;
}
 
*(dp++) = (png_byte)((w>>8) & 0xff);
*(dp++) = (png_byte)(w & 0xff);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, gray16;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
green = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
 
if (red != green || red != blue)
rgb_error |= 1;
 
gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15);
*(dp++) = (png_byte)((gray16>>8) & 0xff);
*(dp++) = (png_byte)(gray16 & 0xff);
}
}
}
}
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
if (row_info->bit_depth == 8)
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_from_1 != NULL && png_ptr->gamma_to_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = png_ptr->gamma_to_1[*(sp++)];
png_byte green = png_ptr->gamma_to_1[*(sp++)];
png_byte blue = png_ptr->gamma_to_1[*(sp++)];
 
if (red != green || red != blue)
rgb_error |= 1;
 
*(dp++) = png_ptr->gamma_from_1
[(rc*red + gc*green + bc*blue)>>15];
 
*(dp++) = *(sp++); /* alpha */
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_byte red = *(sp++);
png_byte green = *(sp++);
png_byte blue = *(sp++);
if (red != green || red != blue)
rgb_error |= 1;
 
*(dp++) = (png_byte)((rc*red + gc*green + bc*blue)>>15);
*(dp++) = *(sp++); /* alpha */
}
}
}
else /* RGBA bit_depth == 16 */
{
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
if (png_ptr->gamma_16_to_1 != NULL &&
png_ptr->gamma_16_from_1 != NULL)
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, w;
 
red = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
green = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
blue = (png_uint_16)(((*(sp))<<8) | *(sp + 1)); sp += 2;
 
if (red == green && red == blue)
w = red;
 
else
{
png_uint_16 red_1 = png_ptr->gamma_16_to_1[(red&0xff) >>
png_ptr->gamma_shift][red>>8];
 
png_uint_16 green_1 =
png_ptr->gamma_16_to_1[(green&0xff) >>
png_ptr->gamma_shift][green>>8];
 
png_uint_16 blue_1 = png_ptr->gamma_16_to_1[(blue&0xff) >>
png_ptr->gamma_shift][blue>>8];
 
png_uint_16 gray16 = (png_uint_16)((rc * red_1
+ gc * green_1 + bc * blue_1)>>15);
 
w = png_ptr->gamma_16_from_1[(gray16&0xff) >>
png_ptr->gamma_shift][gray16 >> 8];
 
rgb_error |= 1;
}
 
*(dp++) = (png_byte)((w>>8) & 0xff);
*(dp++) = (png_byte)(w & 0xff);
*(dp++) = *(sp++); /* alpha */
*(dp++) = *(sp++);
}
}
else
#endif
{
png_bytep sp = row;
png_bytep dp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 red, green, blue, gray16;
red = (png_uint_16)((*(sp)<<8) | *(sp + 1)); sp += 2;
green = (png_uint_16)((*(sp)<<8) | *(sp + 1)); sp += 2;
blue = (png_uint_16)((*(sp)<<8) | *(sp + 1)); sp += 2;
 
if (red != green || red != blue)
rgb_error |= 1;
 
gray16 = (png_uint_16)((rc*red + gc*green + bc*blue)>>15);
*(dp++) = (png_byte)((gray16>>8) & 0xff);
*(dp++) = (png_byte)(gray16 & 0xff);
*(dp++) = *(sp++); /* alpha */
*(dp++) = *(sp++);
}
}
}
}
row_info->channels -= 2;
row_info->color_type = (png_byte)(row_info->color_type &
~PNG_COLOR_MASK_COLOR);
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
return rgb_error;
}
#endif
 
/* Build a grayscale palette. Palette is assumed to be 1 << bit_depth
* large of png_color. This lets grayscale images be treated as
* paletted. Most useful for gamma correction and simplification
* of code.
*/
void PNGAPI
png_build_grayscale_palette(int bit_depth, png_colorp palette)
{
int num_palette;
int color_inc;
int i;
int v;
 
png_debug(1, "in png_do_build_grayscale_palette");
 
if (palette == NULL)
return;
 
switch (bit_depth)
{
case 1:
num_palette = 2;
color_inc = 0xff;
break;
 
case 2:
num_palette = 4;
color_inc = 0x55;
break;
 
case 4:
num_palette = 16;
color_inc = 0x11;
break;
 
case 8:
num_palette = 256;
color_inc = 1;
break;
 
default:
num_palette = 0;
color_inc = 0;
break;
}
 
for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
{
palette[i].red = (png_byte)v;
palette[i].green = (png_byte)v;
palette[i].blue = (png_byte)v;
}
}
 
 
#ifdef PNG_READ_BACKGROUND_SUPPORTED
/* Replace any alpha or transparency with the supplied background color.
* "background" is already in the screen gamma, while "background_1" is
* at a gamma of 1.0. Paletted files have already been taken care of.
*/
void /* PRIVATE */
png_do_background(png_row_infop row_info, png_bytep row,
png_const_color_16p trans_color, png_const_color_16p background
#ifdef PNG_READ_GAMMA_SUPPORTED
, png_const_color_16p background_1, png_const_bytep gamma_table,
png_const_bytep gamma_from_1, png_const_bytep gamma_to_1,
png_const_uint_16pp gamma_16, png_const_uint_16pp gamma_16_from_1,
png_const_uint_16pp gamma_16_to_1, int gamma_shift
#endif
)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
int shift;
 
png_debug(1, "in png_do_background");
 
if (background != NULL &&
(!(row_info->color_type & PNG_COLOR_MASK_ALPHA) ||
(row_info->color_type != PNG_COLOR_TYPE_PALETTE && trans_color)))
{
switch (row_info->color_type)
{
case PNG_COLOR_TYPE_GRAY:
{
switch (row_info->bit_depth)
{
case 1:
{
sp = row;
shift = 7;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x01)
== trans_color->gray)
{
*sp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
 
if (!shift)
{
shift = 7;
sp++;
}
 
else
shift--;
}
break;
}
 
case 2:
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_table != NULL)
{
sp = row;
shift = 6;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x03)
== trans_color->gray)
{
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
 
else
{
png_byte p = (png_byte)((*sp >> shift) & 0x03);
png_byte g = (png_byte)((gamma_table [p | (p << 2) |
(p << 4) | (p << 6)] >> 6) & 0x03);
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(g << shift);
}
 
if (!shift)
{
shift = 6;
sp++;
}
 
else
shift -= 2;
}
}
 
else
#endif
{
sp = row;
shift = 6;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x03)
== trans_color->gray)
{
*sp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
 
if (!shift)
{
shift = 6;
sp++;
}
 
else
shift -= 2;
}
}
break;
}
 
case 4:
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_table != NULL)
{
sp = row;
shift = 4;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x0f)
== trans_color->gray)
{
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
 
else
{
png_byte p = (png_byte)((*sp >> shift) & 0x0f);
png_byte g = (png_byte)((gamma_table[p |
(p << 4)] >> 4) & 0x0f);
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(g << shift);
}
 
if (!shift)
{
shift = 4;
sp++;
}
 
else
shift -= 4;
}
}
 
else
#endif
{
sp = row;
shift = 4;
for (i = 0; i < row_width; i++)
{
if ((png_uint_16)((*sp >> shift) & 0x0f)
== trans_color->gray)
{
*sp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*sp |= (png_byte)(background->gray << shift);
}
 
if (!shift)
{
shift = 4;
sp++;
}
 
else
shift -= 4;
}
}
break;
}
 
case 8:
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_table != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp++)
{
if (*sp == trans_color->gray)
*sp = (png_byte)background->gray;
 
else
*sp = gamma_table[*sp];
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp++)
{
if (*sp == trans_color->gray)
*sp = (png_byte)background->gray;
}
}
break;
}
 
case 16:
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_16 != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 2)
{
png_uint_16 v;
 
v = (png_uint_16)(((*sp) << 8) + *(sp + 1));
 
if (v == trans_color->gray)
{
/* Background is already in screen gamma */
*sp = (png_byte)((background->gray >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->gray & 0xff);
}
 
else
{
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 2)
{
png_uint_16 v;
 
v = (png_uint_16)(((*sp) << 8) + *(sp + 1));
 
if (v == trans_color->gray)
{
*sp = (png_byte)((background->gray >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->gray & 0xff);
}
}
}
break;
}
 
default:
break;
}
break;
}
 
case PNG_COLOR_TYPE_RGB:
{
if (row_info->bit_depth == 8)
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_table != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 3)
{
if (*sp == trans_color->red &&
*(sp + 1) == trans_color->green &&
*(sp + 2) == trans_color->blue)
{
*sp = (png_byte)background->red;
*(sp + 1) = (png_byte)background->green;
*(sp + 2) = (png_byte)background->blue;
}
 
else
{
*sp = gamma_table[*sp];
*(sp + 1) = gamma_table[*(sp + 1)];
*(sp + 2) = gamma_table[*(sp + 2)];
}
}
}
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 3)
{
if (*sp == trans_color->red &&
*(sp + 1) == trans_color->green &&
*(sp + 2) == trans_color->blue)
{
*sp = (png_byte)background->red;
*(sp + 1) = (png_byte)background->green;
*(sp + 2) = (png_byte)background->blue;
}
}
}
}
else /* if (row_info->bit_depth == 16) */
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_16 != NULL)
{
sp = row;
for (i = 0; i < row_width; i++, sp += 6)
{
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1));
 
png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
 
png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8)
+ *(sp + 5));
 
if (r == trans_color->red && g == trans_color->green &&
b == trans_color->blue)
{
/* Background is already in screen gamma */
*sp = (png_byte)((background->red >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->red & 0xff);
*(sp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(sp + 3) = (png_byte)(background->green & 0xff);
*(sp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(sp + 5) = (png_byte)(background->blue & 0xff);
}
 
else
{
png_uint_16 v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
 
v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)];
*(sp + 2) = (png_byte)((v >> 8) & 0xff);
*(sp + 3) = (png_byte)(v & 0xff);
 
v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)];
*(sp + 4) = (png_byte)((v >> 8) & 0xff);
*(sp + 5) = (png_byte)(v & 0xff);
}
}
}
 
else
#endif
{
sp = row;
for (i = 0; i < row_width; i++, sp += 6)
{
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1));
 
png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
 
png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8)
+ *(sp + 5));
 
if (r == trans_color->red && g == trans_color->green &&
b == trans_color->blue)
{
*sp = (png_byte)((background->red >> 8) & 0xff);
*(sp + 1) = (png_byte)(background->red & 0xff);
*(sp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(sp + 3) = (png_byte)(background->green & 0xff);
*(sp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(sp + 5) = (png_byte)(background->blue & 0xff);
}
}
}
}
break;
}
 
case PNG_COLOR_TYPE_GRAY_ALPHA:
{
if (row_info->bit_depth == 8)
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_to_1 != NULL && gamma_from_1 != NULL &&
gamma_table != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 2, dp++)
{
png_uint_16 a = *(sp + 1);
 
if (a == 0xff)
*dp = gamma_table[*sp];
 
else if (a == 0)
{
/* Background is already in screen gamma */
*dp = (png_byte)background->gray;
}
 
else
{
png_byte v, w;
 
v = gamma_to_1[*sp];
png_composite(w, v, a, background_1->gray);
*dp = gamma_from_1[w];
}
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 2, dp++)
{
png_byte a = *(sp + 1);
 
if (a == 0xff)
*dp = *sp;
 
#ifdef PNG_READ_GAMMA_SUPPORTED
else if (a == 0)
*dp = (png_byte)background->gray;
 
else
png_composite(*dp, *sp, a, background_1->gray);
 
#else
*dp = (png_byte)background->gray;
#endif
}
}
}
else /* if (png_ptr->bit_depth == 16) */
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_16 != NULL && gamma_16_from_1 != NULL &&
gamma_16_to_1 != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 2)
{
png_uint_16 a = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
 
if (a == (png_uint_16)0xffff)
{
png_uint_16 v;
 
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
}
 
#ifdef PNG_READ_GAMMA_SUPPORTED
else if (a == 0)
#else
else
#endif
{
/* Background is already in screen gamma */
*dp = (png_byte)((background->gray >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->gray & 0xff);
}
 
#ifdef PNG_READ_GAMMA_SUPPORTED
else
{
png_uint_16 g, v, w;
 
g = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp];
png_composite_16(v, g, a, background_1->gray);
w = gamma_16_from_1[(v&0xff) >> gamma_shift][v >> 8];
*dp = (png_byte)((w >> 8) & 0xff);
*(dp + 1) = (png_byte)(w & 0xff);
}
#endif
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 2)
{
png_uint_16 a = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
 
if (a == (png_uint_16)0xffff)
png_memcpy(dp, sp, 2);
 
#ifdef PNG_READ_GAMMA_SUPPORTED
else if (a == 0)
#else
else
#endif
{
*dp = (png_byte)((background->gray >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->gray & 0xff);
}
 
#ifdef PNG_READ_GAMMA_SUPPORTED
else
{
png_uint_16 g, v;
 
g = (png_uint_16)(((*sp) << 8) + *(sp + 1));
png_composite_16(v, g, a, background_1->gray);
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
}
#endif
}
}
}
break;
}
 
case PNG_COLOR_TYPE_RGB_ALPHA:
{
if (row_info->bit_depth == 8)
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_to_1 != NULL && gamma_from_1 != NULL &&
gamma_table != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 3)
{
png_byte a = *(sp + 3);
 
if (a == 0xff)
{
*dp = gamma_table[*sp];
*(dp + 1) = gamma_table[*(sp + 1)];
*(dp + 2) = gamma_table[*(sp + 2)];
}
 
else if (a == 0)
{
/* Background is already in screen gamma */
*dp = (png_byte)background->red;
*(dp + 1) = (png_byte)background->green;
*(dp + 2) = (png_byte)background->blue;
}
 
else
{
png_byte v, w;
 
v = gamma_to_1[*sp];
png_composite(w, v, a, background_1->red);
*dp = gamma_from_1[w];
 
v = gamma_to_1[*(sp + 1)];
png_composite(w, v, a, background_1->green);
*(dp + 1) = gamma_from_1[w];
 
v = gamma_to_1[*(sp + 2)];
png_composite(w, v, a, background_1->blue);
*(dp + 2) = gamma_from_1[w];
}
}
}
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 4, dp += 3)
{
png_byte a = *(sp + 3);
 
if (a == 0xff)
{
*dp = *sp;
*(dp + 1) = *(sp + 1);
*(dp + 2) = *(sp + 2);
}
 
else if (a == 0)
{
*dp = (png_byte)background->red;
*(dp + 1) = (png_byte)background->green;
*(dp + 2) = (png_byte)background->blue;
}
 
else
{
png_composite(*dp, *sp, a, background->red);
 
png_composite(*(dp + 1), *(sp + 1), a,
background->green);
 
png_composite(*(dp + 2), *(sp + 2), a,
background->blue);
}
}
}
}
else /* if (row_info->bit_depth == 16) */
{
#ifdef PNG_READ_GAMMA_SUPPORTED
if (gamma_16 != NULL && gamma_16_from_1 != NULL &&
gamma_16_to_1 != NULL)
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 8, dp += 6)
{
png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6))
<< 8) + (png_uint_16)(*(sp + 7)));
 
if (a == (png_uint_16)0xffff)
{
png_uint_16 v;
 
v = gamma_16[*(sp + 1) >> gamma_shift][*sp];
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
 
v = gamma_16[*(sp + 3) >> gamma_shift][*(sp + 2)];
*(dp + 2) = (png_byte)((v >> 8) & 0xff);
*(dp + 3) = (png_byte)(v & 0xff);
 
v = gamma_16[*(sp + 5) >> gamma_shift][*(sp + 4)];
*(dp + 4) = (png_byte)((v >> 8) & 0xff);
*(dp + 5) = (png_byte)(v & 0xff);
}
 
else if (a == 0)
{
/* Background is already in screen gamma */
*dp = (png_byte)((background->red >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->red & 0xff);
*(dp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(dp + 3) = (png_byte)(background->green & 0xff);
*(dp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(dp + 5) = (png_byte)(background->blue & 0xff);
}
 
else
{
png_uint_16 v, w, x;
 
v = gamma_16_to_1[*(sp + 1) >> gamma_shift][*sp];
png_composite_16(w, v, a, background_1->red);
 
x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8];
*dp = (png_byte)((x >> 8) & 0xff);
*(dp + 1) = (png_byte)(x & 0xff);
 
v = gamma_16_to_1[*(sp + 3) >> gamma_shift][*(sp + 2)];
png_composite_16(w, v, a, background_1->green);
 
x = gamma_16_from_1[((w&0xff) >> gamma_shift)][w >> 8];
*(dp + 2) = (png_byte)((x >> 8) & 0xff);
*(dp + 3) = (png_byte)(x & 0xff);
 
v = gamma_16_to_1[*(sp + 5) >> gamma_shift][*(sp + 4)];
png_composite_16(w, v, a, background_1->blue);
 
x = gamma_16_from_1[(w & 0xff) >> gamma_shift][w >> 8];
*(dp + 4) = (png_byte)((x >> 8) & 0xff);
*(dp + 5) = (png_byte)(x & 0xff);
}
}
}
 
else
#endif
{
sp = row;
dp = row;
for (i = 0; i < row_width; i++, sp += 8, dp += 6)
{
png_uint_16 a = (png_uint_16)(((png_uint_16)(*(sp + 6))
<< 8) + (png_uint_16)(*(sp + 7)));
 
if (a == (png_uint_16)0xffff)
{
png_memcpy(dp, sp, 6);
}
 
else if (a == 0)
{
*dp = (png_byte)((background->red >> 8) & 0xff);
*(dp + 1) = (png_byte)(background->red & 0xff);
*(dp + 2) = (png_byte)((background->green >> 8) & 0xff);
*(dp + 3) = (png_byte)(background->green & 0xff);
*(dp + 4) = (png_byte)((background->blue >> 8) & 0xff);
*(dp + 5) = (png_byte)(background->blue & 0xff);
}
 
else
{
png_uint_16 v;
 
png_uint_16 r = (png_uint_16)(((*sp) << 8) + *(sp + 1));
png_uint_16 g = (png_uint_16)(((*(sp + 2)) << 8)
+ *(sp + 3));
png_uint_16 b = (png_uint_16)(((*(sp + 4)) << 8)
+ *(sp + 5));
 
png_composite_16(v, r, a, background->red);
*dp = (png_byte)((v >> 8) & 0xff);
*(dp + 1) = (png_byte)(v & 0xff);
 
png_composite_16(v, g, a, background->green);
*(dp + 2) = (png_byte)((v >> 8) & 0xff);
*(dp + 3) = (png_byte)(v & 0xff);
 
png_composite_16(v, b, a, background->blue);
*(dp + 4) = (png_byte)((v >> 8) & 0xff);
*(dp + 5) = (png_byte)(v & 0xff);
}
}
}
}
break;
}
 
default:
break;
}
 
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
row_info->color_type = (png_byte)(row_info->color_type &
~PNG_COLOR_MASK_ALPHA);
row_info->channels--;
row_info->pixel_depth = (png_byte)(row_info->channels *
row_info->bit_depth);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
}
}
#endif
 
#ifdef PNG_READ_GAMMA_SUPPORTED
/* Gamma correct the image, avoiding the alpha channel. Make sure
* you do this after you deal with the transparency issue on grayscale
* or RGB images. If your bit depth is 8, use gamma_table, if it
* is 16, use gamma_16_table and gamma_shift. Build these with
* build_gamma_table().
*/
void /* PRIVATE */
png_do_gamma(png_row_infop row_info, png_bytep row,
png_const_bytep gamma_table, png_const_uint_16pp gamma_16_table,
int gamma_shift)
{
png_bytep sp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_gamma");
 
if (((row_info->bit_depth <= 8 && gamma_table != NULL) ||
(row_info->bit_depth == 16 && gamma_16_table != NULL)))
{
switch (row_info->color_type)
{
case PNG_COLOR_TYPE_RGB:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
*sp = gamma_table[*sp];
sp++;
}
}
 
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
}
}
break;
}
 
case PNG_COLOR_TYPE_RGB_ALPHA:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
 
*sp = gamma_table[*sp];
sp++;
 
*sp = gamma_table[*sp];
sp++;
 
sp++;
}
}
 
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
 
v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 4;
}
}
break;
}
 
case PNG_COLOR_TYPE_GRAY_ALPHA:
{
if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp += 2;
}
}
 
else /* if (row_info->bit_depth == 16) */
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 4;
}
}
break;
}
 
case PNG_COLOR_TYPE_GRAY:
{
if (row_info->bit_depth == 2)
{
sp = row;
for (i = 0; i < row_width; i += 4)
{
int a = *sp & 0xc0;
int b = *sp & 0x30;
int c = *sp & 0x0c;
int d = *sp & 0x03;
 
*sp = (png_byte)(
((((int)gamma_table[a|(a>>2)|(a>>4)|(a>>6)]) ) & 0xc0)|
((((int)gamma_table[(b<<2)|b|(b>>2)|(b>>4)])>>2) & 0x30)|
((((int)gamma_table[(c<<4)|(c<<2)|c|(c>>2)])>>4) & 0x0c)|
((((int)gamma_table[(d<<6)|(d<<4)|(d<<2)|d])>>6) ));
sp++;
}
}
 
if (row_info->bit_depth == 4)
{
sp = row;
for (i = 0; i < row_width; i += 2)
{
int msb = *sp & 0xf0;
int lsb = *sp & 0x0f;
 
*sp = (png_byte)((((int)gamma_table[msb | (msb >> 4)]) & 0xf0)
| (((int)gamma_table[(lsb << 4) | lsb]) >> 4));
sp++;
}
}
 
else if (row_info->bit_depth == 8)
{
sp = row;
for (i = 0; i < row_width; i++)
{
*sp = gamma_table[*sp];
sp++;
}
}
 
else if (row_info->bit_depth == 16)
{
sp = row;
for (i = 0; i < row_width; i++)
{
png_uint_16 v = gamma_16_table[*(sp + 1) >> gamma_shift][*sp];
*sp = (png_byte)((v >> 8) & 0xff);
*(sp + 1) = (png_byte)(v & 0xff);
sp += 2;
}
}
break;
}
 
default:
break;
}
}
}
#endif
 
#ifdef PNG_READ_EXPAND_SUPPORTED
/* Expands a palette row to an RGB or RGBA row depending
* upon whether you supply trans and num_trans.
*/
void /* PRIVATE */
png_do_expand_palette(png_row_infop row_info, png_bytep row,
png_const_colorp palette, png_const_bytep trans_alpha, int num_trans)
{
int shift, value;
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_expand_palette");
 
if (row_info->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (row_info->bit_depth < 8)
{
switch (row_info->bit_depth)
{
case 1:
{
sp = row + (png_size_t)((row_width - 1) >> 3);
dp = row + (png_size_t)row_width - 1;
shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
if ((*sp >> shift) & 0x01)
*dp = 1;
 
else
*dp = 0;
 
if (shift == 7)
{
shift = 0;
sp--;
}
 
else
shift++;
 
dp--;
}
break;
}
 
case 2:
{
sp = row + (png_size_t)((row_width - 1) >> 2);
dp = row + (png_size_t)row_width - 1;
shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x03;
*dp = (png_byte)value;
if (shift == 6)
{
shift = 0;
sp--;
}
 
else
shift += 2;
 
dp--;
}
break;
}
 
case 4:
{
sp = row + (png_size_t)((row_width - 1) >> 1);
dp = row + (png_size_t)row_width - 1;
shift = (int)((row_width & 0x01) << 2);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x0f;
*dp = (png_byte)value;
if (shift == 4)
{
shift = 0;
sp--;
}
 
else
shift += 4;
 
dp--;
}
break;
}
 
default:
break;
}
row_info->bit_depth = 8;
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
 
if (row_info->bit_depth == 8)
{
{
if (trans_alpha != NULL)
{
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width << 2) - 1;
 
for (i = 0; i < row_width; i++)
{
if ((int)(*sp) >= num_trans)
*dp-- = 0xff;
 
else
*dp-- = trans_alpha[*sp];
 
*dp-- = palette[*sp].blue;
*dp-- = palette[*sp].green;
*dp-- = palette[*sp].red;
sp--;
}
row_info->bit_depth = 8;
row_info->pixel_depth = 32;
row_info->rowbytes = row_width * 4;
row_info->color_type = 6;
row_info->channels = 4;
}
 
else
{
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width * 3) - 1;
 
for (i = 0; i < row_width; i++)
{
*dp-- = palette[*sp].blue;
*dp-- = palette[*sp].green;
*dp-- = palette[*sp].red;
sp--;
}
 
row_info->bit_depth = 8;
row_info->pixel_depth = 24;
row_info->rowbytes = row_width * 3;
row_info->color_type = 2;
row_info->channels = 3;
}
}
}
}
}
 
/* If the bit depth < 8, it is expanded to 8. Also, if the already
* expanded transparency value is supplied, an alpha channel is built.
*/
void /* PRIVATE */
png_do_expand(png_row_infop row_info, png_bytep row,
png_const_color_16p trans_value)
{
int shift, value;
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_expand");
 
{
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
png_uint_16 gray = (png_uint_16)(trans_value ? trans_value->gray : 0);
 
if (row_info->bit_depth < 8)
{
switch (row_info->bit_depth)
{
case 1:
{
gray = (png_uint_16)((gray & 0x01) * 0xff);
sp = row + (png_size_t)((row_width - 1) >> 3);
dp = row + (png_size_t)row_width - 1;
shift = 7 - (int)((row_width + 7) & 0x07);
for (i = 0; i < row_width; i++)
{
if ((*sp >> shift) & 0x01)
*dp = 0xff;
 
else
*dp = 0;
 
if (shift == 7)
{
shift = 0;
sp--;
}
 
else
shift++;
 
dp--;
}
break;
}
 
case 2:
{
gray = (png_uint_16)((gray & 0x03) * 0x55);
sp = row + (png_size_t)((row_width - 1) >> 2);
dp = row + (png_size_t)row_width - 1;
shift = (int)((3 - ((row_width + 3) & 0x03)) << 1);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x03;
*dp = (png_byte)(value | (value << 2) | (value << 4) |
(value << 6));
if (shift == 6)
{
shift = 0;
sp--;
}
 
else
shift += 2;
 
dp--;
}
break;
}
 
case 4:
{
gray = (png_uint_16)((gray & 0x0f) * 0x11);
sp = row + (png_size_t)((row_width - 1) >> 1);
dp = row + (png_size_t)row_width - 1;
shift = (int)((1 - ((row_width + 1) & 0x01)) << 2);
for (i = 0; i < row_width; i++)
{
value = (*sp >> shift) & 0x0f;
*dp = (png_byte)(value | (value << 4));
if (shift == 4)
{
shift = 0;
sp--;
}
 
else
shift = 4;
 
dp--;
}
break;
}
 
default:
break;
}
 
row_info->bit_depth = 8;
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
 
if (trans_value != NULL)
{
if (row_info->bit_depth == 8)
{
gray = gray & 0xff;
sp = row + (png_size_t)row_width - 1;
dp = row + (png_size_t)(row_width << 1) - 1;
 
for (i = 0; i < row_width; i++)
{
if (*sp == gray)
*dp-- = 0;
 
else
*dp-- = 0xff;
 
*dp-- = *sp--;
}
}
 
else if (row_info->bit_depth == 16)
{
png_byte gray_high = (png_byte)((gray >> 8) & 0xff);
png_byte gray_low = (png_byte)(gray & 0xff);
sp = row + row_info->rowbytes - 1;
dp = row + (row_info->rowbytes << 1) - 1;
for (i = 0; i < row_width; i++)
{
if (*(sp - 1) == gray_high && *(sp) == gray_low)
{
*dp-- = 0;
*dp-- = 0;
}
 
else
{
*dp-- = 0xff;
*dp-- = 0xff;
}
 
*dp-- = *sp--;
*dp-- = *sp--;
}
}
 
row_info->color_type = PNG_COLOR_TYPE_GRAY_ALPHA;
row_info->channels = 2;
row_info->pixel_depth = (png_byte)(row_info->bit_depth << 1);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,
row_width);
}
}
else if (row_info->color_type == PNG_COLOR_TYPE_RGB && trans_value)
{
if (row_info->bit_depth == 8)
{
png_byte red = (png_byte)(trans_value->red & 0xff);
png_byte green = (png_byte)(trans_value->green & 0xff);
png_byte blue = (png_byte)(trans_value->blue & 0xff);
sp = row + (png_size_t)row_info->rowbytes - 1;
dp = row + (png_size_t)(row_width << 2) - 1;
for (i = 0; i < row_width; i++)
{
if (*(sp - 2) == red && *(sp - 1) == green && *(sp) == blue)
*dp-- = 0;
 
else
*dp-- = 0xff;
 
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
}
}
else if (row_info->bit_depth == 16)
{
png_byte red_high = (png_byte)((trans_value->red >> 8) & 0xff);
png_byte green_high = (png_byte)((trans_value->green >> 8) & 0xff);
png_byte blue_high = (png_byte)((trans_value->blue >> 8) & 0xff);
png_byte red_low = (png_byte)(trans_value->red & 0xff);
png_byte green_low = (png_byte)(trans_value->green & 0xff);
png_byte blue_low = (png_byte)(trans_value->blue & 0xff);
sp = row + row_info->rowbytes - 1;
dp = row + (png_size_t)(row_width << 3) - 1;
for (i = 0; i < row_width; i++)
{
if (*(sp - 5) == red_high &&
*(sp - 4) == red_low &&
*(sp - 3) == green_high &&
*(sp - 2) == green_low &&
*(sp - 1) == blue_high &&
*(sp ) == blue_low)
{
*dp-- = 0;
*dp-- = 0;
}
 
else
{
*dp-- = 0xff;
*dp-- = 0xff;
}
 
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
*dp-- = *sp--;
}
}
row_info->color_type = PNG_COLOR_TYPE_RGB_ALPHA;
row_info->channels = 4;
row_info->pixel_depth = (png_byte)(row_info->bit_depth << 2);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
}
}
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
void /* PRIVATE */
png_do_quantize(png_row_infop row_info, png_bytep row,
png_const_bytep palette_lookup, png_const_bytep quantize_lookup)
{
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width=row_info->width;
 
png_debug(1, "in png_do_quantize");
 
if (row_info->bit_depth == 8)
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB && palette_lookup)
{
int r, g, b, p;
sp = row;
dp = row;
for (i = 0; i < row_width; i++)
{
r = *sp++;
g = *sp++;
b = *sp++;
 
/* This looks real messy, but the compiler will reduce
* it down to a reasonable formula. For example, with
* 5 bits per color, we get:
* p = (((r >> 3) & 0x1f) << 10) |
* (((g >> 3) & 0x1f) << 5) |
* ((b >> 3) & 0x1f);
*/
p = (((r >> (8 - PNG_QUANTIZE_RED_BITS)) &
((1 << PNG_QUANTIZE_RED_BITS) - 1)) <<
(PNG_QUANTIZE_GREEN_BITS + PNG_QUANTIZE_BLUE_BITS)) |
(((g >> (8 - PNG_QUANTIZE_GREEN_BITS)) &
((1 << PNG_QUANTIZE_GREEN_BITS) - 1)) <<
(PNG_QUANTIZE_BLUE_BITS)) |
((b >> (8 - PNG_QUANTIZE_BLUE_BITS)) &
((1 << PNG_QUANTIZE_BLUE_BITS) - 1));
 
*dp++ = palette_lookup[p];
}
 
row_info->color_type = PNG_COLOR_TYPE_PALETTE;
row_info->channels = 1;
row_info->pixel_depth = row_info->bit_depth;
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA &&
palette_lookup != NULL)
{
int r, g, b, p;
sp = row;
dp = row;
for (i = 0; i < row_width; i++)
{
r = *sp++;
g = *sp++;
b = *sp++;
sp++;
 
p = (((r >> (8 - PNG_QUANTIZE_RED_BITS)) &
((1 << PNG_QUANTIZE_RED_BITS) - 1)) <<
(PNG_QUANTIZE_GREEN_BITS + PNG_QUANTIZE_BLUE_BITS)) |
(((g >> (8 - PNG_QUANTIZE_GREEN_BITS)) &
((1 << PNG_QUANTIZE_GREEN_BITS) - 1)) <<
(PNG_QUANTIZE_BLUE_BITS)) |
((b >> (8 - PNG_QUANTIZE_BLUE_BITS)) &
((1 << PNG_QUANTIZE_BLUE_BITS) - 1));
 
*dp++ = palette_lookup[p];
}
 
row_info->color_type = PNG_COLOR_TYPE_PALETTE;
row_info->channels = 1;
row_info->pixel_depth = row_info->bit_depth;
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_width);
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_PALETTE &&
quantize_lookup)
{
sp = row;
 
for (i = 0; i < row_width; i++, sp++)
{
*sp = quantize_lookup[*sp];
}
}
}
}
#endif /* PNG_READ_QUANTIZE_SUPPORTED */
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
/* Undoes intrapixel differencing */
void /* PRIVATE */
png_do_read_intrapixel(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_read_intrapixel");
 
if (
(row_info->color_type & PNG_COLOR_MASK_COLOR))
{
int bytes_per_pixel;
png_uint_32 row_width = row_info->width;
 
if (row_info->bit_depth == 8)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 3;
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 4;
 
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
*(rp) = (png_byte)((256 + *rp + *(rp + 1)) & 0xff);
*(rp+2) = (png_byte)((256 + *(rp + 2) + *(rp + 1)) & 0xff);
}
}
else if (row_info->bit_depth == 16)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 6;
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 8;
 
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
png_uint_32 s0 = (*(rp ) << 8) | *(rp + 1);
png_uint_32 s1 = (*(rp + 2) << 8) | *(rp + 3);
png_uint_32 s2 = (*(rp + 4) << 8) | *(rp + 5);
png_uint_32 red = (png_uint_32)((s0 + s1 + 65536L) & 0xffffL);
png_uint_32 blue = (png_uint_32)((s2 + s1 + 65536L) & 0xffffL);
*(rp ) = (png_byte)((red >> 8) & 0xff);
*(rp + 1) = (png_byte)(red & 0xff);
*(rp + 4) = (png_byte)((blue >> 8) & 0xff);
*(rp + 5) = (png_byte)(blue & 0xff);
}
}
}
}
#endif /* PNG_MNG_FEATURES_SUPPORTED */
#endif /* PNG_READ_SUPPORTED */
/programs/develop/libraries/libpng/pngrutil.c
0,0 → 1,3616
 
/* pngrutil.c - utilities to read a PNG file
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file contains routines that are only called from within
* libpng itself during the course of reading an image.
*/
 
#include "pngpriv.h"
 
#ifdef PNG_READ_SUPPORTED
 
#define png_strtod(p,a,b) strtod(a,b)
 
png_uint_32 PNGAPI
png_get_uint_31(png_structp png_ptr, png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
 
if (uval > PNG_UINT_31_MAX)
png_error(png_ptr, "PNG unsigned integer out of range");
 
return (uval);
}
 
#if defined(PNG_READ_gAMA_SUPPORTED) || defined(PNG_READ_cHRM_SUPPORTED)
/* The following is a variation on the above for use with the fixed
* point values used for gAMA and cHRM. Instead of png_error it
* issues a warning and returns (-1) - an invalid value because both
* gAMA and cHRM use *unsigned* integers for fixed point values.
*/
#define PNG_FIXED_ERROR (-1)
 
static png_fixed_point /* PRIVATE */
png_get_fixed_point(png_structp png_ptr, png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
 
if (uval <= PNG_UINT_31_MAX)
return (png_fixed_point)uval; /* known to be in range */
 
/* The caller can turn off the warning by passing NULL. */
if (png_ptr != NULL)
png_warning(png_ptr, "PNG fixed point integer out of range");
 
return PNG_FIXED_ERROR;
}
#endif
 
#ifdef PNG_READ_INT_FUNCTIONS_SUPPORTED
/* NOTE: the read macros will obscure these definitions, so that if
* PNG_USE_READ_MACROS is set the library will not use them internally,
* but the APIs will still be available externally.
*
* The parentheses around "PNGAPI function_name" in the following three
* functions are necessary because they allow the macros to co-exist with
* these (unused but exported) functions.
*/
 
/* Grab an unsigned 32-bit integer from a buffer in big-endian format. */
png_uint_32 (PNGAPI
png_get_uint_32)(png_const_bytep buf)
{
png_uint_32 uval =
((png_uint_32)(*(buf )) << 24) +
((png_uint_32)(*(buf + 1)) << 16) +
((png_uint_32)(*(buf + 2)) << 8) +
((png_uint_32)(*(buf + 3)) ) ;
 
return uval;
}
 
/* Grab a signed 32-bit integer from a buffer in big-endian format. The
* data is stored in the PNG file in two's complement format and there
* is no guarantee that a 'png_int_32' is exactly 32 bits, therefore
* the following code does a two's complement to native conversion.
*/
png_int_32 (PNGAPI
png_get_int_32)(png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
if ((uval & 0x80000000L) == 0) /* non-negative */
return uval;
 
uval = (uval ^ 0xffffffffL) + 1; /* 2's complement: -x = ~x+1 */
return -(png_int_32)uval;
}
 
/* Grab an unsigned 16-bit integer from a buffer in big-endian format. */
png_uint_16 (PNGAPI
png_get_uint_16)(png_const_bytep buf)
{
/* ANSI-C requires an int value to accomodate at least 16 bits so this
* works and allows the compiler not to worry about possible narrowing
* on 32 bit systems. (Pre-ANSI systems did not make integers smaller
* than 16 bits either.)
*/
unsigned int val =
((unsigned int)(*buf) << 8) +
((unsigned int)(*(buf + 1)));
 
return (png_uint_16)val;
}
 
#endif /* PNG_READ_INT_FUNCTIONS_SUPPORTED */
 
/* Read and check the PNG file signature */
void /* PRIVATE */
png_read_sig(png_structp png_ptr, png_infop info_ptr)
{
png_size_t num_checked, num_to_check;
 
/* Exit if the user application does not expect a signature. */
if (png_ptr->sig_bytes >= 8)
return;
 
num_checked = png_ptr->sig_bytes;
num_to_check = 8 - num_checked;
 
#ifdef PNG_IO_STATE_SUPPORTED
png_ptr->io_state = PNG_IO_READING | PNG_IO_SIGNATURE;
#endif
 
/* The signature must be serialized in a single I/O call. */
png_read_data(png_ptr, &(info_ptr->signature[num_checked]), num_to_check);
png_ptr->sig_bytes = 8;
 
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check))
{
if (num_checked < 4 &&
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4))
png_error(png_ptr, "Not a PNG file");
else
png_error(png_ptr, "PNG file corrupted by ASCII conversion");
}
if (num_checked < 3)
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
}
 
/* Read the chunk header (length + type name).
* Put the type name into png_ptr->chunk_name, and return the length.
*/
png_uint_32 /* PRIVATE */
png_read_chunk_header(png_structp png_ptr)
{
png_byte buf[8];
png_uint_32 length;
 
#ifdef PNG_IO_STATE_SUPPORTED
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_HDR;
#endif
 
/* Read the length and the chunk name.
* This must be performed in a single I/O call.
*/
png_read_data(png_ptr, buf, 8);
length = png_get_uint_31(png_ptr, buf);
 
/* Put the chunk name into png_ptr->chunk_name. */
png_memcpy(png_ptr->chunk_name, buf + 4, 4);
 
png_debug2(0, "Reading %s chunk, length = %u",
png_ptr->chunk_name, length);
 
/* Reset the crc and run it over the chunk name. */
png_reset_crc(png_ptr);
png_calculate_crc(png_ptr, png_ptr->chunk_name, 4);
 
/* Check to see if chunk name is valid. */
png_check_chunk_name(png_ptr, png_ptr->chunk_name);
 
#ifdef PNG_IO_STATE_SUPPORTED
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_DATA;
#endif
 
return length;
}
 
/* Read data, and (optionally) run it through the CRC. */
void /* PRIVATE */
png_crc_read(png_structp png_ptr, png_bytep buf, png_size_t length)
{
if (png_ptr == NULL)
return;
 
png_read_data(png_ptr, buf, length);
png_calculate_crc(png_ptr, buf, length);
}
 
/* Optionally skip data and then check the CRC. Depending on whether we
* are reading a ancillary or critical chunk, and how the program has set
* things up, we may calculate the CRC on the data and print a message.
* Returns '1' if there was a CRC error, '0' otherwise.
*/
int /* PRIVATE */
png_crc_finish(png_structp png_ptr, png_uint_32 skip)
{
png_size_t i;
png_size_t istop = png_ptr->zbuf_size;
 
for (i = (png_size_t)skip; i > istop; i -= istop)
{
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
}
 
if (i)
{
png_crc_read(png_ptr, png_ptr->zbuf, i);
}
 
if (png_crc_error(png_ptr))
{
if (((png_ptr->chunk_name[0] & 0x20) && /* Ancillary */
!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) ||
(!(png_ptr->chunk_name[0] & 0x20) && /* Critical */
(png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE)))
{
png_chunk_warning(png_ptr, "CRC error");
}
 
else
{
png_chunk_benign_error(png_ptr, "CRC error");
return (0);
}
 
return (1);
}
 
return (0);
}
 
/* Compare the CRC stored in the PNG file with that calculated by libpng from
* the data it has read thus far.
*/
int /* PRIVATE */
png_crc_error(png_structp png_ptr)
{
png_byte crc_bytes[4];
png_uint_32 crc;
int need_crc = 1;
 
if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
need_crc = 0;
}
 
else /* critical */
{
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
need_crc = 0;
}
 
#ifdef PNG_IO_STATE_SUPPORTED
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_CRC;
#endif
 
/* The chunk CRC must be serialized in a single I/O call. */
png_read_data(png_ptr, crc_bytes, 4);
 
if (need_crc)
{
crc = png_get_uint_32(crc_bytes);
return ((int)(crc != png_ptr->crc));
}
 
else
return (0);
}
 
#if defined(PNG_READ_zTXt_SUPPORTED) || defined(PNG_READ_iTXt_SUPPORTED) || \
defined(PNG_READ_iCCP_SUPPORTED)
static png_size_t
png_inflate(png_structp png_ptr, png_bytep data, png_size_t size,
png_bytep output, png_size_t output_size)
{
png_size_t count = 0;
 
/* zlib can't necessarily handle more than 65535 bytes at once (i.e. it can't
* even necessarily handle 65536 bytes) because the type uInt is "16 bits or
* more". Consequently it is necessary to chunk the input to zlib. This
* code uses ZLIB_IO_MAX, from pngpriv.h, as the maximum (the maximum value
* that can be stored in a uInt.) It is possible to set ZLIB_IO_MAX to a
* lower value in pngpriv.h and this may sometimes have a performance
* advantage, because it forces access of the input data to be separated from
* at least some of the use by some period of time.
*/
png_ptr->zstream.next_in = data;
/* avail_in is set below from 'size' */
png_ptr->zstream.avail_in = 0;
 
while (1)
{
int ret, avail;
 
/* The setting of 'avail_in' used to be outside the loop, by setting it
* inside it is possible to chunk the input to zlib and simply rely on
* zlib to advance the 'next_in' pointer. This allows arbitrary amounts o
* data to be passed through zlib at the unavoidable cost of requiring a
* window save (memcpy of up to 32768 output bytes) every ZLIB_IO_MAX
* input bytes.
*/
if (png_ptr->zstream.avail_in == 0 && size > 0)
{
if (size <= ZLIB_IO_MAX)
{
/* The value is less than ZLIB_IO_MAX so the cast is safe: */
png_ptr->zstream.avail_in = (uInt)size;
size = 0;
}
 
else
{
png_ptr->zstream.avail_in = ZLIB_IO_MAX;
size -= ZLIB_IO_MAX;
}
}
 
/* Reset the output buffer each time round - we empty it
* after every inflate call.
*/
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = png_ptr->zbuf_size;
 
ret = inflate(&png_ptr->zstream, Z_NO_FLUSH);
avail = png_ptr->zbuf_size - png_ptr->zstream.avail_out;
 
/* First copy/count any new output - but only if we didn't
* get an error code.
*/
if ((ret == Z_OK || ret == Z_STREAM_END) && avail > 0)
{
png_size_t space = avail; /* > 0, see above */
 
if (output != 0 && output_size > count)
{
png_size_t copy = output_size - count;
 
if (space < copy)
copy = space;
 
png_memcpy(output + count, png_ptr->zbuf, copy);
}
count += space;
}
 
if (ret == Z_OK)
continue;
 
/* Termination conditions - always reset the zstream, it
* must be left in inflateInit state.
*/
png_ptr->zstream.avail_in = 0;
inflateReset(&png_ptr->zstream);
 
if (ret == Z_STREAM_END)
return count; /* NOTE: may be zero. */
 
/* Now handle the error codes - the API always returns 0
* and the error message is dumped into the uncompressed
* buffer if available.
*/
{
PNG_CONST char *msg;
#ifdef PNG_CONSOLE_IO_SUPPORTED
char umsg[52];
#endif
if (png_ptr->zstream.msg != 0)
msg = png_ptr->zstream.msg;
 
else
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
switch (ret)
{
case Z_BUF_ERROR:
msg = "Buffer error in compressed datastream in %s chunk";
break;
 
case Z_DATA_ERROR:
msg = "Data error in compressed datastream in %s chunk";
break;
 
default:
msg = "Incomplete compressed datastream in %s chunk";
break;
}
 
png_snprintf(umsg, sizeof umsg, msg, png_ptr->chunk_name);
msg = umsg;
#else
msg = "Damaged compressed datastream in chunk other than IDAT";
#endif
}
 
png_warning(png_ptr, msg);
}
 
/* 0 means an error - notice that this code simply ignores
* zero length compressed chunks as a result.
*/
return 0;
}
}
 
/*
* Decompress trailing data in a chunk. The assumption is that chunkdata
* points at an allocated area holding the contents of a chunk with a
* trailing compressed part. What we get back is an allocated area
* holding the original prefix part and an uncompressed version of the
* trailing part (the malloc area passed in is freed).
*/
void /* PRIVATE */
png_decompress_chunk(png_structp png_ptr, int comp_type,
png_size_t chunklength,
png_size_t prefix_size, png_size_t *newlength)
{
/* The caller should guarantee this */
if (prefix_size > chunklength)
{
/* The recovery is to delete the chunk. */
png_warning(png_ptr, "invalid chunklength");
prefix_size = 0; /* To delete everything */
}
 
else if (comp_type == PNG_COMPRESSION_TYPE_BASE)
{
png_size_t expanded_size = png_inflate(png_ptr,
(png_bytep)(png_ptr->chunkdata + prefix_size),
chunklength - prefix_size,
0, /*output*/
0); /*output size*/
 
/* Now check the limits on this chunk - if the limit fails the
* compressed data will be removed, the prefix will remain.
*/
#ifdef PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED
if (png_ptr->user_chunk_malloc_max &&
(prefix_size + expanded_size >= png_ptr->user_chunk_malloc_max - 1))
#else
# ifdef PNG_USER_CHUNK_MALLOC_MAX
if ((PNG_USER_CHUNK_MALLOC_MAX > 0) &&
prefix_size + expanded_size >= PNG_USER_CHUNK_MALLOC_MAX - 1)
# endif
#endif
png_warning(png_ptr, "Exceeded size limit while expanding chunk");
 
/* If the size is zero either there was an error and a message
* has already been output (warning) or the size really is zero
* and we have nothing to do - the code will exit through the
* error case below.
*/
#if defined(PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED) || \
defined(PNG_USER_CHUNK_MALLOC_MAX)
else if (expanded_size > 0)
#else
if (expanded_size > 0)
#endif
{
/* Success (maybe) - really uncompress the chunk. */
png_size_t new_size = 0;
png_charp text = png_malloc_warn(png_ptr,
prefix_size + expanded_size + 1);
 
if (text != NULL)
{
png_memcpy(text, png_ptr->chunkdata, prefix_size);
new_size = png_inflate(png_ptr,
(png_bytep)(png_ptr->chunkdata + prefix_size),
chunklength - prefix_size,
(png_bytep)(text + prefix_size), expanded_size);
text[prefix_size + expanded_size] = 0; /* just in case */
 
if (new_size == expanded_size)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = text;
*newlength = prefix_size + expanded_size;
return; /* The success return! */
}
 
png_warning(png_ptr, "png_inflate logic error");
png_free(png_ptr, text);
}
 
else
png_warning(png_ptr, "Not enough memory to decompress chunk");
}
}
 
else /* if (comp_type != PNG_COMPRESSION_TYPE_BASE) */
{
#ifdef PNG_STDIO_SUPPORTED
char umsg[50];
 
png_snprintf(umsg, sizeof umsg,
"Unknown zTXt compression type %d", comp_type);
png_warning(png_ptr, umsg);
#else
png_warning(png_ptr, "Unknown zTXt compression type");
#endif
 
/* The recovery is to simply drop the data. */
}
 
/* Generic error return - leave the prefix, delete the compressed
* data, reallocate the chunkdata to remove the potentially large
* amount of compressed data.
*/
{
png_charp text = png_malloc_warn(png_ptr, prefix_size + 1);
 
if (text != NULL)
{
if (prefix_size > 0)
png_memcpy(text, png_ptr->chunkdata, prefix_size);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = text;
 
/* This is an extra zero in the 'uncompressed' part. */
*(png_ptr->chunkdata + prefix_size) = 0x00;
}
/* Ignore a malloc error here - it is safe. */
}
 
*newlength = prefix_size;
}
#endif
 
/* Read and check the IDHR chunk */
void /* PRIVATE */
png_handle_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[13];
png_uint_32 width, height;
int bit_depth, color_type, compression_type, filter_type;
int interlace_type;
 
png_debug(1, "in png_handle_IHDR");
 
if (png_ptr->mode & PNG_HAVE_IHDR)
png_error(png_ptr, "Out of place IHDR");
 
/* Check the length */
if (length != 13)
png_error(png_ptr, "Invalid IHDR chunk");
 
png_ptr->mode |= PNG_HAVE_IHDR;
 
png_crc_read(png_ptr, buf, 13);
png_crc_finish(png_ptr, 0);
 
width = png_get_uint_31(png_ptr, buf);
height = png_get_uint_31(png_ptr, buf + 4);
bit_depth = buf[8];
color_type = buf[9];
compression_type = buf[10];
filter_type = buf[11];
interlace_type = buf[12];
 
/* Set internal variables */
png_ptr->width = width;
png_ptr->height = height;
png_ptr->bit_depth = (png_byte)bit_depth;
png_ptr->interlaced = (png_byte)interlace_type;
png_ptr->color_type = (png_byte)color_type;
#ifdef PNG_MNG_FEATURES_SUPPORTED
png_ptr->filter_type = (png_byte)filter_type;
#endif
png_ptr->compression_type = (png_byte)compression_type;
 
/* Find number of channels */
switch (png_ptr->color_type)
{
default: /* invalid, png_set_IHDR calls png_error */
case PNG_COLOR_TYPE_GRAY:
case PNG_COLOR_TYPE_PALETTE:
png_ptr->channels = 1;
break;
 
case PNG_COLOR_TYPE_RGB:
png_ptr->channels = 3;
break;
 
case PNG_COLOR_TYPE_GRAY_ALPHA:
png_ptr->channels = 2;
break;
 
case PNG_COLOR_TYPE_RGB_ALPHA:
png_ptr->channels = 4;
break;
}
 
/* Set up other useful info */
png_ptr->pixel_depth = (png_byte)(png_ptr->bit_depth *
png_ptr->channels);
png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->width);
png_debug1(3, "bit_depth = %d", png_ptr->bit_depth);
png_debug1(3, "channels = %d", png_ptr->channels);
png_debug1(3, "rowbytes = %lu", (unsigned long)png_ptr->rowbytes);
png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth,
color_type, interlace_type, compression_type, filter_type);
}
 
/* Read and check the palette */
void /* PRIVATE */
png_handle_PLTE(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_color palette[PNG_MAX_PALETTE_LENGTH];
int num, i;
#ifdef PNG_POINTER_INDEXING_SUPPORTED
png_colorp pal_ptr;
#endif
 
png_debug(1, "in png_handle_PLTE");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before PLTE");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid PLTE after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
png_error(png_ptr, "Duplicate PLTE chunk");
 
png_ptr->mode |= PNG_HAVE_PLTE;
 
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR))
{
png_warning(png_ptr,
"Ignoring PLTE chunk in grayscale PNG");
png_crc_finish(png_ptr, length);
return;
}
 
#ifndef PNG_READ_OPT_PLTE_SUPPORTED
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
{
png_crc_finish(png_ptr, length);
return;
}
#endif
 
if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3)
{
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
{
png_warning(png_ptr, "Invalid palette chunk");
png_crc_finish(png_ptr, length);
return;
}
 
else
{
png_error(png_ptr, "Invalid palette chunk");
}
}
 
num = (int)length / 3;
 
#ifdef PNG_POINTER_INDEXING_SUPPORTED
for (i = 0, pal_ptr = palette; i < num; i++, pal_ptr++)
{
png_byte buf[3];
 
png_crc_read(png_ptr, buf, 3);
pal_ptr->red = buf[0];
pal_ptr->green = buf[1];
pal_ptr->blue = buf[2];
}
#else
for (i = 0; i < num; i++)
{
png_byte buf[3];
 
png_crc_read(png_ptr, buf, 3);
/* Don't depend upon png_color being any order */
palette[i].red = buf[0];
palette[i].green = buf[1];
palette[i].blue = buf[2];
}
#endif
 
/* If we actually need the PLTE chunk (ie for a paletted image), we do
* whatever the normal CRC configuration tells us. However, if we
* have an RGB image, the PLTE can be considered ancillary, so
* we will act as though it is.
*/
#ifndef PNG_READ_OPT_PLTE_SUPPORTED
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
#endif
{
png_crc_finish(png_ptr, 0);
}
 
#ifndef PNG_READ_OPT_PLTE_SUPPORTED
else if (png_crc_error(png_ptr)) /* Only if we have a CRC error */
{
/* If we don't want to use the data from an ancillary chunk,
* we have two options: an error abort, or a warning and we
* ignore the data in this chunk (which should be OK, since
* it's considered ancillary for a RGB or RGBA image).
*/
if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_USE))
{
if (png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)
{
png_chunk_benign_error(png_ptr, "CRC error");
}
 
else
{
png_chunk_warning(png_ptr, "CRC error");
return;
}
}
 
/* Otherwise, we (optionally) emit a warning and use the chunk. */
else if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN))
{
png_chunk_warning(png_ptr, "CRC error");
}
}
#endif
 
png_set_PLTE(png_ptr, info_ptr, palette, num);
 
#ifdef PNG_READ_tRNS_SUPPORTED
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
if (png_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect tRNS chunk length");
png_ptr->num_trans = (png_uint_16)num;
}
 
if (info_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect info tRNS chunk length");
info_ptr->num_trans = (png_uint_16)num;
}
}
}
#endif
 
}
 
void /* PRIVATE */
png_handle_IEND(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_debug(1, "in png_handle_IEND");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR) || !(png_ptr->mode & PNG_HAVE_IDAT))
{
png_error(png_ptr, "No image in file");
}
 
png_ptr->mode |= (PNG_AFTER_IDAT | PNG_HAVE_IEND);
 
if (length != 0)
{
png_warning(png_ptr, "Incorrect IEND chunk length");
}
 
png_crc_finish(png_ptr, length);
 
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */
}
 
#ifdef PNG_READ_gAMA_SUPPORTED
void /* PRIVATE */
png_handle_gAMA(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_fixed_point igamma;
png_byte buf[4];
 
png_debug(1, "in png_handle_gAMA");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before gAMA");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid gAMA after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place gAMA chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
#ifdef PNG_READ_sRGB_SUPPORTED
&& !(info_ptr->valid & PNG_INFO_sRGB)
#endif
)
{
png_warning(png_ptr, "Duplicate gAMA chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 4)
{
png_warning(png_ptr, "Incorrect gAMA chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 4);
 
if (png_crc_finish(png_ptr, 0))
return;
 
igamma = png_get_fixed_point(NULL, buf);
 
/* Check for zero gamma or an error. */
if (igamma <= 0)
{
png_warning(png_ptr,
"Ignoring gAMA chunk with out of range gamma");
 
return;
}
 
# ifdef PNG_READ_sRGB_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB))
{
if (PNG_OUT_OF_RANGE(igamma, 45500L, 500))
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
 
# ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "gamma = (%d/100000)", (int)igamma);
# endif
return;
}
}
# endif /* PNG_READ_sRGB_SUPPORTED */
 
# ifdef PNG_READ_GAMMA_SUPPORTED
/* Gamma correction on read is supported. */
png_ptr->gamma = igamma;
# endif
/* And set the 'info' structure members. */
png_set_gAMA_fixed(png_ptr, info_ptr, igamma);
}
#endif
 
#ifdef PNG_READ_sBIT_SUPPORTED
void /* PRIVATE */
png_handle_sBIT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_size_t truelen;
png_byte buf[4];
 
png_debug(1, "in png_handle_sBIT");
 
buf[0] = buf[1] = buf[2] = buf[3] = 0;
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sBIT");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sBIT after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
{
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sBIT chunk");
}
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT))
{
png_warning(png_ptr, "Duplicate sBIT chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
truelen = 3;
 
else
truelen = (png_size_t)png_ptr->channels;
 
if (length != truelen || length > 4)
{
png_warning(png_ptr, "Incorrect sBIT chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, truelen);
 
if (png_crc_finish(png_ptr, 0))
return;
 
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
{
png_ptr->sig_bit.red = buf[0];
png_ptr->sig_bit.green = buf[1];
png_ptr->sig_bit.blue = buf[2];
png_ptr->sig_bit.alpha = buf[3];
}
 
else
{
png_ptr->sig_bit.gray = buf[0];
png_ptr->sig_bit.red = buf[0];
png_ptr->sig_bit.green = buf[0];
png_ptr->sig_bit.blue = buf[0];
png_ptr->sig_bit.alpha = buf[1];
}
 
png_set_sBIT(png_ptr, info_ptr, &(png_ptr->sig_bit));
}
#endif
 
#ifdef PNG_READ_cHRM_SUPPORTED
void /* PRIVATE */
png_handle_cHRM(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[32];
png_fixed_point x_white, y_white, x_red, y_red, x_green, y_green, x_blue,
y_blue;
 
png_debug(1, "in png_handle_cHRM");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before cHRM");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid cHRM after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before cHRM");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)
# ifdef PNG_READ_sRGB_SUPPORTED
&& !(info_ptr->valid & PNG_INFO_sRGB)
# endif
)
{
png_warning(png_ptr, "Duplicate cHRM chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 32)
{
png_warning(png_ptr, "Incorrect cHRM chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 32);
 
if (png_crc_finish(png_ptr, 0))
return;
 
x_white = png_get_fixed_point(NULL, buf);
y_white = png_get_fixed_point(NULL, buf + 4);
x_red = png_get_fixed_point(NULL, buf + 8);
y_red = png_get_fixed_point(NULL, buf + 12);
x_green = png_get_fixed_point(NULL, buf + 16);
y_green = png_get_fixed_point(NULL, buf + 20);
x_blue = png_get_fixed_point(NULL, buf + 24);
y_blue = png_get_fixed_point(NULL, buf + 28);
 
if (x_white == PNG_FIXED_ERROR ||
y_white == PNG_FIXED_ERROR ||
x_red == PNG_FIXED_ERROR ||
y_red == PNG_FIXED_ERROR ||
x_green == PNG_FIXED_ERROR ||
y_green == PNG_FIXED_ERROR ||
x_blue == PNG_FIXED_ERROR ||
y_blue == PNG_FIXED_ERROR)
{
png_warning(png_ptr, "Ignoring cHRM chunk with negative chromaticities");
return;
}
 
#ifdef PNG_READ_sRGB_SUPPORTED
if ((info_ptr != NULL) && (info_ptr->valid & PNG_INFO_sRGB))
{
if (PNG_OUT_OF_RANGE(x_white, 31270, 1000) ||
PNG_OUT_OF_RANGE(y_white, 32900, 1000) ||
PNG_OUT_OF_RANGE(x_red, 64000L, 1000) ||
PNG_OUT_OF_RANGE(y_red, 33000, 1000) ||
PNG_OUT_OF_RANGE(x_green, 30000, 1000) ||
PNG_OUT_OF_RANGE(y_green, 60000L, 1000) ||
PNG_OUT_OF_RANGE(x_blue, 15000, 1000) ||
PNG_OUT_OF_RANGE(y_blue, 6000, 1000))
{
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
 
#ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "wx=%d, wy=%d, rx=%d, ry=%d\n",
x_white, y_white, x_red, y_red);
 
fprintf(stderr, "gx=%d, gy=%d, bx=%d, by=%d\n",
x_green, y_green, x_blue, y_blue);
#endif /* PNG_CONSOLE_IO_SUPPORTED */
}
return;
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
png_set_cHRM_fixed(png_ptr, info_ptr, x_white, y_white, x_red, y_red,
x_green, y_green, x_blue, y_blue);
}
#endif
 
#ifdef PNG_READ_sRGB_SUPPORTED
void /* PRIVATE */
png_handle_sRGB(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
int intent;
png_byte buf[1];
 
png_debug(1, "in png_handle_sRGB");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sRGB");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sRGB after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sRGB chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB))
{
png_warning(png_ptr, "Duplicate sRGB chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 1)
{
png_warning(png_ptr, "Incorrect sRGB chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 1);
 
if (png_crc_finish(png_ptr, 0))
return;
 
intent = buf[0];
 
/* Check for bad intent */
if (intent >= PNG_sRGB_INTENT_LAST)
{
png_warning(png_ptr, "Unknown sRGB intent");
return;
}
 
#if defined(PNG_READ_gAMA_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED)
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA))
{
if (PNG_OUT_OF_RANGE(info_ptr->gamma, 45500L, 500))
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
#ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "incorrect gamma=(%d/100000)\n", info_ptr->gamma);
#endif
}
}
#endif /* PNG_READ_gAMA_SUPPORTED */
 
#ifdef PNG_READ_cHRM_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
if (PNG_OUT_OF_RANGE(info_ptr->x_white, 31270, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_white, 32900, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_red, 64000L, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_red, 33000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_green, 30000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_green, 60000L, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_blue, 15000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_blue, 6000, 1000))
{
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
}
#endif /* PNG_READ_cHRM_SUPPORTED */
 
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, intent);
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
#ifdef PNG_READ_iCCP_SUPPORTED
void /* PRIVATE */
png_handle_iCCP(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
{
png_byte compression_type;
png_bytep pC;
png_charp profile;
png_uint_32 skip = 0;
png_uint_32 profile_size;
png_alloc_size_t profile_length;
png_size_t slength, prefix_length, data_length;
 
png_debug(1, "in png_handle_iCCP");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iCCP");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid iCCP after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place iCCP chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP))
{
png_warning(png_ptr, "Duplicate iCCP chunk");
png_crc_finish(png_ptr, length);
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "iCCP chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
 
for (profile = png_ptr->chunkdata; *profile; profile++)
/* Empty loop to find end of name */ ;
 
++profile;
 
/* There should be at least one zero (the compression type byte)
* following the separator, and we should be on it
*/
if (profile >= png_ptr->chunkdata + slength - 1)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "Malformed iCCP chunk");
return;
}
 
/* Compression_type should always be zero */
compression_type = *profile++;
 
if (compression_type)
{
png_warning(png_ptr, "Ignoring nonzero compression type in iCCP chunk");
compression_type = 0x00; /* Reset it to zero (libpng-1.0.6 through 1.0.8
wrote nonzero) */
}
 
prefix_length = profile - png_ptr->chunkdata;
png_decompress_chunk(png_ptr, compression_type,
slength, prefix_length, &data_length);
 
profile_length = data_length - prefix_length;
 
if (prefix_length > data_length || profile_length < 4)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "Profile size field missing from iCCP chunk");
return;
}
 
/* Check the profile_size recorded in the first 32 bits of the ICC profile */
pC = (png_bytep)(png_ptr->chunkdata + prefix_length);
profile_size = ((*(pC )) << 24) |
((*(pC + 1)) << 16) |
((*(pC + 2)) << 8) |
((*(pC + 3)) );
 
/* NOTE: the following guarantees that 'profile_length' fits into 32 bits,
* because profile_size is a 32 bit value.
*/
if (profile_size < profile_length)
profile_length = profile_size;
 
/* And the following guarantees that profile_size == profile_length. */
if (profile_size > profile_length)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
#ifdef PNG_STDIO_SUPPORTED
{
char umsg[80];
 
png_snprintf2(umsg, 80,
"Ignoring iCCP chunk with declared size = %u "
"and actual length = %u",
(unsigned int) profile_size,
(unsigned int) profile_length);
png_warning(png_ptr, umsg);
}
#else
png_warning(png_ptr,
"Ignoring iCCP chunk with uncompressed size mismatch");
#endif
return;
}
 
png_set_iCCP(png_ptr, info_ptr, png_ptr->chunkdata,
compression_type, (png_bytep)png_ptr->chunkdata + prefix_length,
profile_size);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
}
#endif /* PNG_READ_iCCP_SUPPORTED */
 
#ifdef PNG_READ_sPLT_SUPPORTED
void /* PRIVATE */
png_handle_sPLT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
{
png_bytep entry_start;
png_sPLT_t new_palette;
#ifdef PNG_POINTER_INDEXING_SUPPORTED
png_sPLT_entryp pp;
#endif
png_uint_32 data_length;
int entry_size, i;
png_uint_32 skip = 0;
png_size_t slength;
png_uint_32 dl;
png_size_t max_dl;
 
png_debug(1, "in png_handle_sPLT");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
 
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
{
png_crc_finish(png_ptr, length);
return;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for sPLT");
png_crc_finish(png_ptr, length);
return;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sPLT");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sPLT after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "sPLT chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
 
/* WARNING: this may break if size_t is less than 32 bits; it is assumed
* that the PNG_MAX_MALLOC_64K test is enabled in this case, but this is a
* potential breakage point if the types in pngconf.h aren't exactly right.
*/
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
 
for (entry_start = (png_bytep)png_ptr->chunkdata; *entry_start;
entry_start++)
/* Empty loop to find end of name */ ;
 
++entry_start;
 
/* A sample depth should follow the separator, and we should be on it */
if (entry_start > (png_bytep)png_ptr->chunkdata + slength - 2)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "malformed sPLT chunk");
return;
}
 
new_palette.depth = *entry_start++;
entry_size = (new_palette.depth == 8 ? 6 : 10);
/* This must fit in a png_uint_32 because it is derived from the original
* chunk data length (and use 'length', not 'slength' here for clarity -
* they are guaranteed to be the same, see the tests above.)
*/
data_length = length - (png_uint_32)(entry_start -
(png_bytep)png_ptr->chunkdata);
 
/* Integrity-check the data length */
if (data_length % entry_size)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "sPLT chunk has bad length");
return;
}
 
dl = (png_int_32)(data_length / entry_size);
max_dl = PNG_SIZE_MAX / png_sizeof(png_sPLT_entry);
 
if (dl > max_dl)
{
png_warning(png_ptr, "sPLT chunk too long");
return;
}
 
new_palette.nentries = (png_int_32)(data_length / entry_size);
 
new_palette.entries = (png_sPLT_entryp)png_malloc_warn(
png_ptr, new_palette.nentries * png_sizeof(png_sPLT_entry));
 
if (new_palette.entries == NULL)
{
png_warning(png_ptr, "sPLT chunk requires too much memory");
return;
}
 
#ifdef PNG_POINTER_INDEXING_SUPPORTED
for (i = 0; i < new_palette.nentries; i++)
{
pp = new_palette.entries + i;
 
if (new_palette.depth == 8)
{
pp->red = *entry_start++;
pp->green = *entry_start++;
pp->blue = *entry_start++;
pp->alpha = *entry_start++;
}
 
else
{
pp->red = png_get_uint_16(entry_start); entry_start += 2;
pp->green = png_get_uint_16(entry_start); entry_start += 2;
pp->blue = png_get_uint_16(entry_start); entry_start += 2;
pp->alpha = png_get_uint_16(entry_start); entry_start += 2;
}
 
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
}
#else
pp = new_palette.entries;
 
for (i = 0; i < new_palette.nentries; i++)
{
 
if (new_palette.depth == 8)
{
pp[i].red = *entry_start++;
pp[i].green = *entry_start++;
pp[i].blue = *entry_start++;
pp[i].alpha = *entry_start++;
}
 
else
{
pp[i].red = png_get_uint_16(entry_start); entry_start += 2;
pp[i].green = png_get_uint_16(entry_start); entry_start += 2;
pp[i].blue = png_get_uint_16(entry_start); entry_start += 2;
pp[i].alpha = png_get_uint_16(entry_start); entry_start += 2;
}
 
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
}
#endif
 
/* Discard all chunk data except the name and stash that */
new_palette.name = png_ptr->chunkdata;
 
png_set_sPLT(png_ptr, info_ptr, &new_palette, 1);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, new_palette.entries);
}
#endif /* PNG_READ_sPLT_SUPPORTED */
 
#ifdef PNG_READ_tRNS_SUPPORTED
void /* PRIVATE */
png_handle_tRNS(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte readbuf[PNG_MAX_PALETTE_LENGTH];
 
png_debug(1, "in png_handle_tRNS");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tRNS");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid tRNS after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
png_warning(png_ptr, "Duplicate tRNS chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
png_byte buf[2];
 
if (length != 2)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 2);
png_ptr->num_trans = 1;
png_ptr->trans_color.gray = png_get_uint_16(buf);
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
png_byte buf[6];
 
if (length != 6)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, (png_size_t)length);
png_ptr->num_trans = 1;
png_ptr->trans_color.red = png_get_uint_16(buf);
png_ptr->trans_color.green = png_get_uint_16(buf + 2);
png_ptr->trans_color.blue = png_get_uint_16(buf + 4);
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
/* Should be an error, but we can cope with it. */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
 
if (length > (png_uint_32)png_ptr->num_palette ||
length > PNG_MAX_PALETTE_LENGTH)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
if (length == 0)
{
png_warning(png_ptr, "Zero length tRNS chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, readbuf, (png_size_t)length);
png_ptr->num_trans = (png_uint_16)length;
}
 
else
{
png_warning(png_ptr, "tRNS chunk not allowed with alpha channel");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_crc_finish(png_ptr, 0))
{
png_ptr->num_trans = 0;
return;
}
 
png_set_tRNS(png_ptr, info_ptr, readbuf, png_ptr->num_trans,
&(png_ptr->trans_color));
}
#endif
 
#ifdef PNG_READ_bKGD_SUPPORTED
void /* PRIVATE */
png_handle_bKGD(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_size_t truelen;
png_byte buf[6];
 
png_debug(1, "in png_handle_bKGD");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before bKGD");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid bKGD after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before bKGD");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD))
{
png_warning(png_ptr, "Duplicate bKGD chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
truelen = 1;
 
else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
truelen = 6;
 
else
truelen = 2;
 
if (length != truelen)
{
png_warning(png_ptr, "Incorrect bKGD chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, truelen);
 
if (png_crc_finish(png_ptr, 0))
return;
 
/* We convert the index value into RGB components so that we can allow
* arbitrary RGB values for background when we have transparency, and
* so it is easy to determine the RGB values of the background color
* from the info_ptr struct.
*/
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_ptr->background.index = buf[0];
 
if (info_ptr && info_ptr->num_palette)
{
if (buf[0] >= info_ptr->num_palette)
{
png_warning(png_ptr, "Incorrect bKGD chunk index value");
return;
}
 
png_ptr->background.red =
(png_uint_16)png_ptr->palette[buf[0]].red;
 
png_ptr->background.green =
(png_uint_16)png_ptr->palette[buf[0]].green;
 
png_ptr->background.blue =
(png_uint_16)png_ptr->palette[buf[0]].blue;
}
}
 
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */
{
png_ptr->background.red =
png_ptr->background.green =
png_ptr->background.blue =
png_ptr->background.gray = png_get_uint_16(buf);
}
 
else
{
png_ptr->background.red = png_get_uint_16(buf);
png_ptr->background.green = png_get_uint_16(buf + 2);
png_ptr->background.blue = png_get_uint_16(buf + 4);
}
 
png_set_bKGD(png_ptr, info_ptr, &(png_ptr->background));
}
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
void /* PRIVATE */
png_handle_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
unsigned int num, i;
png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH];
 
png_debug(1, "in png_handle_hIST");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before hIST");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid hIST after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before hIST");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST))
{
png_warning(png_ptr, "Duplicate hIST chunk");
png_crc_finish(png_ptr, length);
return;
}
 
num = length / 2 ;
 
if (num != (unsigned int)png_ptr->num_palette || num >
(unsigned int)PNG_MAX_PALETTE_LENGTH)
{
png_warning(png_ptr, "Incorrect hIST chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
for (i = 0; i < num; i++)
{
png_byte buf[2];
 
png_crc_read(png_ptr, buf, 2);
readbuf[i] = png_get_uint_16(buf);
}
 
if (png_crc_finish(png_ptr, 0))
return;
 
png_set_hIST(png_ptr, info_ptr, readbuf);
}
#endif
 
#ifdef PNG_READ_pHYs_SUPPORTED
void /* PRIVATE */
png_handle_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_uint_32 res_x, res_y;
int unit_type;
 
png_debug(1, "in png_handle_pHYs");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pHYs");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pHYs after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_warning(png_ptr, "Duplicate pHYs chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect pHYs chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 9);
 
if (png_crc_finish(png_ptr, 0))
return;
 
res_x = png_get_uint_32(buf);
res_y = png_get_uint_32(buf + 4);
unit_type = buf[8];
png_set_pHYs(png_ptr, info_ptr, res_x, res_y, unit_type);
}
#endif
 
#ifdef PNG_READ_oFFs_SUPPORTED
void /* PRIVATE */
png_handle_oFFs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_int_32 offset_x, offset_y;
int unit_type;
 
png_debug(1, "in png_handle_oFFs");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before oFFs");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid oFFs after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_warning(png_ptr, "Duplicate oFFs chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect oFFs chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 9);
 
if (png_crc_finish(png_ptr, 0))
return;
 
offset_x = png_get_int_32(buf);
offset_y = png_get_int_32(buf + 4);
unit_type = buf[8];
png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y, unit_type);
}
#endif
 
#ifdef PNG_READ_pCAL_SUPPORTED
/* Read the pCAL chunk (described in the PNG Extensions document) */
void /* PRIVATE */
png_handle_pCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_int_32 X0, X1;
png_byte type, nparams;
png_charp buf, units, endptr;
png_charpp params;
png_size_t slength;
int i;
 
png_debug(1, "in png_handle_pCAL");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pCAL");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pCAL after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL))
{
png_warning(png_ptr, "Duplicate pCAL chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_debug1(2, "Allocating and reading pCAL chunk data (%u bytes)",
length + 1);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "No memory for pCAL purpose");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */
 
png_debug(3, "Finding end of pCAL purpose string");
for (buf = png_ptr->chunkdata; *buf; buf++)
/* Empty loop */ ;
 
endptr = png_ptr->chunkdata + slength;
 
/* We need to have at least 12 bytes after the purpose string
* in order to get the parameter information.
*/
if (endptr <= buf + 12)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_debug(3, "Reading pCAL X0, X1, type, nparams, and units");
X0 = png_get_int_32((png_bytep)buf+1);
X1 = png_get_int_32((png_bytep)buf+5);
type = buf[9];
nparams = buf[10];
units = buf + 11;
 
png_debug(3, "Checking pCAL equation type and number of parameters");
/* Check that we have the right number of parameters for known
* equation types.
*/
if ((type == PNG_EQUATION_LINEAR && nparams != 2) ||
(type == PNG_EQUATION_BASE_E && nparams != 3) ||
(type == PNG_EQUATION_ARBITRARY && nparams != 3) ||
(type == PNG_EQUATION_HYPERBOLIC && nparams != 4))
{
png_warning(png_ptr, "Invalid pCAL parameters for equation type");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
else if (type >= PNG_EQUATION_LAST)
{
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
}
 
for (buf = units; *buf; buf++)
/* Empty loop to move past the units string. */ ;
 
png_debug(3, "Allocating pCAL parameters array");
 
params = (png_charpp)png_malloc_warn(png_ptr,
(png_size_t)(nparams * png_sizeof(png_charp)));
 
if (params == NULL)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "No memory for pCAL params");
return;
}
 
/* Get pointers to the start of each parameter string. */
for (i = 0; i < (int)nparams; i++)
{
buf++; /* Skip the null string terminator from previous parameter. */
 
png_debug1(3, "Reading pCAL parameter %d", i);
 
for (params[i] = buf; buf <= endptr && *buf != 0x00; buf++)
/* Empty loop to move past each parameter string */ ;
 
/* Make sure we haven't run out of data yet */
if (buf > endptr)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, params);
return;
}
}
 
png_set_pCAL(png_ptr, info_ptr, png_ptr->chunkdata, X0, X1, type, nparams,
units, params);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, params);
}
#endif
 
#ifdef PNG_READ_sCAL_SUPPORTED
/* Read the sCAL chunk */
void /* PRIVATE */
png_handle_sCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_size_t slength, i;
int state;
 
png_debug(1, "in png_handle_sCAL");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sCAL");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sCAL after IDAT");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL))
{
png_warning(png_ptr, "Duplicate sCAL chunk");
png_crc_finish(png_ptr, length);
return;
}
 
png_debug1(2, "Allocating and reading sCAL chunk data (%u bytes)",
length + 1);
 
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "Out of memory while processing sCAL chunk");
png_crc_finish(png_ptr, length);
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
/* Validate the unit. */
if (png_ptr->chunkdata[0] != 1 && png_ptr->chunkdata[0] != 2)
{
png_warning(png_ptr, "Invalid sCAL ignored: invalid unit");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
/* Validate the ASCII numbers, need two ASCII numbers separated by
* a '\0' and they need to fit exactly in the chunk data.
*/
i = 0;
state = 0;
 
if (png_ptr->chunkdata[1] == 45 /* negative width */ ||
!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) ||
i >= slength || png_ptr->chunkdata[i++] != 0)
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad width format");
 
else
{
png_size_t heighti = i;
 
if (png_ptr->chunkdata[i] == 45 /* negative height */ ||
!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) ||
i != slength)
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad height format");
 
else
/* This is the (only) success case. */
png_set_sCAL_s(png_ptr, info_ptr, png_ptr->chunkdata[0],
png_ptr->chunkdata+1, png_ptr->chunkdata+heighti);
}
 
/* Clean up - just free the temporarily allocated buffer. */
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
}
#endif
 
#ifdef PNG_READ_tIME_SUPPORTED
void /* PRIVATE */
png_handle_tIME(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_byte buf[7];
png_time mod_time;
 
png_debug(1, "in png_handle_tIME");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Out of place tIME chunk");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME))
{
png_warning(png_ptr, "Duplicate tIME chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
if (length != 7)
{
png_warning(png_ptr, "Incorrect tIME chunk length");
png_crc_finish(png_ptr, length);
return;
}
 
png_crc_read(png_ptr, buf, 7);
 
if (png_crc_finish(png_ptr, 0))
return;
 
mod_time.second = buf[6];
mod_time.minute = buf[5];
mod_time.hour = buf[4];
mod_time.day = buf[3];
mod_time.month = buf[2];
mod_time.year = png_get_uint_16(buf);
 
png_set_tIME(png_ptr, info_ptr, &mod_time);
}
#endif
 
#ifdef PNG_READ_tEXt_SUPPORTED
/* Note: this does not properly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp key;
png_charp text;
png_uint_32 skip = 0;
png_size_t slength;
int ret;
 
png_debug(1, "in png_handle_tEXt");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
{
png_crc_finish(png_ptr, length);
return;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for tEXt");
png_crc_finish(png_ptr, length);
return;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tEXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "tEXt chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
 
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "No memory to process text chunk");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
key = png_ptr->chunkdata;
 
key[slength] = 0x00;
 
for (text = key; *text; text++)
/* Empty loop to find end of key */ ;
 
if (text != key + slength)
text++;
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process text chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr->key = key;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
text_ptr->text = text;
text_ptr->text_length = png_strlen(text);
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, text_ptr);
 
if (ret)
png_warning(png_ptr, "Insufficient memory to process text chunk");
}
#endif
 
#ifdef PNG_READ_zTXt_SUPPORTED
/* Note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp text;
int comp_type;
int ret;
png_size_t slength, prefix_len, data_len;
 
png_debug(1, "in png_handle_zTXt");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
{
png_crc_finish(png_ptr, length);
return;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for zTXt");
png_crc_finish(png_ptr, length);
return;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before zTXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
* there is no hard and fast rule to tell us where to stop.
*/
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "zTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "Out of memory processing zTXt chunk");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
 
for (text = png_ptr->chunkdata; *text; text++)
/* Empty loop */ ;
 
/* zTXt must have some text after the chunkdataword */
if (text >= png_ptr->chunkdata + slength - 2)
{
png_warning(png_ptr, "Truncated zTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
else
{
comp_type = *(++text);
 
if (comp_type != PNG_TEXT_COMPRESSION_zTXt)
{
png_warning(png_ptr, "Unknown compression type in zTXt chunk");
comp_type = PNG_TEXT_COMPRESSION_zTXt;
}
 
text++; /* Skip the compression_method byte */
}
 
prefix_len = text - png_ptr->chunkdata;
 
png_decompress_chunk(png_ptr, comp_type,
(png_size_t)length, prefix_len, &data_len);
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process zTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
text_ptr->compression = comp_type;
text_ptr->key = png_ptr->chunkdata;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
text_ptr->text = png_ptr->chunkdata + prefix_len;
text_ptr->text_length = data_len;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
 
if (ret)
png_error(png_ptr, "Insufficient memory to store zTXt chunk");
}
#endif
 
#ifdef PNG_READ_iTXt_SUPPORTED
/* Note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp key, lang, text, lang_key;
int comp_flag;
int comp_type = 0;
int ret;
png_size_t slength, prefix_len, data_len;
 
png_debug(1, "in png_handle_iTXt");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
{
png_crc_finish(png_ptr, length);
return;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for iTXt");
png_crc_finish(png_ptr, length);
return;
}
}
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iTXt");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
* there is no hard and fast rule to tell us where to stop.
*/
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "iTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "No memory to process iTXt chunk");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
 
for (lang = png_ptr->chunkdata; *lang; lang++)
/* Empty loop */ ;
 
lang++; /* Skip NUL separator */
 
/* iTXt must have a language tag (possibly empty), two compression bytes,
* translated keyword (possibly empty), and possibly some text after the
* keyword
*/
 
if (lang >= png_ptr->chunkdata + slength - 3)
{
png_warning(png_ptr, "Truncated iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
else
{
comp_flag = *lang++;
comp_type = *lang++;
}
 
for (lang_key = lang; *lang_key; lang_key++)
/* Empty loop */ ;
 
lang_key++; /* Skip NUL separator */
 
if (lang_key >= png_ptr->chunkdata + slength)
{
png_warning(png_ptr, "Truncated iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
for (text = lang_key; *text; text++)
/* Empty loop */ ;
 
text++; /* Skip NUL separator */
 
if (text >= png_ptr->chunkdata + slength)
{
png_warning(png_ptr, "Malformed iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
prefix_len = text - png_ptr->chunkdata;
 
key=png_ptr->chunkdata;
 
if (comp_flag)
png_decompress_chunk(png_ptr, comp_type,
(size_t)length, prefix_len, &data_len);
 
else
data_len = png_strlen(png_ptr->chunkdata + prefix_len);
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
text_ptr->compression = (int)comp_flag + 1;
text_ptr->lang_key = png_ptr->chunkdata + (lang_key - key);
text_ptr->lang = png_ptr->chunkdata + (lang - key);
text_ptr->itxt_length = data_len;
text_ptr->text_length = 0;
text_ptr->key = png_ptr->chunkdata;
text_ptr->text = png_ptr->chunkdata + prefix_len;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
 
if (ret)
png_error(png_ptr, "Insufficient memory to store iTXt chunk");
}
#endif
 
/* This function is called when we haven't found a handler for a
* chunk. If there isn't a problem with the chunk itself (ie bad
* chunk name, CRC, or a critical chunk), the chunk is silently ignored
* -- unless the PNG_FLAG_UNKNOWN_CHUNKS_SUPPORTED flag is on in which
* case it will be saved away to be written out later.
*/
void /* PRIVATE */
png_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
{
png_uint_32 skip = 0;
 
png_debug(1, "in png_handle_unknown");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
{
png_crc_finish(png_ptr, length);
return;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for unknown chunk");
png_crc_finish(png_ptr, length);
return;
}
}
#endif
 
if (png_ptr->mode & PNG_HAVE_IDAT)
{
PNG_IDAT;
 
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) /* Not an IDAT */
png_ptr->mode |= PNG_AFTER_IDAT;
}
 
if (!(png_ptr->chunk_name[0] & 0x20))
{
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
&& png_ptr->read_user_chunk_fn == NULL
#endif
)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
}
 
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
if ((png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS)
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|| (png_ptr->read_user_chunk_fn != NULL)
#endif
)
{
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
{
png_warning(png_ptr, "unknown chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
}
#endif
 
png_memcpy((png_charp)png_ptr->unknown_chunk.name,
(png_charp)png_ptr->chunk_name,
png_sizeof(png_ptr->unknown_chunk.name));
 
png_ptr->unknown_chunk.name[png_sizeof(png_ptr->unknown_chunk.name)-1]
= '\0';
 
png_ptr->unknown_chunk.size = (png_size_t)length;
 
if (length == 0)
png_ptr->unknown_chunk.data = NULL;
 
else
{
png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr, length);
png_crc_read(png_ptr, (png_bytep)png_ptr->unknown_chunk.data, length);
}
 
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
if (png_ptr->read_user_chunk_fn != NULL)
{
/* Callback to user unknown chunk handler */
int ret;
 
ret = (*(png_ptr->read_user_chunk_fn))
(png_ptr, &png_ptr->unknown_chunk);
 
if (ret < 0)
png_chunk_error(png_ptr, "error in user chunk");
 
if (ret == 0)
{
if (!(png_ptr->chunk_name[0] & 0x20))
{
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
}
 
png_set_unknown_chunks(png_ptr, info_ptr,
&png_ptr->unknown_chunk, 1);
}
}
 
else
#endif
png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1);
 
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
}
 
else
#endif
skip = length;
 
png_crc_finish(png_ptr, skip);
 
#ifndef PNG_READ_USER_CHUNKS_SUPPORTED
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */
#endif
}
 
/* This function is called to verify that a chunk name is valid.
* This function can't have the "critical chunk check" incorporated
* into it, since in the future we will need to be able to call user
* functions to handle unknown critical chunks after we check that
* the chunk name itself is valid.
*/
 
#define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97))
 
void /* PRIVATE */
png_check_chunk_name(png_structp png_ptr, png_const_bytep chunk_name)
{
png_debug(1, "in png_check_chunk_name");
if (isnonalpha(chunk_name[0]) || isnonalpha(chunk_name[1]) ||
isnonalpha(chunk_name[2]) || isnonalpha(chunk_name[3]))
{
png_chunk_error(png_ptr, "invalid chunk type");
}
}
 
/* Combines the row recently read in with the existing pixels in the
* row. This routine takes care of alpha and transparency if requested.
* This routine also handles the two methods of progressive display
* of interlaced images, depending on the mask value.
* The mask value describes which pixels are to be combined with
* the row. The pattern always repeats every 8 pixels, so just 8
* bits are needed. A one indicates the pixel is to be combined,
* a zero indicates the pixel is to be skipped. This is in addition
* to any alpha or transparency value associated with the pixel. If
* you want all pixels to be combined, pass 0xff (255) in mask.
*/
 
void /* PRIVATE */
png_combine_row(png_structp png_ptr, png_bytep row, int mask)
{
png_debug(1, "in png_combine_row");
 
if (mask == 0xff)
{
png_memcpy(row, png_ptr->row_buf + 1,
PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->width));
}
 
else
{
switch (png_ptr->row_info.pixel_depth)
{
case 1:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_inc, s_start, s_end;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 7;
s_inc = 1;
}
 
else
#endif
{
s_start = 7;
s_end = 0;
s_inc = -1;
}
 
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
int value;
 
value = (*sp >> shift) & 0x01;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
 
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
}
break;
}
 
case 2:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 6;
s_inc = 2;
}
 
else
#endif
{
s_start = 6;
s_end = 0;
s_inc = -2;
}
 
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0x03;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
 
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
}
break;
}
 
case 4:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 4;
s_inc = 4;
}
 
else
#endif
{
s_start = 4;
s_end = 0;
s_inc = -4;
}
shift = s_start;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
 
if (shift == s_end)
{
shift = s_start;
sp++;
dp++;
}
 
else
shift += s_inc;
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
}
break;
}
 
default:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
png_size_t pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
png_byte m = 0x80;
 
for (i = 0; i < row_width; i++)
{
if (m & mask)
{
png_memcpy(dp, sp, pixel_bytes);
}
 
sp += pixel_bytes;
dp += pixel_bytes;
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
}
break;
}
}
}
}
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
void /* PRIVATE */
png_do_read_interlace(png_structp png_ptr)
{
png_row_infop row_info = &(png_ptr->row_info);
png_bytep row = png_ptr->row_buf + 1;
int pass = png_ptr->pass;
png_uint_32 transformations = png_ptr->transformations;
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
png_debug(1, "in png_do_read_interlace");
if (row != NULL && row_info != NULL)
{
png_uint_32 final_width;
 
final_width = row_info->width * png_pass_inc[pass];
 
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 3);
png_bytep dp = row + (png_size_t)((final_width - 1) >> 3);
int sshift, dshift;
int s_start, s_end, s_inc;
int jstop = png_pass_inc[pass];
png_byte v;
png_uint_32 i;
int j;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (transformations & PNG_PACKSWAP)
{
sshift = (int)((row_info->width + 7) & 0x07);
dshift = (int)((final_width + 7) & 0x07);
s_start = 7;
s_end = 0;
s_inc = -1;
}
 
else
#endif
{
sshift = 7 - (int)((row_info->width + 7) & 0x07);
dshift = 7 - (int)((final_width + 7) & 0x07);
s_start = 0;
s_end = 7;
s_inc = 1;
}
 
for (i = 0; i < row_info->width; i++)
{
v = (png_byte)((*sp >> sshift) & 0x01);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
 
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
 
else
dshift += s_inc;
}
 
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
 
else
sshift += s_inc;
}
break;
}
 
case 2:
{
png_bytep sp = row + (png_uint_32)((row_info->width - 1) >> 2);
png_bytep dp = row + (png_uint_32)((final_width - 1) >> 2);
int sshift, dshift;
int s_start, s_end, s_inc;
int jstop = png_pass_inc[pass];
png_uint_32 i;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (transformations & PNG_PACKSWAP)
{
sshift = (int)(((row_info->width + 3) & 0x03) << 1);
dshift = (int)(((final_width + 3) & 0x03) << 1);
s_start = 6;
s_end = 0;
s_inc = -2;
}
 
else
#endif
{
sshift = (int)((3 - ((row_info->width + 3) & 0x03)) << 1);
dshift = (int)((3 - ((final_width + 3) & 0x03)) << 1);
s_start = 0;
s_end = 6;
s_inc = 2;
}
 
for (i = 0; i < row_info->width; i++)
{
png_byte v;
int j;
 
v = (png_byte)((*sp >> sshift) & 0x03);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
 
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
 
else
dshift += s_inc;
}
 
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
 
else
sshift += s_inc;
}
break;
}
 
case 4:
{
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 1);
png_bytep dp = row + (png_size_t)((final_width - 1) >> 1);
int sshift, dshift;
int s_start, s_end, s_inc;
png_uint_32 i;
int jstop = png_pass_inc[pass];
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (transformations & PNG_PACKSWAP)
{
sshift = (int)(((row_info->width + 1) & 0x01) << 2);
dshift = (int)(((final_width + 1) & 0x01) << 2);
s_start = 4;
s_end = 0;
s_inc = -4;
}
 
else
#endif
{
sshift = (int)((1 - ((row_info->width + 1) & 0x01)) << 2);
dshift = (int)((1 - ((final_width + 1) & 0x01)) << 2);
s_start = 0;
s_end = 4;
s_inc = 4;
}
 
for (i = 0; i < row_info->width; i++)
{
png_byte v = (png_byte)((*sp >> sshift) & 0xf);
int j;
 
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
 
if (dshift == s_end)
{
dshift = s_start;
dp--;
}
 
else
dshift += s_inc;
}
 
if (sshift == s_end)
{
sshift = s_start;
sp--;
}
 
else
sshift += s_inc;
}
break;
}
default:
{
png_size_t pixel_bytes = (row_info->pixel_depth >> 3);
 
png_bytep sp = row + (png_size_t)(row_info->width - 1)
* pixel_bytes;
 
png_bytep dp = row + (png_size_t)(final_width - 1) * pixel_bytes;
 
int jstop = png_pass_inc[pass];
png_uint_32 i;
 
for (i = 0; i < row_info->width; i++)
{
png_byte v[8];
int j;
 
png_memcpy(v, sp, pixel_bytes);
 
for (j = 0; j < jstop; j++)
{
png_memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
 
sp -= pixel_bytes;
}
break;
}
}
row_info->width = final_width;
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, final_width);
}
#ifndef PNG_READ_PACKSWAP_SUPPORTED
PNG_UNUSED(transformations) /* Silence compiler warning */
#endif
}
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
void /* PRIVATE */
png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep row,
png_const_bytep prev_row, int filter)
{
png_debug(1, "in png_read_filter_row");
png_debug2(2, "row = %u, filter = %d", png_ptr->row_number, filter);
switch (filter)
{
case PNG_FILTER_VALUE_NONE:
break;
 
case PNG_FILTER_VALUE_SUB:
{
png_size_t i;
png_size_t istop = row_info->rowbytes;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp = row + bpp;
png_bytep lp = row;
 
for (i = bpp; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_UP:
{
png_size_t i;
png_size_t istop = row_info->rowbytes;
png_bytep rp = row;
png_const_bytep pp = prev_row;
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_AVG:
{
png_size_t i;
png_bytep rp = row;
png_const_bytep pp = prev_row;
png_bytep lp = row;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_size_t istop = row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) +
((int)(*pp++) / 2 )) & 0xff);
 
rp++;
}
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *lp++) / 2 ) & 0xff);
 
rp++;
}
break;
}
case PNG_FILTER_VALUE_PAETH:
{
png_size_t i;
png_bytep rp = row;
png_const_bytep pp = prev_row;
png_bytep lp = row;
png_const_bytep cp = prev_row;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_size_t istop=row_info->rowbytes - bpp;
 
for (i = 0; i < bpp; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
 
for (i = 0; i < istop; i++) /* Use leftover rp,pp */
{
int a, b, c, pa, pb, pc, p;
 
a = *lp++;
b = *pp++;
c = *cp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
/*
if (pa <= pb && pa <= pc)
p = a;
 
else if (pb <= pc)
p = b;
 
else
p = c;
*/
 
p = (pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c;
 
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
rp++;
}
break;
}
default:
png_error(png_ptr, "Ignoring bad adaptive filter type");
/*NOT REACHED */
break;
}
}
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
void /* PRIVATE */
png_read_finish_row(png_structp png_ptr)
{
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
png_debug(1, "in png_read_finish_row");
png_ptr->row_number++;
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
 
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
do
{
png_ptr->pass++;
 
if (png_ptr->pass >= 7)
break;
 
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
 
if (!(png_ptr->transformations & PNG_INTERLACE))
{
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
}
 
else /* if (png_ptr->transformations & PNG_INTERLACE) */
break; /* libpng deinterlacing sees every row */
 
} while (png_ptr->num_rows == 0 || png_ptr->iwidth == 0);
 
if (png_ptr->pass < 7)
return;
}
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
{
PNG_IDAT;
char extra;
int ret;
 
png_ptr->zstream.next_out = (Byte *)&extra;
png_ptr->zstream.avail_out = (uInt)1;
 
for (;;)
{
if (!(png_ptr->zstream.avail_in))
{
while (!png_ptr->idat_size)
{
png_crc_finish(png_ptr, 0);
png_ptr->idat_size = png_read_chunk_header(png_ptr);
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
}
 
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_in = png_ptr->zbuf;
 
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size;
 
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream.avail_in);
png_ptr->idat_size -= png_ptr->zstream.avail_in;
}
 
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
 
if (ret == Z_STREAM_END)
{
if (!(png_ptr->zstream.avail_out) || png_ptr->zstream.avail_in ||
png_ptr->idat_size)
png_warning(png_ptr, "Extra compressed data");
 
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
if (ret != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg :
"Decompression Error");
 
if (!(png_ptr->zstream.avail_out))
{
png_warning(png_ptr, "Extra compressed data");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
}
png_ptr->zstream.avail_out = 0;
}
 
if (png_ptr->idat_size || png_ptr->zstream.avail_in)
png_warning(png_ptr, "Extra compression data");
 
inflateReset(&png_ptr->zstream);
 
png_ptr->mode |= PNG_AFTER_IDAT;
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
void /* PRIVATE */
png_read_start_row(png_structp png_ptr)
{
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
int max_pixel_depth;
png_size_t row_bytes;
 
png_debug(1, "in png_read_start_row");
png_ptr->zstream.avail_in = 0;
png_init_read_transformations(png_ptr);
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (png_ptr->interlaced)
{
if (!(png_ptr->transformations & PNG_INTERLACE))
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
png_pass_ystart[0]) / png_pass_yinc[0];
 
else
png_ptr->num_rows = png_ptr->height;
 
png_ptr->iwidth = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
}
 
else
#endif /* PNG_READ_INTERLACING_SUPPORTED */
{
png_ptr->num_rows = png_ptr->height;
png_ptr->iwidth = png_ptr->width;
}
 
max_pixel_depth = png_ptr->pixel_depth;
 
#ifdef PNG_READ_PACK_SUPPORTED
if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8)
max_pixel_depth = 8;
#endif
 
#ifdef PNG_READ_EXPAND_SUPPORTED
if (png_ptr->transformations & PNG_EXPAND)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (png_ptr->num_trans)
max_pixel_depth = 32;
 
else
max_pixel_depth = 24;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth < 8)
max_pixel_depth = 8;
 
if (png_ptr->num_trans)
max_pixel_depth *= 2;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
if (png_ptr->num_trans)
{
max_pixel_depth *= 4;
max_pixel_depth /= 3;
}
}
}
#endif
 
#ifdef PNG_READ_FILLER_SUPPORTED
if (png_ptr->transformations & (PNG_FILLER))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
max_pixel_depth = 32;
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth <= 8)
max_pixel_depth = 16;
 
else
max_pixel_depth = 32;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
if (max_pixel_depth <= 32)
max_pixel_depth = 32;
 
else
max_pixel_depth = 64;
}
}
#endif
 
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED
if (png_ptr->transformations & PNG_GRAY_TO_RGB)
{
if (
#ifdef PNG_READ_EXPAND_SUPPORTED
(png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) ||
#endif
#ifdef PNG_READ_FILLER_SUPPORTED
(png_ptr->transformations & (PNG_FILLER)) ||
#endif
png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (max_pixel_depth <= 16)
max_pixel_depth = 32;
 
else
max_pixel_depth = 64;
}
 
else
{
if (max_pixel_depth <= 8)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
max_pixel_depth = 32;
 
else
max_pixel_depth = 24;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
max_pixel_depth = 64;
 
else
max_pixel_depth = 48;
}
}
#endif
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) && \
defined(PNG_USER_TRANSFORM_PTR_SUPPORTED)
if (png_ptr->transformations & PNG_USER_TRANSFORM)
{
int user_pixel_depth = png_ptr->user_transform_depth*
png_ptr->user_transform_channels;
 
if (user_pixel_depth > max_pixel_depth)
max_pixel_depth=user_pixel_depth;
}
#endif
 
/* Align the width on the next larger 8 pixels. Mainly used
* for interlacing
*/
row_bytes = ((png_ptr->width + 7) & ~((png_uint_32)7));
/* Calculate the maximum bytes needed, adding a byte and a pixel
* for safety's sake
*/
row_bytes = PNG_ROWBYTES(max_pixel_depth, row_bytes) +
1 + ((max_pixel_depth + 7) >> 3);
 
#ifdef PNG_MAX_MALLOC_64K
if (row_bytes > (png_uint_32)65536L)
png_error(png_ptr, "This image requires a row greater than 64KB");
#endif
 
if (row_bytes + 48 > png_ptr->old_big_row_buf_size)
{
png_free(png_ptr, png_ptr->big_row_buf);
 
if (png_ptr->interlaced)
png_ptr->big_row_buf = (png_bytep)png_calloc(png_ptr,
row_bytes + 48);
 
else
png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr,
row_bytes + 48);
 
png_ptr->old_big_row_buf_size = row_bytes + 48;
 
#ifdef PNG_ALIGNED_MEMORY_SUPPORTED
/* Use 16-byte aligned memory for row_buf with at least 16 bytes
* of padding before and after row_buf.
*/
png_ptr->row_buf = png_ptr->big_row_buf + 32 -
(((png_alloc_size_t)png_ptr->big_row_buf + 15) & 0x0F);
 
png_ptr->old_big_row_buf_size = row_bytes + 48;
#else
/* Use 32 bytes of padding before and 16 bytes after row_buf. */
png_ptr->row_buf = png_ptr->big_row_buf + 32;
#endif
png_ptr->old_big_row_buf_size = row_bytes + 48;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (png_ptr->rowbytes > 65535)
png_error(png_ptr, "This image requires a row greater than 64KB");
 
#endif
if (png_ptr->rowbytes > (PNG_SIZE_MAX - 1))
png_error(png_ptr, "Row has too many bytes to allocate in memory");
 
if (png_ptr->rowbytes + 1 > png_ptr->old_prev_row_size)
{
png_free(png_ptr, png_ptr->prev_row);
 
png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, png_ptr->rowbytes + 1);
 
png_ptr->old_prev_row_size = png_ptr->rowbytes + 1;
}
 
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
png_debug1(3, "width = %u,", png_ptr->width);
png_debug1(3, "height = %u,", png_ptr->height);
png_debug1(3, "iwidth = %u,", png_ptr->iwidth);
png_debug1(3, "num_rows = %u,", png_ptr->num_rows);
png_debug1(3, "rowbytes = %lu,", (unsigned long)png_ptr->rowbytes);
png_debug1(3, "irowbytes = %lu",
(unsigned long)PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->iwidth) + 1);
 
png_ptr->flags |= PNG_FLAG_ROW_INIT;
}
#endif /* PNG_READ_SUPPORTED */
/programs/develop/libraries/libpng/pngset.c
0,0 → 1,1225
 
/* pngset.c - storage of image information into info struct
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* The functions here are used during reads to store data from the file
* into the info struct, and during writes to store application data
* into the info struct for writing into the file. This abstracts the
* info struct and allows us to change the structure in the future.
*/
 
#include "pngpriv.h"
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 
#ifdef PNG_bKGD_SUPPORTED
void PNGAPI
png_set_bKGD(png_structp png_ptr, png_infop info_ptr,
png_const_color_16p background)
{
png_debug1(1, "in %s storage function", "bKGD");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_memcpy(&(info_ptr->background), background, png_sizeof(png_color_16));
info_ptr->valid |= PNG_INFO_bKGD;
}
#endif
 
#ifdef PNG_cHRM_SUPPORTED
void PNGFAPI
png_set_cHRM_fixed(png_structp png_ptr, png_infop info_ptr,
png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
png_fixed_point blue_x, png_fixed_point blue_y)
{
png_debug1(1, "in %s storage function", "cHRM fixed");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
# ifdef PNG_CHECK_cHRM_SUPPORTED
if (png_check_cHRM_fixed(png_ptr,
white_x, white_y, red_x, red_y, green_x, green_y, blue_x, blue_y))
# endif
{
info_ptr->x_white = white_x;
info_ptr->y_white = white_y;
info_ptr->x_red = red_x;
info_ptr->y_red = red_y;
info_ptr->x_green = green_x;
info_ptr->y_green = green_y;
info_ptr->x_blue = blue_x;
info_ptr->y_blue = blue_y;
info_ptr->valid |= PNG_INFO_cHRM;
}
}
 
# ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_cHRM(png_structp png_ptr, png_infop info_ptr,
double white_x, double white_y, double red_x, double red_y,
double green_x, double green_y, double blue_x, double blue_y)
{
png_set_cHRM_fixed(png_ptr, info_ptr,
png_fixed(png_ptr, white_x, "cHRM White X"),
png_fixed(png_ptr, white_y, "cHRM White Y"),
png_fixed(png_ptr, red_x, "cHRM Red X"),
png_fixed(png_ptr, red_y, "cHRM Red Y"),
png_fixed(png_ptr, green_x, "cHRM Green X"),
png_fixed(png_ptr, green_y, "cHRM Green Y"),
png_fixed(png_ptr, blue_x, "cHRM Blue X"),
png_fixed(png_ptr, blue_y, "cHRM Blue Y"));
}
# endif /* PNG_FLOATING_POINT_SUPPORTED */
 
#endif /* PNG_cHRM_SUPPORTED */
 
#ifdef PNG_gAMA_SUPPORTED
void PNGFAPI
png_set_gAMA_fixed(png_structp png_ptr, png_infop info_ptr, png_fixed_point
file_gamma)
{
png_debug1(1, "in %s storage function", "gAMA");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* Previously these values were limited, however they must be
* wrong, therefore storing them (and setting PNG_INFO_gAMA)
* must be wrong too.
*/
if (file_gamma > (png_fixed_point)PNG_UINT_31_MAX)
png_warning(png_ptr, "Gamma too large, ignored");
 
else if (file_gamma <= 0)
png_warning(png_ptr, "Negative or zero gamma ignored");
 
else
{
info_ptr->gamma = file_gamma;
info_ptr->valid |= PNG_INFO_gAMA;
}
}
 
# ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_gAMA(png_structp png_ptr, png_infop info_ptr, double file_gamma)
{
png_set_gAMA_fixed(png_ptr, info_ptr, png_fixed(png_ptr, file_gamma,
"png_set_gAMA"));
}
# endif
#endif
 
#ifdef PNG_hIST_SUPPORTED
void PNGAPI
png_set_hIST(png_structp png_ptr, png_infop info_ptr, png_const_uint_16p hist)
{
int i;
 
png_debug1(1, "in %s storage function", "hIST");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (info_ptr->num_palette == 0 || info_ptr->num_palette
> PNG_MAX_PALETTE_LENGTH)
{
png_warning(png_ptr,
"Invalid palette size, hIST allocation skipped");
 
return;
}
 
png_free_data(png_ptr, info_ptr, PNG_FREE_HIST, 0);
 
/* Changed from info->num_palette to PNG_MAX_PALETTE_LENGTH in
* version 1.2.1
*/
png_ptr->hist = (png_uint_16p)png_malloc_warn(png_ptr,
PNG_MAX_PALETTE_LENGTH * png_sizeof(png_uint_16));
 
if (png_ptr->hist == NULL)
{
png_warning(png_ptr, "Insufficient memory for hIST chunk data");
return;
}
 
for (i = 0; i < info_ptr->num_palette; i++)
png_ptr->hist[i] = hist[i];
 
info_ptr->hist = png_ptr->hist;
info_ptr->valid |= PNG_INFO_hIST;
info_ptr->free_me |= PNG_FREE_HIST;
}
#endif
 
void PNGAPI
png_set_IHDR(png_structp png_ptr, png_infop info_ptr,
png_uint_32 width, png_uint_32 height, int bit_depth,
int color_type, int interlace_type, int compression_type,
int filter_type)
{
png_debug1(1, "in %s storage function", "IHDR");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->width = width;
info_ptr->height = height;
info_ptr->bit_depth = (png_byte)bit_depth;
info_ptr->color_type = (png_byte)color_type;
info_ptr->compression_type = (png_byte)compression_type;
info_ptr->filter_type = (png_byte)filter_type;
info_ptr->interlace_type = (png_byte)interlace_type;
 
png_check_IHDR (png_ptr, info_ptr->width, info_ptr->height,
info_ptr->bit_depth, info_ptr->color_type, info_ptr->interlace_type,
info_ptr->compression_type, info_ptr->filter_type);
 
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
info_ptr->channels = 1;
 
else if (info_ptr->color_type & PNG_COLOR_MASK_COLOR)
info_ptr->channels = 3;
 
else
info_ptr->channels = 1;
 
if (info_ptr->color_type & PNG_COLOR_MASK_ALPHA)
info_ptr->channels++;
 
info_ptr->pixel_depth = (png_byte)(info_ptr->channels * info_ptr->bit_depth);
 
/* Check for potential overflow */
if (width >
(PNG_UINT_32_MAX >> 3) /* 8-byte RRGGBBAA pixels */
- 48 /* bigrowbuf hack */
- 1 /* filter byte */
- 7*8 /* rounding of width to multiple of 8 pixels */
- 8) /* extra max_pixel_depth pad */
info_ptr->rowbytes = 0;
else
info_ptr->rowbytes = PNG_ROWBYTES(info_ptr->pixel_depth, width);
}
 
#ifdef PNG_oFFs_SUPPORTED
void PNGAPI
png_set_oFFs(png_structp png_ptr, png_infop info_ptr,
png_int_32 offset_x, png_int_32 offset_y, int unit_type)
{
png_debug1(1, "in %s storage function", "oFFs");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->x_offset = offset_x;
info_ptr->y_offset = offset_y;
info_ptr->offset_unit_type = (png_byte)unit_type;
info_ptr->valid |= PNG_INFO_oFFs;
}
#endif
 
#ifdef PNG_pCAL_SUPPORTED
void PNGAPI
png_set_pCAL(png_structp png_ptr, png_infop info_ptr,
png_const_charp purpose, png_int_32 X0, png_int_32 X1, int type,
int nparams, png_const_charp units, png_charpp params)
{
png_size_t length;
int i;
 
png_debug1(1, "in %s storage function", "pCAL");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
length = png_strlen(purpose) + 1;
png_debug1(3, "allocating purpose for info (%lu bytes)",
(unsigned long)length);
 
/* TODO: validate format of calibration name and unit name */
 
/* Check that the type matches the specification. */
if (type < 0 || type > 3)
png_error(png_ptr, "Invalid pCAL equation type");
 
/* Validate params[nparams] */
for (i=0; i<nparams; ++i)
if (!png_check_fp_string(params[i], png_strlen(params[i])))
png_error(png_ptr, "Invalid format for pCAL parameter");
 
info_ptr->pcal_purpose = (png_charp)png_malloc_warn(png_ptr, length);
 
if (info_ptr->pcal_purpose == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL purpose");
return;
}
 
png_memcpy(info_ptr->pcal_purpose, purpose, length);
 
png_debug(3, "storing X0, X1, type, and nparams in info");
info_ptr->pcal_X0 = X0;
info_ptr->pcal_X1 = X1;
info_ptr->pcal_type = (png_byte)type;
info_ptr->pcal_nparams = (png_byte)nparams;
 
length = png_strlen(units) + 1;
png_debug1(3, "allocating units for info (%lu bytes)",
(unsigned long)length);
 
info_ptr->pcal_units = (png_charp)png_malloc_warn(png_ptr, length);
 
if (info_ptr->pcal_units == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL units");
return;
}
 
png_memcpy(info_ptr->pcal_units, units, length);
 
info_ptr->pcal_params = (png_charpp)png_malloc_warn(png_ptr,
(png_size_t)((nparams + 1) * png_sizeof(png_charp)));
 
if (info_ptr->pcal_params == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL params");
return;
}
 
png_memset(info_ptr->pcal_params, 0, (nparams + 1) * png_sizeof(png_charp));
 
for (i = 0; i < nparams; i++)
{
length = png_strlen(params[i]) + 1;
png_debug2(3, "allocating parameter %d for info (%lu bytes)", i,
(unsigned long)length);
 
info_ptr->pcal_params[i] = (png_charp)png_malloc_warn(png_ptr, length);
 
if (info_ptr->pcal_params[i] == NULL)
{
png_warning(png_ptr, "Insufficient memory for pCAL parameter");
return;
}
 
png_memcpy(info_ptr->pcal_params[i], params[i], length);
}
 
info_ptr->valid |= PNG_INFO_pCAL;
info_ptr->free_me |= PNG_FREE_PCAL;
}
#endif
 
#ifdef PNG_sCAL_SUPPORTED
void PNGAPI
png_set_sCAL_s(png_structp png_ptr, png_infop info_ptr,
int unit, png_const_charp swidth, png_const_charp sheight)
{
png_size_t lengthw = 0, lengthh = 0;
 
png_debug1(1, "in %s storage function", "sCAL");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* Double check the unit (should never get here with an invalid
* unit unless this is an API call.)
*/
if (unit != 1 && unit != 2)
png_error(png_ptr, "Invalid sCAL unit");
 
if (swidth == NULL || (lengthw = png_strlen(swidth)) <= 0 ||
swidth[0] == 45 /*'-'*/ || !png_check_fp_string(swidth, lengthw))
png_error(png_ptr, "Invalid sCAL width");
 
if (sheight == NULL || (lengthh = png_strlen(sheight)) <= 0 ||
sheight[0] == 45 /*'-'*/ || !png_check_fp_string(sheight, lengthh))
png_error(png_ptr, "Invalid sCAL height");
 
info_ptr->scal_unit = (png_byte)unit;
 
++lengthw;
 
png_debug1(3, "allocating unit for info (%u bytes)", (unsigned int)lengthw);
 
info_ptr->scal_s_width = (png_charp)png_malloc_warn(png_ptr, lengthw);
 
if (info_ptr->scal_s_width == NULL)
{
png_warning(png_ptr, "Memory allocation failed while processing sCAL");
return;
}
 
png_memcpy(info_ptr->scal_s_width, swidth, lengthw);
 
++lengthh;
 
png_debug1(3, "allocating unit for info (%u bytes)", (unsigned int)lengthh);
 
info_ptr->scal_s_height = (png_charp)png_malloc_warn(png_ptr, lengthh);
 
if (info_ptr->scal_s_height == NULL)
{
png_free (png_ptr, info_ptr->scal_s_width);
info_ptr->scal_s_width = NULL;
 
png_warning(png_ptr, "Memory allocation failed while processing sCAL");
return;
}
 
png_memcpy(info_ptr->scal_s_height, sheight, lengthh);
 
info_ptr->valid |= PNG_INFO_sCAL;
info_ptr->free_me |= PNG_FREE_SCAL;
}
 
# ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_sCAL(png_structp png_ptr, png_infop info_ptr, int unit, double width,
double height)
{
png_debug1(1, "in %s storage function", "sCAL");
 
/* Check the arguments. */
if (width <= 0)
png_warning(png_ptr, "Invalid sCAL width ignored");
 
else if (height <= 0)
png_warning(png_ptr, "Invalid sCAL height ignored");
 
else
{
/* Convert 'width' and 'height' to ASCII. */
char swidth[PNG_sCAL_MAX_DIGITS+1];
char sheight[PNG_sCAL_MAX_DIGITS+1];
 
png_ascii_from_fp(png_ptr, swidth, sizeof swidth, width,
PNG_sCAL_PRECISION);
png_ascii_from_fp(png_ptr, sheight, sizeof sheight, height,
PNG_sCAL_PRECISION);
 
png_set_sCAL_s(png_ptr, info_ptr, unit, swidth, sheight);
}
}
# endif
 
# ifdef PNG_FIXED_POINT_SUPPORTED
void PNGAPI
png_set_sCAL_fixed(png_structp png_ptr, png_infop info_ptr, int unit,
png_fixed_point width, png_fixed_point height)
{
png_debug1(1, "in %s storage function", "sCAL");
 
/* Check the arguments. */
if (width <= 0)
png_warning(png_ptr, "Invalid sCAL width ignored");
 
else if (height <= 0)
png_warning(png_ptr, "Invalid sCAL height ignored");
 
else
{
/* Convert 'width' and 'height' to ASCII. */
char swidth[PNG_sCAL_MAX_DIGITS+1];
char sheight[PNG_sCAL_MAX_DIGITS+1];
 
png_ascii_from_fixed(png_ptr, swidth, sizeof swidth, width);
png_ascii_from_fixed(png_ptr, sheight, sizeof sheight, height);
 
png_set_sCAL_s(png_ptr, info_ptr, unit, swidth, sheight);
}
}
# endif
#endif
 
#ifdef PNG_pHYs_SUPPORTED
void PNGAPI
png_set_pHYs(png_structp png_ptr, png_infop info_ptr,
png_uint_32 res_x, png_uint_32 res_y, int unit_type)
{
png_debug1(1, "in %s storage function", "pHYs");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->x_pixels_per_unit = res_x;
info_ptr->y_pixels_per_unit = res_y;
info_ptr->phys_unit_type = (png_byte)unit_type;
info_ptr->valid |= PNG_INFO_pHYs;
}
#endif
 
void PNGAPI
png_set_PLTE(png_structp png_ptr, png_infop info_ptr,
png_const_colorp palette, int num_palette)
{
 
png_debug1(1, "in %s storage function", "PLTE");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (num_palette < 0 || num_palette > PNG_MAX_PALETTE_LENGTH)
{
if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
png_error(png_ptr, "Invalid palette length");
 
else
{
png_warning(png_ptr, "Invalid palette length");
return;
}
}
 
/* It may not actually be necessary to set png_ptr->palette here;
* we do it for backward compatibility with the way the png_handle_tRNS
* function used to do the allocation.
*/
png_free_data(png_ptr, info_ptr, PNG_FREE_PLTE, 0);
 
/* Changed in libpng-1.2.1 to allocate PNG_MAX_PALETTE_LENGTH instead
* of num_palette entries, in case of an invalid PNG file that has
* too-large sample values.
*/
png_ptr->palette = (png_colorp)png_calloc(png_ptr,
PNG_MAX_PALETTE_LENGTH * png_sizeof(png_color));
 
png_memcpy(png_ptr->palette, palette, num_palette * png_sizeof(png_color));
info_ptr->palette = png_ptr->palette;
info_ptr->num_palette = png_ptr->num_palette = (png_uint_16)num_palette;
 
info_ptr->free_me |= PNG_FREE_PLTE;
 
info_ptr->valid |= PNG_INFO_PLTE;
}
 
#ifdef PNG_sBIT_SUPPORTED
void PNGAPI
png_set_sBIT(png_structp png_ptr, png_infop info_ptr,
png_const_color_8p sig_bit)
{
png_debug1(1, "in %s storage function", "sBIT");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_memcpy(&(info_ptr->sig_bit), sig_bit, png_sizeof(png_color_8));
info_ptr->valid |= PNG_INFO_sBIT;
}
#endif
 
#ifdef PNG_sRGB_SUPPORTED
void PNGAPI
png_set_sRGB(png_structp png_ptr, png_infop info_ptr, int srgb_intent)
{
png_debug1(1, "in %s storage function", "sRGB");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
info_ptr->srgb_intent = (png_byte)srgb_intent;
info_ptr->valid |= PNG_INFO_sRGB;
}
 
void PNGAPI
png_set_sRGB_gAMA_and_cHRM(png_structp png_ptr, png_infop info_ptr,
int srgb_intent)
{
png_debug1(1, "in %s storage function", "sRGB_gAMA_and_cHRM");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_set_sRGB(png_ptr, info_ptr, srgb_intent);
 
# ifdef PNG_gAMA_SUPPORTED
png_set_gAMA_fixed(png_ptr, info_ptr, 45455L);
# endif
 
# ifdef PNG_cHRM_SUPPORTED
png_set_cHRM_fixed(png_ptr, info_ptr,
/* color x y */
/* white */ 31270L, 32900L,
/* red */ 64000L, 33000L,
/* green */ 30000L, 60000L,
/* blue */ 15000L, 6000L
);
# endif /* cHRM */
}
#endif /* sRGB */
 
 
#ifdef PNG_iCCP_SUPPORTED
void PNGAPI
png_set_iCCP(png_structp png_ptr, png_infop info_ptr,
png_const_charp name, int compression_type,
png_const_bytep profile, png_uint_32 proflen)
{
png_charp new_iccp_name;
png_bytep new_iccp_profile;
png_uint_32 length;
 
png_debug1(1, "in %s storage function", "iCCP");
 
if (png_ptr == NULL || info_ptr == NULL || name == NULL || profile == NULL)
return;
 
length = png_strlen(name)+1;
new_iccp_name = (png_charp)png_malloc_warn(png_ptr, length);
 
if (new_iccp_name == NULL)
{
png_warning(png_ptr, "Insufficient memory to process iCCP chunk");
return;
}
 
png_memcpy(new_iccp_name, name, length);
new_iccp_profile = (png_bytep)png_malloc_warn(png_ptr, proflen);
 
if (new_iccp_profile == NULL)
{
png_free (png_ptr, new_iccp_name);
png_warning(png_ptr,
"Insufficient memory to process iCCP profile");
return;
}
 
png_memcpy(new_iccp_profile, profile, (png_size_t)proflen);
 
png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, 0);
 
info_ptr->iccp_proflen = proflen;
info_ptr->iccp_name = new_iccp_name;
info_ptr->iccp_profile = new_iccp_profile;
/* Compression is always zero but is here so the API and info structure
* does not have to change if we introduce multiple compression types
*/
info_ptr->iccp_compression = (png_byte)compression_type;
info_ptr->free_me |= PNG_FREE_ICCP;
info_ptr->valid |= PNG_INFO_iCCP;
}
#endif
 
#ifdef PNG_TEXT_SUPPORTED
void PNGAPI
png_set_text(png_structp png_ptr, png_infop info_ptr, png_const_textp text_ptr,
int num_text)
{
int ret;
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, num_text);
 
if (ret)
png_error(png_ptr, "Insufficient memory to store text");
}
 
int /* PRIVATE */
png_set_text_2(png_structp png_ptr, png_infop info_ptr,
png_const_textp text_ptr, int num_text)
{
int i;
 
png_debug1(1, "in %s storage function", ((png_ptr == NULL ||
png_ptr->chunk_name[0] == '\0') ?
"text" : (png_const_charp)png_ptr->chunk_name));
 
if (png_ptr == NULL || info_ptr == NULL || num_text == 0)
return(0);
 
/* Make sure we have enough space in the "text" array in info_struct
* to hold all of the incoming text_ptr objects.
*/
if (info_ptr->num_text + num_text > info_ptr->max_text)
{
if (info_ptr->text != NULL)
{
png_textp old_text;
int old_max;
 
old_max = info_ptr->max_text;
info_ptr->max_text = info_ptr->num_text + num_text + 8;
old_text = info_ptr->text;
info_ptr->text = (png_textp)png_malloc_warn(png_ptr,
(png_size_t)(info_ptr->max_text * png_sizeof(png_text)));
 
if (info_ptr->text == NULL)
{
png_free(png_ptr, old_text);
return(1);
}
 
png_memcpy(info_ptr->text, old_text, (png_size_t)(old_max *
png_sizeof(png_text)));
png_free(png_ptr, old_text);
}
 
else
{
info_ptr->max_text = num_text + 8;
info_ptr->num_text = 0;
info_ptr->text = (png_textp)png_malloc_warn(png_ptr,
(png_size_t)(info_ptr->max_text * png_sizeof(png_text)));
if (info_ptr->text == NULL)
return(1);
info_ptr->free_me |= PNG_FREE_TEXT;
}
 
png_debug1(3, "allocated %d entries for info_ptr->text",
info_ptr->max_text);
}
for (i = 0; i < num_text; i++)
{
png_size_t text_length, key_len;
png_size_t lang_len, lang_key_len;
png_textp textp = &(info_ptr->text[info_ptr->num_text]);
 
if (text_ptr[i].key == NULL)
continue;
 
if (text_ptr[i].compression < PNG_TEXT_COMPRESSION_NONE ||
text_ptr[i].compression >= PNG_TEXT_COMPRESSION_LAST)
{
png_warning(png_ptr, "text compression mode is out of range");
continue;
}
 
key_len = png_strlen(text_ptr[i].key);
 
if (text_ptr[i].compression <= 0)
{
lang_len = 0;
lang_key_len = 0;
}
 
else
# ifdef PNG_iTXt_SUPPORTED
{
/* Set iTXt data */
 
if (text_ptr[i].lang != NULL)
lang_len = png_strlen(text_ptr[i].lang);
 
else
lang_len = 0;
 
if (text_ptr[i].lang_key != NULL)
lang_key_len = png_strlen(text_ptr[i].lang_key);
 
else
lang_key_len = 0;
}
# else /* PNG_iTXt_SUPPORTED */
{
png_warning(png_ptr, "iTXt chunk not supported");
continue;
}
# endif
 
if (text_ptr[i].text == NULL || text_ptr[i].text[0] == '\0')
{
text_length = 0;
# ifdef PNG_iTXt_SUPPORTED
if (text_ptr[i].compression > 0)
textp->compression = PNG_ITXT_COMPRESSION_NONE;
 
else
# endif
textp->compression = PNG_TEXT_COMPRESSION_NONE;
}
 
else
{
text_length = png_strlen(text_ptr[i].text);
textp->compression = text_ptr[i].compression;
}
 
textp->key = (png_charp)png_malloc_warn(png_ptr,
(png_size_t)
(key_len + text_length + lang_len + lang_key_len + 4));
 
if (textp->key == NULL)
return(1);
 
png_debug2(2, "Allocated %lu bytes at %p in png_set_text",
(unsigned long)(png_uint_32)
(key_len + lang_len + lang_key_len + text_length + 4),
textp->key);
 
png_memcpy(textp->key, text_ptr[i].key,(png_size_t)(key_len));
*(textp->key + key_len) = '\0';
 
if (text_ptr[i].compression > 0)
{
textp->lang = textp->key + key_len + 1;
png_memcpy(textp->lang, text_ptr[i].lang, lang_len);
*(textp->lang + lang_len) = '\0';
textp->lang_key = textp->lang + lang_len + 1;
png_memcpy(textp->lang_key, text_ptr[i].lang_key, lang_key_len);
*(textp->lang_key + lang_key_len) = '\0';
textp->text = textp->lang_key + lang_key_len + 1;
}
 
else
{
textp->lang=NULL;
textp->lang_key=NULL;
textp->text = textp->key + key_len + 1;
}
 
if (text_length)
png_memcpy(textp->text, text_ptr[i].text,
(png_size_t)(text_length));
 
*(textp->text + text_length) = '\0';
 
# ifdef PNG_iTXt_SUPPORTED
if (textp->compression > 0)
{
textp->text_length = 0;
textp->itxt_length = text_length;
}
 
else
# endif
{
textp->text_length = text_length;
textp->itxt_length = 0;
}
 
info_ptr->num_text++;
png_debug1(3, "transferred text chunk %d", info_ptr->num_text);
}
return(0);
}
#endif
 
#ifdef PNG_tIME_SUPPORTED
void PNGAPI
png_set_tIME(png_structp png_ptr, png_infop info_ptr, png_const_timep mod_time)
{
png_debug1(1, "in %s storage function", "tIME");
 
if (png_ptr == NULL || info_ptr == NULL ||
(png_ptr->mode & PNG_WROTE_tIME))
return;
 
png_memcpy(&(info_ptr->mod_time), mod_time, png_sizeof(png_time));
info_ptr->valid |= PNG_INFO_tIME;
}
#endif
 
#ifdef PNG_tRNS_SUPPORTED
void PNGAPI
png_set_tRNS(png_structp png_ptr, png_infop info_ptr,
png_const_bytep trans_alpha, int num_trans, png_const_color_16p trans_color)
{
png_debug1(1, "in %s storage function", "tRNS");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (trans_alpha != NULL)
{
/* It may not actually be necessary to set png_ptr->trans_alpha here;
* we do it for backward compatibility with the way the png_handle_tRNS
* function used to do the allocation.
*/
 
png_free_data(png_ptr, info_ptr, PNG_FREE_TRNS, 0);
 
/* Changed from num_trans to PNG_MAX_PALETTE_LENGTH in version 1.2.1 */
png_ptr->trans_alpha = info_ptr->trans_alpha =
(png_bytep)png_malloc(png_ptr, (png_size_t)PNG_MAX_PALETTE_LENGTH);
 
if (num_trans > 0 && num_trans <= PNG_MAX_PALETTE_LENGTH)
png_memcpy(info_ptr->trans_alpha, trans_alpha, (png_size_t)num_trans);
}
 
if (trans_color != NULL)
{
int sample_max = (1 << info_ptr->bit_depth);
 
if ((info_ptr->color_type == PNG_COLOR_TYPE_GRAY &&
(int)trans_color->gray > sample_max) ||
(info_ptr->color_type == PNG_COLOR_TYPE_RGB &&
((int)trans_color->red > sample_max ||
(int)trans_color->green > sample_max ||
(int)trans_color->blue > sample_max)))
png_warning(png_ptr,
"tRNS chunk has out-of-range samples for bit_depth");
 
png_memcpy(&(info_ptr->trans_color), trans_color,
png_sizeof(png_color_16));
 
if (num_trans == 0)
num_trans = 1;
}
 
info_ptr->num_trans = (png_uint_16)num_trans;
 
if (num_trans != 0)
{
info_ptr->valid |= PNG_INFO_tRNS;
info_ptr->free_me |= PNG_FREE_TRNS;
}
}
#endif
 
#ifdef PNG_sPLT_SUPPORTED
void PNGAPI
png_set_sPLT(png_structp png_ptr,
png_infop info_ptr, png_const_sPLT_tp entries, int nentries)
/*
* entries - array of png_sPLT_t structures
* to be added to the list of palettes
* in the info structure.
*
* nentries - number of palette structures to be
* added.
*/
{
png_sPLT_tp np;
int i;
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
np = (png_sPLT_tp)png_malloc_warn(png_ptr,
(info_ptr->splt_palettes_num + nentries) *
(png_size_t)png_sizeof(png_sPLT_t));
 
if (np == NULL)
{
png_warning(png_ptr, "No memory for sPLT palettes");
return;
}
 
png_memcpy(np, info_ptr->splt_palettes,
info_ptr->splt_palettes_num * png_sizeof(png_sPLT_t));
 
png_free(png_ptr, info_ptr->splt_palettes);
info_ptr->splt_palettes=NULL;
 
for (i = 0; i < nentries; i++)
{
png_sPLT_tp to = np + info_ptr->splt_palettes_num + i;
png_const_sPLT_tp from = entries + i;
png_uint_32 length;
 
length = png_strlen(from->name) + 1;
to->name = (png_charp)png_malloc_warn(png_ptr, (png_size_t)length);
 
if (to->name == NULL)
{
png_warning(png_ptr,
"Out of memory while processing sPLT chunk");
continue;
}
 
png_memcpy(to->name, from->name, length);
to->entries = (png_sPLT_entryp)png_malloc_warn(png_ptr,
(png_size_t)(from->nentries * png_sizeof(png_sPLT_entry)));
 
if (to->entries == NULL)
{
png_warning(png_ptr,
"Out of memory while processing sPLT chunk");
png_free(png_ptr, to->name);
to->name = NULL;
continue;
}
 
png_memcpy(to->entries, from->entries,
from->nentries * png_sizeof(png_sPLT_entry));
 
to->nentries = from->nentries;
to->depth = from->depth;
}
 
info_ptr->splt_palettes = np;
info_ptr->splt_palettes_num += nentries;
info_ptr->valid |= PNG_INFO_sPLT;
info_ptr->free_me |= PNG_FREE_SPLT;
}
#endif /* PNG_sPLT_SUPPORTED */
 
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
void PNGAPI
png_set_unknown_chunks(png_structp png_ptr,
png_infop info_ptr, png_const_unknown_chunkp unknowns, int num_unknowns)
{
png_unknown_chunkp np;
int i;
 
if (png_ptr == NULL || info_ptr == NULL || num_unknowns == 0)
return;
 
np = (png_unknown_chunkp)png_malloc_warn(png_ptr,
(png_size_t)(info_ptr->unknown_chunks_num + num_unknowns) *
png_sizeof(png_unknown_chunk));
 
if (np == NULL)
{
png_warning(png_ptr,
"Out of memory while processing unknown chunk");
return;
}
 
png_memcpy(np, info_ptr->unknown_chunks,
(png_size_t)info_ptr->unknown_chunks_num *
png_sizeof(png_unknown_chunk));
 
png_free(png_ptr, info_ptr->unknown_chunks);
info_ptr->unknown_chunks = NULL;
 
for (i = 0; i < num_unknowns; i++)
{
png_unknown_chunkp to = np + info_ptr->unknown_chunks_num + i;
png_const_unknown_chunkp from = unknowns + i;
 
png_memcpy(to->name, from->name, png_sizeof(from->name));
to->name[png_sizeof(to->name)-1] = '\0';
to->size = from->size;
 
/* Note our location in the read or write sequence */
to->location = (png_byte)(png_ptr->mode & 0xff);
 
if (from->size == 0)
to->data=NULL;
 
else
{
to->data = (png_bytep)png_malloc_warn(png_ptr,
(png_size_t)from->size);
 
if (to->data == NULL)
{
png_warning(png_ptr,
"Out of memory while processing unknown chunk");
to->size = 0;
}
 
else
png_memcpy(to->data, from->data, from->size);
}
}
 
info_ptr->unknown_chunks = np;
info_ptr->unknown_chunks_num += num_unknowns;
info_ptr->free_me |= PNG_FREE_UNKN;
}
 
void PNGAPI
png_set_unknown_chunk_location(png_structp png_ptr, png_infop info_ptr,
int chunk, int location)
{
if (png_ptr != NULL && info_ptr != NULL && chunk >= 0 && chunk <
info_ptr->unknown_chunks_num)
info_ptr->unknown_chunks[chunk].location = (png_byte)location;
}
#endif
 
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
png_uint_32 PNGAPI
png_permit_mng_features (png_structp png_ptr, png_uint_32 mng_features)
{
png_debug(1, "in png_permit_mng_features");
 
if (png_ptr == NULL)
return (png_uint_32)0;
 
png_ptr->mng_features_permitted =
(png_byte)(mng_features & PNG_ALL_MNG_FEATURES);
 
return (png_uint_32)png_ptr->mng_features_permitted;
}
#endif
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
void PNGAPI
png_set_keep_unknown_chunks(png_structp png_ptr, int keep, png_const_bytep
chunk_list, int num_chunks)
{
png_bytep new_list, p;
int i, old_num_chunks;
if (png_ptr == NULL)
return;
 
if (num_chunks == 0)
{
if (keep == PNG_HANDLE_CHUNK_ALWAYS || keep == PNG_HANDLE_CHUNK_IF_SAFE)
png_ptr->flags |= PNG_FLAG_KEEP_UNKNOWN_CHUNKS;
 
else
png_ptr->flags &= ~PNG_FLAG_KEEP_UNKNOWN_CHUNKS;
 
if (keep == PNG_HANDLE_CHUNK_ALWAYS)
png_ptr->flags |= PNG_FLAG_KEEP_UNSAFE_CHUNKS;
 
else
png_ptr->flags &= ~PNG_FLAG_KEEP_UNSAFE_CHUNKS;
 
return;
}
 
if (chunk_list == NULL)
return;
 
old_num_chunks = png_ptr->num_chunk_list;
new_list=(png_bytep)png_malloc(png_ptr,
(png_size_t)(5*(num_chunks + old_num_chunks)));
 
if (png_ptr->chunk_list != NULL)
{
png_memcpy(new_list, png_ptr->chunk_list,
(png_size_t)(5*old_num_chunks));
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->chunk_list=NULL;
}
 
png_memcpy(new_list + 5*old_num_chunks, chunk_list,
(png_size_t)(5*num_chunks));
 
for (p = new_list + 5*old_num_chunks + 4, i = 0; i<num_chunks; i++, p += 5)
*p=(png_byte)keep;
 
png_ptr->num_chunk_list = old_num_chunks + num_chunks;
png_ptr->chunk_list = new_list;
png_ptr->free_me |= PNG_FREE_LIST;
}
#endif
 
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
void PNGAPI
png_set_read_user_chunk_fn(png_structp png_ptr, png_voidp user_chunk_ptr,
png_user_chunk_ptr read_user_chunk_fn)
{
png_debug(1, "in png_set_read_user_chunk_fn");
 
if (png_ptr == NULL)
return;
 
png_ptr->read_user_chunk_fn = read_user_chunk_fn;
png_ptr->user_chunk_ptr = user_chunk_ptr;
}
#endif
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
void PNGAPI
png_set_rows(png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers)
{
png_debug1(1, "in %s storage function", "rows");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (info_ptr->row_pointers && (info_ptr->row_pointers != row_pointers))
png_free_data(png_ptr, info_ptr, PNG_FREE_ROWS, 0);
 
info_ptr->row_pointers = row_pointers;
 
if (row_pointers)
info_ptr->valid |= PNG_INFO_IDAT;
}
#endif
 
void PNGAPI
png_set_compression_buffer_size(png_structp png_ptr, png_size_t size)
{
if (png_ptr == NULL)
return;
 
png_free(png_ptr, png_ptr->zbuf);
 
if (size > ZLIB_IO_MAX)
{
png_warning(png_ptr, "Attempt to set buffer size beyond max ignored");
png_ptr->zbuf_size = ZLIB_IO_MAX;
size = ZLIB_IO_MAX; /* must fit */
}
 
else
png_ptr->zbuf_size = (uInt)size;
 
png_ptr->zbuf = (png_bytep)png_malloc(png_ptr, size);
 
/* The following ensures a relatively safe failure if this gets called while
* the buffer is actually in use.
*/
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = 0;
png_ptr->zstream.avail_in = 0;
}
 
void PNGAPI
png_set_invalid(png_structp png_ptr, png_infop info_ptr, int mask)
{
if (png_ptr && info_ptr)
info_ptr->valid &= ~mask;
}
 
 
 
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
/* This function was added to libpng 1.2.6 */
void PNGAPI
png_set_user_limits (png_structp png_ptr, png_uint_32 user_width_max,
png_uint_32 user_height_max)
{
/* Images with dimensions larger than these limits will be
* rejected by png_set_IHDR(). To accept any PNG datastream
* regardless of dimensions, set both limits to 0x7ffffffL.
*/
if (png_ptr == NULL)
return;
 
png_ptr->user_width_max = user_width_max;
png_ptr->user_height_max = user_height_max;
}
 
/* This function was added to libpng 1.4.0 */
void PNGAPI
png_set_chunk_cache_max (png_structp png_ptr,
png_uint_32 user_chunk_cache_max)
{
if (png_ptr)
png_ptr->user_chunk_cache_max = user_chunk_cache_max;
}
 
/* This function was added to libpng 1.4.1 */
void PNGAPI
png_set_chunk_malloc_max (png_structp png_ptr,
png_alloc_size_t user_chunk_malloc_max)
{
if (png_ptr)
png_ptr->user_chunk_malloc_max = user_chunk_malloc_max;
}
#endif /* ?PNG_SET_USER_LIMITS_SUPPORTED */
 
 
#ifdef PNG_BENIGN_ERRORS_SUPPORTED
void PNGAPI
png_set_benign_errors(png_structp png_ptr, int allowed)
{
png_debug(1, "in png_set_benign_errors");
 
if (allowed)
png_ptr->flags |= PNG_FLAG_BENIGN_ERRORS_WARN;
 
else
png_ptr->flags &= ~PNG_FLAG_BENIGN_ERRORS_WARN;
}
#endif /* PNG_BENIGN_ERRORS_SUPPORTED */
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngstruct.h
0,0 → 1,308
 
/* pngstruct.h - header file for PNG reference library
*
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* Last changed in libpng 1.5.0 [January 6, 2011]
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
/* The structure that holds the information to read and write PNG files.
* The only people who need to care about what is inside of this are the
* people who will be modifying the library for their own special needs.
* It should NOT be accessed directly by an application.
*/
 
#ifndef PNGSTRUCT_H
#define PNGSTRUCT_H
/* zlib.h defines the structure z_stream, an instance of which is included
* in this structure and is required for decompressing the LZ compressed
* data in PNG files.
*/
#include "zlib.h"
 
struct png_struct_def
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf png_jmpbuf; /* used in png_error */
png_longjmp_ptr longjmp_fn;/* setjmp non-local goto function. */
#endif
png_error_ptr error_fn; /* function for printing errors and aborting */
png_error_ptr warning_fn; /* function for printing warnings */
png_voidp error_ptr; /* user supplied struct for error functions */
png_rw_ptr write_data_fn; /* function for writing output data */
png_rw_ptr read_data_fn; /* function for reading input data */
png_voidp io_ptr; /* ptr to application struct for I/O functions */
 
#ifdef PNG_READ_USER_TRANSFORM_SUPPORTED
png_user_transform_ptr read_user_transform_fn; /* user read transform */
#endif
 
#ifdef PNG_WRITE_USER_TRANSFORM_SUPPORTED
png_user_transform_ptr write_user_transform_fn; /* user write transform */
#endif
 
/* These were added in libpng-1.0.2 */
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
png_voidp user_transform_ptr; /* user supplied struct for user transform */
png_byte user_transform_depth; /* bit depth of user transformed pixels */
png_byte user_transform_channels; /* channels in user transformed pixels */
#endif
#endif
 
png_uint_32 mode; /* tells us where we are in the PNG file */
png_uint_32 flags; /* flags indicating various things to libpng */
png_uint_32 transformations; /* which transformations to perform */
 
z_stream zstream; /* pointer to decompression structure (below) */
png_bytep zbuf; /* buffer for zlib */
uInt zbuf_size; /* size of zbuf (typically 65536) */
int zlib_level; /* holds zlib compression level */
int zlib_method; /* holds zlib compression method */
int zlib_window_bits; /* holds zlib compression window bits */
int zlib_mem_level; /* holds zlib compression memory level */
int zlib_strategy; /* holds zlib compression strategy */
 
png_uint_32 width; /* width of image in pixels */
png_uint_32 height; /* height of image in pixels */
png_uint_32 num_rows; /* number of rows in current pass */
png_uint_32 usr_width; /* width of row at start of write */
png_size_t rowbytes; /* size of row in bytes */
png_uint_32 iwidth; /* width of current interlaced row in pixels */
png_uint_32 row_number; /* current row in interlace pass */
png_bytep prev_row; /* buffer to save previous (unfiltered) row */
png_bytep row_buf; /* buffer to save current (unfiltered) row */
png_bytep sub_row; /* buffer to save "sub" row when filtering */
png_bytep up_row; /* buffer to save "up" row when filtering */
png_bytep avg_row; /* buffer to save "avg" row when filtering */
png_bytep paeth_row; /* buffer to save "Paeth" row when filtering */
png_row_info row_info; /* used for transformation routines */
 
png_uint_32 idat_size; /* current IDAT size for read */
png_uint_32 crc; /* current chunk CRC value */
png_colorp palette; /* palette from the input file */
png_uint_16 num_palette; /* number of color entries in palette */
png_uint_16 num_trans; /* number of transparency values */
png_byte chunk_name[5]; /* null-terminated name of current chunk */
png_byte compression; /* file compression type (always 0) */
png_byte filter; /* file filter type (always 0) */
png_byte interlaced; /* PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */
png_byte pass; /* current interlace pass (0 - 6) */
png_byte do_filter; /* row filter flags (see PNG_FILTER_ below ) */
png_byte color_type; /* color type of file */
png_byte bit_depth; /* bit depth of file */
png_byte usr_bit_depth; /* bit depth of users row */
png_byte pixel_depth; /* number of bits per pixel */
png_byte channels; /* number of channels in file */
png_byte usr_channels; /* channels at start of write */
png_byte sig_bytes; /* magic bytes read/written from start of file */
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
png_uint_16 filler; /* filler bytes for pixel expansion */
#endif
 
#ifdef PNG_bKGD_SUPPORTED
png_byte background_gamma_type;
png_fixed_point background_gamma;
png_color_16 background; /* background color in screen gamma space */
#ifdef PNG_READ_GAMMA_SUPPORTED
png_color_16 background_1; /* background normalized to gamma 1.0 */
#endif
#endif /* PNG_bKGD_SUPPORTED */
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
png_flush_ptr output_flush_fn; /* Function for flushing output */
png_uint_32 flush_dist; /* how many rows apart to flush, 0 - no flush */
png_uint_32 flush_rows; /* number of rows written since last flush */
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
int gamma_shift; /* number of "insignificant" bits in 16-bit gamma */
png_fixed_point gamma; /* file gamma value */
png_fixed_point screen_gamma; /* screen gamma value (display_exponent) */
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
png_bytep gamma_table; /* gamma table for 8-bit depth files */
png_bytep gamma_from_1; /* converts from 1.0 to screen */
png_bytep gamma_to_1; /* converts from file to 1.0 */
png_uint_16pp gamma_16_table; /* gamma table for 16-bit depth files */
png_uint_16pp gamma_16_from_1; /* converts from 1.0 to screen */
png_uint_16pp gamma_16_to_1; /* converts from file to 1.0 */
#endif
 
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_sBIT_SUPPORTED)
png_color_8 sig_bit; /* significant bits in each available channel */
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
png_color_8 shift; /* shift for significant bit tranformation */
#endif
 
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) \
|| defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED)
png_bytep trans_alpha; /* alpha values for paletted files */
png_color_16 trans_color; /* transparent color for non-paletted files */
#endif
 
png_read_status_ptr read_row_fn; /* called after each row is decoded */
png_write_status_ptr write_row_fn; /* called after each row is encoded */
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED
png_progressive_info_ptr info_fn; /* called after header data fully read */
png_progressive_row_ptr row_fn; /* called after a prog. row is decoded */
png_progressive_end_ptr end_fn; /* called after image is complete */
png_bytep save_buffer_ptr; /* current location in save_buffer */
png_bytep save_buffer; /* buffer for previously read data */
png_bytep current_buffer_ptr; /* current location in current_buffer */
png_bytep current_buffer; /* buffer for recently used data */
png_uint_32 push_length; /* size of current input chunk */
png_uint_32 skip_length; /* bytes to skip in input data */
png_size_t save_buffer_size; /* amount of data now in save_buffer */
png_size_t save_buffer_max; /* total size of save_buffer */
png_size_t buffer_size; /* total amount of available input data */
png_size_t current_buffer_size; /* amount of data now in current_buffer */
int process_mode; /* what push library is currently doing */
int cur_palette; /* current push library palette index */
 
# ifdef PNG_TEXT_SUPPORTED
png_size_t current_text_size; /* current size of text input data */
png_size_t current_text_left; /* how much text left to read in input */
png_charp current_text; /* current text chunk buffer */
png_charp current_text_ptr; /* current location in current_text */
# endif /* PNG_PROGRESSIVE_READ_SUPPORTED && PNG_TEXT_SUPPORTED */
 
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */
 
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__)
/* For the Borland special 64K segment handler */
png_bytepp offset_table_ptr;
png_bytep offset_table;
png_uint_16 offset_table_number;
png_uint_16 offset_table_count;
png_uint_16 offset_table_count_free;
#endif
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
png_bytep palette_lookup; /* lookup table for quantizing */
png_bytep quantize_index; /* index translation for palette files */
#endif
 
#if defined(PNG_READ_QUANTIZE_SUPPORTED) || defined(PNG_hIST_SUPPORTED)
png_uint_16p hist; /* histogram */
#endif
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
png_byte heuristic_method; /* heuristic for row filter selection */
png_byte num_prev_filters; /* number of weights for previous rows */
png_bytep prev_filters; /* filter type(s) of previous row(s) */
png_uint_16p filter_weights; /* weight(s) for previous line(s) */
png_uint_16p inv_filter_weights; /* 1/weight(s) for previous line(s) */
png_uint_16p filter_costs; /* relative filter calculation cost */
png_uint_16p inv_filter_costs; /* 1/relative filter calculation cost */
#endif
 
#ifdef PNG_TIME_RFC1123_SUPPORTED
png_charp time_buffer; /* String to hold RFC 1123 time text */
#endif
 
/* New members added in libpng-1.0.6 */
 
png_uint_32 free_me; /* flags items libpng is responsible for freeing */
 
#ifdef PNG_USER_CHUNKS_SUPPORTED
png_voidp user_chunk_ptr;
png_user_chunk_ptr read_user_chunk_fn; /* user read chunk handler */
#endif
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
int num_chunk_list;
png_bytep chunk_list;
#endif
 
/* New members added in libpng-1.0.3 */
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
png_byte rgb_to_gray_status;
/* These were changed from png_byte in libpng-1.0.6 */
png_uint_16 rgb_to_gray_red_coeff;
png_uint_16 rgb_to_gray_green_coeff;
png_uint_16 rgb_to_gray_blue_coeff;
#endif
 
/* New member added in libpng-1.0.4 (renamed in 1.0.9) */
#if defined(PNG_MNG_FEATURES_SUPPORTED) || \
defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \
defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED)
/* Changed from png_byte to png_uint_32 at version 1.2.0 */
png_uint_32 mng_features_permitted;
#endif
 
/* New member added in libpng-1.0.9, ifdef'ed out in 1.0.12, enabled in 1.2.0 */
#ifdef PNG_MNG_FEATURES_SUPPORTED
png_byte filter_type;
#endif
 
/* New members added in libpng-1.2.0 */
 
/* New members added in libpng-1.0.2 but first enabled by default in 1.2.0 */
#ifdef PNG_USER_MEM_SUPPORTED
png_voidp mem_ptr; /* user supplied struct for mem functions */
png_malloc_ptr malloc_fn; /* function for allocating memory */
png_free_ptr free_fn; /* function for freeing memory */
#endif
 
/* New member added in libpng-1.0.13 and 1.2.0 */
png_bytep big_row_buf; /* buffer to save current (unfiltered) row */
 
#ifdef PNG_READ_QUANTIZE_SUPPORTED
/* The following three members were added at version 1.0.14 and 1.2.4 */
png_bytep quantize_sort; /* working sort array */
png_bytep index_to_palette; /* where the original index currently is
in the palette */
png_bytep palette_to_index; /* which original index points to this
palette color */
#endif
 
/* New members added in libpng-1.0.16 and 1.2.6 */
png_byte compression_type;
 
#ifdef PNG_USER_LIMITS_SUPPORTED
png_uint_32 user_width_max;
png_uint_32 user_height_max;
 
/* Added in libpng-1.4.0: Total number of sPLT, text, and unknown
* chunks that can be stored (0 means unlimited).
*/
png_uint_32 user_chunk_cache_max;
 
/* Total memory that a zTXt, sPLT, iTXt, iCCP, or unknown chunk
* can occupy when decompressed. 0 means unlimited.
*/
png_alloc_size_t user_chunk_malloc_max;
#endif
 
/* New member added in libpng-1.0.25 and 1.2.17 */
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
/* Storage for unknown chunk that the library doesn't recognize. */
png_unknown_chunk unknown_chunk;
#endif
 
/* New members added in libpng-1.2.26 */
png_size_t old_big_row_buf_size;
png_size_t old_prev_row_size;
 
/* New member added in libpng-1.2.30 */
png_charp chunkdata; /* buffer for reading chunk data */
 
#ifdef PNG_IO_STATE_SUPPORTED
/* New member added in libpng-1.4.0 */
png_uint_32 io_state;
#endif
};
#endif /* PNGSTRUCT_H */
/programs/develop/libraries/libpng/pngtrans.c
0,0 → 1,723
 
/* pngtrans.c - transforms the data in a row (used by both readers and writers)
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* Turn on BGR-to-RGB mapping */
void PNGAPI
png_set_bgr(png_structp png_ptr)
{
png_debug(1, "in png_set_bgr");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_BGR;
}
#endif
 
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* Turn on 16 bit byte swapping */
void PNGAPI
png_set_swap(png_structp png_ptr)
{
png_debug(1, "in png_set_swap");
 
if (png_ptr == NULL)
return;
 
if (png_ptr->bit_depth == 16)
png_ptr->transformations |= PNG_SWAP_BYTES;
}
#endif
 
#if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED)
/* Turn on pixel packing */
void PNGAPI
png_set_packing(png_structp png_ptr)
{
png_debug(1, "in png_set_packing");
 
if (png_ptr == NULL)
return;
 
if (png_ptr->bit_depth < 8)
{
png_ptr->transformations |= PNG_PACK;
png_ptr->usr_bit_depth = 8;
}
}
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED)
/* Turn on packed pixel swapping */
void PNGAPI
png_set_packswap(png_structp png_ptr)
{
png_debug(1, "in png_set_packswap");
 
if (png_ptr == NULL)
return;
 
if (png_ptr->bit_depth < 8)
png_ptr->transformations |= PNG_PACKSWAP;
}
#endif
 
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED)
void PNGAPI
png_set_shift(png_structp png_ptr, png_const_color_8p true_bits)
{
png_debug(1, "in png_set_shift");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_SHIFT;
png_ptr->shift = *true_bits;
}
#endif
 
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \
defined(PNG_WRITE_INTERLACING_SUPPORTED)
int PNGAPI
png_set_interlace_handling(png_structp png_ptr)
{
png_debug(1, "in png_set_interlace handling");
 
if (png_ptr && png_ptr->interlaced)
{
png_ptr->transformations |= PNG_INTERLACE;
return (7);
}
 
return (1);
}
#endif
 
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED)
/* Add a filler byte on read, or remove a filler or alpha byte on write.
* The filler type has changed in v0.95 to allow future 2-byte fillers
* for 48-bit input data, as well as to avoid problems with some compilers
* that don't like bytes as parameters.
*/
void PNGAPI
png_set_filler(png_structp png_ptr, png_uint_32 filler, int filler_loc)
{
png_debug(1, "in png_set_filler");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_FILLER;
png_ptr->filler = (png_uint_16)filler;
 
if (filler_loc == PNG_FILLER_AFTER)
png_ptr->flags |= PNG_FLAG_FILLER_AFTER;
 
else
png_ptr->flags &= ~PNG_FLAG_FILLER_AFTER;
 
/* This should probably go in the "do_read_filler" routine.
* I attempted to do that in libpng-1.0.1a but that caused problems
* so I restored it in libpng-1.0.2a
*/
 
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
{
png_ptr->usr_channels = 4;
}
 
/* Also I added this in libpng-1.0.2a (what happens when we expand
* a less-than-8-bit grayscale to GA?) */
 
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY && png_ptr->bit_depth >= 8)
{
png_ptr->usr_channels = 2;
}
}
 
/* Added to libpng-1.2.7 */
void PNGAPI
png_set_add_alpha(png_structp png_ptr, png_uint_32 filler, int filler_loc)
{
png_debug(1, "in png_set_add_alpha");
 
if (png_ptr == NULL)
return;
 
png_set_filler(png_ptr, filler, filler_loc);
png_ptr->transformations |= PNG_ADD_ALPHA;
}
 
#endif
 
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED)
void PNGAPI
png_set_swap_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_swap_alpha");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_SWAP_ALPHA;
}
#endif
 
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \
defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED)
void PNGAPI
png_set_invert_alpha(png_structp png_ptr)
{
png_debug(1, "in png_set_invert_alpha");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_INVERT_ALPHA;
}
#endif
 
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED)
void PNGAPI
png_set_invert_mono(png_structp png_ptr)
{
png_debug(1, "in png_set_invert_mono");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_INVERT_MONO;
}
 
/* Invert monochrome grayscale data */
void /* PRIVATE */
png_do_invert(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_invert");
 
/* This test removed from libpng version 1.0.13 and 1.2.0:
* if (row_info->bit_depth == 1 &&
*/
if (row_info->color_type == PNG_COLOR_TYPE_GRAY)
{
png_bytep rp = row;
png_size_t i;
png_size_t istop = row_info->rowbytes;
 
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(~(*rp));
rp++;
}
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
row_info->bit_depth == 8)
{
png_bytep rp = row;
png_size_t i;
png_size_t istop = row_info->rowbytes;
 
for (i = 0; i < istop; i += 2)
{
*rp = (png_byte)(~(*rp));
rp += 2;
}
}
 
#ifdef PNG_16BIT_SUPPORTED
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
row_info->bit_depth == 16)
{
png_bytep rp = row;
png_size_t i;
png_size_t istop = row_info->rowbytes;
 
for (i = 0; i < istop; i += 4)
{
*rp = (png_byte)(~(*rp));
*(rp + 1) = (png_byte)(~(*(rp + 1)));
rp += 4;
}
}
#endif
}
#endif
 
#ifdef PNG_16BIT_SUPPORTED
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED)
/* Swaps byte order on 16 bit depth images */
void /* PRIVATE */
png_do_swap(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_swap");
 
if (row_info->bit_depth == 16)
{
png_bytep rp = row;
png_uint_32 i;
png_uint_32 istop= row_info->width * row_info->channels;
 
for (i = 0; i < istop; i++, rp += 2)
{
png_byte t = *rp;
*rp = *(rp + 1);
*(rp + 1) = t;
}
}
}
#endif
#endif
 
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED)
static PNG_CONST png_byte onebppswaptable[256] = {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
 
static PNG_CONST png_byte twobppswaptable[256] = {
0x00, 0x40, 0x80, 0xC0, 0x10, 0x50, 0x90, 0xD0,
0x20, 0x60, 0xA0, 0xE0, 0x30, 0x70, 0xB0, 0xF0,
0x04, 0x44, 0x84, 0xC4, 0x14, 0x54, 0x94, 0xD4,
0x24, 0x64, 0xA4, 0xE4, 0x34, 0x74, 0xB4, 0xF4,
0x08, 0x48, 0x88, 0xC8, 0x18, 0x58, 0x98, 0xD8,
0x28, 0x68, 0xA8, 0xE8, 0x38, 0x78, 0xB8, 0xF8,
0x0C, 0x4C, 0x8C, 0xCC, 0x1C, 0x5C, 0x9C, 0xDC,
0x2C, 0x6C, 0xAC, 0xEC, 0x3C, 0x7C, 0xBC, 0xFC,
0x01, 0x41, 0x81, 0xC1, 0x11, 0x51, 0x91, 0xD1,
0x21, 0x61, 0xA1, 0xE1, 0x31, 0x71, 0xB1, 0xF1,
0x05, 0x45, 0x85, 0xC5, 0x15, 0x55, 0x95, 0xD5,
0x25, 0x65, 0xA5, 0xE5, 0x35, 0x75, 0xB5, 0xF5,
0x09, 0x49, 0x89, 0xC9, 0x19, 0x59, 0x99, 0xD9,
0x29, 0x69, 0xA9, 0xE9, 0x39, 0x79, 0xB9, 0xF9,
0x0D, 0x4D, 0x8D, 0xCD, 0x1D, 0x5D, 0x9D, 0xDD,
0x2D, 0x6D, 0xAD, 0xED, 0x3D, 0x7D, 0xBD, 0xFD,
0x02, 0x42, 0x82, 0xC2, 0x12, 0x52, 0x92, 0xD2,
0x22, 0x62, 0xA2, 0xE2, 0x32, 0x72, 0xB2, 0xF2,
0x06, 0x46, 0x86, 0xC6, 0x16, 0x56, 0x96, 0xD6,
0x26, 0x66, 0xA6, 0xE6, 0x36, 0x76, 0xB6, 0xF6,
0x0A, 0x4A, 0x8A, 0xCA, 0x1A, 0x5A, 0x9A, 0xDA,
0x2A, 0x6A, 0xAA, 0xEA, 0x3A, 0x7A, 0xBA, 0xFA,
0x0E, 0x4E, 0x8E, 0xCE, 0x1E, 0x5E, 0x9E, 0xDE,
0x2E, 0x6E, 0xAE, 0xEE, 0x3E, 0x7E, 0xBE, 0xFE,
0x03, 0x43, 0x83, 0xC3, 0x13, 0x53, 0x93, 0xD3,
0x23, 0x63, 0xA3, 0xE3, 0x33, 0x73, 0xB3, 0xF3,
0x07, 0x47, 0x87, 0xC7, 0x17, 0x57, 0x97, 0xD7,
0x27, 0x67, 0xA7, 0xE7, 0x37, 0x77, 0xB7, 0xF7,
0x0B, 0x4B, 0x8B, 0xCB, 0x1B, 0x5B, 0x9B, 0xDB,
0x2B, 0x6B, 0xAB, 0xEB, 0x3B, 0x7B, 0xBB, 0xFB,
0x0F, 0x4F, 0x8F, 0xCF, 0x1F, 0x5F, 0x9F, 0xDF,
0x2F, 0x6F, 0xAF, 0xEF, 0x3F, 0x7F, 0xBF, 0xFF
};
 
static PNG_CONST png_byte fourbppswaptable[256] = {
0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70,
0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0,
0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71,
0x81, 0x91, 0xA1, 0xB1, 0xC1, 0xD1, 0xE1, 0xF1,
0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72,
0x82, 0x92, 0xA2, 0xB2, 0xC2, 0xD2, 0xE2, 0xF2,
0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73,
0x83, 0x93, 0xA3, 0xB3, 0xC3, 0xD3, 0xE3, 0xF3,
0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74,
0x84, 0x94, 0xA4, 0xB4, 0xC4, 0xD4, 0xE4, 0xF4,
0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75,
0x85, 0x95, 0xA5, 0xB5, 0xC5, 0xD5, 0xE5, 0xF5,
0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76,
0x86, 0x96, 0xA6, 0xB6, 0xC6, 0xD6, 0xE6, 0xF6,
0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77,
0x87, 0x97, 0xA7, 0xB7, 0xC7, 0xD7, 0xE7, 0xF7,
0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78,
0x88, 0x98, 0xA8, 0xB8, 0xC8, 0xD8, 0xE8, 0xF8,
0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79,
0x89, 0x99, 0xA9, 0xB9, 0xC9, 0xD9, 0xE9, 0xF9,
0x0A, 0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A, 0x7A,
0x8A, 0x9A, 0xAA, 0xBA, 0xCA, 0xDA, 0xEA, 0xFA,
0x0B, 0x1B, 0x2B, 0x3B, 0x4B, 0x5B, 0x6B, 0x7B,
0x8B, 0x9B, 0xAB, 0xBB, 0xCB, 0xDB, 0xEB, 0xFB,
0x0C, 0x1C, 0x2C, 0x3C, 0x4C, 0x5C, 0x6C, 0x7C,
0x8C, 0x9C, 0xAC, 0xBC, 0xCC, 0xDC, 0xEC, 0xFC,
0x0D, 0x1D, 0x2D, 0x3D, 0x4D, 0x5D, 0x6D, 0x7D,
0x8D, 0x9D, 0xAD, 0xBD, 0xCD, 0xDD, 0xED, 0xFD,
0x0E, 0x1E, 0x2E, 0x3E, 0x4E, 0x5E, 0x6E, 0x7E,
0x8E, 0x9E, 0xAE, 0xBE, 0xCE, 0xDE, 0xEE, 0xFE,
0x0F, 0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F,
0x8F, 0x9F, 0xAF, 0xBF, 0xCF, 0xDF, 0xEF, 0xFF
};
 
/* Swaps pixel packing order within bytes */
void /* PRIVATE */
png_do_packswap(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_packswap");
 
if (row_info->bit_depth < 8)
{
png_bytep rp;
png_const_bytep end, table;
 
end = row + row_info->rowbytes;
 
if (row_info->bit_depth == 1)
table = onebppswaptable;
 
else if (row_info->bit_depth == 2)
table = twobppswaptable;
 
else if (row_info->bit_depth == 4)
table = fourbppswaptable;
 
else
return;
 
for (rp = row; rp < end; rp++)
*rp = table[*rp];
}
}
#endif /* PNG_READ_PACKSWAP_SUPPORTED or PNG_WRITE_PACKSWAP_SUPPORTED */
 
#if defined(PNG_WRITE_FILLER_SUPPORTED) || \
defined(PNG_READ_STRIP_ALPHA_SUPPORTED)
/* Remove filler or alpha byte(s) */
void /* PRIVATE */
png_do_strip_filler(png_row_infop row_info, png_bytep row, png_uint_32 flags)
{
png_debug(1, "in png_do_strip_filler");
 
{
png_bytep sp = row;
png_bytep dp = row;
png_uint_32 row_width = row_info->width;
png_uint_32 i;
 
if ((row_info->color_type == PNG_COLOR_TYPE_RGB ||
(row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA &&
(flags & PNG_FLAG_STRIP_ALPHA))) &&
row_info->channels == 4)
{
if (row_info->bit_depth == 8)
{
/* This converts from RGBX or RGBA to RGB */
if (flags & PNG_FLAG_FILLER_AFTER)
{
dp += 3; sp += 4;
for (i = 1; i < row_width; i++)
{
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
sp++;
}
}
 
/* This converts from XRGB or ARGB to RGB */
else
{
for (i = 0; i < row_width; i++)
{
sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
row_info->pixel_depth = 24;
row_info->rowbytes = row_width * 3;
}
 
else /* if (row_info->bit_depth == 16) */
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This converts from RRGGBBXX or RRGGBBAA to RRGGBB */
sp += 8; dp += 6;
for (i = 1; i < row_width; i++)
{
/* This could be (although png_memcpy is probably slower):
png_memcpy(dp, sp, 6);
sp += 8;
dp += 6;
*/
 
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
sp += 2;
}
}
 
else
{
/* This converts from XXRRGGBB or AARRGGBB to RRGGBB */
for (i = 0; i < row_width; i++)
{
/* This could be (although png_memcpy is probably slower):
png_memcpy(dp, sp, 6);
sp += 8;
dp += 6;
*/
 
sp += 2;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
 
row_info->pixel_depth = 48;
row_info->rowbytes = row_width * 6;
}
row_info->channels = 3;
}
 
else if ((row_info->color_type == PNG_COLOR_TYPE_GRAY ||
(row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA &&
(flags & PNG_FLAG_STRIP_ALPHA))) &&
row_info->channels == 2)
{
if (row_info->bit_depth == 8)
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This converts from GX or GA to G */
for (i = 0; i < row_width; i++)
{
*dp++ = *sp++;
sp++;
}
}
 
else
{
/* This converts from XG or AG to G */
for (i = 0; i < row_width; i++)
{
sp++;
*dp++ = *sp++;
}
}
 
row_info->pixel_depth = 8;
row_info->rowbytes = row_width;
}
 
else /* if (row_info->bit_depth == 16) */
{
if (flags & PNG_FLAG_FILLER_AFTER)
{
/* This converts from GGXX or GGAA to GG */
sp += 4; dp += 2;
for (i = 1; i < row_width; i++)
{
*dp++ = *sp++;
*dp++ = *sp++;
sp += 2;
}
}
 
else
{
/* This converts from XXGG or AAGG to GG */
for (i = 0; i < row_width; i++)
{
sp += 2;
*dp++ = *sp++;
*dp++ = *sp++;
}
}
 
row_info->pixel_depth = 16;
row_info->rowbytes = row_width * 2;
}
row_info->channels = 1;
}
 
if (flags & PNG_FLAG_STRIP_ALPHA)
row_info->color_type = (png_byte)(row_info->color_type &
~PNG_COLOR_MASK_ALPHA);
}
}
#endif
 
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED)
/* Swaps red and blue bytes within a pixel */
void /* PRIVATE */
png_do_bgr(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_bgr");
 
if ((row_info->color_type & PNG_COLOR_MASK_COLOR))
{
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 3)
{
png_byte save = *rp;
*rp = *(rp + 2);
*(rp + 2) = save;
}
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 4)
{
png_byte save = *rp;
*rp = *(rp + 2);
*(rp + 2) = save;
}
}
}
 
#ifdef PNG_16BIT_SUPPORTED
else if (row_info->bit_depth == 16)
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 6)
{
png_byte save = *rp;
*rp = *(rp + 4);
*(rp + 4) = save;
save = *(rp + 1);
*(rp + 1) = *(rp + 5);
*(rp + 5) = save;
}
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
png_bytep rp;
png_uint_32 i;
 
for (i = 0, rp = row; i < row_width; i++, rp += 8)
{
png_byte save = *rp;
*rp = *(rp + 4);
*(rp + 4) = save;
save = *(rp + 1);
*(rp + 1) = *(rp + 5);
*(rp + 5) = save;
}
}
}
#endif
}
}
#endif /* PNG_READ_BGR_SUPPORTED or PNG_WRITE_BGR_SUPPORTED */
 
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED)
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED
void PNGAPI
png_set_user_transform_info(png_structp png_ptr, png_voidp
user_transform_ptr, int user_transform_depth, int user_transform_channels)
{
png_debug(1, "in png_set_user_transform_info");
 
if (png_ptr == NULL)
return;
png_ptr->user_transform_ptr = user_transform_ptr;
png_ptr->user_transform_depth = (png_byte)user_transform_depth;
png_ptr->user_transform_channels = (png_byte)user_transform_channels;
}
#endif
 
/* This function returns a pointer to the user_transform_ptr associated with
* the user transform functions. The application should free any memory
* associated with this pointer before png_write_destroy and png_read_destroy
* are called.
*/
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED
png_voidp PNGAPI
png_get_user_transform_ptr(png_const_structp png_ptr)
{
if (png_ptr == NULL)
return (NULL);
 
return ((png_voidp)png_ptr->user_transform_ptr);
}
#endif
 
png_uint_32 PNGAPI
png_get_current_row_number(png_const_structp png_ptr)
{
if (png_ptr != NULL)
return png_ptr->row_number;
return PNG_UINT_32_MAX; /* help the app not to fail silently */
}
 
png_byte PNGAPI
png_get_current_pass_number(png_const_structp png_ptr)
{
if (png_ptr != NULL)
return png_ptr->pass;
return 8; /* invalid */
}
#endif /* PNG_READ_USER_TRANSFORM_SUPPORTED ||
PNG_WRITE_USER_TRANSFORM_SUPPORTED */
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngwio.c
0,0 → 1,254
 
/* pngwio.c - functions for data output
*
* Last changed in libpng 1.5.0 [January 6, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*
* This file provides a location for all output. Users who need
* special handling are expected to write functions that have the same
* arguments as these and perform similar functions, but that possibly
* use different output methods. Note that you shouldn't change these
* functions, but rather write replacement functions and then change
* them at run time with png_set_write_fn(...).
*/
 
#include "pngpriv.h"
 
#ifdef PNG_WRITE_SUPPORTED
 
/* Write the data to whatever output you are using. The default routine
* writes to a file pointer. Note that this routine sometimes gets called
* with very small lengths, so you should implement some kind of simple
* buffering if you are using unbuffered writes. This should never be asked
* to write more than 64K on a 16 bit machine.
*/
 
void /* PRIVATE */
png_write_data(png_structp png_ptr, png_const_bytep data, png_size_t length)
{
/* NOTE: write_data_fn must not change the buffer! */
if (png_ptr->write_data_fn != NULL )
(*(png_ptr->write_data_fn))(png_ptr, (png_bytep)data, length);
 
else
png_error(png_ptr, "Call to NULL write function");
}
 
#ifdef PNG_STDIO_SUPPORTED
/* This is the function that does the actual writing of data. If you are
* not writing to a standard C stream, you should create a replacement
* write_data function and use it at run time with png_set_write_fn(), rather
* than changing the library.
*/
#ifndef USE_FAR_KEYWORD
void PNGCBAPI
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_size_t check;
 
if (png_ptr == NULL)
return;
 
check = fwrite(data, 1, length, (png_FILE_p)(png_ptr->io_ptr));
 
if (check != length)
png_error(png_ptr, "Write Error");
}
#else
/* This is the model-independent version. Since the standard I/O library
* can't handle far buffers in the medium and small models, we have to copy
* the data.
*/
 
#define NEAR_BUF_SIZE 1024
#define MIN(a,b) (a <= b ? a : b)
 
void PNGCBAPI
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
png_uint_32 check;
png_byte *near_data; /* Needs to be "png_byte *" instead of "png_bytep" */
png_FILE_p io_ptr;
 
if (png_ptr == NULL)
return;
 
/* Check if data really is near. If so, use usual code. */
near_data = (png_byte *)CVT_PTR_NOCHECK(data);
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr);
 
if ((png_bytep)near_data == data)
{
check = fwrite(near_data, 1, length, io_ptr);
}
 
else
{
png_byte buf[NEAR_BUF_SIZE];
png_size_t written, remaining, err;
check = 0;
remaining = length;
 
do
{
written = MIN(NEAR_BUF_SIZE, remaining);
png_memcpy(buf, data, written); /* Copy far buffer to near buffer */
err = fwrite(buf, 1, written, io_ptr);
 
if (err != written)
break;
 
else
check += err;
 
data += written;
remaining -= written;
}
while (remaining != 0);
}
 
if (check != length)
png_error(png_ptr, "Write Error");
}
 
#endif
#endif
 
/* This function is called to output any data pending writing (normally
* to disk). After png_flush is called, there should be no data pending
* writing in any buffers.
*/
#ifdef PNG_WRITE_FLUSH_SUPPORTED
void /* PRIVATE */
png_flush(png_structp png_ptr)
{
if (png_ptr->output_flush_fn != NULL)
(*(png_ptr->output_flush_fn))(png_ptr);
}
 
# ifdef PNG_STDIO_SUPPORTED
void PNGCBAPI
png_default_flush(png_structp png_ptr)
{
png_FILE_p io_ptr;
 
if (png_ptr == NULL)
return;
 
io_ptr = (png_FILE_p)CVT_PTR((png_ptr->io_ptr));
fflush(io_ptr);
}
# endif
#endif
 
/* This function allows the application to supply new output functions for
* libpng if standard C streams aren't being used.
*
* This function takes as its arguments:
* png_ptr - pointer to a png output data structure
* io_ptr - pointer to user supplied structure containing info about
* the output functions. May be NULL.
* write_data_fn - pointer to a new output function that takes as its
* arguments a pointer to a png_struct, a pointer to
* data to be written, and a 32-bit unsigned int that is
* the number of bytes to be written. The new write
* function should call png_error(png_ptr, "Error msg")
* to exit and output any fatal error messages. May be
* NULL, in which case libpng's default function will
* be used.
* flush_data_fn - pointer to a new flush function that takes as its
* arguments a pointer to a png_struct. After a call to
* the flush function, there should be no data in any buffers
* or pending transmission. If the output method doesn't do
* any buffering of output, a function prototype must still be
* supplied although it doesn't have to do anything. If
* PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile
* time, output_flush_fn will be ignored, although it must be
* supplied for compatibility. May be NULL, in which case
* libpng's default function will be used, if
* PNG_WRITE_FLUSH_SUPPORTED is defined. This is not
* a good idea if io_ptr does not point to a standard
* *FILE structure.
*/
void PNGAPI
png_set_write_fn(png_structp png_ptr, png_voidp io_ptr,
png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->io_ptr = io_ptr;
 
#ifdef PNG_STDIO_SUPPORTED
if (write_data_fn != NULL)
png_ptr->write_data_fn = write_data_fn;
 
else
png_ptr->write_data_fn = png_default_write_data;
#else
png_ptr->write_data_fn = write_data_fn;
#endif
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
# ifdef PNG_STDIO_SUPPORTED
 
if (output_flush_fn != NULL)
png_ptr->output_flush_fn = output_flush_fn;
 
else
png_ptr->output_flush_fn = png_default_flush;
 
# else
png_ptr->output_flush_fn = output_flush_fn;
# endif
#endif /* PNG_WRITE_FLUSH_SUPPORTED */
 
/* It is an error to read while writing a png file */
if (png_ptr->read_data_fn != NULL)
{
png_ptr->read_data_fn = NULL;
 
png_warning(png_ptr,
"Can't set both read_data_fn and write_data_fn in the"
" same structure");
}
}
 
#ifdef USE_FAR_KEYWORD
# ifdef _MSC_VER
void *png_far_to_near(png_structp png_ptr, png_voidp ptr, int check)
{
void *near_ptr;
void FAR *far_ptr;
FP_OFF(near_ptr) = FP_OFF(ptr);
far_ptr = (void FAR *)near_ptr;
 
if (check != 0)
if (FP_SEG(ptr) != FP_SEG(far_ptr))
png_error(png_ptr, "segment lost in conversion");
 
return(near_ptr);
}
# else
void *png_far_to_near(png_structp png_ptr, png_voidp ptr, int check)
{
void *near_ptr;
void FAR *far_ptr;
near_ptr = (void FAR *)ptr;
far_ptr = (void FAR *)near_ptr;
 
if (check != 0)
if (far_ptr != ptr)
png_error(png_ptr, "segment lost in conversion");
 
return(near_ptr);
}
# endif
#endif
#endif /* PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngwrite.c
0,0 → 1,1605
 
/* pngwrite.c - general routines to write a PNG file
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
#ifdef PNG_WRITE_SUPPORTED
 
/* Writes all the PNG information. This is the suggested way to use the
* library. If you have a new chunk to add, make a function to write it,
* and put it in the correct location here. If you want the chunk written
* after the image data, put it in png_write_end(). I strongly encourage
* you to supply a PNG_INFO_ flag, and check info_ptr->valid before writing
* the chunk, as that will keep the code from breaking if you want to just
* write a plain PNG file. If you have long comments, I suggest writing
* them in png_write_end(), and compressing them.
*/
void PNGAPI
png_write_info_before_PLTE(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_write_info_before_PLTE");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE))
{
/* Write PNG signature */
png_write_sig(png_ptr);
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
if ((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) && \
(png_ptr->mng_features_permitted))
{
png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
png_ptr->mng_features_permitted = 0;
}
#endif
 
/* Write IHDR information. */
png_write_IHDR(png_ptr, info_ptr->width, info_ptr->height,
info_ptr->bit_depth, info_ptr->color_type, info_ptr->compression_type,
info_ptr->filter_type,
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
info_ptr->interlace_type);
#else
0);
#endif
/* The rest of these check to see if the valid field has the appropriate
* flag set, and if it does, writes the chunk.
*/
#ifdef PNG_WRITE_gAMA_SUPPORTED
if (info_ptr->valid & PNG_INFO_gAMA)
png_write_gAMA_fixed(png_ptr, info_ptr->gamma);
#endif
#ifdef PNG_WRITE_sRGB_SUPPORTED
if (info_ptr->valid & PNG_INFO_sRGB)
png_write_sRGB(png_ptr, (int)info_ptr->srgb_intent);
#endif
 
#ifdef PNG_WRITE_iCCP_SUPPORTED
if (info_ptr->valid & PNG_INFO_iCCP)
png_write_iCCP(png_ptr, info_ptr->iccp_name, PNG_COMPRESSION_TYPE_BASE,
(png_charp)info_ptr->iccp_profile, (int)info_ptr->iccp_proflen);
#endif
#ifdef PNG_WRITE_sBIT_SUPPORTED
if (info_ptr->valid & PNG_INFO_sBIT)
png_write_sBIT(png_ptr, &(info_ptr->sig_bit), info_ptr->color_type);
#endif
#ifdef PNG_WRITE_cHRM_SUPPORTED
if (info_ptr->valid & PNG_INFO_cHRM)
png_write_cHRM_fixed(png_ptr,
info_ptr->x_white, info_ptr->y_white,
info_ptr->x_red, info_ptr->y_red,
info_ptr->x_green, info_ptr->y_green,
info_ptr->x_blue, info_ptr->y_blue);
#endif
 
#ifdef PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep = png_handle_as_unknown(png_ptr, up->name);
 
if (keep != PNG_HANDLE_CHUNK_NEVER &&
up->location && !(up->location & PNG_HAVE_PLTE) &&
!(up->location & PNG_HAVE_IDAT) &&
((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
if (up->size == 0)
png_warning(png_ptr, "Writing zero-length unknown chunk");
 
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
png_ptr->mode |= PNG_WROTE_INFO_BEFORE_PLTE;
}
}
 
void PNGAPI
png_write_info(png_structp png_ptr, png_infop info_ptr)
{
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
int i;
#endif
 
png_debug(1, "in png_write_info");
 
if (png_ptr == NULL || info_ptr == NULL)
return;
 
png_write_info_before_PLTE(png_ptr, info_ptr);
 
if (info_ptr->valid & PNG_INFO_PLTE)
png_write_PLTE(png_ptr, info_ptr->palette,
(png_uint_32)info_ptr->num_palette);
 
else if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
png_error(png_ptr, "Valid palette required for paletted images");
 
#ifdef PNG_WRITE_tRNS_SUPPORTED
if (info_ptr->valid & PNG_INFO_tRNS)
{
#ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
/* Invert the alpha channel (in tRNS) */
if ((png_ptr->transformations & PNG_INVERT_ALPHA) &&
info_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
int j;
for (j = 0; j<(int)info_ptr->num_trans; j++)
info_ptr->trans_alpha[j] =
(png_byte)(255 - info_ptr->trans_alpha[j]);
}
#endif
png_write_tRNS(png_ptr, info_ptr->trans_alpha, &(info_ptr->trans_color),
info_ptr->num_trans, info_ptr->color_type);
}
#endif
#ifdef PNG_WRITE_bKGD_SUPPORTED
if (info_ptr->valid & PNG_INFO_bKGD)
png_write_bKGD(png_ptr, &(info_ptr->background), info_ptr->color_type);
#endif
 
#ifdef PNG_WRITE_hIST_SUPPORTED
if (info_ptr->valid & PNG_INFO_hIST)
png_write_hIST(png_ptr, info_ptr->hist, info_ptr->num_palette);
#endif
 
#ifdef PNG_WRITE_oFFs_SUPPORTED
if (info_ptr->valid & PNG_INFO_oFFs)
png_write_oFFs(png_ptr, info_ptr->x_offset, info_ptr->y_offset,
info_ptr->offset_unit_type);
#endif
 
#ifdef PNG_WRITE_pCAL_SUPPORTED
if (info_ptr->valid & PNG_INFO_pCAL)
png_write_pCAL(png_ptr, info_ptr->pcal_purpose, info_ptr->pcal_X0,
info_ptr->pcal_X1, info_ptr->pcal_type, info_ptr->pcal_nparams,
info_ptr->pcal_units, info_ptr->pcal_params);
#endif
 
#ifdef PNG_WRITE_sCAL_SUPPORTED
if (info_ptr->valid & PNG_INFO_sCAL)
png_write_sCAL_s(png_ptr, (int)info_ptr->scal_unit,
info_ptr->scal_s_width, info_ptr->scal_s_height);
#endif /* sCAL */
 
#ifdef PNG_WRITE_pHYs_SUPPORTED
if (info_ptr->valid & PNG_INFO_pHYs)
png_write_pHYs(png_ptr, info_ptr->x_pixels_per_unit,
info_ptr->y_pixels_per_unit, info_ptr->phys_unit_type);
#endif /* pHYs */
 
#ifdef PNG_WRITE_tIME_SUPPORTED
if (info_ptr->valid & PNG_INFO_tIME)
{
png_write_tIME(png_ptr, &(info_ptr->mod_time));
png_ptr->mode |= PNG_WROTE_tIME;
}
#endif /* tIME */
 
#ifdef PNG_WRITE_sPLT_SUPPORTED
if (info_ptr->valid & PNG_INFO_sPLT)
for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
png_write_sPLT(png_ptr, info_ptr->splt_palettes + i);
#endif /* sPLT */
 
#ifdef PNG_WRITE_TEXT_SUPPORTED
/* Check to see if we need to write text chunks */
for (i = 0; i < info_ptr->num_text; i++)
{
png_debug2(2, "Writing header text chunk %d, type %d", i,
info_ptr->text[i].compression);
/* An internationalized chunk? */
if (info_ptr->text[i].compression > 0)
{
#ifdef PNG_WRITE_iTXt_SUPPORTED
/* Write international chunk */
png_write_iTXt(png_ptr,
info_ptr->text[i].compression,
info_ptr->text[i].key,
info_ptr->text[i].lang,
info_ptr->text[i].lang_key,
info_ptr->text[i].text);
#else
png_warning(png_ptr, "Unable to write international text");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
 
/* If we want a compressed text chunk */
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_zTXt)
{
#ifdef PNG_WRITE_zTXt_SUPPORTED
/* Write compressed chunk */
png_write_zTXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0,
info_ptr->text[i].compression);
#else
png_warning(png_ptr, "Unable to write compressed text");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR;
}
 
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE)
{
#ifdef PNG_WRITE_tEXt_SUPPORTED
/* Write uncompressed chunk */
png_write_tEXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text,
0);
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
#else
/* Can't get here */
png_warning(png_ptr, "Unable to write uncompressed text");
#endif
}
}
#endif /* tEXt */
 
#ifdef PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep = png_handle_as_unknown(png_ptr, up->name);
if (keep != PNG_HANDLE_CHUNK_NEVER &&
up->location && (up->location & PNG_HAVE_PLTE) &&
!(up->location & PNG_HAVE_IDAT) &&
((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
}
 
/* Writes the end of the PNG file. If you don't want to write comments or
* time information, you can pass NULL for info. If you already wrote these
* in png_write_info(), do not write them again here. If you have long
* comments, I suggest writing them here, and compressing them.
*/
void PNGAPI
png_write_end(png_structp png_ptr, png_infop info_ptr)
{
png_debug(1, "in png_write_end");
 
if (png_ptr == NULL)
return;
 
if (!(png_ptr->mode & PNG_HAVE_IDAT))
png_error(png_ptr, "No IDATs written into file");
 
/* See if user wants us to write information chunks */
if (info_ptr != NULL)
{
#ifdef PNG_WRITE_TEXT_SUPPORTED
int i; /* local index variable */
#endif
#ifdef PNG_WRITE_tIME_SUPPORTED
/* Check to see if user has supplied a time chunk */
if ((info_ptr->valid & PNG_INFO_tIME) &&
!(png_ptr->mode & PNG_WROTE_tIME))
png_write_tIME(png_ptr, &(info_ptr->mod_time));
 
#endif
#ifdef PNG_WRITE_TEXT_SUPPORTED
/* Loop through comment chunks */
for (i = 0; i < info_ptr->num_text; i++)
{
png_debug2(2, "Writing trailer text chunk %d, type %d", i,
info_ptr->text[i].compression);
/* An internationalized chunk? */
if (info_ptr->text[i].compression > 0)
{
#ifdef PNG_WRITE_iTXt_SUPPORTED
/* Write international chunk */
png_write_iTXt(png_ptr,
info_ptr->text[i].compression,
info_ptr->text[i].key,
info_ptr->text[i].lang,
info_ptr->text[i].lang_key,
info_ptr->text[i].text);
#else
png_warning(png_ptr, "Unable to write international text");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
 
else if (info_ptr->text[i].compression >= PNG_TEXT_COMPRESSION_zTXt)
{
#ifdef PNG_WRITE_zTXt_SUPPORTED
/* Write compressed chunk */
png_write_zTXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0,
info_ptr->text[i].compression);
#else
png_warning(png_ptr, "Unable to write compressed text");
#endif
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_zTXt_WR;
}
 
else if (info_ptr->text[i].compression == PNG_TEXT_COMPRESSION_NONE)
{
#ifdef PNG_WRITE_tEXt_SUPPORTED
/* Write uncompressed chunk */
png_write_tEXt(png_ptr, info_ptr->text[i].key,
info_ptr->text[i].text, 0);
#else
png_warning(png_ptr, "Unable to write uncompressed text");
#endif
 
/* Mark this chunk as written */
info_ptr->text[i].compression = PNG_TEXT_COMPRESSION_NONE_WR;
}
}
#endif
#ifdef PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED
if (info_ptr->unknown_chunks_num)
{
png_unknown_chunk *up;
 
png_debug(5, "writing extra chunks");
 
for (up = info_ptr->unknown_chunks;
up < info_ptr->unknown_chunks + info_ptr->unknown_chunks_num;
up++)
{
int keep = png_handle_as_unknown(png_ptr, up->name);
if (keep != PNG_HANDLE_CHUNK_NEVER &&
up->location && (up->location & PNG_AFTER_IDAT) &&
((up->name[3] & 0x20) || keep == PNG_HANDLE_CHUNK_ALWAYS ||
(png_ptr->flags & PNG_FLAG_KEEP_UNSAFE_CHUNKS)))
{
png_write_chunk(png_ptr, up->name, up->data, up->size);
}
}
}
#endif
}
 
png_ptr->mode |= PNG_AFTER_IDAT;
 
/* Write end of PNG file */
png_write_IEND(png_ptr);
/* This flush, added in libpng-1.0.8, removed from libpng-1.0.9beta03,
* and restored again in libpng-1.2.30, may cause some applications that
* do not set png_ptr->output_flush_fn to crash. If your application
* experiences a problem, please try building libpng with
* PNG_WRITE_FLUSH_AFTER_IEND_SUPPORTED defined, and report the event to
* png-mng-implement at lists.sf.net .
*/
#ifdef PNG_WRITE_FLUSH_SUPPORTED
# ifdef PNG_WRITE_FLUSH_AFTER_IEND_SUPPORTED
png_flush(png_ptr);
# endif
#endif
}
 
#ifdef PNG_CONVERT_tIME_SUPPORTED
/* "tm" structure is not supported on WindowsCE */
void PNGAPI
png_convert_from_struct_tm(png_timep ptime, PNG_CONST struct tm FAR * ttime)
{
png_debug(1, "in png_convert_from_struct_tm");
 
ptime->year = (png_uint_16)(1900 + ttime->tm_year);
ptime->month = (png_byte)(ttime->tm_mon + 1);
ptime->day = (png_byte)ttime->tm_mday;
ptime->hour = (png_byte)ttime->tm_hour;
ptime->minute = (png_byte)ttime->tm_min;
ptime->second = (png_byte)ttime->tm_sec;
}
 
void PNGAPI
png_convert_from_time_t(png_timep ptime, time_t ttime)
{
struct tm *tbuf;
 
png_debug(1, "in png_convert_from_time_t");
 
tbuf = gmtime(&ttime);
png_convert_from_struct_tm(ptime, tbuf);
}
#endif
 
/* Initialize png_ptr structure, and allocate any memory needed */
PNG_FUNCTION(png_structp,PNGAPI
png_create_write_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn),PNG_ALLOCATED)
{
#ifdef PNG_USER_MEM_SUPPORTED
return (png_create_write_struct_2(user_png_ver, error_ptr, error_fn,
warn_fn, NULL, NULL, NULL));
}
 
/* Alternate initialize png_ptr structure, and allocate any memory needed */
static void png_reset_filter_heuristics(png_structp png_ptr); /* forward decl */
 
PNG_FUNCTION(png_structp,PNGAPI
png_create_write_struct_2,(png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
{
#endif /* PNG_USER_MEM_SUPPORTED */
volatile int png_cleanup_needed = 0;
#ifdef PNG_SETJMP_SUPPORTED
volatile
#endif
png_structp png_ptr;
#ifdef PNG_SETJMP_SUPPORTED
#ifdef USE_FAR_KEYWORD
jmp_buf png_jmpbuf;
#endif
#endif
int i;
 
png_debug(1, "in png_create_write_struct");
 
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG,
(png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr);
#else
png_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);
#endif /* PNG_USER_MEM_SUPPORTED */
if (png_ptr == NULL)
return (NULL);
 
/* Added at libpng-1.2.6 */
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
png_ptr->user_width_max = PNG_USER_WIDTH_MAX;
png_ptr->user_height_max = PNG_USER_HEIGHT_MAX;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* Applications that neglect to set up their own setjmp() and then
encounter a png_error() will longjmp here. Since the jmpbuf is
then meaningless we abort instead of returning. */
#ifdef USE_FAR_KEYWORD
if (setjmp(png_jmpbuf))
#else
if (setjmp(png_jmpbuf(png_ptr))) /* sets longjmp to match setjmp */
#endif
#ifdef USE_FAR_KEYWORD
png_memcpy(png_jmpbuf(png_ptr), png_jmpbuf, png_sizeof(jmp_buf));
#endif
PNG_ABORT();
#endif
 
#ifdef PNG_USER_MEM_SUPPORTED
png_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn);
#endif /* PNG_USER_MEM_SUPPORTED */
png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn);
 
if (user_png_ver)
{
i = 0;
do
{
if (user_png_ver[i] != png_libpng_ver[i])
png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
} while (png_libpng_ver[i++]);
}
 
if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
{
/* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
* we must recompile any applications that use any older library version.
* For versions after libpng 1.0, we will be compatible, so we need
* only check the first digit.
*/
if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
(user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
(user_png_ver[0] == '0' && user_png_ver[2] < '9'))
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
char msg[80];
 
if (user_png_ver)
{
png_snprintf2(msg, 80,
"Application built with libpng-%.20s"
" but running with %.20s",
user_png_ver,
png_libpng_ver);
png_warning(png_ptr, msg);
}
#else
png_warning(png_ptr,
"Incompatible libpng version in application and library");
#endif
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
png_ptr->flags = 0;
#endif
png_cleanup_needed = 1;
}
}
 
/* Initialize zbuf - compression buffer */
png_ptr->zbuf_size = PNG_ZBUF_SIZE;
 
if (!png_cleanup_needed)
{
png_ptr->zbuf = (png_bytep)png_malloc_warn(png_ptr,
png_ptr->zbuf_size);
if (png_ptr->zbuf == NULL)
png_cleanup_needed = 1;
}
 
if (png_cleanup_needed)
{
/* Clean up PNG structure and deallocate any memory. */
png_free(png_ptr, png_ptr->zbuf);
png_ptr->zbuf = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr,
(png_free_ptr)free_fn, (png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
return (NULL);
}
 
png_set_write_fn(png_ptr, NULL, NULL, NULL);
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
png_reset_filter_heuristics(png_ptr);
#endif
 
return (png_ptr);
}
 
 
/* Write a few rows of image data. If the image is interlaced,
* either you will have to write the 7 sub images, or, if you
* have called png_set_interlace_handling(), you will have to
* "write" the image seven times.
*/
void PNGAPI
png_write_rows(png_structp png_ptr, png_bytepp row,
png_uint_32 num_rows)
{
png_uint_32 i; /* row counter */
png_bytepp rp; /* row pointer */
 
png_debug(1, "in png_write_rows");
 
if (png_ptr == NULL)
return;
 
/* Loop through the rows */
for (i = 0, rp = row; i < num_rows; i++, rp++)
{
png_write_row(png_ptr, *rp);
}
}
 
/* Write the image. You only need to call this function once, even
* if you are writing an interlaced image.
*/
void PNGAPI
png_write_image(png_structp png_ptr, png_bytepp image)
{
png_uint_32 i; /* row index */
int pass, num_pass; /* pass variables */
png_bytepp rp; /* points to current row */
 
if (png_ptr == NULL)
return;
 
png_debug(1, "in png_write_image");
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Initialize interlace handling. If image is not interlaced,
* this will set pass to 1
*/
num_pass = png_set_interlace_handling(png_ptr);
#else
num_pass = 1;
#endif
/* Loop through passes */
for (pass = 0; pass < num_pass; pass++)
{
/* Loop through image */
for (i = 0, rp = image; i < png_ptr->height; i++, rp++)
{
png_write_row(png_ptr, *rp);
}
}
}
 
/* Called by user to write a row of image data */
void PNGAPI
png_write_row(png_structp png_ptr, png_const_bytep row)
{
if (png_ptr == NULL)
return;
 
png_debug2(1, "in png_write_row (row %u, pass %d)",
png_ptr->row_number, png_ptr->pass);
 
/* Initialize transformations and other stuff if first time */
if (png_ptr->row_number == 0 && png_ptr->pass == 0)
{
/* Make sure we wrote the header info */
if (!(png_ptr->mode & PNG_WROTE_INFO_BEFORE_PLTE))
png_error(png_ptr,
"png_write_info was never called before png_write_row");
 
/* Check for transforms that have been set but were defined out */
#if !defined(PNG_WRITE_INVERT_SUPPORTED) && defined(PNG_READ_INVERT_SUPPORTED)
if (png_ptr->transformations & PNG_INVERT_MONO)
png_warning(png_ptr, "PNG_WRITE_INVERT_SUPPORTED is not defined");
#endif
 
#if !defined(PNG_WRITE_FILLER_SUPPORTED) && defined(PNG_READ_FILLER_SUPPORTED)
if (png_ptr->transformations & PNG_FILLER)
png_warning(png_ptr, "PNG_WRITE_FILLER_SUPPORTED is not defined");
#endif
#if !defined(PNG_WRITE_PACKSWAP_SUPPORTED) && \
defined(PNG_READ_PACKSWAP_SUPPORTED)
if (png_ptr->transformations & PNG_PACKSWAP)
png_warning(png_ptr,
"PNG_WRITE_PACKSWAP_SUPPORTED is not defined");
#endif
 
#if !defined(PNG_WRITE_PACK_SUPPORTED) && defined(PNG_READ_PACK_SUPPORTED)
if (png_ptr->transformations & PNG_PACK)
png_warning(png_ptr, "PNG_WRITE_PACK_SUPPORTED is not defined");
#endif
 
#if !defined(PNG_WRITE_SHIFT_SUPPORTED) && defined(PNG_READ_SHIFT_SUPPORTED)
if (png_ptr->transformations & PNG_SHIFT)
png_warning(png_ptr, "PNG_WRITE_SHIFT_SUPPORTED is not defined");
#endif
 
#if !defined(PNG_WRITE_BGR_SUPPORTED) && defined(PNG_READ_BGR_SUPPORTED)
if (png_ptr->transformations & PNG_BGR)
png_warning(png_ptr, "PNG_WRITE_BGR_SUPPORTED is not defined");
#endif
 
#if !defined(PNG_WRITE_SWAP_SUPPORTED) && defined(PNG_READ_SWAP_SUPPORTED)
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_warning(png_ptr, "PNG_WRITE_SWAP_SUPPORTED is not defined");
#endif
 
png_write_start_row(png_ptr);
}
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* If interlaced and not interested in row, return */
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE))
{
switch (png_ptr->pass)
{
case 0:
if (png_ptr->row_number & 0x07)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 1:
if ((png_ptr->row_number & 0x07) || png_ptr->width < 5)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 2:
if ((png_ptr->row_number & 0x07) != 4)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 3:
if ((png_ptr->row_number & 0x03) || png_ptr->width < 3)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 4:
if ((png_ptr->row_number & 0x03) != 2)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 5:
if ((png_ptr->row_number & 0x01) || png_ptr->width < 2)
{
png_write_finish_row(png_ptr);
return;
}
break;
 
case 6:
if (!(png_ptr->row_number & 0x01))
{
png_write_finish_row(png_ptr);
return;
}
break;
 
default: /* error: ignore it */
break;
}
}
#endif
 
/* Set up row info for transformations */
png_ptr->row_info.color_type = png_ptr->color_type;
png_ptr->row_info.width = png_ptr->usr_width;
png_ptr->row_info.channels = png_ptr->usr_channels;
png_ptr->row_info.bit_depth = png_ptr->usr_bit_depth;
png_ptr->row_info.pixel_depth = (png_byte)(png_ptr->row_info.bit_depth *
png_ptr->row_info.channels);
 
png_ptr->row_info.rowbytes = PNG_ROWBYTES(png_ptr->row_info.pixel_depth,
png_ptr->row_info.width);
 
png_debug1(3, "row_info->color_type = %d", png_ptr->row_info.color_type);
png_debug1(3, "row_info->width = %u", png_ptr->row_info.width);
png_debug1(3, "row_info->channels = %d", png_ptr->row_info.channels);
png_debug1(3, "row_info->bit_depth = %d", png_ptr->row_info.bit_depth);
png_debug1(3, "row_info->pixel_depth = %d", png_ptr->row_info.pixel_depth);
png_debug1(3, "row_info->rowbytes = %lu",
(unsigned long)png_ptr->row_info.rowbytes);
 
/* Copy user's row into buffer, leaving room for filter byte. */
png_memcpy(png_ptr->row_buf + 1, row, png_ptr->row_info.rowbytes);
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Handle interlacing */
if (png_ptr->interlaced && png_ptr->pass < 6 &&
(png_ptr->transformations & PNG_INTERLACE))
{
png_do_write_interlace(&(png_ptr->row_info),
png_ptr->row_buf + 1, png_ptr->pass);
/* This should always get caught above, but still ... */
if (!(png_ptr->row_info.width))
{
png_write_finish_row(png_ptr);
return;
}
}
#endif
 
/* Handle other transformations */
if (png_ptr->transformations)
png_do_write_transformations(png_ptr);
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
/* Write filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not write a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if ((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(png_ptr->filter_type == PNG_INTRAPIXEL_DIFFERENCING))
{
/* Intrapixel differencing */
png_do_write_intrapixel(&(png_ptr->row_info), png_ptr->row_buf + 1);
}
#endif
 
/* Find a filter if necessary, filter the row and write it out. */
png_write_find_filter(png_ptr, &(png_ptr->row_info));
 
if (png_ptr->write_row_fn != NULL)
(*(png_ptr->write_row_fn))(png_ptr, png_ptr->row_number, png_ptr->pass);
}
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
/* Set the automatic flush interval or 0 to turn flushing off */
void PNGAPI
png_set_flush(png_structp png_ptr, int nrows)
{
png_debug(1, "in png_set_flush");
 
if (png_ptr == NULL)
return;
 
png_ptr->flush_dist = (nrows < 0 ? 0 : nrows);
}
 
/* Flush the current output buffers now */
void PNGAPI
png_write_flush(png_structp png_ptr)
{
int wrote_IDAT;
 
png_debug(1, "in png_write_flush");
 
if (png_ptr == NULL)
return;
 
/* We have already written out all of the data */
if (png_ptr->row_number >= png_ptr->num_rows)
return;
 
do
{
int ret;
 
/* Compress the data */
ret = deflate(&png_ptr->zstream, Z_SYNC_FLUSH);
wrote_IDAT = 0;
 
/* Check for compression errors */
if (ret != Z_OK)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
 
else
png_error(png_ptr, "zlib error");
}
 
if (!(png_ptr->zstream.avail_out))
{
/* Write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
wrote_IDAT = 1;
}
} while (wrote_IDAT == 1);
 
/* If there is any data left to be output, write it into a new IDAT */
if (png_ptr->zbuf_size != png_ptr->zstream.avail_out)
{
/* Write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf,
png_ptr->zbuf_size - png_ptr->zstream.avail_out);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
png_ptr->flush_rows = 0;
png_flush(png_ptr);
}
#endif /* PNG_WRITE_FLUSH_SUPPORTED */
 
/* Free all memory used by the write */
void PNGAPI
png_destroy_write_struct(png_structpp png_ptr_ptr, png_infopp info_ptr_ptr)
{
png_structp png_ptr = NULL;
png_infop info_ptr = NULL;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn = NULL;
png_voidp mem_ptr = NULL;
#endif
 
png_debug(1, "in png_destroy_write_struct");
 
if (png_ptr_ptr != NULL)
{
png_ptr = *png_ptr_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
mem_ptr = png_ptr->mem_ptr;
#endif
}
 
#ifdef PNG_USER_MEM_SUPPORTED
if (png_ptr != NULL)
{
free_fn = png_ptr->free_fn;
mem_ptr = png_ptr->mem_ptr;
}
#endif
 
if (info_ptr_ptr != NULL)
info_ptr = *info_ptr_ptr;
 
if (info_ptr != NULL)
{
if (png_ptr != NULL)
{
png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
 
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_ptr->num_chunk_list)
{
png_free(png_ptr, png_ptr->chunk_list);
png_ptr->num_chunk_list = 0;
}
#endif
}
 
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)info_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)info_ptr);
#endif
*info_ptr_ptr = NULL;
}
 
if (png_ptr != NULL)
{
png_write_destroy(png_ptr);
#ifdef PNG_USER_MEM_SUPPORTED
png_destroy_struct_2((png_voidp)png_ptr, (png_free_ptr)free_fn,
(png_voidp)mem_ptr);
#else
png_destroy_struct((png_voidp)png_ptr);
#endif
*png_ptr_ptr = NULL;
}
}
 
 
/* Free any memory used in png_ptr struct (old method) */
void /* PRIVATE */
png_write_destroy(png_structp png_ptr)
{
#ifdef PNG_SETJMP_SUPPORTED
jmp_buf tmp_jmp; /* Save jump buffer */
#endif
png_error_ptr error_fn;
png_error_ptr warning_fn;
png_voidp error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_free_ptr free_fn;
#endif
 
png_debug(1, "in png_write_destroy");
 
/* Free any memory zlib uses */
deflateEnd(&png_ptr->zstream);
 
/* Free our memory. png_free checks NULL for us. */
png_free(png_ptr, png_ptr->zbuf);
png_free(png_ptr, png_ptr->row_buf);
#ifdef PNG_WRITE_FILTER_SUPPORTED
png_free(png_ptr, png_ptr->prev_row);
png_free(png_ptr, png_ptr->sub_row);
png_free(png_ptr, png_ptr->up_row);
png_free(png_ptr, png_ptr->avg_row);
png_free(png_ptr, png_ptr->paeth_row);
#endif
 
#ifdef PNG_TIME_RFC1123_SUPPORTED
png_free(png_ptr, png_ptr->time_buffer);
#endif
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
/* Use this to save a little code space, it doesn't free the filter_costs */
png_reset_filter_heuristics(png_ptr);
png_free(png_ptr, png_ptr->filter_costs);
png_free(png_ptr, png_ptr->inv_filter_costs);
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
/* Reset structure */
png_memcpy(tmp_jmp, png_ptr->png_jmpbuf, png_sizeof(jmp_buf));
#endif
 
error_fn = png_ptr->error_fn;
warning_fn = png_ptr->warning_fn;
error_ptr = png_ptr->error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
free_fn = png_ptr->free_fn;
#endif
 
png_memset(png_ptr, 0, png_sizeof(png_struct));
 
png_ptr->error_fn = error_fn;
png_ptr->warning_fn = warning_fn;
png_ptr->error_ptr = error_ptr;
#ifdef PNG_USER_MEM_SUPPORTED
png_ptr->free_fn = free_fn;
#endif
 
#ifdef PNG_SETJMP_SUPPORTED
png_memcpy(png_ptr->png_jmpbuf, tmp_jmp, png_sizeof(jmp_buf));
#endif
}
 
/* Allow the application to select one or more row filters to use. */
void PNGAPI
png_set_filter(png_structp png_ptr, int method, int filters)
{
png_debug(1, "in png_set_filter");
 
if (png_ptr == NULL)
return;
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
if ((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
(method == PNG_INTRAPIXEL_DIFFERENCING))
method = PNG_FILTER_TYPE_BASE;
 
#endif
if (method == PNG_FILTER_TYPE_BASE)
{
switch (filters & (PNG_ALL_FILTERS | 0x07))
{
#ifdef PNG_WRITE_FILTER_SUPPORTED
case 5:
case 6:
case 7: png_warning(png_ptr, "Unknown row filter for method 0");
#endif /* PNG_WRITE_FILTER_SUPPORTED */
case PNG_FILTER_VALUE_NONE:
png_ptr->do_filter = PNG_FILTER_NONE; break;
 
#ifdef PNG_WRITE_FILTER_SUPPORTED
case PNG_FILTER_VALUE_SUB:
png_ptr->do_filter = PNG_FILTER_SUB; break;
 
case PNG_FILTER_VALUE_UP:
png_ptr->do_filter = PNG_FILTER_UP; break;
 
case PNG_FILTER_VALUE_AVG:
png_ptr->do_filter = PNG_FILTER_AVG; break;
 
case PNG_FILTER_VALUE_PAETH:
png_ptr->do_filter = PNG_FILTER_PAETH; break;
 
default:
png_ptr->do_filter = (png_byte)filters; break;
#else
default:
png_warning(png_ptr, "Unknown row filter for method 0");
#endif /* PNG_WRITE_FILTER_SUPPORTED */
}
 
/* If we have allocated the row_buf, this means we have already started
* with the image and we should have allocated all of the filter buffers
* that have been selected. If prev_row isn't already allocated, then
* it is too late to start using the filters that need it, since we
* will be missing the data in the previous row. If an application
* wants to start and stop using particular filters during compression,
* it should start out with all of the filters, and then add and
* remove them after the start of compression.
*/
if (png_ptr->row_buf != NULL)
{
#ifdef PNG_WRITE_FILTER_SUPPORTED
if ((png_ptr->do_filter & PNG_FILTER_SUB) && png_ptr->sub_row == NULL)
{
png_ptr->sub_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
}
 
if ((png_ptr->do_filter & PNG_FILTER_UP) && png_ptr->up_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Up filter after starting");
png_ptr->do_filter = (png_byte)(png_ptr->do_filter &
~PNG_FILTER_UP);
}
 
else
{
png_ptr->up_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
}
}
 
if ((png_ptr->do_filter & PNG_FILTER_AVG) && png_ptr->avg_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Average filter after starting");
png_ptr->do_filter = (png_byte)(png_ptr->do_filter &
~PNG_FILTER_AVG);
}
 
else
{
png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
}
}
 
if ((png_ptr->do_filter & PNG_FILTER_PAETH) &&
png_ptr->paeth_row == NULL)
{
if (png_ptr->prev_row == NULL)
{
png_warning(png_ptr, "Can't add Paeth filter after starting");
png_ptr->do_filter &= (png_byte)(~PNG_FILTER_PAETH);
}
 
else
{
png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr,
(png_ptr->rowbytes + 1));
png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
}
}
 
if (png_ptr->do_filter == PNG_NO_FILTERS)
#endif /* PNG_WRITE_FILTER_SUPPORTED */
png_ptr->do_filter = PNG_FILTER_NONE;
}
}
else
png_error(png_ptr, "Unknown custom filter method");
}
 
/* This allows us to influence the way in which libpng chooses the "best"
* filter for the current scanline. While the "minimum-sum-of-absolute-
* differences metric is relatively fast and effective, there is some
* question as to whether it can be improved upon by trying to keep the
* filtered data going to zlib more consistent, hopefully resulting in
* better compression.
*/
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED /* GRR 970116 */
/* Conveneince reset API. */
static void
png_reset_filter_heuristics(png_structp png_ptr)
{
/* Clear out any old values in the 'weights' - this must be done because if
* the app calls set_filter_heuristics multiple times with different
* 'num_weights' values we would otherwise potentially have wrong sized
* arrays.
*/
png_ptr->num_prev_filters = 0;
png_ptr->heuristic_method = PNG_FILTER_HEURISTIC_UNWEIGHTED;
if (png_ptr->prev_filters != NULL)
{
png_bytep old = png_ptr->prev_filters;
png_ptr->prev_filters = NULL;
png_free(png_ptr, old);
}
if (png_ptr->filter_weights != NULL)
{
png_uint_16p old = png_ptr->filter_weights;
png_ptr->filter_weights = NULL;
png_free(png_ptr, old);
}
 
if (png_ptr->inv_filter_weights != NULL)
{
png_uint_16p old = png_ptr->inv_filter_weights;
png_ptr->inv_filter_weights = NULL;
png_free(png_ptr, old);
}
 
/* Leave the filter_costs - this array is fixed size. */
}
 
static int
png_init_filter_heuristics(png_structp png_ptr, int heuristic_method,
int num_weights)
{
if (png_ptr == NULL)
return 0;
 
/* Clear out the arrays */
png_reset_filter_heuristics(png_ptr);
 
/* Check arguments; the 'reset' function makes the correct settings for the
* unweighted case, but we must handle the weight case by initializing the
* arrays for the caller.
*/
if (heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int i;
 
if (num_weights > 0)
{
png_ptr->prev_filters = (png_bytep)png_malloc(png_ptr,
(png_uint_32)(png_sizeof(png_byte) * num_weights));
 
/* To make sure that the weighting starts out fairly */
for (i = 0; i < num_weights; i++)
{
png_ptr->prev_filters[i] = 255;
}
 
png_ptr->filter_weights = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(png_sizeof(png_uint_16) * num_weights));
 
png_ptr->inv_filter_weights = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(png_sizeof(png_uint_16) * num_weights));
 
for (i = 0; i < num_weights; i++)
{
png_ptr->inv_filter_weights[i] =
png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR;
}
 
/* Safe to set this now */
png_ptr->num_prev_filters = (png_byte)num_weights;
}
 
/* If, in the future, there are other filter methods, this would
* need to be based on png_ptr->filter.
*/
if (png_ptr->filter_costs == NULL)
{
png_ptr->filter_costs = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(png_sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST));
 
png_ptr->inv_filter_costs = (png_uint_16p)png_malloc(png_ptr,
(png_uint_32)(png_sizeof(png_uint_16) * PNG_FILTER_VALUE_LAST));
}
 
for (i = 0; i < PNG_FILTER_VALUE_LAST; i++)
{
png_ptr->inv_filter_costs[i] =
png_ptr->filter_costs[i] = PNG_COST_FACTOR;
}
 
/* All the arrays are inited, safe to set this: */
png_ptr->heuristic_method = PNG_FILTER_HEURISTIC_WEIGHTED;
 
/* Return the 'ok' code. */
return 1;
}
else if (heuristic_method == PNG_FILTER_HEURISTIC_DEFAULT ||
heuristic_method == PNG_FILTER_HEURISTIC_UNWEIGHTED)
{
return 1;
}
else
{
png_warning(png_ptr, "Unknown filter heuristic method");
return 0;
}
}
 
/* Provide floating and fixed point APIs */
#ifdef PNG_FLOATING_POINT_SUPPORTED
void PNGAPI
png_set_filter_heuristics(png_structp png_ptr, int heuristic_method,
int num_weights, png_const_doublep filter_weights,
png_const_doublep filter_costs)
{
png_debug(1, "in png_set_filter_heuristics");
 
/* The internal API allocates all the arrays and ensures that the elements of
* those arrays are set to the default value.
*/
if (!png_init_filter_heuristics(png_ptr, heuristic_method, num_weights))
return;
 
/* If using the weighted method copy in the weights. */
if (heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int i;
for (i = 0; i < num_weights; i++)
{
if (filter_weights[i] <= 0.0)
{
png_ptr->inv_filter_weights[i] =
png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR;
}
 
else
{
png_ptr->inv_filter_weights[i] =
(png_uint_16)(PNG_WEIGHT_FACTOR*filter_weights[i]+.5);
 
png_ptr->filter_weights[i] =
(png_uint_16)(PNG_WEIGHT_FACTOR/filter_weights[i]+.5);
}
}
 
/* Here is where we set the relative costs of the different filters. We
* should take the desired compression level into account when setting
* the costs, so that Paeth, for instance, has a high relative cost at low
* compression levels, while it has a lower relative cost at higher
* compression settings. The filter types are in order of increasing
* relative cost, so it would be possible to do this with an algorithm.
*/
for (i = 0; i < PNG_FILTER_VALUE_LAST; i++) if (filter_costs[i] >= 1.0)
{
png_ptr->inv_filter_costs[i] =
(png_uint_16)(PNG_COST_FACTOR / filter_costs[i] + .5);
 
png_ptr->filter_costs[i] =
(png_uint_16)(PNG_COST_FACTOR * filter_costs[i] + .5);
}
}
}
#endif /* FLOATING_POINT */
 
#ifdef PNG_FIXED_POINT_SUPPORTED
void PNGAPI
png_set_filter_heuristics_fixed(png_structp png_ptr, int heuristic_method,
int num_weights, png_const_fixed_point_p filter_weights,
png_const_fixed_point_p filter_costs)
{
png_debug(1, "in png_set_filter_heuristics_fixed");
 
/* The internal API allocates all the arrays and ensures that the elements of
* those arrays are set to the default value.
*/
if (!png_init_filter_heuristics(png_ptr, heuristic_method, num_weights))
return;
 
/* If using the weighted method copy in the weights. */
if (heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int i;
for (i = 0; i < num_weights; i++)
{
if (filter_weights[i] <= 0)
{
png_ptr->inv_filter_weights[i] =
png_ptr->filter_weights[i] = PNG_WEIGHT_FACTOR;
}
 
else
{
png_ptr->inv_filter_weights[i] = (png_uint_16)
((PNG_WEIGHT_FACTOR*filter_weights[i]+PNG_FP_HALF)/PNG_FP_1);
 
png_ptr->filter_weights[i] = (png_uint_16)((PNG_WEIGHT_FACTOR*
PNG_FP_1+(filter_weights[i]/2))/filter_weights[i]);
}
}
 
/* Here is where we set the relative costs of the different filters. We
* should take the desired compression level into account when setting
* the costs, so that Paeth, for instance, has a high relative cost at low
* compression levels, while it has a lower relative cost at higher
* compression settings. The filter types are in order of increasing
* relative cost, so it would be possible to do this with an algorithm.
*/
for (i = 0; i < PNG_FILTER_VALUE_LAST; i++)
if (filter_costs[i] >= PNG_FP_1)
{
png_uint_32 tmp;
 
/* Use a 32 bit unsigned temporary here because otherwise the
* intermediate value will be a 32 bit *signed* integer (ANSI rules)
* and this will get the wrong answer on division.
*/
tmp = PNG_COST_FACTOR*PNG_FP_1 + (filter_costs[i]/2);
tmp /= filter_costs[i];
 
png_ptr->inv_filter_costs[i] = (png_uint_16)tmp;
 
tmp = PNG_COST_FACTOR * filter_costs[i] + PNG_FP_HALF;
tmp /= PNG_FP_1;
 
png_ptr->filter_costs[i] = (png_uint_16)tmp;
}
}
}
#endif /* FIXED_POINT */
#endif /* PNG_WRITE_WEIGHTED_FILTER_SUPPORTED */
 
void PNGAPI
png_set_compression_level(png_structp png_ptr, int level)
{
png_debug(1, "in png_set_compression_level");
 
if (png_ptr == NULL)
return;
 
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_LEVEL;
png_ptr->zlib_level = level;
}
 
void PNGAPI
png_set_compression_mem_level(png_structp png_ptr, int mem_level)
{
png_debug(1, "in png_set_compression_mem_level");
 
if (png_ptr == NULL)
return;
 
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL;
png_ptr->zlib_mem_level = mem_level;
}
 
void PNGAPI
png_set_compression_strategy(png_structp png_ptr, int strategy)
{
png_debug(1, "in png_set_compression_strategy");
 
if (png_ptr == NULL)
return;
 
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_STRATEGY;
png_ptr->zlib_strategy = strategy;
}
 
void PNGAPI
png_set_compression_window_bits(png_structp png_ptr, int window_bits)
{
if (png_ptr == NULL)
return;
 
if (window_bits > 15)
png_warning(png_ptr, "Only compression windows <= 32k supported by PNG");
 
else if (window_bits < 8)
png_warning(png_ptr, "Only compression windows >= 256 supported by PNG");
 
#ifndef WBITS_8_OK
/* Avoid libpng bug with 256-byte windows */
if (window_bits == 8)
{
png_warning(png_ptr, "Compression window is being reset to 512");
window_bits = 9;
}
 
#endif
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS;
png_ptr->zlib_window_bits = window_bits;
}
 
void PNGAPI
png_set_compression_method(png_structp png_ptr, int method)
{
png_debug(1, "in png_set_compression_method");
 
if (png_ptr == NULL)
return;
 
if (method != 8)
png_warning(png_ptr, "Only compression method 8 is supported by PNG");
 
png_ptr->flags |= PNG_FLAG_ZLIB_CUSTOM_METHOD;
png_ptr->zlib_method = method;
}
 
void PNGAPI
png_set_write_status_fn(png_structp png_ptr, png_write_status_ptr write_row_fn)
{
if (png_ptr == NULL)
return;
 
png_ptr->write_row_fn = write_row_fn;
}
 
#ifdef PNG_WRITE_USER_TRANSFORM_SUPPORTED
void PNGAPI
png_set_write_user_transform_fn(png_structp png_ptr, png_user_transform_ptr
write_user_transform_fn)
{
png_debug(1, "in png_set_write_user_transform_fn");
 
if (png_ptr == NULL)
return;
 
png_ptr->transformations |= PNG_USER_TRANSFORM;
png_ptr->write_user_transform_fn = write_user_transform_fn;
}
#endif
 
 
#ifdef PNG_INFO_IMAGE_SUPPORTED
void PNGAPI
png_write_png(png_structp png_ptr, png_infop info_ptr,
int transforms, voidp params)
{
if (png_ptr == NULL || info_ptr == NULL)
return;
 
/* Write the file header information. */
png_write_info(png_ptr, info_ptr);
 
/* ------ these transformations don't touch the info structure ------- */
 
#ifdef PNG_WRITE_INVERT_SUPPORTED
/* Invert monochrome pixels */
if (transforms & PNG_TRANSFORM_INVERT_MONO)
png_set_invert_mono(png_ptr);
#endif
 
#ifdef PNG_WRITE_SHIFT_SUPPORTED
/* Shift the pixels up to a legal bit depth and fill in
* as appropriate to correctly scale the image.
*/
if ((transforms & PNG_TRANSFORM_SHIFT)
&& (info_ptr->valid & PNG_INFO_sBIT))
png_set_shift(png_ptr, &info_ptr->sig_bit);
#endif
 
#ifdef PNG_WRITE_PACK_SUPPORTED
/* Pack pixels into bytes */
if (transforms & PNG_TRANSFORM_PACKING)
png_set_packing(png_ptr);
#endif
 
#ifdef PNG_WRITE_SWAP_ALPHA_SUPPORTED
/* Swap location of alpha bytes from ARGB to RGBA */
if (transforms & PNG_TRANSFORM_SWAP_ALPHA)
png_set_swap_alpha(png_ptr);
#endif
 
#ifdef PNG_WRITE_FILLER_SUPPORTED
/* Pack XRGB/RGBX/ARGB/RGBA into * RGB (4 channels -> 3 channels) */
if (transforms & PNG_TRANSFORM_STRIP_FILLER_AFTER)
png_set_filler(png_ptr, 0, PNG_FILLER_AFTER);
 
else if (transforms & PNG_TRANSFORM_STRIP_FILLER_BEFORE)
png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);
#endif
 
#ifdef PNG_WRITE_BGR_SUPPORTED
/* Flip BGR pixels to RGB */
if (transforms & PNG_TRANSFORM_BGR)
png_set_bgr(png_ptr);
#endif
 
#ifdef PNG_WRITE_SWAP_SUPPORTED
/* Swap bytes of 16-bit files to most significant byte first */
if (transforms & PNG_TRANSFORM_SWAP_ENDIAN)
png_set_swap(png_ptr);
#endif
 
#ifdef PNG_WRITE_PACKSWAP_SUPPORTED
/* Swap bits of 1, 2, 4 bit packed pixel formats */
if (transforms & PNG_TRANSFORM_PACKSWAP)
png_set_packswap(png_ptr);
#endif
 
#ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
/* Invert the alpha channel from opacity to transparency */
if (transforms & PNG_TRANSFORM_INVERT_ALPHA)
png_set_invert_alpha(png_ptr);
#endif
 
/* ----------------------- end of transformations ------------------- */
 
/* Write the bits */
if (info_ptr->valid & PNG_INFO_IDAT)
png_write_image(png_ptr, info_ptr->row_pointers);
 
/* It is REQUIRED to call this to finish writing the rest of the file */
png_write_end(png_ptr, info_ptr);
 
PNG_UNUSED(transforms) /* Quiet compiler warnings */
PNG_UNUSED(params)
}
#endif
#endif /* PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngwtran.c
0,0 → 1,631
 
/* pngwtran.c - transforms the data in a row for PNG writers
*
* Last changed in libpng 1.5.0 [January 6, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
#ifdef PNG_WRITE_SUPPORTED
 
/* Transform the data according to the user's wishes. The order of
* transformations is significant.
*/
void /* PRIVATE */
png_do_write_transformations(png_structp png_ptr)
{
png_debug(1, "in png_do_write_transformations");
 
if (png_ptr == NULL)
return;
 
#ifdef PNG_WRITE_USER_TRANSFORM_SUPPORTED
if (png_ptr->transformations & PNG_USER_TRANSFORM)
if (png_ptr->write_user_transform_fn != NULL)
(*(png_ptr->write_user_transform_fn)) /* User write transform
function */
(png_ptr, /* png_ptr */
&(png_ptr->row_info), /* row_info: */
/* png_uint_32 width; width of row */
/* png_size_t rowbytes; number of bytes in row */
/* png_byte color_type; color type of pixels */
/* png_byte bit_depth; bit depth of samples */
/* png_byte channels; number of channels (1-4) */
/* png_byte pixel_depth; bits per pixel (depth*channels) */
png_ptr->row_buf + 1); /* start of pixel data for row */
#endif
 
#ifdef PNG_WRITE_FILLER_SUPPORTED
if (png_ptr->transformations & PNG_FILLER)
png_do_strip_filler(&(png_ptr->row_info), png_ptr->row_buf + 1,
png_ptr->flags);
#endif
 
#ifdef PNG_WRITE_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
png_do_packswap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_WRITE_PACK_SUPPORTED
if (png_ptr->transformations & PNG_PACK)
png_do_pack(&(png_ptr->row_info), png_ptr->row_buf + 1,
(png_uint_32)png_ptr->bit_depth);
#endif
 
#ifdef PNG_WRITE_SWAP_SUPPORTED
if (png_ptr->transformations & PNG_SWAP_BYTES)
png_do_swap(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_WRITE_SHIFT_SUPPORTED
if (png_ptr->transformations & PNG_SHIFT)
png_do_shift(&(png_ptr->row_info), png_ptr->row_buf + 1,
&(png_ptr->shift));
#endif
 
#ifdef PNG_WRITE_SWAP_ALPHA_SUPPORTED
if (png_ptr->transformations & PNG_SWAP_ALPHA)
png_do_write_swap_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
if (png_ptr->transformations & PNG_INVERT_ALPHA)
png_do_write_invert_alpha(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_WRITE_BGR_SUPPORTED
if (png_ptr->transformations & PNG_BGR)
png_do_bgr(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
 
#ifdef PNG_WRITE_INVERT_SUPPORTED
if (png_ptr->transformations & PNG_INVERT_MONO)
png_do_invert(&(png_ptr->row_info), png_ptr->row_buf + 1);
#endif
}
 
#ifdef PNG_WRITE_PACK_SUPPORTED
/* Pack pixels into bytes. Pass the true bit depth in bit_depth. The
* row_info bit depth should be 8 (one pixel per byte). The channels
* should be 1 (this only happens on grayscale and paletted images).
*/
void /* PRIVATE */
png_do_pack(png_row_infop row_info, png_bytep row, png_uint_32 bit_depth)
{
png_debug(1, "in png_do_pack");
 
if (row_info->bit_depth == 8 &&
row_info->channels == 1)
{
switch ((int)bit_depth)
{
case 1:
{
png_bytep sp, dp;
int mask, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
mask = 0x80;
v = 0;
 
for (i = 0; i < row_width; i++)
{
if (*sp != 0)
v |= mask;
 
sp++;
 
if (mask > 1)
mask >>= 1;
 
else
{
mask = 0x80;
*dp = (png_byte)v;
dp++;
v = 0;
}
}
 
if (mask != 0x80)
*dp = (png_byte)v;
 
break;
}
 
case 2:
{
png_bytep sp, dp;
int shift, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
shift = 6;
v = 0;
 
for (i = 0; i < row_width; i++)
{
png_byte value;
 
value = (png_byte)(*sp & 0x03);
v |= (value << shift);
 
if (shift == 0)
{
shift = 6;
*dp = (png_byte)v;
dp++;
v = 0;
}
 
else
shift -= 2;
 
sp++;
}
 
if (shift != 6)
*dp = (png_byte)v;
 
break;
}
 
case 4:
{
png_bytep sp, dp;
int shift, v;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
sp = row;
dp = row;
shift = 4;
v = 0;
 
for (i = 0; i < row_width; i++)
{
png_byte value;
 
value = (png_byte)(*sp & 0x0f);
v |= (value << shift);
 
if (shift == 0)
{
shift = 4;
*dp = (png_byte)v;
dp++;
v = 0;
}
 
else
shift -= 4;
 
sp++;
}
 
if (shift != 4)
*dp = (png_byte)v;
 
break;
}
 
default:
break;
}
 
row_info->bit_depth = (png_byte)bit_depth;
row_info->pixel_depth = (png_byte)(bit_depth * row_info->channels);
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,
row_info->width);
}
}
#endif
 
#ifdef PNG_WRITE_SHIFT_SUPPORTED
/* Shift pixel values to take advantage of whole range. Pass the
* true number of bits in bit_depth. The row should be packed
* according to row_info->bit_depth. Thus, if you had a row of
* bit depth 4, but the pixels only had values from 0 to 7, you
* would pass 3 as bit_depth, and this routine would translate the
* data to 0 to 15.
*/
void /* PRIVATE */
png_do_shift(png_row_infop row_info, png_bytep row,
png_const_color_8p bit_depth)
{
png_debug(1, "in png_do_shift");
 
if (row_info->color_type != PNG_COLOR_TYPE_PALETTE)
{
int shift_start[4], shift_dec[4];
int channels = 0;
 
if (row_info->color_type & PNG_COLOR_MASK_COLOR)
{
shift_start[channels] = row_info->bit_depth - bit_depth->red;
shift_dec[channels] = bit_depth->red;
channels++;
 
shift_start[channels] = row_info->bit_depth - bit_depth->green;
shift_dec[channels] = bit_depth->green;
channels++;
 
shift_start[channels] = row_info->bit_depth - bit_depth->blue;
shift_dec[channels] = bit_depth->blue;
channels++;
}
 
else
{
shift_start[channels] = row_info->bit_depth - bit_depth->gray;
shift_dec[channels] = bit_depth->gray;
channels++;
}
 
if (row_info->color_type & PNG_COLOR_MASK_ALPHA)
{
shift_start[channels] = row_info->bit_depth - bit_depth->alpha;
shift_dec[channels] = bit_depth->alpha;
channels++;
}
 
/* With low row depths, could only be grayscale, so one channel */
if (row_info->bit_depth < 8)
{
png_bytep bp = row;
png_size_t i;
png_byte mask;
png_size_t row_bytes = row_info->rowbytes;
 
if (bit_depth->gray == 1 && row_info->bit_depth == 2)
mask = 0x55;
 
else if (row_info->bit_depth == 4 && bit_depth->gray == 3)
mask = 0x11;
 
else
mask = 0xff;
 
for (i = 0; i < row_bytes; i++, bp++)
{
png_uint_16 v;
int j;
 
v = *bp;
*bp = 0;
 
for (j = shift_start[0]; j > -shift_dec[0]; j -= shift_dec[0])
{
if (j > 0)
*bp |= (png_byte)((v << j) & 0xff);
 
else
*bp |= (png_byte)((v >> (-j)) & mask);
}
}
}
 
else if (row_info->bit_depth == 8)
{
png_bytep bp = row;
png_uint_32 i;
png_uint_32 istop = channels * row_info->width;
 
for (i = 0; i < istop; i++, bp++)
{
 
png_uint_16 v;
int j;
int c = (int)(i%channels);
 
v = *bp;
*bp = 0;
 
for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c])
{
if (j > 0)
*bp |= (png_byte)((v << j) & 0xff);
 
else
*bp |= (png_byte)((v >> (-j)) & 0xff);
}
}
}
 
else
{
png_bytep bp;
png_uint_32 i;
png_uint_32 istop = channels * row_info->width;
 
for (bp = row, i = 0; i < istop; i++)
{
int c = (int)(i%channels);
png_uint_16 value, v;
int j;
 
v = (png_uint_16)(((png_uint_16)(*bp) << 8) + *(bp + 1));
value = 0;
 
for (j = shift_start[c]; j > -shift_dec[c]; j -= shift_dec[c])
{
if (j > 0)
value |= (png_uint_16)((v << j) & (png_uint_16)0xffff);
 
else
value |= (png_uint_16)((v >> (-j)) & (png_uint_16)0xffff);
}
*bp++ = (png_byte)(value >> 8);
*bp++ = (png_byte)(value & 0xff);
}
}
}
}
#endif
 
#ifdef PNG_WRITE_SWAP_ALPHA_SUPPORTED
void /* PRIVATE */
png_do_write_swap_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_swap_alpha");
 
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This converts from ARGB to RGBA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save;
}
}
 
#ifdef PNG_WRITE_16BIT_SUPPORTED
else
{
/* This converts from AARRGGBB to RRGGBBAA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save[2];
save[0] = *(sp++);
save[1] = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save[0];
*(dp++) = save[1];
}
}
#endif /* PNG_WRITE_16BIT_SUPPORTED */
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This converts from AG to GA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save;
}
}
 
#ifdef PNG_WRITE_16BIT_SUPPORTED
else
{
/* This converts from AAGG to GGAA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
png_byte save[2];
save[0] = *(sp++);
save[1] = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = save[0];
*(dp++) = save[1];
}
}
#endif /* PNG_WRITE_16BIT_SUPPORTED */
}
}
}
#endif
 
#ifdef PNG_WRITE_INVERT_ALPHA_SUPPORTED
void /* PRIVATE */
png_do_write_invert_alpha(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_invert_alpha");
 
{
if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This inverts the alpha channel in RGBA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
/* Does nothing
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*/
sp+=3; dp = sp;
*(dp++) = (png_byte)(255 - *(sp++));
}
}
 
#ifdef PNG_WRITE_16BIT_SUPPORTED
else
{
/* This inverts the alpha channel in RRGGBBAA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
/* Does nothing
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*/
sp+=6; dp = sp;
*(dp++) = (png_byte)(255 - *(sp++));
*(dp++) = (png_byte)(255 - *(sp++));
}
}
#endif /* PNG_WRITE_16BIT_SUPPORTED */
}
 
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
{
if (row_info->bit_depth == 8)
{
/* This inverts the alpha channel in GA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
*(dp++) = *(sp++);
*(dp++) = (png_byte)(255 - *(sp++));
}
}
 
#ifdef PNG_WRITE_16BIT_SUPPORTED
else
{
/* This inverts the alpha channel in GGAA */
png_bytep sp, dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
for (i = 0, sp = dp = row; i < row_width; i++)
{
/* Does nothing
*(dp++) = *(sp++);
*(dp++) = *(sp++);
*/
sp+=2; dp = sp;
*(dp++) = (png_byte)(255 - *(sp++));
*(dp++) = (png_byte)(255 - *(sp++));
}
}
#endif /* PNG_WRITE_16BIT_SUPPORTED */
}
}
}
#endif
 
#ifdef PNG_MNG_FEATURES_SUPPORTED
/* Undoes intrapixel differencing */
void /* PRIVATE */
png_do_write_intrapixel(png_row_infop row_info, png_bytep row)
{
png_debug(1, "in png_do_write_intrapixel");
 
if ((row_info->color_type & PNG_COLOR_MASK_COLOR))
{
int bytes_per_pixel;
png_uint_32 row_width = row_info->width;
if (row_info->bit_depth == 8)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 3;
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 4;
 
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
*(rp) = (png_byte)((*rp - *(rp + 1)) & 0xff);
*(rp + 2) = (png_byte)((*(rp + 2) - *(rp + 1)) & 0xff);
}
}
 
#ifdef PNG_WRITE_16BIT_SUPPORTED
else if (row_info->bit_depth == 16)
{
png_bytep rp;
png_uint_32 i;
 
if (row_info->color_type == PNG_COLOR_TYPE_RGB)
bytes_per_pixel = 6;
 
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA)
bytes_per_pixel = 8;
 
else
return;
 
for (i = 0, rp = row; i < row_width; i++, rp += bytes_per_pixel)
{
png_uint_32 s0 = (*(rp ) << 8) | *(rp + 1);
png_uint_32 s1 = (*(rp + 2) << 8) | *(rp + 3);
png_uint_32 s2 = (*(rp + 4) << 8) | *(rp + 5);
png_uint_32 red = (png_uint_32)((s0 - s1) & 0xffffL);
png_uint_32 blue = (png_uint_32)((s2 - s1) & 0xffffL);
*(rp ) = (png_byte)((red >> 8) & 0xff);
*(rp + 1) = (png_byte)(red & 0xff);
*(rp + 4) = (png_byte)((blue >> 8) & 0xff);
*(rp + 5) = (png_byte)(blue & 0xff);
}
}
#endif /* PNG_WRITE_16BIT_SUPPORTED */
}
}
#endif /* PNG_MNG_FEATURES_SUPPORTED */
#endif /* PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng/pngwutil.c
0,0 → 1,2948
 
/* pngwutil.c - utilities to write a PNG file
*
* Last changed in libpng 1.5.0 [January 6, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
* This code is released under the libpng license.
* For conditions of distribution and use, see the disclaimer
* and license in png.h
*/
 
#include "pngpriv.h"
 
#ifdef PNG_WRITE_SUPPORTED
 
#ifdef PNG_WRITE_INT_FUNCTIONS_SUPPORTED
/* Place a 32-bit number into a buffer in PNG byte order. We work
* with unsigned numbers for convenience, although one supported
* ancillary chunk uses signed (two's complement) numbers.
*/
void PNGAPI
png_save_uint_32(png_bytep buf, png_uint_32 i)
{
buf[0] = (png_byte)((i >> 24) & 0xff);
buf[1] = (png_byte)((i >> 16) & 0xff);
buf[2] = (png_byte)((i >> 8) & 0xff);
buf[3] = (png_byte)(i & 0xff);
}
 
#ifdef PNG_SAVE_INT_32_SUPPORTED
/* The png_save_int_32 function assumes integers are stored in two's
* complement format. If this isn't the case, then this routine needs to
* be modified to write data in two's complement format. Note that,
* the following works correctly even if png_int_32 has more than 32 bits
* (compare the more complex code required on read for sign extention.)
*/
void PNGAPI
png_save_int_32(png_bytep buf, png_int_32 i)
{
buf[0] = (png_byte)((i >> 24) & 0xff);
buf[1] = (png_byte)((i >> 16) & 0xff);
buf[2] = (png_byte)((i >> 8) & 0xff);
buf[3] = (png_byte)(i & 0xff);
}
#endif
 
/* Place a 16-bit number into a buffer in PNG byte order.
* The parameter is declared unsigned int, not png_uint_16,
* just to avoid potential problems on pre-ANSI C compilers.
*/
void PNGAPI
png_save_uint_16(png_bytep buf, unsigned int i)
{
buf[0] = (png_byte)((i >> 8) & 0xff);
buf[1] = (png_byte)(i & 0xff);
}
#endif
 
/* Simple function to write the signature. If we have already written
* the magic bytes of the signature, or more likely, the PNG stream is
* being embedded into another stream and doesn't need its own signature,
* we should call png_set_sig_bytes() to tell libpng how many of the
* bytes have already been written.
*/
void PNGAPI
png_write_sig(png_structp png_ptr)
{
png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
 
#ifdef PNG_IO_STATE_SUPPORTED
/* Inform the I/O callback that the signature is being written */
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_SIGNATURE;
#endif
 
/* Write the rest of the 8 byte signature */
png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes],
(png_size_t)(8 - png_ptr->sig_bytes));
 
if (png_ptr->sig_bytes < 3)
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
}
 
/* Write a PNG chunk all at once. The type is an array of ASCII characters
* representing the chunk name. The array must be at least 4 bytes in
* length, and does not need to be null terminated. To be safe, pass the
* pre-defined chunk names here, and if you need a new one, define it
* where the others are defined. The length is the length of the data.
* All the data must be present. If that is not possible, use the
* png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end()
* functions instead.
*/
void PNGAPI
png_write_chunk(png_structp png_ptr, png_const_bytep chunk_name,
png_const_bytep data, png_size_t length)
{
if (png_ptr == NULL)
return;
 
png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length);
png_write_chunk_data(png_ptr, data, (png_size_t)length);
png_write_chunk_end(png_ptr);
}
 
/* Write the start of a PNG chunk. The type is the chunk type.
* The total_length is the sum of the lengths of all the data you will be
* passing in png_write_chunk_data().
*/
void PNGAPI
png_write_chunk_start(png_structp png_ptr, png_const_bytep chunk_name,
png_uint_32 length)
{
png_byte buf[8];
 
png_debug2(0, "Writing %s chunk, length = %lu", chunk_name,
(unsigned long)length);
 
if (png_ptr == NULL)
return;
 
#ifdef PNG_IO_STATE_SUPPORTED
/* Inform the I/O callback that the chunk header is being written.
* PNG_IO_CHUNK_HDR requires a single I/O call.
*/
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_HDR;
#endif
 
/* Write the length and the chunk name */
png_save_uint_32(buf, length);
png_memcpy(buf + 4, chunk_name, 4);
png_write_data(png_ptr, buf, (png_size_t)8);
 
/* Put the chunk name into png_ptr->chunk_name */
png_memcpy(png_ptr->chunk_name, chunk_name, 4);
 
/* Reset the crc and run it over the chunk name */
png_reset_crc(png_ptr);
 
png_calculate_crc(png_ptr, chunk_name, 4);
 
#ifdef PNG_IO_STATE_SUPPORTED
/* Inform the I/O callback that chunk data will (possibly) be written.
* PNG_IO_CHUNK_DATA does NOT require a specific number of I/O calls.
*/
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_DATA;
#endif
}
 
/* Write the data of a PNG chunk started with png_write_chunk_start().
* Note that multiple calls to this function are allowed, and that the
* sum of the lengths from these calls *must* add up to the total_length
* given to png_write_chunk_start().
*/
void PNGAPI
png_write_chunk_data(png_structp png_ptr, png_const_bytep data,
png_size_t length)
{
/* Write the data, and run the CRC over it */
if (png_ptr == NULL)
return;
 
if (data != NULL && length > 0)
{
png_write_data(png_ptr, data, length);
 
/* Update the CRC after writing the data,
* in case that the user I/O routine alters it.
*/
png_calculate_crc(png_ptr, data, length);
}
}
 
/* Finish a chunk started with png_write_chunk_start(). */
void PNGAPI
png_write_chunk_end(png_structp png_ptr)
{
png_byte buf[4];
 
if (png_ptr == NULL) return;
 
#ifdef PNG_IO_STATE_SUPPORTED
/* Inform the I/O callback that the chunk CRC is being written.
* PNG_IO_CHUNK_CRC requires a single I/O function call.
*/
png_ptr->io_state = PNG_IO_WRITING | PNG_IO_CHUNK_CRC;
#endif
 
/* Write the crc in a single operation */
png_save_uint_32(buf, png_ptr->crc);
 
png_write_data(png_ptr, buf, (png_size_t)4);
}
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_iCCP_SUPPORTED)
/* This pair of functions encapsulates the operation of (a) compressing a
* text string, and (b) issuing it later as a series of chunk data writes.
* The compression_state structure is shared context for these functions
* set up by the caller in order to make the whole mess thread-safe.
*/
 
typedef struct
{
png_const_bytep input; /* The uncompressed input data */
png_size_t input_len; /* Its length */
int num_output_ptr; /* Number of output pointers used */
int max_output_ptr; /* Size of output_ptr */
png_bytep *output_ptr; /* Array of pointers to output */
} compression_state;
 
/* Compress given text into storage in the png_ptr structure */
static int /* PRIVATE */
png_text_compress(png_structp png_ptr,
png_const_charp text, png_size_t text_len, int compression,
compression_state *comp)
{
int ret;
 
comp->num_output_ptr = 0;
comp->max_output_ptr = 0;
comp->output_ptr = NULL;
comp->input = NULL;
comp->input_len = 0;
 
/* We may just want to pass the text right through */
if (compression == PNG_TEXT_COMPRESSION_NONE)
{
comp->input = (png_const_bytep)text;
comp->input_len = text_len;
return((int)text_len);
}
 
if (compression >= PNG_TEXT_COMPRESSION_LAST)
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
char msg[50];
png_snprintf(msg, 50, "Unknown compression type %d", compression);
png_warning(png_ptr, msg);
#else
png_warning(png_ptr, "Unknown compression type");
#endif
}
 
/* We can't write the chunk until we find out how much data we have,
* which means we need to run the compressor first and save the
* output. This shouldn't be a problem, as the vast majority of
* comments should be reasonable, but we will set up an array of
* malloc'd pointers to be sure.
*
* If we knew the application was well behaved, we could simplify this
* greatly by assuming we can always malloc an output buffer large
* enough to hold the compressed text ((1001 * text_len / 1000) + 12)
* and malloc this directly. The only time this would be a bad idea is
* if we can't malloc more than 64K and we have 64K of random input
* data, or if the input string is incredibly large (although this
* wouldn't cause a failure, just a slowdown due to swapping).
*/
 
/* Set up the compression buffers */
/* TODO: the following cast hides a potential overflow problem. */
png_ptr->zstream.avail_in = (uInt)text_len;
/* NOTE: assume zlib doesn't overwrite the input */
png_ptr->zstream.next_in = (Bytef *)text;
png_ptr->zstream.avail_out = png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
 
/* This is the same compression loop as in png_write_row() */
do
{
/* Compress the data */
ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
 
if (ret != Z_OK)
{
/* Error */
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
 
else
png_error(png_ptr, "zlib error");
}
 
/* Check to see if we need more room */
if (!(png_ptr->zstream.avail_out))
{
/* Make sure the output array has room */
if (comp->num_output_ptr >= comp->max_output_ptr)
{
int old_max;
 
old_max = comp->max_output_ptr;
comp->max_output_ptr = comp->num_output_ptr + 4;
if (comp->output_ptr != NULL)
{
png_bytepp old_ptr;
 
old_ptr = comp->output_ptr;
 
comp->output_ptr = (png_bytepp)png_malloc(png_ptr,
(png_alloc_size_t)
(comp->max_output_ptr * png_sizeof(png_charpp)));
 
png_memcpy(comp->output_ptr, old_ptr, old_max
* png_sizeof(png_charp));
 
png_free(png_ptr, old_ptr);
}
else
comp->output_ptr = (png_bytepp)png_malloc(png_ptr,
(png_alloc_size_t)
(comp->max_output_ptr * png_sizeof(png_charp)));
}
 
/* Save the data */
comp->output_ptr[comp->num_output_ptr] =
(png_bytep)png_malloc(png_ptr,
(png_alloc_size_t)png_ptr->zbuf_size);
 
png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
png_ptr->zbuf_size);
 
comp->num_output_ptr++;
 
/* and reset the buffer */
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
/* Continue until we don't have any more to compress */
} while (png_ptr->zstream.avail_in);
 
/* Finish the compression */
do
{
/* Tell zlib we are finished */
ret = deflate(&png_ptr->zstream, Z_FINISH);
 
if (ret == Z_OK)
{
/* Check to see if we need more room */
if (!(png_ptr->zstream.avail_out))
{
/* Check to make sure our output array has room */
if (comp->num_output_ptr >= comp->max_output_ptr)
{
int old_max;
 
old_max = comp->max_output_ptr;
comp->max_output_ptr = comp->num_output_ptr + 4;
if (comp->output_ptr != NULL)
{
png_bytepp old_ptr;
 
old_ptr = comp->output_ptr;
 
/* This could be optimized to realloc() */
comp->output_ptr = (png_bytepp)png_malloc(png_ptr,
(png_alloc_size_t)(comp->max_output_ptr *
png_sizeof(png_charp)));
 
png_memcpy(comp->output_ptr, old_ptr,
old_max * png_sizeof(png_charp));
 
png_free(png_ptr, old_ptr);
}
 
else
comp->output_ptr = (png_bytepp)png_malloc(png_ptr,
(png_alloc_size_t)(comp->max_output_ptr *
png_sizeof(png_charp)));
}
 
/* Save the data */
comp->output_ptr[comp->num_output_ptr] =
(png_bytep)png_malloc(png_ptr,
(png_alloc_size_t)png_ptr->zbuf_size);
 
png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
png_ptr->zbuf_size);
 
comp->num_output_ptr++;
 
/* and reset the buffer pointers */
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
}
else if (ret != Z_STREAM_END)
{
/* We got an error */
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
 
else
png_error(png_ptr, "zlib error");
}
} while (ret != Z_STREAM_END);
 
/* Text length is number of buffers plus last buffer */
text_len = png_ptr->zbuf_size * comp->num_output_ptr;
 
if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out;
 
return((int)text_len);
}
 
/* Ship the compressed text out via chunk writes */
static void /* PRIVATE */
png_write_compressed_data_out(png_structp png_ptr, compression_state *comp)
{
int i;
 
/* Handle the no-compression case */
if (comp->input)
{
png_write_chunk_data(png_ptr, comp->input, comp->input_len);
 
return;
}
 
/* Write saved output buffers, if any */
for (i = 0; i < comp->num_output_ptr; i++)
{
png_write_chunk_data(png_ptr, comp->output_ptr[i],
(png_size_t)png_ptr->zbuf_size);
 
png_free(png_ptr, comp->output_ptr[i]);
}
 
if (comp->max_output_ptr != 0)
png_free(png_ptr, comp->output_ptr);
 
/* Write anything left in zbuf */
if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size)
png_write_chunk_data(png_ptr, png_ptr->zbuf,
(png_size_t)(png_ptr->zbuf_size - png_ptr->zstream.avail_out));
 
/* Reset zlib for another zTXt/iTXt or image data */
deflateReset(&png_ptr->zstream);
png_ptr->zstream.data_type = Z_BINARY;
}
#endif
 
/* Write the IHDR chunk, and update the png_struct with the necessary
* information. Note that the rest of this code depends upon this
* information being correct.
*/
void /* PRIVATE */
png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height,
int bit_depth, int color_type, int compression_type, int filter_type,
int interlace_type)
{
PNG_IHDR;
int ret;
 
png_byte buf[13]; /* Buffer to store the IHDR info */
 
png_debug(1, "in png_write_IHDR");
 
/* Check that we have valid input data from the application info */
switch (color_type)
{
case PNG_COLOR_TYPE_GRAY:
switch (bit_depth)
{
case 1:
case 2:
case 4:
case 8:
#ifdef PNG_WRITE_16BIT_SUPPORTED
case 16:
#endif
png_ptr->channels = 1; break;
 
default:
png_error(png_ptr,
"Invalid bit depth for grayscale image");
}
break;
 
case PNG_COLOR_TYPE_RGB:
#ifdef PNG_WRITE_16BIT_SUPPORTED
if (bit_depth != 8 && bit_depth != 16)
#else
if (bit_depth != 8)
#endif
png_error(png_ptr, "Invalid bit depth for RGB image");
 
png_ptr->channels = 3;
break;
 
case PNG_COLOR_TYPE_PALETTE:
switch (bit_depth)
{
case 1:
case 2:
case 4:
case 8:
png_ptr->channels = 1;
break;
 
default:
png_error(png_ptr, "Invalid bit depth for paletted image");
}
break;
 
case PNG_COLOR_TYPE_GRAY_ALPHA:
if (bit_depth != 8 && bit_depth != 16)
png_error(png_ptr, "Invalid bit depth for grayscale+alpha image");
 
png_ptr->channels = 2;
break;
 
case PNG_COLOR_TYPE_RGB_ALPHA:
#ifdef PNG_WRITE_16BIT_SUPPORTED
if (bit_depth != 8 && bit_depth != 16)
#else
if (bit_depth != 8)
#endif
png_error(png_ptr, "Invalid bit depth for RGBA image");
 
png_ptr->channels = 4;
break;
 
default:
png_error(png_ptr, "Invalid image color type specified");
}
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
{
png_warning(png_ptr, "Invalid compression type specified");
compression_type = PNG_COMPRESSION_TYPE_BASE;
}
 
/* Write filter_method 64 (intrapixel differencing) only if
* 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
* 2. Libpng did not write a PNG signature (this filter_method is only
* used in PNG datastreams that are embedded in MNG datastreams) and
* 3. The application called png_permit_mng_features with a mask that
* included PNG_FLAG_MNG_FILTER_64 and
* 4. The filter_method is 64 and
* 5. The color_type is RGB or RGBA
*/
if (
#ifdef PNG_MNG_FEATURES_SUPPORTED
!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) &&
(color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA) &&
(filter_type == PNG_INTRAPIXEL_DIFFERENCING)) &&
#endif
filter_type != PNG_FILTER_TYPE_BASE)
{
png_warning(png_ptr, "Invalid filter type specified");
filter_type = PNG_FILTER_TYPE_BASE;
}
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
if (interlace_type != PNG_INTERLACE_NONE &&
interlace_type != PNG_INTERLACE_ADAM7)
{
png_warning(png_ptr, "Invalid interlace type specified");
interlace_type = PNG_INTERLACE_ADAM7;
}
#else
interlace_type=PNG_INTERLACE_NONE;
#endif
 
/* Save the relevent information */
png_ptr->bit_depth = (png_byte)bit_depth;
png_ptr->color_type = (png_byte)color_type;
png_ptr->interlaced = (png_byte)interlace_type;
#ifdef PNG_MNG_FEATURES_SUPPORTED
png_ptr->filter_type = (png_byte)filter_type;
#endif
png_ptr->compression_type = (png_byte)compression_type;
png_ptr->width = width;
png_ptr->height = height;
 
png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels);
png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, width);
/* Set the usr info, so any transformations can modify it */
png_ptr->usr_width = png_ptr->width;
png_ptr->usr_bit_depth = png_ptr->bit_depth;
png_ptr->usr_channels = png_ptr->channels;
 
/* Pack the header information into the buffer */
png_save_uint_32(buf, width);
png_save_uint_32(buf + 4, height);
buf[8] = (png_byte)bit_depth;
buf[9] = (png_byte)color_type;
buf[10] = (png_byte)compression_type;
buf[11] = (png_byte)filter_type;
buf[12] = (png_byte)interlace_type;
 
/* Write the chunk */
png_write_chunk(png_ptr, png_IHDR, buf, (png_size_t)13);
 
/* Initialize zlib with PNG info */
png_ptr->zstream.zalloc = png_zalloc;
png_ptr->zstream.zfree = png_zfree;
png_ptr->zstream.opaque = (voidpf)png_ptr;
 
if (!(png_ptr->do_filter))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
png_ptr->bit_depth < 8)
png_ptr->do_filter = PNG_FILTER_NONE;
 
else
png_ptr->do_filter = PNG_ALL_FILTERS;
}
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY))
{
if (png_ptr->do_filter != PNG_FILTER_NONE)
png_ptr->zlib_strategy = Z_FILTERED;
 
else
png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY;
}
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL))
png_ptr->zlib_level = Z_DEFAULT_COMPRESSION;
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL))
png_ptr->zlib_mem_level = 8;
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS))
png_ptr->zlib_window_bits = 15;
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD))
png_ptr->zlib_method = 8;
 
ret = deflateInit2(&png_ptr->zstream, png_ptr->zlib_level,
png_ptr->zlib_method, png_ptr->zlib_window_bits,
png_ptr->zlib_mem_level, png_ptr->zlib_strategy);
 
if (ret != Z_OK)
{
if (ret == Z_VERSION_ERROR)
png_error(png_ptr,
"zlib failed to initialize compressor -- version error");
 
if (ret == Z_STREAM_ERROR)
png_error(png_ptr,
"zlib failed to initialize compressor -- stream error");
 
if (ret == Z_MEM_ERROR)
png_error(png_ptr,
"zlib failed to initialize compressor -- mem error");
 
png_error(png_ptr, "zlib failed to initialize compressor");
}
 
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
/* libpng is not interested in zstream.data_type, so set it
* to a predefined value, to avoid its evaluation inside zlib
*/
png_ptr->zstream.data_type = Z_BINARY;
 
png_ptr->mode = PNG_HAVE_IHDR;
}
 
/* Write the palette. We are careful not to trust png_color to be in the
* correct order for PNG, so people can redefine it to any convenient
* structure.
*/
void /* PRIVATE */
png_write_PLTE(png_structp png_ptr, png_const_colorp palette,
png_uint_32 num_pal)
{
PNG_PLTE;
png_uint_32 i;
png_const_colorp pal_ptr;
png_byte buf[3];
 
png_debug(1, "in png_write_PLTE");
 
if ((
#ifdef PNG_MNG_FEATURES_SUPPORTED
!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) &&
#endif
num_pal == 0) || num_pal > 256)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_error(png_ptr, "Invalid number of colors in palette");
}
 
else
{
png_warning(png_ptr, "Invalid number of colors in palette");
return;
}
}
 
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR))
{
png_warning(png_ptr,
"Ignoring request to write a PLTE chunk in grayscale PNG");
 
return;
}
 
png_ptr->num_palette = (png_uint_16)num_pal;
png_debug1(3, "num_palette = %d", png_ptr->num_palette);
 
png_write_chunk_start(png_ptr, png_PLTE, (png_uint_32)(num_pal * 3));
#ifdef PNG_POINTER_INDEXING_SUPPORTED
 
for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++)
{
buf[0] = pal_ptr->red;
buf[1] = pal_ptr->green;
buf[2] = pal_ptr->blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
 
#else
/* This is a little slower but some buggy compilers need to do this
* instead
*/
pal_ptr=palette;
 
for (i = 0; i < num_pal; i++)
{
buf[0] = pal_ptr[i].red;
buf[1] = pal_ptr[i].green;
buf[2] = pal_ptr[i].blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
 
#endif
png_write_chunk_end(png_ptr);
png_ptr->mode |= PNG_HAVE_PLTE;
}
 
/* Write an IDAT chunk */
void /* PRIVATE */
png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length)
{
PNG_IDAT;
 
png_debug(1, "in png_write_IDAT");
 
/* Optimize the CMF field in the zlib stream. */
/* This hack of the zlib stream is compliant to the stream specification. */
if (!(png_ptr->mode & PNG_HAVE_IDAT) &&
png_ptr->compression_type == PNG_COMPRESSION_TYPE_BASE)
{
unsigned int z_cmf = data[0]; /* zlib compression method and flags */
if ((z_cmf & 0x0f) == 8 && (z_cmf & 0xf0) <= 0x70)
{
/* Avoid memory underflows and multiplication overflows.
*
* The conditions below are practically always satisfied;
* however, they still must be checked.
*/
if (length >= 2 &&
png_ptr->height < 16384 && png_ptr->width < 16384)
{
png_uint_32 uncompressed_idat_size = png_ptr->height *
((png_ptr->width *
png_ptr->channels * png_ptr->bit_depth + 15) >> 3);
unsigned int z_cinfo = z_cmf >> 4;
unsigned int half_z_window_size = 1 << (z_cinfo + 7);
while (uncompressed_idat_size <= half_z_window_size &&
half_z_window_size >= 256)
{
z_cinfo--;
half_z_window_size >>= 1;
}
 
z_cmf = (z_cmf & 0x0f) | (z_cinfo << 4);
 
if (data[0] != z_cmf)
{
int tmp;
data[0] = (png_byte)z_cmf;
tmp = data[1] & 0xe0;
tmp += 0x1f - ((z_cmf << 8) + tmp) % 0x1f;
data[1] = (png_byte)tmp;
}
}
}
 
else
png_error(png_ptr,
"Invalid zlib compression method or flags in IDAT");
}
 
png_write_chunk(png_ptr, png_IDAT, data, length);
png_ptr->mode |= PNG_HAVE_IDAT;
}
 
/* Write an IEND chunk */
void /* PRIVATE */
png_write_IEND(png_structp png_ptr)
{
PNG_IEND;
 
png_debug(1, "in png_write_IEND");
 
png_write_chunk(png_ptr, png_IEND, NULL, (png_size_t)0);
png_ptr->mode |= PNG_HAVE_IEND;
}
 
#ifdef PNG_WRITE_gAMA_SUPPORTED
/* Write a gAMA chunk */
void /* PRIVATE */
png_write_gAMA_fixed(png_structp png_ptr, png_fixed_point file_gamma)
{
PNG_gAMA;
png_byte buf[4];
 
png_debug(1, "in png_write_gAMA");
 
/* file_gamma is saved in 1/100,000ths */
png_save_uint_32(buf, (png_uint_32)file_gamma);
png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4);
}
#endif
 
#ifdef PNG_WRITE_sRGB_SUPPORTED
/* Write a sRGB chunk */
void /* PRIVATE */
png_write_sRGB(png_structp png_ptr, int srgb_intent)
{
PNG_sRGB;
png_byte buf[1];
 
png_debug(1, "in png_write_sRGB");
 
if (srgb_intent >= PNG_sRGB_INTENT_LAST)
png_warning(png_ptr,
"Invalid sRGB rendering intent specified");
 
buf[0]=(png_byte)srgb_intent;
png_write_chunk(png_ptr, png_sRGB, buf, (png_size_t)1);
}
#endif
 
#ifdef PNG_WRITE_iCCP_SUPPORTED
/* Write an iCCP chunk */
void /* PRIVATE */
png_write_iCCP(png_structp png_ptr, png_const_charp name, int compression_type,
png_const_charp profile, int profile_len)
{
PNG_iCCP;
png_size_t name_len;
png_charp new_name;
compression_state comp;
int embedded_profile_len = 0;
 
png_debug(1, "in png_write_iCCP");
 
comp.num_output_ptr = 0;
comp.max_output_ptr = 0;
comp.output_ptr = NULL;
comp.input = NULL;
comp.input_len = 0;
 
if ((name_len = png_check_keyword(png_ptr, name, &new_name)) == 0)
return;
 
if (compression_type != PNG_COMPRESSION_TYPE_BASE)
png_warning(png_ptr, "Unknown compression type in iCCP chunk");
 
if (profile == NULL)
profile_len = 0;
 
if (profile_len > 3)
embedded_profile_len =
((*( (png_const_bytep)profile ))<<24) |
((*( (png_const_bytep)profile + 1))<<16) |
((*( (png_const_bytep)profile + 2))<< 8) |
((*( (png_const_bytep)profile + 3)) );
 
if (embedded_profile_len < 0)
{
png_warning(png_ptr,
"Embedded profile length in iCCP chunk is negative");
 
png_free(png_ptr, new_name);
return;
}
 
if (profile_len < embedded_profile_len)
{
png_warning(png_ptr,
"Embedded profile length too large in iCCP chunk");
 
png_free(png_ptr, new_name);
return;
}
 
if (profile_len > embedded_profile_len)
{
png_warning(png_ptr,
"Truncating profile to actual length in iCCP chunk");
 
profile_len = embedded_profile_len;
}
 
if (profile_len)
profile_len = png_text_compress(png_ptr, profile,
(png_size_t)profile_len, PNG_COMPRESSION_TYPE_BASE, &comp);
 
/* Make sure we include the NULL after the name and the compression type */
png_write_chunk_start(png_ptr, png_iCCP,
(png_uint_32)(name_len + profile_len + 2));
 
new_name[name_len + 1] = 0x00;
 
png_write_chunk_data(png_ptr, (png_bytep)new_name,
(png_size_t)(name_len + 2));
 
if (profile_len)
png_write_compressed_data_out(png_ptr, &comp);
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_name);
}
#endif
 
#ifdef PNG_WRITE_sPLT_SUPPORTED
/* Write a sPLT chunk */
void /* PRIVATE */
png_write_sPLT(png_structp png_ptr, png_const_sPLT_tp spalette)
{
PNG_sPLT;
png_size_t name_len;
png_charp new_name;
png_byte entrybuf[10];
png_size_t entry_size = (spalette->depth == 8 ? 6 : 10);
png_size_t palette_size = entry_size * spalette->nentries;
png_sPLT_entryp ep;
#ifndef PNG_POINTER_INDEXING_SUPPORTED
int i;
#endif
 
png_debug(1, "in png_write_sPLT");
 
if ((name_len = png_check_keyword(png_ptr,spalette->name, &new_name))==0)
return;
 
/* Make sure we include the NULL after the name */
png_write_chunk_start(png_ptr, png_sPLT,
(png_uint_32)(name_len + 2 + palette_size));
 
png_write_chunk_data(png_ptr, (png_bytep)new_name,
(png_size_t)(name_len + 1));
 
png_write_chunk_data(png_ptr, &spalette->depth, (png_size_t)1);
 
/* Loop through each palette entry, writing appropriately */
#ifdef PNG_POINTER_INDEXING_SUPPORTED
for (ep = spalette->entries; ep<spalette->entries + spalette->nentries; ep++)
{
if (spalette->depth == 8)
{
entrybuf[0] = (png_byte)ep->red;
entrybuf[1] = (png_byte)ep->green;
entrybuf[2] = (png_byte)ep->blue;
entrybuf[3] = (png_byte)ep->alpha;
png_save_uint_16(entrybuf + 4, ep->frequency);
}
 
else
{
png_save_uint_16(entrybuf + 0, ep->red);
png_save_uint_16(entrybuf + 2, ep->green);
png_save_uint_16(entrybuf + 4, ep->blue);
png_save_uint_16(entrybuf + 6, ep->alpha);
png_save_uint_16(entrybuf + 8, ep->frequency);
}
 
png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size);
}
#else
ep=spalette->entries;
for (i = 0; i>spalette->nentries; i++)
{
if (spalette->depth == 8)
{
entrybuf[0] = (png_byte)ep[i].red;
entrybuf[1] = (png_byte)ep[i].green;
entrybuf[2] = (png_byte)ep[i].blue;
entrybuf[3] = (png_byte)ep[i].alpha;
png_save_uint_16(entrybuf + 4, ep[i].frequency);
}
 
else
{
png_save_uint_16(entrybuf + 0, ep[i].red);
png_save_uint_16(entrybuf + 2, ep[i].green);
png_save_uint_16(entrybuf + 4, ep[i].blue);
png_save_uint_16(entrybuf + 6, ep[i].alpha);
png_save_uint_16(entrybuf + 8, ep[i].frequency);
}
 
png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size);
}
#endif
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_name);
}
#endif
 
#ifdef PNG_WRITE_sBIT_SUPPORTED
/* Write the sBIT chunk */
void /* PRIVATE */
png_write_sBIT(png_structp png_ptr, png_const_color_8p sbit, int color_type)
{
PNG_sBIT;
png_byte buf[4];
png_size_t size;
 
png_debug(1, "in png_write_sBIT");
 
/* Make sure we don't depend upon the order of PNG_COLOR_8 */
if (color_type & PNG_COLOR_MASK_COLOR)
{
png_byte maxbits;
 
maxbits = (png_byte)(color_type==PNG_COLOR_TYPE_PALETTE ? 8 :
png_ptr->usr_bit_depth);
 
if (sbit->red == 0 || sbit->red > maxbits ||
sbit->green == 0 || sbit->green > maxbits ||
sbit->blue == 0 || sbit->blue > maxbits)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
 
buf[0] = sbit->red;
buf[1] = sbit->green;
buf[2] = sbit->blue;
size = 3;
}
 
else
{
if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
 
buf[0] = sbit->gray;
size = 1;
}
 
if (color_type & PNG_COLOR_MASK_ALPHA)
{
if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth)
{
png_warning(png_ptr, "Invalid sBIT depth specified");
return;
}
 
buf[size++] = sbit->alpha;
}
 
png_write_chunk(png_ptr, png_sBIT, buf, size);
}
#endif
 
#ifdef PNG_WRITE_cHRM_SUPPORTED
/* Write the cHRM chunk */
void /* PRIVATE */
png_write_cHRM_fixed(png_structp png_ptr, png_fixed_point white_x,
png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y,
png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x,
png_fixed_point blue_y)
{
PNG_cHRM;
png_byte buf[32];
 
png_debug(1, "in png_write_cHRM");
 
/* Each value is saved in 1/100,000ths */
#ifdef PNG_CHECK_cHRM_SUPPORTED
if (png_check_cHRM_fixed(png_ptr, white_x, white_y, red_x, red_y,
green_x, green_y, blue_x, blue_y))
#endif
{
png_save_uint_32(buf, (png_uint_32)white_x);
png_save_uint_32(buf + 4, (png_uint_32)white_y);
 
png_save_uint_32(buf + 8, (png_uint_32)red_x);
png_save_uint_32(buf + 12, (png_uint_32)red_y);
 
png_save_uint_32(buf + 16, (png_uint_32)green_x);
png_save_uint_32(buf + 20, (png_uint_32)green_y);
 
png_save_uint_32(buf + 24, (png_uint_32)blue_x);
png_save_uint_32(buf + 28, (png_uint_32)blue_y);
 
png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32);
}
}
#endif
 
#ifdef PNG_WRITE_tRNS_SUPPORTED
/* Write the tRNS chunk */
void /* PRIVATE */
png_write_tRNS(png_structp png_ptr, png_const_bytep trans_alpha,
png_const_color_16p tran, int num_trans, int color_type)
{
PNG_tRNS;
png_byte buf[6];
 
png_debug(1, "in png_write_tRNS");
 
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette)
{
png_warning(png_ptr, "Invalid number of transparent colors specified");
return;
}
 
/* Write the chunk out as it is */
png_write_chunk(png_ptr, png_tRNS, trans_alpha, (png_size_t)num_trans);
}
 
else if (color_type == PNG_COLOR_TYPE_GRAY)
{
/* One 16 bit value */
if (tran->gray >= (1 << png_ptr->bit_depth))
{
png_warning(png_ptr,
"Ignoring attempt to write tRNS chunk out-of-range for bit_depth");
 
return;
}
 
png_save_uint_16(buf, tran->gray);
png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)2);
}
 
else if (color_type == PNG_COLOR_TYPE_RGB)
{
/* Three 16 bit values */
png_save_uint_16(buf, tran->red);
png_save_uint_16(buf + 2, tran->green);
png_save_uint_16(buf + 4, tran->blue);
#ifdef PNG_WRITE_16BIT_SUPPORTED
if (png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4]))
#else
if (buf[0] | buf[2] | buf[4])
#endif
{
png_warning(png_ptr,
"Ignoring attempt to write 16-bit tRNS chunk when bit_depth is 8");
return;
}
 
png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)6);
}
 
else
{
png_warning(png_ptr, "Can't write tRNS with an alpha channel");
}
}
#endif
 
#ifdef PNG_WRITE_bKGD_SUPPORTED
/* Write the background chunk */
void /* PRIVATE */
png_write_bKGD(png_structp png_ptr, png_const_color_16p back, int color_type)
{
PNG_bKGD;
png_byte buf[6];
 
png_debug(1, "in png_write_bKGD");
 
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
if (
#ifdef PNG_MNG_FEATURES_SUPPORTED
(png_ptr->num_palette ||
(!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE))) &&
#endif
back->index >= png_ptr->num_palette)
{
png_warning(png_ptr, "Invalid background palette index");
return;
}
 
buf[0] = back->index;
png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)1);
}
 
else if (color_type & PNG_COLOR_MASK_COLOR)
{
png_save_uint_16(buf, back->red);
png_save_uint_16(buf + 2, back->green);
png_save_uint_16(buf + 4, back->blue);
#ifdef PNG_WRITE_16BIT_SUPPORTED
if (png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4]))
#else
if (buf[0] | buf[2] | buf[4])
#endif
{
png_warning(png_ptr,
"Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8");
 
return;
}
 
png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)6);
}
 
else
{
if (back->gray >= (1 << png_ptr->bit_depth))
{
png_warning(png_ptr,
"Ignoring attempt to write bKGD chunk out-of-range for bit_depth");
 
return;
}
 
png_save_uint_16(buf, back->gray);
png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)2);
}
}
#endif
 
#ifdef PNG_WRITE_hIST_SUPPORTED
/* Write the histogram */
void /* PRIVATE */
png_write_hIST(png_structp png_ptr, png_const_uint_16p hist, int num_hist)
{
PNG_hIST;
int i;
png_byte buf[3];
 
png_debug(1, "in png_write_hIST");
 
if (num_hist > (int)png_ptr->num_palette)
{
png_debug2(3, "num_hist = %d, num_palette = %d", num_hist,
png_ptr->num_palette);
 
png_warning(png_ptr, "Invalid number of histogram entries specified");
return;
}
 
png_write_chunk_start(png_ptr, png_hIST, (png_uint_32)(num_hist * 2));
 
for (i = 0; i < num_hist; i++)
{
png_save_uint_16(buf, hist[i]);
png_write_chunk_data(png_ptr, buf, (png_size_t)2);
}
 
png_write_chunk_end(png_ptr);
}
#endif
 
#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
/* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification,
* and if invalid, correct the keyword rather than discarding the entire
* chunk. The PNG 1.0 specification requires keywords 1-79 characters in
* length, forbids leading or trailing whitespace, multiple internal spaces,
* and the non-break space (0x80) from ISO 8859-1. Returns keyword length.
*
* The new_key is allocated to hold the corrected keyword and must be freed
* by the calling routine. This avoids problems with trying to write to
* static keywords without having to have duplicate copies of the strings.
*/
png_size_t /* PRIVATE */
png_check_keyword(png_structp png_ptr, png_const_charp key, png_charpp new_key)
{
png_size_t key_len;
png_const_charp ikp;
png_charp kp, dp;
int kflag;
int kwarn=0;
 
png_debug(1, "in png_check_keyword");
 
*new_key = NULL;
 
if (key == NULL || (key_len = png_strlen(key)) == 0)
{
png_warning(png_ptr, "zero length keyword");
return ((png_size_t)0);
}
 
png_debug1(2, "Keyword to be checked is '%s'", key);
 
*new_key = (png_charp)png_malloc_warn(png_ptr, (png_uint_32)(key_len + 2));
 
if (*new_key == NULL)
{
png_warning(png_ptr, "Out of memory while procesing keyword");
return ((png_size_t)0);
}
 
/* Replace non-printing characters with a blank and print a warning */
for (ikp = key, dp = *new_key; *ikp != '\0'; ikp++, dp++)
{
if ((png_byte)*ikp < 0x20 ||
((png_byte)*ikp > 0x7E && (png_byte)*ikp < 0xA1))
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
char msg[40];
 
png_snprintf(msg, 40,
"invalid keyword character 0x%02X", (png_byte)*ikp);
png_warning(png_ptr, msg);
#else
png_warning(png_ptr, "invalid character in keyword");
#endif
*dp = ' ';
}
 
else
{
*dp = *ikp;
}
}
*dp = '\0';
 
/* Remove any trailing white space. */
kp = *new_key + key_len - 1;
if (*kp == ' ')
{
png_warning(png_ptr, "trailing spaces removed from keyword");
 
while (*kp == ' ')
{
*(kp--) = '\0';
key_len--;
}
}
 
/* Remove any leading white space. */
kp = *new_key;
if (*kp == ' ')
{
png_warning(png_ptr, "leading spaces removed from keyword");
 
while (*kp == ' ')
{
kp++;
key_len--;
}
}
 
png_debug1(2, "Checking for multiple internal spaces in '%s'", kp);
 
/* Remove multiple internal spaces. */
for (kflag = 0, dp = *new_key; *kp != '\0'; kp++)
{
if (*kp == ' ' && kflag == 0)
{
*(dp++) = *kp;
kflag = 1;
}
 
else if (*kp == ' ')
{
key_len--;
kwarn = 1;
}
 
else
{
*(dp++) = *kp;
kflag = 0;
}
}
*dp = '\0';
if (kwarn)
png_warning(png_ptr, "extra interior spaces removed from keyword");
 
if (key_len == 0)
{
png_free(png_ptr, *new_key);
png_warning(png_ptr, "Zero length keyword");
}
 
if (key_len > 79)
{
png_warning(png_ptr, "keyword length must be 1 - 79 characters");
(*new_key)[79] = '\0';
key_len = 79;
}
 
return (key_len);
}
#endif
 
#ifdef PNG_WRITE_tEXt_SUPPORTED
/* Write a tEXt chunk */
void /* PRIVATE */
png_write_tEXt(png_structp png_ptr, png_const_charp key, png_const_charp text,
png_size_t text_len)
{
PNG_tEXt;
png_size_t key_len;
png_charp new_key;
 
png_debug(1, "in png_write_tEXt");
 
if ((key_len = png_check_keyword(png_ptr, key, &new_key))==0)
return;
 
if (text == NULL || *text == '\0')
text_len = 0;
 
else
text_len = png_strlen(text);
 
/* Make sure we include the 0 after the key */
png_write_chunk_start(png_ptr, png_tEXt,
(png_uint_32)(key_len + text_len + 1));
/*
* We leave it to the application to meet PNG-1.0 requirements on the
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
* any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them.
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
*/
png_write_chunk_data(png_ptr, (png_bytep)new_key,
(png_size_t)(key_len + 1));
 
if (text_len)
png_write_chunk_data(png_ptr, (png_const_bytep)text,
(png_size_t)text_len);
 
png_write_chunk_end(png_ptr);
png_free(png_ptr, new_key);
}
#endif
 
#ifdef PNG_WRITE_zTXt_SUPPORTED
/* Write a compressed text chunk */
void /* PRIVATE */
png_write_zTXt(png_structp png_ptr, png_const_charp key, png_const_charp text,
png_size_t text_len, int compression)
{
PNG_zTXt;
png_size_t key_len;
png_byte buf;
png_charp new_key;
compression_state comp;
 
png_debug(1, "in png_write_zTXt");
 
comp.num_output_ptr = 0;
comp.max_output_ptr = 0;
comp.output_ptr = NULL;
comp.input = NULL;
comp.input_len = 0;
 
if ((key_len = png_check_keyword(png_ptr, key, &new_key)) == 0)
{
png_free(png_ptr, new_key);
return;
}
 
if (text == NULL || *text == '\0' || compression==PNG_TEXT_COMPRESSION_NONE)
{
png_write_tEXt(png_ptr, new_key, text, (png_size_t)0);
png_free(png_ptr, new_key);
return;
}
 
text_len = png_strlen(text);
 
/* Compute the compressed data; do it now for the length */
text_len = png_text_compress(png_ptr, text, text_len, compression,
&comp);
 
/* Write start of chunk */
png_write_chunk_start(png_ptr, png_zTXt,
(png_uint_32)(key_len+text_len + 2));
 
/* Write key */
png_write_chunk_data(png_ptr, (png_bytep)new_key,
(png_size_t)(key_len + 1));
 
png_free(png_ptr, new_key);
 
buf = (png_byte)compression;
 
/* Write compression */
png_write_chunk_data(png_ptr, &buf, (png_size_t)1);
 
/* Write the compressed data */
png_write_compressed_data_out(png_ptr, &comp);
 
/* Close the chunk */
png_write_chunk_end(png_ptr);
}
#endif
 
#ifdef PNG_WRITE_iTXt_SUPPORTED
/* Write an iTXt chunk */
void /* PRIVATE */
png_write_iTXt(png_structp png_ptr, int compression, png_const_charp key,
png_const_charp lang, png_const_charp lang_key, png_const_charp text)
{
PNG_iTXt;
png_size_t lang_len, key_len, lang_key_len, text_len;
png_charp new_lang;
png_charp new_key = NULL;
png_byte cbuf[2];
compression_state comp;
 
png_debug(1, "in png_write_iTXt");
 
comp.num_output_ptr = 0;
comp.max_output_ptr = 0;
comp.output_ptr = NULL;
comp.input = NULL;
 
if ((key_len = png_check_keyword(png_ptr, key, &new_key)) == 0)
return;
 
if ((lang_len = png_check_keyword(png_ptr, lang, &new_lang)) == 0)
{
png_warning(png_ptr, "Empty language field in iTXt chunk");
new_lang = NULL;
lang_len = 0;
}
 
if (lang_key == NULL)
lang_key_len = 0;
 
else
lang_key_len = png_strlen(lang_key);
 
if (text == NULL)
text_len = 0;
 
else
text_len = png_strlen(text);
 
/* Compute the compressed data; do it now for the length */
text_len = png_text_compress(png_ptr, text, text_len, compression - 2,
&comp);
 
 
/* Make sure we include the compression flag, the compression byte,
* and the NULs after the key, lang, and lang_key parts
*/
 
png_write_chunk_start(png_ptr, png_iTXt, (png_uint_32)(
5 /* comp byte, comp flag, terminators for key, lang and lang_key */
+ key_len
+ lang_len
+ lang_key_len
+ text_len));
 
/* We leave it to the application to meet PNG-1.0 requirements on the
* contents of the text. PNG-1.0 through PNG-1.2 discourage the use of
* any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them.
* The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
*/
png_write_chunk_data(png_ptr, (png_bytep)new_key, (png_size_t)(key_len + 1));
 
/* Set the compression flag */
if (compression == PNG_ITXT_COMPRESSION_NONE ||
compression == PNG_TEXT_COMPRESSION_NONE)
cbuf[0] = 0;
 
else /* compression == PNG_ITXT_COMPRESSION_zTXt */
cbuf[0] = 1;
 
/* Set the compression method */
cbuf[1] = 0;
 
png_write_chunk_data(png_ptr, cbuf, (png_size_t)2);
 
cbuf[0] = 0;
png_write_chunk_data(png_ptr, (new_lang ? (png_const_bytep)new_lang : cbuf),
(png_size_t)(lang_len + 1));
 
png_write_chunk_data(png_ptr, (lang_key ? (png_const_bytep)lang_key : cbuf),
(png_size_t)(lang_key_len + 1));
 
png_write_compressed_data_out(png_ptr, &comp);
 
png_write_chunk_end(png_ptr);
 
png_free(png_ptr, new_key);
png_free(png_ptr, new_lang);
}
#endif
 
#ifdef PNG_WRITE_oFFs_SUPPORTED
/* Write the oFFs chunk */
void /* PRIVATE */
png_write_oFFs(png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset,
int unit_type)
{
PNG_oFFs;
png_byte buf[9];
 
png_debug(1, "in png_write_oFFs");
 
if (unit_type >= PNG_OFFSET_LAST)
png_warning(png_ptr, "Unrecognized unit type for oFFs chunk");
 
png_save_int_32(buf, x_offset);
png_save_int_32(buf + 4, y_offset);
buf[8] = (png_byte)unit_type;
 
png_write_chunk(png_ptr, png_oFFs, buf, (png_size_t)9);
}
#endif
#ifdef PNG_WRITE_pCAL_SUPPORTED
/* Write the pCAL chunk (described in the PNG extensions document) */
void /* PRIVATE */
png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0,
png_int_32 X1, int type, int nparams, png_const_charp units,
png_charpp params)
{
PNG_pCAL;
png_size_t purpose_len, units_len, total_len;
png_uint_32p params_len;
png_byte buf[10];
png_charp new_purpose;
int i;
 
png_debug1(1, "in png_write_pCAL (%d parameters)", nparams);
 
if (type >= PNG_EQUATION_LAST)
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
 
purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1;
png_debug1(3, "pCAL purpose length = %d", (int)purpose_len);
units_len = png_strlen(units) + (nparams == 0 ? 0 : 1);
png_debug1(3, "pCAL units length = %d", (int)units_len);
total_len = purpose_len + units_len + 10;
 
params_len = (png_uint_32p)png_malloc(png_ptr,
(png_alloc_size_t)(nparams * png_sizeof(png_uint_32)));
 
/* Find the length of each parameter, making sure we don't count the
* null terminator for the last parameter.
*/
for (i = 0; i < nparams; i++)
{
params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1);
png_debug2(3, "pCAL parameter %d length = %lu", i,
(unsigned long)params_len[i]);
total_len += (png_size_t)params_len[i];
}
 
png_debug1(3, "pCAL total length = %d", (int)total_len);
png_write_chunk_start(png_ptr, png_pCAL, (png_uint_32)total_len);
png_write_chunk_data(png_ptr, (png_const_bytep)new_purpose,
(png_size_t)purpose_len);
png_save_int_32(buf, X0);
png_save_int_32(buf + 4, X1);
buf[8] = (png_byte)type;
buf[9] = (png_byte)nparams;
png_write_chunk_data(png_ptr, buf, (png_size_t)10);
png_write_chunk_data(png_ptr, (png_const_bytep)units, (png_size_t)units_len);
 
png_free(png_ptr, new_purpose);
 
for (i = 0; i < nparams; i++)
{
png_write_chunk_data(png_ptr, (png_const_bytep)params[i],
(png_size_t)params_len[i]);
}
 
png_free(png_ptr, params_len);
png_write_chunk_end(png_ptr);
}
#endif
 
#ifdef PNG_WRITE_sCAL_SUPPORTED
/* Write the sCAL chunk */
void /* PRIVATE */
png_write_sCAL_s(png_structp png_ptr, int unit, png_const_charp width,
png_const_charp height)
{
PNG_sCAL;
png_byte buf[64];
png_size_t wlen, hlen, total_len;
 
png_debug(1, "in png_write_sCAL_s");
 
wlen = png_strlen(width);
hlen = png_strlen(height);
total_len = wlen + hlen + 2;
 
if (total_len > 64)
{
png_warning(png_ptr, "Can't write sCAL (buffer too small)");
return;
}
 
buf[0] = (png_byte)unit;
png_memcpy(buf + 1, width, wlen + 1); /* Append the '\0' here */
png_memcpy(buf + wlen + 2, height, hlen); /* Do NOT append the '\0' here */
 
png_debug1(3, "sCAL total length = %u", (unsigned int)total_len);
png_write_chunk(png_ptr, png_sCAL, buf, total_len);
}
#endif
 
#ifdef PNG_WRITE_pHYs_SUPPORTED
/* Write the pHYs chunk */
void /* PRIVATE */
png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit,
png_uint_32 y_pixels_per_unit,
int unit_type)
{
PNG_pHYs;
png_byte buf[9];
 
png_debug(1, "in png_write_pHYs");
 
if (unit_type >= PNG_RESOLUTION_LAST)
png_warning(png_ptr, "Unrecognized unit type for pHYs chunk");
 
png_save_uint_32(buf, x_pixels_per_unit);
png_save_uint_32(buf + 4, y_pixels_per_unit);
buf[8] = (png_byte)unit_type;
 
png_write_chunk(png_ptr, png_pHYs, buf, (png_size_t)9);
}
#endif
 
#ifdef PNG_WRITE_tIME_SUPPORTED
/* Write the tIME chunk. Use either png_convert_from_struct_tm()
* or png_convert_from_time_t(), or fill in the structure yourself.
*/
void /* PRIVATE */
png_write_tIME(png_structp png_ptr, png_const_timep mod_time)
{
PNG_tIME;
png_byte buf[7];
 
png_debug(1, "in png_write_tIME");
 
if (mod_time->month > 12 || mod_time->month < 1 ||
mod_time->day > 31 || mod_time->day < 1 ||
mod_time->hour > 23 || mod_time->second > 60)
{
png_warning(png_ptr, "Invalid time specified for tIME chunk");
return;
}
 
png_save_uint_16(buf, mod_time->year);
buf[2] = mod_time->month;
buf[3] = mod_time->day;
buf[4] = mod_time->hour;
buf[5] = mod_time->minute;
buf[6] = mod_time->second;
 
png_write_chunk(png_ptr, png_tIME, buf, (png_size_t)7);
}
#endif
 
/* Initializes the row writing capability of libpng */
void /* PRIVATE */
png_write_start_row(png_structp png_ptr)
{
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
png_size_t buf_size;
 
png_debug(1, "in png_write_start_row");
 
buf_size = (png_size_t)(PNG_ROWBYTES(
png_ptr->usr_channels*png_ptr->usr_bit_depth, png_ptr->width) + 1);
 
/* Set up row buffer */
png_ptr->row_buf = (png_bytep)png_malloc(png_ptr,
(png_alloc_size_t)buf_size);
 
png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE;
 
#ifdef PNG_WRITE_FILTER_SUPPORTED
/* Set up filtering buffer, if using this filter */
if (png_ptr->do_filter & PNG_FILTER_SUB)
{
png_ptr->sub_row = (png_bytep)png_malloc(png_ptr, png_ptr->rowbytes + 1);
 
png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
}
 
/* We only need to keep the previous row if we are using one of these. */
if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH))
{
/* Set up previous row buffer */
png_ptr->prev_row = (png_bytep)png_calloc(png_ptr,
(png_alloc_size_t)buf_size);
 
if (png_ptr->do_filter & PNG_FILTER_UP)
{
png_ptr->up_row = (png_bytep)png_malloc(png_ptr,
png_ptr->rowbytes + 1);
 
png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
}
 
if (png_ptr->do_filter & PNG_FILTER_AVG)
{
png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
png_ptr->rowbytes + 1);
 
png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
}
 
if (png_ptr->do_filter & PNG_FILTER_PAETH)
{
png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr,
png_ptr->rowbytes + 1);
 
png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
}
}
#endif /* PNG_WRITE_FILTER_SUPPORTED */
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* If interlaced, we need to set up width and height of pass */
if (png_ptr->interlaced)
{
if (!(png_ptr->transformations & PNG_INTERLACE))
{
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
png_pass_ystart[0]) / png_pass_yinc[0];
 
png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 -
png_pass_start[0]) / png_pass_inc[0];
}
 
else
{
png_ptr->num_rows = png_ptr->height;
png_ptr->usr_width = png_ptr->width;
}
}
 
else
#endif
{
png_ptr->num_rows = png_ptr->height;
png_ptr->usr_width = png_ptr->width;
}
 
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_out = png_ptr->zbuf;
}
 
/* Internal use only. Called when finished processing a row of data. */
void /* PRIVATE */
png_write_finish_row(png_structp png_ptr)
{
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
int ret;
 
png_debug(1, "in png_write_finish_row");
 
/* Next row */
png_ptr->row_number++;
 
/* See if we are done */
if (png_ptr->row_number < png_ptr->num_rows)
return;
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* If interlaced, go to next pass */
if (png_ptr->interlaced)
{
png_ptr->row_number = 0;
if (png_ptr->transformations & PNG_INTERLACE)
{
png_ptr->pass++;
}
 
else
{
/* Loop until we find a non-zero width or height pass */
do
{
png_ptr->pass++;
 
if (png_ptr->pass >= 7)
break;
 
png_ptr->usr_width = (png_ptr->width +
png_pass_inc[png_ptr->pass] - 1 -
png_pass_start[png_ptr->pass]) /
png_pass_inc[png_ptr->pass];
 
png_ptr->num_rows = (png_ptr->height +
png_pass_yinc[png_ptr->pass] - 1 -
png_pass_ystart[png_ptr->pass]) /
png_pass_yinc[png_ptr->pass];
 
if (png_ptr->transformations & PNG_INTERLACE)
break;
 
} while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0);
 
}
 
/* Reset the row above the image for the next pass */
if (png_ptr->pass < 7)
{
if (png_ptr->prev_row != NULL)
png_memset(png_ptr->prev_row, 0,
(png_size_t)(PNG_ROWBYTES(png_ptr->usr_channels*
png_ptr->usr_bit_depth, png_ptr->width)) + 1);
 
return;
}
}
#endif
 
/* If we get here, we've just written the last row, so we need
to flush the compressor */
do
{
/* Tell the compressor we are done */
ret = deflate(&png_ptr->zstream, Z_FINISH);
 
/* Check for an error */
if (ret == Z_OK)
{
/* Check to see if we need more room */
if (!(png_ptr->zstream.avail_out))
{
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
}
 
else if (ret != Z_STREAM_END)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
 
else
png_error(png_ptr, "zlib error");
}
} while (ret != Z_STREAM_END);
 
/* Write any extra space */
if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
{
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size -
png_ptr->zstream.avail_out);
}
 
deflateReset(&png_ptr->zstream);
png_ptr->zstream.data_type = Z_BINARY;
}
 
#ifdef PNG_WRITE_INTERLACING_SUPPORTED
/* Pick out the correct pixels for the interlace pass.
* The basic idea here is to go through the row with a source
* pointer and a destination pointer (sp and dp), and copy the
* correct pixels for the pass. As the row gets compacted,
* sp will always be >= dp, so we should never overwrite anything.
* See the default: case for the easiest code to understand.
*/
void /* PRIVATE */
png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass)
{
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
png_debug(1, "in png_do_write_interlace");
 
/* We don't have to do anything on the last pass (6) */
if (pass < 6)
{
/* Each pixel depth is handled separately */
switch (row_info->pixel_depth)
{
case 1:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
d = 0;
shift = 7;
 
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 3);
value = (int)(*sp >> (7 - (int)(i & 0x07))) & 0x01;
d |= (value << shift);
 
if (shift == 0)
{
shift = 7;
*dp++ = (png_byte)d;
d = 0;
}
 
else
shift--;
 
}
if (shift != 7)
*dp = (png_byte)d;
 
break;
}
 
case 2:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
shift = 6;
d = 0;
 
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 2);
value = (*sp >> ((3 - (int)(i & 0x03)) << 1)) & 0x03;
d |= (value << shift);
 
if (shift == 0)
{
shift = 6;
*dp++ = (png_byte)d;
d = 0;
}
 
else
shift -= 2;
}
if (shift != 6)
*dp = (png_byte)d;
 
break;
}
 
case 4:
{
png_bytep sp;
png_bytep dp;
int shift;
int d;
int value;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
 
dp = row;
shift = 4;
d = 0;
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
sp = row + (png_size_t)(i >> 1);
value = (*sp >> ((1 - (int)(i & 0x01)) << 2)) & 0x0f;
d |= (value << shift);
 
if (shift == 0)
{
shift = 4;
*dp++ = (png_byte)d;
d = 0;
}
 
else
shift -= 4;
}
if (shift != 4)
*dp = (png_byte)d;
 
break;
}
 
default:
{
png_bytep sp;
png_bytep dp;
png_uint_32 i;
png_uint_32 row_width = row_info->width;
png_size_t pixel_bytes;
 
/* Start at the beginning */
dp = row;
 
/* Find out how many bytes each pixel takes up */
pixel_bytes = (row_info->pixel_depth >> 3);
 
/* Loop through the row, only looking at the pixels that matter */
for (i = png_pass_start[pass]; i < row_width;
i += png_pass_inc[pass])
{
/* Find out where the original pixel is */
sp = row + (png_size_t)i * pixel_bytes;
 
/* Move the pixel */
if (dp != sp)
png_memcpy(dp, sp, pixel_bytes);
 
/* Next pixel */
dp += pixel_bytes;
}
break;
}
}
/* Set new row width */
row_info->width = (row_info->width +
png_pass_inc[pass] - 1 -
png_pass_start[pass]) /
png_pass_inc[pass];
 
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth,
row_info->width);
}
}
#endif
 
/* This filters the row, chooses which filter to use, if it has not already
* been specified by the application, and then writes the row out with the
* chosen filter.
*/
#define PNG_MAXSUM (((png_uint_32)(-1)) >> 1)
#define PNG_HISHIFT 10
#define PNG_LOMASK ((png_uint_32)0xffffL)
#define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT))
void /* PRIVATE */
png_write_find_filter(png_structp png_ptr, png_row_infop row_info)
{
png_bytep best_row;
#ifdef PNG_WRITE_FILTER_SUPPORTED
png_bytep prev_row, row_buf;
png_uint_32 mins, bpp;
png_byte filter_to_do = png_ptr->do_filter;
png_size_t row_bytes = row_info->rowbytes;
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
int num_p_filters = (int)png_ptr->num_prev_filters;
#endif
 
png_debug(1, "in png_write_find_filter");
 
#ifndef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->row_number == 0 && filter_to_do == PNG_ALL_FILTERS)
{
/* These will never be selected so we need not test them. */
filter_to_do &= ~(PNG_FILTER_UP | PNG_FILTER_PAETH);
}
#endif
 
/* Find out how many bytes offset each pixel is */
bpp = (row_info->pixel_depth + 7) >> 3;
 
prev_row = png_ptr->prev_row;
#endif
best_row = png_ptr->row_buf;
#ifdef PNG_WRITE_FILTER_SUPPORTED
row_buf = best_row;
mins = PNG_MAXSUM;
 
/* The prediction method we use is to find which method provides the
* smallest value when summing the absolute values of the distances
* from zero, using anything >= 128 as negative numbers. This is known
* as the "minimum sum of absolute differences" heuristic. Other
* heuristics are the "weighted minimum sum of absolute differences"
* (experimental and can in theory improve compression), and the "zlib
* predictive" method (not implemented yet), which does test compressions
* of lines using different filter methods, and then chooses the
* (series of) filter(s) that give minimum compressed data size (VERY
* computationally expensive).
*
* GRR 980525: consider also
*
* (1) minimum sum of absolute differences from running average (i.e.,
* keep running sum of non-absolute differences & count of bytes)
* [track dispersion, too? restart average if dispersion too large?]
*
* (1b) minimum sum of absolute differences from sliding average, probably
* with window size <= deflate window (usually 32K)
*
* (2) minimum sum of squared differences from zero or running average
* (i.e., ~ root-mean-square approach)
*/
 
 
/* We don't need to test the 'no filter' case if this is the only filter
* that has been chosen, as it doesn't actually do anything to the data.
*/
if ((filter_to_do & PNG_FILTER_NONE) && filter_to_do != PNG_FILTER_NONE)
{
png_bytep rp;
png_uint_32 sum = 0;
png_size_t i;
int v;
 
for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++)
{
v = *rp;
sum += (v < 128) ? v : 256 - v;
}
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
png_uint_32 sumhi, sumlo;
int j;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */
 
/* Reduce the sum if we match any of the previous rows */
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
/* Factor in the cost of this filter (this is here for completeness,
* but it makes no sense to have a "cost" for the NONE filter, as
* it has the minimum possible computational cost - none).
*/
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
PNG_COST_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
 
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
mins = sum;
}
 
/* Sub filter */
if (filter_to_do == PNG_FILTER_SUB)
/* It's the only filter so no testing is needed */
{
png_bytep rp, lp, dp;
png_size_t i;
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
i++, rp++, dp++)
{
*dp = *rp;
}
 
for (lp = row_buf + 1; i < row_bytes;
i++, rp++, lp++, dp++)
{
*dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
}
 
best_row = png_ptr->sub_row;
}
 
else if (filter_to_do & PNG_FILTER_SUB)
{
png_bytep rp, dp, lp;
png_uint_32 sum = 0, lmins = mins;
png_size_t i;
int v;
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
/* We temporarily increase the "minimum sum" by the factor we
* would reduce the sum of this filter, so that we can do the
* early exit comparison without scaling the sum each time.
*/
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
 
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
i++, rp++, dp++)
{
v = *dp = *rp;
 
sum += (v < 128) ? v : 256 - v;
}
 
for (lp = row_buf + 1; i < row_bytes;
i++, rp++, lp++, dp++)
{
v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB)
{
sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
 
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->sub_row;
}
}
 
/* Up filter */
if (filter_to_do == PNG_FILTER_UP)
{
png_bytep rp, dp, pp;
png_size_t i;
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
pp = prev_row + 1; i < row_bytes;
i++, rp++, pp++, dp++)
{
*dp = (png_byte)(((int)*rp - (int)*pp) & 0xff);
}
 
best_row = png_ptr->up_row;
}
 
else if (filter_to_do & PNG_FILTER_UP)
{
png_bytep rp, dp, pp;
png_uint_32 sum = 0, lmins = mins;
png_size_t i;
int v;
 
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
 
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
pp = prev_row + 1; i < row_bytes; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
 
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->up_row;
}
}
 
/* Avg filter */
if (filter_to_do == PNG_FILTER_AVG)
{
png_bytep rp, dp, pp, lp;
png_uint_32 i;
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
*dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
}
 
for (lp = row_buf + 1; i < row_bytes; i++)
{
*dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2))
& 0xff);
}
best_row = png_ptr->avg_row;
}
 
else if (filter_to_do & PNG_FILTER_AVG)
{
png_bytep rp, dp, pp, lp;
png_uint_32 sum = 0, lmins = mins;
png_size_t i;
int v;
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
 
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
}
 
for (lp = row_buf + 1; i < row_bytes; i++)
{
v = *dp++ =
(png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
 
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
mins = sum;
best_row = png_ptr->avg_row;
}
}
 
/* Paeth filter */
if (filter_to_do == PNG_FILTER_PAETH)
{
png_bytep rp, dp, pp, cp, lp;
png_size_t i;
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
*dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
}
 
for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
{
int a, b, c, pa, pb, pc, p;
 
b = *pp++;
c = *cp++;
a = *lp++;
 
p = b - c;
pc = a - c;
 
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
 
*dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
}
best_row = png_ptr->paeth_row;
}
 
else if (filter_to_do & PNG_FILTER_PAETH)
{
png_bytep rp, dp, pp, cp, lp;
png_uint_32 sum = 0, lmins = mins;
png_size_t i;
int v;
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 lmhi, lmlo;
lmlo = lmins & PNG_LOMASK;
lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
{
lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
if (lmhi > PNG_HIMASK)
lmins = PNG_MAXSUM;
 
else
lmins = (lmhi << PNG_HISHIFT) + lmlo;
}
#endif
 
for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
pp = prev_row + 1; i < bpp; i++)
{
v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
}
 
for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++)
{
int a, b, c, pa, pb, pc, p;
 
b = *pp++;
c = *cp++;
a = *lp++;
 
#ifndef PNG_SLOW_PAETH
p = b - c;
pc = a - c;
#ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
#else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c;
#else /* PNG_SLOW_PAETH */
p = a + b - c;
pa = abs(p - a);
pb = abs(p - b);
pc = abs(p - c);
 
if (pa <= pb && pa <= pc)
p = a;
 
else if (pb <= pc)
p = b;
 
else
p = c;
#endif /* PNG_SLOW_PAETH */
 
v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
 
sum += (v < 128) ? v : 256 - v;
 
if (sum > lmins) /* We are already worse, don't continue. */
break;
}
 
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED)
{
int j;
png_uint_32 sumhi, sumlo;
sumlo = sum & PNG_LOMASK;
sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;
 
for (j = 0; j < num_p_filters; j++)
{
if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH)
{
sumlo = (sumlo * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_weights[j]) >>
PNG_WEIGHT_SHIFT;
}
}
 
sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
PNG_COST_SHIFT;
 
if (sumhi > PNG_HIMASK)
sum = PNG_MAXSUM;
 
else
sum = (sumhi << PNG_HISHIFT) + sumlo;
}
#endif
 
if (sum < mins)
{
best_row = png_ptr->paeth_row;
}
}
#endif /* PNG_WRITE_FILTER_SUPPORTED */
/* Do the actual writing of the filtered row data from the chosen filter. */
 
png_write_filtered_row(png_ptr, best_row);
 
#ifdef PNG_WRITE_FILTER_SUPPORTED
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED
/* Save the type of filter we picked this time for future calculations */
if (png_ptr->num_prev_filters > 0)
{
int j;
 
for (j = 1; j < num_p_filters; j++)
{
png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1];
}
 
png_ptr->prev_filters[j] = best_row[0];
}
#endif
#endif /* PNG_WRITE_FILTER_SUPPORTED */
}
 
 
/* Do the actual writing of a previously filtered row. */
void /* PRIVATE */
png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row)
{
png_size_t avail;
 
png_debug(1, "in png_write_filtered_row");
 
png_debug1(2, "filter = %d", filtered_row[0]);
/* Set up the zlib input buffer */
 
png_ptr->zstream.next_in = filtered_row;
png_ptr->zstream.avail_in = 0;
avail = png_ptr->row_info.rowbytes + 1;
/* Repeat until we have compressed all the data */
do
{
int ret; /* Return of zlib */
 
/* Record the number of bytes available - zlib supports at least 65535
* bytes at one step, depending on the size of the zlib type 'uInt', the
* maximum size zlib can write at once is ZLIB_IO_MAX (from pngpriv.h).
* Use this because on 16 bit systems 'rowbytes' can be up to 65536 (i.e.
* one more than 16 bits) and, in this case 'rowbytes+1' can overflow a
* uInt. ZLIB_IO_MAX can be safely reduced to cause zlib to be called
* with smaller chunks of data.
*/
if (png_ptr->zstream.avail_in == 0)
{
if (avail > ZLIB_IO_MAX)
{
png_ptr->zstream.avail_in = ZLIB_IO_MAX;
avail -= ZLIB_IO_MAX;
}
 
else
{
/* So this will fit in the available uInt space: */
png_ptr->zstream.avail_in = (uInt)avail;
avail = 0;
}
}
 
/* Compress the data */
ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
 
/* Check for compression errors */
if (ret != Z_OK)
{
if (png_ptr->zstream.msg != NULL)
png_error(png_ptr, png_ptr->zstream.msg);
 
else
png_error(png_ptr, "zlib error");
}
 
/* See if it is time to write another IDAT */
if (!(png_ptr->zstream.avail_out))
{
/* Write the IDAT and reset the zlib output buffer */
png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
}
/* Repeat until all data has been compressed */
} while (avail > 0 || png_ptr->zstream.avail_in > 0);
 
/* Swap the current and previous rows */
if (png_ptr->prev_row != NULL)
{
png_bytep tptr;
 
tptr = png_ptr->prev_row;
png_ptr->prev_row = png_ptr->row_buf;
png_ptr->row_buf = tptr;
}
 
/* Finish row - updates counters and flushes zlib if last row */
png_write_finish_row(png_ptr);
 
#ifdef PNG_WRITE_FLUSH_SUPPORTED
png_ptr->flush_rows++;
 
if (png_ptr->flush_dist > 0 &&
png_ptr->flush_rows >= png_ptr->flush_dist)
{
png_write_flush(png_ptr);
}
#endif
}
#endif /* PNG_WRITE_SUPPORTED */
/programs/develop/libraries/libpng
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property